xref: /openbmc/linux/block/blk-settings.c (revision 801543b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "blk.h"
19 #include "blk-wbt.h"
20 
21 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
22 {
23 	q->rq_timeout = timeout;
24 }
25 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
26 
27 /**
28  * blk_set_default_limits - reset limits to default values
29  * @lim:  the queue_limits structure to reset
30  *
31  * Description:
32  *   Returns a queue_limit struct to its default state.
33  */
34 void blk_set_default_limits(struct queue_limits *lim)
35 {
36 	lim->max_segments = BLK_MAX_SEGMENTS;
37 	lim->max_discard_segments = 1;
38 	lim->max_integrity_segments = 0;
39 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
40 	lim->virt_boundary_mask = 0;
41 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
42 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
43 	lim->max_dev_sectors = 0;
44 	lim->chunk_sectors = 0;
45 	lim->max_write_zeroes_sectors = 0;
46 	lim->max_zone_append_sectors = 0;
47 	lim->max_discard_sectors = 0;
48 	lim->max_hw_discard_sectors = 0;
49 	lim->max_secure_erase_sectors = 0;
50 	lim->discard_granularity = 0;
51 	lim->discard_alignment = 0;
52 	lim->discard_misaligned = 0;
53 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
54 	lim->bounce = BLK_BOUNCE_NONE;
55 	lim->alignment_offset = 0;
56 	lim->io_opt = 0;
57 	lim->misaligned = 0;
58 	lim->zoned = BLK_ZONED_NONE;
59 	lim->zone_write_granularity = 0;
60 }
61 EXPORT_SYMBOL(blk_set_default_limits);
62 
63 /**
64  * blk_set_stacking_limits - set default limits for stacking devices
65  * @lim:  the queue_limits structure to reset
66  *
67  * Description:
68  *   Returns a queue_limit struct to its default state. Should be used
69  *   by stacking drivers like DM that have no internal limits.
70  */
71 void blk_set_stacking_limits(struct queue_limits *lim)
72 {
73 	blk_set_default_limits(lim);
74 
75 	/* Inherit limits from component devices */
76 	lim->max_segments = USHRT_MAX;
77 	lim->max_discard_segments = USHRT_MAX;
78 	lim->max_hw_sectors = UINT_MAX;
79 	lim->max_segment_size = UINT_MAX;
80 	lim->max_sectors = UINT_MAX;
81 	lim->max_dev_sectors = UINT_MAX;
82 	lim->max_write_zeroes_sectors = UINT_MAX;
83 	lim->max_zone_append_sectors = UINT_MAX;
84 }
85 EXPORT_SYMBOL(blk_set_stacking_limits);
86 
87 /**
88  * blk_queue_bounce_limit - set bounce buffer limit for queue
89  * @q: the request queue for the device
90  * @bounce: bounce limit to enforce
91  *
92  * Description:
93  *    Force bouncing for ISA DMA ranges or highmem.
94  *
95  *    DEPRECATED, don't use in new code.
96  **/
97 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
98 {
99 	q->limits.bounce = bounce;
100 }
101 EXPORT_SYMBOL(blk_queue_bounce_limit);
102 
103 /**
104  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
105  * @q:  the request queue for the device
106  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
107  *
108  * Description:
109  *    Enables a low level driver to set a hard upper limit,
110  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
111  *    the device driver based upon the capabilities of the I/O
112  *    controller.
113  *
114  *    max_dev_sectors is a hard limit imposed by the storage device for
115  *    READ/WRITE requests. It is set by the disk driver.
116  *
117  *    max_sectors is a soft limit imposed by the block layer for
118  *    filesystem type requests.  This value can be overridden on a
119  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
120  *    The soft limit can not exceed max_hw_sectors.
121  **/
122 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
123 {
124 	struct queue_limits *limits = &q->limits;
125 	unsigned int max_sectors;
126 
127 	if ((max_hw_sectors << 9) < PAGE_SIZE) {
128 		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
129 		printk(KERN_INFO "%s: set to minimum %d\n",
130 		       __func__, max_hw_sectors);
131 	}
132 
133 	max_hw_sectors = round_down(max_hw_sectors,
134 				    limits->logical_block_size >> SECTOR_SHIFT);
135 	limits->max_hw_sectors = max_hw_sectors;
136 
137 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
138 	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
139 	max_sectors = round_down(max_sectors,
140 				 limits->logical_block_size >> SECTOR_SHIFT);
141 	limits->max_sectors = max_sectors;
142 
143 	if (!q->disk)
144 		return;
145 	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
146 }
147 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
148 
149 /**
150  * blk_queue_chunk_sectors - set size of the chunk for this queue
151  * @q:  the request queue for the device
152  * @chunk_sectors:  chunk sectors in the usual 512b unit
153  *
154  * Description:
155  *    If a driver doesn't want IOs to cross a given chunk size, it can set
156  *    this limit and prevent merging across chunks. Note that the block layer
157  *    must accept a page worth of data at any offset. So if the crossing of
158  *    chunks is a hard limitation in the driver, it must still be prepared
159  *    to split single page bios.
160  **/
161 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
162 {
163 	q->limits.chunk_sectors = chunk_sectors;
164 }
165 EXPORT_SYMBOL(blk_queue_chunk_sectors);
166 
167 /**
168  * blk_queue_max_discard_sectors - set max sectors for a single discard
169  * @q:  the request queue for the device
170  * @max_discard_sectors: maximum number of sectors to discard
171  **/
172 void blk_queue_max_discard_sectors(struct request_queue *q,
173 		unsigned int max_discard_sectors)
174 {
175 	q->limits.max_hw_discard_sectors = max_discard_sectors;
176 	q->limits.max_discard_sectors = max_discard_sectors;
177 }
178 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
179 
180 /**
181  * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
182  * @q:  the request queue for the device
183  * @max_sectors: maximum number of sectors to secure_erase
184  **/
185 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
186 		unsigned int max_sectors)
187 {
188 	q->limits.max_secure_erase_sectors = max_sectors;
189 }
190 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
191 
192 /**
193  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
194  *                                      write zeroes
195  * @q:  the request queue for the device
196  * @max_write_zeroes_sectors: maximum number of sectors to write per command
197  **/
198 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
199 		unsigned int max_write_zeroes_sectors)
200 {
201 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
202 }
203 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
204 
205 /**
206  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
207  * @q:  the request queue for the device
208  * @max_zone_append_sectors: maximum number of sectors to write per command
209  **/
210 void blk_queue_max_zone_append_sectors(struct request_queue *q,
211 		unsigned int max_zone_append_sectors)
212 {
213 	unsigned int max_sectors;
214 
215 	if (WARN_ON(!blk_queue_is_zoned(q)))
216 		return;
217 
218 	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
219 	max_sectors = min(q->limits.chunk_sectors, max_sectors);
220 
221 	/*
222 	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
223 	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
224 	 * or the max_hw_sectors limit not set.
225 	 */
226 	WARN_ON(!max_sectors);
227 
228 	q->limits.max_zone_append_sectors = max_sectors;
229 }
230 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
231 
232 /**
233  * blk_queue_max_segments - set max hw segments for a request for this queue
234  * @q:  the request queue for the device
235  * @max_segments:  max number of segments
236  *
237  * Description:
238  *    Enables a low level driver to set an upper limit on the number of
239  *    hw data segments in a request.
240  **/
241 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
242 {
243 	if (!max_segments) {
244 		max_segments = 1;
245 		printk(KERN_INFO "%s: set to minimum %d\n",
246 		       __func__, max_segments);
247 	}
248 
249 	q->limits.max_segments = max_segments;
250 }
251 EXPORT_SYMBOL(blk_queue_max_segments);
252 
253 /**
254  * blk_queue_max_discard_segments - set max segments for discard requests
255  * @q:  the request queue for the device
256  * @max_segments:  max number of segments
257  *
258  * Description:
259  *    Enables a low level driver to set an upper limit on the number of
260  *    segments in a discard request.
261  **/
262 void blk_queue_max_discard_segments(struct request_queue *q,
263 		unsigned short max_segments)
264 {
265 	q->limits.max_discard_segments = max_segments;
266 }
267 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
268 
269 /**
270  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
271  * @q:  the request queue for the device
272  * @max_size:  max size of segment in bytes
273  *
274  * Description:
275  *    Enables a low level driver to set an upper limit on the size of a
276  *    coalesced segment
277  **/
278 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
279 {
280 	if (max_size < PAGE_SIZE) {
281 		max_size = PAGE_SIZE;
282 		printk(KERN_INFO "%s: set to minimum %d\n",
283 		       __func__, max_size);
284 	}
285 
286 	/* see blk_queue_virt_boundary() for the explanation */
287 	WARN_ON_ONCE(q->limits.virt_boundary_mask);
288 
289 	q->limits.max_segment_size = max_size;
290 }
291 EXPORT_SYMBOL(blk_queue_max_segment_size);
292 
293 /**
294  * blk_queue_logical_block_size - set logical block size for the queue
295  * @q:  the request queue for the device
296  * @size:  the logical block size, in bytes
297  *
298  * Description:
299  *   This should be set to the lowest possible block size that the
300  *   storage device can address.  The default of 512 covers most
301  *   hardware.
302  **/
303 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
304 {
305 	struct queue_limits *limits = &q->limits;
306 
307 	limits->logical_block_size = size;
308 
309 	if (limits->physical_block_size < size)
310 		limits->physical_block_size = size;
311 
312 	if (limits->io_min < limits->physical_block_size)
313 		limits->io_min = limits->physical_block_size;
314 
315 	limits->max_hw_sectors =
316 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
317 	limits->max_sectors =
318 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
319 }
320 EXPORT_SYMBOL(blk_queue_logical_block_size);
321 
322 /**
323  * blk_queue_physical_block_size - set physical block size for the queue
324  * @q:  the request queue for the device
325  * @size:  the physical block size, in bytes
326  *
327  * Description:
328  *   This should be set to the lowest possible sector size that the
329  *   hardware can operate on without reverting to read-modify-write
330  *   operations.
331  */
332 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
333 {
334 	q->limits.physical_block_size = size;
335 
336 	if (q->limits.physical_block_size < q->limits.logical_block_size)
337 		q->limits.physical_block_size = q->limits.logical_block_size;
338 
339 	if (q->limits.io_min < q->limits.physical_block_size)
340 		q->limits.io_min = q->limits.physical_block_size;
341 }
342 EXPORT_SYMBOL(blk_queue_physical_block_size);
343 
344 /**
345  * blk_queue_zone_write_granularity - set zone write granularity for the queue
346  * @q:  the request queue for the zoned device
347  * @size:  the zone write granularity size, in bytes
348  *
349  * Description:
350  *   This should be set to the lowest possible size allowing to write in
351  *   sequential zones of a zoned block device.
352  */
353 void blk_queue_zone_write_granularity(struct request_queue *q,
354 				      unsigned int size)
355 {
356 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
357 		return;
358 
359 	q->limits.zone_write_granularity = size;
360 
361 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
362 		q->limits.zone_write_granularity = q->limits.logical_block_size;
363 }
364 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
365 
366 /**
367  * blk_queue_alignment_offset - set physical block alignment offset
368  * @q:	the request queue for the device
369  * @offset: alignment offset in bytes
370  *
371  * Description:
372  *   Some devices are naturally misaligned to compensate for things like
373  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
374  *   should call this function for devices whose first sector is not
375  *   naturally aligned.
376  */
377 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
378 {
379 	q->limits.alignment_offset =
380 		offset & (q->limits.physical_block_size - 1);
381 	q->limits.misaligned = 0;
382 }
383 EXPORT_SYMBOL(blk_queue_alignment_offset);
384 
385 void disk_update_readahead(struct gendisk *disk)
386 {
387 	struct request_queue *q = disk->queue;
388 
389 	/*
390 	 * For read-ahead of large files to be effective, we need to read ahead
391 	 * at least twice the optimal I/O size.
392 	 */
393 	disk->bdi->ra_pages =
394 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
395 	disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
396 }
397 EXPORT_SYMBOL_GPL(disk_update_readahead);
398 
399 /**
400  * blk_limits_io_min - set minimum request size for a device
401  * @limits: the queue limits
402  * @min:  smallest I/O size in bytes
403  *
404  * Description:
405  *   Some devices have an internal block size bigger than the reported
406  *   hardware sector size.  This function can be used to signal the
407  *   smallest I/O the device can perform without incurring a performance
408  *   penalty.
409  */
410 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
411 {
412 	limits->io_min = min;
413 
414 	if (limits->io_min < limits->logical_block_size)
415 		limits->io_min = limits->logical_block_size;
416 
417 	if (limits->io_min < limits->physical_block_size)
418 		limits->io_min = limits->physical_block_size;
419 }
420 EXPORT_SYMBOL(blk_limits_io_min);
421 
422 /**
423  * blk_queue_io_min - set minimum request size for the queue
424  * @q:	the request queue for the device
425  * @min:  smallest I/O size in bytes
426  *
427  * Description:
428  *   Storage devices may report a granularity or preferred minimum I/O
429  *   size which is the smallest request the device can perform without
430  *   incurring a performance penalty.  For disk drives this is often the
431  *   physical block size.  For RAID arrays it is often the stripe chunk
432  *   size.  A properly aligned multiple of minimum_io_size is the
433  *   preferred request size for workloads where a high number of I/O
434  *   operations is desired.
435  */
436 void blk_queue_io_min(struct request_queue *q, unsigned int min)
437 {
438 	blk_limits_io_min(&q->limits, min);
439 }
440 EXPORT_SYMBOL(blk_queue_io_min);
441 
442 /**
443  * blk_limits_io_opt - set optimal request size for a device
444  * @limits: the queue limits
445  * @opt:  smallest I/O size in bytes
446  *
447  * Description:
448  *   Storage devices may report an optimal I/O size, which is the
449  *   device's preferred unit for sustained I/O.  This is rarely reported
450  *   for disk drives.  For RAID arrays it is usually the stripe width or
451  *   the internal track size.  A properly aligned multiple of
452  *   optimal_io_size is the preferred request size for workloads where
453  *   sustained throughput is desired.
454  */
455 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
456 {
457 	limits->io_opt = opt;
458 }
459 EXPORT_SYMBOL(blk_limits_io_opt);
460 
461 /**
462  * blk_queue_io_opt - set optimal request size for the queue
463  * @q:	the request queue for the device
464  * @opt:  optimal request size in bytes
465  *
466  * Description:
467  *   Storage devices may report an optimal I/O size, which is the
468  *   device's preferred unit for sustained I/O.  This is rarely reported
469  *   for disk drives.  For RAID arrays it is usually the stripe width or
470  *   the internal track size.  A properly aligned multiple of
471  *   optimal_io_size is the preferred request size for workloads where
472  *   sustained throughput is desired.
473  */
474 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
475 {
476 	blk_limits_io_opt(&q->limits, opt);
477 	if (!q->disk)
478 		return;
479 	q->disk->bdi->ra_pages =
480 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
481 }
482 EXPORT_SYMBOL(blk_queue_io_opt);
483 
484 static int queue_limit_alignment_offset(struct queue_limits *lim,
485 		sector_t sector)
486 {
487 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
488 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
489 		<< SECTOR_SHIFT;
490 
491 	return (granularity + lim->alignment_offset - alignment) % granularity;
492 }
493 
494 static unsigned int queue_limit_discard_alignment(struct queue_limits *lim,
495 		sector_t sector)
496 {
497 	unsigned int alignment, granularity, offset;
498 
499 	if (!lim->max_discard_sectors)
500 		return 0;
501 
502 	/* Why are these in bytes, not sectors? */
503 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
504 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
505 	if (!granularity)
506 		return 0;
507 
508 	/* Offset of the partition start in 'granularity' sectors */
509 	offset = sector_div(sector, granularity);
510 
511 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
512 	offset = (granularity + alignment - offset) % granularity;
513 
514 	/* Turn it back into bytes, gaah */
515 	return offset << SECTOR_SHIFT;
516 }
517 
518 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
519 {
520 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
521 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
522 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
523 	return sectors;
524 }
525 
526 /**
527  * blk_stack_limits - adjust queue_limits for stacked devices
528  * @t:	the stacking driver limits (top device)
529  * @b:  the underlying queue limits (bottom, component device)
530  * @start:  first data sector within component device
531  *
532  * Description:
533  *    This function is used by stacking drivers like MD and DM to ensure
534  *    that all component devices have compatible block sizes and
535  *    alignments.  The stacking driver must provide a queue_limits
536  *    struct (top) and then iteratively call the stacking function for
537  *    all component (bottom) devices.  The stacking function will
538  *    attempt to combine the values and ensure proper alignment.
539  *
540  *    Returns 0 if the top and bottom queue_limits are compatible.  The
541  *    top device's block sizes and alignment offsets may be adjusted to
542  *    ensure alignment with the bottom device. If no compatible sizes
543  *    and alignments exist, -1 is returned and the resulting top
544  *    queue_limits will have the misaligned flag set to indicate that
545  *    the alignment_offset is undefined.
546  */
547 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
548 		     sector_t start)
549 {
550 	unsigned int top, bottom, alignment, ret = 0;
551 
552 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
553 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
554 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
555 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
556 					b->max_write_zeroes_sectors);
557 	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
558 					b->max_zone_append_sectors);
559 	t->bounce = max(t->bounce, b->bounce);
560 
561 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
562 					    b->seg_boundary_mask);
563 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
564 					    b->virt_boundary_mask);
565 
566 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
567 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
568 					       b->max_discard_segments);
569 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
570 						 b->max_integrity_segments);
571 
572 	t->max_segment_size = min_not_zero(t->max_segment_size,
573 					   b->max_segment_size);
574 
575 	t->misaligned |= b->misaligned;
576 
577 	alignment = queue_limit_alignment_offset(b, start);
578 
579 	/* Bottom device has different alignment.  Check that it is
580 	 * compatible with the current top alignment.
581 	 */
582 	if (t->alignment_offset != alignment) {
583 
584 		top = max(t->physical_block_size, t->io_min)
585 			+ t->alignment_offset;
586 		bottom = max(b->physical_block_size, b->io_min) + alignment;
587 
588 		/* Verify that top and bottom intervals line up */
589 		if (max(top, bottom) % min(top, bottom)) {
590 			t->misaligned = 1;
591 			ret = -1;
592 		}
593 	}
594 
595 	t->logical_block_size = max(t->logical_block_size,
596 				    b->logical_block_size);
597 
598 	t->physical_block_size = max(t->physical_block_size,
599 				     b->physical_block_size);
600 
601 	t->io_min = max(t->io_min, b->io_min);
602 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
603 
604 	/* Set non-power-of-2 compatible chunk_sectors boundary */
605 	if (b->chunk_sectors)
606 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
607 
608 	/* Physical block size a multiple of the logical block size? */
609 	if (t->physical_block_size & (t->logical_block_size - 1)) {
610 		t->physical_block_size = t->logical_block_size;
611 		t->misaligned = 1;
612 		ret = -1;
613 	}
614 
615 	/* Minimum I/O a multiple of the physical block size? */
616 	if (t->io_min & (t->physical_block_size - 1)) {
617 		t->io_min = t->physical_block_size;
618 		t->misaligned = 1;
619 		ret = -1;
620 	}
621 
622 	/* Optimal I/O a multiple of the physical block size? */
623 	if (t->io_opt & (t->physical_block_size - 1)) {
624 		t->io_opt = 0;
625 		t->misaligned = 1;
626 		ret = -1;
627 	}
628 
629 	/* chunk_sectors a multiple of the physical block size? */
630 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
631 		t->chunk_sectors = 0;
632 		t->misaligned = 1;
633 		ret = -1;
634 	}
635 
636 	t->raid_partial_stripes_expensive =
637 		max(t->raid_partial_stripes_expensive,
638 		    b->raid_partial_stripes_expensive);
639 
640 	/* Find lowest common alignment_offset */
641 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
642 		% max(t->physical_block_size, t->io_min);
643 
644 	/* Verify that new alignment_offset is on a logical block boundary */
645 	if (t->alignment_offset & (t->logical_block_size - 1)) {
646 		t->misaligned = 1;
647 		ret = -1;
648 	}
649 
650 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
651 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
652 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
653 
654 	/* Discard alignment and granularity */
655 	if (b->discard_granularity) {
656 		alignment = queue_limit_discard_alignment(b, start);
657 
658 		if (t->discard_granularity != 0 &&
659 		    t->discard_alignment != alignment) {
660 			top = t->discard_granularity + t->discard_alignment;
661 			bottom = b->discard_granularity + alignment;
662 
663 			/* Verify that top and bottom intervals line up */
664 			if ((max(top, bottom) % min(top, bottom)) != 0)
665 				t->discard_misaligned = 1;
666 		}
667 
668 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
669 						      b->max_discard_sectors);
670 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
671 							 b->max_hw_discard_sectors);
672 		t->discard_granularity = max(t->discard_granularity,
673 					     b->discard_granularity);
674 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
675 			t->discard_granularity;
676 	}
677 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
678 						   b->max_secure_erase_sectors);
679 	t->zone_write_granularity = max(t->zone_write_granularity,
680 					b->zone_write_granularity);
681 	t->zoned = max(t->zoned, b->zoned);
682 	return ret;
683 }
684 EXPORT_SYMBOL(blk_stack_limits);
685 
686 /**
687  * disk_stack_limits - adjust queue limits for stacked drivers
688  * @disk:  MD/DM gendisk (top)
689  * @bdev:  the underlying block device (bottom)
690  * @offset:  offset to beginning of data within component device
691  *
692  * Description:
693  *    Merges the limits for a top level gendisk and a bottom level
694  *    block_device.
695  */
696 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
697 		       sector_t offset)
698 {
699 	struct request_queue *t = disk->queue;
700 
701 	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
702 			get_start_sect(bdev) + (offset >> 9)) < 0)
703 		pr_notice("%s: Warning: Device %pg is misaligned\n",
704 			disk->disk_name, bdev);
705 
706 	disk_update_readahead(disk);
707 }
708 EXPORT_SYMBOL(disk_stack_limits);
709 
710 /**
711  * blk_queue_update_dma_pad - update pad mask
712  * @q:     the request queue for the device
713  * @mask:  pad mask
714  *
715  * Update dma pad mask.
716  *
717  * Appending pad buffer to a request modifies the last entry of a
718  * scatter list such that it includes the pad buffer.
719  **/
720 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
721 {
722 	if (mask > q->dma_pad_mask)
723 		q->dma_pad_mask = mask;
724 }
725 EXPORT_SYMBOL(blk_queue_update_dma_pad);
726 
727 /**
728  * blk_queue_segment_boundary - set boundary rules for segment merging
729  * @q:  the request queue for the device
730  * @mask:  the memory boundary mask
731  **/
732 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
733 {
734 	if (mask < PAGE_SIZE - 1) {
735 		mask = PAGE_SIZE - 1;
736 		printk(KERN_INFO "%s: set to minimum %lx\n",
737 		       __func__, mask);
738 	}
739 
740 	q->limits.seg_boundary_mask = mask;
741 }
742 EXPORT_SYMBOL(blk_queue_segment_boundary);
743 
744 /**
745  * blk_queue_virt_boundary - set boundary rules for bio merging
746  * @q:  the request queue for the device
747  * @mask:  the memory boundary mask
748  **/
749 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
750 {
751 	q->limits.virt_boundary_mask = mask;
752 
753 	/*
754 	 * Devices that require a virtual boundary do not support scatter/gather
755 	 * I/O natively, but instead require a descriptor list entry for each
756 	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
757 	 * of that they are not limited by our notion of "segment size".
758 	 */
759 	if (mask)
760 		q->limits.max_segment_size = UINT_MAX;
761 }
762 EXPORT_SYMBOL(blk_queue_virt_boundary);
763 
764 /**
765  * blk_queue_dma_alignment - set dma length and memory alignment
766  * @q:     the request queue for the device
767  * @mask:  alignment mask
768  *
769  * description:
770  *    set required memory and length alignment for direct dma transactions.
771  *    this is used when building direct io requests for the queue.
772  *
773  **/
774 void blk_queue_dma_alignment(struct request_queue *q, int mask)
775 {
776 	q->dma_alignment = mask;
777 }
778 EXPORT_SYMBOL(blk_queue_dma_alignment);
779 
780 /**
781  * blk_queue_update_dma_alignment - update dma length and memory alignment
782  * @q:     the request queue for the device
783  * @mask:  alignment mask
784  *
785  * description:
786  *    update required memory and length alignment for direct dma transactions.
787  *    If the requested alignment is larger than the current alignment, then
788  *    the current queue alignment is updated to the new value, otherwise it
789  *    is left alone.  The design of this is to allow multiple objects
790  *    (driver, device, transport etc) to set their respective
791  *    alignments without having them interfere.
792  *
793  **/
794 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
795 {
796 	BUG_ON(mask > PAGE_SIZE);
797 
798 	if (mask > q->dma_alignment)
799 		q->dma_alignment = mask;
800 }
801 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
802 
803 /**
804  * blk_set_queue_depth - tell the block layer about the device queue depth
805  * @q:		the request queue for the device
806  * @depth:		queue depth
807  *
808  */
809 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
810 {
811 	q->queue_depth = depth;
812 	rq_qos_queue_depth_changed(q);
813 }
814 EXPORT_SYMBOL(blk_set_queue_depth);
815 
816 /**
817  * blk_queue_write_cache - configure queue's write cache
818  * @q:		the request queue for the device
819  * @wc:		write back cache on or off
820  * @fua:	device supports FUA writes, if true
821  *
822  * Tell the block layer about the write cache of @q.
823  */
824 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
825 {
826 	if (wc)
827 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
828 	else
829 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
830 	if (fua)
831 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
832 	else
833 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
834 
835 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
836 }
837 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
838 
839 /**
840  * blk_queue_required_elevator_features - Set a queue required elevator features
841  * @q:		the request queue for the target device
842  * @features:	Required elevator features OR'ed together
843  *
844  * Tell the block layer that for the device controlled through @q, only the
845  * only elevators that can be used are those that implement at least the set of
846  * features specified by @features.
847  */
848 void blk_queue_required_elevator_features(struct request_queue *q,
849 					  unsigned int features)
850 {
851 	q->required_elevator_features = features;
852 }
853 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
854 
855 /**
856  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
857  * @q:		the request queue for the device
858  * @dev:	the device pointer for dma
859  *
860  * Tell the block layer about merging the segments by dma map of @q.
861  */
862 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
863 				       struct device *dev)
864 {
865 	unsigned long boundary = dma_get_merge_boundary(dev);
866 
867 	if (!boundary)
868 		return false;
869 
870 	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
871 	blk_queue_virt_boundary(q, boundary);
872 
873 	return true;
874 }
875 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
876 
877 static bool disk_has_partitions(struct gendisk *disk)
878 {
879 	unsigned long idx;
880 	struct block_device *part;
881 	bool ret = false;
882 
883 	rcu_read_lock();
884 	xa_for_each(&disk->part_tbl, idx, part) {
885 		if (bdev_is_partition(part)) {
886 			ret = true;
887 			break;
888 		}
889 	}
890 	rcu_read_unlock();
891 
892 	return ret;
893 }
894 
895 /**
896  * disk_set_zoned - configure the zoned model for a disk
897  * @disk:	the gendisk of the queue to configure
898  * @model:	the zoned model to set
899  *
900  * Set the zoned model of @disk to @model.
901  *
902  * When @model is BLK_ZONED_HM (host managed), this should be called only
903  * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
904  * If @model specifies BLK_ZONED_HA (host aware), the effective model used
905  * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
906  * on the disk.
907  */
908 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
909 {
910 	struct request_queue *q = disk->queue;
911 
912 	switch (model) {
913 	case BLK_ZONED_HM:
914 		/*
915 		 * Host managed devices are supported only if
916 		 * CONFIG_BLK_DEV_ZONED is enabled.
917 		 */
918 		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
919 		break;
920 	case BLK_ZONED_HA:
921 		/*
922 		 * Host aware devices can be treated either as regular block
923 		 * devices (similar to drive managed devices) or as zoned block
924 		 * devices to take advantage of the zone command set, similarly
925 		 * to host managed devices. We try the latter if there are no
926 		 * partitions and zoned block device support is enabled, else
927 		 * we do nothing special as far as the block layer is concerned.
928 		 */
929 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
930 		    disk_has_partitions(disk))
931 			model = BLK_ZONED_NONE;
932 		break;
933 	case BLK_ZONED_NONE:
934 	default:
935 		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
936 			model = BLK_ZONED_NONE;
937 		break;
938 	}
939 
940 	q->limits.zoned = model;
941 	if (model != BLK_ZONED_NONE) {
942 		/*
943 		 * Set the zone write granularity to the device logical block
944 		 * size by default. The driver can change this value if needed.
945 		 */
946 		blk_queue_zone_write_granularity(q,
947 						queue_logical_block_size(q));
948 	} else {
949 		disk_clear_zone_settings(disk);
950 	}
951 }
952 EXPORT_SYMBOL_GPL(disk_set_zoned);
953 
954 int bdev_alignment_offset(struct block_device *bdev)
955 {
956 	struct request_queue *q = bdev_get_queue(bdev);
957 
958 	if (q->limits.misaligned)
959 		return -1;
960 	if (bdev_is_partition(bdev))
961 		return queue_limit_alignment_offset(&q->limits,
962 				bdev->bd_start_sect);
963 	return q->limits.alignment_offset;
964 }
965 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
966 
967 unsigned int bdev_discard_alignment(struct block_device *bdev)
968 {
969 	struct request_queue *q = bdev_get_queue(bdev);
970 
971 	if (bdev_is_partition(bdev))
972 		return queue_limit_discard_alignment(&q->limits,
973 				bdev->bd_start_sect);
974 	return q->limits.discard_alignment;
975 }
976 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
977