1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/lcm.h> 12 #include <linux/jiffies.h> 13 #include <linux/gfp.h> 14 15 #include "blk.h" 16 #include "blk-wbt.h" 17 18 unsigned long blk_max_low_pfn; 19 EXPORT_SYMBOL(blk_max_low_pfn); 20 21 unsigned long blk_max_pfn; 22 23 /** 24 * blk_queue_prep_rq - set a prepare_request function for queue 25 * @q: queue 26 * @pfn: prepare_request function 27 * 28 * It's possible for a queue to register a prepare_request callback which 29 * is invoked before the request is handed to the request_fn. The goal of 30 * the function is to prepare a request for I/O, it can be used to build a 31 * cdb from the request data for instance. 32 * 33 */ 34 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 35 { 36 q->prep_rq_fn = pfn; 37 } 38 EXPORT_SYMBOL(blk_queue_prep_rq); 39 40 /** 41 * blk_queue_unprep_rq - set an unprepare_request function for queue 42 * @q: queue 43 * @ufn: unprepare_request function 44 * 45 * It's possible for a queue to register an unprepare_request callback 46 * which is invoked before the request is finally completed. The goal 47 * of the function is to deallocate any data that was allocated in the 48 * prepare_request callback. 49 * 50 */ 51 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn) 52 { 53 q->unprep_rq_fn = ufn; 54 } 55 EXPORT_SYMBOL(blk_queue_unprep_rq); 56 57 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 58 { 59 q->softirq_done_fn = fn; 60 } 61 EXPORT_SYMBOL(blk_queue_softirq_done); 62 63 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 64 { 65 q->rq_timeout = timeout; 66 } 67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 68 69 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 70 { 71 WARN_ON_ONCE(q->mq_ops); 72 q->rq_timed_out_fn = fn; 73 } 74 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 75 76 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 77 { 78 q->lld_busy_fn = fn; 79 } 80 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 81 82 /** 83 * blk_set_default_limits - reset limits to default values 84 * @lim: the queue_limits structure to reset 85 * 86 * Description: 87 * Returns a queue_limit struct to its default state. 88 */ 89 void blk_set_default_limits(struct queue_limits *lim) 90 { 91 lim->max_segments = BLK_MAX_SEGMENTS; 92 lim->max_discard_segments = 1; 93 lim->max_integrity_segments = 0; 94 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 95 lim->virt_boundary_mask = 0; 96 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 97 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 98 lim->max_dev_sectors = 0; 99 lim->chunk_sectors = 0; 100 lim->max_write_same_sectors = 0; 101 lim->max_write_zeroes_sectors = 0; 102 lim->max_discard_sectors = 0; 103 lim->max_hw_discard_sectors = 0; 104 lim->discard_granularity = 0; 105 lim->discard_alignment = 0; 106 lim->discard_misaligned = 0; 107 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 108 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 109 lim->alignment_offset = 0; 110 lim->io_opt = 0; 111 lim->misaligned = 0; 112 lim->cluster = 1; 113 lim->zoned = BLK_ZONED_NONE; 114 } 115 EXPORT_SYMBOL(blk_set_default_limits); 116 117 /** 118 * blk_set_stacking_limits - set default limits for stacking devices 119 * @lim: the queue_limits structure to reset 120 * 121 * Description: 122 * Returns a queue_limit struct to its default state. Should be used 123 * by stacking drivers like DM that have no internal limits. 124 */ 125 void blk_set_stacking_limits(struct queue_limits *lim) 126 { 127 blk_set_default_limits(lim); 128 129 /* Inherit limits from component devices */ 130 lim->max_segments = USHRT_MAX; 131 lim->max_discard_segments = 1; 132 lim->max_hw_sectors = UINT_MAX; 133 lim->max_segment_size = UINT_MAX; 134 lim->max_sectors = UINT_MAX; 135 lim->max_dev_sectors = UINT_MAX; 136 lim->max_write_same_sectors = UINT_MAX; 137 lim->max_write_zeroes_sectors = UINT_MAX; 138 } 139 EXPORT_SYMBOL(blk_set_stacking_limits); 140 141 /** 142 * blk_queue_make_request - define an alternate make_request function for a device 143 * @q: the request queue for the device to be affected 144 * @mfn: the alternate make_request function 145 * 146 * Description: 147 * The normal way for &struct bios to be passed to a device 148 * driver is for them to be collected into requests on a request 149 * queue, and then to allow the device driver to select requests 150 * off that queue when it is ready. This works well for many block 151 * devices. However some block devices (typically virtual devices 152 * such as md or lvm) do not benefit from the processing on the 153 * request queue, and are served best by having the requests passed 154 * directly to them. This can be achieved by providing a function 155 * to blk_queue_make_request(). 156 * 157 * Caveat: 158 * The driver that does this *must* be able to deal appropriately 159 * with buffers in "highmemory". This can be accomplished by either calling 160 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 161 * blk_queue_bounce() to create a buffer in normal memory. 162 **/ 163 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 164 { 165 /* 166 * set defaults 167 */ 168 q->nr_requests = BLKDEV_MAX_RQ; 169 170 q->make_request_fn = mfn; 171 blk_queue_dma_alignment(q, 511); 172 blk_queue_congestion_threshold(q); 173 q->nr_batching = BLK_BATCH_REQ; 174 175 blk_set_default_limits(&q->limits); 176 } 177 EXPORT_SYMBOL(blk_queue_make_request); 178 179 /** 180 * blk_queue_bounce_limit - set bounce buffer limit for queue 181 * @q: the request queue for the device 182 * @max_addr: the maximum address the device can handle 183 * 184 * Description: 185 * Different hardware can have different requirements as to what pages 186 * it can do I/O directly to. A low level driver can call 187 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 188 * buffers for doing I/O to pages residing above @max_addr. 189 **/ 190 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr) 191 { 192 unsigned long b_pfn = max_addr >> PAGE_SHIFT; 193 int dma = 0; 194 195 q->bounce_gfp = GFP_NOIO; 196 #if BITS_PER_LONG == 64 197 /* 198 * Assume anything <= 4GB can be handled by IOMMU. Actually 199 * some IOMMUs can handle everything, but I don't know of a 200 * way to test this here. 201 */ 202 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 203 dma = 1; 204 q->limits.bounce_pfn = max(max_low_pfn, b_pfn); 205 #else 206 if (b_pfn < blk_max_low_pfn) 207 dma = 1; 208 q->limits.bounce_pfn = b_pfn; 209 #endif 210 if (dma) { 211 init_emergency_isa_pool(); 212 q->bounce_gfp = GFP_NOIO | GFP_DMA; 213 q->limits.bounce_pfn = b_pfn; 214 } 215 } 216 EXPORT_SYMBOL(blk_queue_bounce_limit); 217 218 /** 219 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 220 * @q: the request queue for the device 221 * @max_hw_sectors: max hardware sectors in the usual 512b unit 222 * 223 * Description: 224 * Enables a low level driver to set a hard upper limit, 225 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 226 * the device driver based upon the capabilities of the I/O 227 * controller. 228 * 229 * max_dev_sectors is a hard limit imposed by the storage device for 230 * READ/WRITE requests. It is set by the disk driver. 231 * 232 * max_sectors is a soft limit imposed by the block layer for 233 * filesystem type requests. This value can be overridden on a 234 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 235 * The soft limit can not exceed max_hw_sectors. 236 **/ 237 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 238 { 239 struct queue_limits *limits = &q->limits; 240 unsigned int max_sectors; 241 242 if ((max_hw_sectors << 9) < PAGE_SIZE) { 243 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 244 printk(KERN_INFO "%s: set to minimum %d\n", 245 __func__, max_hw_sectors); 246 } 247 248 limits->max_hw_sectors = max_hw_sectors; 249 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 250 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS); 251 limits->max_sectors = max_sectors; 252 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9); 253 } 254 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 255 256 /** 257 * blk_queue_chunk_sectors - set size of the chunk for this queue 258 * @q: the request queue for the device 259 * @chunk_sectors: chunk sectors in the usual 512b unit 260 * 261 * Description: 262 * If a driver doesn't want IOs to cross a given chunk size, it can set 263 * this limit and prevent merging across chunks. Note that the chunk size 264 * must currently be a power-of-2 in sectors. Also note that the block 265 * layer must accept a page worth of data at any offset. So if the 266 * crossing of chunks is a hard limitation in the driver, it must still be 267 * prepared to split single page bios. 268 **/ 269 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 270 { 271 BUG_ON(!is_power_of_2(chunk_sectors)); 272 q->limits.chunk_sectors = chunk_sectors; 273 } 274 EXPORT_SYMBOL(blk_queue_chunk_sectors); 275 276 /** 277 * blk_queue_max_discard_sectors - set max sectors for a single discard 278 * @q: the request queue for the device 279 * @max_discard_sectors: maximum number of sectors to discard 280 **/ 281 void blk_queue_max_discard_sectors(struct request_queue *q, 282 unsigned int max_discard_sectors) 283 { 284 q->limits.max_hw_discard_sectors = max_discard_sectors; 285 q->limits.max_discard_sectors = max_discard_sectors; 286 } 287 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 288 289 /** 290 * blk_queue_max_write_same_sectors - set max sectors for a single write same 291 * @q: the request queue for the device 292 * @max_write_same_sectors: maximum number of sectors to write per command 293 **/ 294 void blk_queue_max_write_same_sectors(struct request_queue *q, 295 unsigned int max_write_same_sectors) 296 { 297 q->limits.max_write_same_sectors = max_write_same_sectors; 298 } 299 EXPORT_SYMBOL(blk_queue_max_write_same_sectors); 300 301 /** 302 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 303 * write zeroes 304 * @q: the request queue for the device 305 * @max_write_zeroes_sectors: maximum number of sectors to write per command 306 **/ 307 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 308 unsigned int max_write_zeroes_sectors) 309 { 310 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 311 } 312 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 313 314 /** 315 * blk_queue_max_segments - set max hw segments for a request for this queue 316 * @q: the request queue for the device 317 * @max_segments: max number of segments 318 * 319 * Description: 320 * Enables a low level driver to set an upper limit on the number of 321 * hw data segments in a request. 322 **/ 323 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 324 { 325 if (!max_segments) { 326 max_segments = 1; 327 printk(KERN_INFO "%s: set to minimum %d\n", 328 __func__, max_segments); 329 } 330 331 q->limits.max_segments = max_segments; 332 } 333 EXPORT_SYMBOL(blk_queue_max_segments); 334 335 /** 336 * blk_queue_max_discard_segments - set max segments for discard requests 337 * @q: the request queue for the device 338 * @max_segments: max number of segments 339 * 340 * Description: 341 * Enables a low level driver to set an upper limit on the number of 342 * segments in a discard request. 343 **/ 344 void blk_queue_max_discard_segments(struct request_queue *q, 345 unsigned short max_segments) 346 { 347 q->limits.max_discard_segments = max_segments; 348 } 349 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 350 351 /** 352 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 353 * @q: the request queue for the device 354 * @max_size: max size of segment in bytes 355 * 356 * Description: 357 * Enables a low level driver to set an upper limit on the size of a 358 * coalesced segment 359 **/ 360 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 361 { 362 if (max_size < PAGE_SIZE) { 363 max_size = PAGE_SIZE; 364 printk(KERN_INFO "%s: set to minimum %d\n", 365 __func__, max_size); 366 } 367 368 q->limits.max_segment_size = max_size; 369 } 370 EXPORT_SYMBOL(blk_queue_max_segment_size); 371 372 /** 373 * blk_queue_logical_block_size - set logical block size for the queue 374 * @q: the request queue for the device 375 * @size: the logical block size, in bytes 376 * 377 * Description: 378 * This should be set to the lowest possible block size that the 379 * storage device can address. The default of 512 covers most 380 * hardware. 381 **/ 382 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 383 { 384 q->limits.logical_block_size = size; 385 386 if (q->limits.physical_block_size < size) 387 q->limits.physical_block_size = size; 388 389 if (q->limits.io_min < q->limits.physical_block_size) 390 q->limits.io_min = q->limits.physical_block_size; 391 } 392 EXPORT_SYMBOL(blk_queue_logical_block_size); 393 394 /** 395 * blk_queue_physical_block_size - set physical block size for the queue 396 * @q: the request queue for the device 397 * @size: the physical block size, in bytes 398 * 399 * Description: 400 * This should be set to the lowest possible sector size that the 401 * hardware can operate on without reverting to read-modify-write 402 * operations. 403 */ 404 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 405 { 406 q->limits.physical_block_size = size; 407 408 if (q->limits.physical_block_size < q->limits.logical_block_size) 409 q->limits.physical_block_size = q->limits.logical_block_size; 410 411 if (q->limits.io_min < q->limits.physical_block_size) 412 q->limits.io_min = q->limits.physical_block_size; 413 } 414 EXPORT_SYMBOL(blk_queue_physical_block_size); 415 416 /** 417 * blk_queue_alignment_offset - set physical block alignment offset 418 * @q: the request queue for the device 419 * @offset: alignment offset in bytes 420 * 421 * Description: 422 * Some devices are naturally misaligned to compensate for things like 423 * the legacy DOS partition table 63-sector offset. Low-level drivers 424 * should call this function for devices whose first sector is not 425 * naturally aligned. 426 */ 427 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 428 { 429 q->limits.alignment_offset = 430 offset & (q->limits.physical_block_size - 1); 431 q->limits.misaligned = 0; 432 } 433 EXPORT_SYMBOL(blk_queue_alignment_offset); 434 435 /** 436 * blk_limits_io_min - set minimum request size for a device 437 * @limits: the queue limits 438 * @min: smallest I/O size in bytes 439 * 440 * Description: 441 * Some devices have an internal block size bigger than the reported 442 * hardware sector size. This function can be used to signal the 443 * smallest I/O the device can perform without incurring a performance 444 * penalty. 445 */ 446 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 447 { 448 limits->io_min = min; 449 450 if (limits->io_min < limits->logical_block_size) 451 limits->io_min = limits->logical_block_size; 452 453 if (limits->io_min < limits->physical_block_size) 454 limits->io_min = limits->physical_block_size; 455 } 456 EXPORT_SYMBOL(blk_limits_io_min); 457 458 /** 459 * blk_queue_io_min - set minimum request size for the queue 460 * @q: the request queue for the device 461 * @min: smallest I/O size in bytes 462 * 463 * Description: 464 * Storage devices may report a granularity or preferred minimum I/O 465 * size which is the smallest request the device can perform without 466 * incurring a performance penalty. For disk drives this is often the 467 * physical block size. For RAID arrays it is often the stripe chunk 468 * size. A properly aligned multiple of minimum_io_size is the 469 * preferred request size for workloads where a high number of I/O 470 * operations is desired. 471 */ 472 void blk_queue_io_min(struct request_queue *q, unsigned int min) 473 { 474 blk_limits_io_min(&q->limits, min); 475 } 476 EXPORT_SYMBOL(blk_queue_io_min); 477 478 /** 479 * blk_limits_io_opt - set optimal request size for a device 480 * @limits: the queue limits 481 * @opt: smallest I/O size in bytes 482 * 483 * Description: 484 * Storage devices may report an optimal I/O size, which is the 485 * device's preferred unit for sustained I/O. This is rarely reported 486 * for disk drives. For RAID arrays it is usually the stripe width or 487 * the internal track size. A properly aligned multiple of 488 * optimal_io_size is the preferred request size for workloads where 489 * sustained throughput is desired. 490 */ 491 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 492 { 493 limits->io_opt = opt; 494 } 495 EXPORT_SYMBOL(blk_limits_io_opt); 496 497 /** 498 * blk_queue_io_opt - set optimal request size for the queue 499 * @q: the request queue for the device 500 * @opt: optimal request size in bytes 501 * 502 * Description: 503 * Storage devices may report an optimal I/O size, which is the 504 * device's preferred unit for sustained I/O. This is rarely reported 505 * for disk drives. For RAID arrays it is usually the stripe width or 506 * the internal track size. A properly aligned multiple of 507 * optimal_io_size is the preferred request size for workloads where 508 * sustained throughput is desired. 509 */ 510 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 511 { 512 blk_limits_io_opt(&q->limits, opt); 513 } 514 EXPORT_SYMBOL(blk_queue_io_opt); 515 516 /** 517 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 518 * @t: the stacking driver (top) 519 * @b: the underlying device (bottom) 520 **/ 521 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 522 { 523 blk_stack_limits(&t->limits, &b->limits, 0); 524 } 525 EXPORT_SYMBOL(blk_queue_stack_limits); 526 527 /** 528 * blk_stack_limits - adjust queue_limits for stacked devices 529 * @t: the stacking driver limits (top device) 530 * @b: the underlying queue limits (bottom, component device) 531 * @start: first data sector within component device 532 * 533 * Description: 534 * This function is used by stacking drivers like MD and DM to ensure 535 * that all component devices have compatible block sizes and 536 * alignments. The stacking driver must provide a queue_limits 537 * struct (top) and then iteratively call the stacking function for 538 * all component (bottom) devices. The stacking function will 539 * attempt to combine the values and ensure proper alignment. 540 * 541 * Returns 0 if the top and bottom queue_limits are compatible. The 542 * top device's block sizes and alignment offsets may be adjusted to 543 * ensure alignment with the bottom device. If no compatible sizes 544 * and alignments exist, -1 is returned and the resulting top 545 * queue_limits will have the misaligned flag set to indicate that 546 * the alignment_offset is undefined. 547 */ 548 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 549 sector_t start) 550 { 551 unsigned int top, bottom, alignment, ret = 0; 552 553 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 554 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 555 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 556 t->max_write_same_sectors = min(t->max_write_same_sectors, 557 b->max_write_same_sectors); 558 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 559 b->max_write_zeroes_sectors); 560 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 561 562 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 563 b->seg_boundary_mask); 564 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 565 b->virt_boundary_mask); 566 567 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 568 t->max_discard_segments = min_not_zero(t->max_discard_segments, 569 b->max_discard_segments); 570 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 571 b->max_integrity_segments); 572 573 t->max_segment_size = min_not_zero(t->max_segment_size, 574 b->max_segment_size); 575 576 t->misaligned |= b->misaligned; 577 578 alignment = queue_limit_alignment_offset(b, start); 579 580 /* Bottom device has different alignment. Check that it is 581 * compatible with the current top alignment. 582 */ 583 if (t->alignment_offset != alignment) { 584 585 top = max(t->physical_block_size, t->io_min) 586 + t->alignment_offset; 587 bottom = max(b->physical_block_size, b->io_min) + alignment; 588 589 /* Verify that top and bottom intervals line up */ 590 if (max(top, bottom) % min(top, bottom)) { 591 t->misaligned = 1; 592 ret = -1; 593 } 594 } 595 596 t->logical_block_size = max(t->logical_block_size, 597 b->logical_block_size); 598 599 t->physical_block_size = max(t->physical_block_size, 600 b->physical_block_size); 601 602 t->io_min = max(t->io_min, b->io_min); 603 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 604 605 t->cluster &= b->cluster; 606 607 /* Physical block size a multiple of the logical block size? */ 608 if (t->physical_block_size & (t->logical_block_size - 1)) { 609 t->physical_block_size = t->logical_block_size; 610 t->misaligned = 1; 611 ret = -1; 612 } 613 614 /* Minimum I/O a multiple of the physical block size? */ 615 if (t->io_min & (t->physical_block_size - 1)) { 616 t->io_min = t->physical_block_size; 617 t->misaligned = 1; 618 ret = -1; 619 } 620 621 /* Optimal I/O a multiple of the physical block size? */ 622 if (t->io_opt & (t->physical_block_size - 1)) { 623 t->io_opt = 0; 624 t->misaligned = 1; 625 ret = -1; 626 } 627 628 t->raid_partial_stripes_expensive = 629 max(t->raid_partial_stripes_expensive, 630 b->raid_partial_stripes_expensive); 631 632 /* Find lowest common alignment_offset */ 633 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 634 % max(t->physical_block_size, t->io_min); 635 636 /* Verify that new alignment_offset is on a logical block boundary */ 637 if (t->alignment_offset & (t->logical_block_size - 1)) { 638 t->misaligned = 1; 639 ret = -1; 640 } 641 642 /* Discard alignment and granularity */ 643 if (b->discard_granularity) { 644 alignment = queue_limit_discard_alignment(b, start); 645 646 if (t->discard_granularity != 0 && 647 t->discard_alignment != alignment) { 648 top = t->discard_granularity + t->discard_alignment; 649 bottom = b->discard_granularity + alignment; 650 651 /* Verify that top and bottom intervals line up */ 652 if ((max(top, bottom) % min(top, bottom)) != 0) 653 t->discard_misaligned = 1; 654 } 655 656 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 657 b->max_discard_sectors); 658 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 659 b->max_hw_discard_sectors); 660 t->discard_granularity = max(t->discard_granularity, 661 b->discard_granularity); 662 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 663 t->discard_granularity; 664 } 665 666 if (b->chunk_sectors) 667 t->chunk_sectors = min_not_zero(t->chunk_sectors, 668 b->chunk_sectors); 669 670 return ret; 671 } 672 EXPORT_SYMBOL(blk_stack_limits); 673 674 /** 675 * bdev_stack_limits - adjust queue limits for stacked drivers 676 * @t: the stacking driver limits (top device) 677 * @bdev: the component block_device (bottom) 678 * @start: first data sector within component device 679 * 680 * Description: 681 * Merges queue limits for a top device and a block_device. Returns 682 * 0 if alignment didn't change. Returns -1 if adding the bottom 683 * device caused misalignment. 684 */ 685 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 686 sector_t start) 687 { 688 struct request_queue *bq = bdev_get_queue(bdev); 689 690 start += get_start_sect(bdev); 691 692 return blk_stack_limits(t, &bq->limits, start); 693 } 694 EXPORT_SYMBOL(bdev_stack_limits); 695 696 /** 697 * disk_stack_limits - adjust queue limits for stacked drivers 698 * @disk: MD/DM gendisk (top) 699 * @bdev: the underlying block device (bottom) 700 * @offset: offset to beginning of data within component device 701 * 702 * Description: 703 * Merges the limits for a top level gendisk and a bottom level 704 * block_device. 705 */ 706 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 707 sector_t offset) 708 { 709 struct request_queue *t = disk->queue; 710 711 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 712 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 713 714 disk_name(disk, 0, top); 715 bdevname(bdev, bottom); 716 717 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 718 top, bottom); 719 } 720 } 721 EXPORT_SYMBOL(disk_stack_limits); 722 723 /** 724 * blk_queue_dma_pad - set pad mask 725 * @q: the request queue for the device 726 * @mask: pad mask 727 * 728 * Set dma pad mask. 729 * 730 * Appending pad buffer to a request modifies the last entry of a 731 * scatter list such that it includes the pad buffer. 732 **/ 733 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 734 { 735 q->dma_pad_mask = mask; 736 } 737 EXPORT_SYMBOL(blk_queue_dma_pad); 738 739 /** 740 * blk_queue_update_dma_pad - update pad mask 741 * @q: the request queue for the device 742 * @mask: pad mask 743 * 744 * Update dma pad mask. 745 * 746 * Appending pad buffer to a request modifies the last entry of a 747 * scatter list such that it includes the pad buffer. 748 **/ 749 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 750 { 751 if (mask > q->dma_pad_mask) 752 q->dma_pad_mask = mask; 753 } 754 EXPORT_SYMBOL(blk_queue_update_dma_pad); 755 756 /** 757 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 758 * @q: the request queue for the device 759 * @dma_drain_needed: fn which returns non-zero if drain is necessary 760 * @buf: physically contiguous buffer 761 * @size: size of the buffer in bytes 762 * 763 * Some devices have excess DMA problems and can't simply discard (or 764 * zero fill) the unwanted piece of the transfer. They have to have a 765 * real area of memory to transfer it into. The use case for this is 766 * ATAPI devices in DMA mode. If the packet command causes a transfer 767 * bigger than the transfer size some HBAs will lock up if there 768 * aren't DMA elements to contain the excess transfer. What this API 769 * does is adjust the queue so that the buf is always appended 770 * silently to the scatterlist. 771 * 772 * Note: This routine adjusts max_hw_segments to make room for appending 773 * the drain buffer. If you call blk_queue_max_segments() after calling 774 * this routine, you must set the limit to one fewer than your device 775 * can support otherwise there won't be room for the drain buffer. 776 */ 777 int blk_queue_dma_drain(struct request_queue *q, 778 dma_drain_needed_fn *dma_drain_needed, 779 void *buf, unsigned int size) 780 { 781 if (queue_max_segments(q) < 2) 782 return -EINVAL; 783 /* make room for appending the drain */ 784 blk_queue_max_segments(q, queue_max_segments(q) - 1); 785 q->dma_drain_needed = dma_drain_needed; 786 q->dma_drain_buffer = buf; 787 q->dma_drain_size = size; 788 789 return 0; 790 } 791 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 792 793 /** 794 * blk_queue_segment_boundary - set boundary rules for segment merging 795 * @q: the request queue for the device 796 * @mask: the memory boundary mask 797 **/ 798 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 799 { 800 if (mask < PAGE_SIZE - 1) { 801 mask = PAGE_SIZE - 1; 802 printk(KERN_INFO "%s: set to minimum %lx\n", 803 __func__, mask); 804 } 805 806 q->limits.seg_boundary_mask = mask; 807 } 808 EXPORT_SYMBOL(blk_queue_segment_boundary); 809 810 /** 811 * blk_queue_virt_boundary - set boundary rules for bio merging 812 * @q: the request queue for the device 813 * @mask: the memory boundary mask 814 **/ 815 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 816 { 817 q->limits.virt_boundary_mask = mask; 818 } 819 EXPORT_SYMBOL(blk_queue_virt_boundary); 820 821 /** 822 * blk_queue_dma_alignment - set dma length and memory alignment 823 * @q: the request queue for the device 824 * @mask: alignment mask 825 * 826 * description: 827 * set required memory and length alignment for direct dma transactions. 828 * this is used when building direct io requests for the queue. 829 * 830 **/ 831 void blk_queue_dma_alignment(struct request_queue *q, int mask) 832 { 833 q->dma_alignment = mask; 834 } 835 EXPORT_SYMBOL(blk_queue_dma_alignment); 836 837 /** 838 * blk_queue_update_dma_alignment - update dma length and memory alignment 839 * @q: the request queue for the device 840 * @mask: alignment mask 841 * 842 * description: 843 * update required memory and length alignment for direct dma transactions. 844 * If the requested alignment is larger than the current alignment, then 845 * the current queue alignment is updated to the new value, otherwise it 846 * is left alone. The design of this is to allow multiple objects 847 * (driver, device, transport etc) to set their respective 848 * alignments without having them interfere. 849 * 850 **/ 851 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 852 { 853 BUG_ON(mask > PAGE_SIZE); 854 855 if (mask > q->dma_alignment) 856 q->dma_alignment = mask; 857 } 858 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 859 860 void blk_queue_flush_queueable(struct request_queue *q, bool queueable) 861 { 862 spin_lock_irq(q->queue_lock); 863 if (queueable) 864 clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 865 else 866 set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 867 spin_unlock_irq(q->queue_lock); 868 } 869 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable); 870 871 /** 872 * blk_set_queue_depth - tell the block layer about the device queue depth 873 * @q: the request queue for the device 874 * @depth: queue depth 875 * 876 */ 877 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 878 { 879 q->queue_depth = depth; 880 wbt_set_queue_depth(q->rq_wb, depth); 881 } 882 EXPORT_SYMBOL(blk_set_queue_depth); 883 884 /** 885 * blk_queue_write_cache - configure queue's write cache 886 * @q: the request queue for the device 887 * @wc: write back cache on or off 888 * @fua: device supports FUA writes, if true 889 * 890 * Tell the block layer about the write cache of @q. 891 */ 892 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 893 { 894 spin_lock_irq(q->queue_lock); 895 if (wc) 896 queue_flag_set(QUEUE_FLAG_WC, q); 897 else 898 queue_flag_clear(QUEUE_FLAG_WC, q); 899 if (fua) 900 queue_flag_set(QUEUE_FLAG_FUA, q); 901 else 902 queue_flag_clear(QUEUE_FLAG_FUA, q); 903 spin_unlock_irq(q->queue_lock); 904 905 wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 906 } 907 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 908 909 static int __init blk_settings_init(void) 910 { 911 blk_max_low_pfn = max_low_pfn - 1; 912 blk_max_pfn = max_pfn - 1; 913 return 0; 914 } 915 subsys_initcall(blk_settings_init); 916