xref: /openbmc/linux/block/blk-settings.c (revision 4800cd83)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:		queue
59  * @mbfn:	merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 	q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77 
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 	q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83 
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 	q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89 
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 	q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95 
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 	q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101 
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.  Can be used by
108  *   stacking drivers like DM that stage table swaps and reuse an
109  *   existing device queue.
110  */
111 void blk_set_default_limits(struct queue_limits *lim)
112 {
113 	lim->max_segments = BLK_MAX_SEGMENTS;
114 	lim->max_integrity_segments = 0;
115 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117 	lim->max_sectors = BLK_DEF_MAX_SECTORS;
118 	lim->max_hw_sectors = INT_MAX;
119 	lim->max_discard_sectors = 0;
120 	lim->discard_granularity = 0;
121 	lim->discard_alignment = 0;
122 	lim->discard_misaligned = 0;
123 	lim->discard_zeroes_data = -1;
124 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126 	lim->alignment_offset = 0;
127 	lim->io_opt = 0;
128 	lim->misaligned = 0;
129 	lim->cluster = 1;
130 }
131 EXPORT_SYMBOL(blk_set_default_limits);
132 
133 /**
134  * blk_queue_make_request - define an alternate make_request function for a device
135  * @q:  the request queue for the device to be affected
136  * @mfn: the alternate make_request function
137  *
138  * Description:
139  *    The normal way for &struct bios to be passed to a device
140  *    driver is for them to be collected into requests on a request
141  *    queue, and then to allow the device driver to select requests
142  *    off that queue when it is ready.  This works well for many block
143  *    devices. However some block devices (typically virtual devices
144  *    such as md or lvm) do not benefit from the processing on the
145  *    request queue, and are served best by having the requests passed
146  *    directly to them.  This can be achieved by providing a function
147  *    to blk_queue_make_request().
148  *
149  * Caveat:
150  *    The driver that does this *must* be able to deal appropriately
151  *    with buffers in "highmemory". This can be accomplished by either calling
152  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153  *    blk_queue_bounce() to create a buffer in normal memory.
154  **/
155 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
156 {
157 	/*
158 	 * set defaults
159 	 */
160 	q->nr_requests = BLKDEV_MAX_RQ;
161 
162 	q->make_request_fn = mfn;
163 	blk_queue_dma_alignment(q, 511);
164 	blk_queue_congestion_threshold(q);
165 	q->nr_batching = BLK_BATCH_REQ;
166 
167 	q->unplug_thresh = 4;		/* hmm */
168 	q->unplug_delay = msecs_to_jiffies(3);	/* 3 milliseconds */
169 	if (q->unplug_delay == 0)
170 		q->unplug_delay = 1;
171 
172 	q->unplug_timer.function = blk_unplug_timeout;
173 	q->unplug_timer.data = (unsigned long)q;
174 
175 	blk_set_default_limits(&q->limits);
176 	blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
177 
178 	/*
179 	 * If the caller didn't supply a lock, fall back to our embedded
180 	 * per-queue locks
181 	 */
182 	if (!q->queue_lock)
183 		q->queue_lock = &q->__queue_lock;
184 
185 	/*
186 	 * by default assume old behaviour and bounce for any highmem page
187 	 */
188 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
189 }
190 EXPORT_SYMBOL(blk_queue_make_request);
191 
192 /**
193  * blk_queue_bounce_limit - set bounce buffer limit for queue
194  * @q: the request queue for the device
195  * @dma_mask: the maximum address the device can handle
196  *
197  * Description:
198  *    Different hardware can have different requirements as to what pages
199  *    it can do I/O directly to. A low level driver can call
200  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
201  *    buffers for doing I/O to pages residing above @dma_mask.
202  **/
203 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
204 {
205 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
206 	int dma = 0;
207 
208 	q->bounce_gfp = GFP_NOIO;
209 #if BITS_PER_LONG == 64
210 	/*
211 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
212 	 * some IOMMUs can handle everything, but I don't know of a
213 	 * way to test this here.
214 	 */
215 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
216 		dma = 1;
217 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
218 #else
219 	if (b_pfn < blk_max_low_pfn)
220 		dma = 1;
221 	q->limits.bounce_pfn = b_pfn;
222 #endif
223 	if (dma) {
224 		init_emergency_isa_pool();
225 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
226 		q->limits.bounce_pfn = b_pfn;
227 	}
228 }
229 EXPORT_SYMBOL(blk_queue_bounce_limit);
230 
231 /**
232  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
233  * @limits: the queue limits
234  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
235  *
236  * Description:
237  *    Enables a low level driver to set a hard upper limit,
238  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
239  *    the device driver based upon the combined capabilities of I/O
240  *    controller and storage device.
241  *
242  *    max_sectors is a soft limit imposed by the block layer for
243  *    filesystem type requests.  This value can be overridden on a
244  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
245  *    The soft limit can not exceed max_hw_sectors.
246  **/
247 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
248 {
249 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
250 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
251 		printk(KERN_INFO "%s: set to minimum %d\n",
252 		       __func__, max_hw_sectors);
253 	}
254 
255 	limits->max_hw_sectors = max_hw_sectors;
256 	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
257 				    BLK_DEF_MAX_SECTORS);
258 }
259 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
260 
261 /**
262  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
263  * @q:  the request queue for the device
264  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
265  *
266  * Description:
267  *    See description for blk_limits_max_hw_sectors().
268  **/
269 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
270 {
271 	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
272 }
273 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
274 
275 /**
276  * blk_queue_max_discard_sectors - set max sectors for a single discard
277  * @q:  the request queue for the device
278  * @max_discard_sectors: maximum number of sectors to discard
279  **/
280 void blk_queue_max_discard_sectors(struct request_queue *q,
281 		unsigned int max_discard_sectors)
282 {
283 	q->limits.max_discard_sectors = max_discard_sectors;
284 }
285 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
286 
287 /**
288  * blk_queue_max_segments - set max hw segments for a request for this queue
289  * @q:  the request queue for the device
290  * @max_segments:  max number of segments
291  *
292  * Description:
293  *    Enables a low level driver to set an upper limit on the number of
294  *    hw data segments in a request.
295  **/
296 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
297 {
298 	if (!max_segments) {
299 		max_segments = 1;
300 		printk(KERN_INFO "%s: set to minimum %d\n",
301 		       __func__, max_segments);
302 	}
303 
304 	q->limits.max_segments = max_segments;
305 }
306 EXPORT_SYMBOL(blk_queue_max_segments);
307 
308 /**
309  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
310  * @q:  the request queue for the device
311  * @max_size:  max size of segment in bytes
312  *
313  * Description:
314  *    Enables a low level driver to set an upper limit on the size of a
315  *    coalesced segment
316  **/
317 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
318 {
319 	if (max_size < PAGE_CACHE_SIZE) {
320 		max_size = PAGE_CACHE_SIZE;
321 		printk(KERN_INFO "%s: set to minimum %d\n",
322 		       __func__, max_size);
323 	}
324 
325 	q->limits.max_segment_size = max_size;
326 }
327 EXPORT_SYMBOL(blk_queue_max_segment_size);
328 
329 /**
330  * blk_queue_logical_block_size - set logical block size for the queue
331  * @q:  the request queue for the device
332  * @size:  the logical block size, in bytes
333  *
334  * Description:
335  *   This should be set to the lowest possible block size that the
336  *   storage device can address.  The default of 512 covers most
337  *   hardware.
338  **/
339 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
340 {
341 	q->limits.logical_block_size = size;
342 
343 	if (q->limits.physical_block_size < size)
344 		q->limits.physical_block_size = size;
345 
346 	if (q->limits.io_min < q->limits.physical_block_size)
347 		q->limits.io_min = q->limits.physical_block_size;
348 }
349 EXPORT_SYMBOL(blk_queue_logical_block_size);
350 
351 /**
352  * blk_queue_physical_block_size - set physical block size for the queue
353  * @q:  the request queue for the device
354  * @size:  the physical block size, in bytes
355  *
356  * Description:
357  *   This should be set to the lowest possible sector size that the
358  *   hardware can operate on without reverting to read-modify-write
359  *   operations.
360  */
361 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
362 {
363 	q->limits.physical_block_size = size;
364 
365 	if (q->limits.physical_block_size < q->limits.logical_block_size)
366 		q->limits.physical_block_size = q->limits.logical_block_size;
367 
368 	if (q->limits.io_min < q->limits.physical_block_size)
369 		q->limits.io_min = q->limits.physical_block_size;
370 }
371 EXPORT_SYMBOL(blk_queue_physical_block_size);
372 
373 /**
374  * blk_queue_alignment_offset - set physical block alignment offset
375  * @q:	the request queue for the device
376  * @offset: alignment offset in bytes
377  *
378  * Description:
379  *   Some devices are naturally misaligned to compensate for things like
380  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
381  *   should call this function for devices whose first sector is not
382  *   naturally aligned.
383  */
384 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
385 {
386 	q->limits.alignment_offset =
387 		offset & (q->limits.physical_block_size - 1);
388 	q->limits.misaligned = 0;
389 }
390 EXPORT_SYMBOL(blk_queue_alignment_offset);
391 
392 /**
393  * blk_limits_io_min - set minimum request size for a device
394  * @limits: the queue limits
395  * @min:  smallest I/O size in bytes
396  *
397  * Description:
398  *   Some devices have an internal block size bigger than the reported
399  *   hardware sector size.  This function can be used to signal the
400  *   smallest I/O the device can perform without incurring a performance
401  *   penalty.
402  */
403 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
404 {
405 	limits->io_min = min;
406 
407 	if (limits->io_min < limits->logical_block_size)
408 		limits->io_min = limits->logical_block_size;
409 
410 	if (limits->io_min < limits->physical_block_size)
411 		limits->io_min = limits->physical_block_size;
412 }
413 EXPORT_SYMBOL(blk_limits_io_min);
414 
415 /**
416  * blk_queue_io_min - set minimum request size for the queue
417  * @q:	the request queue for the device
418  * @min:  smallest I/O size in bytes
419  *
420  * Description:
421  *   Storage devices may report a granularity or preferred minimum I/O
422  *   size which is the smallest request the device can perform without
423  *   incurring a performance penalty.  For disk drives this is often the
424  *   physical block size.  For RAID arrays it is often the stripe chunk
425  *   size.  A properly aligned multiple of minimum_io_size is the
426  *   preferred request size for workloads where a high number of I/O
427  *   operations is desired.
428  */
429 void blk_queue_io_min(struct request_queue *q, unsigned int min)
430 {
431 	blk_limits_io_min(&q->limits, min);
432 }
433 EXPORT_SYMBOL(blk_queue_io_min);
434 
435 /**
436  * blk_limits_io_opt - set optimal request size for a device
437  * @limits: the queue limits
438  * @opt:  smallest I/O size in bytes
439  *
440  * Description:
441  *   Storage devices may report an optimal I/O size, which is the
442  *   device's preferred unit for sustained I/O.  This is rarely reported
443  *   for disk drives.  For RAID arrays it is usually the stripe width or
444  *   the internal track size.  A properly aligned multiple of
445  *   optimal_io_size is the preferred request size for workloads where
446  *   sustained throughput is desired.
447  */
448 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
449 {
450 	limits->io_opt = opt;
451 }
452 EXPORT_SYMBOL(blk_limits_io_opt);
453 
454 /**
455  * blk_queue_io_opt - set optimal request size for the queue
456  * @q:	the request queue for the device
457  * @opt:  optimal request size in bytes
458  *
459  * Description:
460  *   Storage devices may report an optimal I/O size, which is the
461  *   device's preferred unit for sustained I/O.  This is rarely reported
462  *   for disk drives.  For RAID arrays it is usually the stripe width or
463  *   the internal track size.  A properly aligned multiple of
464  *   optimal_io_size is the preferred request size for workloads where
465  *   sustained throughput is desired.
466  */
467 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
468 {
469 	blk_limits_io_opt(&q->limits, opt);
470 }
471 EXPORT_SYMBOL(blk_queue_io_opt);
472 
473 /**
474  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
475  * @t:	the stacking driver (top)
476  * @b:  the underlying device (bottom)
477  **/
478 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
479 {
480 	blk_stack_limits(&t->limits, &b->limits, 0);
481 }
482 EXPORT_SYMBOL(blk_queue_stack_limits);
483 
484 /**
485  * blk_stack_limits - adjust queue_limits for stacked devices
486  * @t:	the stacking driver limits (top device)
487  * @b:  the underlying queue limits (bottom, component device)
488  * @start:  first data sector within component device
489  *
490  * Description:
491  *    This function is used by stacking drivers like MD and DM to ensure
492  *    that all component devices have compatible block sizes and
493  *    alignments.  The stacking driver must provide a queue_limits
494  *    struct (top) and then iteratively call the stacking function for
495  *    all component (bottom) devices.  The stacking function will
496  *    attempt to combine the values and ensure proper alignment.
497  *
498  *    Returns 0 if the top and bottom queue_limits are compatible.  The
499  *    top device's block sizes and alignment offsets may be adjusted to
500  *    ensure alignment with the bottom device. If no compatible sizes
501  *    and alignments exist, -1 is returned and the resulting top
502  *    queue_limits will have the misaligned flag set to indicate that
503  *    the alignment_offset is undefined.
504  */
505 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
506 		     sector_t start)
507 {
508 	unsigned int top, bottom, alignment, ret = 0;
509 
510 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
511 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
512 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
513 
514 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
515 					    b->seg_boundary_mask);
516 
517 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
518 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
519 						 b->max_integrity_segments);
520 
521 	t->max_segment_size = min_not_zero(t->max_segment_size,
522 					   b->max_segment_size);
523 
524 	t->misaligned |= b->misaligned;
525 
526 	alignment = queue_limit_alignment_offset(b, start);
527 
528 	/* Bottom device has different alignment.  Check that it is
529 	 * compatible with the current top alignment.
530 	 */
531 	if (t->alignment_offset != alignment) {
532 
533 		top = max(t->physical_block_size, t->io_min)
534 			+ t->alignment_offset;
535 		bottom = max(b->physical_block_size, b->io_min) + alignment;
536 
537 		/* Verify that top and bottom intervals line up */
538 		if (max(top, bottom) & (min(top, bottom) - 1)) {
539 			t->misaligned = 1;
540 			ret = -1;
541 		}
542 	}
543 
544 	t->logical_block_size = max(t->logical_block_size,
545 				    b->logical_block_size);
546 
547 	t->physical_block_size = max(t->physical_block_size,
548 				     b->physical_block_size);
549 
550 	t->io_min = max(t->io_min, b->io_min);
551 	t->io_opt = lcm(t->io_opt, b->io_opt);
552 
553 	t->cluster &= b->cluster;
554 	t->discard_zeroes_data &= b->discard_zeroes_data;
555 
556 	/* Physical block size a multiple of the logical block size? */
557 	if (t->physical_block_size & (t->logical_block_size - 1)) {
558 		t->physical_block_size = t->logical_block_size;
559 		t->misaligned = 1;
560 		ret = -1;
561 	}
562 
563 	/* Minimum I/O a multiple of the physical block size? */
564 	if (t->io_min & (t->physical_block_size - 1)) {
565 		t->io_min = t->physical_block_size;
566 		t->misaligned = 1;
567 		ret = -1;
568 	}
569 
570 	/* Optimal I/O a multiple of the physical block size? */
571 	if (t->io_opt & (t->physical_block_size - 1)) {
572 		t->io_opt = 0;
573 		t->misaligned = 1;
574 		ret = -1;
575 	}
576 
577 	/* Find lowest common alignment_offset */
578 	t->alignment_offset = lcm(t->alignment_offset, alignment)
579 		& (max(t->physical_block_size, t->io_min) - 1);
580 
581 	/* Verify that new alignment_offset is on a logical block boundary */
582 	if (t->alignment_offset & (t->logical_block_size - 1)) {
583 		t->misaligned = 1;
584 		ret = -1;
585 	}
586 
587 	/* Discard alignment and granularity */
588 	if (b->discard_granularity) {
589 		alignment = queue_limit_discard_alignment(b, start);
590 
591 		if (t->discard_granularity != 0 &&
592 		    t->discard_alignment != alignment) {
593 			top = t->discard_granularity + t->discard_alignment;
594 			bottom = b->discard_granularity + alignment;
595 
596 			/* Verify that top and bottom intervals line up */
597 			if (max(top, bottom) & (min(top, bottom) - 1))
598 				t->discard_misaligned = 1;
599 		}
600 
601 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
602 						      b->max_discard_sectors);
603 		t->discard_granularity = max(t->discard_granularity,
604 					     b->discard_granularity);
605 		t->discard_alignment = lcm(t->discard_alignment, alignment) &
606 			(t->discard_granularity - 1);
607 	}
608 
609 	return ret;
610 }
611 EXPORT_SYMBOL(blk_stack_limits);
612 
613 /**
614  * bdev_stack_limits - adjust queue limits for stacked drivers
615  * @t:	the stacking driver limits (top device)
616  * @bdev:  the component block_device (bottom)
617  * @start:  first data sector within component device
618  *
619  * Description:
620  *    Merges queue limits for a top device and a block_device.  Returns
621  *    0 if alignment didn't change.  Returns -1 if adding the bottom
622  *    device caused misalignment.
623  */
624 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
625 		      sector_t start)
626 {
627 	struct request_queue *bq = bdev_get_queue(bdev);
628 
629 	start += get_start_sect(bdev);
630 
631 	return blk_stack_limits(t, &bq->limits, start);
632 }
633 EXPORT_SYMBOL(bdev_stack_limits);
634 
635 /**
636  * disk_stack_limits - adjust queue limits for stacked drivers
637  * @disk:  MD/DM gendisk (top)
638  * @bdev:  the underlying block device (bottom)
639  * @offset:  offset to beginning of data within component device
640  *
641  * Description:
642  *    Merges the limits for a top level gendisk and a bottom level
643  *    block_device.
644  */
645 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
646 		       sector_t offset)
647 {
648 	struct request_queue *t = disk->queue;
649 
650 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
651 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
652 
653 		disk_name(disk, 0, top);
654 		bdevname(bdev, bottom);
655 
656 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
657 		       top, bottom);
658 	}
659 }
660 EXPORT_SYMBOL(disk_stack_limits);
661 
662 /**
663  * blk_queue_dma_pad - set pad mask
664  * @q:     the request queue for the device
665  * @mask:  pad mask
666  *
667  * Set dma pad mask.
668  *
669  * Appending pad buffer to a request modifies the last entry of a
670  * scatter list such that it includes the pad buffer.
671  **/
672 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
673 {
674 	q->dma_pad_mask = mask;
675 }
676 EXPORT_SYMBOL(blk_queue_dma_pad);
677 
678 /**
679  * blk_queue_update_dma_pad - update pad mask
680  * @q:     the request queue for the device
681  * @mask:  pad mask
682  *
683  * Update dma pad mask.
684  *
685  * Appending pad buffer to a request modifies the last entry of a
686  * scatter list such that it includes the pad buffer.
687  **/
688 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
689 {
690 	if (mask > q->dma_pad_mask)
691 		q->dma_pad_mask = mask;
692 }
693 EXPORT_SYMBOL(blk_queue_update_dma_pad);
694 
695 /**
696  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
697  * @q:  the request queue for the device
698  * @dma_drain_needed: fn which returns non-zero if drain is necessary
699  * @buf:	physically contiguous buffer
700  * @size:	size of the buffer in bytes
701  *
702  * Some devices have excess DMA problems and can't simply discard (or
703  * zero fill) the unwanted piece of the transfer.  They have to have a
704  * real area of memory to transfer it into.  The use case for this is
705  * ATAPI devices in DMA mode.  If the packet command causes a transfer
706  * bigger than the transfer size some HBAs will lock up if there
707  * aren't DMA elements to contain the excess transfer.  What this API
708  * does is adjust the queue so that the buf is always appended
709  * silently to the scatterlist.
710  *
711  * Note: This routine adjusts max_hw_segments to make room for appending
712  * the drain buffer.  If you call blk_queue_max_segments() after calling
713  * this routine, you must set the limit to one fewer than your device
714  * can support otherwise there won't be room for the drain buffer.
715  */
716 int blk_queue_dma_drain(struct request_queue *q,
717 			       dma_drain_needed_fn *dma_drain_needed,
718 			       void *buf, unsigned int size)
719 {
720 	if (queue_max_segments(q) < 2)
721 		return -EINVAL;
722 	/* make room for appending the drain */
723 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
724 	q->dma_drain_needed = dma_drain_needed;
725 	q->dma_drain_buffer = buf;
726 	q->dma_drain_size = size;
727 
728 	return 0;
729 }
730 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
731 
732 /**
733  * blk_queue_segment_boundary - set boundary rules for segment merging
734  * @q:  the request queue for the device
735  * @mask:  the memory boundary mask
736  **/
737 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
738 {
739 	if (mask < PAGE_CACHE_SIZE - 1) {
740 		mask = PAGE_CACHE_SIZE - 1;
741 		printk(KERN_INFO "%s: set to minimum %lx\n",
742 		       __func__, mask);
743 	}
744 
745 	q->limits.seg_boundary_mask = mask;
746 }
747 EXPORT_SYMBOL(blk_queue_segment_boundary);
748 
749 /**
750  * blk_queue_dma_alignment - set dma length and memory alignment
751  * @q:     the request queue for the device
752  * @mask:  alignment mask
753  *
754  * description:
755  *    set required memory and length alignment for direct dma transactions.
756  *    this is used when building direct io requests for the queue.
757  *
758  **/
759 void blk_queue_dma_alignment(struct request_queue *q, int mask)
760 {
761 	q->dma_alignment = mask;
762 }
763 EXPORT_SYMBOL(blk_queue_dma_alignment);
764 
765 /**
766  * blk_queue_update_dma_alignment - update dma length and memory alignment
767  * @q:     the request queue for the device
768  * @mask:  alignment mask
769  *
770  * description:
771  *    update required memory and length alignment for direct dma transactions.
772  *    If the requested alignment is larger than the current alignment, then
773  *    the current queue alignment is updated to the new value, otherwise it
774  *    is left alone.  The design of this is to allow multiple objects
775  *    (driver, device, transport etc) to set their respective
776  *    alignments without having them interfere.
777  *
778  **/
779 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
780 {
781 	BUG_ON(mask > PAGE_SIZE);
782 
783 	if (mask > q->dma_alignment)
784 		q->dma_alignment = mask;
785 }
786 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
787 
788 /**
789  * blk_queue_flush - configure queue's cache flush capability
790  * @q:		the request queue for the device
791  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
792  *
793  * Tell block layer cache flush capability of @q.  If it supports
794  * flushing, REQ_FLUSH should be set.  If it supports bypassing
795  * write cache for individual writes, REQ_FUA should be set.
796  */
797 void blk_queue_flush(struct request_queue *q, unsigned int flush)
798 {
799 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
800 
801 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
802 		flush &= ~REQ_FUA;
803 
804 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
805 }
806 EXPORT_SYMBOL_GPL(blk_queue_flush);
807 
808 static int __init blk_settings_init(void)
809 {
810 	blk_max_low_pfn = max_low_pfn - 1;
811 	blk_max_pfn = max_pfn - 1;
812 	return 0;
813 }
814 subsys_initcall(blk_settings_init);
815