1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 11 #include "blk.h" 12 13 unsigned long blk_max_low_pfn; 14 EXPORT_SYMBOL(blk_max_low_pfn); 15 16 unsigned long blk_max_pfn; 17 18 /** 19 * blk_queue_prep_rq - set a prepare_request function for queue 20 * @q: queue 21 * @pfn: prepare_request function 22 * 23 * It's possible for a queue to register a prepare_request callback which 24 * is invoked before the request is handed to the request_fn. The goal of 25 * the function is to prepare a request for I/O, it can be used to build a 26 * cdb from the request data for instance. 27 * 28 */ 29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 30 { 31 q->prep_rq_fn = pfn; 32 } 33 EXPORT_SYMBOL(blk_queue_prep_rq); 34 35 /** 36 * blk_queue_set_discard - set a discard_sectors function for queue 37 * @q: queue 38 * @dfn: prepare_discard function 39 * 40 * It's possible for a queue to register a discard callback which is used 41 * to transform a discard request into the appropriate type for the 42 * hardware. If none is registered, then discard requests are failed 43 * with %EOPNOTSUPP. 44 * 45 */ 46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn) 47 { 48 q->prepare_discard_fn = dfn; 49 } 50 EXPORT_SYMBOL(blk_queue_set_discard); 51 52 /** 53 * blk_queue_merge_bvec - set a merge_bvec function for queue 54 * @q: queue 55 * @mbfn: merge_bvec_fn 56 * 57 * Usually queues have static limitations on the max sectors or segments that 58 * we can put in a request. Stacking drivers may have some settings that 59 * are dynamic, and thus we have to query the queue whether it is ok to 60 * add a new bio_vec to a bio at a given offset or not. If the block device 61 * has such limitations, it needs to register a merge_bvec_fn to control 62 * the size of bio's sent to it. Note that a block device *must* allow a 63 * single page to be added to an empty bio. The block device driver may want 64 * to use the bio_split() function to deal with these bio's. By default 65 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 66 * honored. 67 */ 68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 69 { 70 q->merge_bvec_fn = mbfn; 71 } 72 EXPORT_SYMBOL(blk_queue_merge_bvec); 73 74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 75 { 76 q->softirq_done_fn = fn; 77 } 78 EXPORT_SYMBOL(blk_queue_softirq_done); 79 80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 81 { 82 q->rq_timeout = timeout; 83 } 84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 85 86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 87 { 88 q->rq_timed_out_fn = fn; 89 } 90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 91 92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 93 { 94 q->lld_busy_fn = fn; 95 } 96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 97 98 /** 99 * blk_queue_make_request - define an alternate make_request function for a device 100 * @q: the request queue for the device to be affected 101 * @mfn: the alternate make_request function 102 * 103 * Description: 104 * The normal way for &struct bios to be passed to a device 105 * driver is for them to be collected into requests on a request 106 * queue, and then to allow the device driver to select requests 107 * off that queue when it is ready. This works well for many block 108 * devices. However some block devices (typically virtual devices 109 * such as md or lvm) do not benefit from the processing on the 110 * request queue, and are served best by having the requests passed 111 * directly to them. This can be achieved by providing a function 112 * to blk_queue_make_request(). 113 * 114 * Caveat: 115 * The driver that does this *must* be able to deal appropriately 116 * with buffers in "highmemory". This can be accomplished by either calling 117 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 118 * blk_queue_bounce() to create a buffer in normal memory. 119 **/ 120 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 121 { 122 /* 123 * set defaults 124 */ 125 q->nr_requests = BLKDEV_MAX_RQ; 126 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 127 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 128 q->make_request_fn = mfn; 129 q->backing_dev_info.ra_pages = 130 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 131 q->backing_dev_info.state = 0; 132 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 133 blk_queue_max_sectors(q, SAFE_MAX_SECTORS); 134 blk_queue_hardsect_size(q, 512); 135 blk_queue_dma_alignment(q, 511); 136 blk_queue_congestion_threshold(q); 137 q->nr_batching = BLK_BATCH_REQ; 138 139 q->unplug_thresh = 4; /* hmm */ 140 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ 141 if (q->unplug_delay == 0) 142 q->unplug_delay = 1; 143 144 INIT_WORK(&q->unplug_work, blk_unplug_work); 145 146 q->unplug_timer.function = blk_unplug_timeout; 147 q->unplug_timer.data = (unsigned long)q; 148 149 /* 150 * by default assume old behaviour and bounce for any highmem page 151 */ 152 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 153 } 154 EXPORT_SYMBOL(blk_queue_make_request); 155 156 /** 157 * blk_queue_bounce_limit - set bounce buffer limit for queue 158 * @q: the request queue for the device 159 * @dma_addr: bus address limit 160 * 161 * Description: 162 * Different hardware can have different requirements as to what pages 163 * it can do I/O directly to. A low level driver can call 164 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 165 * buffers for doing I/O to pages residing above @dma_addr. 166 **/ 167 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr) 168 { 169 unsigned long b_pfn = dma_addr >> PAGE_SHIFT; 170 int dma = 0; 171 172 q->bounce_gfp = GFP_NOIO; 173 #if BITS_PER_LONG == 64 174 /* Assume anything <= 4GB can be handled by IOMMU. 175 Actually some IOMMUs can handle everything, but I don't 176 know of a way to test this here. */ 177 if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 178 dma = 1; 179 q->bounce_pfn = max_low_pfn; 180 #else 181 if (b_pfn < blk_max_low_pfn) 182 dma = 1; 183 q->bounce_pfn = b_pfn; 184 #endif 185 if (dma) { 186 init_emergency_isa_pool(); 187 q->bounce_gfp = GFP_NOIO | GFP_DMA; 188 q->bounce_pfn = b_pfn; 189 } 190 } 191 EXPORT_SYMBOL(blk_queue_bounce_limit); 192 193 /** 194 * blk_queue_max_sectors - set max sectors for a request for this queue 195 * @q: the request queue for the device 196 * @max_sectors: max sectors in the usual 512b unit 197 * 198 * Description: 199 * Enables a low level driver to set an upper limit on the size of 200 * received requests. 201 **/ 202 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) 203 { 204 if ((max_sectors << 9) < PAGE_CACHE_SIZE) { 205 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 206 printk(KERN_INFO "%s: set to minimum %d\n", 207 __func__, max_sectors); 208 } 209 210 if (BLK_DEF_MAX_SECTORS > max_sectors) 211 q->max_hw_sectors = q->max_sectors = max_sectors; 212 else { 213 q->max_sectors = BLK_DEF_MAX_SECTORS; 214 q->max_hw_sectors = max_sectors; 215 } 216 } 217 EXPORT_SYMBOL(blk_queue_max_sectors); 218 219 /** 220 * blk_queue_max_phys_segments - set max phys segments for a request for this queue 221 * @q: the request queue for the device 222 * @max_segments: max number of segments 223 * 224 * Description: 225 * Enables a low level driver to set an upper limit on the number of 226 * physical data segments in a request. This would be the largest sized 227 * scatter list the driver could handle. 228 **/ 229 void blk_queue_max_phys_segments(struct request_queue *q, 230 unsigned short max_segments) 231 { 232 if (!max_segments) { 233 max_segments = 1; 234 printk(KERN_INFO "%s: set to minimum %d\n", 235 __func__, max_segments); 236 } 237 238 q->max_phys_segments = max_segments; 239 } 240 EXPORT_SYMBOL(blk_queue_max_phys_segments); 241 242 /** 243 * blk_queue_max_hw_segments - set max hw segments for a request for this queue 244 * @q: the request queue for the device 245 * @max_segments: max number of segments 246 * 247 * Description: 248 * Enables a low level driver to set an upper limit on the number of 249 * hw data segments in a request. This would be the largest number of 250 * address/length pairs the host adapter can actually give at once 251 * to the device. 252 **/ 253 void blk_queue_max_hw_segments(struct request_queue *q, 254 unsigned short max_segments) 255 { 256 if (!max_segments) { 257 max_segments = 1; 258 printk(KERN_INFO "%s: set to minimum %d\n", 259 __func__, max_segments); 260 } 261 262 q->max_hw_segments = max_segments; 263 } 264 EXPORT_SYMBOL(blk_queue_max_hw_segments); 265 266 /** 267 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 268 * @q: the request queue for the device 269 * @max_size: max size of segment in bytes 270 * 271 * Description: 272 * Enables a low level driver to set an upper limit on the size of a 273 * coalesced segment 274 **/ 275 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 276 { 277 if (max_size < PAGE_CACHE_SIZE) { 278 max_size = PAGE_CACHE_SIZE; 279 printk(KERN_INFO "%s: set to minimum %d\n", 280 __func__, max_size); 281 } 282 283 q->max_segment_size = max_size; 284 } 285 EXPORT_SYMBOL(blk_queue_max_segment_size); 286 287 /** 288 * blk_queue_hardsect_size - set hardware sector size for the queue 289 * @q: the request queue for the device 290 * @size: the hardware sector size, in bytes 291 * 292 * Description: 293 * This should typically be set to the lowest possible sector size 294 * that the hardware can operate on (possible without reverting to 295 * even internal read-modify-write operations). Usually the default 296 * of 512 covers most hardware. 297 **/ 298 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size) 299 { 300 q->hardsect_size = size; 301 } 302 EXPORT_SYMBOL(blk_queue_hardsect_size); 303 304 /* 305 * Returns the minimum that is _not_ zero, unless both are zero. 306 */ 307 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 308 309 /** 310 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 311 * @t: the stacking driver (top) 312 * @b: the underlying device (bottom) 313 **/ 314 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 315 { 316 /* zero is "infinity" */ 317 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 318 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 319 320 t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments); 321 t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments); 322 t->max_segment_size = min(t->max_segment_size, b->max_segment_size); 323 t->hardsect_size = max(t->hardsect_size, b->hardsect_size); 324 if (!t->queue_lock) 325 WARN_ON_ONCE(1); 326 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 327 unsigned long flags; 328 spin_lock_irqsave(t->queue_lock, flags); 329 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 330 spin_unlock_irqrestore(t->queue_lock, flags); 331 } 332 } 333 EXPORT_SYMBOL(blk_queue_stack_limits); 334 335 /** 336 * blk_queue_dma_pad - set pad mask 337 * @q: the request queue for the device 338 * @mask: pad mask 339 * 340 * Set dma pad mask. 341 * 342 * Appending pad buffer to a request modifies the last entry of a 343 * scatter list such that it includes the pad buffer. 344 **/ 345 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 346 { 347 q->dma_pad_mask = mask; 348 } 349 EXPORT_SYMBOL(blk_queue_dma_pad); 350 351 /** 352 * blk_queue_update_dma_pad - update pad mask 353 * @q: the request queue for the device 354 * @mask: pad mask 355 * 356 * Update dma pad mask. 357 * 358 * Appending pad buffer to a request modifies the last entry of a 359 * scatter list such that it includes the pad buffer. 360 **/ 361 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 362 { 363 if (mask > q->dma_pad_mask) 364 q->dma_pad_mask = mask; 365 } 366 EXPORT_SYMBOL(blk_queue_update_dma_pad); 367 368 /** 369 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 370 * @q: the request queue for the device 371 * @dma_drain_needed: fn which returns non-zero if drain is necessary 372 * @buf: physically contiguous buffer 373 * @size: size of the buffer in bytes 374 * 375 * Some devices have excess DMA problems and can't simply discard (or 376 * zero fill) the unwanted piece of the transfer. They have to have a 377 * real area of memory to transfer it into. The use case for this is 378 * ATAPI devices in DMA mode. If the packet command causes a transfer 379 * bigger than the transfer size some HBAs will lock up if there 380 * aren't DMA elements to contain the excess transfer. What this API 381 * does is adjust the queue so that the buf is always appended 382 * silently to the scatterlist. 383 * 384 * Note: This routine adjusts max_hw_segments to make room for 385 * appending the drain buffer. If you call 386 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after 387 * calling this routine, you must set the limit to one fewer than your 388 * device can support otherwise there won't be room for the drain 389 * buffer. 390 */ 391 int blk_queue_dma_drain(struct request_queue *q, 392 dma_drain_needed_fn *dma_drain_needed, 393 void *buf, unsigned int size) 394 { 395 if (q->max_hw_segments < 2 || q->max_phys_segments < 2) 396 return -EINVAL; 397 /* make room for appending the drain */ 398 --q->max_hw_segments; 399 --q->max_phys_segments; 400 q->dma_drain_needed = dma_drain_needed; 401 q->dma_drain_buffer = buf; 402 q->dma_drain_size = size; 403 404 return 0; 405 } 406 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 407 408 /** 409 * blk_queue_segment_boundary - set boundary rules for segment merging 410 * @q: the request queue for the device 411 * @mask: the memory boundary mask 412 **/ 413 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 414 { 415 if (mask < PAGE_CACHE_SIZE - 1) { 416 mask = PAGE_CACHE_SIZE - 1; 417 printk(KERN_INFO "%s: set to minimum %lx\n", 418 __func__, mask); 419 } 420 421 q->seg_boundary_mask = mask; 422 } 423 EXPORT_SYMBOL(blk_queue_segment_boundary); 424 425 /** 426 * blk_queue_dma_alignment - set dma length and memory alignment 427 * @q: the request queue for the device 428 * @mask: alignment mask 429 * 430 * description: 431 * set required memory and length alignment for direct dma transactions. 432 * this is used when buiding direct io requests for the queue. 433 * 434 **/ 435 void blk_queue_dma_alignment(struct request_queue *q, int mask) 436 { 437 q->dma_alignment = mask; 438 } 439 EXPORT_SYMBOL(blk_queue_dma_alignment); 440 441 /** 442 * blk_queue_update_dma_alignment - update dma length and memory alignment 443 * @q: the request queue for the device 444 * @mask: alignment mask 445 * 446 * description: 447 * update required memory and length alignment for direct dma transactions. 448 * If the requested alignment is larger than the current alignment, then 449 * the current queue alignment is updated to the new value, otherwise it 450 * is left alone. The design of this is to allow multiple objects 451 * (driver, device, transport etc) to set their respective 452 * alignments without having them interfere. 453 * 454 **/ 455 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 456 { 457 BUG_ON(mask > PAGE_SIZE); 458 459 if (mask > q->dma_alignment) 460 q->dma_alignment = mask; 461 } 462 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 463 464 static int __init blk_settings_init(void) 465 { 466 blk_max_low_pfn = max_low_pfn - 1; 467 blk_max_pfn = max_pfn - 1; 468 return 0; 469 } 470 subsys_initcall(blk_settings_init); 471