xref: /openbmc/linux/block/blk-settings.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "blk.h"
18 #include "blk-wbt.h"
19 
20 unsigned long blk_max_low_pfn;
21 EXPORT_SYMBOL(blk_max_low_pfn);
22 
23 unsigned long blk_max_pfn;
24 
25 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
26 {
27 	q->rq_timeout = timeout;
28 }
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
30 
31 /**
32  * blk_set_default_limits - reset limits to default values
33  * @lim:  the queue_limits structure to reset
34  *
35  * Description:
36  *   Returns a queue_limit struct to its default state.
37  */
38 void blk_set_default_limits(struct queue_limits *lim)
39 {
40 	lim->max_segments = BLK_MAX_SEGMENTS;
41 	lim->max_discard_segments = 1;
42 	lim->max_integrity_segments = 0;
43 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 	lim->virt_boundary_mask = 0;
45 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
46 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
47 	lim->max_dev_sectors = 0;
48 	lim->chunk_sectors = 0;
49 	lim->max_write_same_sectors = 0;
50 	lim->max_write_zeroes_sectors = 0;
51 	lim->max_zone_append_sectors = 0;
52 	lim->max_discard_sectors = 0;
53 	lim->max_hw_discard_sectors = 0;
54 	lim->discard_granularity = 0;
55 	lim->discard_alignment = 0;
56 	lim->discard_misaligned = 0;
57 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
58 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
59 	lim->alignment_offset = 0;
60 	lim->io_opt = 0;
61 	lim->misaligned = 0;
62 	lim->zoned = BLK_ZONED_NONE;
63 	lim->zone_write_granularity = 0;
64 }
65 EXPORT_SYMBOL(blk_set_default_limits);
66 
67 /**
68  * blk_set_stacking_limits - set default limits for stacking devices
69  * @lim:  the queue_limits structure to reset
70  *
71  * Description:
72  *   Returns a queue_limit struct to its default state. Should be used
73  *   by stacking drivers like DM that have no internal limits.
74  */
75 void blk_set_stacking_limits(struct queue_limits *lim)
76 {
77 	blk_set_default_limits(lim);
78 
79 	/* Inherit limits from component devices */
80 	lim->max_segments = USHRT_MAX;
81 	lim->max_discard_segments = USHRT_MAX;
82 	lim->max_hw_sectors = UINT_MAX;
83 	lim->max_segment_size = UINT_MAX;
84 	lim->max_sectors = UINT_MAX;
85 	lim->max_dev_sectors = UINT_MAX;
86 	lim->max_write_same_sectors = UINT_MAX;
87 	lim->max_write_zeroes_sectors = UINT_MAX;
88 	lim->max_zone_append_sectors = UINT_MAX;
89 }
90 EXPORT_SYMBOL(blk_set_stacking_limits);
91 
92 /**
93  * blk_queue_bounce_limit - set bounce buffer limit for queue
94  * @q: the request queue for the device
95  * @max_addr: the maximum address the device can handle
96  *
97  * Description:
98  *    Different hardware can have different requirements as to what pages
99  *    it can do I/O directly to. A low level driver can call
100  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
101  *    buffers for doing I/O to pages residing above @max_addr.
102  **/
103 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
104 {
105 	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
106 	int dma = 0;
107 
108 	q->bounce_gfp = GFP_NOIO;
109 #if BITS_PER_LONG == 64
110 	/*
111 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
112 	 * some IOMMUs can handle everything, but I don't know of a
113 	 * way to test this here.
114 	 */
115 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
116 		dma = 1;
117 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
118 #else
119 	if (b_pfn < blk_max_low_pfn)
120 		dma = 1;
121 	q->limits.bounce_pfn = b_pfn;
122 #endif
123 	if (dma) {
124 		init_emergency_isa_pool();
125 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
126 		q->limits.bounce_pfn = b_pfn;
127 	}
128 }
129 EXPORT_SYMBOL(blk_queue_bounce_limit);
130 
131 /**
132  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
133  * @q:  the request queue for the device
134  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
135  *
136  * Description:
137  *    Enables a low level driver to set a hard upper limit,
138  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
139  *    the device driver based upon the capabilities of the I/O
140  *    controller.
141  *
142  *    max_dev_sectors is a hard limit imposed by the storage device for
143  *    READ/WRITE requests. It is set by the disk driver.
144  *
145  *    max_sectors is a soft limit imposed by the block layer for
146  *    filesystem type requests.  This value can be overridden on a
147  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
148  *    The soft limit can not exceed max_hw_sectors.
149  **/
150 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
151 {
152 	struct queue_limits *limits = &q->limits;
153 	unsigned int max_sectors;
154 
155 	if ((max_hw_sectors << 9) < PAGE_SIZE) {
156 		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
157 		printk(KERN_INFO "%s: set to minimum %d\n",
158 		       __func__, max_hw_sectors);
159 	}
160 
161 	max_hw_sectors = round_down(max_hw_sectors,
162 				    limits->logical_block_size >> SECTOR_SHIFT);
163 	limits->max_hw_sectors = max_hw_sectors;
164 
165 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
166 	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
167 	max_sectors = round_down(max_sectors,
168 				 limits->logical_block_size >> SECTOR_SHIFT);
169 	limits->max_sectors = max_sectors;
170 
171 	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
172 }
173 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
174 
175 /**
176  * blk_queue_chunk_sectors - set size of the chunk for this queue
177  * @q:  the request queue for the device
178  * @chunk_sectors:  chunk sectors in the usual 512b unit
179  *
180  * Description:
181  *    If a driver doesn't want IOs to cross a given chunk size, it can set
182  *    this limit and prevent merging across chunks. Note that the block layer
183  *    must accept a page worth of data at any offset. So if the crossing of
184  *    chunks is a hard limitation in the driver, it must still be prepared
185  *    to split single page bios.
186  **/
187 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
188 {
189 	q->limits.chunk_sectors = chunk_sectors;
190 }
191 EXPORT_SYMBOL(blk_queue_chunk_sectors);
192 
193 /**
194  * blk_queue_max_discard_sectors - set max sectors for a single discard
195  * @q:  the request queue for the device
196  * @max_discard_sectors: maximum number of sectors to discard
197  **/
198 void blk_queue_max_discard_sectors(struct request_queue *q,
199 		unsigned int max_discard_sectors)
200 {
201 	q->limits.max_hw_discard_sectors = max_discard_sectors;
202 	q->limits.max_discard_sectors = max_discard_sectors;
203 }
204 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
205 
206 /**
207  * blk_queue_max_write_same_sectors - set max sectors for a single write same
208  * @q:  the request queue for the device
209  * @max_write_same_sectors: maximum number of sectors to write per command
210  **/
211 void blk_queue_max_write_same_sectors(struct request_queue *q,
212 				      unsigned int max_write_same_sectors)
213 {
214 	q->limits.max_write_same_sectors = max_write_same_sectors;
215 }
216 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
217 
218 /**
219  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
220  *                                      write zeroes
221  * @q:  the request queue for the device
222  * @max_write_zeroes_sectors: maximum number of sectors to write per command
223  **/
224 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
225 		unsigned int max_write_zeroes_sectors)
226 {
227 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
228 }
229 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
230 
231 /**
232  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
233  * @q:  the request queue for the device
234  * @max_zone_append_sectors: maximum number of sectors to write per command
235  **/
236 void blk_queue_max_zone_append_sectors(struct request_queue *q,
237 		unsigned int max_zone_append_sectors)
238 {
239 	unsigned int max_sectors;
240 
241 	if (WARN_ON(!blk_queue_is_zoned(q)))
242 		return;
243 
244 	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
245 	max_sectors = min(q->limits.chunk_sectors, max_sectors);
246 
247 	/*
248 	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
249 	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
250 	 * or the max_hw_sectors limit not set.
251 	 */
252 	WARN_ON(!max_sectors);
253 
254 	q->limits.max_zone_append_sectors = max_sectors;
255 }
256 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
257 
258 /**
259  * blk_queue_max_segments - set max hw segments for a request for this queue
260  * @q:  the request queue for the device
261  * @max_segments:  max number of segments
262  *
263  * Description:
264  *    Enables a low level driver to set an upper limit on the number of
265  *    hw data segments in a request.
266  **/
267 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
268 {
269 	if (!max_segments) {
270 		max_segments = 1;
271 		printk(KERN_INFO "%s: set to minimum %d\n",
272 		       __func__, max_segments);
273 	}
274 
275 	q->limits.max_segments = max_segments;
276 }
277 EXPORT_SYMBOL(blk_queue_max_segments);
278 
279 /**
280  * blk_queue_max_discard_segments - set max segments for discard requests
281  * @q:  the request queue for the device
282  * @max_segments:  max number of segments
283  *
284  * Description:
285  *    Enables a low level driver to set an upper limit on the number of
286  *    segments in a discard request.
287  **/
288 void blk_queue_max_discard_segments(struct request_queue *q,
289 		unsigned short max_segments)
290 {
291 	q->limits.max_discard_segments = max_segments;
292 }
293 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
294 
295 /**
296  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
297  * @q:  the request queue for the device
298  * @max_size:  max size of segment in bytes
299  *
300  * Description:
301  *    Enables a low level driver to set an upper limit on the size of a
302  *    coalesced segment
303  **/
304 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
305 {
306 	if (max_size < PAGE_SIZE) {
307 		max_size = PAGE_SIZE;
308 		printk(KERN_INFO "%s: set to minimum %d\n",
309 		       __func__, max_size);
310 	}
311 
312 	/* see blk_queue_virt_boundary() for the explanation */
313 	WARN_ON_ONCE(q->limits.virt_boundary_mask);
314 
315 	q->limits.max_segment_size = max_size;
316 }
317 EXPORT_SYMBOL(blk_queue_max_segment_size);
318 
319 /**
320  * blk_queue_logical_block_size - set logical block size for the queue
321  * @q:  the request queue for the device
322  * @size:  the logical block size, in bytes
323  *
324  * Description:
325  *   This should be set to the lowest possible block size that the
326  *   storage device can address.  The default of 512 covers most
327  *   hardware.
328  **/
329 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
330 {
331 	struct queue_limits *limits = &q->limits;
332 
333 	limits->logical_block_size = size;
334 
335 	if (limits->physical_block_size < size)
336 		limits->physical_block_size = size;
337 
338 	if (limits->io_min < limits->physical_block_size)
339 		limits->io_min = limits->physical_block_size;
340 
341 	limits->max_hw_sectors =
342 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
343 	limits->max_sectors =
344 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
345 }
346 EXPORT_SYMBOL(blk_queue_logical_block_size);
347 
348 /**
349  * blk_queue_physical_block_size - set physical block size for the queue
350  * @q:  the request queue for the device
351  * @size:  the physical block size, in bytes
352  *
353  * Description:
354  *   This should be set to the lowest possible sector size that the
355  *   hardware can operate on without reverting to read-modify-write
356  *   operations.
357  */
358 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
359 {
360 	q->limits.physical_block_size = size;
361 
362 	if (q->limits.physical_block_size < q->limits.logical_block_size)
363 		q->limits.physical_block_size = q->limits.logical_block_size;
364 
365 	if (q->limits.io_min < q->limits.physical_block_size)
366 		q->limits.io_min = q->limits.physical_block_size;
367 }
368 EXPORT_SYMBOL(blk_queue_physical_block_size);
369 
370 /**
371  * blk_queue_zone_write_granularity - set zone write granularity for the queue
372  * @q:  the request queue for the zoned device
373  * @size:  the zone write granularity size, in bytes
374  *
375  * Description:
376  *   This should be set to the lowest possible size allowing to write in
377  *   sequential zones of a zoned block device.
378  */
379 void blk_queue_zone_write_granularity(struct request_queue *q,
380 				      unsigned int size)
381 {
382 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
383 		return;
384 
385 	q->limits.zone_write_granularity = size;
386 
387 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
388 		q->limits.zone_write_granularity = q->limits.logical_block_size;
389 }
390 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
391 
392 /**
393  * blk_queue_alignment_offset - set physical block alignment offset
394  * @q:	the request queue for the device
395  * @offset: alignment offset in bytes
396  *
397  * Description:
398  *   Some devices are naturally misaligned to compensate for things like
399  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
400  *   should call this function for devices whose first sector is not
401  *   naturally aligned.
402  */
403 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
404 {
405 	q->limits.alignment_offset =
406 		offset & (q->limits.physical_block_size - 1);
407 	q->limits.misaligned = 0;
408 }
409 EXPORT_SYMBOL(blk_queue_alignment_offset);
410 
411 void blk_queue_update_readahead(struct request_queue *q)
412 {
413 	/*
414 	 * For read-ahead of large files to be effective, we need to read ahead
415 	 * at least twice the optimal I/O size.
416 	 */
417 	q->backing_dev_info->ra_pages =
418 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
419 	q->backing_dev_info->io_pages =
420 		queue_max_sectors(q) >> (PAGE_SHIFT - 9);
421 }
422 EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
423 
424 /**
425  * blk_limits_io_min - set minimum request size for a device
426  * @limits: the queue limits
427  * @min:  smallest I/O size in bytes
428  *
429  * Description:
430  *   Some devices have an internal block size bigger than the reported
431  *   hardware sector size.  This function can be used to signal the
432  *   smallest I/O the device can perform without incurring a performance
433  *   penalty.
434  */
435 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
436 {
437 	limits->io_min = min;
438 
439 	if (limits->io_min < limits->logical_block_size)
440 		limits->io_min = limits->logical_block_size;
441 
442 	if (limits->io_min < limits->physical_block_size)
443 		limits->io_min = limits->physical_block_size;
444 }
445 EXPORT_SYMBOL(blk_limits_io_min);
446 
447 /**
448  * blk_queue_io_min - set minimum request size for the queue
449  * @q:	the request queue for the device
450  * @min:  smallest I/O size in bytes
451  *
452  * Description:
453  *   Storage devices may report a granularity or preferred minimum I/O
454  *   size which is the smallest request the device can perform without
455  *   incurring a performance penalty.  For disk drives this is often the
456  *   physical block size.  For RAID arrays it is often the stripe chunk
457  *   size.  A properly aligned multiple of minimum_io_size is the
458  *   preferred request size for workloads where a high number of I/O
459  *   operations is desired.
460  */
461 void blk_queue_io_min(struct request_queue *q, unsigned int min)
462 {
463 	blk_limits_io_min(&q->limits, min);
464 }
465 EXPORT_SYMBOL(blk_queue_io_min);
466 
467 /**
468  * blk_limits_io_opt - set optimal request size for a device
469  * @limits: the queue limits
470  * @opt:  smallest I/O size in bytes
471  *
472  * Description:
473  *   Storage devices may report an optimal I/O size, which is the
474  *   device's preferred unit for sustained I/O.  This is rarely reported
475  *   for disk drives.  For RAID arrays it is usually the stripe width or
476  *   the internal track size.  A properly aligned multiple of
477  *   optimal_io_size is the preferred request size for workloads where
478  *   sustained throughput is desired.
479  */
480 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
481 {
482 	limits->io_opt = opt;
483 }
484 EXPORT_SYMBOL(blk_limits_io_opt);
485 
486 /**
487  * blk_queue_io_opt - set optimal request size for the queue
488  * @q:	the request queue for the device
489  * @opt:  optimal request size in bytes
490  *
491  * Description:
492  *   Storage devices may report an optimal I/O size, which is the
493  *   device's preferred unit for sustained I/O.  This is rarely reported
494  *   for disk drives.  For RAID arrays it is usually the stripe width or
495  *   the internal track size.  A properly aligned multiple of
496  *   optimal_io_size is the preferred request size for workloads where
497  *   sustained throughput is desired.
498  */
499 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
500 {
501 	blk_limits_io_opt(&q->limits, opt);
502 	q->backing_dev_info->ra_pages =
503 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
504 }
505 EXPORT_SYMBOL(blk_queue_io_opt);
506 
507 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
508 {
509 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
510 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
511 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
512 	return sectors;
513 }
514 
515 /**
516  * blk_stack_limits - adjust queue_limits for stacked devices
517  * @t:	the stacking driver limits (top device)
518  * @b:  the underlying queue limits (bottom, component device)
519  * @start:  first data sector within component device
520  *
521  * Description:
522  *    This function is used by stacking drivers like MD and DM to ensure
523  *    that all component devices have compatible block sizes and
524  *    alignments.  The stacking driver must provide a queue_limits
525  *    struct (top) and then iteratively call the stacking function for
526  *    all component (bottom) devices.  The stacking function will
527  *    attempt to combine the values and ensure proper alignment.
528  *
529  *    Returns 0 if the top and bottom queue_limits are compatible.  The
530  *    top device's block sizes and alignment offsets may be adjusted to
531  *    ensure alignment with the bottom device. If no compatible sizes
532  *    and alignments exist, -1 is returned and the resulting top
533  *    queue_limits will have the misaligned flag set to indicate that
534  *    the alignment_offset is undefined.
535  */
536 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
537 		     sector_t start)
538 {
539 	unsigned int top, bottom, alignment, ret = 0;
540 
541 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
542 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
543 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
544 	t->max_write_same_sectors = min(t->max_write_same_sectors,
545 					b->max_write_same_sectors);
546 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
547 					b->max_write_zeroes_sectors);
548 	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
549 					b->max_zone_append_sectors);
550 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
551 
552 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
553 					    b->seg_boundary_mask);
554 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
555 					    b->virt_boundary_mask);
556 
557 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
558 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
559 					       b->max_discard_segments);
560 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
561 						 b->max_integrity_segments);
562 
563 	t->max_segment_size = min_not_zero(t->max_segment_size,
564 					   b->max_segment_size);
565 
566 	t->misaligned |= b->misaligned;
567 
568 	alignment = queue_limit_alignment_offset(b, start);
569 
570 	/* Bottom device has different alignment.  Check that it is
571 	 * compatible with the current top alignment.
572 	 */
573 	if (t->alignment_offset != alignment) {
574 
575 		top = max(t->physical_block_size, t->io_min)
576 			+ t->alignment_offset;
577 		bottom = max(b->physical_block_size, b->io_min) + alignment;
578 
579 		/* Verify that top and bottom intervals line up */
580 		if (max(top, bottom) % min(top, bottom)) {
581 			t->misaligned = 1;
582 			ret = -1;
583 		}
584 	}
585 
586 	t->logical_block_size = max(t->logical_block_size,
587 				    b->logical_block_size);
588 
589 	t->physical_block_size = max(t->physical_block_size,
590 				     b->physical_block_size);
591 
592 	t->io_min = max(t->io_min, b->io_min);
593 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
594 
595 	/* Set non-power-of-2 compatible chunk_sectors boundary */
596 	if (b->chunk_sectors)
597 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
598 
599 	/* Physical block size a multiple of the logical block size? */
600 	if (t->physical_block_size & (t->logical_block_size - 1)) {
601 		t->physical_block_size = t->logical_block_size;
602 		t->misaligned = 1;
603 		ret = -1;
604 	}
605 
606 	/* Minimum I/O a multiple of the physical block size? */
607 	if (t->io_min & (t->physical_block_size - 1)) {
608 		t->io_min = t->physical_block_size;
609 		t->misaligned = 1;
610 		ret = -1;
611 	}
612 
613 	/* Optimal I/O a multiple of the physical block size? */
614 	if (t->io_opt & (t->physical_block_size - 1)) {
615 		t->io_opt = 0;
616 		t->misaligned = 1;
617 		ret = -1;
618 	}
619 
620 	/* chunk_sectors a multiple of the physical block size? */
621 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
622 		t->chunk_sectors = 0;
623 		t->misaligned = 1;
624 		ret = -1;
625 	}
626 
627 	t->raid_partial_stripes_expensive =
628 		max(t->raid_partial_stripes_expensive,
629 		    b->raid_partial_stripes_expensive);
630 
631 	/* Find lowest common alignment_offset */
632 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
633 		% max(t->physical_block_size, t->io_min);
634 
635 	/* Verify that new alignment_offset is on a logical block boundary */
636 	if (t->alignment_offset & (t->logical_block_size - 1)) {
637 		t->misaligned = 1;
638 		ret = -1;
639 	}
640 
641 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
642 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
643 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
644 
645 	/* Discard alignment and granularity */
646 	if (b->discard_granularity) {
647 		alignment = queue_limit_discard_alignment(b, start);
648 
649 		if (t->discard_granularity != 0 &&
650 		    t->discard_alignment != alignment) {
651 			top = t->discard_granularity + t->discard_alignment;
652 			bottom = b->discard_granularity + alignment;
653 
654 			/* Verify that top and bottom intervals line up */
655 			if ((max(top, bottom) % min(top, bottom)) != 0)
656 				t->discard_misaligned = 1;
657 		}
658 
659 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
660 						      b->max_discard_sectors);
661 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
662 							 b->max_hw_discard_sectors);
663 		t->discard_granularity = max(t->discard_granularity,
664 					     b->discard_granularity);
665 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
666 			t->discard_granularity;
667 	}
668 
669 	t->zone_write_granularity = max(t->zone_write_granularity,
670 					b->zone_write_granularity);
671 	t->zoned = max(t->zoned, b->zoned);
672 	return ret;
673 }
674 EXPORT_SYMBOL(blk_stack_limits);
675 
676 /**
677  * disk_stack_limits - adjust queue limits for stacked drivers
678  * @disk:  MD/DM gendisk (top)
679  * @bdev:  the underlying block device (bottom)
680  * @offset:  offset to beginning of data within component device
681  *
682  * Description:
683  *    Merges the limits for a top level gendisk and a bottom level
684  *    block_device.
685  */
686 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
687 		       sector_t offset)
688 {
689 	struct request_queue *t = disk->queue;
690 
691 	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
692 			get_start_sect(bdev) + (offset >> 9)) < 0) {
693 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
694 
695 		disk_name(disk, 0, top);
696 		bdevname(bdev, bottom);
697 
698 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
699 		       top, bottom);
700 	}
701 
702 	blk_queue_update_readahead(disk->queue);
703 }
704 EXPORT_SYMBOL(disk_stack_limits);
705 
706 /**
707  * blk_queue_update_dma_pad - update pad mask
708  * @q:     the request queue for the device
709  * @mask:  pad mask
710  *
711  * Update dma pad mask.
712  *
713  * Appending pad buffer to a request modifies the last entry of a
714  * scatter list such that it includes the pad buffer.
715  **/
716 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
717 {
718 	if (mask > q->dma_pad_mask)
719 		q->dma_pad_mask = mask;
720 }
721 EXPORT_SYMBOL(blk_queue_update_dma_pad);
722 
723 /**
724  * blk_queue_segment_boundary - set boundary rules for segment merging
725  * @q:  the request queue for the device
726  * @mask:  the memory boundary mask
727  **/
728 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
729 {
730 	if (mask < PAGE_SIZE - 1) {
731 		mask = PAGE_SIZE - 1;
732 		printk(KERN_INFO "%s: set to minimum %lx\n",
733 		       __func__, mask);
734 	}
735 
736 	q->limits.seg_boundary_mask = mask;
737 }
738 EXPORT_SYMBOL(blk_queue_segment_boundary);
739 
740 /**
741  * blk_queue_virt_boundary - set boundary rules for bio merging
742  * @q:  the request queue for the device
743  * @mask:  the memory boundary mask
744  **/
745 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
746 {
747 	q->limits.virt_boundary_mask = mask;
748 
749 	/*
750 	 * Devices that require a virtual boundary do not support scatter/gather
751 	 * I/O natively, but instead require a descriptor list entry for each
752 	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
753 	 * of that they are not limited by our notion of "segment size".
754 	 */
755 	if (mask)
756 		q->limits.max_segment_size = UINT_MAX;
757 }
758 EXPORT_SYMBOL(blk_queue_virt_boundary);
759 
760 /**
761  * blk_queue_dma_alignment - set dma length and memory alignment
762  * @q:     the request queue for the device
763  * @mask:  alignment mask
764  *
765  * description:
766  *    set required memory and length alignment for direct dma transactions.
767  *    this is used when building direct io requests for the queue.
768  *
769  **/
770 void blk_queue_dma_alignment(struct request_queue *q, int mask)
771 {
772 	q->dma_alignment = mask;
773 }
774 EXPORT_SYMBOL(blk_queue_dma_alignment);
775 
776 /**
777  * blk_queue_update_dma_alignment - update dma length and memory alignment
778  * @q:     the request queue for the device
779  * @mask:  alignment mask
780  *
781  * description:
782  *    update required memory and length alignment for direct dma transactions.
783  *    If the requested alignment is larger than the current alignment, then
784  *    the current queue alignment is updated to the new value, otherwise it
785  *    is left alone.  The design of this is to allow multiple objects
786  *    (driver, device, transport etc) to set their respective
787  *    alignments without having them interfere.
788  *
789  **/
790 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
791 {
792 	BUG_ON(mask > PAGE_SIZE);
793 
794 	if (mask > q->dma_alignment)
795 		q->dma_alignment = mask;
796 }
797 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
798 
799 /**
800  * blk_set_queue_depth - tell the block layer about the device queue depth
801  * @q:		the request queue for the device
802  * @depth:		queue depth
803  *
804  */
805 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
806 {
807 	q->queue_depth = depth;
808 	rq_qos_queue_depth_changed(q);
809 }
810 EXPORT_SYMBOL(blk_set_queue_depth);
811 
812 /**
813  * blk_queue_write_cache - configure queue's write cache
814  * @q:		the request queue for the device
815  * @wc:		write back cache on or off
816  * @fua:	device supports FUA writes, if true
817  *
818  * Tell the block layer about the write cache of @q.
819  */
820 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
821 {
822 	if (wc)
823 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
824 	else
825 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
826 	if (fua)
827 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
828 	else
829 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
830 
831 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
832 }
833 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
834 
835 /**
836  * blk_queue_required_elevator_features - Set a queue required elevator features
837  * @q:		the request queue for the target device
838  * @features:	Required elevator features OR'ed together
839  *
840  * Tell the block layer that for the device controlled through @q, only the
841  * only elevators that can be used are those that implement at least the set of
842  * features specified by @features.
843  */
844 void blk_queue_required_elevator_features(struct request_queue *q,
845 					  unsigned int features)
846 {
847 	q->required_elevator_features = features;
848 }
849 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
850 
851 /**
852  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
853  * @q:		the request queue for the device
854  * @dev:	the device pointer for dma
855  *
856  * Tell the block layer about merging the segments by dma map of @q.
857  */
858 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
859 				       struct device *dev)
860 {
861 	unsigned long boundary = dma_get_merge_boundary(dev);
862 
863 	if (!boundary)
864 		return false;
865 
866 	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
867 	blk_queue_virt_boundary(q, boundary);
868 
869 	return true;
870 }
871 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
872 
873 /**
874  * blk_queue_set_zoned - configure a disk queue zoned model.
875  * @disk:	the gendisk of the queue to configure
876  * @model:	the zoned model to set
877  *
878  * Set the zoned model of the request queue of @disk according to @model.
879  * When @model is BLK_ZONED_HM (host managed), this should be called only
880  * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
881  * If @model specifies BLK_ZONED_HA (host aware), the effective model used
882  * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
883  * on the disk.
884  */
885 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
886 {
887 	struct request_queue *q = disk->queue;
888 
889 	switch (model) {
890 	case BLK_ZONED_HM:
891 		/*
892 		 * Host managed devices are supported only if
893 		 * CONFIG_BLK_DEV_ZONED is enabled.
894 		 */
895 		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
896 		break;
897 	case BLK_ZONED_HA:
898 		/*
899 		 * Host aware devices can be treated either as regular block
900 		 * devices (similar to drive managed devices) or as zoned block
901 		 * devices to take advantage of the zone command set, similarly
902 		 * to host managed devices. We try the latter if there are no
903 		 * partitions and zoned block device support is enabled, else
904 		 * we do nothing special as far as the block layer is concerned.
905 		 */
906 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
907 		    !xa_empty(&disk->part_tbl))
908 			model = BLK_ZONED_NONE;
909 		break;
910 	case BLK_ZONED_NONE:
911 	default:
912 		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
913 			model = BLK_ZONED_NONE;
914 		break;
915 	}
916 
917 	q->limits.zoned = model;
918 	if (model != BLK_ZONED_NONE) {
919 		/*
920 		 * Set the zone write granularity to the device logical block
921 		 * size by default. The driver can change this value if needed.
922 		 */
923 		blk_queue_zone_write_granularity(q,
924 						queue_logical_block_size(q));
925 	} else {
926 		blk_queue_clear_zone_settings(q);
927 	}
928 }
929 EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
930 
931 static int __init blk_settings_init(void)
932 {
933 	blk_max_low_pfn = max_low_pfn - 1;
934 	blk_max_pfn = max_pfn - 1;
935 	return 0;
936 }
937 subsys_initcall(blk_settings_init);
938