1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/lcm.h> 12 #include <linux/jiffies.h> 13 #include <linux/gfp.h> 14 15 #include "blk.h" 16 17 unsigned long blk_max_low_pfn; 18 EXPORT_SYMBOL(blk_max_low_pfn); 19 20 unsigned long blk_max_pfn; 21 22 /** 23 * blk_queue_prep_rq - set a prepare_request function for queue 24 * @q: queue 25 * @pfn: prepare_request function 26 * 27 * It's possible for a queue to register a prepare_request callback which 28 * is invoked before the request is handed to the request_fn. The goal of 29 * the function is to prepare a request for I/O, it can be used to build a 30 * cdb from the request data for instance. 31 * 32 */ 33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 34 { 35 q->prep_rq_fn = pfn; 36 } 37 EXPORT_SYMBOL(blk_queue_prep_rq); 38 39 /** 40 * blk_queue_unprep_rq - set an unprepare_request function for queue 41 * @q: queue 42 * @ufn: unprepare_request function 43 * 44 * It's possible for a queue to register an unprepare_request callback 45 * which is invoked before the request is finally completed. The goal 46 * of the function is to deallocate any data that was allocated in the 47 * prepare_request callback. 48 * 49 */ 50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn) 51 { 52 q->unprep_rq_fn = ufn; 53 } 54 EXPORT_SYMBOL(blk_queue_unprep_rq); 55 56 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 57 { 58 q->softirq_done_fn = fn; 59 } 60 EXPORT_SYMBOL(blk_queue_softirq_done); 61 62 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 63 { 64 q->rq_timeout = timeout; 65 } 66 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 67 68 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 69 { 70 q->rq_timed_out_fn = fn; 71 } 72 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 73 74 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 75 { 76 q->lld_busy_fn = fn; 77 } 78 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 79 80 /** 81 * blk_set_default_limits - reset limits to default values 82 * @lim: the queue_limits structure to reset 83 * 84 * Description: 85 * Returns a queue_limit struct to its default state. 86 */ 87 void blk_set_default_limits(struct queue_limits *lim) 88 { 89 lim->max_segments = BLK_MAX_SEGMENTS; 90 lim->max_integrity_segments = 0; 91 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 92 lim->virt_boundary_mask = 0; 93 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 94 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 95 lim->max_dev_sectors = 0; 96 lim->chunk_sectors = 0; 97 lim->max_write_same_sectors = 0; 98 lim->max_discard_sectors = 0; 99 lim->max_hw_discard_sectors = 0; 100 lim->discard_granularity = 0; 101 lim->discard_alignment = 0; 102 lim->discard_misaligned = 0; 103 lim->discard_zeroes_data = 0; 104 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 105 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 106 lim->alignment_offset = 0; 107 lim->io_opt = 0; 108 lim->misaligned = 0; 109 lim->cluster = 1; 110 } 111 EXPORT_SYMBOL(blk_set_default_limits); 112 113 /** 114 * blk_set_stacking_limits - set default limits for stacking devices 115 * @lim: the queue_limits structure to reset 116 * 117 * Description: 118 * Returns a queue_limit struct to its default state. Should be used 119 * by stacking drivers like DM that have no internal limits. 120 */ 121 void blk_set_stacking_limits(struct queue_limits *lim) 122 { 123 blk_set_default_limits(lim); 124 125 /* Inherit limits from component devices */ 126 lim->discard_zeroes_data = 1; 127 lim->max_segments = USHRT_MAX; 128 lim->max_hw_sectors = UINT_MAX; 129 lim->max_segment_size = UINT_MAX; 130 lim->max_sectors = UINT_MAX; 131 lim->max_dev_sectors = UINT_MAX; 132 lim->max_write_same_sectors = UINT_MAX; 133 } 134 EXPORT_SYMBOL(blk_set_stacking_limits); 135 136 /** 137 * blk_queue_make_request - define an alternate make_request function for a device 138 * @q: the request queue for the device to be affected 139 * @mfn: the alternate make_request function 140 * 141 * Description: 142 * The normal way for &struct bios to be passed to a device 143 * driver is for them to be collected into requests on a request 144 * queue, and then to allow the device driver to select requests 145 * off that queue when it is ready. This works well for many block 146 * devices. However some block devices (typically virtual devices 147 * such as md or lvm) do not benefit from the processing on the 148 * request queue, and are served best by having the requests passed 149 * directly to them. This can be achieved by providing a function 150 * to blk_queue_make_request(). 151 * 152 * Caveat: 153 * The driver that does this *must* be able to deal appropriately 154 * with buffers in "highmemory". This can be accomplished by either calling 155 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 156 * blk_queue_bounce() to create a buffer in normal memory. 157 **/ 158 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 159 { 160 /* 161 * set defaults 162 */ 163 q->nr_requests = BLKDEV_MAX_RQ; 164 165 q->make_request_fn = mfn; 166 blk_queue_dma_alignment(q, 511); 167 blk_queue_congestion_threshold(q); 168 q->nr_batching = BLK_BATCH_REQ; 169 170 blk_set_default_limits(&q->limits); 171 172 /* 173 * by default assume old behaviour and bounce for any highmem page 174 */ 175 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 176 } 177 EXPORT_SYMBOL(blk_queue_make_request); 178 179 /** 180 * blk_queue_bounce_limit - set bounce buffer limit for queue 181 * @q: the request queue for the device 182 * @max_addr: the maximum address the device can handle 183 * 184 * Description: 185 * Different hardware can have different requirements as to what pages 186 * it can do I/O directly to. A low level driver can call 187 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 188 * buffers for doing I/O to pages residing above @max_addr. 189 **/ 190 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr) 191 { 192 unsigned long b_pfn = max_addr >> PAGE_SHIFT; 193 int dma = 0; 194 195 q->bounce_gfp = GFP_NOIO; 196 #if BITS_PER_LONG == 64 197 /* 198 * Assume anything <= 4GB can be handled by IOMMU. Actually 199 * some IOMMUs can handle everything, but I don't know of a 200 * way to test this here. 201 */ 202 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 203 dma = 1; 204 q->limits.bounce_pfn = max(max_low_pfn, b_pfn); 205 #else 206 if (b_pfn < blk_max_low_pfn) 207 dma = 1; 208 q->limits.bounce_pfn = b_pfn; 209 #endif 210 if (dma) { 211 init_emergency_isa_pool(); 212 q->bounce_gfp = GFP_NOIO | GFP_DMA; 213 q->limits.bounce_pfn = b_pfn; 214 } 215 } 216 EXPORT_SYMBOL(blk_queue_bounce_limit); 217 218 /** 219 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 220 * @q: the request queue for the device 221 * @max_hw_sectors: max hardware sectors in the usual 512b unit 222 * 223 * Description: 224 * Enables a low level driver to set a hard upper limit, 225 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 226 * the device driver based upon the capabilities of the I/O 227 * controller. 228 * 229 * max_dev_sectors is a hard limit imposed by the storage device for 230 * READ/WRITE requests. It is set by the disk driver. 231 * 232 * max_sectors is a soft limit imposed by the block layer for 233 * filesystem type requests. This value can be overridden on a 234 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 235 * The soft limit can not exceed max_hw_sectors. 236 **/ 237 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 238 { 239 struct queue_limits *limits = &q->limits; 240 unsigned int max_sectors; 241 242 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) { 243 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 244 printk(KERN_INFO "%s: set to minimum %d\n", 245 __func__, max_hw_sectors); 246 } 247 248 limits->max_hw_sectors = max_hw_sectors; 249 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 250 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS); 251 limits->max_sectors = max_sectors; 252 } 253 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 254 255 /** 256 * blk_queue_chunk_sectors - set size of the chunk for this queue 257 * @q: the request queue for the device 258 * @chunk_sectors: chunk sectors in the usual 512b unit 259 * 260 * Description: 261 * If a driver doesn't want IOs to cross a given chunk size, it can set 262 * this limit and prevent merging across chunks. Note that the chunk size 263 * must currently be a power-of-2 in sectors. Also note that the block 264 * layer must accept a page worth of data at any offset. So if the 265 * crossing of chunks is a hard limitation in the driver, it must still be 266 * prepared to split single page bios. 267 **/ 268 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 269 { 270 BUG_ON(!is_power_of_2(chunk_sectors)); 271 q->limits.chunk_sectors = chunk_sectors; 272 } 273 EXPORT_SYMBOL(blk_queue_chunk_sectors); 274 275 /** 276 * blk_queue_max_discard_sectors - set max sectors for a single discard 277 * @q: the request queue for the device 278 * @max_discard_sectors: maximum number of sectors to discard 279 **/ 280 void blk_queue_max_discard_sectors(struct request_queue *q, 281 unsigned int max_discard_sectors) 282 { 283 q->limits.max_hw_discard_sectors = max_discard_sectors; 284 q->limits.max_discard_sectors = max_discard_sectors; 285 } 286 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 287 288 /** 289 * blk_queue_max_write_same_sectors - set max sectors for a single write same 290 * @q: the request queue for the device 291 * @max_write_same_sectors: maximum number of sectors to write per command 292 **/ 293 void blk_queue_max_write_same_sectors(struct request_queue *q, 294 unsigned int max_write_same_sectors) 295 { 296 q->limits.max_write_same_sectors = max_write_same_sectors; 297 } 298 EXPORT_SYMBOL(blk_queue_max_write_same_sectors); 299 300 /** 301 * blk_queue_max_segments - set max hw segments for a request for this queue 302 * @q: the request queue for the device 303 * @max_segments: max number of segments 304 * 305 * Description: 306 * Enables a low level driver to set an upper limit on the number of 307 * hw data segments in a request. 308 **/ 309 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 310 { 311 if (!max_segments) { 312 max_segments = 1; 313 printk(KERN_INFO "%s: set to minimum %d\n", 314 __func__, max_segments); 315 } 316 317 q->limits.max_segments = max_segments; 318 } 319 EXPORT_SYMBOL(blk_queue_max_segments); 320 321 /** 322 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 323 * @q: the request queue for the device 324 * @max_size: max size of segment in bytes 325 * 326 * Description: 327 * Enables a low level driver to set an upper limit on the size of a 328 * coalesced segment 329 **/ 330 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 331 { 332 if (max_size < PAGE_CACHE_SIZE) { 333 max_size = PAGE_CACHE_SIZE; 334 printk(KERN_INFO "%s: set to minimum %d\n", 335 __func__, max_size); 336 } 337 338 q->limits.max_segment_size = max_size; 339 } 340 EXPORT_SYMBOL(blk_queue_max_segment_size); 341 342 /** 343 * blk_queue_logical_block_size - set logical block size for the queue 344 * @q: the request queue for the device 345 * @size: the logical block size, in bytes 346 * 347 * Description: 348 * This should be set to the lowest possible block size that the 349 * storage device can address. The default of 512 covers most 350 * hardware. 351 **/ 352 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 353 { 354 q->limits.logical_block_size = size; 355 356 if (q->limits.physical_block_size < size) 357 q->limits.physical_block_size = size; 358 359 if (q->limits.io_min < q->limits.physical_block_size) 360 q->limits.io_min = q->limits.physical_block_size; 361 } 362 EXPORT_SYMBOL(blk_queue_logical_block_size); 363 364 /** 365 * blk_queue_physical_block_size - set physical block size for the queue 366 * @q: the request queue for the device 367 * @size: the physical block size, in bytes 368 * 369 * Description: 370 * This should be set to the lowest possible sector size that the 371 * hardware can operate on without reverting to read-modify-write 372 * operations. 373 */ 374 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 375 { 376 q->limits.physical_block_size = size; 377 378 if (q->limits.physical_block_size < q->limits.logical_block_size) 379 q->limits.physical_block_size = q->limits.logical_block_size; 380 381 if (q->limits.io_min < q->limits.physical_block_size) 382 q->limits.io_min = q->limits.physical_block_size; 383 } 384 EXPORT_SYMBOL(blk_queue_physical_block_size); 385 386 /** 387 * blk_queue_alignment_offset - set physical block alignment offset 388 * @q: the request queue for the device 389 * @offset: alignment offset in bytes 390 * 391 * Description: 392 * Some devices are naturally misaligned to compensate for things like 393 * the legacy DOS partition table 63-sector offset. Low-level drivers 394 * should call this function for devices whose first sector is not 395 * naturally aligned. 396 */ 397 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 398 { 399 q->limits.alignment_offset = 400 offset & (q->limits.physical_block_size - 1); 401 q->limits.misaligned = 0; 402 } 403 EXPORT_SYMBOL(blk_queue_alignment_offset); 404 405 /** 406 * blk_limits_io_min - set minimum request size for a device 407 * @limits: the queue limits 408 * @min: smallest I/O size in bytes 409 * 410 * Description: 411 * Some devices have an internal block size bigger than the reported 412 * hardware sector size. This function can be used to signal the 413 * smallest I/O the device can perform without incurring a performance 414 * penalty. 415 */ 416 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 417 { 418 limits->io_min = min; 419 420 if (limits->io_min < limits->logical_block_size) 421 limits->io_min = limits->logical_block_size; 422 423 if (limits->io_min < limits->physical_block_size) 424 limits->io_min = limits->physical_block_size; 425 } 426 EXPORT_SYMBOL(blk_limits_io_min); 427 428 /** 429 * blk_queue_io_min - set minimum request size for the queue 430 * @q: the request queue for the device 431 * @min: smallest I/O size in bytes 432 * 433 * Description: 434 * Storage devices may report a granularity or preferred minimum I/O 435 * size which is the smallest request the device can perform without 436 * incurring a performance penalty. For disk drives this is often the 437 * physical block size. For RAID arrays it is often the stripe chunk 438 * size. A properly aligned multiple of minimum_io_size is the 439 * preferred request size for workloads where a high number of I/O 440 * operations is desired. 441 */ 442 void blk_queue_io_min(struct request_queue *q, unsigned int min) 443 { 444 blk_limits_io_min(&q->limits, min); 445 } 446 EXPORT_SYMBOL(blk_queue_io_min); 447 448 /** 449 * blk_limits_io_opt - set optimal request size for a device 450 * @limits: the queue limits 451 * @opt: smallest I/O size in bytes 452 * 453 * Description: 454 * Storage devices may report an optimal I/O size, which is the 455 * device's preferred unit for sustained I/O. This is rarely reported 456 * for disk drives. For RAID arrays it is usually the stripe width or 457 * the internal track size. A properly aligned multiple of 458 * optimal_io_size is the preferred request size for workloads where 459 * sustained throughput is desired. 460 */ 461 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 462 { 463 limits->io_opt = opt; 464 } 465 EXPORT_SYMBOL(blk_limits_io_opt); 466 467 /** 468 * blk_queue_io_opt - set optimal request size for the queue 469 * @q: the request queue for the device 470 * @opt: optimal request size in bytes 471 * 472 * Description: 473 * Storage devices may report an optimal I/O size, which is the 474 * device's preferred unit for sustained I/O. This is rarely reported 475 * for disk drives. For RAID arrays it is usually the stripe width or 476 * the internal track size. A properly aligned multiple of 477 * optimal_io_size is the preferred request size for workloads where 478 * sustained throughput is desired. 479 */ 480 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 481 { 482 blk_limits_io_opt(&q->limits, opt); 483 } 484 EXPORT_SYMBOL(blk_queue_io_opt); 485 486 /** 487 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 488 * @t: the stacking driver (top) 489 * @b: the underlying device (bottom) 490 **/ 491 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 492 { 493 blk_stack_limits(&t->limits, &b->limits, 0); 494 } 495 EXPORT_SYMBOL(blk_queue_stack_limits); 496 497 /** 498 * blk_stack_limits - adjust queue_limits for stacked devices 499 * @t: the stacking driver limits (top device) 500 * @b: the underlying queue limits (bottom, component device) 501 * @start: first data sector within component device 502 * 503 * Description: 504 * This function is used by stacking drivers like MD and DM to ensure 505 * that all component devices have compatible block sizes and 506 * alignments. The stacking driver must provide a queue_limits 507 * struct (top) and then iteratively call the stacking function for 508 * all component (bottom) devices. The stacking function will 509 * attempt to combine the values and ensure proper alignment. 510 * 511 * Returns 0 if the top and bottom queue_limits are compatible. The 512 * top device's block sizes and alignment offsets may be adjusted to 513 * ensure alignment with the bottom device. If no compatible sizes 514 * and alignments exist, -1 is returned and the resulting top 515 * queue_limits will have the misaligned flag set to indicate that 516 * the alignment_offset is undefined. 517 */ 518 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 519 sector_t start) 520 { 521 unsigned int top, bottom, alignment, ret = 0; 522 523 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 524 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 525 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 526 t->max_write_same_sectors = min(t->max_write_same_sectors, 527 b->max_write_same_sectors); 528 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 529 530 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 531 b->seg_boundary_mask); 532 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 533 b->virt_boundary_mask); 534 535 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 536 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 537 b->max_integrity_segments); 538 539 t->max_segment_size = min_not_zero(t->max_segment_size, 540 b->max_segment_size); 541 542 t->misaligned |= b->misaligned; 543 544 alignment = queue_limit_alignment_offset(b, start); 545 546 /* Bottom device has different alignment. Check that it is 547 * compatible with the current top alignment. 548 */ 549 if (t->alignment_offset != alignment) { 550 551 top = max(t->physical_block_size, t->io_min) 552 + t->alignment_offset; 553 bottom = max(b->physical_block_size, b->io_min) + alignment; 554 555 /* Verify that top and bottom intervals line up */ 556 if (max(top, bottom) % min(top, bottom)) { 557 t->misaligned = 1; 558 ret = -1; 559 } 560 } 561 562 t->logical_block_size = max(t->logical_block_size, 563 b->logical_block_size); 564 565 t->physical_block_size = max(t->physical_block_size, 566 b->physical_block_size); 567 568 t->io_min = max(t->io_min, b->io_min); 569 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 570 571 t->cluster &= b->cluster; 572 t->discard_zeroes_data &= b->discard_zeroes_data; 573 574 /* Physical block size a multiple of the logical block size? */ 575 if (t->physical_block_size & (t->logical_block_size - 1)) { 576 t->physical_block_size = t->logical_block_size; 577 t->misaligned = 1; 578 ret = -1; 579 } 580 581 /* Minimum I/O a multiple of the physical block size? */ 582 if (t->io_min & (t->physical_block_size - 1)) { 583 t->io_min = t->physical_block_size; 584 t->misaligned = 1; 585 ret = -1; 586 } 587 588 /* Optimal I/O a multiple of the physical block size? */ 589 if (t->io_opt & (t->physical_block_size - 1)) { 590 t->io_opt = 0; 591 t->misaligned = 1; 592 ret = -1; 593 } 594 595 t->raid_partial_stripes_expensive = 596 max(t->raid_partial_stripes_expensive, 597 b->raid_partial_stripes_expensive); 598 599 /* Find lowest common alignment_offset */ 600 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 601 % max(t->physical_block_size, t->io_min); 602 603 /* Verify that new alignment_offset is on a logical block boundary */ 604 if (t->alignment_offset & (t->logical_block_size - 1)) { 605 t->misaligned = 1; 606 ret = -1; 607 } 608 609 /* Discard alignment and granularity */ 610 if (b->discard_granularity) { 611 alignment = queue_limit_discard_alignment(b, start); 612 613 if (t->discard_granularity != 0 && 614 t->discard_alignment != alignment) { 615 top = t->discard_granularity + t->discard_alignment; 616 bottom = b->discard_granularity + alignment; 617 618 /* Verify that top and bottom intervals line up */ 619 if ((max(top, bottom) % min(top, bottom)) != 0) 620 t->discard_misaligned = 1; 621 } 622 623 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 624 b->max_discard_sectors); 625 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 626 b->max_hw_discard_sectors); 627 t->discard_granularity = max(t->discard_granularity, 628 b->discard_granularity); 629 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 630 t->discard_granularity; 631 } 632 633 return ret; 634 } 635 EXPORT_SYMBOL(blk_stack_limits); 636 637 /** 638 * bdev_stack_limits - adjust queue limits for stacked drivers 639 * @t: the stacking driver limits (top device) 640 * @bdev: the component block_device (bottom) 641 * @start: first data sector within component device 642 * 643 * Description: 644 * Merges queue limits for a top device and a block_device. Returns 645 * 0 if alignment didn't change. Returns -1 if adding the bottom 646 * device caused misalignment. 647 */ 648 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 649 sector_t start) 650 { 651 struct request_queue *bq = bdev_get_queue(bdev); 652 653 start += get_start_sect(bdev); 654 655 return blk_stack_limits(t, &bq->limits, start); 656 } 657 EXPORT_SYMBOL(bdev_stack_limits); 658 659 /** 660 * disk_stack_limits - adjust queue limits for stacked drivers 661 * @disk: MD/DM gendisk (top) 662 * @bdev: the underlying block device (bottom) 663 * @offset: offset to beginning of data within component device 664 * 665 * Description: 666 * Merges the limits for a top level gendisk and a bottom level 667 * block_device. 668 */ 669 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 670 sector_t offset) 671 { 672 struct request_queue *t = disk->queue; 673 674 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 675 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 676 677 disk_name(disk, 0, top); 678 bdevname(bdev, bottom); 679 680 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 681 top, bottom); 682 } 683 } 684 EXPORT_SYMBOL(disk_stack_limits); 685 686 /** 687 * blk_queue_dma_pad - set pad mask 688 * @q: the request queue for the device 689 * @mask: pad mask 690 * 691 * Set dma pad mask. 692 * 693 * Appending pad buffer to a request modifies the last entry of a 694 * scatter list such that it includes the pad buffer. 695 **/ 696 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 697 { 698 q->dma_pad_mask = mask; 699 } 700 EXPORT_SYMBOL(blk_queue_dma_pad); 701 702 /** 703 * blk_queue_update_dma_pad - update pad mask 704 * @q: the request queue for the device 705 * @mask: pad mask 706 * 707 * Update dma pad mask. 708 * 709 * Appending pad buffer to a request modifies the last entry of a 710 * scatter list such that it includes the pad buffer. 711 **/ 712 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 713 { 714 if (mask > q->dma_pad_mask) 715 q->dma_pad_mask = mask; 716 } 717 EXPORT_SYMBOL(blk_queue_update_dma_pad); 718 719 /** 720 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 721 * @q: the request queue for the device 722 * @dma_drain_needed: fn which returns non-zero if drain is necessary 723 * @buf: physically contiguous buffer 724 * @size: size of the buffer in bytes 725 * 726 * Some devices have excess DMA problems and can't simply discard (or 727 * zero fill) the unwanted piece of the transfer. They have to have a 728 * real area of memory to transfer it into. The use case for this is 729 * ATAPI devices in DMA mode. If the packet command causes a transfer 730 * bigger than the transfer size some HBAs will lock up if there 731 * aren't DMA elements to contain the excess transfer. What this API 732 * does is adjust the queue so that the buf is always appended 733 * silently to the scatterlist. 734 * 735 * Note: This routine adjusts max_hw_segments to make room for appending 736 * the drain buffer. If you call blk_queue_max_segments() after calling 737 * this routine, you must set the limit to one fewer than your device 738 * can support otherwise there won't be room for the drain buffer. 739 */ 740 int blk_queue_dma_drain(struct request_queue *q, 741 dma_drain_needed_fn *dma_drain_needed, 742 void *buf, unsigned int size) 743 { 744 if (queue_max_segments(q) < 2) 745 return -EINVAL; 746 /* make room for appending the drain */ 747 blk_queue_max_segments(q, queue_max_segments(q) - 1); 748 q->dma_drain_needed = dma_drain_needed; 749 q->dma_drain_buffer = buf; 750 q->dma_drain_size = size; 751 752 return 0; 753 } 754 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 755 756 /** 757 * blk_queue_segment_boundary - set boundary rules for segment merging 758 * @q: the request queue for the device 759 * @mask: the memory boundary mask 760 **/ 761 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 762 { 763 if (mask < PAGE_CACHE_SIZE - 1) { 764 mask = PAGE_CACHE_SIZE - 1; 765 printk(KERN_INFO "%s: set to minimum %lx\n", 766 __func__, mask); 767 } 768 769 q->limits.seg_boundary_mask = mask; 770 } 771 EXPORT_SYMBOL(blk_queue_segment_boundary); 772 773 /** 774 * blk_queue_virt_boundary - set boundary rules for bio merging 775 * @q: the request queue for the device 776 * @mask: the memory boundary mask 777 **/ 778 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 779 { 780 q->limits.virt_boundary_mask = mask; 781 } 782 EXPORT_SYMBOL(blk_queue_virt_boundary); 783 784 /** 785 * blk_queue_dma_alignment - set dma length and memory alignment 786 * @q: the request queue for the device 787 * @mask: alignment mask 788 * 789 * description: 790 * set required memory and length alignment for direct dma transactions. 791 * this is used when building direct io requests for the queue. 792 * 793 **/ 794 void blk_queue_dma_alignment(struct request_queue *q, int mask) 795 { 796 q->dma_alignment = mask; 797 } 798 EXPORT_SYMBOL(blk_queue_dma_alignment); 799 800 /** 801 * blk_queue_update_dma_alignment - update dma length and memory alignment 802 * @q: the request queue for the device 803 * @mask: alignment mask 804 * 805 * description: 806 * update required memory and length alignment for direct dma transactions. 807 * If the requested alignment is larger than the current alignment, then 808 * the current queue alignment is updated to the new value, otherwise it 809 * is left alone. The design of this is to allow multiple objects 810 * (driver, device, transport etc) to set their respective 811 * alignments without having them interfere. 812 * 813 **/ 814 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 815 { 816 BUG_ON(mask > PAGE_SIZE); 817 818 if (mask > q->dma_alignment) 819 q->dma_alignment = mask; 820 } 821 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 822 823 /** 824 * blk_queue_flush - configure queue's cache flush capability 825 * @q: the request queue for the device 826 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA 827 * 828 * Tell block layer cache flush capability of @q. If it supports 829 * flushing, REQ_FLUSH should be set. If it supports bypassing 830 * write cache for individual writes, REQ_FUA should be set. 831 */ 832 void blk_queue_flush(struct request_queue *q, unsigned int flush) 833 { 834 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA)); 835 836 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA))) 837 flush &= ~REQ_FUA; 838 839 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA); 840 } 841 EXPORT_SYMBOL_GPL(blk_queue_flush); 842 843 void blk_queue_flush_queueable(struct request_queue *q, bool queueable) 844 { 845 q->flush_not_queueable = !queueable; 846 } 847 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable); 848 849 static int __init blk_settings_init(void) 850 { 851 blk_max_low_pfn = max_low_pfn - 1; 852 blk_max_pfn = max_pfn - 1; 853 return 0; 854 } 855 subsys_initcall(blk_settings_init); 856