1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/lcm.h> 12 #include <linux/jiffies.h> 13 #include <linux/gfp.h> 14 15 #include "blk.h" 16 #include "blk-wbt.h" 17 18 unsigned long blk_max_low_pfn; 19 EXPORT_SYMBOL(blk_max_low_pfn); 20 21 unsigned long blk_max_pfn; 22 23 /** 24 * blk_queue_prep_rq - set a prepare_request function for queue 25 * @q: queue 26 * @pfn: prepare_request function 27 * 28 * It's possible for a queue to register a prepare_request callback which 29 * is invoked before the request is handed to the request_fn. The goal of 30 * the function is to prepare a request for I/O, it can be used to build a 31 * cdb from the request data for instance. 32 * 33 */ 34 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 35 { 36 q->prep_rq_fn = pfn; 37 } 38 EXPORT_SYMBOL(blk_queue_prep_rq); 39 40 /** 41 * blk_queue_unprep_rq - set an unprepare_request function for queue 42 * @q: queue 43 * @ufn: unprepare_request function 44 * 45 * It's possible for a queue to register an unprepare_request callback 46 * which is invoked before the request is finally completed. The goal 47 * of the function is to deallocate any data that was allocated in the 48 * prepare_request callback. 49 * 50 */ 51 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn) 52 { 53 q->unprep_rq_fn = ufn; 54 } 55 EXPORT_SYMBOL(blk_queue_unprep_rq); 56 57 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 58 { 59 q->softirq_done_fn = fn; 60 } 61 EXPORT_SYMBOL(blk_queue_softirq_done); 62 63 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 64 { 65 q->rq_timeout = timeout; 66 } 67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 68 69 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 70 { 71 q->rq_timed_out_fn = fn; 72 } 73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 74 75 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 76 { 77 q->lld_busy_fn = fn; 78 } 79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 80 81 /** 82 * blk_set_default_limits - reset limits to default values 83 * @lim: the queue_limits structure to reset 84 * 85 * Description: 86 * Returns a queue_limit struct to its default state. 87 */ 88 void blk_set_default_limits(struct queue_limits *lim) 89 { 90 lim->max_segments = BLK_MAX_SEGMENTS; 91 lim->max_discard_segments = 1; 92 lim->max_integrity_segments = 0; 93 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 94 lim->virt_boundary_mask = 0; 95 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 96 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 97 lim->max_dev_sectors = 0; 98 lim->chunk_sectors = 0; 99 lim->max_write_same_sectors = 0; 100 lim->max_write_zeroes_sectors = 0; 101 lim->max_discard_sectors = 0; 102 lim->max_hw_discard_sectors = 0; 103 lim->discard_granularity = 0; 104 lim->discard_alignment = 0; 105 lim->discard_misaligned = 0; 106 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 107 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 108 lim->alignment_offset = 0; 109 lim->io_opt = 0; 110 lim->misaligned = 0; 111 lim->cluster = 1; 112 lim->zoned = BLK_ZONED_NONE; 113 } 114 EXPORT_SYMBOL(blk_set_default_limits); 115 116 /** 117 * blk_set_stacking_limits - set default limits for stacking devices 118 * @lim: the queue_limits structure to reset 119 * 120 * Description: 121 * Returns a queue_limit struct to its default state. Should be used 122 * by stacking drivers like DM that have no internal limits. 123 */ 124 void blk_set_stacking_limits(struct queue_limits *lim) 125 { 126 blk_set_default_limits(lim); 127 128 /* Inherit limits from component devices */ 129 lim->max_segments = USHRT_MAX; 130 lim->max_discard_segments = 1; 131 lim->max_hw_sectors = UINT_MAX; 132 lim->max_segment_size = UINT_MAX; 133 lim->max_sectors = UINT_MAX; 134 lim->max_dev_sectors = UINT_MAX; 135 lim->max_write_same_sectors = UINT_MAX; 136 lim->max_write_zeroes_sectors = UINT_MAX; 137 } 138 EXPORT_SYMBOL(blk_set_stacking_limits); 139 140 /** 141 * blk_queue_make_request - define an alternate make_request function for a device 142 * @q: the request queue for the device to be affected 143 * @mfn: the alternate make_request function 144 * 145 * Description: 146 * The normal way for &struct bios to be passed to a device 147 * driver is for them to be collected into requests on a request 148 * queue, and then to allow the device driver to select requests 149 * off that queue when it is ready. This works well for many block 150 * devices. However some block devices (typically virtual devices 151 * such as md or lvm) do not benefit from the processing on the 152 * request queue, and are served best by having the requests passed 153 * directly to them. This can be achieved by providing a function 154 * to blk_queue_make_request(). 155 * 156 * Caveat: 157 * The driver that does this *must* be able to deal appropriately 158 * with buffers in "highmemory". This can be accomplished by either calling 159 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 160 * blk_queue_bounce() to create a buffer in normal memory. 161 **/ 162 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 163 { 164 /* 165 * set defaults 166 */ 167 q->nr_requests = BLKDEV_MAX_RQ; 168 169 q->make_request_fn = mfn; 170 blk_queue_dma_alignment(q, 511); 171 blk_queue_congestion_threshold(q); 172 q->nr_batching = BLK_BATCH_REQ; 173 174 blk_set_default_limits(&q->limits); 175 176 /* 177 * by default assume old behaviour and bounce for any highmem page 178 */ 179 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 180 } 181 EXPORT_SYMBOL(blk_queue_make_request); 182 183 /** 184 * blk_queue_bounce_limit - set bounce buffer limit for queue 185 * @q: the request queue for the device 186 * @max_addr: the maximum address the device can handle 187 * 188 * Description: 189 * Different hardware can have different requirements as to what pages 190 * it can do I/O directly to. A low level driver can call 191 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 192 * buffers for doing I/O to pages residing above @max_addr. 193 **/ 194 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr) 195 { 196 unsigned long b_pfn = max_addr >> PAGE_SHIFT; 197 int dma = 0; 198 199 q->bounce_gfp = GFP_NOIO; 200 #if BITS_PER_LONG == 64 201 /* 202 * Assume anything <= 4GB can be handled by IOMMU. Actually 203 * some IOMMUs can handle everything, but I don't know of a 204 * way to test this here. 205 */ 206 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 207 dma = 1; 208 q->limits.bounce_pfn = max(max_low_pfn, b_pfn); 209 #else 210 if (b_pfn < blk_max_low_pfn) 211 dma = 1; 212 q->limits.bounce_pfn = b_pfn; 213 #endif 214 if (dma) { 215 init_emergency_isa_pool(); 216 q->bounce_gfp = GFP_NOIO | GFP_DMA; 217 q->limits.bounce_pfn = b_pfn; 218 } 219 } 220 EXPORT_SYMBOL(blk_queue_bounce_limit); 221 222 /** 223 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 224 * @q: the request queue for the device 225 * @max_hw_sectors: max hardware sectors in the usual 512b unit 226 * 227 * Description: 228 * Enables a low level driver to set a hard upper limit, 229 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 230 * the device driver based upon the capabilities of the I/O 231 * controller. 232 * 233 * max_dev_sectors is a hard limit imposed by the storage device for 234 * READ/WRITE requests. It is set by the disk driver. 235 * 236 * max_sectors is a soft limit imposed by the block layer for 237 * filesystem type requests. This value can be overridden on a 238 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 239 * The soft limit can not exceed max_hw_sectors. 240 **/ 241 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 242 { 243 struct queue_limits *limits = &q->limits; 244 unsigned int max_sectors; 245 246 if ((max_hw_sectors << 9) < PAGE_SIZE) { 247 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 248 printk(KERN_INFO "%s: set to minimum %d\n", 249 __func__, max_hw_sectors); 250 } 251 252 limits->max_hw_sectors = max_hw_sectors; 253 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 254 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS); 255 limits->max_sectors = max_sectors; 256 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9); 257 } 258 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 259 260 /** 261 * blk_queue_chunk_sectors - set size of the chunk for this queue 262 * @q: the request queue for the device 263 * @chunk_sectors: chunk sectors in the usual 512b unit 264 * 265 * Description: 266 * If a driver doesn't want IOs to cross a given chunk size, it can set 267 * this limit and prevent merging across chunks. Note that the chunk size 268 * must currently be a power-of-2 in sectors. Also note that the block 269 * layer must accept a page worth of data at any offset. So if the 270 * crossing of chunks is a hard limitation in the driver, it must still be 271 * prepared to split single page bios. 272 **/ 273 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 274 { 275 BUG_ON(!is_power_of_2(chunk_sectors)); 276 q->limits.chunk_sectors = chunk_sectors; 277 } 278 EXPORT_SYMBOL(blk_queue_chunk_sectors); 279 280 /** 281 * blk_queue_max_discard_sectors - set max sectors for a single discard 282 * @q: the request queue for the device 283 * @max_discard_sectors: maximum number of sectors to discard 284 **/ 285 void blk_queue_max_discard_sectors(struct request_queue *q, 286 unsigned int max_discard_sectors) 287 { 288 q->limits.max_hw_discard_sectors = max_discard_sectors; 289 q->limits.max_discard_sectors = max_discard_sectors; 290 } 291 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 292 293 /** 294 * blk_queue_max_write_same_sectors - set max sectors for a single write same 295 * @q: the request queue for the device 296 * @max_write_same_sectors: maximum number of sectors to write per command 297 **/ 298 void blk_queue_max_write_same_sectors(struct request_queue *q, 299 unsigned int max_write_same_sectors) 300 { 301 q->limits.max_write_same_sectors = max_write_same_sectors; 302 } 303 EXPORT_SYMBOL(blk_queue_max_write_same_sectors); 304 305 /** 306 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 307 * write zeroes 308 * @q: the request queue for the device 309 * @max_write_zeroes_sectors: maximum number of sectors to write per command 310 **/ 311 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 312 unsigned int max_write_zeroes_sectors) 313 { 314 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 315 } 316 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 317 318 /** 319 * blk_queue_max_segments - set max hw segments for a request for this queue 320 * @q: the request queue for the device 321 * @max_segments: max number of segments 322 * 323 * Description: 324 * Enables a low level driver to set an upper limit on the number of 325 * hw data segments in a request. 326 **/ 327 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 328 { 329 if (!max_segments) { 330 max_segments = 1; 331 printk(KERN_INFO "%s: set to minimum %d\n", 332 __func__, max_segments); 333 } 334 335 q->limits.max_segments = max_segments; 336 } 337 EXPORT_SYMBOL(blk_queue_max_segments); 338 339 /** 340 * blk_queue_max_discard_segments - set max segments for discard requests 341 * @q: the request queue for the device 342 * @max_segments: max number of segments 343 * 344 * Description: 345 * Enables a low level driver to set an upper limit on the number of 346 * segments in a discard request. 347 **/ 348 void blk_queue_max_discard_segments(struct request_queue *q, 349 unsigned short max_segments) 350 { 351 q->limits.max_discard_segments = max_segments; 352 } 353 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 354 355 /** 356 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 357 * @q: the request queue for the device 358 * @max_size: max size of segment in bytes 359 * 360 * Description: 361 * Enables a low level driver to set an upper limit on the size of a 362 * coalesced segment 363 **/ 364 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 365 { 366 if (max_size < PAGE_SIZE) { 367 max_size = PAGE_SIZE; 368 printk(KERN_INFO "%s: set to minimum %d\n", 369 __func__, max_size); 370 } 371 372 q->limits.max_segment_size = max_size; 373 } 374 EXPORT_SYMBOL(blk_queue_max_segment_size); 375 376 /** 377 * blk_queue_logical_block_size - set logical block size for the queue 378 * @q: the request queue for the device 379 * @size: the logical block size, in bytes 380 * 381 * Description: 382 * This should be set to the lowest possible block size that the 383 * storage device can address. The default of 512 covers most 384 * hardware. 385 **/ 386 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 387 { 388 q->limits.logical_block_size = size; 389 390 if (q->limits.physical_block_size < size) 391 q->limits.physical_block_size = size; 392 393 if (q->limits.io_min < q->limits.physical_block_size) 394 q->limits.io_min = q->limits.physical_block_size; 395 } 396 EXPORT_SYMBOL(blk_queue_logical_block_size); 397 398 /** 399 * blk_queue_physical_block_size - set physical block size for the queue 400 * @q: the request queue for the device 401 * @size: the physical block size, in bytes 402 * 403 * Description: 404 * This should be set to the lowest possible sector size that the 405 * hardware can operate on without reverting to read-modify-write 406 * operations. 407 */ 408 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 409 { 410 q->limits.physical_block_size = size; 411 412 if (q->limits.physical_block_size < q->limits.logical_block_size) 413 q->limits.physical_block_size = q->limits.logical_block_size; 414 415 if (q->limits.io_min < q->limits.physical_block_size) 416 q->limits.io_min = q->limits.physical_block_size; 417 } 418 EXPORT_SYMBOL(blk_queue_physical_block_size); 419 420 /** 421 * blk_queue_alignment_offset - set physical block alignment offset 422 * @q: the request queue for the device 423 * @offset: alignment offset in bytes 424 * 425 * Description: 426 * Some devices are naturally misaligned to compensate for things like 427 * the legacy DOS partition table 63-sector offset. Low-level drivers 428 * should call this function for devices whose first sector is not 429 * naturally aligned. 430 */ 431 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 432 { 433 q->limits.alignment_offset = 434 offset & (q->limits.physical_block_size - 1); 435 q->limits.misaligned = 0; 436 } 437 EXPORT_SYMBOL(blk_queue_alignment_offset); 438 439 /** 440 * blk_limits_io_min - set minimum request size for a device 441 * @limits: the queue limits 442 * @min: smallest I/O size in bytes 443 * 444 * Description: 445 * Some devices have an internal block size bigger than the reported 446 * hardware sector size. This function can be used to signal the 447 * smallest I/O the device can perform without incurring a performance 448 * penalty. 449 */ 450 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 451 { 452 limits->io_min = min; 453 454 if (limits->io_min < limits->logical_block_size) 455 limits->io_min = limits->logical_block_size; 456 457 if (limits->io_min < limits->physical_block_size) 458 limits->io_min = limits->physical_block_size; 459 } 460 EXPORT_SYMBOL(blk_limits_io_min); 461 462 /** 463 * blk_queue_io_min - set minimum request size for the queue 464 * @q: the request queue for the device 465 * @min: smallest I/O size in bytes 466 * 467 * Description: 468 * Storage devices may report a granularity or preferred minimum I/O 469 * size which is the smallest request the device can perform without 470 * incurring a performance penalty. For disk drives this is often the 471 * physical block size. For RAID arrays it is often the stripe chunk 472 * size. A properly aligned multiple of minimum_io_size is the 473 * preferred request size for workloads where a high number of I/O 474 * operations is desired. 475 */ 476 void blk_queue_io_min(struct request_queue *q, unsigned int min) 477 { 478 blk_limits_io_min(&q->limits, min); 479 } 480 EXPORT_SYMBOL(blk_queue_io_min); 481 482 /** 483 * blk_limits_io_opt - set optimal request size for a device 484 * @limits: the queue limits 485 * @opt: smallest I/O size in bytes 486 * 487 * Description: 488 * Storage devices may report an optimal I/O size, which is the 489 * device's preferred unit for sustained I/O. This is rarely reported 490 * for disk drives. For RAID arrays it is usually the stripe width or 491 * the internal track size. A properly aligned multiple of 492 * optimal_io_size is the preferred request size for workloads where 493 * sustained throughput is desired. 494 */ 495 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 496 { 497 limits->io_opt = opt; 498 } 499 EXPORT_SYMBOL(blk_limits_io_opt); 500 501 /** 502 * blk_queue_io_opt - set optimal request size for the queue 503 * @q: the request queue for the device 504 * @opt: optimal request size in bytes 505 * 506 * Description: 507 * Storage devices may report an optimal I/O size, which is the 508 * device's preferred unit for sustained I/O. This is rarely reported 509 * for disk drives. For RAID arrays it is usually the stripe width or 510 * the internal track size. A properly aligned multiple of 511 * optimal_io_size is the preferred request size for workloads where 512 * sustained throughput is desired. 513 */ 514 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 515 { 516 blk_limits_io_opt(&q->limits, opt); 517 } 518 EXPORT_SYMBOL(blk_queue_io_opt); 519 520 /** 521 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 522 * @t: the stacking driver (top) 523 * @b: the underlying device (bottom) 524 **/ 525 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 526 { 527 blk_stack_limits(&t->limits, &b->limits, 0); 528 } 529 EXPORT_SYMBOL(blk_queue_stack_limits); 530 531 /** 532 * blk_stack_limits - adjust queue_limits for stacked devices 533 * @t: the stacking driver limits (top device) 534 * @b: the underlying queue limits (bottom, component device) 535 * @start: first data sector within component device 536 * 537 * Description: 538 * This function is used by stacking drivers like MD and DM to ensure 539 * that all component devices have compatible block sizes and 540 * alignments. The stacking driver must provide a queue_limits 541 * struct (top) and then iteratively call the stacking function for 542 * all component (bottom) devices. The stacking function will 543 * attempt to combine the values and ensure proper alignment. 544 * 545 * Returns 0 if the top and bottom queue_limits are compatible. The 546 * top device's block sizes and alignment offsets may be adjusted to 547 * ensure alignment with the bottom device. If no compatible sizes 548 * and alignments exist, -1 is returned and the resulting top 549 * queue_limits will have the misaligned flag set to indicate that 550 * the alignment_offset is undefined. 551 */ 552 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 553 sector_t start) 554 { 555 unsigned int top, bottom, alignment, ret = 0; 556 557 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 558 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 559 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 560 t->max_write_same_sectors = min(t->max_write_same_sectors, 561 b->max_write_same_sectors); 562 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 563 b->max_write_zeroes_sectors); 564 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 565 566 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 567 b->seg_boundary_mask); 568 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 569 b->virt_boundary_mask); 570 571 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 572 t->max_discard_segments = min_not_zero(t->max_discard_segments, 573 b->max_discard_segments); 574 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 575 b->max_integrity_segments); 576 577 t->max_segment_size = min_not_zero(t->max_segment_size, 578 b->max_segment_size); 579 580 t->misaligned |= b->misaligned; 581 582 alignment = queue_limit_alignment_offset(b, start); 583 584 /* Bottom device has different alignment. Check that it is 585 * compatible with the current top alignment. 586 */ 587 if (t->alignment_offset != alignment) { 588 589 top = max(t->physical_block_size, t->io_min) 590 + t->alignment_offset; 591 bottom = max(b->physical_block_size, b->io_min) + alignment; 592 593 /* Verify that top and bottom intervals line up */ 594 if (max(top, bottom) % min(top, bottom)) { 595 t->misaligned = 1; 596 ret = -1; 597 } 598 } 599 600 t->logical_block_size = max(t->logical_block_size, 601 b->logical_block_size); 602 603 t->physical_block_size = max(t->physical_block_size, 604 b->physical_block_size); 605 606 t->io_min = max(t->io_min, b->io_min); 607 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 608 609 t->cluster &= b->cluster; 610 611 /* Physical block size a multiple of the logical block size? */ 612 if (t->physical_block_size & (t->logical_block_size - 1)) { 613 t->physical_block_size = t->logical_block_size; 614 t->misaligned = 1; 615 ret = -1; 616 } 617 618 /* Minimum I/O a multiple of the physical block size? */ 619 if (t->io_min & (t->physical_block_size - 1)) { 620 t->io_min = t->physical_block_size; 621 t->misaligned = 1; 622 ret = -1; 623 } 624 625 /* Optimal I/O a multiple of the physical block size? */ 626 if (t->io_opt & (t->physical_block_size - 1)) { 627 t->io_opt = 0; 628 t->misaligned = 1; 629 ret = -1; 630 } 631 632 t->raid_partial_stripes_expensive = 633 max(t->raid_partial_stripes_expensive, 634 b->raid_partial_stripes_expensive); 635 636 /* Find lowest common alignment_offset */ 637 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 638 % max(t->physical_block_size, t->io_min); 639 640 /* Verify that new alignment_offset is on a logical block boundary */ 641 if (t->alignment_offset & (t->logical_block_size - 1)) { 642 t->misaligned = 1; 643 ret = -1; 644 } 645 646 /* Discard alignment and granularity */ 647 if (b->discard_granularity) { 648 alignment = queue_limit_discard_alignment(b, start); 649 650 if (t->discard_granularity != 0 && 651 t->discard_alignment != alignment) { 652 top = t->discard_granularity + t->discard_alignment; 653 bottom = b->discard_granularity + alignment; 654 655 /* Verify that top and bottom intervals line up */ 656 if ((max(top, bottom) % min(top, bottom)) != 0) 657 t->discard_misaligned = 1; 658 } 659 660 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 661 b->max_discard_sectors); 662 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 663 b->max_hw_discard_sectors); 664 t->discard_granularity = max(t->discard_granularity, 665 b->discard_granularity); 666 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 667 t->discard_granularity; 668 } 669 670 if (b->chunk_sectors) 671 t->chunk_sectors = min_not_zero(t->chunk_sectors, 672 b->chunk_sectors); 673 674 return ret; 675 } 676 EXPORT_SYMBOL(blk_stack_limits); 677 678 /** 679 * bdev_stack_limits - adjust queue limits for stacked drivers 680 * @t: the stacking driver limits (top device) 681 * @bdev: the component block_device (bottom) 682 * @start: first data sector within component device 683 * 684 * Description: 685 * Merges queue limits for a top device and a block_device. Returns 686 * 0 if alignment didn't change. Returns -1 if adding the bottom 687 * device caused misalignment. 688 */ 689 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 690 sector_t start) 691 { 692 struct request_queue *bq = bdev_get_queue(bdev); 693 694 start += get_start_sect(bdev); 695 696 return blk_stack_limits(t, &bq->limits, start); 697 } 698 EXPORT_SYMBOL(bdev_stack_limits); 699 700 /** 701 * disk_stack_limits - adjust queue limits for stacked drivers 702 * @disk: MD/DM gendisk (top) 703 * @bdev: the underlying block device (bottom) 704 * @offset: offset to beginning of data within component device 705 * 706 * Description: 707 * Merges the limits for a top level gendisk and a bottom level 708 * block_device. 709 */ 710 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 711 sector_t offset) 712 { 713 struct request_queue *t = disk->queue; 714 715 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 716 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 717 718 disk_name(disk, 0, top); 719 bdevname(bdev, bottom); 720 721 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 722 top, bottom); 723 } 724 } 725 EXPORT_SYMBOL(disk_stack_limits); 726 727 /** 728 * blk_queue_dma_pad - set pad mask 729 * @q: the request queue for the device 730 * @mask: pad mask 731 * 732 * Set dma pad mask. 733 * 734 * Appending pad buffer to a request modifies the last entry of a 735 * scatter list such that it includes the pad buffer. 736 **/ 737 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 738 { 739 q->dma_pad_mask = mask; 740 } 741 EXPORT_SYMBOL(blk_queue_dma_pad); 742 743 /** 744 * blk_queue_update_dma_pad - update pad mask 745 * @q: the request queue for the device 746 * @mask: pad mask 747 * 748 * Update dma pad mask. 749 * 750 * Appending pad buffer to a request modifies the last entry of a 751 * scatter list such that it includes the pad buffer. 752 **/ 753 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 754 { 755 if (mask > q->dma_pad_mask) 756 q->dma_pad_mask = mask; 757 } 758 EXPORT_SYMBOL(blk_queue_update_dma_pad); 759 760 /** 761 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 762 * @q: the request queue for the device 763 * @dma_drain_needed: fn which returns non-zero if drain is necessary 764 * @buf: physically contiguous buffer 765 * @size: size of the buffer in bytes 766 * 767 * Some devices have excess DMA problems and can't simply discard (or 768 * zero fill) the unwanted piece of the transfer. They have to have a 769 * real area of memory to transfer it into. The use case for this is 770 * ATAPI devices in DMA mode. If the packet command causes a transfer 771 * bigger than the transfer size some HBAs will lock up if there 772 * aren't DMA elements to contain the excess transfer. What this API 773 * does is adjust the queue so that the buf is always appended 774 * silently to the scatterlist. 775 * 776 * Note: This routine adjusts max_hw_segments to make room for appending 777 * the drain buffer. If you call blk_queue_max_segments() after calling 778 * this routine, you must set the limit to one fewer than your device 779 * can support otherwise there won't be room for the drain buffer. 780 */ 781 int blk_queue_dma_drain(struct request_queue *q, 782 dma_drain_needed_fn *dma_drain_needed, 783 void *buf, unsigned int size) 784 { 785 if (queue_max_segments(q) < 2) 786 return -EINVAL; 787 /* make room for appending the drain */ 788 blk_queue_max_segments(q, queue_max_segments(q) - 1); 789 q->dma_drain_needed = dma_drain_needed; 790 q->dma_drain_buffer = buf; 791 q->dma_drain_size = size; 792 793 return 0; 794 } 795 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 796 797 /** 798 * blk_queue_segment_boundary - set boundary rules for segment merging 799 * @q: the request queue for the device 800 * @mask: the memory boundary mask 801 **/ 802 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 803 { 804 if (mask < PAGE_SIZE - 1) { 805 mask = PAGE_SIZE - 1; 806 printk(KERN_INFO "%s: set to minimum %lx\n", 807 __func__, mask); 808 } 809 810 q->limits.seg_boundary_mask = mask; 811 } 812 EXPORT_SYMBOL(blk_queue_segment_boundary); 813 814 /** 815 * blk_queue_virt_boundary - set boundary rules for bio merging 816 * @q: the request queue for the device 817 * @mask: the memory boundary mask 818 **/ 819 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 820 { 821 q->limits.virt_boundary_mask = mask; 822 } 823 EXPORT_SYMBOL(blk_queue_virt_boundary); 824 825 /** 826 * blk_queue_dma_alignment - set dma length and memory alignment 827 * @q: the request queue for the device 828 * @mask: alignment mask 829 * 830 * description: 831 * set required memory and length alignment for direct dma transactions. 832 * this is used when building direct io requests for the queue. 833 * 834 **/ 835 void blk_queue_dma_alignment(struct request_queue *q, int mask) 836 { 837 q->dma_alignment = mask; 838 } 839 EXPORT_SYMBOL(blk_queue_dma_alignment); 840 841 /** 842 * blk_queue_update_dma_alignment - update dma length and memory alignment 843 * @q: the request queue for the device 844 * @mask: alignment mask 845 * 846 * description: 847 * update required memory and length alignment for direct dma transactions. 848 * If the requested alignment is larger than the current alignment, then 849 * the current queue alignment is updated to the new value, otherwise it 850 * is left alone. The design of this is to allow multiple objects 851 * (driver, device, transport etc) to set their respective 852 * alignments without having them interfere. 853 * 854 **/ 855 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 856 { 857 BUG_ON(mask > PAGE_SIZE); 858 859 if (mask > q->dma_alignment) 860 q->dma_alignment = mask; 861 } 862 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 863 864 void blk_queue_flush_queueable(struct request_queue *q, bool queueable) 865 { 866 spin_lock_irq(q->queue_lock); 867 if (queueable) 868 clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 869 else 870 set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 871 spin_unlock_irq(q->queue_lock); 872 } 873 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable); 874 875 /** 876 * blk_set_queue_depth - tell the block layer about the device queue depth 877 * @q: the request queue for the device 878 * @depth: queue depth 879 * 880 */ 881 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 882 { 883 q->queue_depth = depth; 884 wbt_set_queue_depth(q->rq_wb, depth); 885 } 886 EXPORT_SYMBOL(blk_set_queue_depth); 887 888 /** 889 * blk_queue_write_cache - configure queue's write cache 890 * @q: the request queue for the device 891 * @wc: write back cache on or off 892 * @fua: device supports FUA writes, if true 893 * 894 * Tell the block layer about the write cache of @q. 895 */ 896 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 897 { 898 spin_lock_irq(q->queue_lock); 899 if (wc) 900 queue_flag_set(QUEUE_FLAG_WC, q); 901 else 902 queue_flag_clear(QUEUE_FLAG_WC, q); 903 if (fua) 904 queue_flag_set(QUEUE_FLAG_FUA, q); 905 else 906 queue_flag_clear(QUEUE_FLAG_FUA, q); 907 spin_unlock_irq(q->queue_lock); 908 909 wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 910 } 911 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 912 913 static int __init blk_settings_init(void) 914 { 915 blk_max_low_pfn = max_low_pfn - 1; 916 blk_max_pfn = max_pfn - 1; 917 return 0; 918 } 919 subsys_initcall(blk_settings_init); 920