1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 11 #include <linux/gcd.h> 12 #include <linux/lcm.h> 13 #include <linux/jiffies.h> 14 #include <linux/gfp.h> 15 16 #include "blk.h" 17 #include "blk-wbt.h" 18 19 unsigned long blk_max_low_pfn; 20 EXPORT_SYMBOL(blk_max_low_pfn); 21 22 unsigned long blk_max_pfn; 23 24 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 25 { 26 q->rq_timeout = timeout; 27 } 28 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 29 30 /** 31 * blk_set_default_limits - reset limits to default values 32 * @lim: the queue_limits structure to reset 33 * 34 * Description: 35 * Returns a queue_limit struct to its default state. 36 */ 37 void blk_set_default_limits(struct queue_limits *lim) 38 { 39 lim->max_segments = BLK_MAX_SEGMENTS; 40 lim->max_discard_segments = 1; 41 lim->max_integrity_segments = 0; 42 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 43 lim->virt_boundary_mask = 0; 44 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 45 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 46 lim->max_dev_sectors = 0; 47 lim->chunk_sectors = 0; 48 lim->max_write_same_sectors = 0; 49 lim->max_write_zeroes_sectors = 0; 50 lim->max_discard_sectors = 0; 51 lim->max_hw_discard_sectors = 0; 52 lim->discard_granularity = 0; 53 lim->discard_alignment = 0; 54 lim->discard_misaligned = 0; 55 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 56 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 57 lim->alignment_offset = 0; 58 lim->io_opt = 0; 59 lim->misaligned = 0; 60 lim->zoned = BLK_ZONED_NONE; 61 } 62 EXPORT_SYMBOL(blk_set_default_limits); 63 64 /** 65 * blk_set_stacking_limits - set default limits for stacking devices 66 * @lim: the queue_limits structure to reset 67 * 68 * Description: 69 * Returns a queue_limit struct to its default state. Should be used 70 * by stacking drivers like DM that have no internal limits. 71 */ 72 void blk_set_stacking_limits(struct queue_limits *lim) 73 { 74 blk_set_default_limits(lim); 75 76 /* Inherit limits from component devices */ 77 lim->max_segments = USHRT_MAX; 78 lim->max_discard_segments = USHRT_MAX; 79 lim->max_hw_sectors = UINT_MAX; 80 lim->max_segment_size = UINT_MAX; 81 lim->max_sectors = UINT_MAX; 82 lim->max_dev_sectors = UINT_MAX; 83 lim->max_write_same_sectors = UINT_MAX; 84 lim->max_write_zeroes_sectors = UINT_MAX; 85 } 86 EXPORT_SYMBOL(blk_set_stacking_limits); 87 88 /** 89 * blk_queue_make_request - define an alternate make_request function for a device 90 * @q: the request queue for the device to be affected 91 * @mfn: the alternate make_request function 92 * 93 * Description: 94 * The normal way for &struct bios to be passed to a device 95 * driver is for them to be collected into requests on a request 96 * queue, and then to allow the device driver to select requests 97 * off that queue when it is ready. This works well for many block 98 * devices. However some block devices (typically virtual devices 99 * such as md or lvm) do not benefit from the processing on the 100 * request queue, and are served best by having the requests passed 101 * directly to them. This can be achieved by providing a function 102 * to blk_queue_make_request(). 103 * 104 * Caveat: 105 * The driver that does this *must* be able to deal appropriately 106 * with buffers in "highmemory". This can be accomplished by either calling 107 * kmap_atomic() to get a temporary kernel mapping, or by calling 108 * blk_queue_bounce() to create a buffer in normal memory. 109 **/ 110 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 111 { 112 /* 113 * set defaults 114 */ 115 q->nr_requests = BLKDEV_MAX_RQ; 116 117 q->make_request_fn = mfn; 118 blk_queue_dma_alignment(q, 511); 119 120 blk_set_default_limits(&q->limits); 121 } 122 EXPORT_SYMBOL(blk_queue_make_request); 123 124 /** 125 * blk_queue_bounce_limit - set bounce buffer limit for queue 126 * @q: the request queue for the device 127 * @max_addr: the maximum address the device can handle 128 * 129 * Description: 130 * Different hardware can have different requirements as to what pages 131 * it can do I/O directly to. A low level driver can call 132 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 133 * buffers for doing I/O to pages residing above @max_addr. 134 **/ 135 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr) 136 { 137 unsigned long b_pfn = max_addr >> PAGE_SHIFT; 138 int dma = 0; 139 140 q->bounce_gfp = GFP_NOIO; 141 #if BITS_PER_LONG == 64 142 /* 143 * Assume anything <= 4GB can be handled by IOMMU. Actually 144 * some IOMMUs can handle everything, but I don't know of a 145 * way to test this here. 146 */ 147 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 148 dma = 1; 149 q->limits.bounce_pfn = max(max_low_pfn, b_pfn); 150 #else 151 if (b_pfn < blk_max_low_pfn) 152 dma = 1; 153 q->limits.bounce_pfn = b_pfn; 154 #endif 155 if (dma) { 156 init_emergency_isa_pool(); 157 q->bounce_gfp = GFP_NOIO | GFP_DMA; 158 q->limits.bounce_pfn = b_pfn; 159 } 160 } 161 EXPORT_SYMBOL(blk_queue_bounce_limit); 162 163 /** 164 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 165 * @q: the request queue for the device 166 * @max_hw_sectors: max hardware sectors in the usual 512b unit 167 * 168 * Description: 169 * Enables a low level driver to set a hard upper limit, 170 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 171 * the device driver based upon the capabilities of the I/O 172 * controller. 173 * 174 * max_dev_sectors is a hard limit imposed by the storage device for 175 * READ/WRITE requests. It is set by the disk driver. 176 * 177 * max_sectors is a soft limit imposed by the block layer for 178 * filesystem type requests. This value can be overridden on a 179 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 180 * The soft limit can not exceed max_hw_sectors. 181 **/ 182 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 183 { 184 struct queue_limits *limits = &q->limits; 185 unsigned int max_sectors; 186 187 if ((max_hw_sectors << 9) < PAGE_SIZE) { 188 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 189 printk(KERN_INFO "%s: set to minimum %d\n", 190 __func__, max_hw_sectors); 191 } 192 193 limits->max_hw_sectors = max_hw_sectors; 194 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 195 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS); 196 limits->max_sectors = max_sectors; 197 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9); 198 } 199 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 200 201 /** 202 * blk_queue_chunk_sectors - set size of the chunk for this queue 203 * @q: the request queue for the device 204 * @chunk_sectors: chunk sectors in the usual 512b unit 205 * 206 * Description: 207 * If a driver doesn't want IOs to cross a given chunk size, it can set 208 * this limit and prevent merging across chunks. Note that the chunk size 209 * must currently be a power-of-2 in sectors. Also note that the block 210 * layer must accept a page worth of data at any offset. So if the 211 * crossing of chunks is a hard limitation in the driver, it must still be 212 * prepared to split single page bios. 213 **/ 214 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 215 { 216 BUG_ON(!is_power_of_2(chunk_sectors)); 217 q->limits.chunk_sectors = chunk_sectors; 218 } 219 EXPORT_SYMBOL(blk_queue_chunk_sectors); 220 221 /** 222 * blk_queue_max_discard_sectors - set max sectors for a single discard 223 * @q: the request queue for the device 224 * @max_discard_sectors: maximum number of sectors to discard 225 **/ 226 void blk_queue_max_discard_sectors(struct request_queue *q, 227 unsigned int max_discard_sectors) 228 { 229 q->limits.max_hw_discard_sectors = max_discard_sectors; 230 q->limits.max_discard_sectors = max_discard_sectors; 231 } 232 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 233 234 /** 235 * blk_queue_max_write_same_sectors - set max sectors for a single write same 236 * @q: the request queue for the device 237 * @max_write_same_sectors: maximum number of sectors to write per command 238 **/ 239 void blk_queue_max_write_same_sectors(struct request_queue *q, 240 unsigned int max_write_same_sectors) 241 { 242 q->limits.max_write_same_sectors = max_write_same_sectors; 243 } 244 EXPORT_SYMBOL(blk_queue_max_write_same_sectors); 245 246 /** 247 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 248 * write zeroes 249 * @q: the request queue for the device 250 * @max_write_zeroes_sectors: maximum number of sectors to write per command 251 **/ 252 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 253 unsigned int max_write_zeroes_sectors) 254 { 255 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 256 } 257 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 258 259 /** 260 * blk_queue_max_segments - set max hw segments for a request for this queue 261 * @q: the request queue for the device 262 * @max_segments: max number of segments 263 * 264 * Description: 265 * Enables a low level driver to set an upper limit on the number of 266 * hw data segments in a request. 267 **/ 268 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 269 { 270 if (!max_segments) { 271 max_segments = 1; 272 printk(KERN_INFO "%s: set to minimum %d\n", 273 __func__, max_segments); 274 } 275 276 q->limits.max_segments = max_segments; 277 } 278 EXPORT_SYMBOL(blk_queue_max_segments); 279 280 /** 281 * blk_queue_max_discard_segments - set max segments for discard requests 282 * @q: the request queue for the device 283 * @max_segments: max number of segments 284 * 285 * Description: 286 * Enables a low level driver to set an upper limit on the number of 287 * segments in a discard request. 288 **/ 289 void blk_queue_max_discard_segments(struct request_queue *q, 290 unsigned short max_segments) 291 { 292 q->limits.max_discard_segments = max_segments; 293 } 294 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 295 296 /** 297 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 298 * @q: the request queue for the device 299 * @max_size: max size of segment in bytes 300 * 301 * Description: 302 * Enables a low level driver to set an upper limit on the size of a 303 * coalesced segment 304 **/ 305 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 306 { 307 if (max_size < PAGE_SIZE) { 308 max_size = PAGE_SIZE; 309 printk(KERN_INFO "%s: set to minimum %d\n", 310 __func__, max_size); 311 } 312 313 q->limits.max_segment_size = max_size; 314 } 315 EXPORT_SYMBOL(blk_queue_max_segment_size); 316 317 /** 318 * blk_queue_logical_block_size - set logical block size for the queue 319 * @q: the request queue for the device 320 * @size: the logical block size, in bytes 321 * 322 * Description: 323 * This should be set to the lowest possible block size that the 324 * storage device can address. The default of 512 covers most 325 * hardware. 326 **/ 327 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 328 { 329 q->limits.logical_block_size = size; 330 331 if (q->limits.physical_block_size < size) 332 q->limits.physical_block_size = size; 333 334 if (q->limits.io_min < q->limits.physical_block_size) 335 q->limits.io_min = q->limits.physical_block_size; 336 } 337 EXPORT_SYMBOL(blk_queue_logical_block_size); 338 339 /** 340 * blk_queue_physical_block_size - set physical block size for the queue 341 * @q: the request queue for the device 342 * @size: the physical block size, in bytes 343 * 344 * Description: 345 * This should be set to the lowest possible sector size that the 346 * hardware can operate on without reverting to read-modify-write 347 * operations. 348 */ 349 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 350 { 351 q->limits.physical_block_size = size; 352 353 if (q->limits.physical_block_size < q->limits.logical_block_size) 354 q->limits.physical_block_size = q->limits.logical_block_size; 355 356 if (q->limits.io_min < q->limits.physical_block_size) 357 q->limits.io_min = q->limits.physical_block_size; 358 } 359 EXPORT_SYMBOL(blk_queue_physical_block_size); 360 361 /** 362 * blk_queue_alignment_offset - set physical block alignment offset 363 * @q: the request queue for the device 364 * @offset: alignment offset in bytes 365 * 366 * Description: 367 * Some devices are naturally misaligned to compensate for things like 368 * the legacy DOS partition table 63-sector offset. Low-level drivers 369 * should call this function for devices whose first sector is not 370 * naturally aligned. 371 */ 372 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 373 { 374 q->limits.alignment_offset = 375 offset & (q->limits.physical_block_size - 1); 376 q->limits.misaligned = 0; 377 } 378 EXPORT_SYMBOL(blk_queue_alignment_offset); 379 380 /** 381 * blk_limits_io_min - set minimum request size for a device 382 * @limits: the queue limits 383 * @min: smallest I/O size in bytes 384 * 385 * Description: 386 * Some devices have an internal block size bigger than the reported 387 * hardware sector size. This function can be used to signal the 388 * smallest I/O the device can perform without incurring a performance 389 * penalty. 390 */ 391 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 392 { 393 limits->io_min = min; 394 395 if (limits->io_min < limits->logical_block_size) 396 limits->io_min = limits->logical_block_size; 397 398 if (limits->io_min < limits->physical_block_size) 399 limits->io_min = limits->physical_block_size; 400 } 401 EXPORT_SYMBOL(blk_limits_io_min); 402 403 /** 404 * blk_queue_io_min - set minimum request size for the queue 405 * @q: the request queue for the device 406 * @min: smallest I/O size in bytes 407 * 408 * Description: 409 * Storage devices may report a granularity or preferred minimum I/O 410 * size which is the smallest request the device can perform without 411 * incurring a performance penalty. For disk drives this is often the 412 * physical block size. For RAID arrays it is often the stripe chunk 413 * size. A properly aligned multiple of minimum_io_size is the 414 * preferred request size for workloads where a high number of I/O 415 * operations is desired. 416 */ 417 void blk_queue_io_min(struct request_queue *q, unsigned int min) 418 { 419 blk_limits_io_min(&q->limits, min); 420 } 421 EXPORT_SYMBOL(blk_queue_io_min); 422 423 /** 424 * blk_limits_io_opt - set optimal request size for a device 425 * @limits: the queue limits 426 * @opt: smallest I/O size in bytes 427 * 428 * Description: 429 * Storage devices may report an optimal I/O size, which is the 430 * device's preferred unit for sustained I/O. This is rarely reported 431 * for disk drives. For RAID arrays it is usually the stripe width or 432 * the internal track size. A properly aligned multiple of 433 * optimal_io_size is the preferred request size for workloads where 434 * sustained throughput is desired. 435 */ 436 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 437 { 438 limits->io_opt = opt; 439 } 440 EXPORT_SYMBOL(blk_limits_io_opt); 441 442 /** 443 * blk_queue_io_opt - set optimal request size for the queue 444 * @q: the request queue for the device 445 * @opt: optimal request size in bytes 446 * 447 * Description: 448 * Storage devices may report an optimal I/O size, which is the 449 * device's preferred unit for sustained I/O. This is rarely reported 450 * for disk drives. For RAID arrays it is usually the stripe width or 451 * the internal track size. A properly aligned multiple of 452 * optimal_io_size is the preferred request size for workloads where 453 * sustained throughput is desired. 454 */ 455 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 456 { 457 blk_limits_io_opt(&q->limits, opt); 458 } 459 EXPORT_SYMBOL(blk_queue_io_opt); 460 461 /** 462 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 463 * @t: the stacking driver (top) 464 * @b: the underlying device (bottom) 465 **/ 466 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 467 { 468 blk_stack_limits(&t->limits, &b->limits, 0); 469 } 470 EXPORT_SYMBOL(blk_queue_stack_limits); 471 472 /** 473 * blk_stack_limits - adjust queue_limits for stacked devices 474 * @t: the stacking driver limits (top device) 475 * @b: the underlying queue limits (bottom, component device) 476 * @start: first data sector within component device 477 * 478 * Description: 479 * This function is used by stacking drivers like MD and DM to ensure 480 * that all component devices have compatible block sizes and 481 * alignments. The stacking driver must provide a queue_limits 482 * struct (top) and then iteratively call the stacking function for 483 * all component (bottom) devices. The stacking function will 484 * attempt to combine the values and ensure proper alignment. 485 * 486 * Returns 0 if the top and bottom queue_limits are compatible. The 487 * top device's block sizes and alignment offsets may be adjusted to 488 * ensure alignment with the bottom device. If no compatible sizes 489 * and alignments exist, -1 is returned and the resulting top 490 * queue_limits will have the misaligned flag set to indicate that 491 * the alignment_offset is undefined. 492 */ 493 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 494 sector_t start) 495 { 496 unsigned int top, bottom, alignment, ret = 0; 497 498 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 499 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 500 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 501 t->max_write_same_sectors = min(t->max_write_same_sectors, 502 b->max_write_same_sectors); 503 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 504 b->max_write_zeroes_sectors); 505 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 506 507 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 508 b->seg_boundary_mask); 509 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 510 b->virt_boundary_mask); 511 512 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 513 t->max_discard_segments = min_not_zero(t->max_discard_segments, 514 b->max_discard_segments); 515 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 516 b->max_integrity_segments); 517 518 t->max_segment_size = min_not_zero(t->max_segment_size, 519 b->max_segment_size); 520 521 t->misaligned |= b->misaligned; 522 523 alignment = queue_limit_alignment_offset(b, start); 524 525 /* Bottom device has different alignment. Check that it is 526 * compatible with the current top alignment. 527 */ 528 if (t->alignment_offset != alignment) { 529 530 top = max(t->physical_block_size, t->io_min) 531 + t->alignment_offset; 532 bottom = max(b->physical_block_size, b->io_min) + alignment; 533 534 /* Verify that top and bottom intervals line up */ 535 if (max(top, bottom) % min(top, bottom)) { 536 t->misaligned = 1; 537 ret = -1; 538 } 539 } 540 541 t->logical_block_size = max(t->logical_block_size, 542 b->logical_block_size); 543 544 t->physical_block_size = max(t->physical_block_size, 545 b->physical_block_size); 546 547 t->io_min = max(t->io_min, b->io_min); 548 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 549 550 /* Physical block size a multiple of the logical block size? */ 551 if (t->physical_block_size & (t->logical_block_size - 1)) { 552 t->physical_block_size = t->logical_block_size; 553 t->misaligned = 1; 554 ret = -1; 555 } 556 557 /* Minimum I/O a multiple of the physical block size? */ 558 if (t->io_min & (t->physical_block_size - 1)) { 559 t->io_min = t->physical_block_size; 560 t->misaligned = 1; 561 ret = -1; 562 } 563 564 /* Optimal I/O a multiple of the physical block size? */ 565 if (t->io_opt & (t->physical_block_size - 1)) { 566 t->io_opt = 0; 567 t->misaligned = 1; 568 ret = -1; 569 } 570 571 t->raid_partial_stripes_expensive = 572 max(t->raid_partial_stripes_expensive, 573 b->raid_partial_stripes_expensive); 574 575 /* Find lowest common alignment_offset */ 576 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 577 % max(t->physical_block_size, t->io_min); 578 579 /* Verify that new alignment_offset is on a logical block boundary */ 580 if (t->alignment_offset & (t->logical_block_size - 1)) { 581 t->misaligned = 1; 582 ret = -1; 583 } 584 585 /* Discard alignment and granularity */ 586 if (b->discard_granularity) { 587 alignment = queue_limit_discard_alignment(b, start); 588 589 if (t->discard_granularity != 0 && 590 t->discard_alignment != alignment) { 591 top = t->discard_granularity + t->discard_alignment; 592 bottom = b->discard_granularity + alignment; 593 594 /* Verify that top and bottom intervals line up */ 595 if ((max(top, bottom) % min(top, bottom)) != 0) 596 t->discard_misaligned = 1; 597 } 598 599 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 600 b->max_discard_sectors); 601 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 602 b->max_hw_discard_sectors); 603 t->discard_granularity = max(t->discard_granularity, 604 b->discard_granularity); 605 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 606 t->discard_granularity; 607 } 608 609 if (b->chunk_sectors) 610 t->chunk_sectors = min_not_zero(t->chunk_sectors, 611 b->chunk_sectors); 612 613 return ret; 614 } 615 EXPORT_SYMBOL(blk_stack_limits); 616 617 /** 618 * bdev_stack_limits - adjust queue limits for stacked drivers 619 * @t: the stacking driver limits (top device) 620 * @bdev: the component block_device (bottom) 621 * @start: first data sector within component device 622 * 623 * Description: 624 * Merges queue limits for a top device and a block_device. Returns 625 * 0 if alignment didn't change. Returns -1 if adding the bottom 626 * device caused misalignment. 627 */ 628 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 629 sector_t start) 630 { 631 struct request_queue *bq = bdev_get_queue(bdev); 632 633 start += get_start_sect(bdev); 634 635 return blk_stack_limits(t, &bq->limits, start); 636 } 637 EXPORT_SYMBOL(bdev_stack_limits); 638 639 /** 640 * disk_stack_limits - adjust queue limits for stacked drivers 641 * @disk: MD/DM gendisk (top) 642 * @bdev: the underlying block device (bottom) 643 * @offset: offset to beginning of data within component device 644 * 645 * Description: 646 * Merges the limits for a top level gendisk and a bottom level 647 * block_device. 648 */ 649 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 650 sector_t offset) 651 { 652 struct request_queue *t = disk->queue; 653 654 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 655 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 656 657 disk_name(disk, 0, top); 658 bdevname(bdev, bottom); 659 660 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 661 top, bottom); 662 } 663 } 664 EXPORT_SYMBOL(disk_stack_limits); 665 666 /** 667 * blk_queue_update_dma_pad - update pad mask 668 * @q: the request queue for the device 669 * @mask: pad mask 670 * 671 * Update dma pad mask. 672 * 673 * Appending pad buffer to a request modifies the last entry of a 674 * scatter list such that it includes the pad buffer. 675 **/ 676 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 677 { 678 if (mask > q->dma_pad_mask) 679 q->dma_pad_mask = mask; 680 } 681 EXPORT_SYMBOL(blk_queue_update_dma_pad); 682 683 /** 684 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 685 * @q: the request queue for the device 686 * @dma_drain_needed: fn which returns non-zero if drain is necessary 687 * @buf: physically contiguous buffer 688 * @size: size of the buffer in bytes 689 * 690 * Some devices have excess DMA problems and can't simply discard (or 691 * zero fill) the unwanted piece of the transfer. They have to have a 692 * real area of memory to transfer it into. The use case for this is 693 * ATAPI devices in DMA mode. If the packet command causes a transfer 694 * bigger than the transfer size some HBAs will lock up if there 695 * aren't DMA elements to contain the excess transfer. What this API 696 * does is adjust the queue so that the buf is always appended 697 * silently to the scatterlist. 698 * 699 * Note: This routine adjusts max_hw_segments to make room for appending 700 * the drain buffer. If you call blk_queue_max_segments() after calling 701 * this routine, you must set the limit to one fewer than your device 702 * can support otherwise there won't be room for the drain buffer. 703 */ 704 int blk_queue_dma_drain(struct request_queue *q, 705 dma_drain_needed_fn *dma_drain_needed, 706 void *buf, unsigned int size) 707 { 708 if (queue_max_segments(q) < 2) 709 return -EINVAL; 710 /* make room for appending the drain */ 711 blk_queue_max_segments(q, queue_max_segments(q) - 1); 712 q->dma_drain_needed = dma_drain_needed; 713 q->dma_drain_buffer = buf; 714 q->dma_drain_size = size; 715 716 return 0; 717 } 718 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 719 720 /** 721 * blk_queue_segment_boundary - set boundary rules for segment merging 722 * @q: the request queue for the device 723 * @mask: the memory boundary mask 724 **/ 725 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 726 { 727 if (mask < PAGE_SIZE - 1) { 728 mask = PAGE_SIZE - 1; 729 printk(KERN_INFO "%s: set to minimum %lx\n", 730 __func__, mask); 731 } 732 733 q->limits.seg_boundary_mask = mask; 734 } 735 EXPORT_SYMBOL(blk_queue_segment_boundary); 736 737 /** 738 * blk_queue_virt_boundary - set boundary rules for bio merging 739 * @q: the request queue for the device 740 * @mask: the memory boundary mask 741 **/ 742 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 743 { 744 q->limits.virt_boundary_mask = mask; 745 } 746 EXPORT_SYMBOL(blk_queue_virt_boundary); 747 748 /** 749 * blk_queue_dma_alignment - set dma length and memory alignment 750 * @q: the request queue for the device 751 * @mask: alignment mask 752 * 753 * description: 754 * set required memory and length alignment for direct dma transactions. 755 * this is used when building direct io requests for the queue. 756 * 757 **/ 758 void blk_queue_dma_alignment(struct request_queue *q, int mask) 759 { 760 q->dma_alignment = mask; 761 } 762 EXPORT_SYMBOL(blk_queue_dma_alignment); 763 764 /** 765 * blk_queue_update_dma_alignment - update dma length and memory alignment 766 * @q: the request queue for the device 767 * @mask: alignment mask 768 * 769 * description: 770 * update required memory and length alignment for direct dma transactions. 771 * If the requested alignment is larger than the current alignment, then 772 * the current queue alignment is updated to the new value, otherwise it 773 * is left alone. The design of this is to allow multiple objects 774 * (driver, device, transport etc) to set their respective 775 * alignments without having them interfere. 776 * 777 **/ 778 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 779 { 780 BUG_ON(mask > PAGE_SIZE); 781 782 if (mask > q->dma_alignment) 783 q->dma_alignment = mask; 784 } 785 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 786 787 /** 788 * blk_set_queue_depth - tell the block layer about the device queue depth 789 * @q: the request queue for the device 790 * @depth: queue depth 791 * 792 */ 793 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 794 { 795 q->queue_depth = depth; 796 wbt_set_queue_depth(q, depth); 797 } 798 EXPORT_SYMBOL(blk_set_queue_depth); 799 800 /** 801 * blk_queue_write_cache - configure queue's write cache 802 * @q: the request queue for the device 803 * @wc: write back cache on or off 804 * @fua: device supports FUA writes, if true 805 * 806 * Tell the block layer about the write cache of @q. 807 */ 808 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 809 { 810 if (wc) 811 blk_queue_flag_set(QUEUE_FLAG_WC, q); 812 else 813 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 814 if (fua) 815 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 816 else 817 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 818 819 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 820 } 821 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 822 823 static int __init blk_settings_init(void) 824 { 825 blk_max_low_pfn = max_low_pfn - 1; 826 blk_max_pfn = max_pfn - 1; 827 return 0; 828 } 829 subsys_initcall(blk_settings_init); 830