1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "blk-rq-qos.h" 4 5 /* 6 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded, 7 * false if 'v' + 1 would be bigger than 'below'. 8 */ 9 static bool atomic_inc_below(atomic_t *v, unsigned int below) 10 { 11 unsigned int cur = atomic_read(v); 12 13 for (;;) { 14 unsigned int old; 15 16 if (cur >= below) 17 return false; 18 old = atomic_cmpxchg(v, cur, cur + 1); 19 if (old == cur) 20 break; 21 cur = old; 22 } 23 24 return true; 25 } 26 27 bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit) 28 { 29 return atomic_inc_below(&rq_wait->inflight, limit); 30 } 31 32 void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio) 33 { 34 do { 35 if (rqos->ops->cleanup) 36 rqos->ops->cleanup(rqos, bio); 37 rqos = rqos->next; 38 } while (rqos); 39 } 40 41 void __rq_qos_done(struct rq_qos *rqos, struct request *rq) 42 { 43 do { 44 if (rqos->ops->done) 45 rqos->ops->done(rqos, rq); 46 rqos = rqos->next; 47 } while (rqos); 48 } 49 50 void __rq_qos_issue(struct rq_qos *rqos, struct request *rq) 51 { 52 do { 53 if (rqos->ops->issue) 54 rqos->ops->issue(rqos, rq); 55 rqos = rqos->next; 56 } while (rqos); 57 } 58 59 void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq) 60 { 61 do { 62 if (rqos->ops->requeue) 63 rqos->ops->requeue(rqos, rq); 64 rqos = rqos->next; 65 } while (rqos); 66 } 67 68 void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio) 69 { 70 do { 71 if (rqos->ops->throttle) 72 rqos->ops->throttle(rqos, bio); 73 rqos = rqos->next; 74 } while (rqos); 75 } 76 77 void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) 78 { 79 do { 80 if (rqos->ops->track) 81 rqos->ops->track(rqos, rq, bio); 82 rqos = rqos->next; 83 } while (rqos); 84 } 85 86 void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio) 87 { 88 do { 89 if (rqos->ops->done_bio) 90 rqos->ops->done_bio(rqos, bio); 91 rqos = rqos->next; 92 } while (rqos); 93 } 94 95 /* 96 * Return true, if we can't increase the depth further by scaling 97 */ 98 bool rq_depth_calc_max_depth(struct rq_depth *rqd) 99 { 100 unsigned int depth; 101 bool ret = false; 102 103 /* 104 * For QD=1 devices, this is a special case. It's important for those 105 * to have one request ready when one completes, so force a depth of 106 * 2 for those devices. On the backend, it'll be a depth of 1 anyway, 107 * since the device can't have more than that in flight. If we're 108 * scaling down, then keep a setting of 1/1/1. 109 */ 110 if (rqd->queue_depth == 1) { 111 if (rqd->scale_step > 0) 112 rqd->max_depth = 1; 113 else { 114 rqd->max_depth = 2; 115 ret = true; 116 } 117 } else { 118 /* 119 * scale_step == 0 is our default state. If we have suffered 120 * latency spikes, step will be > 0, and we shrink the 121 * allowed write depths. If step is < 0, we're only doing 122 * writes, and we allow a temporarily higher depth to 123 * increase performance. 124 */ 125 depth = min_t(unsigned int, rqd->default_depth, 126 rqd->queue_depth); 127 if (rqd->scale_step > 0) 128 depth = 1 + ((depth - 1) >> min(31, rqd->scale_step)); 129 else if (rqd->scale_step < 0) { 130 unsigned int maxd = 3 * rqd->queue_depth / 4; 131 132 depth = 1 + ((depth - 1) << -rqd->scale_step); 133 if (depth > maxd) { 134 depth = maxd; 135 ret = true; 136 } 137 } 138 139 rqd->max_depth = depth; 140 } 141 142 return ret; 143 } 144 145 void rq_depth_scale_up(struct rq_depth *rqd) 146 { 147 /* 148 * Hit max in previous round, stop here 149 */ 150 if (rqd->scaled_max) 151 return; 152 153 rqd->scale_step--; 154 155 rqd->scaled_max = rq_depth_calc_max_depth(rqd); 156 } 157 158 /* 159 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we 160 * had a latency violation. 161 */ 162 void rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle) 163 { 164 /* 165 * Stop scaling down when we've hit the limit. This also prevents 166 * ->scale_step from going to crazy values, if the device can't 167 * keep up. 168 */ 169 if (rqd->max_depth == 1) 170 return; 171 172 if (rqd->scale_step < 0 && hard_throttle) 173 rqd->scale_step = 0; 174 else 175 rqd->scale_step++; 176 177 rqd->scaled_max = false; 178 rq_depth_calc_max_depth(rqd); 179 } 180 181 struct rq_qos_wait_data { 182 struct wait_queue_entry wq; 183 struct task_struct *task; 184 struct rq_wait *rqw; 185 acquire_inflight_cb_t *cb; 186 void *private_data; 187 bool got_token; 188 }; 189 190 static int rq_qos_wake_function(struct wait_queue_entry *curr, 191 unsigned int mode, int wake_flags, void *key) 192 { 193 struct rq_qos_wait_data *data = container_of(curr, 194 struct rq_qos_wait_data, 195 wq); 196 197 /* 198 * If we fail to get a budget, return -1 to interrupt the wake up loop 199 * in __wake_up_common. 200 */ 201 if (!data->cb(data->rqw, data->private_data)) 202 return -1; 203 204 data->got_token = true; 205 smp_wmb(); 206 list_del_init(&curr->entry); 207 wake_up_process(data->task); 208 return 1; 209 } 210 211 /** 212 * rq_qos_wait - throttle on a rqw if we need to 213 * @rqw: rqw to throttle on 214 * @private_data: caller provided specific data 215 * @acquire_inflight_cb: inc the rqw->inflight counter if we can 216 * @cleanup_cb: the callback to cleanup in case we race with a waker 217 * 218 * This provides a uniform place for the rq_qos users to do their throttling. 219 * Since you can end up with a lot of things sleeping at once, this manages the 220 * waking up based on the resources available. The acquire_inflight_cb should 221 * inc the rqw->inflight if we have the ability to do so, or return false if not 222 * and then we will sleep until the room becomes available. 223 * 224 * cleanup_cb is in case that we race with a waker and need to cleanup the 225 * inflight count accordingly. 226 */ 227 void rq_qos_wait(struct rq_wait *rqw, void *private_data, 228 acquire_inflight_cb_t *acquire_inflight_cb, 229 cleanup_cb_t *cleanup_cb) 230 { 231 struct rq_qos_wait_data data = { 232 .wq = { 233 .func = rq_qos_wake_function, 234 .entry = LIST_HEAD_INIT(data.wq.entry), 235 }, 236 .task = current, 237 .rqw = rqw, 238 .cb = acquire_inflight_cb, 239 .private_data = private_data, 240 }; 241 bool has_sleeper; 242 243 has_sleeper = wq_has_sleeper(&rqw->wait); 244 if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) 245 return; 246 247 prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE); 248 has_sleeper = !wq_has_single_sleeper(&rqw->wait); 249 do { 250 /* The memory barrier in set_task_state saves us here. */ 251 if (data.got_token) 252 break; 253 if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) { 254 finish_wait(&rqw->wait, &data.wq); 255 256 /* 257 * We raced with wbt_wake_function() getting a token, 258 * which means we now have two. Put our local token 259 * and wake anyone else potentially waiting for one. 260 */ 261 smp_rmb(); 262 if (data.got_token) 263 cleanup_cb(rqw, private_data); 264 break; 265 } 266 io_schedule(); 267 has_sleeper = true; 268 set_current_state(TASK_UNINTERRUPTIBLE); 269 } while (1); 270 finish_wait(&rqw->wait, &data.wq); 271 } 272 273 void rq_qos_exit(struct request_queue *q) 274 { 275 blk_mq_debugfs_unregister_queue_rqos(q); 276 277 while (q->rq_qos) { 278 struct rq_qos *rqos = q->rq_qos; 279 q->rq_qos = rqos->next; 280 rqos->ops->exit(rqos); 281 } 282 } 283