xref: /openbmc/linux/block/blk-rq-qos.c (revision 53a2a90d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "blk-rq-qos.h"
4 
5 /*
6  * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
7  * false if 'v' + 1 would be bigger than 'below'.
8  */
9 static bool atomic_inc_below(atomic_t *v, unsigned int below)
10 {
11 	unsigned int cur = atomic_read(v);
12 
13 	for (;;) {
14 		unsigned int old;
15 
16 		if (cur >= below)
17 			return false;
18 		old = atomic_cmpxchg(v, cur, cur + 1);
19 		if (old == cur)
20 			break;
21 		cur = old;
22 	}
23 
24 	return true;
25 }
26 
27 bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
28 {
29 	return atomic_inc_below(&rq_wait->inflight, limit);
30 }
31 
32 void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
33 {
34 	do {
35 		if (rqos->ops->cleanup)
36 			rqos->ops->cleanup(rqos, bio);
37 		rqos = rqos->next;
38 	} while (rqos);
39 }
40 
41 void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
42 {
43 	do {
44 		if (rqos->ops->done)
45 			rqos->ops->done(rqos, rq);
46 		rqos = rqos->next;
47 	} while (rqos);
48 }
49 
50 void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
51 {
52 	do {
53 		if (rqos->ops->issue)
54 			rqos->ops->issue(rqos, rq);
55 		rqos = rqos->next;
56 	} while (rqos);
57 }
58 
59 void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
60 {
61 	do {
62 		if (rqos->ops->requeue)
63 			rqos->ops->requeue(rqos, rq);
64 		rqos = rqos->next;
65 	} while (rqos);
66 }
67 
68 void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
69 {
70 	do {
71 		if (rqos->ops->throttle)
72 			rqos->ops->throttle(rqos, bio);
73 		rqos = rqos->next;
74 	} while (rqos);
75 }
76 
77 void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
78 {
79 	do {
80 		if (rqos->ops->track)
81 			rqos->ops->track(rqos, rq, bio);
82 		rqos = rqos->next;
83 	} while (rqos);
84 }
85 
86 void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
87 {
88 	do {
89 		if (rqos->ops->merge)
90 			rqos->ops->merge(rqos, rq, bio);
91 		rqos = rqos->next;
92 	} while (rqos);
93 }
94 
95 void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
96 {
97 	do {
98 		if (rqos->ops->done_bio)
99 			rqos->ops->done_bio(rqos, bio);
100 		rqos = rqos->next;
101 	} while (rqos);
102 }
103 
104 void __rq_qos_queue_depth_changed(struct rq_qos *rqos)
105 {
106 	do {
107 		if (rqos->ops->queue_depth_changed)
108 			rqos->ops->queue_depth_changed(rqos);
109 		rqos = rqos->next;
110 	} while (rqos);
111 }
112 
113 /*
114  * Return true, if we can't increase the depth further by scaling
115  */
116 bool rq_depth_calc_max_depth(struct rq_depth *rqd)
117 {
118 	unsigned int depth;
119 	bool ret = false;
120 
121 	/*
122 	 * For QD=1 devices, this is a special case. It's important for those
123 	 * to have one request ready when one completes, so force a depth of
124 	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
125 	 * since the device can't have more than that in flight. If we're
126 	 * scaling down, then keep a setting of 1/1/1.
127 	 */
128 	if (rqd->queue_depth == 1) {
129 		if (rqd->scale_step > 0)
130 			rqd->max_depth = 1;
131 		else {
132 			rqd->max_depth = 2;
133 			ret = true;
134 		}
135 	} else {
136 		/*
137 		 * scale_step == 0 is our default state. If we have suffered
138 		 * latency spikes, step will be > 0, and we shrink the
139 		 * allowed write depths. If step is < 0, we're only doing
140 		 * writes, and we allow a temporarily higher depth to
141 		 * increase performance.
142 		 */
143 		depth = min_t(unsigned int, rqd->default_depth,
144 			      rqd->queue_depth);
145 		if (rqd->scale_step > 0)
146 			depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
147 		else if (rqd->scale_step < 0) {
148 			unsigned int maxd = 3 * rqd->queue_depth / 4;
149 
150 			depth = 1 + ((depth - 1) << -rqd->scale_step);
151 			if (depth > maxd) {
152 				depth = maxd;
153 				ret = true;
154 			}
155 		}
156 
157 		rqd->max_depth = depth;
158 	}
159 
160 	return ret;
161 }
162 
163 /* Returns true on success and false if scaling up wasn't possible */
164 bool rq_depth_scale_up(struct rq_depth *rqd)
165 {
166 	/*
167 	 * Hit max in previous round, stop here
168 	 */
169 	if (rqd->scaled_max)
170 		return false;
171 
172 	rqd->scale_step--;
173 
174 	rqd->scaled_max = rq_depth_calc_max_depth(rqd);
175 	return true;
176 }
177 
178 /*
179  * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
180  * had a latency violation. Returns true on success and returns false if
181  * scaling down wasn't possible.
182  */
183 bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
184 {
185 	/*
186 	 * Stop scaling down when we've hit the limit. This also prevents
187 	 * ->scale_step from going to crazy values, if the device can't
188 	 * keep up.
189 	 */
190 	if (rqd->max_depth == 1)
191 		return false;
192 
193 	if (rqd->scale_step < 0 && hard_throttle)
194 		rqd->scale_step = 0;
195 	else
196 		rqd->scale_step++;
197 
198 	rqd->scaled_max = false;
199 	rq_depth_calc_max_depth(rqd);
200 	return true;
201 }
202 
203 struct rq_qos_wait_data {
204 	struct wait_queue_entry wq;
205 	struct task_struct *task;
206 	struct rq_wait *rqw;
207 	acquire_inflight_cb_t *cb;
208 	void *private_data;
209 	bool got_token;
210 };
211 
212 static int rq_qos_wake_function(struct wait_queue_entry *curr,
213 				unsigned int mode, int wake_flags, void *key)
214 {
215 	struct rq_qos_wait_data *data = container_of(curr,
216 						     struct rq_qos_wait_data,
217 						     wq);
218 
219 	/*
220 	 * If we fail to get a budget, return -1 to interrupt the wake up loop
221 	 * in __wake_up_common.
222 	 */
223 	if (!data->cb(data->rqw, data->private_data))
224 		return -1;
225 
226 	data->got_token = true;
227 	smp_wmb();
228 	list_del_init(&curr->entry);
229 	wake_up_process(data->task);
230 	return 1;
231 }
232 
233 /**
234  * rq_qos_wait - throttle on a rqw if we need to
235  * @rqw: rqw to throttle on
236  * @private_data: caller provided specific data
237  * @acquire_inflight_cb: inc the rqw->inflight counter if we can
238  * @cleanup_cb: the callback to cleanup in case we race with a waker
239  *
240  * This provides a uniform place for the rq_qos users to do their throttling.
241  * Since you can end up with a lot of things sleeping at once, this manages the
242  * waking up based on the resources available.  The acquire_inflight_cb should
243  * inc the rqw->inflight if we have the ability to do so, or return false if not
244  * and then we will sleep until the room becomes available.
245  *
246  * cleanup_cb is in case that we race with a waker and need to cleanup the
247  * inflight count accordingly.
248  */
249 void rq_qos_wait(struct rq_wait *rqw, void *private_data,
250 		 acquire_inflight_cb_t *acquire_inflight_cb,
251 		 cleanup_cb_t *cleanup_cb)
252 {
253 	struct rq_qos_wait_data data = {
254 		.wq = {
255 			.func	= rq_qos_wake_function,
256 			.entry	= LIST_HEAD_INIT(data.wq.entry),
257 		},
258 		.task = current,
259 		.rqw = rqw,
260 		.cb = acquire_inflight_cb,
261 		.private_data = private_data,
262 	};
263 	bool has_sleeper;
264 
265 	has_sleeper = wq_has_sleeper(&rqw->wait);
266 	if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
267 		return;
268 
269 	has_sleeper = !prepare_to_wait_exclusive(&rqw->wait, &data.wq,
270 						 TASK_UNINTERRUPTIBLE);
271 	do {
272 		/* The memory barrier in set_task_state saves us here. */
273 		if (data.got_token)
274 			break;
275 		if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
276 			finish_wait(&rqw->wait, &data.wq);
277 
278 			/*
279 			 * We raced with wbt_wake_function() getting a token,
280 			 * which means we now have two. Put our local token
281 			 * and wake anyone else potentially waiting for one.
282 			 */
283 			smp_rmb();
284 			if (data.got_token)
285 				cleanup_cb(rqw, private_data);
286 			break;
287 		}
288 		io_schedule();
289 		has_sleeper = true;
290 		set_current_state(TASK_UNINTERRUPTIBLE);
291 	} while (1);
292 	finish_wait(&rqw->wait, &data.wq);
293 }
294 
295 void rq_qos_exit(struct request_queue *q)
296 {
297 	while (q->rq_qos) {
298 		struct rq_qos *rqos = q->rq_qos;
299 		q->rq_qos = rqos->next;
300 		rqos->ops->exit(rqos);
301 	}
302 }
303