xref: /openbmc/linux/block/blk-mq.h (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4 
5 #include "blk-stat.h"
6 #include "blk-mq-tag.h"
7 
8 struct blk_mq_tag_set;
9 
10 struct blk_mq_ctxs {
11 	struct kobject kobj;
12 	struct blk_mq_ctx __percpu	*queue_ctx;
13 };
14 
15 /**
16  * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17  */
18 struct blk_mq_ctx {
19 	struct {
20 		spinlock_t		lock;
21 		struct list_head	rq_lists[HCTX_MAX_TYPES];
22 	} ____cacheline_aligned_in_smp;
23 
24 	unsigned int		cpu;
25 	unsigned short		index_hw[HCTX_MAX_TYPES];
26 	struct blk_mq_hw_ctx 	*hctxs[HCTX_MAX_TYPES];
27 
28 	/* incremented at dispatch time */
29 	unsigned long		rq_dispatched[2];
30 	unsigned long		rq_merged;
31 
32 	/* incremented at completion time */
33 	unsigned long		____cacheline_aligned_in_smp rq_completed[2];
34 
35 	struct request_queue	*queue;
36 	struct blk_mq_ctxs      *ctxs;
37 	struct kobject		kobj;
38 } ____cacheline_aligned_in_smp;
39 
40 void blk_mq_exit_queue(struct request_queue *q);
41 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
42 void blk_mq_wake_waiters(struct request_queue *q);
43 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
44 			     unsigned int);
45 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
46 				bool kick_requeue_list);
47 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
48 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
49 					struct blk_mq_ctx *start);
50 
51 /*
52  * Internal helpers for allocating/freeing the request map
53  */
54 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
55 		     unsigned int hctx_idx);
56 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
57 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
58 					unsigned int hctx_idx,
59 					unsigned int nr_tags,
60 					unsigned int reserved_tags);
61 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
62 		     unsigned int hctx_idx, unsigned int depth);
63 
64 /*
65  * Internal helpers for request insertion into sw queues
66  */
67 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
68 				bool at_head);
69 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
70 				  bool run_queue);
71 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
72 				struct list_head *list);
73 
74 /* Used by blk_insert_cloned_request() to issue request directly */
75 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
76 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
77 				    struct list_head *list);
78 
79 /*
80  * CPU -> queue mappings
81  */
82 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
83 
84 /*
85  * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
86  * @q: request queue
87  * @type: the hctx type index
88  * @cpu: CPU
89  */
90 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
91 							  enum hctx_type type,
92 							  unsigned int cpu)
93 {
94 	return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
95 }
96 
97 /*
98  * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
99  * @q: request queue
100  * @flags: request command flags
101  * @cpu: cpu ctx
102  */
103 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
104 						     unsigned int flags,
105 						     struct blk_mq_ctx *ctx)
106 {
107 	enum hctx_type type = HCTX_TYPE_DEFAULT;
108 
109 	/*
110 	 * The caller ensure that if REQ_HIPRI, poll must be enabled.
111 	 */
112 	if (flags & REQ_HIPRI)
113 		type = HCTX_TYPE_POLL;
114 	else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
115 		type = HCTX_TYPE_READ;
116 
117 	return ctx->hctxs[type];
118 }
119 
120 /*
121  * sysfs helpers
122  */
123 extern void blk_mq_sysfs_init(struct request_queue *q);
124 extern void blk_mq_sysfs_deinit(struct request_queue *q);
125 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
126 extern int blk_mq_sysfs_register(struct request_queue *q);
127 extern void blk_mq_sysfs_unregister(struct request_queue *q);
128 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
129 
130 void blk_mq_release(struct request_queue *q);
131 
132 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
133 					   unsigned int cpu)
134 {
135 	return per_cpu_ptr(q->queue_ctx, cpu);
136 }
137 
138 /*
139  * This assumes per-cpu software queueing queues. They could be per-node
140  * as well, for instance. For now this is hardcoded as-is. Note that we don't
141  * care about preemption, since we know the ctx's are persistent. This does
142  * mean that we can't rely on ctx always matching the currently running CPU.
143  */
144 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
145 {
146 	return __blk_mq_get_ctx(q, raw_smp_processor_id());
147 }
148 
149 struct blk_mq_alloc_data {
150 	/* input parameter */
151 	struct request_queue *q;
152 	blk_mq_req_flags_t flags;
153 	unsigned int shallow_depth;
154 	unsigned int cmd_flags;
155 
156 	/* input & output parameter */
157 	struct blk_mq_ctx *ctx;
158 	struct blk_mq_hw_ctx *hctx;
159 };
160 
161 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
162 {
163 	if (data->q->elevator)
164 		return data->hctx->sched_tags;
165 
166 	return data->hctx->tags;
167 }
168 
169 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
170 {
171 	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
172 }
173 
174 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
175 {
176 	return hctx->nr_ctx && hctx->tags;
177 }
178 
179 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part);
180 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
181 			 unsigned int inflight[2]);
182 
183 static inline void blk_mq_put_dispatch_budget(struct request_queue *q)
184 {
185 	if (q->mq_ops->put_budget)
186 		q->mq_ops->put_budget(q);
187 }
188 
189 static inline bool blk_mq_get_dispatch_budget(struct request_queue *q)
190 {
191 	if (q->mq_ops->get_budget)
192 		return q->mq_ops->get_budget(q);
193 	return true;
194 }
195 
196 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
197 					   struct request *rq)
198 {
199 	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
200 	rq->tag = BLK_MQ_NO_TAG;
201 
202 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
203 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
204 		atomic_dec(&hctx->nr_active);
205 	}
206 }
207 
208 static inline void blk_mq_put_driver_tag(struct request *rq)
209 {
210 	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
211 		return;
212 
213 	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
214 }
215 
216 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
217 {
218 	int cpu;
219 
220 	for_each_possible_cpu(cpu)
221 		qmap->mq_map[cpu] = 0;
222 }
223 
224 /*
225  * blk_mq_plug() - Get caller context plug
226  * @q: request queue
227  * @bio : the bio being submitted by the caller context
228  *
229  * Plugging, by design, may delay the insertion of BIOs into the elevator in
230  * order to increase BIO merging opportunities. This however can cause BIO
231  * insertion order to change from the order in which submit_bio() is being
232  * executed in the case of multiple contexts concurrently issuing BIOs to a
233  * device, even if these context are synchronized to tightly control BIO issuing
234  * order. While this is not a problem with regular block devices, this ordering
235  * change can cause write BIO failures with zoned block devices as these
236  * require sequential write patterns to zones. Prevent this from happening by
237  * ignoring the plug state of a BIO issuing context if the target request queue
238  * is for a zoned block device and the BIO to plug is a write operation.
239  *
240  * Return current->plug if the bio can be plugged and NULL otherwise
241  */
242 static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
243 					   struct bio *bio)
244 {
245 	/*
246 	 * For regular block devices or read operations, use the context plug
247 	 * which may be NULL if blk_start_plug() was not executed.
248 	 */
249 	if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
250 		return current->plug;
251 
252 	/* Zoned block device write operation case: do not plug the BIO */
253 	return NULL;
254 }
255 
256 #endif
257