xref: /openbmc/linux/block/blk-mq.h (revision 9ad685db)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4 
5 #include <linux/blk-mq.h>
6 #include "blk-stat.h"
7 
8 struct blk_mq_tag_set;
9 
10 struct blk_mq_ctxs {
11 	struct kobject kobj;
12 	struct blk_mq_ctx __percpu	*queue_ctx;
13 };
14 
15 /**
16  * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17  */
18 struct blk_mq_ctx {
19 	struct {
20 		spinlock_t		lock;
21 		struct list_head	rq_lists[HCTX_MAX_TYPES];
22 	} ____cacheline_aligned_in_smp;
23 
24 	unsigned int		cpu;
25 	unsigned short		index_hw[HCTX_MAX_TYPES];
26 	struct blk_mq_hw_ctx 	*hctxs[HCTX_MAX_TYPES];
27 
28 	struct request_queue	*queue;
29 	struct blk_mq_ctxs      *ctxs;
30 	struct kobject		kobj;
31 } ____cacheline_aligned_in_smp;
32 
33 enum {
34 	BLK_MQ_NO_TAG		= -1U,
35 	BLK_MQ_TAG_MIN		= 1,
36 	BLK_MQ_TAG_MAX		= BLK_MQ_NO_TAG - 1,
37 };
38 
39 typedef unsigned int __bitwise blk_insert_t;
40 #define BLK_MQ_INSERT_AT_HEAD		((__force blk_insert_t)0x01)
41 
42 void blk_mq_submit_bio(struct bio *bio);
43 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
44 		unsigned int flags);
45 void blk_mq_exit_queue(struct request_queue *q);
46 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
47 void blk_mq_wake_waiters(struct request_queue *q);
48 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
49 			     unsigned int);
50 void blk_mq_add_to_requeue_list(struct request *rq, blk_insert_t insert_flags);
51 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
52 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
53 					struct blk_mq_ctx *start);
54 void blk_mq_put_rq_ref(struct request *rq);
55 
56 /*
57  * Internal helpers for allocating/freeing the request map
58  */
59 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
60 		     unsigned int hctx_idx);
61 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
62 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
63 				unsigned int hctx_idx, unsigned int depth);
64 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
65 			     struct blk_mq_tags *tags,
66 			     unsigned int hctx_idx);
67 /*
68  * Internal helpers for request insertion into sw queues
69  */
70 void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags);
71 
72 /*
73  * CPU -> queue mappings
74  */
75 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
76 
77 /*
78  * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
79  * @q: request queue
80  * @type: the hctx type index
81  * @cpu: CPU
82  */
83 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
84 							  enum hctx_type type,
85 							  unsigned int cpu)
86 {
87 	return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
88 }
89 
90 static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
91 {
92 	enum hctx_type type = HCTX_TYPE_DEFAULT;
93 
94 	/*
95 	 * The caller ensure that if REQ_POLLED, poll must be enabled.
96 	 */
97 	if (opf & REQ_POLLED)
98 		type = HCTX_TYPE_POLL;
99 	else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
100 		type = HCTX_TYPE_READ;
101 	return type;
102 }
103 
104 /*
105  * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
106  * @q: request queue
107  * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
108  * @ctx: software queue cpu ctx
109  */
110 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
111 						     blk_opf_t opf,
112 						     struct blk_mq_ctx *ctx)
113 {
114 	return ctx->hctxs[blk_mq_get_hctx_type(opf)];
115 }
116 
117 /*
118  * sysfs helpers
119  */
120 extern void blk_mq_sysfs_init(struct request_queue *q);
121 extern void blk_mq_sysfs_deinit(struct request_queue *q);
122 int blk_mq_sysfs_register(struct gendisk *disk);
123 void blk_mq_sysfs_unregister(struct gendisk *disk);
124 int blk_mq_sysfs_register_hctxs(struct request_queue *q);
125 void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
126 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
127 void blk_mq_free_plug_rqs(struct blk_plug *plug);
128 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
129 
130 void blk_mq_cancel_work_sync(struct request_queue *q);
131 
132 void blk_mq_release(struct request_queue *q);
133 
134 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
135 					   unsigned int cpu)
136 {
137 	return per_cpu_ptr(q->queue_ctx, cpu);
138 }
139 
140 /*
141  * This assumes per-cpu software queueing queues. They could be per-node
142  * as well, for instance. For now this is hardcoded as-is. Note that we don't
143  * care about preemption, since we know the ctx's are persistent. This does
144  * mean that we can't rely on ctx always matching the currently running CPU.
145  */
146 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
147 {
148 	return __blk_mq_get_ctx(q, raw_smp_processor_id());
149 }
150 
151 struct blk_mq_alloc_data {
152 	/* input parameter */
153 	struct request_queue *q;
154 	blk_mq_req_flags_t flags;
155 	unsigned int shallow_depth;
156 	blk_opf_t cmd_flags;
157 	req_flags_t rq_flags;
158 
159 	/* allocate multiple requests/tags in one go */
160 	unsigned int nr_tags;
161 	struct request **cached_rq;
162 
163 	/* input & output parameter */
164 	struct blk_mq_ctx *ctx;
165 	struct blk_mq_hw_ctx *hctx;
166 };
167 
168 struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags,
169 		unsigned int reserved_tags, int node, int alloc_policy);
170 void blk_mq_free_tags(struct blk_mq_tags *tags);
171 int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags,
172 		struct sbitmap_queue *breserved_tags, unsigned int queue_depth,
173 		unsigned int reserved, int node, int alloc_policy);
174 
175 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data);
176 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
177 		unsigned int *offset);
178 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
179 		unsigned int tag);
180 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags);
181 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
182 		struct blk_mq_tags **tags, unsigned int depth, bool can_grow);
183 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set,
184 		unsigned int size);
185 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q);
186 
187 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool);
188 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
189 		void *priv);
190 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
191 		void *priv);
192 
193 static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt,
194 						 struct blk_mq_hw_ctx *hctx)
195 {
196 	if (!hctx)
197 		return &bt->ws[0];
198 	return sbq_wait_ptr(bt, &hctx->wait_index);
199 }
200 
201 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *);
202 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *);
203 
204 static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
205 {
206 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
207 		__blk_mq_tag_busy(hctx);
208 }
209 
210 static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
211 {
212 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
213 		__blk_mq_tag_idle(hctx);
214 }
215 
216 static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags,
217 					  unsigned int tag)
218 {
219 	return tag < tags->nr_reserved_tags;
220 }
221 
222 static inline bool blk_mq_is_shared_tags(unsigned int flags)
223 {
224 	return flags & BLK_MQ_F_TAG_HCTX_SHARED;
225 }
226 
227 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
228 {
229 	if (!(data->rq_flags & RQF_ELV))
230 		return data->hctx->tags;
231 	return data->hctx->sched_tags;
232 }
233 
234 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
235 {
236 	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
237 }
238 
239 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
240 {
241 	return hctx->nr_ctx && hctx->tags;
242 }
243 
244 unsigned int blk_mq_in_flight(struct request_queue *q,
245 		struct block_device *part);
246 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
247 		unsigned int inflight[2]);
248 
249 static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
250 					      int budget_token)
251 {
252 	if (q->mq_ops->put_budget)
253 		q->mq_ops->put_budget(q, budget_token);
254 }
255 
256 static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
257 {
258 	if (q->mq_ops->get_budget)
259 		return q->mq_ops->get_budget(q);
260 	return 0;
261 }
262 
263 static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
264 {
265 	if (token < 0)
266 		return;
267 
268 	if (rq->q->mq_ops->set_rq_budget_token)
269 		rq->q->mq_ops->set_rq_budget_token(rq, token);
270 }
271 
272 static inline int blk_mq_get_rq_budget_token(struct request *rq)
273 {
274 	if (rq->q->mq_ops->get_rq_budget_token)
275 		return rq->q->mq_ops->get_rq_budget_token(rq);
276 	return -1;
277 }
278 
279 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
280 {
281 	if (blk_mq_is_shared_tags(hctx->flags))
282 		atomic_inc(&hctx->queue->nr_active_requests_shared_tags);
283 	else
284 		atomic_inc(&hctx->nr_active);
285 }
286 
287 static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
288 		int val)
289 {
290 	if (blk_mq_is_shared_tags(hctx->flags))
291 		atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
292 	else
293 		atomic_sub(val, &hctx->nr_active);
294 }
295 
296 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
297 {
298 	__blk_mq_sub_active_requests(hctx, 1);
299 }
300 
301 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
302 {
303 	if (blk_mq_is_shared_tags(hctx->flags))
304 		return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
305 	return atomic_read(&hctx->nr_active);
306 }
307 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
308 					   struct request *rq)
309 {
310 	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
311 	rq->tag = BLK_MQ_NO_TAG;
312 
313 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
314 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
315 		__blk_mq_dec_active_requests(hctx);
316 	}
317 }
318 
319 static inline void blk_mq_put_driver_tag(struct request *rq)
320 {
321 	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
322 		return;
323 
324 	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
325 }
326 
327 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq);
328 
329 static inline bool blk_mq_get_driver_tag(struct request *rq)
330 {
331 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
332 
333 	if (rq->tag != BLK_MQ_NO_TAG &&
334 	    !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
335 		hctx->tags->rqs[rq->tag] = rq;
336 		return true;
337 	}
338 
339 	return __blk_mq_get_driver_tag(hctx, rq);
340 }
341 
342 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
343 {
344 	int cpu;
345 
346 	for_each_possible_cpu(cpu)
347 		qmap->mq_map[cpu] = 0;
348 }
349 
350 /*
351  * blk_mq_plug() - Get caller context plug
352  * @bio : the bio being submitted by the caller context
353  *
354  * Plugging, by design, may delay the insertion of BIOs into the elevator in
355  * order to increase BIO merging opportunities. This however can cause BIO
356  * insertion order to change from the order in which submit_bio() is being
357  * executed in the case of multiple contexts concurrently issuing BIOs to a
358  * device, even if these context are synchronized to tightly control BIO issuing
359  * order. While this is not a problem with regular block devices, this ordering
360  * change can cause write BIO failures with zoned block devices as these
361  * require sequential write patterns to zones. Prevent this from happening by
362  * ignoring the plug state of a BIO issuing context if it is for a zoned block
363  * device and the BIO to plug is a write operation.
364  *
365  * Return current->plug if the bio can be plugged and NULL otherwise
366  */
367 static inline struct blk_plug *blk_mq_plug( struct bio *bio)
368 {
369 	/* Zoned block device write operation case: do not plug the BIO */
370 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
371 	    bdev_op_is_zoned_write(bio->bi_bdev, bio_op(bio)))
372 		return NULL;
373 
374 	/*
375 	 * For regular block devices or read operations, use the context plug
376 	 * which may be NULL if blk_start_plug() was not executed.
377 	 */
378 	return current->plug;
379 }
380 
381 /* Free all requests on the list */
382 static inline void blk_mq_free_requests(struct list_head *list)
383 {
384 	while (!list_empty(list)) {
385 		struct request *rq = list_entry_rq(list->next);
386 
387 		list_del_init(&rq->queuelist);
388 		blk_mq_free_request(rq);
389 	}
390 }
391 
392 /*
393  * For shared tag users, we track the number of currently active users
394  * and attempt to provide a fair share of the tag depth for each of them.
395  */
396 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
397 				  struct sbitmap_queue *bt)
398 {
399 	unsigned int depth, users;
400 
401 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
402 		return true;
403 
404 	/*
405 	 * Don't try dividing an ant
406 	 */
407 	if (bt->sb.depth == 1)
408 		return true;
409 
410 	if (blk_mq_is_shared_tags(hctx->flags)) {
411 		struct request_queue *q = hctx->queue;
412 
413 		if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
414 			return true;
415 	} else {
416 		if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
417 			return true;
418 	}
419 
420 	users = atomic_read(&hctx->tags->active_queues);
421 
422 	if (!users)
423 		return true;
424 
425 	/*
426 	 * Allow at least some tags
427 	 */
428 	depth = max((bt->sb.depth + users - 1) / users, 4U);
429 	return __blk_mq_active_requests(hctx) < depth;
430 }
431 
432 /* run the code block in @dispatch_ops with rcu/srcu read lock held */
433 #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops)	\
434 do {								\
435 	if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) {		\
436 		struct blk_mq_tag_set *__tag_set = (q)->tag_set; \
437 		int srcu_idx;					\
438 								\
439 		might_sleep_if(check_sleep);			\
440 		srcu_idx = srcu_read_lock(__tag_set->srcu);	\
441 		(dispatch_ops);					\
442 		srcu_read_unlock(__tag_set->srcu, srcu_idx);	\
443 	} else {						\
444 		rcu_read_lock();				\
445 		(dispatch_ops);					\
446 		rcu_read_unlock();				\
447 	}							\
448 } while (0)
449 
450 #define blk_mq_run_dispatch_ops(q, dispatch_ops)		\
451 	__blk_mq_run_dispatch_ops(q, true, dispatch_ops)	\
452 
453 #endif
454