xref: /openbmc/linux/block/blk-mq.h (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4 
5 #include "blk-stat.h"
6 #include "blk-mq-tag.h"
7 
8 struct blk_mq_tag_set;
9 
10 /**
11  * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
12  */
13 struct blk_mq_ctx {
14 	struct {
15 		spinlock_t		lock;
16 		struct list_head	rq_list;
17 	}  ____cacheline_aligned_in_smp;
18 
19 	unsigned int		cpu;
20 	unsigned int		index_hw;
21 
22 	/* incremented at dispatch time */
23 	unsigned long		rq_dispatched[2];
24 	unsigned long		rq_merged;
25 
26 	/* incremented at completion time */
27 	unsigned long		____cacheline_aligned_in_smp rq_completed[2];
28 
29 	struct request_queue	*queue;
30 	struct kobject		kobj;
31 } ____cacheline_aligned_in_smp;
32 
33 /*
34  * Bits for request->gstate.  The lower two bits carry MQ_RQ_* state value
35  * and the upper bits the generation number.
36  */
37 enum mq_rq_state {
38 	MQ_RQ_IDLE		= 0,
39 	MQ_RQ_IN_FLIGHT		= 1,
40 	MQ_RQ_COMPLETE		= 2,
41 
42 	MQ_RQ_STATE_BITS	= 2,
43 	MQ_RQ_STATE_MASK	= (1 << MQ_RQ_STATE_BITS) - 1,
44 	MQ_RQ_GEN_INC		= 1 << MQ_RQ_STATE_BITS,
45 };
46 
47 void blk_mq_freeze_queue(struct request_queue *q);
48 void blk_mq_free_queue(struct request_queue *q);
49 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
50 void blk_mq_wake_waiters(struct request_queue *q);
51 bool blk_mq_dispatch_rq_list(struct request_queue *, struct list_head *, bool);
52 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
53 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
54 				bool wait);
55 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
56 					struct blk_mq_ctx *start);
57 
58 /*
59  * Internal helpers for allocating/freeing the request map
60  */
61 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
62 		     unsigned int hctx_idx);
63 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
64 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
65 					unsigned int hctx_idx,
66 					unsigned int nr_tags,
67 					unsigned int reserved_tags);
68 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
69 		     unsigned int hctx_idx, unsigned int depth);
70 
71 /*
72  * Internal helpers for request insertion into sw queues
73  */
74 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
75 				bool at_head);
76 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue);
77 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
78 				struct list_head *list);
79 
80 /* Used by blk_insert_cloned_request() to issue request directly */
81 blk_status_t blk_mq_request_issue_directly(struct request *rq);
82 
83 /*
84  * CPU -> queue mappings
85  */
86 extern int blk_mq_hw_queue_to_node(unsigned int *map, unsigned int);
87 
88 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
89 		int cpu)
90 {
91 	return q->queue_hw_ctx[q->mq_map[cpu]];
92 }
93 
94 /*
95  * sysfs helpers
96  */
97 extern void blk_mq_sysfs_init(struct request_queue *q);
98 extern void blk_mq_sysfs_deinit(struct request_queue *q);
99 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
100 extern int blk_mq_sysfs_register(struct request_queue *q);
101 extern void blk_mq_sysfs_unregister(struct request_queue *q);
102 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
103 
104 void blk_mq_release(struct request_queue *q);
105 
106 /**
107  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
108  * @rq: target request.
109  */
110 static inline int blk_mq_rq_state(struct request *rq)
111 {
112 	return READ_ONCE(rq->gstate) & MQ_RQ_STATE_MASK;
113 }
114 
115 /**
116  * blk_mq_rq_update_state() - set the current MQ_RQ_* state of a request
117  * @rq: target request.
118  * @state: new state to set.
119  *
120  * Set @rq's state to @state.  The caller is responsible for ensuring that
121  * there are no other updaters.  A request can transition into IN_FLIGHT
122  * only from IDLE and doing so increments the generation number.
123  */
124 static inline void blk_mq_rq_update_state(struct request *rq,
125 					  enum mq_rq_state state)
126 {
127 	u64 old_val = READ_ONCE(rq->gstate);
128 	u64 new_val = (old_val & ~MQ_RQ_STATE_MASK) | state;
129 
130 	if (state == MQ_RQ_IN_FLIGHT) {
131 		WARN_ON_ONCE((old_val & MQ_RQ_STATE_MASK) != MQ_RQ_IDLE);
132 		new_val += MQ_RQ_GEN_INC;
133 	}
134 
135 	/* avoid exposing interim values */
136 	WRITE_ONCE(rq->gstate, new_val);
137 }
138 
139 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
140 					   unsigned int cpu)
141 {
142 	return per_cpu_ptr(q->queue_ctx, cpu);
143 }
144 
145 /*
146  * This assumes per-cpu software queueing queues. They could be per-node
147  * as well, for instance. For now this is hardcoded as-is. Note that we don't
148  * care about preemption, since we know the ctx's are persistent. This does
149  * mean that we can't rely on ctx always matching the currently running CPU.
150  */
151 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
152 {
153 	return __blk_mq_get_ctx(q, get_cpu());
154 }
155 
156 static inline void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
157 {
158 	put_cpu();
159 }
160 
161 struct blk_mq_alloc_data {
162 	/* input parameter */
163 	struct request_queue *q;
164 	blk_mq_req_flags_t flags;
165 	unsigned int shallow_depth;
166 
167 	/* input & output parameter */
168 	struct blk_mq_ctx *ctx;
169 	struct blk_mq_hw_ctx *hctx;
170 };
171 
172 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
173 {
174 	if (data->flags & BLK_MQ_REQ_INTERNAL)
175 		return data->hctx->sched_tags;
176 
177 	return data->hctx->tags;
178 }
179 
180 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
181 {
182 	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
183 }
184 
185 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
186 {
187 	return hctx->nr_ctx && hctx->tags;
188 }
189 
190 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
191 		      unsigned int inflight[2]);
192 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
193 			 unsigned int inflight[2]);
194 
195 static inline void blk_mq_put_dispatch_budget(struct blk_mq_hw_ctx *hctx)
196 {
197 	struct request_queue *q = hctx->queue;
198 
199 	if (q->mq_ops->put_budget)
200 		q->mq_ops->put_budget(hctx);
201 }
202 
203 static inline bool blk_mq_get_dispatch_budget(struct blk_mq_hw_ctx *hctx)
204 {
205 	struct request_queue *q = hctx->queue;
206 
207 	if (q->mq_ops->get_budget)
208 		return q->mq_ops->get_budget(hctx);
209 	return true;
210 }
211 
212 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
213 					   struct request *rq)
214 {
215 	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
216 	rq->tag = -1;
217 
218 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
219 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
220 		atomic_dec(&hctx->nr_active);
221 	}
222 }
223 
224 static inline void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
225 				       struct request *rq)
226 {
227 	if (rq->tag == -1 || rq->internal_tag == -1)
228 		return;
229 
230 	__blk_mq_put_driver_tag(hctx, rq);
231 }
232 
233 static inline void blk_mq_put_driver_tag(struct request *rq)
234 {
235 	struct blk_mq_hw_ctx *hctx;
236 
237 	if (rq->tag == -1 || rq->internal_tag == -1)
238 		return;
239 
240 	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
241 	__blk_mq_put_driver_tag(hctx, rq);
242 }
243 
244 #endif
245