1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef INT_BLK_MQ_H 3 #define INT_BLK_MQ_H 4 5 #include "blk-stat.h" 6 #include "blk-mq-tag.h" 7 8 struct blk_mq_tag_set; 9 10 struct blk_mq_ctxs { 11 struct kobject kobj; 12 struct blk_mq_ctx __percpu *queue_ctx; 13 }; 14 15 /** 16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs 17 */ 18 struct blk_mq_ctx { 19 struct { 20 spinlock_t lock; 21 struct list_head rq_lists[HCTX_MAX_TYPES]; 22 } ____cacheline_aligned_in_smp; 23 24 unsigned int cpu; 25 unsigned short index_hw[HCTX_MAX_TYPES]; 26 27 /* incremented at dispatch time */ 28 unsigned long rq_dispatched[2]; 29 unsigned long rq_merged; 30 31 /* incremented at completion time */ 32 unsigned long ____cacheline_aligned_in_smp rq_completed[2]; 33 34 struct request_queue *queue; 35 struct blk_mq_ctxs *ctxs; 36 struct kobject kobj; 37 } ____cacheline_aligned_in_smp; 38 39 void blk_mq_freeze_queue(struct request_queue *q); 40 void blk_mq_free_queue(struct request_queue *q); 41 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr); 42 void blk_mq_wake_waiters(struct request_queue *q); 43 bool blk_mq_dispatch_rq_list(struct request_queue *, struct list_head *, bool); 44 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list); 45 bool blk_mq_get_driver_tag(struct request *rq); 46 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 47 struct blk_mq_ctx *start); 48 49 /* 50 * Internal helpers for allocating/freeing the request map 51 */ 52 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 53 unsigned int hctx_idx); 54 void blk_mq_free_rq_map(struct blk_mq_tags *tags); 55 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 56 unsigned int hctx_idx, 57 unsigned int nr_tags, 58 unsigned int reserved_tags); 59 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 60 unsigned int hctx_idx, unsigned int depth); 61 62 /* 63 * Internal helpers for request insertion into sw queues 64 */ 65 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 66 bool at_head); 67 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue); 68 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 69 struct list_head *list); 70 71 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 72 struct request *rq, 73 blk_qc_t *cookie, 74 bool bypass, bool last); 75 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 76 struct list_head *list); 77 78 /* 79 * CPU -> queue mappings 80 */ 81 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int); 82 83 /* 84 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue 85 * @q: request queue 86 * @type: the hctx type index 87 * @cpu: CPU 88 */ 89 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q, 90 enum hctx_type type, 91 unsigned int cpu) 92 { 93 return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]]; 94 } 95 96 /* 97 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue 98 * @q: request queue 99 * @flags: request command flags 100 * @cpu: CPU 101 */ 102 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, 103 unsigned int flags, 104 unsigned int cpu) 105 { 106 enum hctx_type type = HCTX_TYPE_DEFAULT; 107 108 if ((flags & REQ_HIPRI) && 109 q->tag_set->nr_maps > HCTX_TYPE_POLL && 110 q->tag_set->map[HCTX_TYPE_POLL].nr_queues && 111 test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 112 type = HCTX_TYPE_POLL; 113 114 else if (((flags & REQ_OP_MASK) == REQ_OP_READ) && 115 q->tag_set->nr_maps > HCTX_TYPE_READ && 116 q->tag_set->map[HCTX_TYPE_READ].nr_queues) 117 type = HCTX_TYPE_READ; 118 119 return blk_mq_map_queue_type(q, type, cpu); 120 } 121 122 /* 123 * sysfs helpers 124 */ 125 extern void blk_mq_sysfs_init(struct request_queue *q); 126 extern void blk_mq_sysfs_deinit(struct request_queue *q); 127 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q); 128 extern int blk_mq_sysfs_register(struct request_queue *q); 129 extern void blk_mq_sysfs_unregister(struct request_queue *q); 130 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx); 131 132 void blk_mq_release(struct request_queue *q); 133 134 /** 135 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request 136 * @rq: target request. 137 */ 138 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) 139 { 140 return READ_ONCE(rq->state); 141 } 142 143 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, 144 unsigned int cpu) 145 { 146 return per_cpu_ptr(q->queue_ctx, cpu); 147 } 148 149 /* 150 * This assumes per-cpu software queueing queues. They could be per-node 151 * as well, for instance. For now this is hardcoded as-is. Note that we don't 152 * care about preemption, since we know the ctx's are persistent. This does 153 * mean that we can't rely on ctx always matching the currently running CPU. 154 */ 155 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) 156 { 157 return __blk_mq_get_ctx(q, get_cpu()); 158 } 159 160 static inline void blk_mq_put_ctx(struct blk_mq_ctx *ctx) 161 { 162 put_cpu(); 163 } 164 165 struct blk_mq_alloc_data { 166 /* input parameter */ 167 struct request_queue *q; 168 blk_mq_req_flags_t flags; 169 unsigned int shallow_depth; 170 unsigned int cmd_flags; 171 172 /* input & output parameter */ 173 struct blk_mq_ctx *ctx; 174 struct blk_mq_hw_ctx *hctx; 175 }; 176 177 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data) 178 { 179 if (data->flags & BLK_MQ_REQ_INTERNAL) 180 return data->hctx->sched_tags; 181 182 return data->hctx->tags; 183 } 184 185 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx) 186 { 187 return test_bit(BLK_MQ_S_STOPPED, &hctx->state); 188 } 189 190 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx) 191 { 192 return hctx->nr_ctx && hctx->tags; 193 } 194 195 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part); 196 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 197 unsigned int inflight[2]); 198 199 static inline void blk_mq_put_dispatch_budget(struct blk_mq_hw_ctx *hctx) 200 { 201 struct request_queue *q = hctx->queue; 202 203 if (q->mq_ops->put_budget) 204 q->mq_ops->put_budget(hctx); 205 } 206 207 static inline bool blk_mq_get_dispatch_budget(struct blk_mq_hw_ctx *hctx) 208 { 209 struct request_queue *q = hctx->queue; 210 211 if (q->mq_ops->get_budget) 212 return q->mq_ops->get_budget(hctx); 213 return true; 214 } 215 216 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 217 struct request *rq) 218 { 219 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 220 rq->tag = -1; 221 222 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 223 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 224 atomic_dec(&hctx->nr_active); 225 } 226 } 227 228 static inline void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx, 229 struct request *rq) 230 { 231 if (rq->tag == -1 || rq->internal_tag == -1) 232 return; 233 234 __blk_mq_put_driver_tag(hctx, rq); 235 } 236 237 static inline void blk_mq_put_driver_tag(struct request *rq) 238 { 239 if (rq->tag == -1 || rq->internal_tag == -1) 240 return; 241 242 __blk_mq_put_driver_tag(rq->mq_hctx, rq); 243 } 244 245 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap) 246 { 247 int cpu; 248 249 for_each_possible_cpu(cpu) 250 qmap->mq_map[cpu] = 0; 251 } 252 253 #endif 254