1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef INT_BLK_MQ_H 3 #define INT_BLK_MQ_H 4 5 #include "blk-stat.h" 6 #include "blk-mq-tag.h" 7 8 struct blk_mq_tag_set; 9 10 struct blk_mq_ctxs { 11 struct kobject kobj; 12 struct blk_mq_ctx __percpu *queue_ctx; 13 }; 14 15 /** 16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs 17 */ 18 struct blk_mq_ctx { 19 struct { 20 spinlock_t lock; 21 struct list_head rq_lists[HCTX_MAX_TYPES]; 22 } ____cacheline_aligned_in_smp; 23 24 unsigned int cpu; 25 unsigned short index_hw[HCTX_MAX_TYPES]; 26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES]; 27 28 struct request_queue *queue; 29 struct blk_mq_ctxs *ctxs; 30 struct kobject kobj; 31 } ____cacheline_aligned_in_smp; 32 33 void blk_mq_submit_bio(struct bio *bio); 34 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 35 unsigned int flags); 36 void blk_mq_exit_queue(struct request_queue *q); 37 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr); 38 void blk_mq_wake_waiters(struct request_queue *q); 39 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *, 40 unsigned int); 41 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 42 bool kick_requeue_list); 43 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list); 44 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 45 struct blk_mq_ctx *start); 46 void blk_mq_put_rq_ref(struct request *rq); 47 48 /* 49 * Internal helpers for allocating/freeing the request map 50 */ 51 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 52 unsigned int hctx_idx); 53 void blk_mq_free_rq_map(struct blk_mq_tags *tags); 54 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 55 unsigned int hctx_idx, unsigned int depth); 56 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 57 struct blk_mq_tags *tags, 58 unsigned int hctx_idx); 59 /* 60 * Internal helpers for request insertion into sw queues 61 */ 62 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 63 bool at_head); 64 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 65 bool run_queue); 66 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 67 struct list_head *list); 68 69 /* Used by blk_insert_cloned_request() to issue request directly */ 70 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last); 71 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 72 struct list_head *list); 73 74 /* 75 * CPU -> queue mappings 76 */ 77 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int); 78 79 /* 80 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue 81 * @q: request queue 82 * @type: the hctx type index 83 * @cpu: CPU 84 */ 85 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q, 86 enum hctx_type type, 87 unsigned int cpu) 88 { 89 return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]]; 90 } 91 92 static inline enum hctx_type blk_mq_get_hctx_type(unsigned int flags) 93 { 94 enum hctx_type type = HCTX_TYPE_DEFAULT; 95 96 /* 97 * The caller ensure that if REQ_POLLED, poll must be enabled. 98 */ 99 if (flags & REQ_POLLED) 100 type = HCTX_TYPE_POLL; 101 else if ((flags & REQ_OP_MASK) == REQ_OP_READ) 102 type = HCTX_TYPE_READ; 103 return type; 104 } 105 106 /* 107 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue 108 * @q: request queue 109 * @flags: request command flags 110 * @ctx: software queue cpu ctx 111 */ 112 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, 113 unsigned int flags, 114 struct blk_mq_ctx *ctx) 115 { 116 return ctx->hctxs[blk_mq_get_hctx_type(flags)]; 117 } 118 119 /* 120 * sysfs helpers 121 */ 122 extern void blk_mq_sysfs_init(struct request_queue *q); 123 extern void blk_mq_sysfs_deinit(struct request_queue *q); 124 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q); 125 extern int blk_mq_sysfs_register(struct request_queue *q); 126 extern void blk_mq_sysfs_unregister(struct request_queue *q); 127 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx); 128 void blk_mq_free_plug_rqs(struct blk_plug *plug); 129 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); 130 131 void blk_mq_cancel_work_sync(struct request_queue *q); 132 133 void blk_mq_release(struct request_queue *q); 134 135 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, 136 unsigned int cpu) 137 { 138 return per_cpu_ptr(q->queue_ctx, cpu); 139 } 140 141 /* 142 * This assumes per-cpu software queueing queues. They could be per-node 143 * as well, for instance. For now this is hardcoded as-is. Note that we don't 144 * care about preemption, since we know the ctx's are persistent. This does 145 * mean that we can't rely on ctx always matching the currently running CPU. 146 */ 147 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) 148 { 149 return __blk_mq_get_ctx(q, raw_smp_processor_id()); 150 } 151 152 struct blk_mq_alloc_data { 153 /* input parameter */ 154 struct request_queue *q; 155 blk_mq_req_flags_t flags; 156 unsigned int shallow_depth; 157 unsigned int cmd_flags; 158 req_flags_t rq_flags; 159 160 /* allocate multiple requests/tags in one go */ 161 unsigned int nr_tags; 162 struct request **cached_rq; 163 164 /* input & output parameter */ 165 struct blk_mq_ctx *ctx; 166 struct blk_mq_hw_ctx *hctx; 167 }; 168 169 static inline bool blk_mq_is_shared_tags(unsigned int flags) 170 { 171 return flags & BLK_MQ_F_TAG_HCTX_SHARED; 172 } 173 174 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data) 175 { 176 if (!(data->rq_flags & RQF_ELV)) 177 return data->hctx->tags; 178 return data->hctx->sched_tags; 179 } 180 181 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx) 182 { 183 return test_bit(BLK_MQ_S_STOPPED, &hctx->state); 184 } 185 186 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx) 187 { 188 return hctx->nr_ctx && hctx->tags; 189 } 190 191 unsigned int blk_mq_in_flight(struct request_queue *q, 192 struct block_device *part); 193 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 194 unsigned int inflight[2]); 195 196 static inline void blk_mq_put_dispatch_budget(struct request_queue *q, 197 int budget_token) 198 { 199 if (q->mq_ops->put_budget) 200 q->mq_ops->put_budget(q, budget_token); 201 } 202 203 static inline int blk_mq_get_dispatch_budget(struct request_queue *q) 204 { 205 if (q->mq_ops->get_budget) 206 return q->mq_ops->get_budget(q); 207 return 0; 208 } 209 210 static inline void blk_mq_set_rq_budget_token(struct request *rq, int token) 211 { 212 if (token < 0) 213 return; 214 215 if (rq->q->mq_ops->set_rq_budget_token) 216 rq->q->mq_ops->set_rq_budget_token(rq, token); 217 } 218 219 static inline int blk_mq_get_rq_budget_token(struct request *rq) 220 { 221 if (rq->q->mq_ops->get_rq_budget_token) 222 return rq->q->mq_ops->get_rq_budget_token(rq); 223 return -1; 224 } 225 226 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx) 227 { 228 if (blk_mq_is_shared_tags(hctx->flags)) 229 atomic_inc(&hctx->queue->nr_active_requests_shared_tags); 230 else 231 atomic_inc(&hctx->nr_active); 232 } 233 234 static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx, 235 int val) 236 { 237 if (blk_mq_is_shared_tags(hctx->flags)) 238 atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags); 239 else 240 atomic_sub(val, &hctx->nr_active); 241 } 242 243 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx) 244 { 245 __blk_mq_sub_active_requests(hctx, 1); 246 } 247 248 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx) 249 { 250 if (blk_mq_is_shared_tags(hctx->flags)) 251 return atomic_read(&hctx->queue->nr_active_requests_shared_tags); 252 return atomic_read(&hctx->nr_active); 253 } 254 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 255 struct request *rq) 256 { 257 blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag); 258 rq->tag = BLK_MQ_NO_TAG; 259 260 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 261 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 262 __blk_mq_dec_active_requests(hctx); 263 } 264 } 265 266 static inline void blk_mq_put_driver_tag(struct request *rq) 267 { 268 if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG) 269 return; 270 271 __blk_mq_put_driver_tag(rq->mq_hctx, rq); 272 } 273 274 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq); 275 276 static inline bool blk_mq_get_driver_tag(struct request *rq) 277 { 278 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 279 280 if (rq->tag != BLK_MQ_NO_TAG && 281 !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 282 hctx->tags->rqs[rq->tag] = rq; 283 return true; 284 } 285 286 return __blk_mq_get_driver_tag(hctx, rq); 287 } 288 289 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap) 290 { 291 int cpu; 292 293 for_each_possible_cpu(cpu) 294 qmap->mq_map[cpu] = 0; 295 } 296 297 /* 298 * blk_mq_plug() - Get caller context plug 299 * @q: request queue 300 * @bio : the bio being submitted by the caller context 301 * 302 * Plugging, by design, may delay the insertion of BIOs into the elevator in 303 * order to increase BIO merging opportunities. This however can cause BIO 304 * insertion order to change from the order in which submit_bio() is being 305 * executed in the case of multiple contexts concurrently issuing BIOs to a 306 * device, even if these context are synchronized to tightly control BIO issuing 307 * order. While this is not a problem with regular block devices, this ordering 308 * change can cause write BIO failures with zoned block devices as these 309 * require sequential write patterns to zones. Prevent this from happening by 310 * ignoring the plug state of a BIO issuing context if the target request queue 311 * is for a zoned block device and the BIO to plug is a write operation. 312 * 313 * Return current->plug if the bio can be plugged and NULL otherwise 314 */ 315 static inline struct blk_plug *blk_mq_plug(struct request_queue *q, 316 struct bio *bio) 317 { 318 /* 319 * For regular block devices or read operations, use the context plug 320 * which may be NULL if blk_start_plug() was not executed. 321 */ 322 if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio))) 323 return current->plug; 324 325 /* Zoned block device write operation case: do not plug the BIO */ 326 return NULL; 327 } 328 329 /* Free all requests on the list */ 330 static inline void blk_mq_free_requests(struct list_head *list) 331 { 332 while (!list_empty(list)) { 333 struct request *rq = list_entry_rq(list->next); 334 335 list_del_init(&rq->queuelist); 336 blk_mq_free_request(rq); 337 } 338 } 339 340 /* 341 * For shared tag users, we track the number of currently active users 342 * and attempt to provide a fair share of the tag depth for each of them. 343 */ 344 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 345 struct sbitmap_queue *bt) 346 { 347 unsigned int depth, users; 348 349 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) 350 return true; 351 352 /* 353 * Don't try dividing an ant 354 */ 355 if (bt->sb.depth == 1) 356 return true; 357 358 if (blk_mq_is_shared_tags(hctx->flags)) { 359 struct request_queue *q = hctx->queue; 360 361 if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) 362 return true; 363 } else { 364 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 365 return true; 366 } 367 368 users = atomic_read(&hctx->tags->active_queues); 369 370 if (!users) 371 return true; 372 373 /* 374 * Allow at least some tags 375 */ 376 depth = max((bt->sb.depth + users - 1) / users, 4U); 377 return __blk_mq_active_requests(hctx) < depth; 378 } 379 380 381 #endif 382