1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 45 46 static void blk_mq_poll_stats_start(struct request_queue *q); 47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49 static int blk_mq_poll_stats_bkt(const struct request *rq) 50 { 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64 } 65 66 /* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71 { 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75 } 76 77 /* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87 } 88 89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91 { 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95 } 96 97 struct mq_inflight { 98 struct hd_struct *part; 99 unsigned int inflight[2]; 100 }; 101 102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105 { 106 struct mq_inflight *mi = priv; 107 108 if (rq->part == mi->part && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 109 mi->inflight[rq_data_dir(rq)]++; 110 111 return true; 112 } 113 114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 120 return mi.inflight[0] + mi.inflight[1]; 121 } 122 123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 124 unsigned int inflight[2]) 125 { 126 struct mq_inflight mi = { .part = part }; 127 128 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 129 inflight[0] = mi.inflight[0]; 130 inflight[1] = mi.inflight[1]; 131 } 132 133 void blk_freeze_queue_start(struct request_queue *q) 134 { 135 mutex_lock(&q->mq_freeze_lock); 136 if (++q->mq_freeze_depth == 1) { 137 percpu_ref_kill(&q->q_usage_counter); 138 mutex_unlock(&q->mq_freeze_lock); 139 if (queue_is_mq(q)) 140 blk_mq_run_hw_queues(q, false); 141 } else { 142 mutex_unlock(&q->mq_freeze_lock); 143 } 144 } 145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 146 147 void blk_mq_freeze_queue_wait(struct request_queue *q) 148 { 149 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 152 153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 154 unsigned long timeout) 155 { 156 return wait_event_timeout(q->mq_freeze_wq, 157 percpu_ref_is_zero(&q->q_usage_counter), 158 timeout); 159 } 160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 161 162 /* 163 * Guarantee no request is in use, so we can change any data structure of 164 * the queue afterward. 165 */ 166 void blk_freeze_queue(struct request_queue *q) 167 { 168 /* 169 * In the !blk_mq case we are only calling this to kill the 170 * q_usage_counter, otherwise this increases the freeze depth 171 * and waits for it to return to zero. For this reason there is 172 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 173 * exported to drivers as the only user for unfreeze is blk_mq. 174 */ 175 blk_freeze_queue_start(q); 176 blk_mq_freeze_queue_wait(q); 177 } 178 179 void blk_mq_freeze_queue(struct request_queue *q) 180 { 181 /* 182 * ...just an alias to keep freeze and unfreeze actions balanced 183 * in the blk_mq_* namespace 184 */ 185 blk_freeze_queue(q); 186 } 187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 188 189 void blk_mq_unfreeze_queue(struct request_queue *q) 190 { 191 mutex_lock(&q->mq_freeze_lock); 192 q->mq_freeze_depth--; 193 WARN_ON_ONCE(q->mq_freeze_depth < 0); 194 if (!q->mq_freeze_depth) { 195 percpu_ref_resurrect(&q->q_usage_counter); 196 wake_up_all(&q->mq_freeze_wq); 197 } 198 mutex_unlock(&q->mq_freeze_lock); 199 } 200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 201 202 /* 203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 204 * mpt3sas driver such that this function can be removed. 205 */ 206 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 207 { 208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 209 } 210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 211 212 /** 213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 214 * @q: request queue. 215 * 216 * Note: this function does not prevent that the struct request end_io() 217 * callback function is invoked. Once this function is returned, we make 218 * sure no dispatch can happen until the queue is unquiesced via 219 * blk_mq_unquiesce_queue(). 220 */ 221 void blk_mq_quiesce_queue(struct request_queue *q) 222 { 223 struct blk_mq_hw_ctx *hctx; 224 unsigned int i; 225 bool rcu = false; 226 227 blk_mq_quiesce_queue_nowait(q); 228 229 queue_for_each_hw_ctx(q, hctx, i) { 230 if (hctx->flags & BLK_MQ_F_BLOCKING) 231 synchronize_srcu(hctx->srcu); 232 else 233 rcu = true; 234 } 235 if (rcu) 236 synchronize_rcu(); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 239 240 /* 241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 242 * @q: request queue. 243 * 244 * This function recovers queue into the state before quiescing 245 * which is done by blk_mq_quiesce_queue. 246 */ 247 void blk_mq_unquiesce_queue(struct request_queue *q) 248 { 249 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 250 251 /* dispatch requests which are inserted during quiescing */ 252 blk_mq_run_hw_queues(q, true); 253 } 254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 255 256 void blk_mq_wake_waiters(struct request_queue *q) 257 { 258 struct blk_mq_hw_ctx *hctx; 259 unsigned int i; 260 261 queue_for_each_hw_ctx(q, hctx, i) 262 if (blk_mq_hw_queue_mapped(hctx)) 263 blk_mq_tag_wakeup_all(hctx->tags, true); 264 } 265 266 /* 267 * Only need start/end time stamping if we have iostat or 268 * blk stats enabled, or using an IO scheduler. 269 */ 270 static inline bool blk_mq_need_time_stamp(struct request *rq) 271 { 272 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 273 } 274 275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 276 unsigned int tag, u64 alloc_time_ns) 277 { 278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 279 struct request *rq = tags->static_rqs[tag]; 280 281 if (data->q->elevator) { 282 rq->tag = BLK_MQ_NO_TAG; 283 rq->internal_tag = tag; 284 } else { 285 rq->tag = tag; 286 rq->internal_tag = BLK_MQ_NO_TAG; 287 } 288 289 /* csd/requeue_work/fifo_time is initialized before use */ 290 rq->q = data->q; 291 rq->mq_ctx = data->ctx; 292 rq->mq_hctx = data->hctx; 293 rq->rq_flags = 0; 294 rq->cmd_flags = data->cmd_flags; 295 if (data->flags & BLK_MQ_REQ_PREEMPT) 296 rq->rq_flags |= RQF_PREEMPT; 297 if (blk_queue_io_stat(data->q)) 298 rq->rq_flags |= RQF_IO_STAT; 299 INIT_LIST_HEAD(&rq->queuelist); 300 INIT_HLIST_NODE(&rq->hash); 301 RB_CLEAR_NODE(&rq->rb_node); 302 rq->rq_disk = NULL; 303 rq->part = NULL; 304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 305 rq->alloc_time_ns = alloc_time_ns; 306 #endif 307 if (blk_mq_need_time_stamp(rq)) 308 rq->start_time_ns = ktime_get_ns(); 309 else 310 rq->start_time_ns = 0; 311 rq->io_start_time_ns = 0; 312 rq->stats_sectors = 0; 313 rq->nr_phys_segments = 0; 314 #if defined(CONFIG_BLK_DEV_INTEGRITY) 315 rq->nr_integrity_segments = 0; 316 #endif 317 blk_crypto_rq_set_defaults(rq); 318 /* tag was already set */ 319 WRITE_ONCE(rq->deadline, 0); 320 321 rq->timeout = 0; 322 323 rq->end_io = NULL; 324 rq->end_io_data = NULL; 325 326 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 327 refcount_set(&rq->ref, 1); 328 329 if (!op_is_flush(data->cmd_flags)) { 330 struct elevator_queue *e = data->q->elevator; 331 332 rq->elv.icq = NULL; 333 if (e && e->type->ops.prepare_request) { 334 if (e->type->icq_cache) 335 blk_mq_sched_assign_ioc(rq); 336 337 e->type->ops.prepare_request(rq); 338 rq->rq_flags |= RQF_ELVPRIV; 339 } 340 } 341 342 data->hctx->queued++; 343 return rq; 344 } 345 346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 347 { 348 struct request_queue *q = data->q; 349 struct elevator_queue *e = q->elevator; 350 u64 alloc_time_ns = 0; 351 unsigned int tag; 352 353 /* alloc_time includes depth and tag waits */ 354 if (blk_queue_rq_alloc_time(q)) 355 alloc_time_ns = ktime_get_ns(); 356 357 if (data->cmd_flags & REQ_NOWAIT) 358 data->flags |= BLK_MQ_REQ_NOWAIT; 359 360 if (e) { 361 /* 362 * Flush requests are special and go directly to the 363 * dispatch list. Don't include reserved tags in the 364 * limiting, as it isn't useful. 365 */ 366 if (!op_is_flush(data->cmd_flags) && 367 e->type->ops.limit_depth && 368 !(data->flags & BLK_MQ_REQ_RESERVED)) 369 e->type->ops.limit_depth(data->cmd_flags, data); 370 } 371 372 retry: 373 data->ctx = blk_mq_get_ctx(q); 374 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 375 if (!e) 376 blk_mq_tag_busy(data->hctx); 377 378 /* 379 * Waiting allocations only fail because of an inactive hctx. In that 380 * case just retry the hctx assignment and tag allocation as CPU hotplug 381 * should have migrated us to an online CPU by now. 382 */ 383 tag = blk_mq_get_tag(data); 384 if (tag == BLK_MQ_NO_TAG) { 385 if (data->flags & BLK_MQ_REQ_NOWAIT) 386 return NULL; 387 388 /* 389 * Give up the CPU and sleep for a random short time to ensure 390 * that thread using a realtime scheduling class are migrated 391 * off the CPU, and thus off the hctx that is going away. 392 */ 393 msleep(3); 394 goto retry; 395 } 396 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 397 } 398 399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 400 blk_mq_req_flags_t flags) 401 { 402 struct blk_mq_alloc_data data = { 403 .q = q, 404 .flags = flags, 405 .cmd_flags = op, 406 }; 407 struct request *rq; 408 int ret; 409 410 ret = blk_queue_enter(q, flags); 411 if (ret) 412 return ERR_PTR(ret); 413 414 rq = __blk_mq_alloc_request(&data); 415 if (!rq) 416 goto out_queue_exit; 417 rq->__data_len = 0; 418 rq->__sector = (sector_t) -1; 419 rq->bio = rq->biotail = NULL; 420 return rq; 421 out_queue_exit: 422 blk_queue_exit(q); 423 return ERR_PTR(-EWOULDBLOCK); 424 } 425 EXPORT_SYMBOL(blk_mq_alloc_request); 426 427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 428 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 429 { 430 struct blk_mq_alloc_data data = { 431 .q = q, 432 .flags = flags, 433 .cmd_flags = op, 434 }; 435 u64 alloc_time_ns = 0; 436 unsigned int cpu; 437 unsigned int tag; 438 int ret; 439 440 /* alloc_time includes depth and tag waits */ 441 if (blk_queue_rq_alloc_time(q)) 442 alloc_time_ns = ktime_get_ns(); 443 444 /* 445 * If the tag allocator sleeps we could get an allocation for a 446 * different hardware context. No need to complicate the low level 447 * allocator for this for the rare use case of a command tied to 448 * a specific queue. 449 */ 450 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 451 return ERR_PTR(-EINVAL); 452 453 if (hctx_idx >= q->nr_hw_queues) 454 return ERR_PTR(-EIO); 455 456 ret = blk_queue_enter(q, flags); 457 if (ret) 458 return ERR_PTR(ret); 459 460 /* 461 * Check if the hardware context is actually mapped to anything. 462 * If not tell the caller that it should skip this queue. 463 */ 464 ret = -EXDEV; 465 data.hctx = q->queue_hw_ctx[hctx_idx]; 466 if (!blk_mq_hw_queue_mapped(data.hctx)) 467 goto out_queue_exit; 468 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 469 data.ctx = __blk_mq_get_ctx(q, cpu); 470 471 if (!q->elevator) 472 blk_mq_tag_busy(data.hctx); 473 474 ret = -EWOULDBLOCK; 475 tag = blk_mq_get_tag(&data); 476 if (tag == BLK_MQ_NO_TAG) 477 goto out_queue_exit; 478 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 479 480 out_queue_exit: 481 blk_queue_exit(q); 482 return ERR_PTR(ret); 483 } 484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 485 486 static void __blk_mq_free_request(struct request *rq) 487 { 488 struct request_queue *q = rq->q; 489 struct blk_mq_ctx *ctx = rq->mq_ctx; 490 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 491 const int sched_tag = rq->internal_tag; 492 493 blk_crypto_free_request(rq); 494 blk_pm_mark_last_busy(rq); 495 rq->mq_hctx = NULL; 496 if (rq->tag != BLK_MQ_NO_TAG) 497 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 498 if (sched_tag != BLK_MQ_NO_TAG) 499 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 500 blk_mq_sched_restart(hctx); 501 blk_queue_exit(q); 502 } 503 504 void blk_mq_free_request(struct request *rq) 505 { 506 struct request_queue *q = rq->q; 507 struct elevator_queue *e = q->elevator; 508 struct blk_mq_ctx *ctx = rq->mq_ctx; 509 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 510 511 if (rq->rq_flags & RQF_ELVPRIV) { 512 if (e && e->type->ops.finish_request) 513 e->type->ops.finish_request(rq); 514 if (rq->elv.icq) { 515 put_io_context(rq->elv.icq->ioc); 516 rq->elv.icq = NULL; 517 } 518 } 519 520 ctx->rq_completed[rq_is_sync(rq)]++; 521 if (rq->rq_flags & RQF_MQ_INFLIGHT) 522 __blk_mq_dec_active_requests(hctx); 523 524 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 525 laptop_io_completion(q->backing_dev_info); 526 527 rq_qos_done(q, rq); 528 529 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 530 if (refcount_dec_and_test(&rq->ref)) 531 __blk_mq_free_request(rq); 532 } 533 EXPORT_SYMBOL_GPL(blk_mq_free_request); 534 535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 536 { 537 u64 now = 0; 538 539 if (blk_mq_need_time_stamp(rq)) 540 now = ktime_get_ns(); 541 542 if (rq->rq_flags & RQF_STATS) { 543 blk_mq_poll_stats_start(rq->q); 544 blk_stat_add(rq, now); 545 } 546 547 blk_mq_sched_completed_request(rq, now); 548 549 blk_account_io_done(rq, now); 550 551 if (rq->end_io) { 552 rq_qos_done(rq->q, rq); 553 rq->end_io(rq, error); 554 } else { 555 blk_mq_free_request(rq); 556 } 557 } 558 EXPORT_SYMBOL(__blk_mq_end_request); 559 560 void blk_mq_end_request(struct request *rq, blk_status_t error) 561 { 562 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 563 BUG(); 564 __blk_mq_end_request(rq, error); 565 } 566 EXPORT_SYMBOL(blk_mq_end_request); 567 568 /* 569 * Softirq action handler - move entries to local list and loop over them 570 * while passing them to the queue registered handler. 571 */ 572 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 573 { 574 struct list_head *cpu_list, local_list; 575 576 local_irq_disable(); 577 cpu_list = this_cpu_ptr(&blk_cpu_done); 578 list_replace_init(cpu_list, &local_list); 579 local_irq_enable(); 580 581 while (!list_empty(&local_list)) { 582 struct request *rq; 583 584 rq = list_entry(local_list.next, struct request, ipi_list); 585 list_del_init(&rq->ipi_list); 586 rq->q->mq_ops->complete(rq); 587 } 588 } 589 590 static void blk_mq_trigger_softirq(struct request *rq) 591 { 592 struct list_head *list; 593 unsigned long flags; 594 595 local_irq_save(flags); 596 list = this_cpu_ptr(&blk_cpu_done); 597 list_add_tail(&rq->ipi_list, list); 598 599 /* 600 * If the list only contains our just added request, signal a raise of 601 * the softirq. If there are already entries there, someone already 602 * raised the irq but it hasn't run yet. 603 */ 604 if (list->next == &rq->ipi_list) 605 raise_softirq_irqoff(BLOCK_SOFTIRQ); 606 local_irq_restore(flags); 607 } 608 609 static int blk_softirq_cpu_dead(unsigned int cpu) 610 { 611 /* 612 * If a CPU goes away, splice its entries to the current CPU 613 * and trigger a run of the softirq 614 */ 615 local_irq_disable(); 616 list_splice_init(&per_cpu(blk_cpu_done, cpu), 617 this_cpu_ptr(&blk_cpu_done)); 618 raise_softirq_irqoff(BLOCK_SOFTIRQ); 619 local_irq_enable(); 620 621 return 0; 622 } 623 624 625 static void __blk_mq_complete_request_remote(void *data) 626 { 627 struct request *rq = data; 628 629 /* 630 * For most of single queue controllers, there is only one irq vector 631 * for handling I/O completion, and the only irq's affinity is set 632 * to all possible CPUs. On most of ARCHs, this affinity means the irq 633 * is handled on one specific CPU. 634 * 635 * So complete I/O requests in softirq context in case of single queue 636 * devices to avoid degrading I/O performance due to irqsoff latency. 637 */ 638 if (rq->q->nr_hw_queues == 1) 639 blk_mq_trigger_softirq(rq); 640 else 641 rq->q->mq_ops->complete(rq); 642 } 643 644 static inline bool blk_mq_complete_need_ipi(struct request *rq) 645 { 646 int cpu = raw_smp_processor_id(); 647 648 if (!IS_ENABLED(CONFIG_SMP) || 649 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 650 return false; 651 652 /* same CPU or cache domain? Complete locally */ 653 if (cpu == rq->mq_ctx->cpu || 654 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 655 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 656 return false; 657 658 /* don't try to IPI to an offline CPU */ 659 return cpu_online(rq->mq_ctx->cpu); 660 } 661 662 bool blk_mq_complete_request_remote(struct request *rq) 663 { 664 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 665 666 /* 667 * For a polled request, always complete locallly, it's pointless 668 * to redirect the completion. 669 */ 670 if (rq->cmd_flags & REQ_HIPRI) 671 return false; 672 673 if (blk_mq_complete_need_ipi(rq)) { 674 rq->csd.func = __blk_mq_complete_request_remote; 675 rq->csd.info = rq; 676 rq->csd.flags = 0; 677 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd); 678 } else { 679 if (rq->q->nr_hw_queues > 1) 680 return false; 681 blk_mq_trigger_softirq(rq); 682 } 683 684 return true; 685 } 686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 687 688 /** 689 * blk_mq_complete_request - end I/O on a request 690 * @rq: the request being processed 691 * 692 * Description: 693 * Complete a request by scheduling the ->complete_rq operation. 694 **/ 695 void blk_mq_complete_request(struct request *rq) 696 { 697 if (!blk_mq_complete_request_remote(rq)) 698 rq->q->mq_ops->complete(rq); 699 } 700 EXPORT_SYMBOL(blk_mq_complete_request); 701 702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 703 __releases(hctx->srcu) 704 { 705 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 706 rcu_read_unlock(); 707 else 708 srcu_read_unlock(hctx->srcu, srcu_idx); 709 } 710 711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 712 __acquires(hctx->srcu) 713 { 714 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 715 /* shut up gcc false positive */ 716 *srcu_idx = 0; 717 rcu_read_lock(); 718 } else 719 *srcu_idx = srcu_read_lock(hctx->srcu); 720 } 721 722 /** 723 * blk_mq_start_request - Start processing a request 724 * @rq: Pointer to request to be started 725 * 726 * Function used by device drivers to notify the block layer that a request 727 * is going to be processed now, so blk layer can do proper initializations 728 * such as starting the timeout timer. 729 */ 730 void blk_mq_start_request(struct request *rq) 731 { 732 struct request_queue *q = rq->q; 733 734 trace_block_rq_issue(q, rq); 735 736 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 737 rq->io_start_time_ns = ktime_get_ns(); 738 rq->stats_sectors = blk_rq_sectors(rq); 739 rq->rq_flags |= RQF_STATS; 740 rq_qos_issue(q, rq); 741 } 742 743 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 744 745 blk_add_timer(rq); 746 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 747 748 #ifdef CONFIG_BLK_DEV_INTEGRITY 749 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 750 q->integrity.profile->prepare_fn(rq); 751 #endif 752 } 753 EXPORT_SYMBOL(blk_mq_start_request); 754 755 static void __blk_mq_requeue_request(struct request *rq) 756 { 757 struct request_queue *q = rq->q; 758 759 blk_mq_put_driver_tag(rq); 760 761 trace_block_rq_requeue(q, rq); 762 rq_qos_requeue(q, rq); 763 764 if (blk_mq_request_started(rq)) { 765 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 766 rq->rq_flags &= ~RQF_TIMED_OUT; 767 } 768 } 769 770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 771 { 772 __blk_mq_requeue_request(rq); 773 774 /* this request will be re-inserted to io scheduler queue */ 775 blk_mq_sched_requeue_request(rq); 776 777 BUG_ON(!list_empty(&rq->queuelist)); 778 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 779 } 780 EXPORT_SYMBOL(blk_mq_requeue_request); 781 782 static void blk_mq_requeue_work(struct work_struct *work) 783 { 784 struct request_queue *q = 785 container_of(work, struct request_queue, requeue_work.work); 786 LIST_HEAD(rq_list); 787 struct request *rq, *next; 788 789 spin_lock_irq(&q->requeue_lock); 790 list_splice_init(&q->requeue_list, &rq_list); 791 spin_unlock_irq(&q->requeue_lock); 792 793 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 794 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 795 continue; 796 797 rq->rq_flags &= ~RQF_SOFTBARRIER; 798 list_del_init(&rq->queuelist); 799 /* 800 * If RQF_DONTPREP, rq has contained some driver specific 801 * data, so insert it to hctx dispatch list to avoid any 802 * merge. 803 */ 804 if (rq->rq_flags & RQF_DONTPREP) 805 blk_mq_request_bypass_insert(rq, false, false); 806 else 807 blk_mq_sched_insert_request(rq, true, false, false); 808 } 809 810 while (!list_empty(&rq_list)) { 811 rq = list_entry(rq_list.next, struct request, queuelist); 812 list_del_init(&rq->queuelist); 813 blk_mq_sched_insert_request(rq, false, false, false); 814 } 815 816 blk_mq_run_hw_queues(q, false); 817 } 818 819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 820 bool kick_requeue_list) 821 { 822 struct request_queue *q = rq->q; 823 unsigned long flags; 824 825 /* 826 * We abuse this flag that is otherwise used by the I/O scheduler to 827 * request head insertion from the workqueue. 828 */ 829 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 830 831 spin_lock_irqsave(&q->requeue_lock, flags); 832 if (at_head) { 833 rq->rq_flags |= RQF_SOFTBARRIER; 834 list_add(&rq->queuelist, &q->requeue_list); 835 } else { 836 list_add_tail(&rq->queuelist, &q->requeue_list); 837 } 838 spin_unlock_irqrestore(&q->requeue_lock, flags); 839 840 if (kick_requeue_list) 841 blk_mq_kick_requeue_list(q); 842 } 843 844 void blk_mq_kick_requeue_list(struct request_queue *q) 845 { 846 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 847 } 848 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 849 850 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 851 unsigned long msecs) 852 { 853 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 854 msecs_to_jiffies(msecs)); 855 } 856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 857 858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 859 { 860 if (tag < tags->nr_tags) { 861 prefetch(tags->rqs[tag]); 862 return tags->rqs[tag]; 863 } 864 865 return NULL; 866 } 867 EXPORT_SYMBOL(blk_mq_tag_to_rq); 868 869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 870 void *priv, bool reserved) 871 { 872 /* 873 * If we find a request that isn't idle and the queue matches, 874 * we know the queue is busy. Return false to stop the iteration. 875 */ 876 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 877 bool *busy = priv; 878 879 *busy = true; 880 return false; 881 } 882 883 return true; 884 } 885 886 bool blk_mq_queue_inflight(struct request_queue *q) 887 { 888 bool busy = false; 889 890 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 891 return busy; 892 } 893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 894 895 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 896 { 897 req->rq_flags |= RQF_TIMED_OUT; 898 if (req->q->mq_ops->timeout) { 899 enum blk_eh_timer_return ret; 900 901 ret = req->q->mq_ops->timeout(req, reserved); 902 if (ret == BLK_EH_DONE) 903 return; 904 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 905 } 906 907 blk_add_timer(req); 908 } 909 910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 911 { 912 unsigned long deadline; 913 914 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 915 return false; 916 if (rq->rq_flags & RQF_TIMED_OUT) 917 return false; 918 919 deadline = READ_ONCE(rq->deadline); 920 if (time_after_eq(jiffies, deadline)) 921 return true; 922 923 if (*next == 0) 924 *next = deadline; 925 else if (time_after(*next, deadline)) 926 *next = deadline; 927 return false; 928 } 929 930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 931 struct request *rq, void *priv, bool reserved) 932 { 933 unsigned long *next = priv; 934 935 /* 936 * Just do a quick check if it is expired before locking the request in 937 * so we're not unnecessarilly synchronizing across CPUs. 938 */ 939 if (!blk_mq_req_expired(rq, next)) 940 return true; 941 942 /* 943 * We have reason to believe the request may be expired. Take a 944 * reference on the request to lock this request lifetime into its 945 * currently allocated context to prevent it from being reallocated in 946 * the event the completion by-passes this timeout handler. 947 * 948 * If the reference was already released, then the driver beat the 949 * timeout handler to posting a natural completion. 950 */ 951 if (!refcount_inc_not_zero(&rq->ref)) 952 return true; 953 954 /* 955 * The request is now locked and cannot be reallocated underneath the 956 * timeout handler's processing. Re-verify this exact request is truly 957 * expired; if it is not expired, then the request was completed and 958 * reallocated as a new request. 959 */ 960 if (blk_mq_req_expired(rq, next)) 961 blk_mq_rq_timed_out(rq, reserved); 962 963 if (is_flush_rq(rq, hctx)) 964 rq->end_io(rq, 0); 965 else if (refcount_dec_and_test(&rq->ref)) 966 __blk_mq_free_request(rq); 967 968 return true; 969 } 970 971 static void blk_mq_timeout_work(struct work_struct *work) 972 { 973 struct request_queue *q = 974 container_of(work, struct request_queue, timeout_work); 975 unsigned long next = 0; 976 struct blk_mq_hw_ctx *hctx; 977 int i; 978 979 /* A deadlock might occur if a request is stuck requiring a 980 * timeout at the same time a queue freeze is waiting 981 * completion, since the timeout code would not be able to 982 * acquire the queue reference here. 983 * 984 * That's why we don't use blk_queue_enter here; instead, we use 985 * percpu_ref_tryget directly, because we need to be able to 986 * obtain a reference even in the short window between the queue 987 * starting to freeze, by dropping the first reference in 988 * blk_freeze_queue_start, and the moment the last request is 989 * consumed, marked by the instant q_usage_counter reaches 990 * zero. 991 */ 992 if (!percpu_ref_tryget(&q->q_usage_counter)) 993 return; 994 995 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 996 997 if (next != 0) { 998 mod_timer(&q->timeout, next); 999 } else { 1000 /* 1001 * Request timeouts are handled as a forward rolling timer. If 1002 * we end up here it means that no requests are pending and 1003 * also that no request has been pending for a while. Mark 1004 * each hctx as idle. 1005 */ 1006 queue_for_each_hw_ctx(q, hctx, i) { 1007 /* the hctx may be unmapped, so check it here */ 1008 if (blk_mq_hw_queue_mapped(hctx)) 1009 blk_mq_tag_idle(hctx); 1010 } 1011 } 1012 blk_queue_exit(q); 1013 } 1014 1015 struct flush_busy_ctx_data { 1016 struct blk_mq_hw_ctx *hctx; 1017 struct list_head *list; 1018 }; 1019 1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1021 { 1022 struct flush_busy_ctx_data *flush_data = data; 1023 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1024 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1025 enum hctx_type type = hctx->type; 1026 1027 spin_lock(&ctx->lock); 1028 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1029 sbitmap_clear_bit(sb, bitnr); 1030 spin_unlock(&ctx->lock); 1031 return true; 1032 } 1033 1034 /* 1035 * Process software queues that have been marked busy, splicing them 1036 * to the for-dispatch 1037 */ 1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1039 { 1040 struct flush_busy_ctx_data data = { 1041 .hctx = hctx, 1042 .list = list, 1043 }; 1044 1045 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1046 } 1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1048 1049 struct dispatch_rq_data { 1050 struct blk_mq_hw_ctx *hctx; 1051 struct request *rq; 1052 }; 1053 1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1055 void *data) 1056 { 1057 struct dispatch_rq_data *dispatch_data = data; 1058 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1059 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1060 enum hctx_type type = hctx->type; 1061 1062 spin_lock(&ctx->lock); 1063 if (!list_empty(&ctx->rq_lists[type])) { 1064 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1065 list_del_init(&dispatch_data->rq->queuelist); 1066 if (list_empty(&ctx->rq_lists[type])) 1067 sbitmap_clear_bit(sb, bitnr); 1068 } 1069 spin_unlock(&ctx->lock); 1070 1071 return !dispatch_data->rq; 1072 } 1073 1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1075 struct blk_mq_ctx *start) 1076 { 1077 unsigned off = start ? start->index_hw[hctx->type] : 0; 1078 struct dispatch_rq_data data = { 1079 .hctx = hctx, 1080 .rq = NULL, 1081 }; 1082 1083 __sbitmap_for_each_set(&hctx->ctx_map, off, 1084 dispatch_rq_from_ctx, &data); 1085 1086 return data.rq; 1087 } 1088 1089 static inline unsigned int queued_to_index(unsigned int queued) 1090 { 1091 if (!queued) 1092 return 0; 1093 1094 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1095 } 1096 1097 static bool __blk_mq_get_driver_tag(struct request *rq) 1098 { 1099 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1100 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1101 int tag; 1102 1103 blk_mq_tag_busy(rq->mq_hctx); 1104 1105 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1106 bt = rq->mq_hctx->tags->breserved_tags; 1107 tag_offset = 0; 1108 } else { 1109 if (!hctx_may_queue(rq->mq_hctx, bt)) 1110 return false; 1111 } 1112 1113 tag = __sbitmap_queue_get(bt); 1114 if (tag == BLK_MQ_NO_TAG) 1115 return false; 1116 1117 rq->tag = tag + tag_offset; 1118 return true; 1119 } 1120 1121 static bool blk_mq_get_driver_tag(struct request *rq) 1122 { 1123 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1124 1125 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1126 return false; 1127 1128 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1129 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1130 rq->rq_flags |= RQF_MQ_INFLIGHT; 1131 __blk_mq_inc_active_requests(hctx); 1132 } 1133 hctx->tags->rqs[rq->tag] = rq; 1134 return true; 1135 } 1136 1137 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1138 int flags, void *key) 1139 { 1140 struct blk_mq_hw_ctx *hctx; 1141 1142 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1143 1144 spin_lock(&hctx->dispatch_wait_lock); 1145 if (!list_empty(&wait->entry)) { 1146 struct sbitmap_queue *sbq; 1147 1148 list_del_init(&wait->entry); 1149 sbq = hctx->tags->bitmap_tags; 1150 atomic_dec(&sbq->ws_active); 1151 } 1152 spin_unlock(&hctx->dispatch_wait_lock); 1153 1154 blk_mq_run_hw_queue(hctx, true); 1155 return 1; 1156 } 1157 1158 /* 1159 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1160 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1161 * restart. For both cases, take care to check the condition again after 1162 * marking us as waiting. 1163 */ 1164 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1165 struct request *rq) 1166 { 1167 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1168 struct wait_queue_head *wq; 1169 wait_queue_entry_t *wait; 1170 bool ret; 1171 1172 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1173 blk_mq_sched_mark_restart_hctx(hctx); 1174 1175 /* 1176 * It's possible that a tag was freed in the window between the 1177 * allocation failure and adding the hardware queue to the wait 1178 * queue. 1179 * 1180 * Don't clear RESTART here, someone else could have set it. 1181 * At most this will cost an extra queue run. 1182 */ 1183 return blk_mq_get_driver_tag(rq); 1184 } 1185 1186 wait = &hctx->dispatch_wait; 1187 if (!list_empty_careful(&wait->entry)) 1188 return false; 1189 1190 wq = &bt_wait_ptr(sbq, hctx)->wait; 1191 1192 spin_lock_irq(&wq->lock); 1193 spin_lock(&hctx->dispatch_wait_lock); 1194 if (!list_empty(&wait->entry)) { 1195 spin_unlock(&hctx->dispatch_wait_lock); 1196 spin_unlock_irq(&wq->lock); 1197 return false; 1198 } 1199 1200 atomic_inc(&sbq->ws_active); 1201 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1202 __add_wait_queue(wq, wait); 1203 1204 /* 1205 * It's possible that a tag was freed in the window between the 1206 * allocation failure and adding the hardware queue to the wait 1207 * queue. 1208 */ 1209 ret = blk_mq_get_driver_tag(rq); 1210 if (!ret) { 1211 spin_unlock(&hctx->dispatch_wait_lock); 1212 spin_unlock_irq(&wq->lock); 1213 return false; 1214 } 1215 1216 /* 1217 * We got a tag, remove ourselves from the wait queue to ensure 1218 * someone else gets the wakeup. 1219 */ 1220 list_del_init(&wait->entry); 1221 atomic_dec(&sbq->ws_active); 1222 spin_unlock(&hctx->dispatch_wait_lock); 1223 spin_unlock_irq(&wq->lock); 1224 1225 return true; 1226 } 1227 1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1229 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1230 /* 1231 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1232 * - EWMA is one simple way to compute running average value 1233 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1234 * - take 4 as factor for avoiding to get too small(0) result, and this 1235 * factor doesn't matter because EWMA decreases exponentially 1236 */ 1237 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1238 { 1239 unsigned int ewma; 1240 1241 if (hctx->queue->elevator) 1242 return; 1243 1244 ewma = hctx->dispatch_busy; 1245 1246 if (!ewma && !busy) 1247 return; 1248 1249 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1250 if (busy) 1251 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1252 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1253 1254 hctx->dispatch_busy = ewma; 1255 } 1256 1257 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1258 1259 static void blk_mq_handle_dev_resource(struct request *rq, 1260 struct list_head *list) 1261 { 1262 struct request *next = 1263 list_first_entry_or_null(list, struct request, queuelist); 1264 1265 /* 1266 * If an I/O scheduler has been configured and we got a driver tag for 1267 * the next request already, free it. 1268 */ 1269 if (next) 1270 blk_mq_put_driver_tag(next); 1271 1272 list_add(&rq->queuelist, list); 1273 __blk_mq_requeue_request(rq); 1274 } 1275 1276 static void blk_mq_handle_zone_resource(struct request *rq, 1277 struct list_head *zone_list) 1278 { 1279 /* 1280 * If we end up here it is because we cannot dispatch a request to a 1281 * specific zone due to LLD level zone-write locking or other zone 1282 * related resource not being available. In this case, set the request 1283 * aside in zone_list for retrying it later. 1284 */ 1285 list_add(&rq->queuelist, zone_list); 1286 __blk_mq_requeue_request(rq); 1287 } 1288 1289 enum prep_dispatch { 1290 PREP_DISPATCH_OK, 1291 PREP_DISPATCH_NO_TAG, 1292 PREP_DISPATCH_NO_BUDGET, 1293 }; 1294 1295 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1296 bool need_budget) 1297 { 1298 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1299 1300 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) { 1301 blk_mq_put_driver_tag(rq); 1302 return PREP_DISPATCH_NO_BUDGET; 1303 } 1304 1305 if (!blk_mq_get_driver_tag(rq)) { 1306 /* 1307 * The initial allocation attempt failed, so we need to 1308 * rerun the hardware queue when a tag is freed. The 1309 * waitqueue takes care of that. If the queue is run 1310 * before we add this entry back on the dispatch list, 1311 * we'll re-run it below. 1312 */ 1313 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1314 /* 1315 * All budgets not got from this function will be put 1316 * together during handling partial dispatch 1317 */ 1318 if (need_budget) 1319 blk_mq_put_dispatch_budget(rq->q); 1320 return PREP_DISPATCH_NO_TAG; 1321 } 1322 } 1323 1324 return PREP_DISPATCH_OK; 1325 } 1326 1327 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1328 static void blk_mq_release_budgets(struct request_queue *q, 1329 unsigned int nr_budgets) 1330 { 1331 int i; 1332 1333 for (i = 0; i < nr_budgets; i++) 1334 blk_mq_put_dispatch_budget(q); 1335 } 1336 1337 /* 1338 * Returns true if we did some work AND can potentially do more. 1339 */ 1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1341 unsigned int nr_budgets) 1342 { 1343 enum prep_dispatch prep; 1344 struct request_queue *q = hctx->queue; 1345 struct request *rq, *nxt; 1346 int errors, queued; 1347 blk_status_t ret = BLK_STS_OK; 1348 LIST_HEAD(zone_list); 1349 1350 if (list_empty(list)) 1351 return false; 1352 1353 /* 1354 * Now process all the entries, sending them to the driver. 1355 */ 1356 errors = queued = 0; 1357 do { 1358 struct blk_mq_queue_data bd; 1359 1360 rq = list_first_entry(list, struct request, queuelist); 1361 1362 WARN_ON_ONCE(hctx != rq->mq_hctx); 1363 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1364 if (prep != PREP_DISPATCH_OK) 1365 break; 1366 1367 list_del_init(&rq->queuelist); 1368 1369 bd.rq = rq; 1370 1371 /* 1372 * Flag last if we have no more requests, or if we have more 1373 * but can't assign a driver tag to it. 1374 */ 1375 if (list_empty(list)) 1376 bd.last = true; 1377 else { 1378 nxt = list_first_entry(list, struct request, queuelist); 1379 bd.last = !blk_mq_get_driver_tag(nxt); 1380 } 1381 1382 /* 1383 * once the request is queued to lld, no need to cover the 1384 * budget any more 1385 */ 1386 if (nr_budgets) 1387 nr_budgets--; 1388 ret = q->mq_ops->queue_rq(hctx, &bd); 1389 switch (ret) { 1390 case BLK_STS_OK: 1391 queued++; 1392 break; 1393 case BLK_STS_RESOURCE: 1394 case BLK_STS_DEV_RESOURCE: 1395 blk_mq_handle_dev_resource(rq, list); 1396 goto out; 1397 case BLK_STS_ZONE_RESOURCE: 1398 /* 1399 * Move the request to zone_list and keep going through 1400 * the dispatch list to find more requests the drive can 1401 * accept. 1402 */ 1403 blk_mq_handle_zone_resource(rq, &zone_list); 1404 break; 1405 default: 1406 errors++; 1407 blk_mq_end_request(rq, BLK_STS_IOERR); 1408 } 1409 } while (!list_empty(list)); 1410 out: 1411 if (!list_empty(&zone_list)) 1412 list_splice_tail_init(&zone_list, list); 1413 1414 hctx->dispatched[queued_to_index(queued)]++; 1415 1416 /* If we didn't flush the entire list, we could have told the driver 1417 * there was more coming, but that turned out to be a lie. 1418 */ 1419 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1420 q->mq_ops->commit_rqs(hctx); 1421 /* 1422 * Any items that need requeuing? Stuff them into hctx->dispatch, 1423 * that is where we will continue on next queue run. 1424 */ 1425 if (!list_empty(list)) { 1426 bool needs_restart; 1427 /* For non-shared tags, the RESTART check will suffice */ 1428 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1429 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1430 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET; 1431 1432 blk_mq_release_budgets(q, nr_budgets); 1433 1434 spin_lock(&hctx->lock); 1435 list_splice_tail_init(list, &hctx->dispatch); 1436 spin_unlock(&hctx->lock); 1437 1438 /* 1439 * Order adding requests to hctx->dispatch and checking 1440 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1441 * in blk_mq_sched_restart(). Avoid restart code path to 1442 * miss the new added requests to hctx->dispatch, meantime 1443 * SCHED_RESTART is observed here. 1444 */ 1445 smp_mb(); 1446 1447 /* 1448 * If SCHED_RESTART was set by the caller of this function and 1449 * it is no longer set that means that it was cleared by another 1450 * thread and hence that a queue rerun is needed. 1451 * 1452 * If 'no_tag' is set, that means that we failed getting 1453 * a driver tag with an I/O scheduler attached. If our dispatch 1454 * waitqueue is no longer active, ensure that we run the queue 1455 * AFTER adding our entries back to the list. 1456 * 1457 * If no I/O scheduler has been configured it is possible that 1458 * the hardware queue got stopped and restarted before requests 1459 * were pushed back onto the dispatch list. Rerun the queue to 1460 * avoid starvation. Notes: 1461 * - blk_mq_run_hw_queue() checks whether or not a queue has 1462 * been stopped before rerunning a queue. 1463 * - Some but not all block drivers stop a queue before 1464 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1465 * and dm-rq. 1466 * 1467 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1468 * bit is set, run queue after a delay to avoid IO stalls 1469 * that could otherwise occur if the queue is idle. We'll do 1470 * similar if we couldn't get budget and SCHED_RESTART is set. 1471 */ 1472 needs_restart = blk_mq_sched_needs_restart(hctx); 1473 if (!needs_restart || 1474 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1475 blk_mq_run_hw_queue(hctx, true); 1476 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1477 no_budget_avail)) 1478 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1479 1480 blk_mq_update_dispatch_busy(hctx, true); 1481 return false; 1482 } else 1483 blk_mq_update_dispatch_busy(hctx, false); 1484 1485 return (queued + errors) != 0; 1486 } 1487 1488 /** 1489 * __blk_mq_run_hw_queue - Run a hardware queue. 1490 * @hctx: Pointer to the hardware queue to run. 1491 * 1492 * Send pending requests to the hardware. 1493 */ 1494 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1495 { 1496 int srcu_idx; 1497 1498 /* 1499 * We should be running this queue from one of the CPUs that 1500 * are mapped to it. 1501 * 1502 * There are at least two related races now between setting 1503 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1504 * __blk_mq_run_hw_queue(): 1505 * 1506 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1507 * but later it becomes online, then this warning is harmless 1508 * at all 1509 * 1510 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1511 * but later it becomes offline, then the warning can't be 1512 * triggered, and we depend on blk-mq timeout handler to 1513 * handle dispatched requests to this hctx 1514 */ 1515 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1516 cpu_online(hctx->next_cpu)) { 1517 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1518 raw_smp_processor_id(), 1519 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1520 dump_stack(); 1521 } 1522 1523 /* 1524 * We can't run the queue inline with ints disabled. Ensure that 1525 * we catch bad users of this early. 1526 */ 1527 WARN_ON_ONCE(in_interrupt()); 1528 1529 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1530 1531 hctx_lock(hctx, &srcu_idx); 1532 blk_mq_sched_dispatch_requests(hctx); 1533 hctx_unlock(hctx, srcu_idx); 1534 } 1535 1536 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1537 { 1538 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1539 1540 if (cpu >= nr_cpu_ids) 1541 cpu = cpumask_first(hctx->cpumask); 1542 return cpu; 1543 } 1544 1545 /* 1546 * It'd be great if the workqueue API had a way to pass 1547 * in a mask and had some smarts for more clever placement. 1548 * For now we just round-robin here, switching for every 1549 * BLK_MQ_CPU_WORK_BATCH queued items. 1550 */ 1551 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1552 { 1553 bool tried = false; 1554 int next_cpu = hctx->next_cpu; 1555 1556 if (hctx->queue->nr_hw_queues == 1) 1557 return WORK_CPU_UNBOUND; 1558 1559 if (--hctx->next_cpu_batch <= 0) { 1560 select_cpu: 1561 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1562 cpu_online_mask); 1563 if (next_cpu >= nr_cpu_ids) 1564 next_cpu = blk_mq_first_mapped_cpu(hctx); 1565 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1566 } 1567 1568 /* 1569 * Do unbound schedule if we can't find a online CPU for this hctx, 1570 * and it should only happen in the path of handling CPU DEAD. 1571 */ 1572 if (!cpu_online(next_cpu)) { 1573 if (!tried) { 1574 tried = true; 1575 goto select_cpu; 1576 } 1577 1578 /* 1579 * Make sure to re-select CPU next time once after CPUs 1580 * in hctx->cpumask become online again. 1581 */ 1582 hctx->next_cpu = next_cpu; 1583 hctx->next_cpu_batch = 1; 1584 return WORK_CPU_UNBOUND; 1585 } 1586 1587 hctx->next_cpu = next_cpu; 1588 return next_cpu; 1589 } 1590 1591 /** 1592 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1593 * @hctx: Pointer to the hardware queue to run. 1594 * @async: If we want to run the queue asynchronously. 1595 * @msecs: Microseconds of delay to wait before running the queue. 1596 * 1597 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1598 * with a delay of @msecs. 1599 */ 1600 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1601 unsigned long msecs) 1602 { 1603 if (unlikely(blk_mq_hctx_stopped(hctx))) 1604 return; 1605 1606 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1607 int cpu = get_cpu(); 1608 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1609 __blk_mq_run_hw_queue(hctx); 1610 put_cpu(); 1611 return; 1612 } 1613 1614 put_cpu(); 1615 } 1616 1617 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1618 msecs_to_jiffies(msecs)); 1619 } 1620 1621 /** 1622 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1623 * @hctx: Pointer to the hardware queue to run. 1624 * @msecs: Microseconds of delay to wait before running the queue. 1625 * 1626 * Run a hardware queue asynchronously with a delay of @msecs. 1627 */ 1628 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1629 { 1630 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1631 } 1632 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1633 1634 /** 1635 * blk_mq_run_hw_queue - Start to run a hardware queue. 1636 * @hctx: Pointer to the hardware queue to run. 1637 * @async: If we want to run the queue asynchronously. 1638 * 1639 * Check if the request queue is not in a quiesced state and if there are 1640 * pending requests to be sent. If this is true, run the queue to send requests 1641 * to hardware. 1642 */ 1643 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1644 { 1645 int srcu_idx; 1646 bool need_run; 1647 1648 /* 1649 * When queue is quiesced, we may be switching io scheduler, or 1650 * updating nr_hw_queues, or other things, and we can't run queue 1651 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1652 * 1653 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1654 * quiesced. 1655 */ 1656 hctx_lock(hctx, &srcu_idx); 1657 need_run = !blk_queue_quiesced(hctx->queue) && 1658 blk_mq_hctx_has_pending(hctx); 1659 hctx_unlock(hctx, srcu_idx); 1660 1661 if (need_run) 1662 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1663 } 1664 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1665 1666 /** 1667 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1668 * @q: Pointer to the request queue to run. 1669 * @async: If we want to run the queue asynchronously. 1670 */ 1671 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1672 { 1673 struct blk_mq_hw_ctx *hctx; 1674 int i; 1675 1676 queue_for_each_hw_ctx(q, hctx, i) { 1677 if (blk_mq_hctx_stopped(hctx)) 1678 continue; 1679 1680 blk_mq_run_hw_queue(hctx, async); 1681 } 1682 } 1683 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1684 1685 /** 1686 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1687 * @q: Pointer to the request queue to run. 1688 * @msecs: Microseconds of delay to wait before running the queues. 1689 */ 1690 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1691 { 1692 struct blk_mq_hw_ctx *hctx; 1693 int i; 1694 1695 queue_for_each_hw_ctx(q, hctx, i) { 1696 if (blk_mq_hctx_stopped(hctx)) 1697 continue; 1698 1699 blk_mq_delay_run_hw_queue(hctx, msecs); 1700 } 1701 } 1702 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1703 1704 /** 1705 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1706 * @q: request queue. 1707 * 1708 * The caller is responsible for serializing this function against 1709 * blk_mq_{start,stop}_hw_queue(). 1710 */ 1711 bool blk_mq_queue_stopped(struct request_queue *q) 1712 { 1713 struct blk_mq_hw_ctx *hctx; 1714 int i; 1715 1716 queue_for_each_hw_ctx(q, hctx, i) 1717 if (blk_mq_hctx_stopped(hctx)) 1718 return true; 1719 1720 return false; 1721 } 1722 EXPORT_SYMBOL(blk_mq_queue_stopped); 1723 1724 /* 1725 * This function is often used for pausing .queue_rq() by driver when 1726 * there isn't enough resource or some conditions aren't satisfied, and 1727 * BLK_STS_RESOURCE is usually returned. 1728 * 1729 * We do not guarantee that dispatch can be drained or blocked 1730 * after blk_mq_stop_hw_queue() returns. Please use 1731 * blk_mq_quiesce_queue() for that requirement. 1732 */ 1733 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1734 { 1735 cancel_delayed_work(&hctx->run_work); 1736 1737 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1738 } 1739 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1740 1741 /* 1742 * This function is often used for pausing .queue_rq() by driver when 1743 * there isn't enough resource or some conditions aren't satisfied, and 1744 * BLK_STS_RESOURCE is usually returned. 1745 * 1746 * We do not guarantee that dispatch can be drained or blocked 1747 * after blk_mq_stop_hw_queues() returns. Please use 1748 * blk_mq_quiesce_queue() for that requirement. 1749 */ 1750 void blk_mq_stop_hw_queues(struct request_queue *q) 1751 { 1752 struct blk_mq_hw_ctx *hctx; 1753 int i; 1754 1755 queue_for_each_hw_ctx(q, hctx, i) 1756 blk_mq_stop_hw_queue(hctx); 1757 } 1758 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1759 1760 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1761 { 1762 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1763 1764 blk_mq_run_hw_queue(hctx, false); 1765 } 1766 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1767 1768 void blk_mq_start_hw_queues(struct request_queue *q) 1769 { 1770 struct blk_mq_hw_ctx *hctx; 1771 int i; 1772 1773 queue_for_each_hw_ctx(q, hctx, i) 1774 blk_mq_start_hw_queue(hctx); 1775 } 1776 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1777 1778 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1779 { 1780 if (!blk_mq_hctx_stopped(hctx)) 1781 return; 1782 1783 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1784 blk_mq_run_hw_queue(hctx, async); 1785 } 1786 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1787 1788 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1789 { 1790 struct blk_mq_hw_ctx *hctx; 1791 int i; 1792 1793 queue_for_each_hw_ctx(q, hctx, i) 1794 blk_mq_start_stopped_hw_queue(hctx, async); 1795 } 1796 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1797 1798 static void blk_mq_run_work_fn(struct work_struct *work) 1799 { 1800 struct blk_mq_hw_ctx *hctx; 1801 1802 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1803 1804 /* 1805 * If we are stopped, don't run the queue. 1806 */ 1807 if (blk_mq_hctx_stopped(hctx)) 1808 return; 1809 1810 __blk_mq_run_hw_queue(hctx); 1811 } 1812 1813 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1814 struct request *rq, 1815 bool at_head) 1816 { 1817 struct blk_mq_ctx *ctx = rq->mq_ctx; 1818 enum hctx_type type = hctx->type; 1819 1820 lockdep_assert_held(&ctx->lock); 1821 1822 trace_block_rq_insert(hctx->queue, rq); 1823 1824 if (at_head) 1825 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1826 else 1827 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1828 } 1829 1830 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1831 bool at_head) 1832 { 1833 struct blk_mq_ctx *ctx = rq->mq_ctx; 1834 1835 lockdep_assert_held(&ctx->lock); 1836 1837 __blk_mq_insert_req_list(hctx, rq, at_head); 1838 blk_mq_hctx_mark_pending(hctx, ctx); 1839 } 1840 1841 /** 1842 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1843 * @rq: Pointer to request to be inserted. 1844 * @at_head: true if the request should be inserted at the head of the list. 1845 * @run_queue: If we should run the hardware queue after inserting the request. 1846 * 1847 * Should only be used carefully, when the caller knows we want to 1848 * bypass a potential IO scheduler on the target device. 1849 */ 1850 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1851 bool run_queue) 1852 { 1853 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1854 1855 spin_lock(&hctx->lock); 1856 if (at_head) 1857 list_add(&rq->queuelist, &hctx->dispatch); 1858 else 1859 list_add_tail(&rq->queuelist, &hctx->dispatch); 1860 spin_unlock(&hctx->lock); 1861 1862 if (run_queue) 1863 blk_mq_run_hw_queue(hctx, false); 1864 } 1865 1866 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1867 struct list_head *list) 1868 1869 { 1870 struct request *rq; 1871 enum hctx_type type = hctx->type; 1872 1873 /* 1874 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1875 * offline now 1876 */ 1877 list_for_each_entry(rq, list, queuelist) { 1878 BUG_ON(rq->mq_ctx != ctx); 1879 trace_block_rq_insert(hctx->queue, rq); 1880 } 1881 1882 spin_lock(&ctx->lock); 1883 list_splice_tail_init(list, &ctx->rq_lists[type]); 1884 blk_mq_hctx_mark_pending(hctx, ctx); 1885 spin_unlock(&ctx->lock); 1886 } 1887 1888 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1889 { 1890 struct request *rqa = container_of(a, struct request, queuelist); 1891 struct request *rqb = container_of(b, struct request, queuelist); 1892 1893 if (rqa->mq_ctx != rqb->mq_ctx) 1894 return rqa->mq_ctx > rqb->mq_ctx; 1895 if (rqa->mq_hctx != rqb->mq_hctx) 1896 return rqa->mq_hctx > rqb->mq_hctx; 1897 1898 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1899 } 1900 1901 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1902 { 1903 LIST_HEAD(list); 1904 1905 if (list_empty(&plug->mq_list)) 1906 return; 1907 list_splice_init(&plug->mq_list, &list); 1908 1909 if (plug->rq_count > 2 && plug->multiple_queues) 1910 list_sort(NULL, &list, plug_rq_cmp); 1911 1912 plug->rq_count = 0; 1913 1914 do { 1915 struct list_head rq_list; 1916 struct request *rq, *head_rq = list_entry_rq(list.next); 1917 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1918 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1919 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1920 unsigned int depth = 1; 1921 1922 list_for_each_continue(pos, &list) { 1923 rq = list_entry_rq(pos); 1924 BUG_ON(!rq->q); 1925 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1926 break; 1927 depth++; 1928 } 1929 1930 list_cut_before(&rq_list, &list, pos); 1931 trace_block_unplug(head_rq->q, depth, !from_schedule); 1932 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1933 from_schedule); 1934 } while(!list_empty(&list)); 1935 } 1936 1937 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1938 unsigned int nr_segs) 1939 { 1940 int err; 1941 1942 if (bio->bi_opf & REQ_RAHEAD) 1943 rq->cmd_flags |= REQ_FAILFAST_MASK; 1944 1945 rq->__sector = bio->bi_iter.bi_sector; 1946 rq->write_hint = bio->bi_write_hint; 1947 blk_rq_bio_prep(rq, bio, nr_segs); 1948 1949 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1950 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1951 WARN_ON_ONCE(err); 1952 1953 blk_account_io_start(rq); 1954 } 1955 1956 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1957 struct request *rq, 1958 blk_qc_t *cookie, bool last) 1959 { 1960 struct request_queue *q = rq->q; 1961 struct blk_mq_queue_data bd = { 1962 .rq = rq, 1963 .last = last, 1964 }; 1965 blk_qc_t new_cookie; 1966 blk_status_t ret; 1967 1968 new_cookie = request_to_qc_t(hctx, rq); 1969 1970 /* 1971 * For OK queue, we are done. For error, caller may kill it. 1972 * Any other error (busy), just add it to our list as we 1973 * previously would have done. 1974 */ 1975 ret = q->mq_ops->queue_rq(hctx, &bd); 1976 switch (ret) { 1977 case BLK_STS_OK: 1978 blk_mq_update_dispatch_busy(hctx, false); 1979 *cookie = new_cookie; 1980 break; 1981 case BLK_STS_RESOURCE: 1982 case BLK_STS_DEV_RESOURCE: 1983 blk_mq_update_dispatch_busy(hctx, true); 1984 __blk_mq_requeue_request(rq); 1985 break; 1986 default: 1987 blk_mq_update_dispatch_busy(hctx, false); 1988 *cookie = BLK_QC_T_NONE; 1989 break; 1990 } 1991 1992 return ret; 1993 } 1994 1995 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1996 struct request *rq, 1997 blk_qc_t *cookie, 1998 bool bypass_insert, bool last) 1999 { 2000 struct request_queue *q = rq->q; 2001 bool run_queue = true; 2002 2003 /* 2004 * RCU or SRCU read lock is needed before checking quiesced flag. 2005 * 2006 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2007 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2008 * and avoid driver to try to dispatch again. 2009 */ 2010 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2011 run_queue = false; 2012 bypass_insert = false; 2013 goto insert; 2014 } 2015 2016 if (q->elevator && !bypass_insert) 2017 goto insert; 2018 2019 if (!blk_mq_get_dispatch_budget(q)) 2020 goto insert; 2021 2022 if (!blk_mq_get_driver_tag(rq)) { 2023 blk_mq_put_dispatch_budget(q); 2024 goto insert; 2025 } 2026 2027 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2028 insert: 2029 if (bypass_insert) 2030 return BLK_STS_RESOURCE; 2031 2032 blk_mq_sched_insert_request(rq, false, run_queue, false); 2033 2034 return BLK_STS_OK; 2035 } 2036 2037 /** 2038 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2039 * @hctx: Pointer of the associated hardware queue. 2040 * @rq: Pointer to request to be sent. 2041 * @cookie: Request queue cookie. 2042 * 2043 * If the device has enough resources to accept a new request now, send the 2044 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2045 * we can try send it another time in the future. Requests inserted at this 2046 * queue have higher priority. 2047 */ 2048 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2049 struct request *rq, blk_qc_t *cookie) 2050 { 2051 blk_status_t ret; 2052 int srcu_idx; 2053 2054 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2055 2056 hctx_lock(hctx, &srcu_idx); 2057 2058 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2059 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2060 blk_mq_request_bypass_insert(rq, false, true); 2061 else if (ret != BLK_STS_OK) 2062 blk_mq_end_request(rq, ret); 2063 2064 hctx_unlock(hctx, srcu_idx); 2065 } 2066 2067 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2068 { 2069 blk_status_t ret; 2070 int srcu_idx; 2071 blk_qc_t unused_cookie; 2072 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2073 2074 hctx_lock(hctx, &srcu_idx); 2075 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2076 hctx_unlock(hctx, srcu_idx); 2077 2078 return ret; 2079 } 2080 2081 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2082 struct list_head *list) 2083 { 2084 int queued = 0; 2085 int errors = 0; 2086 2087 while (!list_empty(list)) { 2088 blk_status_t ret; 2089 struct request *rq = list_first_entry(list, struct request, 2090 queuelist); 2091 2092 list_del_init(&rq->queuelist); 2093 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2094 if (ret != BLK_STS_OK) { 2095 if (ret == BLK_STS_RESOURCE || 2096 ret == BLK_STS_DEV_RESOURCE) { 2097 blk_mq_request_bypass_insert(rq, false, 2098 list_empty(list)); 2099 break; 2100 } 2101 blk_mq_end_request(rq, ret); 2102 errors++; 2103 } else 2104 queued++; 2105 } 2106 2107 /* 2108 * If we didn't flush the entire list, we could have told 2109 * the driver there was more coming, but that turned out to 2110 * be a lie. 2111 */ 2112 if ((!list_empty(list) || errors) && 2113 hctx->queue->mq_ops->commit_rqs && queued) 2114 hctx->queue->mq_ops->commit_rqs(hctx); 2115 } 2116 2117 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2118 { 2119 list_add_tail(&rq->queuelist, &plug->mq_list); 2120 plug->rq_count++; 2121 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2122 struct request *tmp; 2123 2124 tmp = list_first_entry(&plug->mq_list, struct request, 2125 queuelist); 2126 if (tmp->q != rq->q) 2127 plug->multiple_queues = true; 2128 } 2129 } 2130 2131 /** 2132 * blk_mq_submit_bio - Create and send a request to block device. 2133 * @bio: Bio pointer. 2134 * 2135 * Builds up a request structure from @q and @bio and send to the device. The 2136 * request may not be queued directly to hardware if: 2137 * * This request can be merged with another one 2138 * * We want to place request at plug queue for possible future merging 2139 * * There is an IO scheduler active at this queue 2140 * 2141 * It will not queue the request if there is an error with the bio, or at the 2142 * request creation. 2143 * 2144 * Returns: Request queue cookie. 2145 */ 2146 blk_qc_t blk_mq_submit_bio(struct bio *bio) 2147 { 2148 struct request_queue *q = bio->bi_disk->queue; 2149 const int is_sync = op_is_sync(bio->bi_opf); 2150 const int is_flush_fua = op_is_flush(bio->bi_opf); 2151 struct blk_mq_alloc_data data = { 2152 .q = q, 2153 }; 2154 struct request *rq; 2155 struct blk_plug *plug; 2156 struct request *same_queue_rq = NULL; 2157 unsigned int nr_segs; 2158 blk_qc_t cookie; 2159 blk_status_t ret; 2160 2161 blk_queue_bounce(q, &bio); 2162 __blk_queue_split(&bio, &nr_segs); 2163 2164 if (!bio_integrity_prep(bio)) 2165 goto queue_exit; 2166 2167 if (!is_flush_fua && !blk_queue_nomerges(q) && 2168 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2169 goto queue_exit; 2170 2171 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2172 goto queue_exit; 2173 2174 rq_qos_throttle(q, bio); 2175 2176 data.cmd_flags = bio->bi_opf; 2177 rq = __blk_mq_alloc_request(&data); 2178 if (unlikely(!rq)) { 2179 rq_qos_cleanup(q, bio); 2180 if (bio->bi_opf & REQ_NOWAIT) 2181 bio_wouldblock_error(bio); 2182 goto queue_exit; 2183 } 2184 2185 trace_block_getrq(q, bio, bio->bi_opf); 2186 2187 rq_qos_track(q, rq, bio); 2188 2189 cookie = request_to_qc_t(data.hctx, rq); 2190 2191 blk_mq_bio_to_request(rq, bio, nr_segs); 2192 2193 ret = blk_crypto_init_request(rq); 2194 if (ret != BLK_STS_OK) { 2195 bio->bi_status = ret; 2196 bio_endio(bio); 2197 blk_mq_free_request(rq); 2198 return BLK_QC_T_NONE; 2199 } 2200 2201 plug = blk_mq_plug(q, bio); 2202 if (unlikely(is_flush_fua)) { 2203 /* Bypass scheduler for flush requests */ 2204 blk_insert_flush(rq); 2205 blk_mq_run_hw_queue(data.hctx, true); 2206 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2207 !blk_queue_nonrot(q))) { 2208 /* 2209 * Use plugging if we have a ->commit_rqs() hook as well, as 2210 * we know the driver uses bd->last in a smart fashion. 2211 * 2212 * Use normal plugging if this disk is slow HDD, as sequential 2213 * IO may benefit a lot from plug merging. 2214 */ 2215 unsigned int request_count = plug->rq_count; 2216 struct request *last = NULL; 2217 2218 if (!request_count) 2219 trace_block_plug(q); 2220 else 2221 last = list_entry_rq(plug->mq_list.prev); 2222 2223 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2224 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2225 blk_flush_plug_list(plug, false); 2226 trace_block_plug(q); 2227 } 2228 2229 blk_add_rq_to_plug(plug, rq); 2230 } else if (q->elevator) { 2231 /* Insert the request at the IO scheduler queue */ 2232 blk_mq_sched_insert_request(rq, false, true, true); 2233 } else if (plug && !blk_queue_nomerges(q)) { 2234 /* 2235 * We do limited plugging. If the bio can be merged, do that. 2236 * Otherwise the existing request in the plug list will be 2237 * issued. So the plug list will have one request at most 2238 * The plug list might get flushed before this. If that happens, 2239 * the plug list is empty, and same_queue_rq is invalid. 2240 */ 2241 if (list_empty(&plug->mq_list)) 2242 same_queue_rq = NULL; 2243 if (same_queue_rq) { 2244 list_del_init(&same_queue_rq->queuelist); 2245 plug->rq_count--; 2246 } 2247 blk_add_rq_to_plug(plug, rq); 2248 trace_block_plug(q); 2249 2250 if (same_queue_rq) { 2251 data.hctx = same_queue_rq->mq_hctx; 2252 trace_block_unplug(q, 1, true); 2253 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2254 &cookie); 2255 } 2256 } else if ((q->nr_hw_queues > 1 && is_sync) || 2257 !data.hctx->dispatch_busy) { 2258 /* 2259 * There is no scheduler and we can try to send directly 2260 * to the hardware. 2261 */ 2262 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2263 } else { 2264 /* Default case. */ 2265 blk_mq_sched_insert_request(rq, false, true, true); 2266 } 2267 2268 return cookie; 2269 queue_exit: 2270 blk_queue_exit(q); 2271 return BLK_QC_T_NONE; 2272 } 2273 2274 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2275 unsigned int hctx_idx) 2276 { 2277 struct page *page; 2278 2279 if (tags->rqs && set->ops->exit_request) { 2280 int i; 2281 2282 for (i = 0; i < tags->nr_tags; i++) { 2283 struct request *rq = tags->static_rqs[i]; 2284 2285 if (!rq) 2286 continue; 2287 set->ops->exit_request(set, rq, hctx_idx); 2288 tags->static_rqs[i] = NULL; 2289 } 2290 } 2291 2292 while (!list_empty(&tags->page_list)) { 2293 page = list_first_entry(&tags->page_list, struct page, lru); 2294 list_del_init(&page->lru); 2295 /* 2296 * Remove kmemleak object previously allocated in 2297 * blk_mq_alloc_rqs(). 2298 */ 2299 kmemleak_free(page_address(page)); 2300 __free_pages(page, page->private); 2301 } 2302 } 2303 2304 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2305 { 2306 kfree(tags->rqs); 2307 tags->rqs = NULL; 2308 kfree(tags->static_rqs); 2309 tags->static_rqs = NULL; 2310 2311 blk_mq_free_tags(tags, flags); 2312 } 2313 2314 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2315 unsigned int hctx_idx, 2316 unsigned int nr_tags, 2317 unsigned int reserved_tags, 2318 unsigned int flags) 2319 { 2320 struct blk_mq_tags *tags; 2321 int node; 2322 2323 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2324 if (node == NUMA_NO_NODE) 2325 node = set->numa_node; 2326 2327 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2328 if (!tags) 2329 return NULL; 2330 2331 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2332 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2333 node); 2334 if (!tags->rqs) { 2335 blk_mq_free_tags(tags, flags); 2336 return NULL; 2337 } 2338 2339 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2340 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2341 node); 2342 if (!tags->static_rqs) { 2343 kfree(tags->rqs); 2344 blk_mq_free_tags(tags, flags); 2345 return NULL; 2346 } 2347 2348 return tags; 2349 } 2350 2351 static size_t order_to_size(unsigned int order) 2352 { 2353 return (size_t)PAGE_SIZE << order; 2354 } 2355 2356 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2357 unsigned int hctx_idx, int node) 2358 { 2359 int ret; 2360 2361 if (set->ops->init_request) { 2362 ret = set->ops->init_request(set, rq, hctx_idx, node); 2363 if (ret) 2364 return ret; 2365 } 2366 2367 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2368 return 0; 2369 } 2370 2371 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2372 unsigned int hctx_idx, unsigned int depth) 2373 { 2374 unsigned int i, j, entries_per_page, max_order = 4; 2375 size_t rq_size, left; 2376 int node; 2377 2378 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2379 if (node == NUMA_NO_NODE) 2380 node = set->numa_node; 2381 2382 INIT_LIST_HEAD(&tags->page_list); 2383 2384 /* 2385 * rq_size is the size of the request plus driver payload, rounded 2386 * to the cacheline size 2387 */ 2388 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2389 cache_line_size()); 2390 left = rq_size * depth; 2391 2392 for (i = 0; i < depth; ) { 2393 int this_order = max_order; 2394 struct page *page; 2395 int to_do; 2396 void *p; 2397 2398 while (this_order && left < order_to_size(this_order - 1)) 2399 this_order--; 2400 2401 do { 2402 page = alloc_pages_node(node, 2403 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2404 this_order); 2405 if (page) 2406 break; 2407 if (!this_order--) 2408 break; 2409 if (order_to_size(this_order) < rq_size) 2410 break; 2411 } while (1); 2412 2413 if (!page) 2414 goto fail; 2415 2416 page->private = this_order; 2417 list_add_tail(&page->lru, &tags->page_list); 2418 2419 p = page_address(page); 2420 /* 2421 * Allow kmemleak to scan these pages as they contain pointers 2422 * to additional allocations like via ops->init_request(). 2423 */ 2424 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2425 entries_per_page = order_to_size(this_order) / rq_size; 2426 to_do = min(entries_per_page, depth - i); 2427 left -= to_do * rq_size; 2428 for (j = 0; j < to_do; j++) { 2429 struct request *rq = p; 2430 2431 tags->static_rqs[i] = rq; 2432 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2433 tags->static_rqs[i] = NULL; 2434 goto fail; 2435 } 2436 2437 p += rq_size; 2438 i++; 2439 } 2440 } 2441 return 0; 2442 2443 fail: 2444 blk_mq_free_rqs(set, tags, hctx_idx); 2445 return -ENOMEM; 2446 } 2447 2448 struct rq_iter_data { 2449 struct blk_mq_hw_ctx *hctx; 2450 bool has_rq; 2451 }; 2452 2453 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2454 { 2455 struct rq_iter_data *iter_data = data; 2456 2457 if (rq->mq_hctx != iter_data->hctx) 2458 return true; 2459 iter_data->has_rq = true; 2460 return false; 2461 } 2462 2463 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2464 { 2465 struct blk_mq_tags *tags = hctx->sched_tags ? 2466 hctx->sched_tags : hctx->tags; 2467 struct rq_iter_data data = { 2468 .hctx = hctx, 2469 }; 2470 2471 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2472 return data.has_rq; 2473 } 2474 2475 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2476 struct blk_mq_hw_ctx *hctx) 2477 { 2478 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2479 return false; 2480 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2481 return false; 2482 return true; 2483 } 2484 2485 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2486 { 2487 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2488 struct blk_mq_hw_ctx, cpuhp_online); 2489 2490 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2491 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2492 return 0; 2493 2494 /* 2495 * Prevent new request from being allocated on the current hctx. 2496 * 2497 * The smp_mb__after_atomic() Pairs with the implied barrier in 2498 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2499 * seen once we return from the tag allocator. 2500 */ 2501 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2502 smp_mb__after_atomic(); 2503 2504 /* 2505 * Try to grab a reference to the queue and wait for any outstanding 2506 * requests. If we could not grab a reference the queue has been 2507 * frozen and there are no requests. 2508 */ 2509 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2510 while (blk_mq_hctx_has_requests(hctx)) 2511 msleep(5); 2512 percpu_ref_put(&hctx->queue->q_usage_counter); 2513 } 2514 2515 return 0; 2516 } 2517 2518 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2519 { 2520 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2521 struct blk_mq_hw_ctx, cpuhp_online); 2522 2523 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2524 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2525 return 0; 2526 } 2527 2528 /* 2529 * 'cpu' is going away. splice any existing rq_list entries from this 2530 * software queue to the hw queue dispatch list, and ensure that it 2531 * gets run. 2532 */ 2533 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2534 { 2535 struct blk_mq_hw_ctx *hctx; 2536 struct blk_mq_ctx *ctx; 2537 LIST_HEAD(tmp); 2538 enum hctx_type type; 2539 2540 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2541 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2542 return 0; 2543 2544 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2545 type = hctx->type; 2546 2547 spin_lock(&ctx->lock); 2548 if (!list_empty(&ctx->rq_lists[type])) { 2549 list_splice_init(&ctx->rq_lists[type], &tmp); 2550 blk_mq_hctx_clear_pending(hctx, ctx); 2551 } 2552 spin_unlock(&ctx->lock); 2553 2554 if (list_empty(&tmp)) 2555 return 0; 2556 2557 spin_lock(&hctx->lock); 2558 list_splice_tail_init(&tmp, &hctx->dispatch); 2559 spin_unlock(&hctx->lock); 2560 2561 blk_mq_run_hw_queue(hctx, true); 2562 return 0; 2563 } 2564 2565 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2566 { 2567 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2568 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2569 &hctx->cpuhp_online); 2570 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2571 &hctx->cpuhp_dead); 2572 } 2573 2574 /* hctx->ctxs will be freed in queue's release handler */ 2575 static void blk_mq_exit_hctx(struct request_queue *q, 2576 struct blk_mq_tag_set *set, 2577 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2578 { 2579 if (blk_mq_hw_queue_mapped(hctx)) 2580 blk_mq_tag_idle(hctx); 2581 2582 if (set->ops->exit_request) 2583 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2584 2585 if (set->ops->exit_hctx) 2586 set->ops->exit_hctx(hctx, hctx_idx); 2587 2588 blk_mq_remove_cpuhp(hctx); 2589 2590 spin_lock(&q->unused_hctx_lock); 2591 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2592 spin_unlock(&q->unused_hctx_lock); 2593 } 2594 2595 static void blk_mq_exit_hw_queues(struct request_queue *q, 2596 struct blk_mq_tag_set *set, int nr_queue) 2597 { 2598 struct blk_mq_hw_ctx *hctx; 2599 unsigned int i; 2600 2601 queue_for_each_hw_ctx(q, hctx, i) { 2602 if (i == nr_queue) 2603 break; 2604 blk_mq_debugfs_unregister_hctx(hctx); 2605 blk_mq_exit_hctx(q, set, hctx, i); 2606 } 2607 } 2608 2609 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2610 { 2611 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2612 2613 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2614 __alignof__(struct blk_mq_hw_ctx)) != 2615 sizeof(struct blk_mq_hw_ctx)); 2616 2617 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2618 hw_ctx_size += sizeof(struct srcu_struct); 2619 2620 return hw_ctx_size; 2621 } 2622 2623 static int blk_mq_init_hctx(struct request_queue *q, 2624 struct blk_mq_tag_set *set, 2625 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2626 { 2627 hctx->queue_num = hctx_idx; 2628 2629 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2630 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2631 &hctx->cpuhp_online); 2632 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2633 2634 hctx->tags = set->tags[hctx_idx]; 2635 2636 if (set->ops->init_hctx && 2637 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2638 goto unregister_cpu_notifier; 2639 2640 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2641 hctx->numa_node)) 2642 goto exit_hctx; 2643 return 0; 2644 2645 exit_hctx: 2646 if (set->ops->exit_hctx) 2647 set->ops->exit_hctx(hctx, hctx_idx); 2648 unregister_cpu_notifier: 2649 blk_mq_remove_cpuhp(hctx); 2650 return -1; 2651 } 2652 2653 static struct blk_mq_hw_ctx * 2654 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2655 int node) 2656 { 2657 struct blk_mq_hw_ctx *hctx; 2658 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2659 2660 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2661 if (!hctx) 2662 goto fail_alloc_hctx; 2663 2664 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2665 goto free_hctx; 2666 2667 atomic_set(&hctx->nr_active, 0); 2668 atomic_set(&hctx->elevator_queued, 0); 2669 if (node == NUMA_NO_NODE) 2670 node = set->numa_node; 2671 hctx->numa_node = node; 2672 2673 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2674 spin_lock_init(&hctx->lock); 2675 INIT_LIST_HEAD(&hctx->dispatch); 2676 hctx->queue = q; 2677 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2678 2679 INIT_LIST_HEAD(&hctx->hctx_list); 2680 2681 /* 2682 * Allocate space for all possible cpus to avoid allocation at 2683 * runtime 2684 */ 2685 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2686 gfp, node); 2687 if (!hctx->ctxs) 2688 goto free_cpumask; 2689 2690 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2691 gfp, node)) 2692 goto free_ctxs; 2693 hctx->nr_ctx = 0; 2694 2695 spin_lock_init(&hctx->dispatch_wait_lock); 2696 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2697 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2698 2699 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2700 if (!hctx->fq) 2701 goto free_bitmap; 2702 2703 if (hctx->flags & BLK_MQ_F_BLOCKING) 2704 init_srcu_struct(hctx->srcu); 2705 blk_mq_hctx_kobj_init(hctx); 2706 2707 return hctx; 2708 2709 free_bitmap: 2710 sbitmap_free(&hctx->ctx_map); 2711 free_ctxs: 2712 kfree(hctx->ctxs); 2713 free_cpumask: 2714 free_cpumask_var(hctx->cpumask); 2715 free_hctx: 2716 kfree(hctx); 2717 fail_alloc_hctx: 2718 return NULL; 2719 } 2720 2721 static void blk_mq_init_cpu_queues(struct request_queue *q, 2722 unsigned int nr_hw_queues) 2723 { 2724 struct blk_mq_tag_set *set = q->tag_set; 2725 unsigned int i, j; 2726 2727 for_each_possible_cpu(i) { 2728 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2729 struct blk_mq_hw_ctx *hctx; 2730 int k; 2731 2732 __ctx->cpu = i; 2733 spin_lock_init(&__ctx->lock); 2734 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2735 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2736 2737 __ctx->queue = q; 2738 2739 /* 2740 * Set local node, IFF we have more than one hw queue. If 2741 * not, we remain on the home node of the device 2742 */ 2743 for (j = 0; j < set->nr_maps; j++) { 2744 hctx = blk_mq_map_queue_type(q, j, i); 2745 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2746 hctx->numa_node = cpu_to_node(i); 2747 } 2748 } 2749 } 2750 2751 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2752 int hctx_idx) 2753 { 2754 unsigned int flags = set->flags; 2755 int ret = 0; 2756 2757 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2758 set->queue_depth, set->reserved_tags, flags); 2759 if (!set->tags[hctx_idx]) 2760 return false; 2761 2762 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2763 set->queue_depth); 2764 if (!ret) 2765 return true; 2766 2767 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2768 set->tags[hctx_idx] = NULL; 2769 return false; 2770 } 2771 2772 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2773 unsigned int hctx_idx) 2774 { 2775 unsigned int flags = set->flags; 2776 2777 if (set->tags && set->tags[hctx_idx]) { 2778 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2779 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2780 set->tags[hctx_idx] = NULL; 2781 } 2782 } 2783 2784 static void blk_mq_map_swqueue(struct request_queue *q) 2785 { 2786 unsigned int i, j, hctx_idx; 2787 struct blk_mq_hw_ctx *hctx; 2788 struct blk_mq_ctx *ctx; 2789 struct blk_mq_tag_set *set = q->tag_set; 2790 2791 queue_for_each_hw_ctx(q, hctx, i) { 2792 cpumask_clear(hctx->cpumask); 2793 hctx->nr_ctx = 0; 2794 hctx->dispatch_from = NULL; 2795 } 2796 2797 /* 2798 * Map software to hardware queues. 2799 * 2800 * If the cpu isn't present, the cpu is mapped to first hctx. 2801 */ 2802 for_each_possible_cpu(i) { 2803 2804 ctx = per_cpu_ptr(q->queue_ctx, i); 2805 for (j = 0; j < set->nr_maps; j++) { 2806 if (!set->map[j].nr_queues) { 2807 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2808 HCTX_TYPE_DEFAULT, i); 2809 continue; 2810 } 2811 hctx_idx = set->map[j].mq_map[i]; 2812 /* unmapped hw queue can be remapped after CPU topo changed */ 2813 if (!set->tags[hctx_idx] && 2814 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2815 /* 2816 * If tags initialization fail for some hctx, 2817 * that hctx won't be brought online. In this 2818 * case, remap the current ctx to hctx[0] which 2819 * is guaranteed to always have tags allocated 2820 */ 2821 set->map[j].mq_map[i] = 0; 2822 } 2823 2824 hctx = blk_mq_map_queue_type(q, j, i); 2825 ctx->hctxs[j] = hctx; 2826 /* 2827 * If the CPU is already set in the mask, then we've 2828 * mapped this one already. This can happen if 2829 * devices share queues across queue maps. 2830 */ 2831 if (cpumask_test_cpu(i, hctx->cpumask)) 2832 continue; 2833 2834 cpumask_set_cpu(i, hctx->cpumask); 2835 hctx->type = j; 2836 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2837 hctx->ctxs[hctx->nr_ctx++] = ctx; 2838 2839 /* 2840 * If the nr_ctx type overflows, we have exceeded the 2841 * amount of sw queues we can support. 2842 */ 2843 BUG_ON(!hctx->nr_ctx); 2844 } 2845 2846 for (; j < HCTX_MAX_TYPES; j++) 2847 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2848 HCTX_TYPE_DEFAULT, i); 2849 } 2850 2851 queue_for_each_hw_ctx(q, hctx, i) { 2852 /* 2853 * If no software queues are mapped to this hardware queue, 2854 * disable it and free the request entries. 2855 */ 2856 if (!hctx->nr_ctx) { 2857 /* Never unmap queue 0. We need it as a 2858 * fallback in case of a new remap fails 2859 * allocation 2860 */ 2861 if (i && set->tags[i]) 2862 blk_mq_free_map_and_requests(set, i); 2863 2864 hctx->tags = NULL; 2865 continue; 2866 } 2867 2868 hctx->tags = set->tags[i]; 2869 WARN_ON(!hctx->tags); 2870 2871 /* 2872 * Set the map size to the number of mapped software queues. 2873 * This is more accurate and more efficient than looping 2874 * over all possibly mapped software queues. 2875 */ 2876 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2877 2878 /* 2879 * Initialize batch roundrobin counts 2880 */ 2881 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2882 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2883 } 2884 } 2885 2886 /* 2887 * Caller needs to ensure that we're either frozen/quiesced, or that 2888 * the queue isn't live yet. 2889 */ 2890 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2891 { 2892 struct blk_mq_hw_ctx *hctx; 2893 int i; 2894 2895 queue_for_each_hw_ctx(q, hctx, i) { 2896 if (shared) 2897 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2898 else 2899 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2900 } 2901 } 2902 2903 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 2904 bool shared) 2905 { 2906 struct request_queue *q; 2907 2908 lockdep_assert_held(&set->tag_list_lock); 2909 2910 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2911 blk_mq_freeze_queue(q); 2912 queue_set_hctx_shared(q, shared); 2913 blk_mq_unfreeze_queue(q); 2914 } 2915 } 2916 2917 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2918 { 2919 struct blk_mq_tag_set *set = q->tag_set; 2920 2921 mutex_lock(&set->tag_list_lock); 2922 list_del(&q->tag_set_list); 2923 if (list_is_singular(&set->tag_list)) { 2924 /* just transitioned to unshared */ 2925 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2926 /* update existing queue */ 2927 blk_mq_update_tag_set_shared(set, false); 2928 } 2929 mutex_unlock(&set->tag_list_lock); 2930 INIT_LIST_HEAD(&q->tag_set_list); 2931 } 2932 2933 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2934 struct request_queue *q) 2935 { 2936 mutex_lock(&set->tag_list_lock); 2937 2938 /* 2939 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2940 */ 2941 if (!list_empty(&set->tag_list) && 2942 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2943 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2944 /* update existing queue */ 2945 blk_mq_update_tag_set_shared(set, true); 2946 } 2947 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 2948 queue_set_hctx_shared(q, true); 2949 list_add_tail(&q->tag_set_list, &set->tag_list); 2950 2951 mutex_unlock(&set->tag_list_lock); 2952 } 2953 2954 /* All allocations will be freed in release handler of q->mq_kobj */ 2955 static int blk_mq_alloc_ctxs(struct request_queue *q) 2956 { 2957 struct blk_mq_ctxs *ctxs; 2958 int cpu; 2959 2960 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2961 if (!ctxs) 2962 return -ENOMEM; 2963 2964 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2965 if (!ctxs->queue_ctx) 2966 goto fail; 2967 2968 for_each_possible_cpu(cpu) { 2969 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2970 ctx->ctxs = ctxs; 2971 } 2972 2973 q->mq_kobj = &ctxs->kobj; 2974 q->queue_ctx = ctxs->queue_ctx; 2975 2976 return 0; 2977 fail: 2978 kfree(ctxs); 2979 return -ENOMEM; 2980 } 2981 2982 /* 2983 * It is the actual release handler for mq, but we do it from 2984 * request queue's release handler for avoiding use-after-free 2985 * and headache because q->mq_kobj shouldn't have been introduced, 2986 * but we can't group ctx/kctx kobj without it. 2987 */ 2988 void blk_mq_release(struct request_queue *q) 2989 { 2990 struct blk_mq_hw_ctx *hctx, *next; 2991 int i; 2992 2993 queue_for_each_hw_ctx(q, hctx, i) 2994 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2995 2996 /* all hctx are in .unused_hctx_list now */ 2997 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2998 list_del_init(&hctx->hctx_list); 2999 kobject_put(&hctx->kobj); 3000 } 3001 3002 kfree(q->queue_hw_ctx); 3003 3004 /* 3005 * release .mq_kobj and sw queue's kobject now because 3006 * both share lifetime with request queue. 3007 */ 3008 blk_mq_sysfs_deinit(q); 3009 } 3010 3011 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3012 void *queuedata) 3013 { 3014 struct request_queue *uninit_q, *q; 3015 3016 uninit_q = blk_alloc_queue(set->numa_node); 3017 if (!uninit_q) 3018 return ERR_PTR(-ENOMEM); 3019 uninit_q->queuedata = queuedata; 3020 3021 /* 3022 * Initialize the queue without an elevator. device_add_disk() will do 3023 * the initialization. 3024 */ 3025 q = blk_mq_init_allocated_queue(set, uninit_q, false); 3026 if (IS_ERR(q)) 3027 blk_cleanup_queue(uninit_q); 3028 3029 return q; 3030 } 3031 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 3032 3033 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3034 { 3035 return blk_mq_init_queue_data(set, NULL); 3036 } 3037 EXPORT_SYMBOL(blk_mq_init_queue); 3038 3039 /* 3040 * Helper for setting up a queue with mq ops, given queue depth, and 3041 * the passed in mq ops flags. 3042 */ 3043 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 3044 const struct blk_mq_ops *ops, 3045 unsigned int queue_depth, 3046 unsigned int set_flags) 3047 { 3048 struct request_queue *q; 3049 int ret; 3050 3051 memset(set, 0, sizeof(*set)); 3052 set->ops = ops; 3053 set->nr_hw_queues = 1; 3054 set->nr_maps = 1; 3055 set->queue_depth = queue_depth; 3056 set->numa_node = NUMA_NO_NODE; 3057 set->flags = set_flags; 3058 3059 ret = blk_mq_alloc_tag_set(set); 3060 if (ret) 3061 return ERR_PTR(ret); 3062 3063 q = blk_mq_init_queue(set); 3064 if (IS_ERR(q)) { 3065 blk_mq_free_tag_set(set); 3066 return q; 3067 } 3068 3069 return q; 3070 } 3071 EXPORT_SYMBOL(blk_mq_init_sq_queue); 3072 3073 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3074 struct blk_mq_tag_set *set, struct request_queue *q, 3075 int hctx_idx, int node) 3076 { 3077 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3078 3079 /* reuse dead hctx first */ 3080 spin_lock(&q->unused_hctx_lock); 3081 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3082 if (tmp->numa_node == node) { 3083 hctx = tmp; 3084 break; 3085 } 3086 } 3087 if (hctx) 3088 list_del_init(&hctx->hctx_list); 3089 spin_unlock(&q->unused_hctx_lock); 3090 3091 if (!hctx) 3092 hctx = blk_mq_alloc_hctx(q, set, node); 3093 if (!hctx) 3094 goto fail; 3095 3096 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3097 goto free_hctx; 3098 3099 return hctx; 3100 3101 free_hctx: 3102 kobject_put(&hctx->kobj); 3103 fail: 3104 return NULL; 3105 } 3106 3107 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3108 struct request_queue *q) 3109 { 3110 int i, j, end; 3111 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3112 3113 if (q->nr_hw_queues < set->nr_hw_queues) { 3114 struct blk_mq_hw_ctx **new_hctxs; 3115 3116 new_hctxs = kcalloc_node(set->nr_hw_queues, 3117 sizeof(*new_hctxs), GFP_KERNEL, 3118 set->numa_node); 3119 if (!new_hctxs) 3120 return; 3121 if (hctxs) 3122 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3123 sizeof(*hctxs)); 3124 q->queue_hw_ctx = new_hctxs; 3125 kfree(hctxs); 3126 hctxs = new_hctxs; 3127 } 3128 3129 /* protect against switching io scheduler */ 3130 mutex_lock(&q->sysfs_lock); 3131 for (i = 0; i < set->nr_hw_queues; i++) { 3132 int node; 3133 struct blk_mq_hw_ctx *hctx; 3134 3135 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3136 /* 3137 * If the hw queue has been mapped to another numa node, 3138 * we need to realloc the hctx. If allocation fails, fallback 3139 * to use the previous one. 3140 */ 3141 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3142 continue; 3143 3144 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3145 if (hctx) { 3146 if (hctxs[i]) 3147 blk_mq_exit_hctx(q, set, hctxs[i], i); 3148 hctxs[i] = hctx; 3149 } else { 3150 if (hctxs[i]) 3151 pr_warn("Allocate new hctx on node %d fails,\ 3152 fallback to previous one on node %d\n", 3153 node, hctxs[i]->numa_node); 3154 else 3155 break; 3156 } 3157 } 3158 /* 3159 * Increasing nr_hw_queues fails. Free the newly allocated 3160 * hctxs and keep the previous q->nr_hw_queues. 3161 */ 3162 if (i != set->nr_hw_queues) { 3163 j = q->nr_hw_queues; 3164 end = i; 3165 } else { 3166 j = i; 3167 end = q->nr_hw_queues; 3168 q->nr_hw_queues = set->nr_hw_queues; 3169 } 3170 3171 for (; j < end; j++) { 3172 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3173 3174 if (hctx) { 3175 if (hctx->tags) 3176 blk_mq_free_map_and_requests(set, j); 3177 blk_mq_exit_hctx(q, set, hctx, j); 3178 hctxs[j] = NULL; 3179 } 3180 } 3181 mutex_unlock(&q->sysfs_lock); 3182 } 3183 3184 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3185 struct request_queue *q, 3186 bool elevator_init) 3187 { 3188 /* mark the queue as mq asap */ 3189 q->mq_ops = set->ops; 3190 3191 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3192 blk_mq_poll_stats_bkt, 3193 BLK_MQ_POLL_STATS_BKTS, q); 3194 if (!q->poll_cb) 3195 goto err_exit; 3196 3197 if (blk_mq_alloc_ctxs(q)) 3198 goto err_poll; 3199 3200 /* init q->mq_kobj and sw queues' kobjects */ 3201 blk_mq_sysfs_init(q); 3202 3203 INIT_LIST_HEAD(&q->unused_hctx_list); 3204 spin_lock_init(&q->unused_hctx_lock); 3205 3206 blk_mq_realloc_hw_ctxs(set, q); 3207 if (!q->nr_hw_queues) 3208 goto err_hctxs; 3209 3210 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3211 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3212 3213 q->tag_set = set; 3214 3215 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3216 if (set->nr_maps > HCTX_TYPE_POLL && 3217 set->map[HCTX_TYPE_POLL].nr_queues) 3218 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3219 3220 q->sg_reserved_size = INT_MAX; 3221 3222 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3223 INIT_LIST_HEAD(&q->requeue_list); 3224 spin_lock_init(&q->requeue_lock); 3225 3226 q->nr_requests = set->queue_depth; 3227 3228 /* 3229 * Default to classic polling 3230 */ 3231 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3232 3233 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3234 blk_mq_add_queue_tag_set(set, q); 3235 blk_mq_map_swqueue(q); 3236 3237 if (elevator_init) 3238 elevator_init_mq(q); 3239 3240 return q; 3241 3242 err_hctxs: 3243 kfree(q->queue_hw_ctx); 3244 q->nr_hw_queues = 0; 3245 blk_mq_sysfs_deinit(q); 3246 err_poll: 3247 blk_stat_free_callback(q->poll_cb); 3248 q->poll_cb = NULL; 3249 err_exit: 3250 q->mq_ops = NULL; 3251 return ERR_PTR(-ENOMEM); 3252 } 3253 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3254 3255 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3256 void blk_mq_exit_queue(struct request_queue *q) 3257 { 3258 struct blk_mq_tag_set *set = q->tag_set; 3259 3260 blk_mq_del_queue_tag_set(q); 3261 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3262 } 3263 3264 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3265 { 3266 int i; 3267 3268 for (i = 0; i < set->nr_hw_queues; i++) { 3269 if (!__blk_mq_alloc_map_and_request(set, i)) 3270 goto out_unwind; 3271 cond_resched(); 3272 } 3273 3274 return 0; 3275 3276 out_unwind: 3277 while (--i >= 0) 3278 blk_mq_free_map_and_requests(set, i); 3279 3280 return -ENOMEM; 3281 } 3282 3283 /* 3284 * Allocate the request maps associated with this tag_set. Note that this 3285 * may reduce the depth asked for, if memory is tight. set->queue_depth 3286 * will be updated to reflect the allocated depth. 3287 */ 3288 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3289 { 3290 unsigned int depth; 3291 int err; 3292 3293 depth = set->queue_depth; 3294 do { 3295 err = __blk_mq_alloc_rq_maps(set); 3296 if (!err) 3297 break; 3298 3299 set->queue_depth >>= 1; 3300 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3301 err = -ENOMEM; 3302 break; 3303 } 3304 } while (set->queue_depth); 3305 3306 if (!set->queue_depth || err) { 3307 pr_err("blk-mq: failed to allocate request map\n"); 3308 return -ENOMEM; 3309 } 3310 3311 if (depth != set->queue_depth) 3312 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3313 depth, set->queue_depth); 3314 3315 return 0; 3316 } 3317 3318 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3319 { 3320 /* 3321 * blk_mq_map_queues() and multiple .map_queues() implementations 3322 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3323 * number of hardware queues. 3324 */ 3325 if (set->nr_maps == 1) 3326 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3327 3328 if (set->ops->map_queues && !is_kdump_kernel()) { 3329 int i; 3330 3331 /* 3332 * transport .map_queues is usually done in the following 3333 * way: 3334 * 3335 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3336 * mask = get_cpu_mask(queue) 3337 * for_each_cpu(cpu, mask) 3338 * set->map[x].mq_map[cpu] = queue; 3339 * } 3340 * 3341 * When we need to remap, the table has to be cleared for 3342 * killing stale mapping since one CPU may not be mapped 3343 * to any hw queue. 3344 */ 3345 for (i = 0; i < set->nr_maps; i++) 3346 blk_mq_clear_mq_map(&set->map[i]); 3347 3348 return set->ops->map_queues(set); 3349 } else { 3350 BUG_ON(set->nr_maps > 1); 3351 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3352 } 3353 } 3354 3355 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3356 int cur_nr_hw_queues, int new_nr_hw_queues) 3357 { 3358 struct blk_mq_tags **new_tags; 3359 3360 if (cur_nr_hw_queues >= new_nr_hw_queues) 3361 return 0; 3362 3363 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3364 GFP_KERNEL, set->numa_node); 3365 if (!new_tags) 3366 return -ENOMEM; 3367 3368 if (set->tags) 3369 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3370 sizeof(*set->tags)); 3371 kfree(set->tags); 3372 set->tags = new_tags; 3373 set->nr_hw_queues = new_nr_hw_queues; 3374 3375 return 0; 3376 } 3377 3378 /* 3379 * Alloc a tag set to be associated with one or more request queues. 3380 * May fail with EINVAL for various error conditions. May adjust the 3381 * requested depth down, if it's too large. In that case, the set 3382 * value will be stored in set->queue_depth. 3383 */ 3384 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3385 { 3386 int i, ret; 3387 3388 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3389 3390 if (!set->nr_hw_queues) 3391 return -EINVAL; 3392 if (!set->queue_depth) 3393 return -EINVAL; 3394 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3395 return -EINVAL; 3396 3397 if (!set->ops->queue_rq) 3398 return -EINVAL; 3399 3400 if (!set->ops->get_budget ^ !set->ops->put_budget) 3401 return -EINVAL; 3402 3403 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3404 pr_info("blk-mq: reduced tag depth to %u\n", 3405 BLK_MQ_MAX_DEPTH); 3406 set->queue_depth = BLK_MQ_MAX_DEPTH; 3407 } 3408 3409 if (!set->nr_maps) 3410 set->nr_maps = 1; 3411 else if (set->nr_maps > HCTX_MAX_TYPES) 3412 return -EINVAL; 3413 3414 /* 3415 * If a crashdump is active, then we are potentially in a very 3416 * memory constrained environment. Limit us to 1 queue and 3417 * 64 tags to prevent using too much memory. 3418 */ 3419 if (is_kdump_kernel()) { 3420 set->nr_hw_queues = 1; 3421 set->nr_maps = 1; 3422 set->queue_depth = min(64U, set->queue_depth); 3423 } 3424 /* 3425 * There is no use for more h/w queues than cpus if we just have 3426 * a single map 3427 */ 3428 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3429 set->nr_hw_queues = nr_cpu_ids; 3430 3431 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3432 return -ENOMEM; 3433 3434 ret = -ENOMEM; 3435 for (i = 0; i < set->nr_maps; i++) { 3436 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3437 sizeof(set->map[i].mq_map[0]), 3438 GFP_KERNEL, set->numa_node); 3439 if (!set->map[i].mq_map) 3440 goto out_free_mq_map; 3441 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3442 } 3443 3444 ret = blk_mq_update_queue_map(set); 3445 if (ret) 3446 goto out_free_mq_map; 3447 3448 ret = blk_mq_alloc_map_and_requests(set); 3449 if (ret) 3450 goto out_free_mq_map; 3451 3452 if (blk_mq_is_sbitmap_shared(set->flags)) { 3453 atomic_set(&set->active_queues_shared_sbitmap, 0); 3454 3455 if (blk_mq_init_shared_sbitmap(set, set->flags)) { 3456 ret = -ENOMEM; 3457 goto out_free_mq_rq_maps; 3458 } 3459 } 3460 3461 mutex_init(&set->tag_list_lock); 3462 INIT_LIST_HEAD(&set->tag_list); 3463 3464 return 0; 3465 3466 out_free_mq_rq_maps: 3467 for (i = 0; i < set->nr_hw_queues; i++) 3468 blk_mq_free_map_and_requests(set, i); 3469 out_free_mq_map: 3470 for (i = 0; i < set->nr_maps; i++) { 3471 kfree(set->map[i].mq_map); 3472 set->map[i].mq_map = NULL; 3473 } 3474 kfree(set->tags); 3475 set->tags = NULL; 3476 return ret; 3477 } 3478 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3479 3480 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3481 { 3482 int i, j; 3483 3484 for (i = 0; i < set->nr_hw_queues; i++) 3485 blk_mq_free_map_and_requests(set, i); 3486 3487 if (blk_mq_is_sbitmap_shared(set->flags)) 3488 blk_mq_exit_shared_sbitmap(set); 3489 3490 for (j = 0; j < set->nr_maps; j++) { 3491 kfree(set->map[j].mq_map); 3492 set->map[j].mq_map = NULL; 3493 } 3494 3495 kfree(set->tags); 3496 set->tags = NULL; 3497 } 3498 EXPORT_SYMBOL(blk_mq_free_tag_set); 3499 3500 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3501 { 3502 struct blk_mq_tag_set *set = q->tag_set; 3503 struct blk_mq_hw_ctx *hctx; 3504 int i, ret; 3505 3506 if (!set) 3507 return -EINVAL; 3508 3509 if (q->nr_requests == nr) 3510 return 0; 3511 3512 blk_mq_freeze_queue(q); 3513 blk_mq_quiesce_queue(q); 3514 3515 ret = 0; 3516 queue_for_each_hw_ctx(q, hctx, i) { 3517 if (!hctx->tags) 3518 continue; 3519 /* 3520 * If we're using an MQ scheduler, just update the scheduler 3521 * queue depth. This is similar to what the old code would do. 3522 */ 3523 if (!hctx->sched_tags) { 3524 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3525 false); 3526 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3527 blk_mq_tag_resize_shared_sbitmap(set, nr); 3528 } else { 3529 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3530 nr, true); 3531 } 3532 if (ret) 3533 break; 3534 if (q->elevator && q->elevator->type->ops.depth_updated) 3535 q->elevator->type->ops.depth_updated(hctx); 3536 } 3537 3538 if (!ret) 3539 q->nr_requests = nr; 3540 3541 blk_mq_unquiesce_queue(q); 3542 blk_mq_unfreeze_queue(q); 3543 3544 return ret; 3545 } 3546 3547 /* 3548 * request_queue and elevator_type pair. 3549 * It is just used by __blk_mq_update_nr_hw_queues to cache 3550 * the elevator_type associated with a request_queue. 3551 */ 3552 struct blk_mq_qe_pair { 3553 struct list_head node; 3554 struct request_queue *q; 3555 struct elevator_type *type; 3556 }; 3557 3558 /* 3559 * Cache the elevator_type in qe pair list and switch the 3560 * io scheduler to 'none' 3561 */ 3562 static bool blk_mq_elv_switch_none(struct list_head *head, 3563 struct request_queue *q) 3564 { 3565 struct blk_mq_qe_pair *qe; 3566 3567 if (!q->elevator) 3568 return true; 3569 3570 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3571 if (!qe) 3572 return false; 3573 3574 INIT_LIST_HEAD(&qe->node); 3575 qe->q = q; 3576 qe->type = q->elevator->type; 3577 list_add(&qe->node, head); 3578 3579 mutex_lock(&q->sysfs_lock); 3580 /* 3581 * After elevator_switch_mq, the previous elevator_queue will be 3582 * released by elevator_release. The reference of the io scheduler 3583 * module get by elevator_get will also be put. So we need to get 3584 * a reference of the io scheduler module here to prevent it to be 3585 * removed. 3586 */ 3587 __module_get(qe->type->elevator_owner); 3588 elevator_switch_mq(q, NULL); 3589 mutex_unlock(&q->sysfs_lock); 3590 3591 return true; 3592 } 3593 3594 static void blk_mq_elv_switch_back(struct list_head *head, 3595 struct request_queue *q) 3596 { 3597 struct blk_mq_qe_pair *qe; 3598 struct elevator_type *t = NULL; 3599 3600 list_for_each_entry(qe, head, node) 3601 if (qe->q == q) { 3602 t = qe->type; 3603 break; 3604 } 3605 3606 if (!t) 3607 return; 3608 3609 list_del(&qe->node); 3610 kfree(qe); 3611 3612 mutex_lock(&q->sysfs_lock); 3613 elevator_switch_mq(q, t); 3614 mutex_unlock(&q->sysfs_lock); 3615 } 3616 3617 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3618 int nr_hw_queues) 3619 { 3620 struct request_queue *q; 3621 LIST_HEAD(head); 3622 int prev_nr_hw_queues; 3623 3624 lockdep_assert_held(&set->tag_list_lock); 3625 3626 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3627 nr_hw_queues = nr_cpu_ids; 3628 if (nr_hw_queues < 1) 3629 return; 3630 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3631 return; 3632 3633 list_for_each_entry(q, &set->tag_list, tag_set_list) 3634 blk_mq_freeze_queue(q); 3635 /* 3636 * Switch IO scheduler to 'none', cleaning up the data associated 3637 * with the previous scheduler. We will switch back once we are done 3638 * updating the new sw to hw queue mappings. 3639 */ 3640 list_for_each_entry(q, &set->tag_list, tag_set_list) 3641 if (!blk_mq_elv_switch_none(&head, q)) 3642 goto switch_back; 3643 3644 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3645 blk_mq_debugfs_unregister_hctxs(q); 3646 blk_mq_sysfs_unregister(q); 3647 } 3648 3649 prev_nr_hw_queues = set->nr_hw_queues; 3650 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3651 0) 3652 goto reregister; 3653 3654 set->nr_hw_queues = nr_hw_queues; 3655 fallback: 3656 blk_mq_update_queue_map(set); 3657 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3658 blk_mq_realloc_hw_ctxs(set, q); 3659 if (q->nr_hw_queues != set->nr_hw_queues) { 3660 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3661 nr_hw_queues, prev_nr_hw_queues); 3662 set->nr_hw_queues = prev_nr_hw_queues; 3663 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3664 goto fallback; 3665 } 3666 blk_mq_map_swqueue(q); 3667 } 3668 3669 reregister: 3670 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3671 blk_mq_sysfs_register(q); 3672 blk_mq_debugfs_register_hctxs(q); 3673 } 3674 3675 switch_back: 3676 list_for_each_entry(q, &set->tag_list, tag_set_list) 3677 blk_mq_elv_switch_back(&head, q); 3678 3679 list_for_each_entry(q, &set->tag_list, tag_set_list) 3680 blk_mq_unfreeze_queue(q); 3681 } 3682 3683 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3684 { 3685 mutex_lock(&set->tag_list_lock); 3686 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3687 mutex_unlock(&set->tag_list_lock); 3688 } 3689 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3690 3691 /* Enable polling stats and return whether they were already enabled. */ 3692 static bool blk_poll_stats_enable(struct request_queue *q) 3693 { 3694 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3695 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3696 return true; 3697 blk_stat_add_callback(q, q->poll_cb); 3698 return false; 3699 } 3700 3701 static void blk_mq_poll_stats_start(struct request_queue *q) 3702 { 3703 /* 3704 * We don't arm the callback if polling stats are not enabled or the 3705 * callback is already active. 3706 */ 3707 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3708 blk_stat_is_active(q->poll_cb)) 3709 return; 3710 3711 blk_stat_activate_msecs(q->poll_cb, 100); 3712 } 3713 3714 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3715 { 3716 struct request_queue *q = cb->data; 3717 int bucket; 3718 3719 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3720 if (cb->stat[bucket].nr_samples) 3721 q->poll_stat[bucket] = cb->stat[bucket]; 3722 } 3723 } 3724 3725 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3726 struct request *rq) 3727 { 3728 unsigned long ret = 0; 3729 int bucket; 3730 3731 /* 3732 * If stats collection isn't on, don't sleep but turn it on for 3733 * future users 3734 */ 3735 if (!blk_poll_stats_enable(q)) 3736 return 0; 3737 3738 /* 3739 * As an optimistic guess, use half of the mean service time 3740 * for this type of request. We can (and should) make this smarter. 3741 * For instance, if the completion latencies are tight, we can 3742 * get closer than just half the mean. This is especially 3743 * important on devices where the completion latencies are longer 3744 * than ~10 usec. We do use the stats for the relevant IO size 3745 * if available which does lead to better estimates. 3746 */ 3747 bucket = blk_mq_poll_stats_bkt(rq); 3748 if (bucket < 0) 3749 return ret; 3750 3751 if (q->poll_stat[bucket].nr_samples) 3752 ret = (q->poll_stat[bucket].mean + 1) / 2; 3753 3754 return ret; 3755 } 3756 3757 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3758 struct request *rq) 3759 { 3760 struct hrtimer_sleeper hs; 3761 enum hrtimer_mode mode; 3762 unsigned int nsecs; 3763 ktime_t kt; 3764 3765 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3766 return false; 3767 3768 /* 3769 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3770 * 3771 * 0: use half of prev avg 3772 * >0: use this specific value 3773 */ 3774 if (q->poll_nsec > 0) 3775 nsecs = q->poll_nsec; 3776 else 3777 nsecs = blk_mq_poll_nsecs(q, rq); 3778 3779 if (!nsecs) 3780 return false; 3781 3782 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3783 3784 /* 3785 * This will be replaced with the stats tracking code, using 3786 * 'avg_completion_time / 2' as the pre-sleep target. 3787 */ 3788 kt = nsecs; 3789 3790 mode = HRTIMER_MODE_REL; 3791 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3792 hrtimer_set_expires(&hs.timer, kt); 3793 3794 do { 3795 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3796 break; 3797 set_current_state(TASK_UNINTERRUPTIBLE); 3798 hrtimer_sleeper_start_expires(&hs, mode); 3799 if (hs.task) 3800 io_schedule(); 3801 hrtimer_cancel(&hs.timer); 3802 mode = HRTIMER_MODE_ABS; 3803 } while (hs.task && !signal_pending(current)); 3804 3805 __set_current_state(TASK_RUNNING); 3806 destroy_hrtimer_on_stack(&hs.timer); 3807 return true; 3808 } 3809 3810 static bool blk_mq_poll_hybrid(struct request_queue *q, 3811 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3812 { 3813 struct request *rq; 3814 3815 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3816 return false; 3817 3818 if (!blk_qc_t_is_internal(cookie)) 3819 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3820 else { 3821 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3822 /* 3823 * With scheduling, if the request has completed, we'll 3824 * get a NULL return here, as we clear the sched tag when 3825 * that happens. The request still remains valid, like always, 3826 * so we should be safe with just the NULL check. 3827 */ 3828 if (!rq) 3829 return false; 3830 } 3831 3832 return blk_mq_poll_hybrid_sleep(q, rq); 3833 } 3834 3835 /** 3836 * blk_poll - poll for IO completions 3837 * @q: the queue 3838 * @cookie: cookie passed back at IO submission time 3839 * @spin: whether to spin for completions 3840 * 3841 * Description: 3842 * Poll for completions on the passed in queue. Returns number of 3843 * completed entries found. If @spin is true, then blk_poll will continue 3844 * looping until at least one completion is found, unless the task is 3845 * otherwise marked running (or we need to reschedule). 3846 */ 3847 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3848 { 3849 struct blk_mq_hw_ctx *hctx; 3850 long state; 3851 3852 if (!blk_qc_t_valid(cookie) || 3853 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3854 return 0; 3855 3856 if (current->plug) 3857 blk_flush_plug_list(current->plug, false); 3858 3859 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3860 3861 /* 3862 * If we sleep, have the caller restart the poll loop to reset 3863 * the state. Like for the other success return cases, the 3864 * caller is responsible for checking if the IO completed. If 3865 * the IO isn't complete, we'll get called again and will go 3866 * straight to the busy poll loop. 3867 */ 3868 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3869 return 1; 3870 3871 hctx->poll_considered++; 3872 3873 state = current->state; 3874 do { 3875 int ret; 3876 3877 hctx->poll_invoked++; 3878 3879 ret = q->mq_ops->poll(hctx); 3880 if (ret > 0) { 3881 hctx->poll_success++; 3882 __set_current_state(TASK_RUNNING); 3883 return ret; 3884 } 3885 3886 if (signal_pending_state(state, current)) 3887 __set_current_state(TASK_RUNNING); 3888 3889 if (current->state == TASK_RUNNING) 3890 return 1; 3891 if (ret < 0 || !spin) 3892 break; 3893 cpu_relax(); 3894 } while (!need_resched()); 3895 3896 __set_current_state(TASK_RUNNING); 3897 return 0; 3898 } 3899 EXPORT_SYMBOL_GPL(blk_poll); 3900 3901 unsigned int blk_mq_rq_cpu(struct request *rq) 3902 { 3903 return rq->mq_ctx->cpu; 3904 } 3905 EXPORT_SYMBOL(blk_mq_rq_cpu); 3906 3907 static int __init blk_mq_init(void) 3908 { 3909 int i; 3910 3911 for_each_possible_cpu(i) 3912 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 3913 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 3914 3915 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 3916 "block/softirq:dead", NULL, 3917 blk_softirq_cpu_dead); 3918 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3919 blk_mq_hctx_notify_dead); 3920 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 3921 blk_mq_hctx_notify_online, 3922 blk_mq_hctx_notify_offline); 3923 return 0; 3924 } 3925 subsys_initcall(blk_mq_init); 3926