1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 #include <linux/prefetch.h> 26 27 #include <trace/events/block.h> 28 29 #include <linux/blk-mq.h> 30 #include "blk.h" 31 #include "blk-mq.h" 32 #include "blk-mq-tag.h" 33 #include "blk-stat.h" 34 #include "blk-wbt.h" 35 36 static DEFINE_MUTEX(all_q_mutex); 37 static LIST_HEAD(all_q_list); 38 39 /* 40 * Check if any of the ctx's have pending work in this hardware queue 41 */ 42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 43 { 44 return sbitmap_any_bit_set(&hctx->ctx_map); 45 } 46 47 /* 48 * Mark this ctx as having pending work in this hardware queue 49 */ 50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 51 struct blk_mq_ctx *ctx) 52 { 53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 55 } 56 57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 58 struct blk_mq_ctx *ctx) 59 { 60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 61 } 62 63 void blk_mq_freeze_queue_start(struct request_queue *q) 64 { 65 int freeze_depth; 66 67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 68 if (freeze_depth == 1) { 69 percpu_ref_kill(&q->q_usage_counter); 70 blk_mq_run_hw_queues(q, false); 71 } 72 } 73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 74 75 static void blk_mq_freeze_queue_wait(struct request_queue *q) 76 { 77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 78 } 79 80 /* 81 * Guarantee no request is in use, so we can change any data structure of 82 * the queue afterward. 83 */ 84 void blk_freeze_queue(struct request_queue *q) 85 { 86 /* 87 * In the !blk_mq case we are only calling this to kill the 88 * q_usage_counter, otherwise this increases the freeze depth 89 * and waits for it to return to zero. For this reason there is 90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 91 * exported to drivers as the only user for unfreeze is blk_mq. 92 */ 93 blk_mq_freeze_queue_start(q); 94 blk_mq_freeze_queue_wait(q); 95 } 96 97 void blk_mq_freeze_queue(struct request_queue *q) 98 { 99 /* 100 * ...just an alias to keep freeze and unfreeze actions balanced 101 * in the blk_mq_* namespace 102 */ 103 blk_freeze_queue(q); 104 } 105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 106 107 void blk_mq_unfreeze_queue(struct request_queue *q) 108 { 109 int freeze_depth; 110 111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 112 WARN_ON_ONCE(freeze_depth < 0); 113 if (!freeze_depth) { 114 percpu_ref_reinit(&q->q_usage_counter); 115 wake_up_all(&q->mq_freeze_wq); 116 } 117 } 118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 119 120 /** 121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 122 * @q: request queue. 123 * 124 * Note: this function does not prevent that the struct request end_io() 125 * callback function is invoked. Additionally, it is not prevented that 126 * new queue_rq() calls occur unless the queue has been stopped first. 127 */ 128 void blk_mq_quiesce_queue(struct request_queue *q) 129 { 130 struct blk_mq_hw_ctx *hctx; 131 unsigned int i; 132 bool rcu = false; 133 134 blk_mq_stop_hw_queues(q); 135 136 queue_for_each_hw_ctx(q, hctx, i) { 137 if (hctx->flags & BLK_MQ_F_BLOCKING) 138 synchronize_srcu(&hctx->queue_rq_srcu); 139 else 140 rcu = true; 141 } 142 if (rcu) 143 synchronize_rcu(); 144 } 145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 146 147 void blk_mq_wake_waiters(struct request_queue *q) 148 { 149 struct blk_mq_hw_ctx *hctx; 150 unsigned int i; 151 152 queue_for_each_hw_ctx(q, hctx, i) 153 if (blk_mq_hw_queue_mapped(hctx)) 154 blk_mq_tag_wakeup_all(hctx->tags, true); 155 156 /* 157 * If we are called because the queue has now been marked as 158 * dying, we need to ensure that processes currently waiting on 159 * the queue are notified as well. 160 */ 161 wake_up_all(&q->mq_freeze_wq); 162 } 163 164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 165 { 166 return blk_mq_has_free_tags(hctx->tags); 167 } 168 EXPORT_SYMBOL(blk_mq_can_queue); 169 170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 171 struct request *rq, unsigned int op) 172 { 173 INIT_LIST_HEAD(&rq->queuelist); 174 /* csd/requeue_work/fifo_time is initialized before use */ 175 rq->q = q; 176 rq->mq_ctx = ctx; 177 rq->cmd_flags = op; 178 if (blk_queue_io_stat(q)) 179 rq->rq_flags |= RQF_IO_STAT; 180 /* do not touch atomic flags, it needs atomic ops against the timer */ 181 rq->cpu = -1; 182 INIT_HLIST_NODE(&rq->hash); 183 RB_CLEAR_NODE(&rq->rb_node); 184 rq->rq_disk = NULL; 185 rq->part = NULL; 186 rq->start_time = jiffies; 187 #ifdef CONFIG_BLK_CGROUP 188 rq->rl = NULL; 189 set_start_time_ns(rq); 190 rq->io_start_time_ns = 0; 191 #endif 192 rq->nr_phys_segments = 0; 193 #if defined(CONFIG_BLK_DEV_INTEGRITY) 194 rq->nr_integrity_segments = 0; 195 #endif 196 rq->special = NULL; 197 /* tag was already set */ 198 rq->errors = 0; 199 200 rq->cmd = rq->__cmd; 201 202 rq->extra_len = 0; 203 rq->sense_len = 0; 204 rq->resid_len = 0; 205 rq->sense = NULL; 206 207 INIT_LIST_HEAD(&rq->timeout_list); 208 rq->timeout = 0; 209 210 rq->end_io = NULL; 211 rq->end_io_data = NULL; 212 rq->next_rq = NULL; 213 214 ctx->rq_dispatched[op_is_sync(op)]++; 215 } 216 217 static struct request * 218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op) 219 { 220 struct request *rq; 221 unsigned int tag; 222 223 tag = blk_mq_get_tag(data); 224 if (tag != BLK_MQ_TAG_FAIL) { 225 rq = data->hctx->tags->rqs[tag]; 226 227 if (blk_mq_tag_busy(data->hctx)) { 228 rq->rq_flags = RQF_MQ_INFLIGHT; 229 atomic_inc(&data->hctx->nr_active); 230 } 231 232 rq->tag = tag; 233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 234 return rq; 235 } 236 237 return NULL; 238 } 239 240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 241 unsigned int flags) 242 { 243 struct blk_mq_ctx *ctx; 244 struct blk_mq_hw_ctx *hctx; 245 struct request *rq; 246 struct blk_mq_alloc_data alloc_data; 247 int ret; 248 249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 250 if (ret) 251 return ERR_PTR(ret); 252 253 ctx = blk_mq_get_ctx(q); 254 hctx = blk_mq_map_queue(q, ctx->cpu); 255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 256 rq = __blk_mq_alloc_request(&alloc_data, rw); 257 blk_mq_put_ctx(ctx); 258 259 if (!rq) { 260 blk_queue_exit(q); 261 return ERR_PTR(-EWOULDBLOCK); 262 } 263 264 rq->__data_len = 0; 265 rq->__sector = (sector_t) -1; 266 rq->bio = rq->biotail = NULL; 267 return rq; 268 } 269 EXPORT_SYMBOL(blk_mq_alloc_request); 270 271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 272 unsigned int flags, unsigned int hctx_idx) 273 { 274 struct blk_mq_hw_ctx *hctx; 275 struct blk_mq_ctx *ctx; 276 struct request *rq; 277 struct blk_mq_alloc_data alloc_data; 278 int ret; 279 280 /* 281 * If the tag allocator sleeps we could get an allocation for a 282 * different hardware context. No need to complicate the low level 283 * allocator for this for the rare use case of a command tied to 284 * a specific queue. 285 */ 286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 287 return ERR_PTR(-EINVAL); 288 289 if (hctx_idx >= q->nr_hw_queues) 290 return ERR_PTR(-EIO); 291 292 ret = blk_queue_enter(q, true); 293 if (ret) 294 return ERR_PTR(ret); 295 296 /* 297 * Check if the hardware context is actually mapped to anything. 298 * If not tell the caller that it should skip this queue. 299 */ 300 hctx = q->queue_hw_ctx[hctx_idx]; 301 if (!blk_mq_hw_queue_mapped(hctx)) { 302 ret = -EXDEV; 303 goto out_queue_exit; 304 } 305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); 306 307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 308 rq = __blk_mq_alloc_request(&alloc_data, rw); 309 if (!rq) { 310 ret = -EWOULDBLOCK; 311 goto out_queue_exit; 312 } 313 314 return rq; 315 316 out_queue_exit: 317 blk_queue_exit(q); 318 return ERR_PTR(ret); 319 } 320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 321 322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 323 struct blk_mq_ctx *ctx, struct request *rq) 324 { 325 const int tag = rq->tag; 326 struct request_queue *q = rq->q; 327 328 if (rq->rq_flags & RQF_MQ_INFLIGHT) 329 atomic_dec(&hctx->nr_active); 330 331 wbt_done(q->rq_wb, &rq->issue_stat); 332 rq->rq_flags = 0; 333 334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 336 blk_mq_put_tag(hctx, ctx, tag); 337 blk_queue_exit(q); 338 } 339 340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 341 { 342 struct blk_mq_ctx *ctx = rq->mq_ctx; 343 344 ctx->rq_completed[rq_is_sync(rq)]++; 345 __blk_mq_free_request(hctx, ctx, rq); 346 347 } 348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 349 350 void blk_mq_free_request(struct request *rq) 351 { 352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 353 } 354 EXPORT_SYMBOL_GPL(blk_mq_free_request); 355 356 inline void __blk_mq_end_request(struct request *rq, int error) 357 { 358 blk_account_io_done(rq); 359 360 if (rq->end_io) { 361 wbt_done(rq->q->rq_wb, &rq->issue_stat); 362 rq->end_io(rq, error); 363 } else { 364 if (unlikely(blk_bidi_rq(rq))) 365 blk_mq_free_request(rq->next_rq); 366 blk_mq_free_request(rq); 367 } 368 } 369 EXPORT_SYMBOL(__blk_mq_end_request); 370 371 void blk_mq_end_request(struct request *rq, int error) 372 { 373 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 374 BUG(); 375 __blk_mq_end_request(rq, error); 376 } 377 EXPORT_SYMBOL(blk_mq_end_request); 378 379 static void __blk_mq_complete_request_remote(void *data) 380 { 381 struct request *rq = data; 382 383 rq->q->softirq_done_fn(rq); 384 } 385 386 static void blk_mq_ipi_complete_request(struct request *rq) 387 { 388 struct blk_mq_ctx *ctx = rq->mq_ctx; 389 bool shared = false; 390 int cpu; 391 392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 393 rq->q->softirq_done_fn(rq); 394 return; 395 } 396 397 cpu = get_cpu(); 398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 399 shared = cpus_share_cache(cpu, ctx->cpu); 400 401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 402 rq->csd.func = __blk_mq_complete_request_remote; 403 rq->csd.info = rq; 404 rq->csd.flags = 0; 405 smp_call_function_single_async(ctx->cpu, &rq->csd); 406 } else { 407 rq->q->softirq_done_fn(rq); 408 } 409 put_cpu(); 410 } 411 412 static void blk_mq_stat_add(struct request *rq) 413 { 414 if (rq->rq_flags & RQF_STATS) { 415 /* 416 * We could rq->mq_ctx here, but there's less of a risk 417 * of races if we have the completion event add the stats 418 * to the local software queue. 419 */ 420 struct blk_mq_ctx *ctx; 421 422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); 423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); 424 } 425 } 426 427 static void __blk_mq_complete_request(struct request *rq) 428 { 429 struct request_queue *q = rq->q; 430 431 blk_mq_stat_add(rq); 432 433 if (!q->softirq_done_fn) 434 blk_mq_end_request(rq, rq->errors); 435 else 436 blk_mq_ipi_complete_request(rq); 437 } 438 439 /** 440 * blk_mq_complete_request - end I/O on a request 441 * @rq: the request being processed 442 * 443 * Description: 444 * Ends all I/O on a request. It does not handle partial completions. 445 * The actual completion happens out-of-order, through a IPI handler. 446 **/ 447 void blk_mq_complete_request(struct request *rq, int error) 448 { 449 struct request_queue *q = rq->q; 450 451 if (unlikely(blk_should_fake_timeout(q))) 452 return; 453 if (!blk_mark_rq_complete(rq)) { 454 rq->errors = error; 455 __blk_mq_complete_request(rq); 456 } 457 } 458 EXPORT_SYMBOL(blk_mq_complete_request); 459 460 int blk_mq_request_started(struct request *rq) 461 { 462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 463 } 464 EXPORT_SYMBOL_GPL(blk_mq_request_started); 465 466 void blk_mq_start_request(struct request *rq) 467 { 468 struct request_queue *q = rq->q; 469 470 trace_block_rq_issue(q, rq); 471 472 rq->resid_len = blk_rq_bytes(rq); 473 if (unlikely(blk_bidi_rq(rq))) 474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 475 476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 477 blk_stat_set_issue_time(&rq->issue_stat); 478 rq->rq_flags |= RQF_STATS; 479 wbt_issue(q->rq_wb, &rq->issue_stat); 480 } 481 482 blk_add_timer(rq); 483 484 /* 485 * Ensure that ->deadline is visible before set the started 486 * flag and clear the completed flag. 487 */ 488 smp_mb__before_atomic(); 489 490 /* 491 * Mark us as started and clear complete. Complete might have been 492 * set if requeue raced with timeout, which then marked it as 493 * complete. So be sure to clear complete again when we start 494 * the request, otherwise we'll ignore the completion event. 495 */ 496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 500 501 if (q->dma_drain_size && blk_rq_bytes(rq)) { 502 /* 503 * Make sure space for the drain appears. We know we can do 504 * this because max_hw_segments has been adjusted to be one 505 * fewer than the device can handle. 506 */ 507 rq->nr_phys_segments++; 508 } 509 } 510 EXPORT_SYMBOL(blk_mq_start_request); 511 512 static void __blk_mq_requeue_request(struct request *rq) 513 { 514 struct request_queue *q = rq->q; 515 516 trace_block_rq_requeue(q, rq); 517 wbt_requeue(q->rq_wb, &rq->issue_stat); 518 519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 520 if (q->dma_drain_size && blk_rq_bytes(rq)) 521 rq->nr_phys_segments--; 522 } 523 } 524 525 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 526 { 527 __blk_mq_requeue_request(rq); 528 529 BUG_ON(blk_queued_rq(rq)); 530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 531 } 532 EXPORT_SYMBOL(blk_mq_requeue_request); 533 534 static void blk_mq_requeue_work(struct work_struct *work) 535 { 536 struct request_queue *q = 537 container_of(work, struct request_queue, requeue_work.work); 538 LIST_HEAD(rq_list); 539 struct request *rq, *next; 540 unsigned long flags; 541 542 spin_lock_irqsave(&q->requeue_lock, flags); 543 list_splice_init(&q->requeue_list, &rq_list); 544 spin_unlock_irqrestore(&q->requeue_lock, flags); 545 546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 547 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 548 continue; 549 550 rq->rq_flags &= ~RQF_SOFTBARRIER; 551 list_del_init(&rq->queuelist); 552 blk_mq_insert_request(rq, true, false, false); 553 } 554 555 while (!list_empty(&rq_list)) { 556 rq = list_entry(rq_list.next, struct request, queuelist); 557 list_del_init(&rq->queuelist); 558 blk_mq_insert_request(rq, false, false, false); 559 } 560 561 blk_mq_run_hw_queues(q, false); 562 } 563 564 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 565 bool kick_requeue_list) 566 { 567 struct request_queue *q = rq->q; 568 unsigned long flags; 569 570 /* 571 * We abuse this flag that is otherwise used by the I/O scheduler to 572 * request head insertation from the workqueue. 573 */ 574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 575 576 spin_lock_irqsave(&q->requeue_lock, flags); 577 if (at_head) { 578 rq->rq_flags |= RQF_SOFTBARRIER; 579 list_add(&rq->queuelist, &q->requeue_list); 580 } else { 581 list_add_tail(&rq->queuelist, &q->requeue_list); 582 } 583 spin_unlock_irqrestore(&q->requeue_lock, flags); 584 585 if (kick_requeue_list) 586 blk_mq_kick_requeue_list(q); 587 } 588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 589 590 void blk_mq_kick_requeue_list(struct request_queue *q) 591 { 592 kblockd_schedule_delayed_work(&q->requeue_work, 0); 593 } 594 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 595 596 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 597 unsigned long msecs) 598 { 599 kblockd_schedule_delayed_work(&q->requeue_work, 600 msecs_to_jiffies(msecs)); 601 } 602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 603 604 void blk_mq_abort_requeue_list(struct request_queue *q) 605 { 606 unsigned long flags; 607 LIST_HEAD(rq_list); 608 609 spin_lock_irqsave(&q->requeue_lock, flags); 610 list_splice_init(&q->requeue_list, &rq_list); 611 spin_unlock_irqrestore(&q->requeue_lock, flags); 612 613 while (!list_empty(&rq_list)) { 614 struct request *rq; 615 616 rq = list_first_entry(&rq_list, struct request, queuelist); 617 list_del_init(&rq->queuelist); 618 rq->errors = -EIO; 619 blk_mq_end_request(rq, rq->errors); 620 } 621 } 622 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 623 624 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 625 { 626 if (tag < tags->nr_tags) { 627 prefetch(tags->rqs[tag]); 628 return tags->rqs[tag]; 629 } 630 631 return NULL; 632 } 633 EXPORT_SYMBOL(blk_mq_tag_to_rq); 634 635 struct blk_mq_timeout_data { 636 unsigned long next; 637 unsigned int next_set; 638 }; 639 640 void blk_mq_rq_timed_out(struct request *req, bool reserved) 641 { 642 struct blk_mq_ops *ops = req->q->mq_ops; 643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 644 645 /* 646 * We know that complete is set at this point. If STARTED isn't set 647 * anymore, then the request isn't active and the "timeout" should 648 * just be ignored. This can happen due to the bitflag ordering. 649 * Timeout first checks if STARTED is set, and if it is, assumes 650 * the request is active. But if we race with completion, then 651 * we both flags will get cleared. So check here again, and ignore 652 * a timeout event with a request that isn't active. 653 */ 654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 655 return; 656 657 if (ops->timeout) 658 ret = ops->timeout(req, reserved); 659 660 switch (ret) { 661 case BLK_EH_HANDLED: 662 __blk_mq_complete_request(req); 663 break; 664 case BLK_EH_RESET_TIMER: 665 blk_add_timer(req); 666 blk_clear_rq_complete(req); 667 break; 668 case BLK_EH_NOT_HANDLED: 669 break; 670 default: 671 printk(KERN_ERR "block: bad eh return: %d\n", ret); 672 break; 673 } 674 } 675 676 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 677 struct request *rq, void *priv, bool reserved) 678 { 679 struct blk_mq_timeout_data *data = priv; 680 681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 682 /* 683 * If a request wasn't started before the queue was 684 * marked dying, kill it here or it'll go unnoticed. 685 */ 686 if (unlikely(blk_queue_dying(rq->q))) { 687 rq->errors = -EIO; 688 blk_mq_end_request(rq, rq->errors); 689 } 690 return; 691 } 692 693 if (time_after_eq(jiffies, rq->deadline)) { 694 if (!blk_mark_rq_complete(rq)) 695 blk_mq_rq_timed_out(rq, reserved); 696 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 697 data->next = rq->deadline; 698 data->next_set = 1; 699 } 700 } 701 702 static void blk_mq_timeout_work(struct work_struct *work) 703 { 704 struct request_queue *q = 705 container_of(work, struct request_queue, timeout_work); 706 struct blk_mq_timeout_data data = { 707 .next = 0, 708 .next_set = 0, 709 }; 710 int i; 711 712 /* A deadlock might occur if a request is stuck requiring a 713 * timeout at the same time a queue freeze is waiting 714 * completion, since the timeout code would not be able to 715 * acquire the queue reference here. 716 * 717 * That's why we don't use blk_queue_enter here; instead, we use 718 * percpu_ref_tryget directly, because we need to be able to 719 * obtain a reference even in the short window between the queue 720 * starting to freeze, by dropping the first reference in 721 * blk_mq_freeze_queue_start, and the moment the last request is 722 * consumed, marked by the instant q_usage_counter reaches 723 * zero. 724 */ 725 if (!percpu_ref_tryget(&q->q_usage_counter)) 726 return; 727 728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 729 730 if (data.next_set) { 731 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 732 mod_timer(&q->timeout, data.next); 733 } else { 734 struct blk_mq_hw_ctx *hctx; 735 736 queue_for_each_hw_ctx(q, hctx, i) { 737 /* the hctx may be unmapped, so check it here */ 738 if (blk_mq_hw_queue_mapped(hctx)) 739 blk_mq_tag_idle(hctx); 740 } 741 } 742 blk_queue_exit(q); 743 } 744 745 /* 746 * Reverse check our software queue for entries that we could potentially 747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 748 * too much time checking for merges. 749 */ 750 static bool blk_mq_attempt_merge(struct request_queue *q, 751 struct blk_mq_ctx *ctx, struct bio *bio) 752 { 753 struct request *rq; 754 int checked = 8; 755 756 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 757 int el_ret; 758 759 if (!checked--) 760 break; 761 762 if (!blk_rq_merge_ok(rq, bio)) 763 continue; 764 765 el_ret = blk_try_merge(rq, bio); 766 if (el_ret == ELEVATOR_BACK_MERGE) { 767 if (bio_attempt_back_merge(q, rq, bio)) { 768 ctx->rq_merged++; 769 return true; 770 } 771 break; 772 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 773 if (bio_attempt_front_merge(q, rq, bio)) { 774 ctx->rq_merged++; 775 return true; 776 } 777 break; 778 } 779 } 780 781 return false; 782 } 783 784 struct flush_busy_ctx_data { 785 struct blk_mq_hw_ctx *hctx; 786 struct list_head *list; 787 }; 788 789 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 790 { 791 struct flush_busy_ctx_data *flush_data = data; 792 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 794 795 sbitmap_clear_bit(sb, bitnr); 796 spin_lock(&ctx->lock); 797 list_splice_tail_init(&ctx->rq_list, flush_data->list); 798 spin_unlock(&ctx->lock); 799 return true; 800 } 801 802 /* 803 * Process software queues that have been marked busy, splicing them 804 * to the for-dispatch 805 */ 806 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 807 { 808 struct flush_busy_ctx_data data = { 809 .hctx = hctx, 810 .list = list, 811 }; 812 813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 814 } 815 816 static inline unsigned int queued_to_index(unsigned int queued) 817 { 818 if (!queued) 819 return 0; 820 821 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 822 } 823 824 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) 825 { 826 struct request_queue *q = hctx->queue; 827 struct request *rq; 828 LIST_HEAD(driver_list); 829 struct list_head *dptr; 830 int queued, ret = BLK_MQ_RQ_QUEUE_OK; 831 832 /* 833 * Start off with dptr being NULL, so we start the first request 834 * immediately, even if we have more pending. 835 */ 836 dptr = NULL; 837 838 /* 839 * Now process all the entries, sending them to the driver. 840 */ 841 queued = 0; 842 while (!list_empty(list)) { 843 struct blk_mq_queue_data bd; 844 845 rq = list_first_entry(list, struct request, queuelist); 846 list_del_init(&rq->queuelist); 847 848 bd.rq = rq; 849 bd.list = dptr; 850 bd.last = list_empty(list); 851 852 ret = q->mq_ops->queue_rq(hctx, &bd); 853 switch (ret) { 854 case BLK_MQ_RQ_QUEUE_OK: 855 queued++; 856 break; 857 case BLK_MQ_RQ_QUEUE_BUSY: 858 list_add(&rq->queuelist, list); 859 __blk_mq_requeue_request(rq); 860 break; 861 default: 862 pr_err("blk-mq: bad return on queue: %d\n", ret); 863 case BLK_MQ_RQ_QUEUE_ERROR: 864 rq->errors = -EIO; 865 blk_mq_end_request(rq, rq->errors); 866 break; 867 } 868 869 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 870 break; 871 872 /* 873 * We've done the first request. If we have more than 1 874 * left in the list, set dptr to defer issue. 875 */ 876 if (!dptr && list->next != list->prev) 877 dptr = &driver_list; 878 } 879 880 hctx->dispatched[queued_to_index(queued)]++; 881 882 /* 883 * Any items that need requeuing? Stuff them into hctx->dispatch, 884 * that is where we will continue on next queue run. 885 */ 886 if (!list_empty(list)) { 887 spin_lock(&hctx->lock); 888 list_splice(list, &hctx->dispatch); 889 spin_unlock(&hctx->lock); 890 891 /* 892 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 893 * it's possible the queue is stopped and restarted again 894 * before this. Queue restart will dispatch requests. And since 895 * requests in rq_list aren't added into hctx->dispatch yet, 896 * the requests in rq_list might get lost. 897 * 898 * blk_mq_run_hw_queue() already checks the STOPPED bit 899 **/ 900 blk_mq_run_hw_queue(hctx, true); 901 } 902 903 return ret != BLK_MQ_RQ_QUEUE_BUSY; 904 } 905 906 /* 907 * Run this hardware queue, pulling any software queues mapped to it in. 908 * Note that this function currently has various problems around ordering 909 * of IO. In particular, we'd like FIFO behaviour on handling existing 910 * items on the hctx->dispatch list. Ignore that for now. 911 */ 912 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx) 913 { 914 LIST_HEAD(rq_list); 915 916 if (unlikely(blk_mq_hctx_stopped(hctx))) 917 return; 918 919 hctx->run++; 920 921 /* 922 * Touch any software queue that has pending entries. 923 */ 924 flush_busy_ctxs(hctx, &rq_list); 925 926 /* 927 * If we have previous entries on our dispatch list, grab them 928 * and stuff them at the front for more fair dispatch. 929 */ 930 if (!list_empty_careful(&hctx->dispatch)) { 931 spin_lock(&hctx->lock); 932 if (!list_empty(&hctx->dispatch)) 933 list_splice_init(&hctx->dispatch, &rq_list); 934 spin_unlock(&hctx->lock); 935 } 936 937 blk_mq_dispatch_rq_list(hctx, &rq_list); 938 } 939 940 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 941 { 942 int srcu_idx; 943 944 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 945 cpu_online(hctx->next_cpu)); 946 947 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 948 rcu_read_lock(); 949 blk_mq_process_rq_list(hctx); 950 rcu_read_unlock(); 951 } else { 952 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 953 blk_mq_process_rq_list(hctx); 954 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 955 } 956 } 957 958 /* 959 * It'd be great if the workqueue API had a way to pass 960 * in a mask and had some smarts for more clever placement. 961 * For now we just round-robin here, switching for every 962 * BLK_MQ_CPU_WORK_BATCH queued items. 963 */ 964 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 965 { 966 if (hctx->queue->nr_hw_queues == 1) 967 return WORK_CPU_UNBOUND; 968 969 if (--hctx->next_cpu_batch <= 0) { 970 int next_cpu; 971 972 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 973 if (next_cpu >= nr_cpu_ids) 974 next_cpu = cpumask_first(hctx->cpumask); 975 976 hctx->next_cpu = next_cpu; 977 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 978 } 979 980 return hctx->next_cpu; 981 } 982 983 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 984 { 985 if (unlikely(blk_mq_hctx_stopped(hctx) || 986 !blk_mq_hw_queue_mapped(hctx))) 987 return; 988 989 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 990 int cpu = get_cpu(); 991 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 992 __blk_mq_run_hw_queue(hctx); 993 put_cpu(); 994 return; 995 } 996 997 put_cpu(); 998 } 999 1000 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); 1001 } 1002 1003 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1004 { 1005 struct blk_mq_hw_ctx *hctx; 1006 int i; 1007 1008 queue_for_each_hw_ctx(q, hctx, i) { 1009 if ((!blk_mq_hctx_has_pending(hctx) && 1010 list_empty_careful(&hctx->dispatch)) || 1011 blk_mq_hctx_stopped(hctx)) 1012 continue; 1013 1014 blk_mq_run_hw_queue(hctx, async); 1015 } 1016 } 1017 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1018 1019 /** 1020 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1021 * @q: request queue. 1022 * 1023 * The caller is responsible for serializing this function against 1024 * blk_mq_{start,stop}_hw_queue(). 1025 */ 1026 bool blk_mq_queue_stopped(struct request_queue *q) 1027 { 1028 struct blk_mq_hw_ctx *hctx; 1029 int i; 1030 1031 queue_for_each_hw_ctx(q, hctx, i) 1032 if (blk_mq_hctx_stopped(hctx)) 1033 return true; 1034 1035 return false; 1036 } 1037 EXPORT_SYMBOL(blk_mq_queue_stopped); 1038 1039 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1040 { 1041 cancel_work(&hctx->run_work); 1042 cancel_delayed_work(&hctx->delay_work); 1043 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1044 } 1045 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1046 1047 void blk_mq_stop_hw_queues(struct request_queue *q) 1048 { 1049 struct blk_mq_hw_ctx *hctx; 1050 int i; 1051 1052 queue_for_each_hw_ctx(q, hctx, i) 1053 blk_mq_stop_hw_queue(hctx); 1054 } 1055 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1056 1057 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1058 { 1059 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1060 1061 blk_mq_run_hw_queue(hctx, false); 1062 } 1063 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1064 1065 void blk_mq_start_hw_queues(struct request_queue *q) 1066 { 1067 struct blk_mq_hw_ctx *hctx; 1068 int i; 1069 1070 queue_for_each_hw_ctx(q, hctx, i) 1071 blk_mq_start_hw_queue(hctx); 1072 } 1073 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1074 1075 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1076 { 1077 if (!blk_mq_hctx_stopped(hctx)) 1078 return; 1079 1080 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1081 blk_mq_run_hw_queue(hctx, async); 1082 } 1083 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1084 1085 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1086 { 1087 struct blk_mq_hw_ctx *hctx; 1088 int i; 1089 1090 queue_for_each_hw_ctx(q, hctx, i) 1091 blk_mq_start_stopped_hw_queue(hctx, async); 1092 } 1093 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1094 1095 static void blk_mq_run_work_fn(struct work_struct *work) 1096 { 1097 struct blk_mq_hw_ctx *hctx; 1098 1099 hctx = container_of(work, struct blk_mq_hw_ctx, run_work); 1100 1101 __blk_mq_run_hw_queue(hctx); 1102 } 1103 1104 static void blk_mq_delay_work_fn(struct work_struct *work) 1105 { 1106 struct blk_mq_hw_ctx *hctx; 1107 1108 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1109 1110 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1111 __blk_mq_run_hw_queue(hctx); 1112 } 1113 1114 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1115 { 1116 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1117 return; 1118 1119 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1120 &hctx->delay_work, msecs_to_jiffies(msecs)); 1121 } 1122 EXPORT_SYMBOL(blk_mq_delay_queue); 1123 1124 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1125 struct request *rq, 1126 bool at_head) 1127 { 1128 struct blk_mq_ctx *ctx = rq->mq_ctx; 1129 1130 trace_block_rq_insert(hctx->queue, rq); 1131 1132 if (at_head) 1133 list_add(&rq->queuelist, &ctx->rq_list); 1134 else 1135 list_add_tail(&rq->queuelist, &ctx->rq_list); 1136 } 1137 1138 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 1139 struct request *rq, bool at_head) 1140 { 1141 struct blk_mq_ctx *ctx = rq->mq_ctx; 1142 1143 __blk_mq_insert_req_list(hctx, rq, at_head); 1144 blk_mq_hctx_mark_pending(hctx, ctx); 1145 } 1146 1147 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1148 bool async) 1149 { 1150 struct blk_mq_ctx *ctx = rq->mq_ctx; 1151 struct request_queue *q = rq->q; 1152 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 1153 1154 spin_lock(&ctx->lock); 1155 __blk_mq_insert_request(hctx, rq, at_head); 1156 spin_unlock(&ctx->lock); 1157 1158 if (run_queue) 1159 blk_mq_run_hw_queue(hctx, async); 1160 } 1161 1162 static void blk_mq_insert_requests(struct request_queue *q, 1163 struct blk_mq_ctx *ctx, 1164 struct list_head *list, 1165 int depth, 1166 bool from_schedule) 1167 1168 { 1169 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 1170 1171 trace_block_unplug(q, depth, !from_schedule); 1172 1173 /* 1174 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1175 * offline now 1176 */ 1177 spin_lock(&ctx->lock); 1178 while (!list_empty(list)) { 1179 struct request *rq; 1180 1181 rq = list_first_entry(list, struct request, queuelist); 1182 BUG_ON(rq->mq_ctx != ctx); 1183 list_del_init(&rq->queuelist); 1184 __blk_mq_insert_req_list(hctx, rq, false); 1185 } 1186 blk_mq_hctx_mark_pending(hctx, ctx); 1187 spin_unlock(&ctx->lock); 1188 1189 blk_mq_run_hw_queue(hctx, from_schedule); 1190 } 1191 1192 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1193 { 1194 struct request *rqa = container_of(a, struct request, queuelist); 1195 struct request *rqb = container_of(b, struct request, queuelist); 1196 1197 return !(rqa->mq_ctx < rqb->mq_ctx || 1198 (rqa->mq_ctx == rqb->mq_ctx && 1199 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1200 } 1201 1202 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1203 { 1204 struct blk_mq_ctx *this_ctx; 1205 struct request_queue *this_q; 1206 struct request *rq; 1207 LIST_HEAD(list); 1208 LIST_HEAD(ctx_list); 1209 unsigned int depth; 1210 1211 list_splice_init(&plug->mq_list, &list); 1212 1213 list_sort(NULL, &list, plug_ctx_cmp); 1214 1215 this_q = NULL; 1216 this_ctx = NULL; 1217 depth = 0; 1218 1219 while (!list_empty(&list)) { 1220 rq = list_entry_rq(list.next); 1221 list_del_init(&rq->queuelist); 1222 BUG_ON(!rq->q); 1223 if (rq->mq_ctx != this_ctx) { 1224 if (this_ctx) { 1225 blk_mq_insert_requests(this_q, this_ctx, 1226 &ctx_list, depth, 1227 from_schedule); 1228 } 1229 1230 this_ctx = rq->mq_ctx; 1231 this_q = rq->q; 1232 depth = 0; 1233 } 1234 1235 depth++; 1236 list_add_tail(&rq->queuelist, &ctx_list); 1237 } 1238 1239 /* 1240 * If 'this_ctx' is set, we know we have entries to complete 1241 * on 'ctx_list'. Do those. 1242 */ 1243 if (this_ctx) { 1244 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1245 from_schedule); 1246 } 1247 } 1248 1249 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1250 { 1251 init_request_from_bio(rq, bio); 1252 1253 blk_account_io_start(rq, true); 1254 } 1255 1256 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1257 { 1258 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1259 !blk_queue_nomerges(hctx->queue); 1260 } 1261 1262 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1263 struct blk_mq_ctx *ctx, 1264 struct request *rq, struct bio *bio) 1265 { 1266 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1267 blk_mq_bio_to_request(rq, bio); 1268 spin_lock(&ctx->lock); 1269 insert_rq: 1270 __blk_mq_insert_request(hctx, rq, false); 1271 spin_unlock(&ctx->lock); 1272 return false; 1273 } else { 1274 struct request_queue *q = hctx->queue; 1275 1276 spin_lock(&ctx->lock); 1277 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1278 blk_mq_bio_to_request(rq, bio); 1279 goto insert_rq; 1280 } 1281 1282 spin_unlock(&ctx->lock); 1283 __blk_mq_free_request(hctx, ctx, rq); 1284 return true; 1285 } 1286 } 1287 1288 static struct request *blk_mq_map_request(struct request_queue *q, 1289 struct bio *bio, 1290 struct blk_mq_alloc_data *data) 1291 { 1292 struct blk_mq_hw_ctx *hctx; 1293 struct blk_mq_ctx *ctx; 1294 struct request *rq; 1295 1296 blk_queue_enter_live(q); 1297 ctx = blk_mq_get_ctx(q); 1298 hctx = blk_mq_map_queue(q, ctx->cpu); 1299 1300 trace_block_getrq(q, bio, bio->bi_opf); 1301 blk_mq_set_alloc_data(data, q, 0, ctx, hctx); 1302 rq = __blk_mq_alloc_request(data, bio->bi_opf); 1303 1304 data->hctx->queued++; 1305 return rq; 1306 } 1307 1308 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie) 1309 { 1310 int ret; 1311 struct request_queue *q = rq->q; 1312 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 1313 struct blk_mq_queue_data bd = { 1314 .rq = rq, 1315 .list = NULL, 1316 .last = 1 1317 }; 1318 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); 1319 1320 if (blk_mq_hctx_stopped(hctx)) 1321 goto insert; 1322 1323 /* 1324 * For OK queue, we are done. For error, kill it. Any other 1325 * error (busy), just add it to our list as we previously 1326 * would have done 1327 */ 1328 ret = q->mq_ops->queue_rq(hctx, &bd); 1329 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1330 *cookie = new_cookie; 1331 return; 1332 } 1333 1334 __blk_mq_requeue_request(rq); 1335 1336 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1337 *cookie = BLK_QC_T_NONE; 1338 rq->errors = -EIO; 1339 blk_mq_end_request(rq, rq->errors); 1340 return; 1341 } 1342 1343 insert: 1344 blk_mq_insert_request(rq, false, true, true); 1345 } 1346 1347 /* 1348 * Multiple hardware queue variant. This will not use per-process plugs, 1349 * but will attempt to bypass the hctx queueing if we can go straight to 1350 * hardware for SYNC IO. 1351 */ 1352 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1353 { 1354 const int is_sync = op_is_sync(bio->bi_opf); 1355 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); 1356 struct blk_mq_alloc_data data; 1357 struct request *rq; 1358 unsigned int request_count = 0, srcu_idx; 1359 struct blk_plug *plug; 1360 struct request *same_queue_rq = NULL; 1361 blk_qc_t cookie; 1362 unsigned int wb_acct; 1363 1364 blk_queue_bounce(q, &bio); 1365 1366 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1367 bio_io_error(bio); 1368 return BLK_QC_T_NONE; 1369 } 1370 1371 blk_queue_split(q, &bio, q->bio_split); 1372 1373 if (!is_flush_fua && !blk_queue_nomerges(q) && 1374 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1375 return BLK_QC_T_NONE; 1376 1377 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1378 1379 rq = blk_mq_map_request(q, bio, &data); 1380 if (unlikely(!rq)) { 1381 __wbt_done(q->rq_wb, wb_acct); 1382 return BLK_QC_T_NONE; 1383 } 1384 1385 wbt_track(&rq->issue_stat, wb_acct); 1386 1387 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1388 1389 if (unlikely(is_flush_fua)) { 1390 blk_mq_bio_to_request(rq, bio); 1391 blk_insert_flush(rq); 1392 goto run_queue; 1393 } 1394 1395 plug = current->plug; 1396 /* 1397 * If the driver supports defer issued based on 'last', then 1398 * queue it up like normal since we can potentially save some 1399 * CPU this way. 1400 */ 1401 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1402 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1403 struct request *old_rq = NULL; 1404 1405 blk_mq_bio_to_request(rq, bio); 1406 1407 /* 1408 * We do limited plugging. If the bio can be merged, do that. 1409 * Otherwise the existing request in the plug list will be 1410 * issued. So the plug list will have one request at most 1411 */ 1412 if (plug) { 1413 /* 1414 * The plug list might get flushed before this. If that 1415 * happens, same_queue_rq is invalid and plug list is 1416 * empty 1417 */ 1418 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1419 old_rq = same_queue_rq; 1420 list_del_init(&old_rq->queuelist); 1421 } 1422 list_add_tail(&rq->queuelist, &plug->mq_list); 1423 } else /* is_sync */ 1424 old_rq = rq; 1425 blk_mq_put_ctx(data.ctx); 1426 if (!old_rq) 1427 goto done; 1428 1429 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { 1430 rcu_read_lock(); 1431 blk_mq_try_issue_directly(old_rq, &cookie); 1432 rcu_read_unlock(); 1433 } else { 1434 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); 1435 blk_mq_try_issue_directly(old_rq, &cookie); 1436 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); 1437 } 1438 goto done; 1439 } 1440 1441 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1442 /* 1443 * For a SYNC request, send it to the hardware immediately. For 1444 * an ASYNC request, just ensure that we run it later on. The 1445 * latter allows for merging opportunities and more efficient 1446 * dispatching. 1447 */ 1448 run_queue: 1449 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1450 } 1451 blk_mq_put_ctx(data.ctx); 1452 done: 1453 return cookie; 1454 } 1455 1456 /* 1457 * Single hardware queue variant. This will attempt to use any per-process 1458 * plug for merging and IO deferral. 1459 */ 1460 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1461 { 1462 const int is_sync = op_is_sync(bio->bi_opf); 1463 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); 1464 struct blk_plug *plug; 1465 unsigned int request_count = 0; 1466 struct blk_mq_alloc_data data; 1467 struct request *rq; 1468 blk_qc_t cookie; 1469 unsigned int wb_acct; 1470 1471 blk_queue_bounce(q, &bio); 1472 1473 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1474 bio_io_error(bio); 1475 return BLK_QC_T_NONE; 1476 } 1477 1478 blk_queue_split(q, &bio, q->bio_split); 1479 1480 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1481 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1482 return BLK_QC_T_NONE; 1483 } else 1484 request_count = blk_plug_queued_count(q); 1485 1486 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1487 1488 rq = blk_mq_map_request(q, bio, &data); 1489 if (unlikely(!rq)) { 1490 __wbt_done(q->rq_wb, wb_acct); 1491 return BLK_QC_T_NONE; 1492 } 1493 1494 wbt_track(&rq->issue_stat, wb_acct); 1495 1496 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1497 1498 if (unlikely(is_flush_fua)) { 1499 blk_mq_bio_to_request(rq, bio); 1500 blk_insert_flush(rq); 1501 goto run_queue; 1502 } 1503 1504 /* 1505 * A task plug currently exists. Since this is completely lockless, 1506 * utilize that to temporarily store requests until the task is 1507 * either done or scheduled away. 1508 */ 1509 plug = current->plug; 1510 if (plug) { 1511 struct request *last = NULL; 1512 1513 blk_mq_bio_to_request(rq, bio); 1514 1515 /* 1516 * @request_count may become stale because of schedule 1517 * out, so check the list again. 1518 */ 1519 if (list_empty(&plug->mq_list)) 1520 request_count = 0; 1521 if (!request_count) 1522 trace_block_plug(q); 1523 else 1524 last = list_entry_rq(plug->mq_list.prev); 1525 1526 blk_mq_put_ctx(data.ctx); 1527 1528 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1529 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1530 blk_flush_plug_list(plug, false); 1531 trace_block_plug(q); 1532 } 1533 1534 list_add_tail(&rq->queuelist, &plug->mq_list); 1535 return cookie; 1536 } 1537 1538 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1539 /* 1540 * For a SYNC request, send it to the hardware immediately. For 1541 * an ASYNC request, just ensure that we run it later on. The 1542 * latter allows for merging opportunities and more efficient 1543 * dispatching. 1544 */ 1545 run_queue: 1546 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1547 } 1548 1549 blk_mq_put_ctx(data.ctx); 1550 return cookie; 1551 } 1552 1553 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1554 struct blk_mq_tags *tags, unsigned int hctx_idx) 1555 { 1556 struct page *page; 1557 1558 if (tags->rqs && set->ops->exit_request) { 1559 int i; 1560 1561 for (i = 0; i < tags->nr_tags; i++) { 1562 if (!tags->rqs[i]) 1563 continue; 1564 set->ops->exit_request(set->driver_data, tags->rqs[i], 1565 hctx_idx, i); 1566 tags->rqs[i] = NULL; 1567 } 1568 } 1569 1570 while (!list_empty(&tags->page_list)) { 1571 page = list_first_entry(&tags->page_list, struct page, lru); 1572 list_del_init(&page->lru); 1573 /* 1574 * Remove kmemleak object previously allocated in 1575 * blk_mq_init_rq_map(). 1576 */ 1577 kmemleak_free(page_address(page)); 1578 __free_pages(page, page->private); 1579 } 1580 1581 kfree(tags->rqs); 1582 1583 blk_mq_free_tags(tags); 1584 } 1585 1586 static size_t order_to_size(unsigned int order) 1587 { 1588 return (size_t)PAGE_SIZE << order; 1589 } 1590 1591 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1592 unsigned int hctx_idx) 1593 { 1594 struct blk_mq_tags *tags; 1595 unsigned int i, j, entries_per_page, max_order = 4; 1596 size_t rq_size, left; 1597 1598 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1599 set->numa_node, 1600 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1601 if (!tags) 1602 return NULL; 1603 1604 INIT_LIST_HEAD(&tags->page_list); 1605 1606 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1607 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1608 set->numa_node); 1609 if (!tags->rqs) { 1610 blk_mq_free_tags(tags); 1611 return NULL; 1612 } 1613 1614 /* 1615 * rq_size is the size of the request plus driver payload, rounded 1616 * to the cacheline size 1617 */ 1618 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1619 cache_line_size()); 1620 left = rq_size * set->queue_depth; 1621 1622 for (i = 0; i < set->queue_depth; ) { 1623 int this_order = max_order; 1624 struct page *page; 1625 int to_do; 1626 void *p; 1627 1628 while (this_order && left < order_to_size(this_order - 1)) 1629 this_order--; 1630 1631 do { 1632 page = alloc_pages_node(set->numa_node, 1633 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1634 this_order); 1635 if (page) 1636 break; 1637 if (!this_order--) 1638 break; 1639 if (order_to_size(this_order) < rq_size) 1640 break; 1641 } while (1); 1642 1643 if (!page) 1644 goto fail; 1645 1646 page->private = this_order; 1647 list_add_tail(&page->lru, &tags->page_list); 1648 1649 p = page_address(page); 1650 /* 1651 * Allow kmemleak to scan these pages as they contain pointers 1652 * to additional allocations like via ops->init_request(). 1653 */ 1654 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1655 entries_per_page = order_to_size(this_order) / rq_size; 1656 to_do = min(entries_per_page, set->queue_depth - i); 1657 left -= to_do * rq_size; 1658 for (j = 0; j < to_do; j++) { 1659 tags->rqs[i] = p; 1660 if (set->ops->init_request) { 1661 if (set->ops->init_request(set->driver_data, 1662 tags->rqs[i], hctx_idx, i, 1663 set->numa_node)) { 1664 tags->rqs[i] = NULL; 1665 goto fail; 1666 } 1667 } 1668 1669 p += rq_size; 1670 i++; 1671 } 1672 } 1673 return tags; 1674 1675 fail: 1676 blk_mq_free_rq_map(set, tags, hctx_idx); 1677 return NULL; 1678 } 1679 1680 /* 1681 * 'cpu' is going away. splice any existing rq_list entries from this 1682 * software queue to the hw queue dispatch list, and ensure that it 1683 * gets run. 1684 */ 1685 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1686 { 1687 struct blk_mq_hw_ctx *hctx; 1688 struct blk_mq_ctx *ctx; 1689 LIST_HEAD(tmp); 1690 1691 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1692 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1693 1694 spin_lock(&ctx->lock); 1695 if (!list_empty(&ctx->rq_list)) { 1696 list_splice_init(&ctx->rq_list, &tmp); 1697 blk_mq_hctx_clear_pending(hctx, ctx); 1698 } 1699 spin_unlock(&ctx->lock); 1700 1701 if (list_empty(&tmp)) 1702 return 0; 1703 1704 spin_lock(&hctx->lock); 1705 list_splice_tail_init(&tmp, &hctx->dispatch); 1706 spin_unlock(&hctx->lock); 1707 1708 blk_mq_run_hw_queue(hctx, true); 1709 return 0; 1710 } 1711 1712 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1713 { 1714 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1715 &hctx->cpuhp_dead); 1716 } 1717 1718 /* hctx->ctxs will be freed in queue's release handler */ 1719 static void blk_mq_exit_hctx(struct request_queue *q, 1720 struct blk_mq_tag_set *set, 1721 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1722 { 1723 unsigned flush_start_tag = set->queue_depth; 1724 1725 blk_mq_tag_idle(hctx); 1726 1727 if (set->ops->exit_request) 1728 set->ops->exit_request(set->driver_data, 1729 hctx->fq->flush_rq, hctx_idx, 1730 flush_start_tag + hctx_idx); 1731 1732 if (set->ops->exit_hctx) 1733 set->ops->exit_hctx(hctx, hctx_idx); 1734 1735 if (hctx->flags & BLK_MQ_F_BLOCKING) 1736 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1737 1738 blk_mq_remove_cpuhp(hctx); 1739 blk_free_flush_queue(hctx->fq); 1740 sbitmap_free(&hctx->ctx_map); 1741 } 1742 1743 static void blk_mq_exit_hw_queues(struct request_queue *q, 1744 struct blk_mq_tag_set *set, int nr_queue) 1745 { 1746 struct blk_mq_hw_ctx *hctx; 1747 unsigned int i; 1748 1749 queue_for_each_hw_ctx(q, hctx, i) { 1750 if (i == nr_queue) 1751 break; 1752 blk_mq_exit_hctx(q, set, hctx, i); 1753 } 1754 } 1755 1756 static void blk_mq_free_hw_queues(struct request_queue *q, 1757 struct blk_mq_tag_set *set) 1758 { 1759 struct blk_mq_hw_ctx *hctx; 1760 unsigned int i; 1761 1762 queue_for_each_hw_ctx(q, hctx, i) 1763 free_cpumask_var(hctx->cpumask); 1764 } 1765 1766 static int blk_mq_init_hctx(struct request_queue *q, 1767 struct blk_mq_tag_set *set, 1768 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1769 { 1770 int node; 1771 unsigned flush_start_tag = set->queue_depth; 1772 1773 node = hctx->numa_node; 1774 if (node == NUMA_NO_NODE) 1775 node = hctx->numa_node = set->numa_node; 1776 1777 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); 1778 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1779 spin_lock_init(&hctx->lock); 1780 INIT_LIST_HEAD(&hctx->dispatch); 1781 hctx->queue = q; 1782 hctx->queue_num = hctx_idx; 1783 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1784 1785 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1786 1787 hctx->tags = set->tags[hctx_idx]; 1788 1789 /* 1790 * Allocate space for all possible cpus to avoid allocation at 1791 * runtime 1792 */ 1793 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1794 GFP_KERNEL, node); 1795 if (!hctx->ctxs) 1796 goto unregister_cpu_notifier; 1797 1798 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1799 node)) 1800 goto free_ctxs; 1801 1802 hctx->nr_ctx = 0; 1803 1804 if (set->ops->init_hctx && 1805 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1806 goto free_bitmap; 1807 1808 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1809 if (!hctx->fq) 1810 goto exit_hctx; 1811 1812 if (set->ops->init_request && 1813 set->ops->init_request(set->driver_data, 1814 hctx->fq->flush_rq, hctx_idx, 1815 flush_start_tag + hctx_idx, node)) 1816 goto free_fq; 1817 1818 if (hctx->flags & BLK_MQ_F_BLOCKING) 1819 init_srcu_struct(&hctx->queue_rq_srcu); 1820 1821 return 0; 1822 1823 free_fq: 1824 kfree(hctx->fq); 1825 exit_hctx: 1826 if (set->ops->exit_hctx) 1827 set->ops->exit_hctx(hctx, hctx_idx); 1828 free_bitmap: 1829 sbitmap_free(&hctx->ctx_map); 1830 free_ctxs: 1831 kfree(hctx->ctxs); 1832 unregister_cpu_notifier: 1833 blk_mq_remove_cpuhp(hctx); 1834 return -1; 1835 } 1836 1837 static void blk_mq_init_cpu_queues(struct request_queue *q, 1838 unsigned int nr_hw_queues) 1839 { 1840 unsigned int i; 1841 1842 for_each_possible_cpu(i) { 1843 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1844 struct blk_mq_hw_ctx *hctx; 1845 1846 memset(__ctx, 0, sizeof(*__ctx)); 1847 __ctx->cpu = i; 1848 spin_lock_init(&__ctx->lock); 1849 INIT_LIST_HEAD(&__ctx->rq_list); 1850 __ctx->queue = q; 1851 blk_stat_init(&__ctx->stat[BLK_STAT_READ]); 1852 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); 1853 1854 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1855 if (!cpu_online(i)) 1856 continue; 1857 1858 hctx = blk_mq_map_queue(q, i); 1859 1860 /* 1861 * Set local node, IFF we have more than one hw queue. If 1862 * not, we remain on the home node of the device 1863 */ 1864 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1865 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1866 } 1867 } 1868 1869 static void blk_mq_map_swqueue(struct request_queue *q, 1870 const struct cpumask *online_mask) 1871 { 1872 unsigned int i, hctx_idx; 1873 struct blk_mq_hw_ctx *hctx; 1874 struct blk_mq_ctx *ctx; 1875 struct blk_mq_tag_set *set = q->tag_set; 1876 1877 /* 1878 * Avoid others reading imcomplete hctx->cpumask through sysfs 1879 */ 1880 mutex_lock(&q->sysfs_lock); 1881 1882 queue_for_each_hw_ctx(q, hctx, i) { 1883 cpumask_clear(hctx->cpumask); 1884 hctx->nr_ctx = 0; 1885 } 1886 1887 /* 1888 * Map software to hardware queues 1889 */ 1890 for_each_possible_cpu(i) { 1891 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1892 if (!cpumask_test_cpu(i, online_mask)) 1893 continue; 1894 1895 hctx_idx = q->mq_map[i]; 1896 /* unmapped hw queue can be remapped after CPU topo changed */ 1897 if (!set->tags[hctx_idx]) { 1898 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx); 1899 1900 /* 1901 * If tags initialization fail for some hctx, 1902 * that hctx won't be brought online. In this 1903 * case, remap the current ctx to hctx[0] which 1904 * is guaranteed to always have tags allocated 1905 */ 1906 if (!set->tags[hctx_idx]) 1907 q->mq_map[i] = 0; 1908 } 1909 1910 ctx = per_cpu_ptr(q->queue_ctx, i); 1911 hctx = blk_mq_map_queue(q, i); 1912 1913 cpumask_set_cpu(i, hctx->cpumask); 1914 ctx->index_hw = hctx->nr_ctx; 1915 hctx->ctxs[hctx->nr_ctx++] = ctx; 1916 } 1917 1918 mutex_unlock(&q->sysfs_lock); 1919 1920 queue_for_each_hw_ctx(q, hctx, i) { 1921 /* 1922 * If no software queues are mapped to this hardware queue, 1923 * disable it and free the request entries. 1924 */ 1925 if (!hctx->nr_ctx) { 1926 /* Never unmap queue 0. We need it as a 1927 * fallback in case of a new remap fails 1928 * allocation 1929 */ 1930 if (i && set->tags[i]) { 1931 blk_mq_free_rq_map(set, set->tags[i], i); 1932 set->tags[i] = NULL; 1933 } 1934 hctx->tags = NULL; 1935 continue; 1936 } 1937 1938 hctx->tags = set->tags[i]; 1939 WARN_ON(!hctx->tags); 1940 1941 /* 1942 * Set the map size to the number of mapped software queues. 1943 * This is more accurate and more efficient than looping 1944 * over all possibly mapped software queues. 1945 */ 1946 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 1947 1948 /* 1949 * Initialize batch roundrobin counts 1950 */ 1951 hctx->next_cpu = cpumask_first(hctx->cpumask); 1952 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1953 } 1954 } 1955 1956 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 1957 { 1958 struct blk_mq_hw_ctx *hctx; 1959 int i; 1960 1961 queue_for_each_hw_ctx(q, hctx, i) { 1962 if (shared) 1963 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1964 else 1965 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1966 } 1967 } 1968 1969 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 1970 { 1971 struct request_queue *q; 1972 1973 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1974 blk_mq_freeze_queue(q); 1975 queue_set_hctx_shared(q, shared); 1976 blk_mq_unfreeze_queue(q); 1977 } 1978 } 1979 1980 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1981 { 1982 struct blk_mq_tag_set *set = q->tag_set; 1983 1984 mutex_lock(&set->tag_list_lock); 1985 list_del_init(&q->tag_set_list); 1986 if (list_is_singular(&set->tag_list)) { 1987 /* just transitioned to unshared */ 1988 set->flags &= ~BLK_MQ_F_TAG_SHARED; 1989 /* update existing queue */ 1990 blk_mq_update_tag_set_depth(set, false); 1991 } 1992 mutex_unlock(&set->tag_list_lock); 1993 } 1994 1995 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1996 struct request_queue *q) 1997 { 1998 q->tag_set = set; 1999 2000 mutex_lock(&set->tag_list_lock); 2001 2002 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2003 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2004 set->flags |= BLK_MQ_F_TAG_SHARED; 2005 /* update existing queue */ 2006 blk_mq_update_tag_set_depth(set, true); 2007 } 2008 if (set->flags & BLK_MQ_F_TAG_SHARED) 2009 queue_set_hctx_shared(q, true); 2010 list_add_tail(&q->tag_set_list, &set->tag_list); 2011 2012 mutex_unlock(&set->tag_list_lock); 2013 } 2014 2015 /* 2016 * It is the actual release handler for mq, but we do it from 2017 * request queue's release handler for avoiding use-after-free 2018 * and headache because q->mq_kobj shouldn't have been introduced, 2019 * but we can't group ctx/kctx kobj without it. 2020 */ 2021 void blk_mq_release(struct request_queue *q) 2022 { 2023 struct blk_mq_hw_ctx *hctx; 2024 unsigned int i; 2025 2026 /* hctx kobj stays in hctx */ 2027 queue_for_each_hw_ctx(q, hctx, i) { 2028 if (!hctx) 2029 continue; 2030 kfree(hctx->ctxs); 2031 kfree(hctx); 2032 } 2033 2034 q->mq_map = NULL; 2035 2036 kfree(q->queue_hw_ctx); 2037 2038 /* ctx kobj stays in queue_ctx */ 2039 free_percpu(q->queue_ctx); 2040 } 2041 2042 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2043 { 2044 struct request_queue *uninit_q, *q; 2045 2046 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2047 if (!uninit_q) 2048 return ERR_PTR(-ENOMEM); 2049 2050 q = blk_mq_init_allocated_queue(set, uninit_q); 2051 if (IS_ERR(q)) 2052 blk_cleanup_queue(uninit_q); 2053 2054 return q; 2055 } 2056 EXPORT_SYMBOL(blk_mq_init_queue); 2057 2058 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2059 struct request_queue *q) 2060 { 2061 int i, j; 2062 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2063 2064 blk_mq_sysfs_unregister(q); 2065 for (i = 0; i < set->nr_hw_queues; i++) { 2066 int node; 2067 2068 if (hctxs[i]) 2069 continue; 2070 2071 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2072 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2073 GFP_KERNEL, node); 2074 if (!hctxs[i]) 2075 break; 2076 2077 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2078 node)) { 2079 kfree(hctxs[i]); 2080 hctxs[i] = NULL; 2081 break; 2082 } 2083 2084 atomic_set(&hctxs[i]->nr_active, 0); 2085 hctxs[i]->numa_node = node; 2086 hctxs[i]->queue_num = i; 2087 2088 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2089 free_cpumask_var(hctxs[i]->cpumask); 2090 kfree(hctxs[i]); 2091 hctxs[i] = NULL; 2092 break; 2093 } 2094 blk_mq_hctx_kobj_init(hctxs[i]); 2095 } 2096 for (j = i; j < q->nr_hw_queues; j++) { 2097 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2098 2099 if (hctx) { 2100 if (hctx->tags) { 2101 blk_mq_free_rq_map(set, hctx->tags, j); 2102 set->tags[j] = NULL; 2103 } 2104 blk_mq_exit_hctx(q, set, hctx, j); 2105 free_cpumask_var(hctx->cpumask); 2106 kobject_put(&hctx->kobj); 2107 kfree(hctx->ctxs); 2108 kfree(hctx); 2109 hctxs[j] = NULL; 2110 2111 } 2112 } 2113 q->nr_hw_queues = i; 2114 blk_mq_sysfs_register(q); 2115 } 2116 2117 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2118 struct request_queue *q) 2119 { 2120 /* mark the queue as mq asap */ 2121 q->mq_ops = set->ops; 2122 2123 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2124 if (!q->queue_ctx) 2125 goto err_exit; 2126 2127 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2128 GFP_KERNEL, set->numa_node); 2129 if (!q->queue_hw_ctx) 2130 goto err_percpu; 2131 2132 q->mq_map = set->mq_map; 2133 2134 blk_mq_realloc_hw_ctxs(set, q); 2135 if (!q->nr_hw_queues) 2136 goto err_hctxs; 2137 2138 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2139 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2140 2141 q->nr_queues = nr_cpu_ids; 2142 2143 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2144 2145 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2146 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2147 2148 q->sg_reserved_size = INT_MAX; 2149 2150 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2151 INIT_LIST_HEAD(&q->requeue_list); 2152 spin_lock_init(&q->requeue_lock); 2153 2154 if (q->nr_hw_queues > 1) 2155 blk_queue_make_request(q, blk_mq_make_request); 2156 else 2157 blk_queue_make_request(q, blk_sq_make_request); 2158 2159 /* 2160 * Do this after blk_queue_make_request() overrides it... 2161 */ 2162 q->nr_requests = set->queue_depth; 2163 2164 /* 2165 * Default to classic polling 2166 */ 2167 q->poll_nsec = -1; 2168 2169 if (set->ops->complete) 2170 blk_queue_softirq_done(q, set->ops->complete); 2171 2172 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2173 2174 get_online_cpus(); 2175 mutex_lock(&all_q_mutex); 2176 2177 list_add_tail(&q->all_q_node, &all_q_list); 2178 blk_mq_add_queue_tag_set(set, q); 2179 blk_mq_map_swqueue(q, cpu_online_mask); 2180 2181 mutex_unlock(&all_q_mutex); 2182 put_online_cpus(); 2183 2184 return q; 2185 2186 err_hctxs: 2187 kfree(q->queue_hw_ctx); 2188 err_percpu: 2189 free_percpu(q->queue_ctx); 2190 err_exit: 2191 q->mq_ops = NULL; 2192 return ERR_PTR(-ENOMEM); 2193 } 2194 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2195 2196 void blk_mq_free_queue(struct request_queue *q) 2197 { 2198 struct blk_mq_tag_set *set = q->tag_set; 2199 2200 mutex_lock(&all_q_mutex); 2201 list_del_init(&q->all_q_node); 2202 mutex_unlock(&all_q_mutex); 2203 2204 wbt_exit(q); 2205 2206 blk_mq_del_queue_tag_set(q); 2207 2208 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2209 blk_mq_free_hw_queues(q, set); 2210 } 2211 2212 /* Basically redo blk_mq_init_queue with queue frozen */ 2213 static void blk_mq_queue_reinit(struct request_queue *q, 2214 const struct cpumask *online_mask) 2215 { 2216 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2217 2218 blk_mq_sysfs_unregister(q); 2219 2220 /* 2221 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2222 * we should change hctx numa_node according to new topology (this 2223 * involves free and re-allocate memory, worthy doing?) 2224 */ 2225 2226 blk_mq_map_swqueue(q, online_mask); 2227 2228 blk_mq_sysfs_register(q); 2229 } 2230 2231 /* 2232 * New online cpumask which is going to be set in this hotplug event. 2233 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2234 * one-by-one and dynamically allocating this could result in a failure. 2235 */ 2236 static struct cpumask cpuhp_online_new; 2237 2238 static void blk_mq_queue_reinit_work(void) 2239 { 2240 struct request_queue *q; 2241 2242 mutex_lock(&all_q_mutex); 2243 /* 2244 * We need to freeze and reinit all existing queues. Freezing 2245 * involves synchronous wait for an RCU grace period and doing it 2246 * one by one may take a long time. Start freezing all queues in 2247 * one swoop and then wait for the completions so that freezing can 2248 * take place in parallel. 2249 */ 2250 list_for_each_entry(q, &all_q_list, all_q_node) 2251 blk_mq_freeze_queue_start(q); 2252 list_for_each_entry(q, &all_q_list, all_q_node) 2253 blk_mq_freeze_queue_wait(q); 2254 2255 list_for_each_entry(q, &all_q_list, all_q_node) 2256 blk_mq_queue_reinit(q, &cpuhp_online_new); 2257 2258 list_for_each_entry(q, &all_q_list, all_q_node) 2259 blk_mq_unfreeze_queue(q); 2260 2261 mutex_unlock(&all_q_mutex); 2262 } 2263 2264 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2265 { 2266 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2267 blk_mq_queue_reinit_work(); 2268 return 0; 2269 } 2270 2271 /* 2272 * Before hotadded cpu starts handling requests, new mappings must be 2273 * established. Otherwise, these requests in hw queue might never be 2274 * dispatched. 2275 * 2276 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2277 * for CPU0, and ctx1 for CPU1). 2278 * 2279 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2280 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2281 * 2282 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in 2283 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2284 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list 2285 * is ignored. 2286 */ 2287 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2288 { 2289 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2290 cpumask_set_cpu(cpu, &cpuhp_online_new); 2291 blk_mq_queue_reinit_work(); 2292 return 0; 2293 } 2294 2295 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2296 { 2297 int i; 2298 2299 for (i = 0; i < set->nr_hw_queues; i++) { 2300 set->tags[i] = blk_mq_init_rq_map(set, i); 2301 if (!set->tags[i]) 2302 goto out_unwind; 2303 } 2304 2305 return 0; 2306 2307 out_unwind: 2308 while (--i >= 0) 2309 blk_mq_free_rq_map(set, set->tags[i], i); 2310 2311 return -ENOMEM; 2312 } 2313 2314 /* 2315 * Allocate the request maps associated with this tag_set. Note that this 2316 * may reduce the depth asked for, if memory is tight. set->queue_depth 2317 * will be updated to reflect the allocated depth. 2318 */ 2319 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2320 { 2321 unsigned int depth; 2322 int err; 2323 2324 depth = set->queue_depth; 2325 do { 2326 err = __blk_mq_alloc_rq_maps(set); 2327 if (!err) 2328 break; 2329 2330 set->queue_depth >>= 1; 2331 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2332 err = -ENOMEM; 2333 break; 2334 } 2335 } while (set->queue_depth); 2336 2337 if (!set->queue_depth || err) { 2338 pr_err("blk-mq: failed to allocate request map\n"); 2339 return -ENOMEM; 2340 } 2341 2342 if (depth != set->queue_depth) 2343 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2344 depth, set->queue_depth); 2345 2346 return 0; 2347 } 2348 2349 /* 2350 * Alloc a tag set to be associated with one or more request queues. 2351 * May fail with EINVAL for various error conditions. May adjust the 2352 * requested depth down, if if it too large. In that case, the set 2353 * value will be stored in set->queue_depth. 2354 */ 2355 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2356 { 2357 int ret; 2358 2359 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2360 2361 if (!set->nr_hw_queues) 2362 return -EINVAL; 2363 if (!set->queue_depth) 2364 return -EINVAL; 2365 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2366 return -EINVAL; 2367 2368 if (!set->ops->queue_rq) 2369 return -EINVAL; 2370 2371 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2372 pr_info("blk-mq: reduced tag depth to %u\n", 2373 BLK_MQ_MAX_DEPTH); 2374 set->queue_depth = BLK_MQ_MAX_DEPTH; 2375 } 2376 2377 /* 2378 * If a crashdump is active, then we are potentially in a very 2379 * memory constrained environment. Limit us to 1 queue and 2380 * 64 tags to prevent using too much memory. 2381 */ 2382 if (is_kdump_kernel()) { 2383 set->nr_hw_queues = 1; 2384 set->queue_depth = min(64U, set->queue_depth); 2385 } 2386 /* 2387 * There is no use for more h/w queues than cpus. 2388 */ 2389 if (set->nr_hw_queues > nr_cpu_ids) 2390 set->nr_hw_queues = nr_cpu_ids; 2391 2392 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2393 GFP_KERNEL, set->numa_node); 2394 if (!set->tags) 2395 return -ENOMEM; 2396 2397 ret = -ENOMEM; 2398 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2399 GFP_KERNEL, set->numa_node); 2400 if (!set->mq_map) 2401 goto out_free_tags; 2402 2403 if (set->ops->map_queues) 2404 ret = set->ops->map_queues(set); 2405 else 2406 ret = blk_mq_map_queues(set); 2407 if (ret) 2408 goto out_free_mq_map; 2409 2410 ret = blk_mq_alloc_rq_maps(set); 2411 if (ret) 2412 goto out_free_mq_map; 2413 2414 mutex_init(&set->tag_list_lock); 2415 INIT_LIST_HEAD(&set->tag_list); 2416 2417 return 0; 2418 2419 out_free_mq_map: 2420 kfree(set->mq_map); 2421 set->mq_map = NULL; 2422 out_free_tags: 2423 kfree(set->tags); 2424 set->tags = NULL; 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2428 2429 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2430 { 2431 int i; 2432 2433 for (i = 0; i < nr_cpu_ids; i++) { 2434 if (set->tags[i]) 2435 blk_mq_free_rq_map(set, set->tags[i], i); 2436 } 2437 2438 kfree(set->mq_map); 2439 set->mq_map = NULL; 2440 2441 kfree(set->tags); 2442 set->tags = NULL; 2443 } 2444 EXPORT_SYMBOL(blk_mq_free_tag_set); 2445 2446 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2447 { 2448 struct blk_mq_tag_set *set = q->tag_set; 2449 struct blk_mq_hw_ctx *hctx; 2450 int i, ret; 2451 2452 if (!set || nr > set->queue_depth) 2453 return -EINVAL; 2454 2455 ret = 0; 2456 queue_for_each_hw_ctx(q, hctx, i) { 2457 if (!hctx->tags) 2458 continue; 2459 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2460 if (ret) 2461 break; 2462 } 2463 2464 if (!ret) 2465 q->nr_requests = nr; 2466 2467 return ret; 2468 } 2469 2470 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2471 { 2472 struct request_queue *q; 2473 2474 if (nr_hw_queues > nr_cpu_ids) 2475 nr_hw_queues = nr_cpu_ids; 2476 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2477 return; 2478 2479 list_for_each_entry(q, &set->tag_list, tag_set_list) 2480 blk_mq_freeze_queue(q); 2481 2482 set->nr_hw_queues = nr_hw_queues; 2483 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2484 blk_mq_realloc_hw_ctxs(set, q); 2485 2486 if (q->nr_hw_queues > 1) 2487 blk_queue_make_request(q, blk_mq_make_request); 2488 else 2489 blk_queue_make_request(q, blk_sq_make_request); 2490 2491 blk_mq_queue_reinit(q, cpu_online_mask); 2492 } 2493 2494 list_for_each_entry(q, &set->tag_list, tag_set_list) 2495 blk_mq_unfreeze_queue(q); 2496 } 2497 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2498 2499 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2500 struct blk_mq_hw_ctx *hctx, 2501 struct request *rq) 2502 { 2503 struct blk_rq_stat stat[2]; 2504 unsigned long ret = 0; 2505 2506 /* 2507 * If stats collection isn't on, don't sleep but turn it on for 2508 * future users 2509 */ 2510 if (!blk_stat_enable(q)) 2511 return 0; 2512 2513 /* 2514 * We don't have to do this once per IO, should optimize this 2515 * to just use the current window of stats until it changes 2516 */ 2517 memset(&stat, 0, sizeof(stat)); 2518 blk_hctx_stat_get(hctx, stat); 2519 2520 /* 2521 * As an optimistic guess, use half of the mean service time 2522 * for this type of request. We can (and should) make this smarter. 2523 * For instance, if the completion latencies are tight, we can 2524 * get closer than just half the mean. This is especially 2525 * important on devices where the completion latencies are longer 2526 * than ~10 usec. 2527 */ 2528 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) 2529 ret = (stat[BLK_STAT_READ].mean + 1) / 2; 2530 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) 2531 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; 2532 2533 return ret; 2534 } 2535 2536 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2537 struct blk_mq_hw_ctx *hctx, 2538 struct request *rq) 2539 { 2540 struct hrtimer_sleeper hs; 2541 enum hrtimer_mode mode; 2542 unsigned int nsecs; 2543 ktime_t kt; 2544 2545 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2546 return false; 2547 2548 /* 2549 * poll_nsec can be: 2550 * 2551 * -1: don't ever hybrid sleep 2552 * 0: use half of prev avg 2553 * >0: use this specific value 2554 */ 2555 if (q->poll_nsec == -1) 2556 return false; 2557 else if (q->poll_nsec > 0) 2558 nsecs = q->poll_nsec; 2559 else 2560 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2561 2562 if (!nsecs) 2563 return false; 2564 2565 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2566 2567 /* 2568 * This will be replaced with the stats tracking code, using 2569 * 'avg_completion_time / 2' as the pre-sleep target. 2570 */ 2571 kt = nsecs; 2572 2573 mode = HRTIMER_MODE_REL; 2574 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2575 hrtimer_set_expires(&hs.timer, kt); 2576 2577 hrtimer_init_sleeper(&hs, current); 2578 do { 2579 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2580 break; 2581 set_current_state(TASK_UNINTERRUPTIBLE); 2582 hrtimer_start_expires(&hs.timer, mode); 2583 if (hs.task) 2584 io_schedule(); 2585 hrtimer_cancel(&hs.timer); 2586 mode = HRTIMER_MODE_ABS; 2587 } while (hs.task && !signal_pending(current)); 2588 2589 __set_current_state(TASK_RUNNING); 2590 destroy_hrtimer_on_stack(&hs.timer); 2591 return true; 2592 } 2593 2594 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2595 { 2596 struct request_queue *q = hctx->queue; 2597 long state; 2598 2599 /* 2600 * If we sleep, have the caller restart the poll loop to reset 2601 * the state. Like for the other success return cases, the 2602 * caller is responsible for checking if the IO completed. If 2603 * the IO isn't complete, we'll get called again and will go 2604 * straight to the busy poll loop. 2605 */ 2606 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2607 return true; 2608 2609 hctx->poll_considered++; 2610 2611 state = current->state; 2612 while (!need_resched()) { 2613 int ret; 2614 2615 hctx->poll_invoked++; 2616 2617 ret = q->mq_ops->poll(hctx, rq->tag); 2618 if (ret > 0) { 2619 hctx->poll_success++; 2620 set_current_state(TASK_RUNNING); 2621 return true; 2622 } 2623 2624 if (signal_pending_state(state, current)) 2625 set_current_state(TASK_RUNNING); 2626 2627 if (current->state == TASK_RUNNING) 2628 return true; 2629 if (ret < 0) 2630 break; 2631 cpu_relax(); 2632 } 2633 2634 return false; 2635 } 2636 2637 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2638 { 2639 struct blk_mq_hw_ctx *hctx; 2640 struct blk_plug *plug; 2641 struct request *rq; 2642 2643 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2644 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2645 return false; 2646 2647 plug = current->plug; 2648 if (plug) 2649 blk_flush_plug_list(plug, false); 2650 2651 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2652 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2653 2654 return __blk_mq_poll(hctx, rq); 2655 } 2656 EXPORT_SYMBOL_GPL(blk_mq_poll); 2657 2658 void blk_mq_disable_hotplug(void) 2659 { 2660 mutex_lock(&all_q_mutex); 2661 } 2662 2663 void blk_mq_enable_hotplug(void) 2664 { 2665 mutex_unlock(&all_q_mutex); 2666 } 2667 2668 static int __init blk_mq_init(void) 2669 { 2670 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2671 blk_mq_hctx_notify_dead); 2672 2673 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2674 blk_mq_queue_reinit_prepare, 2675 blk_mq_queue_reinit_dead); 2676 return 0; 2677 } 2678 subsys_initcall(blk_mq_init); 2679