1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @q: request queue. 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started. 261 */ 262 void blk_mq_wait_quiesce_done(struct request_queue *q) 263 { 264 if (blk_queue_has_srcu(q)) 265 synchronize_srcu(q->srcu); 266 else 267 synchronize_rcu(); 268 } 269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 270 271 /** 272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 273 * @q: request queue. 274 * 275 * Note: this function does not prevent that the struct request end_io() 276 * callback function is invoked. Once this function is returned, we make 277 * sure no dispatch can happen until the queue is unquiesced via 278 * blk_mq_unquiesce_queue(). 279 */ 280 void blk_mq_quiesce_queue(struct request_queue *q) 281 { 282 blk_mq_quiesce_queue_nowait(q); 283 blk_mq_wait_quiesce_done(q); 284 } 285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 286 287 /* 288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 289 * @q: request queue. 290 * 291 * This function recovers queue into the state before quiescing 292 * which is done by blk_mq_quiesce_queue. 293 */ 294 void blk_mq_unquiesce_queue(struct request_queue *q) 295 { 296 unsigned long flags; 297 bool run_queue = false; 298 299 spin_lock_irqsave(&q->queue_lock, flags); 300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 301 ; 302 } else if (!--q->quiesce_depth) { 303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 304 run_queue = true; 305 } 306 spin_unlock_irqrestore(&q->queue_lock, flags); 307 308 /* dispatch requests which are inserted during quiescing */ 309 if (run_queue) 310 blk_mq_run_hw_queues(q, true); 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 313 314 void blk_mq_wake_waiters(struct request_queue *q) 315 { 316 struct blk_mq_hw_ctx *hctx; 317 unsigned long i; 318 319 queue_for_each_hw_ctx(q, hctx, i) 320 if (blk_mq_hw_queue_mapped(hctx)) 321 blk_mq_tag_wakeup_all(hctx->tags, true); 322 } 323 324 void blk_rq_init(struct request_queue *q, struct request *rq) 325 { 326 memset(rq, 0, sizeof(*rq)); 327 328 INIT_LIST_HEAD(&rq->queuelist); 329 rq->q = q; 330 rq->__sector = (sector_t) -1; 331 INIT_HLIST_NODE(&rq->hash); 332 RB_CLEAR_NODE(&rq->rb_node); 333 rq->tag = BLK_MQ_NO_TAG; 334 rq->internal_tag = BLK_MQ_NO_TAG; 335 rq->start_time_ns = ktime_get_ns(); 336 rq->part = NULL; 337 blk_crypto_rq_set_defaults(rq); 338 } 339 EXPORT_SYMBOL(blk_rq_init); 340 341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 343 { 344 struct blk_mq_ctx *ctx = data->ctx; 345 struct blk_mq_hw_ctx *hctx = data->hctx; 346 struct request_queue *q = data->q; 347 struct request *rq = tags->static_rqs[tag]; 348 349 rq->q = q; 350 rq->mq_ctx = ctx; 351 rq->mq_hctx = hctx; 352 rq->cmd_flags = data->cmd_flags; 353 354 if (data->flags & BLK_MQ_REQ_PM) 355 data->rq_flags |= RQF_PM; 356 if (blk_queue_io_stat(q)) 357 data->rq_flags |= RQF_IO_STAT; 358 rq->rq_flags = data->rq_flags; 359 360 if (!(data->rq_flags & RQF_ELV)) { 361 rq->tag = tag; 362 rq->internal_tag = BLK_MQ_NO_TAG; 363 } else { 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = tag; 366 } 367 rq->timeout = 0; 368 369 if (blk_mq_need_time_stamp(rq)) 370 rq->start_time_ns = ktime_get_ns(); 371 else 372 rq->start_time_ns = 0; 373 rq->part = NULL; 374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 375 rq->alloc_time_ns = alloc_time_ns; 376 #endif 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_ELV) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (!op_is_flush(data->cmd_flags) && 399 e->type->ops.prepare_request) { 400 e->type->ops.prepare_request(rq); 401 rq->rq_flags |= RQF_ELVPRIV; 402 } 403 } 404 405 return rq; 406 } 407 408 static inline struct request * 409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 410 u64 alloc_time_ns) 411 { 412 unsigned int tag, tag_offset; 413 struct blk_mq_tags *tags; 414 struct request *rq; 415 unsigned long tag_mask; 416 int i, nr = 0; 417 418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 419 if (unlikely(!tag_mask)) 420 return NULL; 421 422 tags = blk_mq_tags_from_data(data); 423 for (i = 0; tag_mask; i++) { 424 if (!(tag_mask & (1UL << i))) 425 continue; 426 tag = tag_offset + i; 427 prefetch(tags->static_rqs[tag]); 428 tag_mask &= ~(1UL << i); 429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 430 rq_list_add(data->cached_rq, rq); 431 nr++; 432 } 433 /* caller already holds a reference, add for remainder */ 434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 435 data->nr_tags -= nr; 436 437 return rq_list_pop(data->cached_rq); 438 } 439 440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 441 { 442 struct request_queue *q = data->q; 443 u64 alloc_time_ns = 0; 444 struct request *rq; 445 unsigned int tag; 446 447 /* alloc_time includes depth and tag waits */ 448 if (blk_queue_rq_alloc_time(q)) 449 alloc_time_ns = ktime_get_ns(); 450 451 if (data->cmd_flags & REQ_NOWAIT) 452 data->flags |= BLK_MQ_REQ_NOWAIT; 453 454 if (q->elevator) { 455 struct elevator_queue *e = q->elevator; 456 457 data->rq_flags |= RQF_ELV; 458 459 /* 460 * Flush/passthrough requests are special and go directly to the 461 * dispatch list. Don't include reserved tags in the 462 * limiting, as it isn't useful. 463 */ 464 if (!op_is_flush(data->cmd_flags) && 465 !blk_op_is_passthrough(data->cmd_flags) && 466 e->type->ops.limit_depth && 467 !(data->flags & BLK_MQ_REQ_RESERVED)) 468 e->type->ops.limit_depth(data->cmd_flags, data); 469 } 470 471 retry: 472 data->ctx = blk_mq_get_ctx(q); 473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 474 if (!(data->rq_flags & RQF_ELV)) 475 blk_mq_tag_busy(data->hctx); 476 477 if (data->flags & BLK_MQ_REQ_RESERVED) 478 data->rq_flags |= RQF_RESV; 479 480 /* 481 * Try batched alloc if we want more than 1 tag. 482 */ 483 if (data->nr_tags > 1) { 484 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 485 if (rq) 486 return rq; 487 data->nr_tags = 1; 488 } 489 490 /* 491 * Waiting allocations only fail because of an inactive hctx. In that 492 * case just retry the hctx assignment and tag allocation as CPU hotplug 493 * should have migrated us to an online CPU by now. 494 */ 495 tag = blk_mq_get_tag(data); 496 if (tag == BLK_MQ_NO_TAG) { 497 if (data->flags & BLK_MQ_REQ_NOWAIT) 498 return NULL; 499 /* 500 * Give up the CPU and sleep for a random short time to 501 * ensure that thread using a realtime scheduling class 502 * are migrated off the CPU, and thus off the hctx that 503 * is going away. 504 */ 505 msleep(3); 506 goto retry; 507 } 508 509 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 510 alloc_time_ns); 511 } 512 513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 514 struct blk_plug *plug, 515 blk_opf_t opf, 516 blk_mq_req_flags_t flags) 517 { 518 struct blk_mq_alloc_data data = { 519 .q = q, 520 .flags = flags, 521 .cmd_flags = opf, 522 .nr_tags = plug->nr_ios, 523 .cached_rq = &plug->cached_rq, 524 }; 525 struct request *rq; 526 527 if (blk_queue_enter(q, flags)) 528 return NULL; 529 530 plug->nr_ios = 1; 531 532 rq = __blk_mq_alloc_requests(&data); 533 if (unlikely(!rq)) 534 blk_queue_exit(q); 535 return rq; 536 } 537 538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 539 blk_opf_t opf, 540 blk_mq_req_flags_t flags) 541 { 542 struct blk_plug *plug = current->plug; 543 struct request *rq; 544 545 if (!plug) 546 return NULL; 547 if (rq_list_empty(plug->cached_rq)) { 548 if (plug->nr_ios == 1) 549 return NULL; 550 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 551 if (rq) 552 goto got_it; 553 return NULL; 554 } 555 rq = rq_list_peek(&plug->cached_rq); 556 if (!rq || rq->q != q) 557 return NULL; 558 559 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 560 return NULL; 561 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 562 return NULL; 563 564 plug->cached_rq = rq_list_next(rq); 565 got_it: 566 rq->cmd_flags = opf; 567 INIT_LIST_HEAD(&rq->queuelist); 568 return rq; 569 } 570 571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 572 blk_mq_req_flags_t flags) 573 { 574 struct request *rq; 575 576 rq = blk_mq_alloc_cached_request(q, opf, flags); 577 if (!rq) { 578 struct blk_mq_alloc_data data = { 579 .q = q, 580 .flags = flags, 581 .cmd_flags = opf, 582 .nr_tags = 1, 583 }; 584 int ret; 585 586 ret = blk_queue_enter(q, flags); 587 if (ret) 588 return ERR_PTR(ret); 589 590 rq = __blk_mq_alloc_requests(&data); 591 if (!rq) 592 goto out_queue_exit; 593 } 594 rq->__data_len = 0; 595 rq->__sector = (sector_t) -1; 596 rq->bio = rq->biotail = NULL; 597 return rq; 598 out_queue_exit: 599 blk_queue_exit(q); 600 return ERR_PTR(-EWOULDBLOCK); 601 } 602 EXPORT_SYMBOL(blk_mq_alloc_request); 603 604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 605 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 606 { 607 struct blk_mq_alloc_data data = { 608 .q = q, 609 .flags = flags, 610 .cmd_flags = opf, 611 .nr_tags = 1, 612 }; 613 u64 alloc_time_ns = 0; 614 unsigned int cpu; 615 unsigned int tag; 616 int ret; 617 618 /* alloc_time includes depth and tag waits */ 619 if (blk_queue_rq_alloc_time(q)) 620 alloc_time_ns = ktime_get_ns(); 621 622 /* 623 * If the tag allocator sleeps we could get an allocation for a 624 * different hardware context. No need to complicate the low level 625 * allocator for this for the rare use case of a command tied to 626 * a specific queue. 627 */ 628 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 629 return ERR_PTR(-EINVAL); 630 631 if (hctx_idx >= q->nr_hw_queues) 632 return ERR_PTR(-EIO); 633 634 ret = blk_queue_enter(q, flags); 635 if (ret) 636 return ERR_PTR(ret); 637 638 /* 639 * Check if the hardware context is actually mapped to anything. 640 * If not tell the caller that it should skip this queue. 641 */ 642 ret = -EXDEV; 643 data.hctx = xa_load(&q->hctx_table, hctx_idx); 644 if (!blk_mq_hw_queue_mapped(data.hctx)) 645 goto out_queue_exit; 646 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 647 if (cpu >= nr_cpu_ids) 648 goto out_queue_exit; 649 data.ctx = __blk_mq_get_ctx(q, cpu); 650 651 if (!q->elevator) 652 blk_mq_tag_busy(data.hctx); 653 else 654 data.rq_flags |= RQF_ELV; 655 656 if (flags & BLK_MQ_REQ_RESERVED) 657 data.rq_flags |= RQF_RESV; 658 659 ret = -EWOULDBLOCK; 660 tag = blk_mq_get_tag(&data); 661 if (tag == BLK_MQ_NO_TAG) 662 goto out_queue_exit; 663 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 664 alloc_time_ns); 665 666 out_queue_exit: 667 blk_queue_exit(q); 668 return ERR_PTR(ret); 669 } 670 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 671 672 static void __blk_mq_free_request(struct request *rq) 673 { 674 struct request_queue *q = rq->q; 675 struct blk_mq_ctx *ctx = rq->mq_ctx; 676 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 677 const int sched_tag = rq->internal_tag; 678 679 blk_crypto_free_request(rq); 680 blk_pm_mark_last_busy(rq); 681 rq->mq_hctx = NULL; 682 if (rq->tag != BLK_MQ_NO_TAG) 683 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 684 if (sched_tag != BLK_MQ_NO_TAG) 685 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 686 blk_mq_sched_restart(hctx); 687 blk_queue_exit(q); 688 } 689 690 void blk_mq_free_request(struct request *rq) 691 { 692 struct request_queue *q = rq->q; 693 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 694 695 if ((rq->rq_flags & RQF_ELVPRIV) && 696 q->elevator->type->ops.finish_request) 697 q->elevator->type->ops.finish_request(rq); 698 699 if (rq->rq_flags & RQF_MQ_INFLIGHT) 700 __blk_mq_dec_active_requests(hctx); 701 702 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 703 laptop_io_completion(q->disk->bdi); 704 705 rq_qos_done(q, rq); 706 707 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 708 if (req_ref_put_and_test(rq)) 709 __blk_mq_free_request(rq); 710 } 711 EXPORT_SYMBOL_GPL(blk_mq_free_request); 712 713 void blk_mq_free_plug_rqs(struct blk_plug *plug) 714 { 715 struct request *rq; 716 717 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 718 blk_mq_free_request(rq); 719 } 720 721 void blk_dump_rq_flags(struct request *rq, char *msg) 722 { 723 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 724 rq->q->disk ? rq->q->disk->disk_name : "?", 725 (__force unsigned long long) rq->cmd_flags); 726 727 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 728 (unsigned long long)blk_rq_pos(rq), 729 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 730 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 731 rq->bio, rq->biotail, blk_rq_bytes(rq)); 732 } 733 EXPORT_SYMBOL(blk_dump_rq_flags); 734 735 static void req_bio_endio(struct request *rq, struct bio *bio, 736 unsigned int nbytes, blk_status_t error) 737 { 738 if (unlikely(error)) { 739 bio->bi_status = error; 740 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 741 /* 742 * Partial zone append completions cannot be supported as the 743 * BIO fragments may end up not being written sequentially. 744 */ 745 if (bio->bi_iter.bi_size != nbytes) 746 bio->bi_status = BLK_STS_IOERR; 747 else 748 bio->bi_iter.bi_sector = rq->__sector; 749 } 750 751 bio_advance(bio, nbytes); 752 753 if (unlikely(rq->rq_flags & RQF_QUIET)) 754 bio_set_flag(bio, BIO_QUIET); 755 /* don't actually finish bio if it's part of flush sequence */ 756 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 757 bio_endio(bio); 758 } 759 760 static void blk_account_io_completion(struct request *req, unsigned int bytes) 761 { 762 if (req->part && blk_do_io_stat(req)) { 763 const int sgrp = op_stat_group(req_op(req)); 764 765 part_stat_lock(); 766 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 767 part_stat_unlock(); 768 } 769 } 770 771 static void blk_print_req_error(struct request *req, blk_status_t status) 772 { 773 printk_ratelimited(KERN_ERR 774 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 775 "phys_seg %u prio class %u\n", 776 blk_status_to_str(status), 777 req->q->disk ? req->q->disk->disk_name : "?", 778 blk_rq_pos(req), (__force u32)req_op(req), 779 blk_op_str(req_op(req)), 780 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 781 req->nr_phys_segments, 782 IOPRIO_PRIO_CLASS(req->ioprio)); 783 } 784 785 /* 786 * Fully end IO on a request. Does not support partial completions, or 787 * errors. 788 */ 789 static void blk_complete_request(struct request *req) 790 { 791 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 792 int total_bytes = blk_rq_bytes(req); 793 struct bio *bio = req->bio; 794 795 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 796 797 if (!bio) 798 return; 799 800 #ifdef CONFIG_BLK_DEV_INTEGRITY 801 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 802 req->q->integrity.profile->complete_fn(req, total_bytes); 803 #endif 804 805 blk_account_io_completion(req, total_bytes); 806 807 do { 808 struct bio *next = bio->bi_next; 809 810 /* Completion has already been traced */ 811 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 812 813 if (req_op(req) == REQ_OP_ZONE_APPEND) 814 bio->bi_iter.bi_sector = req->__sector; 815 816 if (!is_flush) 817 bio_endio(bio); 818 bio = next; 819 } while (bio); 820 821 /* 822 * Reset counters so that the request stacking driver 823 * can find how many bytes remain in the request 824 * later. 825 */ 826 if (!req->end_io) { 827 req->bio = NULL; 828 req->__data_len = 0; 829 } 830 } 831 832 /** 833 * blk_update_request - Complete multiple bytes without completing the request 834 * @req: the request being processed 835 * @error: block status code 836 * @nr_bytes: number of bytes to complete for @req 837 * 838 * Description: 839 * Ends I/O on a number of bytes attached to @req, but doesn't complete 840 * the request structure even if @req doesn't have leftover. 841 * If @req has leftover, sets it up for the next range of segments. 842 * 843 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 844 * %false return from this function. 845 * 846 * Note: 847 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 848 * except in the consistency check at the end of this function. 849 * 850 * Return: 851 * %false - this request doesn't have any more data 852 * %true - this request has more data 853 **/ 854 bool blk_update_request(struct request *req, blk_status_t error, 855 unsigned int nr_bytes) 856 { 857 int total_bytes; 858 859 trace_block_rq_complete(req, error, nr_bytes); 860 861 if (!req->bio) 862 return false; 863 864 #ifdef CONFIG_BLK_DEV_INTEGRITY 865 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 866 error == BLK_STS_OK) 867 req->q->integrity.profile->complete_fn(req, nr_bytes); 868 #endif 869 870 if (unlikely(error && !blk_rq_is_passthrough(req) && 871 !(req->rq_flags & RQF_QUIET)) && 872 !test_bit(GD_DEAD, &req->q->disk->state)) { 873 blk_print_req_error(req, error); 874 trace_block_rq_error(req, error, nr_bytes); 875 } 876 877 blk_account_io_completion(req, nr_bytes); 878 879 total_bytes = 0; 880 while (req->bio) { 881 struct bio *bio = req->bio; 882 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 883 884 if (bio_bytes == bio->bi_iter.bi_size) 885 req->bio = bio->bi_next; 886 887 /* Completion has already been traced */ 888 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 889 req_bio_endio(req, bio, bio_bytes, error); 890 891 total_bytes += bio_bytes; 892 nr_bytes -= bio_bytes; 893 894 if (!nr_bytes) 895 break; 896 } 897 898 /* 899 * completely done 900 */ 901 if (!req->bio) { 902 /* 903 * Reset counters so that the request stacking driver 904 * can find how many bytes remain in the request 905 * later. 906 */ 907 req->__data_len = 0; 908 return false; 909 } 910 911 req->__data_len -= total_bytes; 912 913 /* update sector only for requests with clear definition of sector */ 914 if (!blk_rq_is_passthrough(req)) 915 req->__sector += total_bytes >> 9; 916 917 /* mixed attributes always follow the first bio */ 918 if (req->rq_flags & RQF_MIXED_MERGE) { 919 req->cmd_flags &= ~REQ_FAILFAST_MASK; 920 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 921 } 922 923 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 924 /* 925 * If total number of sectors is less than the first segment 926 * size, something has gone terribly wrong. 927 */ 928 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 929 blk_dump_rq_flags(req, "request botched"); 930 req->__data_len = blk_rq_cur_bytes(req); 931 } 932 933 /* recalculate the number of segments */ 934 req->nr_phys_segments = blk_recalc_rq_segments(req); 935 } 936 937 return true; 938 } 939 EXPORT_SYMBOL_GPL(blk_update_request); 940 941 static void __blk_account_io_done(struct request *req, u64 now) 942 { 943 const int sgrp = op_stat_group(req_op(req)); 944 945 part_stat_lock(); 946 update_io_ticks(req->part, jiffies, true); 947 part_stat_inc(req->part, ios[sgrp]); 948 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 949 part_stat_unlock(); 950 } 951 952 static inline void blk_account_io_done(struct request *req, u64 now) 953 { 954 /* 955 * Account IO completion. flush_rq isn't accounted as a 956 * normal IO on queueing nor completion. Accounting the 957 * containing request is enough. 958 */ 959 if (blk_do_io_stat(req) && req->part && 960 !(req->rq_flags & RQF_FLUSH_SEQ)) 961 __blk_account_io_done(req, now); 962 } 963 964 static void __blk_account_io_start(struct request *rq) 965 { 966 /* 967 * All non-passthrough requests are created from a bio with one 968 * exception: when a flush command that is part of a flush sequence 969 * generated by the state machine in blk-flush.c is cloned onto the 970 * lower device by dm-multipath we can get here without a bio. 971 */ 972 if (rq->bio) 973 rq->part = rq->bio->bi_bdev; 974 else 975 rq->part = rq->q->disk->part0; 976 977 part_stat_lock(); 978 update_io_ticks(rq->part, jiffies, false); 979 part_stat_unlock(); 980 } 981 982 static inline void blk_account_io_start(struct request *req) 983 { 984 if (blk_do_io_stat(req)) 985 __blk_account_io_start(req); 986 } 987 988 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 989 { 990 if (rq->rq_flags & RQF_STATS) { 991 blk_mq_poll_stats_start(rq->q); 992 blk_stat_add(rq, now); 993 } 994 995 blk_mq_sched_completed_request(rq, now); 996 blk_account_io_done(rq, now); 997 } 998 999 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1000 { 1001 if (blk_mq_need_time_stamp(rq)) 1002 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1003 1004 if (rq->end_io) { 1005 rq_qos_done(rq->q, rq); 1006 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1007 blk_mq_free_request(rq); 1008 } else { 1009 blk_mq_free_request(rq); 1010 } 1011 } 1012 EXPORT_SYMBOL(__blk_mq_end_request); 1013 1014 void blk_mq_end_request(struct request *rq, blk_status_t error) 1015 { 1016 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1017 BUG(); 1018 __blk_mq_end_request(rq, error); 1019 } 1020 EXPORT_SYMBOL(blk_mq_end_request); 1021 1022 #define TAG_COMP_BATCH 32 1023 1024 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1025 int *tag_array, int nr_tags) 1026 { 1027 struct request_queue *q = hctx->queue; 1028 1029 /* 1030 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1031 * update hctx->nr_active in batch 1032 */ 1033 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1034 __blk_mq_sub_active_requests(hctx, nr_tags); 1035 1036 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1037 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1038 } 1039 1040 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1041 { 1042 int tags[TAG_COMP_BATCH], nr_tags = 0; 1043 struct blk_mq_hw_ctx *cur_hctx = NULL; 1044 struct request *rq; 1045 u64 now = 0; 1046 1047 if (iob->need_ts) 1048 now = ktime_get_ns(); 1049 1050 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1051 prefetch(rq->bio); 1052 prefetch(rq->rq_next); 1053 1054 blk_complete_request(rq); 1055 if (iob->need_ts) 1056 __blk_mq_end_request_acct(rq, now); 1057 1058 rq_qos_done(rq->q, rq); 1059 1060 /* 1061 * If end_io handler returns NONE, then it still has 1062 * ownership of the request. 1063 */ 1064 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1065 continue; 1066 1067 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1068 if (!req_ref_put_and_test(rq)) 1069 continue; 1070 1071 blk_crypto_free_request(rq); 1072 blk_pm_mark_last_busy(rq); 1073 1074 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1075 if (cur_hctx) 1076 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1077 nr_tags = 0; 1078 cur_hctx = rq->mq_hctx; 1079 } 1080 tags[nr_tags++] = rq->tag; 1081 } 1082 1083 if (nr_tags) 1084 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1085 } 1086 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1087 1088 static void blk_complete_reqs(struct llist_head *list) 1089 { 1090 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1091 struct request *rq, *next; 1092 1093 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1094 rq->q->mq_ops->complete(rq); 1095 } 1096 1097 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1098 { 1099 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1100 } 1101 1102 static int blk_softirq_cpu_dead(unsigned int cpu) 1103 { 1104 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1105 return 0; 1106 } 1107 1108 static void __blk_mq_complete_request_remote(void *data) 1109 { 1110 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1111 } 1112 1113 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1114 { 1115 int cpu = raw_smp_processor_id(); 1116 1117 if (!IS_ENABLED(CONFIG_SMP) || 1118 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1119 return false; 1120 /* 1121 * With force threaded interrupts enabled, raising softirq from an SMP 1122 * function call will always result in waking the ksoftirqd thread. 1123 * This is probably worse than completing the request on a different 1124 * cache domain. 1125 */ 1126 if (force_irqthreads()) 1127 return false; 1128 1129 /* same CPU or cache domain? Complete locally */ 1130 if (cpu == rq->mq_ctx->cpu || 1131 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1132 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1133 return false; 1134 1135 /* don't try to IPI to an offline CPU */ 1136 return cpu_online(rq->mq_ctx->cpu); 1137 } 1138 1139 static void blk_mq_complete_send_ipi(struct request *rq) 1140 { 1141 struct llist_head *list; 1142 unsigned int cpu; 1143 1144 cpu = rq->mq_ctx->cpu; 1145 list = &per_cpu(blk_cpu_done, cpu); 1146 if (llist_add(&rq->ipi_list, list)) { 1147 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1148 smp_call_function_single_async(cpu, &rq->csd); 1149 } 1150 } 1151 1152 static void blk_mq_raise_softirq(struct request *rq) 1153 { 1154 struct llist_head *list; 1155 1156 preempt_disable(); 1157 list = this_cpu_ptr(&blk_cpu_done); 1158 if (llist_add(&rq->ipi_list, list)) 1159 raise_softirq(BLOCK_SOFTIRQ); 1160 preempt_enable(); 1161 } 1162 1163 bool blk_mq_complete_request_remote(struct request *rq) 1164 { 1165 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1166 1167 /* 1168 * For request which hctx has only one ctx mapping, 1169 * or a polled request, always complete locally, 1170 * it's pointless to redirect the completion. 1171 */ 1172 if (rq->mq_hctx->nr_ctx == 1 || 1173 rq->cmd_flags & REQ_POLLED) 1174 return false; 1175 1176 if (blk_mq_complete_need_ipi(rq)) { 1177 blk_mq_complete_send_ipi(rq); 1178 return true; 1179 } 1180 1181 if (rq->q->nr_hw_queues == 1) { 1182 blk_mq_raise_softirq(rq); 1183 return true; 1184 } 1185 return false; 1186 } 1187 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1188 1189 /** 1190 * blk_mq_complete_request - end I/O on a request 1191 * @rq: the request being processed 1192 * 1193 * Description: 1194 * Complete a request by scheduling the ->complete_rq operation. 1195 **/ 1196 void blk_mq_complete_request(struct request *rq) 1197 { 1198 if (!blk_mq_complete_request_remote(rq)) 1199 rq->q->mq_ops->complete(rq); 1200 } 1201 EXPORT_SYMBOL(blk_mq_complete_request); 1202 1203 /** 1204 * blk_mq_start_request - Start processing a request 1205 * @rq: Pointer to request to be started 1206 * 1207 * Function used by device drivers to notify the block layer that a request 1208 * is going to be processed now, so blk layer can do proper initializations 1209 * such as starting the timeout timer. 1210 */ 1211 void blk_mq_start_request(struct request *rq) 1212 { 1213 struct request_queue *q = rq->q; 1214 1215 trace_block_rq_issue(rq); 1216 1217 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1218 rq->io_start_time_ns = ktime_get_ns(); 1219 rq->stats_sectors = blk_rq_sectors(rq); 1220 rq->rq_flags |= RQF_STATS; 1221 rq_qos_issue(q, rq); 1222 } 1223 1224 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1225 1226 blk_add_timer(rq); 1227 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1228 1229 #ifdef CONFIG_BLK_DEV_INTEGRITY 1230 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1231 q->integrity.profile->prepare_fn(rq); 1232 #endif 1233 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1234 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1235 } 1236 EXPORT_SYMBOL(blk_mq_start_request); 1237 1238 /* 1239 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1240 * queues. This is important for md arrays to benefit from merging 1241 * requests. 1242 */ 1243 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1244 { 1245 if (plug->multiple_queues) 1246 return BLK_MAX_REQUEST_COUNT * 2; 1247 return BLK_MAX_REQUEST_COUNT; 1248 } 1249 1250 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1251 { 1252 struct request *last = rq_list_peek(&plug->mq_list); 1253 1254 if (!plug->rq_count) { 1255 trace_block_plug(rq->q); 1256 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1257 (!blk_queue_nomerges(rq->q) && 1258 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1259 blk_mq_flush_plug_list(plug, false); 1260 trace_block_plug(rq->q); 1261 } 1262 1263 if (!plug->multiple_queues && last && last->q != rq->q) 1264 plug->multiple_queues = true; 1265 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1266 plug->has_elevator = true; 1267 rq->rq_next = NULL; 1268 rq_list_add(&plug->mq_list, rq); 1269 plug->rq_count++; 1270 } 1271 1272 /** 1273 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1274 * @rq: request to insert 1275 * @at_head: insert request at head or tail of queue 1276 * 1277 * Description: 1278 * Insert a fully prepared request at the back of the I/O scheduler queue 1279 * for execution. Don't wait for completion. 1280 * 1281 * Note: 1282 * This function will invoke @done directly if the queue is dead. 1283 */ 1284 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1285 { 1286 WARN_ON(irqs_disabled()); 1287 WARN_ON(!blk_rq_is_passthrough(rq)); 1288 1289 blk_account_io_start(rq); 1290 1291 /* 1292 * As plugging can be enabled for passthrough requests on a zoned 1293 * device, directly accessing the plug instead of using blk_mq_plug() 1294 * should not have any consequences. 1295 */ 1296 if (current->plug) 1297 blk_add_rq_to_plug(current->plug, rq); 1298 else 1299 blk_mq_sched_insert_request(rq, at_head, true, false); 1300 } 1301 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1302 1303 struct blk_rq_wait { 1304 struct completion done; 1305 blk_status_t ret; 1306 }; 1307 1308 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1309 { 1310 struct blk_rq_wait *wait = rq->end_io_data; 1311 1312 wait->ret = ret; 1313 complete(&wait->done); 1314 return RQ_END_IO_NONE; 1315 } 1316 1317 bool blk_rq_is_poll(struct request *rq) 1318 { 1319 if (!rq->mq_hctx) 1320 return false; 1321 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1322 return false; 1323 if (WARN_ON_ONCE(!rq->bio)) 1324 return false; 1325 return true; 1326 } 1327 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1328 1329 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1330 { 1331 do { 1332 bio_poll(rq->bio, NULL, 0); 1333 cond_resched(); 1334 } while (!completion_done(wait)); 1335 } 1336 1337 /** 1338 * blk_execute_rq - insert a request into queue for execution 1339 * @rq: request to insert 1340 * @at_head: insert request at head or tail of queue 1341 * 1342 * Description: 1343 * Insert a fully prepared request at the back of the I/O scheduler queue 1344 * for execution and wait for completion. 1345 * Return: The blk_status_t result provided to blk_mq_end_request(). 1346 */ 1347 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1348 { 1349 struct blk_rq_wait wait = { 1350 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1351 }; 1352 1353 WARN_ON(irqs_disabled()); 1354 WARN_ON(!blk_rq_is_passthrough(rq)); 1355 1356 rq->end_io_data = &wait; 1357 rq->end_io = blk_end_sync_rq; 1358 1359 blk_account_io_start(rq); 1360 blk_mq_sched_insert_request(rq, at_head, true, false); 1361 1362 if (blk_rq_is_poll(rq)) { 1363 blk_rq_poll_completion(rq, &wait.done); 1364 } else { 1365 /* 1366 * Prevent hang_check timer from firing at us during very long 1367 * I/O 1368 */ 1369 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1370 1371 if (hang_check) 1372 while (!wait_for_completion_io_timeout(&wait.done, 1373 hang_check * (HZ/2))) 1374 ; 1375 else 1376 wait_for_completion_io(&wait.done); 1377 } 1378 1379 return wait.ret; 1380 } 1381 EXPORT_SYMBOL(blk_execute_rq); 1382 1383 static void __blk_mq_requeue_request(struct request *rq) 1384 { 1385 struct request_queue *q = rq->q; 1386 1387 blk_mq_put_driver_tag(rq); 1388 1389 trace_block_rq_requeue(rq); 1390 rq_qos_requeue(q, rq); 1391 1392 if (blk_mq_request_started(rq)) { 1393 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1394 rq->rq_flags &= ~RQF_TIMED_OUT; 1395 } 1396 } 1397 1398 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1399 { 1400 __blk_mq_requeue_request(rq); 1401 1402 /* this request will be re-inserted to io scheduler queue */ 1403 blk_mq_sched_requeue_request(rq); 1404 1405 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1406 } 1407 EXPORT_SYMBOL(blk_mq_requeue_request); 1408 1409 static void blk_mq_requeue_work(struct work_struct *work) 1410 { 1411 struct request_queue *q = 1412 container_of(work, struct request_queue, requeue_work.work); 1413 LIST_HEAD(rq_list); 1414 struct request *rq, *next; 1415 1416 spin_lock_irq(&q->requeue_lock); 1417 list_splice_init(&q->requeue_list, &rq_list); 1418 spin_unlock_irq(&q->requeue_lock); 1419 1420 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1421 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1422 continue; 1423 1424 rq->rq_flags &= ~RQF_SOFTBARRIER; 1425 list_del_init(&rq->queuelist); 1426 /* 1427 * If RQF_DONTPREP, rq has contained some driver specific 1428 * data, so insert it to hctx dispatch list to avoid any 1429 * merge. 1430 */ 1431 if (rq->rq_flags & RQF_DONTPREP) 1432 blk_mq_request_bypass_insert(rq, false, false); 1433 else 1434 blk_mq_sched_insert_request(rq, true, false, false); 1435 } 1436 1437 while (!list_empty(&rq_list)) { 1438 rq = list_entry(rq_list.next, struct request, queuelist); 1439 list_del_init(&rq->queuelist); 1440 blk_mq_sched_insert_request(rq, false, false, false); 1441 } 1442 1443 blk_mq_run_hw_queues(q, false); 1444 } 1445 1446 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1447 bool kick_requeue_list) 1448 { 1449 struct request_queue *q = rq->q; 1450 unsigned long flags; 1451 1452 /* 1453 * We abuse this flag that is otherwise used by the I/O scheduler to 1454 * request head insertion from the workqueue. 1455 */ 1456 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1457 1458 spin_lock_irqsave(&q->requeue_lock, flags); 1459 if (at_head) { 1460 rq->rq_flags |= RQF_SOFTBARRIER; 1461 list_add(&rq->queuelist, &q->requeue_list); 1462 } else { 1463 list_add_tail(&rq->queuelist, &q->requeue_list); 1464 } 1465 spin_unlock_irqrestore(&q->requeue_lock, flags); 1466 1467 if (kick_requeue_list) 1468 blk_mq_kick_requeue_list(q); 1469 } 1470 1471 void blk_mq_kick_requeue_list(struct request_queue *q) 1472 { 1473 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1474 } 1475 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1476 1477 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1478 unsigned long msecs) 1479 { 1480 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1481 msecs_to_jiffies(msecs)); 1482 } 1483 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1484 1485 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1486 { 1487 /* 1488 * If we find a request that isn't idle we know the queue is busy 1489 * as it's checked in the iter. 1490 * Return false to stop the iteration. 1491 */ 1492 if (blk_mq_request_started(rq)) { 1493 bool *busy = priv; 1494 1495 *busy = true; 1496 return false; 1497 } 1498 1499 return true; 1500 } 1501 1502 bool blk_mq_queue_inflight(struct request_queue *q) 1503 { 1504 bool busy = false; 1505 1506 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1507 return busy; 1508 } 1509 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1510 1511 static void blk_mq_rq_timed_out(struct request *req) 1512 { 1513 req->rq_flags |= RQF_TIMED_OUT; 1514 if (req->q->mq_ops->timeout) { 1515 enum blk_eh_timer_return ret; 1516 1517 ret = req->q->mq_ops->timeout(req); 1518 if (ret == BLK_EH_DONE) 1519 return; 1520 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1521 } 1522 1523 blk_add_timer(req); 1524 } 1525 1526 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1527 { 1528 unsigned long deadline; 1529 1530 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1531 return false; 1532 if (rq->rq_flags & RQF_TIMED_OUT) 1533 return false; 1534 1535 deadline = READ_ONCE(rq->deadline); 1536 if (time_after_eq(jiffies, deadline)) 1537 return true; 1538 1539 if (*next == 0) 1540 *next = deadline; 1541 else if (time_after(*next, deadline)) 1542 *next = deadline; 1543 return false; 1544 } 1545 1546 void blk_mq_put_rq_ref(struct request *rq) 1547 { 1548 if (is_flush_rq(rq)) { 1549 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1550 blk_mq_free_request(rq); 1551 } else if (req_ref_put_and_test(rq)) { 1552 __blk_mq_free_request(rq); 1553 } 1554 } 1555 1556 static bool blk_mq_check_expired(struct request *rq, void *priv) 1557 { 1558 unsigned long *next = priv; 1559 1560 /* 1561 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1562 * be reallocated underneath the timeout handler's processing, then 1563 * the expire check is reliable. If the request is not expired, then 1564 * it was completed and reallocated as a new request after returning 1565 * from blk_mq_check_expired(). 1566 */ 1567 if (blk_mq_req_expired(rq, next)) 1568 blk_mq_rq_timed_out(rq); 1569 return true; 1570 } 1571 1572 static void blk_mq_timeout_work(struct work_struct *work) 1573 { 1574 struct request_queue *q = 1575 container_of(work, struct request_queue, timeout_work); 1576 unsigned long next = 0; 1577 struct blk_mq_hw_ctx *hctx; 1578 unsigned long i; 1579 1580 /* A deadlock might occur if a request is stuck requiring a 1581 * timeout at the same time a queue freeze is waiting 1582 * completion, since the timeout code would not be able to 1583 * acquire the queue reference here. 1584 * 1585 * That's why we don't use blk_queue_enter here; instead, we use 1586 * percpu_ref_tryget directly, because we need to be able to 1587 * obtain a reference even in the short window between the queue 1588 * starting to freeze, by dropping the first reference in 1589 * blk_freeze_queue_start, and the moment the last request is 1590 * consumed, marked by the instant q_usage_counter reaches 1591 * zero. 1592 */ 1593 if (!percpu_ref_tryget(&q->q_usage_counter)) 1594 return; 1595 1596 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1597 1598 if (next != 0) { 1599 mod_timer(&q->timeout, next); 1600 } else { 1601 /* 1602 * Request timeouts are handled as a forward rolling timer. If 1603 * we end up here it means that no requests are pending and 1604 * also that no request has been pending for a while. Mark 1605 * each hctx as idle. 1606 */ 1607 queue_for_each_hw_ctx(q, hctx, i) { 1608 /* the hctx may be unmapped, so check it here */ 1609 if (blk_mq_hw_queue_mapped(hctx)) 1610 blk_mq_tag_idle(hctx); 1611 } 1612 } 1613 blk_queue_exit(q); 1614 } 1615 1616 struct flush_busy_ctx_data { 1617 struct blk_mq_hw_ctx *hctx; 1618 struct list_head *list; 1619 }; 1620 1621 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1622 { 1623 struct flush_busy_ctx_data *flush_data = data; 1624 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1625 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1626 enum hctx_type type = hctx->type; 1627 1628 spin_lock(&ctx->lock); 1629 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1630 sbitmap_clear_bit(sb, bitnr); 1631 spin_unlock(&ctx->lock); 1632 return true; 1633 } 1634 1635 /* 1636 * Process software queues that have been marked busy, splicing them 1637 * to the for-dispatch 1638 */ 1639 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1640 { 1641 struct flush_busy_ctx_data data = { 1642 .hctx = hctx, 1643 .list = list, 1644 }; 1645 1646 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1647 } 1648 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1649 1650 struct dispatch_rq_data { 1651 struct blk_mq_hw_ctx *hctx; 1652 struct request *rq; 1653 }; 1654 1655 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1656 void *data) 1657 { 1658 struct dispatch_rq_data *dispatch_data = data; 1659 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1660 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1661 enum hctx_type type = hctx->type; 1662 1663 spin_lock(&ctx->lock); 1664 if (!list_empty(&ctx->rq_lists[type])) { 1665 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1666 list_del_init(&dispatch_data->rq->queuelist); 1667 if (list_empty(&ctx->rq_lists[type])) 1668 sbitmap_clear_bit(sb, bitnr); 1669 } 1670 spin_unlock(&ctx->lock); 1671 1672 return !dispatch_data->rq; 1673 } 1674 1675 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1676 struct blk_mq_ctx *start) 1677 { 1678 unsigned off = start ? start->index_hw[hctx->type] : 0; 1679 struct dispatch_rq_data data = { 1680 .hctx = hctx, 1681 .rq = NULL, 1682 }; 1683 1684 __sbitmap_for_each_set(&hctx->ctx_map, off, 1685 dispatch_rq_from_ctx, &data); 1686 1687 return data.rq; 1688 } 1689 1690 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1691 { 1692 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1693 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1694 int tag; 1695 1696 blk_mq_tag_busy(rq->mq_hctx); 1697 1698 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1699 bt = &rq->mq_hctx->tags->breserved_tags; 1700 tag_offset = 0; 1701 } else { 1702 if (!hctx_may_queue(rq->mq_hctx, bt)) 1703 return false; 1704 } 1705 1706 tag = __sbitmap_queue_get(bt); 1707 if (tag == BLK_MQ_NO_TAG) 1708 return false; 1709 1710 rq->tag = tag + tag_offset; 1711 return true; 1712 } 1713 1714 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1715 { 1716 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1717 return false; 1718 1719 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1720 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1721 rq->rq_flags |= RQF_MQ_INFLIGHT; 1722 __blk_mq_inc_active_requests(hctx); 1723 } 1724 hctx->tags->rqs[rq->tag] = rq; 1725 return true; 1726 } 1727 1728 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1729 int flags, void *key) 1730 { 1731 struct blk_mq_hw_ctx *hctx; 1732 1733 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1734 1735 spin_lock(&hctx->dispatch_wait_lock); 1736 if (!list_empty(&wait->entry)) { 1737 struct sbitmap_queue *sbq; 1738 1739 list_del_init(&wait->entry); 1740 sbq = &hctx->tags->bitmap_tags; 1741 atomic_dec(&sbq->ws_active); 1742 } 1743 spin_unlock(&hctx->dispatch_wait_lock); 1744 1745 blk_mq_run_hw_queue(hctx, true); 1746 return 1; 1747 } 1748 1749 /* 1750 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1751 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1752 * restart. For both cases, take care to check the condition again after 1753 * marking us as waiting. 1754 */ 1755 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1756 struct request *rq) 1757 { 1758 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1759 struct wait_queue_head *wq; 1760 wait_queue_entry_t *wait; 1761 bool ret; 1762 1763 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1764 blk_mq_sched_mark_restart_hctx(hctx); 1765 1766 /* 1767 * It's possible that a tag was freed in the window between the 1768 * allocation failure and adding the hardware queue to the wait 1769 * queue. 1770 * 1771 * Don't clear RESTART here, someone else could have set it. 1772 * At most this will cost an extra queue run. 1773 */ 1774 return blk_mq_get_driver_tag(rq); 1775 } 1776 1777 wait = &hctx->dispatch_wait; 1778 if (!list_empty_careful(&wait->entry)) 1779 return false; 1780 1781 wq = &bt_wait_ptr(sbq, hctx)->wait; 1782 1783 spin_lock_irq(&wq->lock); 1784 spin_lock(&hctx->dispatch_wait_lock); 1785 if (!list_empty(&wait->entry)) { 1786 spin_unlock(&hctx->dispatch_wait_lock); 1787 spin_unlock_irq(&wq->lock); 1788 return false; 1789 } 1790 1791 atomic_inc(&sbq->ws_active); 1792 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1793 __add_wait_queue(wq, wait); 1794 1795 /* 1796 * It's possible that a tag was freed in the window between the 1797 * allocation failure and adding the hardware queue to the wait 1798 * queue. 1799 */ 1800 ret = blk_mq_get_driver_tag(rq); 1801 if (!ret) { 1802 spin_unlock(&hctx->dispatch_wait_lock); 1803 spin_unlock_irq(&wq->lock); 1804 return false; 1805 } 1806 1807 /* 1808 * We got a tag, remove ourselves from the wait queue to ensure 1809 * someone else gets the wakeup. 1810 */ 1811 list_del_init(&wait->entry); 1812 atomic_dec(&sbq->ws_active); 1813 spin_unlock(&hctx->dispatch_wait_lock); 1814 spin_unlock_irq(&wq->lock); 1815 1816 return true; 1817 } 1818 1819 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1820 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1821 /* 1822 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1823 * - EWMA is one simple way to compute running average value 1824 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1825 * - take 4 as factor for avoiding to get too small(0) result, and this 1826 * factor doesn't matter because EWMA decreases exponentially 1827 */ 1828 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1829 { 1830 unsigned int ewma; 1831 1832 ewma = hctx->dispatch_busy; 1833 1834 if (!ewma && !busy) 1835 return; 1836 1837 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1838 if (busy) 1839 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1840 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1841 1842 hctx->dispatch_busy = ewma; 1843 } 1844 1845 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1846 1847 static void blk_mq_handle_dev_resource(struct request *rq, 1848 struct list_head *list) 1849 { 1850 struct request *next = 1851 list_first_entry_or_null(list, struct request, queuelist); 1852 1853 /* 1854 * If an I/O scheduler has been configured and we got a driver tag for 1855 * the next request already, free it. 1856 */ 1857 if (next) 1858 blk_mq_put_driver_tag(next); 1859 1860 list_add(&rq->queuelist, list); 1861 __blk_mq_requeue_request(rq); 1862 } 1863 1864 static void blk_mq_handle_zone_resource(struct request *rq, 1865 struct list_head *zone_list) 1866 { 1867 /* 1868 * If we end up here it is because we cannot dispatch a request to a 1869 * specific zone due to LLD level zone-write locking or other zone 1870 * related resource not being available. In this case, set the request 1871 * aside in zone_list for retrying it later. 1872 */ 1873 list_add(&rq->queuelist, zone_list); 1874 __blk_mq_requeue_request(rq); 1875 } 1876 1877 enum prep_dispatch { 1878 PREP_DISPATCH_OK, 1879 PREP_DISPATCH_NO_TAG, 1880 PREP_DISPATCH_NO_BUDGET, 1881 }; 1882 1883 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1884 bool need_budget) 1885 { 1886 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1887 int budget_token = -1; 1888 1889 if (need_budget) { 1890 budget_token = blk_mq_get_dispatch_budget(rq->q); 1891 if (budget_token < 0) { 1892 blk_mq_put_driver_tag(rq); 1893 return PREP_DISPATCH_NO_BUDGET; 1894 } 1895 blk_mq_set_rq_budget_token(rq, budget_token); 1896 } 1897 1898 if (!blk_mq_get_driver_tag(rq)) { 1899 /* 1900 * The initial allocation attempt failed, so we need to 1901 * rerun the hardware queue when a tag is freed. The 1902 * waitqueue takes care of that. If the queue is run 1903 * before we add this entry back on the dispatch list, 1904 * we'll re-run it below. 1905 */ 1906 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1907 /* 1908 * All budgets not got from this function will be put 1909 * together during handling partial dispatch 1910 */ 1911 if (need_budget) 1912 blk_mq_put_dispatch_budget(rq->q, budget_token); 1913 return PREP_DISPATCH_NO_TAG; 1914 } 1915 } 1916 1917 return PREP_DISPATCH_OK; 1918 } 1919 1920 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1921 static void blk_mq_release_budgets(struct request_queue *q, 1922 struct list_head *list) 1923 { 1924 struct request *rq; 1925 1926 list_for_each_entry(rq, list, queuelist) { 1927 int budget_token = blk_mq_get_rq_budget_token(rq); 1928 1929 if (budget_token >= 0) 1930 blk_mq_put_dispatch_budget(q, budget_token); 1931 } 1932 } 1933 1934 /* 1935 * Returns true if we did some work AND can potentially do more. 1936 */ 1937 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1938 unsigned int nr_budgets) 1939 { 1940 enum prep_dispatch prep; 1941 struct request_queue *q = hctx->queue; 1942 struct request *rq, *nxt; 1943 int errors, queued; 1944 blk_status_t ret = BLK_STS_OK; 1945 LIST_HEAD(zone_list); 1946 bool needs_resource = false; 1947 1948 if (list_empty(list)) 1949 return false; 1950 1951 /* 1952 * Now process all the entries, sending them to the driver. 1953 */ 1954 errors = queued = 0; 1955 do { 1956 struct blk_mq_queue_data bd; 1957 1958 rq = list_first_entry(list, struct request, queuelist); 1959 1960 WARN_ON_ONCE(hctx != rq->mq_hctx); 1961 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1962 if (prep != PREP_DISPATCH_OK) 1963 break; 1964 1965 list_del_init(&rq->queuelist); 1966 1967 bd.rq = rq; 1968 1969 /* 1970 * Flag last if we have no more requests, or if we have more 1971 * but can't assign a driver tag to it. 1972 */ 1973 if (list_empty(list)) 1974 bd.last = true; 1975 else { 1976 nxt = list_first_entry(list, struct request, queuelist); 1977 bd.last = !blk_mq_get_driver_tag(nxt); 1978 } 1979 1980 /* 1981 * once the request is queued to lld, no need to cover the 1982 * budget any more 1983 */ 1984 if (nr_budgets) 1985 nr_budgets--; 1986 ret = q->mq_ops->queue_rq(hctx, &bd); 1987 switch (ret) { 1988 case BLK_STS_OK: 1989 queued++; 1990 break; 1991 case BLK_STS_RESOURCE: 1992 needs_resource = true; 1993 fallthrough; 1994 case BLK_STS_DEV_RESOURCE: 1995 blk_mq_handle_dev_resource(rq, list); 1996 goto out; 1997 case BLK_STS_ZONE_RESOURCE: 1998 /* 1999 * Move the request to zone_list and keep going through 2000 * the dispatch list to find more requests the drive can 2001 * accept. 2002 */ 2003 blk_mq_handle_zone_resource(rq, &zone_list); 2004 needs_resource = true; 2005 break; 2006 default: 2007 errors++; 2008 blk_mq_end_request(rq, ret); 2009 } 2010 } while (!list_empty(list)); 2011 out: 2012 if (!list_empty(&zone_list)) 2013 list_splice_tail_init(&zone_list, list); 2014 2015 /* If we didn't flush the entire list, we could have told the driver 2016 * there was more coming, but that turned out to be a lie. 2017 */ 2018 if ((!list_empty(list) || errors || needs_resource || 2019 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued) 2020 q->mq_ops->commit_rqs(hctx); 2021 /* 2022 * Any items that need requeuing? Stuff them into hctx->dispatch, 2023 * that is where we will continue on next queue run. 2024 */ 2025 if (!list_empty(list)) { 2026 bool needs_restart; 2027 /* For non-shared tags, the RESTART check will suffice */ 2028 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2029 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 2030 2031 if (nr_budgets) 2032 blk_mq_release_budgets(q, list); 2033 2034 spin_lock(&hctx->lock); 2035 list_splice_tail_init(list, &hctx->dispatch); 2036 spin_unlock(&hctx->lock); 2037 2038 /* 2039 * Order adding requests to hctx->dispatch and checking 2040 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2041 * in blk_mq_sched_restart(). Avoid restart code path to 2042 * miss the new added requests to hctx->dispatch, meantime 2043 * SCHED_RESTART is observed here. 2044 */ 2045 smp_mb(); 2046 2047 /* 2048 * If SCHED_RESTART was set by the caller of this function and 2049 * it is no longer set that means that it was cleared by another 2050 * thread and hence that a queue rerun is needed. 2051 * 2052 * If 'no_tag' is set, that means that we failed getting 2053 * a driver tag with an I/O scheduler attached. If our dispatch 2054 * waitqueue is no longer active, ensure that we run the queue 2055 * AFTER adding our entries back to the list. 2056 * 2057 * If no I/O scheduler has been configured it is possible that 2058 * the hardware queue got stopped and restarted before requests 2059 * were pushed back onto the dispatch list. Rerun the queue to 2060 * avoid starvation. Notes: 2061 * - blk_mq_run_hw_queue() checks whether or not a queue has 2062 * been stopped before rerunning a queue. 2063 * - Some but not all block drivers stop a queue before 2064 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2065 * and dm-rq. 2066 * 2067 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2068 * bit is set, run queue after a delay to avoid IO stalls 2069 * that could otherwise occur if the queue is idle. We'll do 2070 * similar if we couldn't get budget or couldn't lock a zone 2071 * and SCHED_RESTART is set. 2072 */ 2073 needs_restart = blk_mq_sched_needs_restart(hctx); 2074 if (prep == PREP_DISPATCH_NO_BUDGET) 2075 needs_resource = true; 2076 if (!needs_restart || 2077 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2078 blk_mq_run_hw_queue(hctx, true); 2079 else if (needs_resource) 2080 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2081 2082 blk_mq_update_dispatch_busy(hctx, true); 2083 return false; 2084 } else 2085 blk_mq_update_dispatch_busy(hctx, false); 2086 2087 return (queued + errors) != 0; 2088 } 2089 2090 /** 2091 * __blk_mq_run_hw_queue - Run a hardware queue. 2092 * @hctx: Pointer to the hardware queue to run. 2093 * 2094 * Send pending requests to the hardware. 2095 */ 2096 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2097 { 2098 /* 2099 * We can't run the queue inline with ints disabled. Ensure that 2100 * we catch bad users of this early. 2101 */ 2102 WARN_ON_ONCE(in_interrupt()); 2103 2104 blk_mq_run_dispatch_ops(hctx->queue, 2105 blk_mq_sched_dispatch_requests(hctx)); 2106 } 2107 2108 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2109 { 2110 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2111 2112 if (cpu >= nr_cpu_ids) 2113 cpu = cpumask_first(hctx->cpumask); 2114 return cpu; 2115 } 2116 2117 /* 2118 * It'd be great if the workqueue API had a way to pass 2119 * in a mask and had some smarts for more clever placement. 2120 * For now we just round-robin here, switching for every 2121 * BLK_MQ_CPU_WORK_BATCH queued items. 2122 */ 2123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2124 { 2125 bool tried = false; 2126 int next_cpu = hctx->next_cpu; 2127 2128 if (hctx->queue->nr_hw_queues == 1) 2129 return WORK_CPU_UNBOUND; 2130 2131 if (--hctx->next_cpu_batch <= 0) { 2132 select_cpu: 2133 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2134 cpu_online_mask); 2135 if (next_cpu >= nr_cpu_ids) 2136 next_cpu = blk_mq_first_mapped_cpu(hctx); 2137 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2138 } 2139 2140 /* 2141 * Do unbound schedule if we can't find a online CPU for this hctx, 2142 * and it should only happen in the path of handling CPU DEAD. 2143 */ 2144 if (!cpu_online(next_cpu)) { 2145 if (!tried) { 2146 tried = true; 2147 goto select_cpu; 2148 } 2149 2150 /* 2151 * Make sure to re-select CPU next time once after CPUs 2152 * in hctx->cpumask become online again. 2153 */ 2154 hctx->next_cpu = next_cpu; 2155 hctx->next_cpu_batch = 1; 2156 return WORK_CPU_UNBOUND; 2157 } 2158 2159 hctx->next_cpu = next_cpu; 2160 return next_cpu; 2161 } 2162 2163 /** 2164 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2165 * @hctx: Pointer to the hardware queue to run. 2166 * @async: If we want to run the queue asynchronously. 2167 * @msecs: Milliseconds of delay to wait before running the queue. 2168 * 2169 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2170 * with a delay of @msecs. 2171 */ 2172 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2173 unsigned long msecs) 2174 { 2175 if (unlikely(blk_mq_hctx_stopped(hctx))) 2176 return; 2177 2178 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2179 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2180 __blk_mq_run_hw_queue(hctx); 2181 return; 2182 } 2183 } 2184 2185 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2186 msecs_to_jiffies(msecs)); 2187 } 2188 2189 /** 2190 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2191 * @hctx: Pointer to the hardware queue to run. 2192 * @msecs: Milliseconds of delay to wait before running the queue. 2193 * 2194 * Run a hardware queue asynchronously with a delay of @msecs. 2195 */ 2196 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2197 { 2198 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2199 } 2200 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2201 2202 /** 2203 * blk_mq_run_hw_queue - Start to run a hardware queue. 2204 * @hctx: Pointer to the hardware queue to run. 2205 * @async: If we want to run the queue asynchronously. 2206 * 2207 * Check if the request queue is not in a quiesced state and if there are 2208 * pending requests to be sent. If this is true, run the queue to send requests 2209 * to hardware. 2210 */ 2211 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2212 { 2213 bool need_run; 2214 2215 /* 2216 * When queue is quiesced, we may be switching io scheduler, or 2217 * updating nr_hw_queues, or other things, and we can't run queue 2218 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2219 * 2220 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2221 * quiesced. 2222 */ 2223 __blk_mq_run_dispatch_ops(hctx->queue, false, 2224 need_run = !blk_queue_quiesced(hctx->queue) && 2225 blk_mq_hctx_has_pending(hctx)); 2226 2227 if (need_run) 2228 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2229 } 2230 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2231 2232 /* 2233 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2234 * scheduler. 2235 */ 2236 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2237 { 2238 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2239 /* 2240 * If the IO scheduler does not respect hardware queues when 2241 * dispatching, we just don't bother with multiple HW queues and 2242 * dispatch from hctx for the current CPU since running multiple queues 2243 * just causes lock contention inside the scheduler and pointless cache 2244 * bouncing. 2245 */ 2246 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2247 2248 if (!blk_mq_hctx_stopped(hctx)) 2249 return hctx; 2250 return NULL; 2251 } 2252 2253 /** 2254 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2255 * @q: Pointer to the request queue to run. 2256 * @async: If we want to run the queue asynchronously. 2257 */ 2258 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2259 { 2260 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2261 unsigned long i; 2262 2263 sq_hctx = NULL; 2264 if (blk_queue_sq_sched(q)) 2265 sq_hctx = blk_mq_get_sq_hctx(q); 2266 queue_for_each_hw_ctx(q, hctx, i) { 2267 if (blk_mq_hctx_stopped(hctx)) 2268 continue; 2269 /* 2270 * Dispatch from this hctx either if there's no hctx preferred 2271 * by IO scheduler or if it has requests that bypass the 2272 * scheduler. 2273 */ 2274 if (!sq_hctx || sq_hctx == hctx || 2275 !list_empty_careful(&hctx->dispatch)) 2276 blk_mq_run_hw_queue(hctx, async); 2277 } 2278 } 2279 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2280 2281 /** 2282 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2283 * @q: Pointer to the request queue to run. 2284 * @msecs: Milliseconds of delay to wait before running the queues. 2285 */ 2286 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2287 { 2288 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2289 unsigned long i; 2290 2291 sq_hctx = NULL; 2292 if (blk_queue_sq_sched(q)) 2293 sq_hctx = blk_mq_get_sq_hctx(q); 2294 queue_for_each_hw_ctx(q, hctx, i) { 2295 if (blk_mq_hctx_stopped(hctx)) 2296 continue; 2297 /* 2298 * If there is already a run_work pending, leave the 2299 * pending delay untouched. Otherwise, a hctx can stall 2300 * if another hctx is re-delaying the other's work 2301 * before the work executes. 2302 */ 2303 if (delayed_work_pending(&hctx->run_work)) 2304 continue; 2305 /* 2306 * Dispatch from this hctx either if there's no hctx preferred 2307 * by IO scheduler or if it has requests that bypass the 2308 * scheduler. 2309 */ 2310 if (!sq_hctx || sq_hctx == hctx || 2311 !list_empty_careful(&hctx->dispatch)) 2312 blk_mq_delay_run_hw_queue(hctx, msecs); 2313 } 2314 } 2315 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2316 2317 /* 2318 * This function is often used for pausing .queue_rq() by driver when 2319 * there isn't enough resource or some conditions aren't satisfied, and 2320 * BLK_STS_RESOURCE is usually returned. 2321 * 2322 * We do not guarantee that dispatch can be drained or blocked 2323 * after blk_mq_stop_hw_queue() returns. Please use 2324 * blk_mq_quiesce_queue() for that requirement. 2325 */ 2326 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2327 { 2328 cancel_delayed_work(&hctx->run_work); 2329 2330 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2331 } 2332 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2333 2334 /* 2335 * This function is often used for pausing .queue_rq() by driver when 2336 * there isn't enough resource or some conditions aren't satisfied, and 2337 * BLK_STS_RESOURCE is usually returned. 2338 * 2339 * We do not guarantee that dispatch can be drained or blocked 2340 * after blk_mq_stop_hw_queues() returns. Please use 2341 * blk_mq_quiesce_queue() for that requirement. 2342 */ 2343 void blk_mq_stop_hw_queues(struct request_queue *q) 2344 { 2345 struct blk_mq_hw_ctx *hctx; 2346 unsigned long i; 2347 2348 queue_for_each_hw_ctx(q, hctx, i) 2349 blk_mq_stop_hw_queue(hctx); 2350 } 2351 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2352 2353 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2354 { 2355 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2356 2357 blk_mq_run_hw_queue(hctx, false); 2358 } 2359 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2360 2361 void blk_mq_start_hw_queues(struct request_queue *q) 2362 { 2363 struct blk_mq_hw_ctx *hctx; 2364 unsigned long i; 2365 2366 queue_for_each_hw_ctx(q, hctx, i) 2367 blk_mq_start_hw_queue(hctx); 2368 } 2369 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2370 2371 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2372 { 2373 if (!blk_mq_hctx_stopped(hctx)) 2374 return; 2375 2376 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2377 blk_mq_run_hw_queue(hctx, async); 2378 } 2379 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2380 2381 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2382 { 2383 struct blk_mq_hw_ctx *hctx; 2384 unsigned long i; 2385 2386 queue_for_each_hw_ctx(q, hctx, i) 2387 blk_mq_start_stopped_hw_queue(hctx, async); 2388 } 2389 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2390 2391 static void blk_mq_run_work_fn(struct work_struct *work) 2392 { 2393 struct blk_mq_hw_ctx *hctx; 2394 2395 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2396 2397 /* 2398 * If we are stopped, don't run the queue. 2399 */ 2400 if (blk_mq_hctx_stopped(hctx)) 2401 return; 2402 2403 __blk_mq_run_hw_queue(hctx); 2404 } 2405 2406 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2407 struct request *rq, 2408 bool at_head) 2409 { 2410 struct blk_mq_ctx *ctx = rq->mq_ctx; 2411 enum hctx_type type = hctx->type; 2412 2413 lockdep_assert_held(&ctx->lock); 2414 2415 trace_block_rq_insert(rq); 2416 2417 if (at_head) 2418 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2419 else 2420 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2421 } 2422 2423 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2424 bool at_head) 2425 { 2426 struct blk_mq_ctx *ctx = rq->mq_ctx; 2427 2428 lockdep_assert_held(&ctx->lock); 2429 2430 __blk_mq_insert_req_list(hctx, rq, at_head); 2431 blk_mq_hctx_mark_pending(hctx, ctx); 2432 } 2433 2434 /** 2435 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2436 * @rq: Pointer to request to be inserted. 2437 * @at_head: true if the request should be inserted at the head of the list. 2438 * @run_queue: If we should run the hardware queue after inserting the request. 2439 * 2440 * Should only be used carefully, when the caller knows we want to 2441 * bypass a potential IO scheduler on the target device. 2442 */ 2443 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2444 bool run_queue) 2445 { 2446 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2447 2448 spin_lock(&hctx->lock); 2449 if (at_head) 2450 list_add(&rq->queuelist, &hctx->dispatch); 2451 else 2452 list_add_tail(&rq->queuelist, &hctx->dispatch); 2453 spin_unlock(&hctx->lock); 2454 2455 if (run_queue) 2456 blk_mq_run_hw_queue(hctx, false); 2457 } 2458 2459 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2460 struct list_head *list) 2461 2462 { 2463 struct request *rq; 2464 enum hctx_type type = hctx->type; 2465 2466 /* 2467 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2468 * offline now 2469 */ 2470 list_for_each_entry(rq, list, queuelist) { 2471 BUG_ON(rq->mq_ctx != ctx); 2472 trace_block_rq_insert(rq); 2473 } 2474 2475 spin_lock(&ctx->lock); 2476 list_splice_tail_init(list, &ctx->rq_lists[type]); 2477 blk_mq_hctx_mark_pending(hctx, ctx); 2478 spin_unlock(&ctx->lock); 2479 } 2480 2481 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2482 bool from_schedule) 2483 { 2484 if (hctx->queue->mq_ops->commit_rqs) { 2485 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2486 hctx->queue->mq_ops->commit_rqs(hctx); 2487 } 2488 *queued = 0; 2489 } 2490 2491 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2492 unsigned int nr_segs) 2493 { 2494 int err; 2495 2496 if (bio->bi_opf & REQ_RAHEAD) 2497 rq->cmd_flags |= REQ_FAILFAST_MASK; 2498 2499 rq->__sector = bio->bi_iter.bi_sector; 2500 blk_rq_bio_prep(rq, bio, nr_segs); 2501 2502 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2503 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2504 WARN_ON_ONCE(err); 2505 2506 blk_account_io_start(rq); 2507 } 2508 2509 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2510 struct request *rq, bool last) 2511 { 2512 struct request_queue *q = rq->q; 2513 struct blk_mq_queue_data bd = { 2514 .rq = rq, 2515 .last = last, 2516 }; 2517 blk_status_t ret; 2518 2519 /* 2520 * For OK queue, we are done. For error, caller may kill it. 2521 * Any other error (busy), just add it to our list as we 2522 * previously would have done. 2523 */ 2524 ret = q->mq_ops->queue_rq(hctx, &bd); 2525 switch (ret) { 2526 case BLK_STS_OK: 2527 blk_mq_update_dispatch_busy(hctx, false); 2528 break; 2529 case BLK_STS_RESOURCE: 2530 case BLK_STS_DEV_RESOURCE: 2531 blk_mq_update_dispatch_busy(hctx, true); 2532 __blk_mq_requeue_request(rq); 2533 break; 2534 default: 2535 blk_mq_update_dispatch_busy(hctx, false); 2536 break; 2537 } 2538 2539 return ret; 2540 } 2541 2542 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2543 struct request *rq, 2544 bool bypass_insert, bool last) 2545 { 2546 struct request_queue *q = rq->q; 2547 bool run_queue = true; 2548 int budget_token; 2549 2550 /* 2551 * RCU or SRCU read lock is needed before checking quiesced flag. 2552 * 2553 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2554 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2555 * and avoid driver to try to dispatch again. 2556 */ 2557 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2558 run_queue = false; 2559 bypass_insert = false; 2560 goto insert; 2561 } 2562 2563 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2564 goto insert; 2565 2566 budget_token = blk_mq_get_dispatch_budget(q); 2567 if (budget_token < 0) 2568 goto insert; 2569 2570 blk_mq_set_rq_budget_token(rq, budget_token); 2571 2572 if (!blk_mq_get_driver_tag(rq)) { 2573 blk_mq_put_dispatch_budget(q, budget_token); 2574 goto insert; 2575 } 2576 2577 return __blk_mq_issue_directly(hctx, rq, last); 2578 insert: 2579 if (bypass_insert) 2580 return BLK_STS_RESOURCE; 2581 2582 blk_mq_sched_insert_request(rq, false, run_queue, false); 2583 2584 return BLK_STS_OK; 2585 } 2586 2587 /** 2588 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2589 * @hctx: Pointer of the associated hardware queue. 2590 * @rq: Pointer to request to be sent. 2591 * 2592 * If the device has enough resources to accept a new request now, send the 2593 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2594 * we can try send it another time in the future. Requests inserted at this 2595 * queue have higher priority. 2596 */ 2597 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2598 struct request *rq) 2599 { 2600 blk_status_t ret = 2601 __blk_mq_try_issue_directly(hctx, rq, false, true); 2602 2603 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2604 blk_mq_request_bypass_insert(rq, false, true); 2605 else if (ret != BLK_STS_OK) 2606 blk_mq_end_request(rq, ret); 2607 } 2608 2609 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2610 { 2611 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2612 } 2613 2614 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2615 { 2616 struct blk_mq_hw_ctx *hctx = NULL; 2617 struct request *rq; 2618 int queued = 0; 2619 int errors = 0; 2620 2621 while ((rq = rq_list_pop(&plug->mq_list))) { 2622 bool last = rq_list_empty(plug->mq_list); 2623 blk_status_t ret; 2624 2625 if (hctx != rq->mq_hctx) { 2626 if (hctx) 2627 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2628 hctx = rq->mq_hctx; 2629 } 2630 2631 ret = blk_mq_request_issue_directly(rq, last); 2632 switch (ret) { 2633 case BLK_STS_OK: 2634 queued++; 2635 break; 2636 case BLK_STS_RESOURCE: 2637 case BLK_STS_DEV_RESOURCE: 2638 blk_mq_request_bypass_insert(rq, false, true); 2639 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2640 return; 2641 default: 2642 blk_mq_end_request(rq, ret); 2643 errors++; 2644 break; 2645 } 2646 } 2647 2648 /* 2649 * If we didn't flush the entire list, we could have told the driver 2650 * there was more coming, but that turned out to be a lie. 2651 */ 2652 if (errors) 2653 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2654 } 2655 2656 static void __blk_mq_flush_plug_list(struct request_queue *q, 2657 struct blk_plug *plug) 2658 { 2659 if (blk_queue_quiesced(q)) 2660 return; 2661 q->mq_ops->queue_rqs(&plug->mq_list); 2662 } 2663 2664 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2665 { 2666 struct blk_mq_hw_ctx *this_hctx = NULL; 2667 struct blk_mq_ctx *this_ctx = NULL; 2668 struct request *requeue_list = NULL; 2669 unsigned int depth = 0; 2670 LIST_HEAD(list); 2671 2672 do { 2673 struct request *rq = rq_list_pop(&plug->mq_list); 2674 2675 if (!this_hctx) { 2676 this_hctx = rq->mq_hctx; 2677 this_ctx = rq->mq_ctx; 2678 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2679 rq_list_add(&requeue_list, rq); 2680 continue; 2681 } 2682 list_add_tail(&rq->queuelist, &list); 2683 depth++; 2684 } while (!rq_list_empty(plug->mq_list)); 2685 2686 plug->mq_list = requeue_list; 2687 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2688 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2689 } 2690 2691 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2692 { 2693 struct request *rq; 2694 2695 if (rq_list_empty(plug->mq_list)) 2696 return; 2697 plug->rq_count = 0; 2698 2699 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2700 struct request_queue *q; 2701 2702 rq = rq_list_peek(&plug->mq_list); 2703 q = rq->q; 2704 2705 /* 2706 * Peek first request and see if we have a ->queue_rqs() hook. 2707 * If we do, we can dispatch the whole plug list in one go. We 2708 * already know at this point that all requests belong to the 2709 * same queue, caller must ensure that's the case. 2710 * 2711 * Since we pass off the full list to the driver at this point, 2712 * we do not increment the active request count for the queue. 2713 * Bypass shared tags for now because of that. 2714 */ 2715 if (q->mq_ops->queue_rqs && 2716 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2717 blk_mq_run_dispatch_ops(q, 2718 __blk_mq_flush_plug_list(q, plug)); 2719 if (rq_list_empty(plug->mq_list)) 2720 return; 2721 } 2722 2723 blk_mq_run_dispatch_ops(q, 2724 blk_mq_plug_issue_direct(plug, false)); 2725 if (rq_list_empty(plug->mq_list)) 2726 return; 2727 } 2728 2729 do { 2730 blk_mq_dispatch_plug_list(plug, from_schedule); 2731 } while (!rq_list_empty(plug->mq_list)); 2732 } 2733 2734 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2735 struct list_head *list) 2736 { 2737 int queued = 0; 2738 int errors = 0; 2739 2740 while (!list_empty(list)) { 2741 blk_status_t ret; 2742 struct request *rq = list_first_entry(list, struct request, 2743 queuelist); 2744 2745 list_del_init(&rq->queuelist); 2746 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2747 if (ret != BLK_STS_OK) { 2748 errors++; 2749 if (ret == BLK_STS_RESOURCE || 2750 ret == BLK_STS_DEV_RESOURCE) { 2751 blk_mq_request_bypass_insert(rq, false, 2752 list_empty(list)); 2753 break; 2754 } 2755 blk_mq_end_request(rq, ret); 2756 } else 2757 queued++; 2758 } 2759 2760 /* 2761 * If we didn't flush the entire list, we could have told 2762 * the driver there was more coming, but that turned out to 2763 * be a lie. 2764 */ 2765 if ((!list_empty(list) || errors) && 2766 hctx->queue->mq_ops->commit_rqs && queued) 2767 hctx->queue->mq_ops->commit_rqs(hctx); 2768 } 2769 2770 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2771 struct bio *bio, unsigned int nr_segs) 2772 { 2773 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2774 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2775 return true; 2776 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2777 return true; 2778 } 2779 return false; 2780 } 2781 2782 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2783 struct blk_plug *plug, 2784 struct bio *bio, 2785 unsigned int nsegs) 2786 { 2787 struct blk_mq_alloc_data data = { 2788 .q = q, 2789 .nr_tags = 1, 2790 .cmd_flags = bio->bi_opf, 2791 }; 2792 struct request *rq; 2793 2794 if (unlikely(bio_queue_enter(bio))) 2795 return NULL; 2796 2797 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2798 goto queue_exit; 2799 2800 rq_qos_throttle(q, bio); 2801 2802 if (plug) { 2803 data.nr_tags = plug->nr_ios; 2804 plug->nr_ios = 1; 2805 data.cached_rq = &plug->cached_rq; 2806 } 2807 2808 rq = __blk_mq_alloc_requests(&data); 2809 if (rq) 2810 return rq; 2811 rq_qos_cleanup(q, bio); 2812 if (bio->bi_opf & REQ_NOWAIT) 2813 bio_wouldblock_error(bio); 2814 queue_exit: 2815 blk_queue_exit(q); 2816 return NULL; 2817 } 2818 2819 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2820 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2821 { 2822 struct request *rq; 2823 2824 if (!plug) 2825 return NULL; 2826 rq = rq_list_peek(&plug->cached_rq); 2827 if (!rq || rq->q != q) 2828 return NULL; 2829 2830 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2831 *bio = NULL; 2832 return NULL; 2833 } 2834 2835 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) 2836 return NULL; 2837 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2838 return NULL; 2839 2840 /* 2841 * If any qos ->throttle() end up blocking, we will have flushed the 2842 * plug and hence killed the cached_rq list as well. Pop this entry 2843 * before we throttle. 2844 */ 2845 plug->cached_rq = rq_list_next(rq); 2846 rq_qos_throttle(q, *bio); 2847 2848 rq->cmd_flags = (*bio)->bi_opf; 2849 INIT_LIST_HEAD(&rq->queuelist); 2850 return rq; 2851 } 2852 2853 static void bio_set_ioprio(struct bio *bio) 2854 { 2855 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2856 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2857 bio->bi_ioprio = get_current_ioprio(); 2858 blkcg_set_ioprio(bio); 2859 } 2860 2861 /** 2862 * blk_mq_submit_bio - Create and send a request to block device. 2863 * @bio: Bio pointer. 2864 * 2865 * Builds up a request structure from @q and @bio and send to the device. The 2866 * request may not be queued directly to hardware if: 2867 * * This request can be merged with another one 2868 * * We want to place request at plug queue for possible future merging 2869 * * There is an IO scheduler active at this queue 2870 * 2871 * It will not queue the request if there is an error with the bio, or at the 2872 * request creation. 2873 */ 2874 void blk_mq_submit_bio(struct bio *bio) 2875 { 2876 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2877 struct blk_plug *plug = blk_mq_plug(bio); 2878 const int is_sync = op_is_sync(bio->bi_opf); 2879 struct request *rq; 2880 unsigned int nr_segs = 1; 2881 blk_status_t ret; 2882 2883 bio = blk_queue_bounce(bio, q); 2884 if (bio_may_exceed_limits(bio, &q->limits)) 2885 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2886 2887 if (!bio_integrity_prep(bio)) 2888 return; 2889 2890 bio_set_ioprio(bio); 2891 2892 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2893 if (!rq) { 2894 if (!bio) 2895 return; 2896 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2897 if (unlikely(!rq)) 2898 return; 2899 } 2900 2901 trace_block_getrq(bio); 2902 2903 rq_qos_track(q, rq, bio); 2904 2905 blk_mq_bio_to_request(rq, bio, nr_segs); 2906 2907 ret = blk_crypto_init_request(rq); 2908 if (ret != BLK_STS_OK) { 2909 bio->bi_status = ret; 2910 bio_endio(bio); 2911 blk_mq_free_request(rq); 2912 return; 2913 } 2914 2915 if (op_is_flush(bio->bi_opf)) { 2916 blk_insert_flush(rq); 2917 return; 2918 } 2919 2920 if (plug) 2921 blk_add_rq_to_plug(plug, rq); 2922 else if ((rq->rq_flags & RQF_ELV) || 2923 (rq->mq_hctx->dispatch_busy && 2924 (q->nr_hw_queues == 1 || !is_sync))) 2925 blk_mq_sched_insert_request(rq, false, true, true); 2926 else 2927 blk_mq_run_dispatch_ops(rq->q, 2928 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2929 } 2930 2931 #ifdef CONFIG_BLK_MQ_STACKING 2932 /** 2933 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2934 * @rq: the request being queued 2935 */ 2936 blk_status_t blk_insert_cloned_request(struct request *rq) 2937 { 2938 struct request_queue *q = rq->q; 2939 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 2940 blk_status_t ret; 2941 2942 if (blk_rq_sectors(rq) > max_sectors) { 2943 /* 2944 * SCSI device does not have a good way to return if 2945 * Write Same/Zero is actually supported. If a device rejects 2946 * a non-read/write command (discard, write same,etc.) the 2947 * low-level device driver will set the relevant queue limit to 2948 * 0 to prevent blk-lib from issuing more of the offending 2949 * operations. Commands queued prior to the queue limit being 2950 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 2951 * errors being propagated to upper layers. 2952 */ 2953 if (max_sectors == 0) 2954 return BLK_STS_NOTSUPP; 2955 2956 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 2957 __func__, blk_rq_sectors(rq), max_sectors); 2958 return BLK_STS_IOERR; 2959 } 2960 2961 /* 2962 * The queue settings related to segment counting may differ from the 2963 * original queue. 2964 */ 2965 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 2966 if (rq->nr_phys_segments > queue_max_segments(q)) { 2967 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 2968 __func__, rq->nr_phys_segments, queue_max_segments(q)); 2969 return BLK_STS_IOERR; 2970 } 2971 2972 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 2973 return BLK_STS_IOERR; 2974 2975 if (blk_crypto_insert_cloned_request(rq)) 2976 return BLK_STS_IOERR; 2977 2978 blk_account_io_start(rq); 2979 2980 /* 2981 * Since we have a scheduler attached on the top device, 2982 * bypass a potential scheduler on the bottom device for 2983 * insert. 2984 */ 2985 blk_mq_run_dispatch_ops(q, 2986 ret = blk_mq_request_issue_directly(rq, true)); 2987 if (ret) 2988 blk_account_io_done(rq, ktime_get_ns()); 2989 return ret; 2990 } 2991 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2992 2993 /** 2994 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2995 * @rq: the clone request to be cleaned up 2996 * 2997 * Description: 2998 * Free all bios in @rq for a cloned request. 2999 */ 3000 void blk_rq_unprep_clone(struct request *rq) 3001 { 3002 struct bio *bio; 3003 3004 while ((bio = rq->bio) != NULL) { 3005 rq->bio = bio->bi_next; 3006 3007 bio_put(bio); 3008 } 3009 } 3010 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3011 3012 /** 3013 * blk_rq_prep_clone - Helper function to setup clone request 3014 * @rq: the request to be setup 3015 * @rq_src: original request to be cloned 3016 * @bs: bio_set that bios for clone are allocated from 3017 * @gfp_mask: memory allocation mask for bio 3018 * @bio_ctr: setup function to be called for each clone bio. 3019 * Returns %0 for success, non %0 for failure. 3020 * @data: private data to be passed to @bio_ctr 3021 * 3022 * Description: 3023 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3024 * Also, pages which the original bios are pointing to are not copied 3025 * and the cloned bios just point same pages. 3026 * So cloned bios must be completed before original bios, which means 3027 * the caller must complete @rq before @rq_src. 3028 */ 3029 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3030 struct bio_set *bs, gfp_t gfp_mask, 3031 int (*bio_ctr)(struct bio *, struct bio *, void *), 3032 void *data) 3033 { 3034 struct bio *bio, *bio_src; 3035 3036 if (!bs) 3037 bs = &fs_bio_set; 3038 3039 __rq_for_each_bio(bio_src, rq_src) { 3040 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3041 bs); 3042 if (!bio) 3043 goto free_and_out; 3044 3045 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3046 goto free_and_out; 3047 3048 if (rq->bio) { 3049 rq->biotail->bi_next = bio; 3050 rq->biotail = bio; 3051 } else { 3052 rq->bio = rq->biotail = bio; 3053 } 3054 bio = NULL; 3055 } 3056 3057 /* Copy attributes of the original request to the clone request. */ 3058 rq->__sector = blk_rq_pos(rq_src); 3059 rq->__data_len = blk_rq_bytes(rq_src); 3060 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3061 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3062 rq->special_vec = rq_src->special_vec; 3063 } 3064 rq->nr_phys_segments = rq_src->nr_phys_segments; 3065 rq->ioprio = rq_src->ioprio; 3066 3067 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3068 goto free_and_out; 3069 3070 return 0; 3071 3072 free_and_out: 3073 if (bio) 3074 bio_put(bio); 3075 blk_rq_unprep_clone(rq); 3076 3077 return -ENOMEM; 3078 } 3079 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3080 #endif /* CONFIG_BLK_MQ_STACKING */ 3081 3082 /* 3083 * Steal bios from a request and add them to a bio list. 3084 * The request must not have been partially completed before. 3085 */ 3086 void blk_steal_bios(struct bio_list *list, struct request *rq) 3087 { 3088 if (rq->bio) { 3089 if (list->tail) 3090 list->tail->bi_next = rq->bio; 3091 else 3092 list->head = rq->bio; 3093 list->tail = rq->biotail; 3094 3095 rq->bio = NULL; 3096 rq->biotail = NULL; 3097 } 3098 3099 rq->__data_len = 0; 3100 } 3101 EXPORT_SYMBOL_GPL(blk_steal_bios); 3102 3103 static size_t order_to_size(unsigned int order) 3104 { 3105 return (size_t)PAGE_SIZE << order; 3106 } 3107 3108 /* called before freeing request pool in @tags */ 3109 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3110 struct blk_mq_tags *tags) 3111 { 3112 struct page *page; 3113 unsigned long flags; 3114 3115 /* There is no need to clear a driver tags own mapping */ 3116 if (drv_tags == tags) 3117 return; 3118 3119 list_for_each_entry(page, &tags->page_list, lru) { 3120 unsigned long start = (unsigned long)page_address(page); 3121 unsigned long end = start + order_to_size(page->private); 3122 int i; 3123 3124 for (i = 0; i < drv_tags->nr_tags; i++) { 3125 struct request *rq = drv_tags->rqs[i]; 3126 unsigned long rq_addr = (unsigned long)rq; 3127 3128 if (rq_addr >= start && rq_addr < end) { 3129 WARN_ON_ONCE(req_ref_read(rq) != 0); 3130 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3131 } 3132 } 3133 } 3134 3135 /* 3136 * Wait until all pending iteration is done. 3137 * 3138 * Request reference is cleared and it is guaranteed to be observed 3139 * after the ->lock is released. 3140 */ 3141 spin_lock_irqsave(&drv_tags->lock, flags); 3142 spin_unlock_irqrestore(&drv_tags->lock, flags); 3143 } 3144 3145 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3146 unsigned int hctx_idx) 3147 { 3148 struct blk_mq_tags *drv_tags; 3149 struct page *page; 3150 3151 if (list_empty(&tags->page_list)) 3152 return; 3153 3154 if (blk_mq_is_shared_tags(set->flags)) 3155 drv_tags = set->shared_tags; 3156 else 3157 drv_tags = set->tags[hctx_idx]; 3158 3159 if (tags->static_rqs && set->ops->exit_request) { 3160 int i; 3161 3162 for (i = 0; i < tags->nr_tags; i++) { 3163 struct request *rq = tags->static_rqs[i]; 3164 3165 if (!rq) 3166 continue; 3167 set->ops->exit_request(set, rq, hctx_idx); 3168 tags->static_rqs[i] = NULL; 3169 } 3170 } 3171 3172 blk_mq_clear_rq_mapping(drv_tags, tags); 3173 3174 while (!list_empty(&tags->page_list)) { 3175 page = list_first_entry(&tags->page_list, struct page, lru); 3176 list_del_init(&page->lru); 3177 /* 3178 * Remove kmemleak object previously allocated in 3179 * blk_mq_alloc_rqs(). 3180 */ 3181 kmemleak_free(page_address(page)); 3182 __free_pages(page, page->private); 3183 } 3184 } 3185 3186 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3187 { 3188 kfree(tags->rqs); 3189 tags->rqs = NULL; 3190 kfree(tags->static_rqs); 3191 tags->static_rqs = NULL; 3192 3193 blk_mq_free_tags(tags); 3194 } 3195 3196 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3197 unsigned int hctx_idx) 3198 { 3199 int i; 3200 3201 for (i = 0; i < set->nr_maps; i++) { 3202 unsigned int start = set->map[i].queue_offset; 3203 unsigned int end = start + set->map[i].nr_queues; 3204 3205 if (hctx_idx >= start && hctx_idx < end) 3206 break; 3207 } 3208 3209 if (i >= set->nr_maps) 3210 i = HCTX_TYPE_DEFAULT; 3211 3212 return i; 3213 } 3214 3215 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3216 unsigned int hctx_idx) 3217 { 3218 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3219 3220 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3221 } 3222 3223 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3224 unsigned int hctx_idx, 3225 unsigned int nr_tags, 3226 unsigned int reserved_tags) 3227 { 3228 int node = blk_mq_get_hctx_node(set, hctx_idx); 3229 struct blk_mq_tags *tags; 3230 3231 if (node == NUMA_NO_NODE) 3232 node = set->numa_node; 3233 3234 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3235 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3236 if (!tags) 3237 return NULL; 3238 3239 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3240 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3241 node); 3242 if (!tags->rqs) { 3243 blk_mq_free_tags(tags); 3244 return NULL; 3245 } 3246 3247 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3248 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3249 node); 3250 if (!tags->static_rqs) { 3251 kfree(tags->rqs); 3252 blk_mq_free_tags(tags); 3253 return NULL; 3254 } 3255 3256 return tags; 3257 } 3258 3259 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3260 unsigned int hctx_idx, int node) 3261 { 3262 int ret; 3263 3264 if (set->ops->init_request) { 3265 ret = set->ops->init_request(set, rq, hctx_idx, node); 3266 if (ret) 3267 return ret; 3268 } 3269 3270 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3271 return 0; 3272 } 3273 3274 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3275 struct blk_mq_tags *tags, 3276 unsigned int hctx_idx, unsigned int depth) 3277 { 3278 unsigned int i, j, entries_per_page, max_order = 4; 3279 int node = blk_mq_get_hctx_node(set, hctx_idx); 3280 size_t rq_size, left; 3281 3282 if (node == NUMA_NO_NODE) 3283 node = set->numa_node; 3284 3285 INIT_LIST_HEAD(&tags->page_list); 3286 3287 /* 3288 * rq_size is the size of the request plus driver payload, rounded 3289 * to the cacheline size 3290 */ 3291 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3292 cache_line_size()); 3293 left = rq_size * depth; 3294 3295 for (i = 0; i < depth; ) { 3296 int this_order = max_order; 3297 struct page *page; 3298 int to_do; 3299 void *p; 3300 3301 while (this_order && left < order_to_size(this_order - 1)) 3302 this_order--; 3303 3304 do { 3305 page = alloc_pages_node(node, 3306 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3307 this_order); 3308 if (page) 3309 break; 3310 if (!this_order--) 3311 break; 3312 if (order_to_size(this_order) < rq_size) 3313 break; 3314 } while (1); 3315 3316 if (!page) 3317 goto fail; 3318 3319 page->private = this_order; 3320 list_add_tail(&page->lru, &tags->page_list); 3321 3322 p = page_address(page); 3323 /* 3324 * Allow kmemleak to scan these pages as they contain pointers 3325 * to additional allocations like via ops->init_request(). 3326 */ 3327 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3328 entries_per_page = order_to_size(this_order) / rq_size; 3329 to_do = min(entries_per_page, depth - i); 3330 left -= to_do * rq_size; 3331 for (j = 0; j < to_do; j++) { 3332 struct request *rq = p; 3333 3334 tags->static_rqs[i] = rq; 3335 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3336 tags->static_rqs[i] = NULL; 3337 goto fail; 3338 } 3339 3340 p += rq_size; 3341 i++; 3342 } 3343 } 3344 return 0; 3345 3346 fail: 3347 blk_mq_free_rqs(set, tags, hctx_idx); 3348 return -ENOMEM; 3349 } 3350 3351 struct rq_iter_data { 3352 struct blk_mq_hw_ctx *hctx; 3353 bool has_rq; 3354 }; 3355 3356 static bool blk_mq_has_request(struct request *rq, void *data) 3357 { 3358 struct rq_iter_data *iter_data = data; 3359 3360 if (rq->mq_hctx != iter_data->hctx) 3361 return true; 3362 iter_data->has_rq = true; 3363 return false; 3364 } 3365 3366 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3367 { 3368 struct blk_mq_tags *tags = hctx->sched_tags ? 3369 hctx->sched_tags : hctx->tags; 3370 struct rq_iter_data data = { 3371 .hctx = hctx, 3372 }; 3373 3374 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3375 return data.has_rq; 3376 } 3377 3378 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3379 struct blk_mq_hw_ctx *hctx) 3380 { 3381 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3382 return false; 3383 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3384 return false; 3385 return true; 3386 } 3387 3388 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3389 { 3390 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3391 struct blk_mq_hw_ctx, cpuhp_online); 3392 3393 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3394 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3395 return 0; 3396 3397 /* 3398 * Prevent new request from being allocated on the current hctx. 3399 * 3400 * The smp_mb__after_atomic() Pairs with the implied barrier in 3401 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3402 * seen once we return from the tag allocator. 3403 */ 3404 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3405 smp_mb__after_atomic(); 3406 3407 /* 3408 * Try to grab a reference to the queue and wait for any outstanding 3409 * requests. If we could not grab a reference the queue has been 3410 * frozen and there are no requests. 3411 */ 3412 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3413 while (blk_mq_hctx_has_requests(hctx)) 3414 msleep(5); 3415 percpu_ref_put(&hctx->queue->q_usage_counter); 3416 } 3417 3418 return 0; 3419 } 3420 3421 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3422 { 3423 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3424 struct blk_mq_hw_ctx, cpuhp_online); 3425 3426 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3427 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3428 return 0; 3429 } 3430 3431 /* 3432 * 'cpu' is going away. splice any existing rq_list entries from this 3433 * software queue to the hw queue dispatch list, and ensure that it 3434 * gets run. 3435 */ 3436 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3437 { 3438 struct blk_mq_hw_ctx *hctx; 3439 struct blk_mq_ctx *ctx; 3440 LIST_HEAD(tmp); 3441 enum hctx_type type; 3442 3443 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3444 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3445 return 0; 3446 3447 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3448 type = hctx->type; 3449 3450 spin_lock(&ctx->lock); 3451 if (!list_empty(&ctx->rq_lists[type])) { 3452 list_splice_init(&ctx->rq_lists[type], &tmp); 3453 blk_mq_hctx_clear_pending(hctx, ctx); 3454 } 3455 spin_unlock(&ctx->lock); 3456 3457 if (list_empty(&tmp)) 3458 return 0; 3459 3460 spin_lock(&hctx->lock); 3461 list_splice_tail_init(&tmp, &hctx->dispatch); 3462 spin_unlock(&hctx->lock); 3463 3464 blk_mq_run_hw_queue(hctx, true); 3465 return 0; 3466 } 3467 3468 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3469 { 3470 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3471 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3472 &hctx->cpuhp_online); 3473 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3474 &hctx->cpuhp_dead); 3475 } 3476 3477 /* 3478 * Before freeing hw queue, clearing the flush request reference in 3479 * tags->rqs[] for avoiding potential UAF. 3480 */ 3481 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3482 unsigned int queue_depth, struct request *flush_rq) 3483 { 3484 int i; 3485 unsigned long flags; 3486 3487 /* The hw queue may not be mapped yet */ 3488 if (!tags) 3489 return; 3490 3491 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3492 3493 for (i = 0; i < queue_depth; i++) 3494 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3495 3496 /* 3497 * Wait until all pending iteration is done. 3498 * 3499 * Request reference is cleared and it is guaranteed to be observed 3500 * after the ->lock is released. 3501 */ 3502 spin_lock_irqsave(&tags->lock, flags); 3503 spin_unlock_irqrestore(&tags->lock, flags); 3504 } 3505 3506 /* hctx->ctxs will be freed in queue's release handler */ 3507 static void blk_mq_exit_hctx(struct request_queue *q, 3508 struct blk_mq_tag_set *set, 3509 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3510 { 3511 struct request *flush_rq = hctx->fq->flush_rq; 3512 3513 if (blk_mq_hw_queue_mapped(hctx)) 3514 blk_mq_tag_idle(hctx); 3515 3516 if (blk_queue_init_done(q)) 3517 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3518 set->queue_depth, flush_rq); 3519 if (set->ops->exit_request) 3520 set->ops->exit_request(set, flush_rq, hctx_idx); 3521 3522 if (set->ops->exit_hctx) 3523 set->ops->exit_hctx(hctx, hctx_idx); 3524 3525 blk_mq_remove_cpuhp(hctx); 3526 3527 xa_erase(&q->hctx_table, hctx_idx); 3528 3529 spin_lock(&q->unused_hctx_lock); 3530 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3531 spin_unlock(&q->unused_hctx_lock); 3532 } 3533 3534 static void blk_mq_exit_hw_queues(struct request_queue *q, 3535 struct blk_mq_tag_set *set, int nr_queue) 3536 { 3537 struct blk_mq_hw_ctx *hctx; 3538 unsigned long i; 3539 3540 queue_for_each_hw_ctx(q, hctx, i) { 3541 if (i == nr_queue) 3542 break; 3543 blk_mq_exit_hctx(q, set, hctx, i); 3544 } 3545 } 3546 3547 static int blk_mq_init_hctx(struct request_queue *q, 3548 struct blk_mq_tag_set *set, 3549 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3550 { 3551 hctx->queue_num = hctx_idx; 3552 3553 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3554 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3555 &hctx->cpuhp_online); 3556 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3557 3558 hctx->tags = set->tags[hctx_idx]; 3559 3560 if (set->ops->init_hctx && 3561 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3562 goto unregister_cpu_notifier; 3563 3564 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3565 hctx->numa_node)) 3566 goto exit_hctx; 3567 3568 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3569 goto exit_flush_rq; 3570 3571 return 0; 3572 3573 exit_flush_rq: 3574 if (set->ops->exit_request) 3575 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3576 exit_hctx: 3577 if (set->ops->exit_hctx) 3578 set->ops->exit_hctx(hctx, hctx_idx); 3579 unregister_cpu_notifier: 3580 blk_mq_remove_cpuhp(hctx); 3581 return -1; 3582 } 3583 3584 static struct blk_mq_hw_ctx * 3585 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3586 int node) 3587 { 3588 struct blk_mq_hw_ctx *hctx; 3589 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3590 3591 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3592 if (!hctx) 3593 goto fail_alloc_hctx; 3594 3595 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3596 goto free_hctx; 3597 3598 atomic_set(&hctx->nr_active, 0); 3599 if (node == NUMA_NO_NODE) 3600 node = set->numa_node; 3601 hctx->numa_node = node; 3602 3603 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3604 spin_lock_init(&hctx->lock); 3605 INIT_LIST_HEAD(&hctx->dispatch); 3606 hctx->queue = q; 3607 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3608 3609 INIT_LIST_HEAD(&hctx->hctx_list); 3610 3611 /* 3612 * Allocate space for all possible cpus to avoid allocation at 3613 * runtime 3614 */ 3615 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3616 gfp, node); 3617 if (!hctx->ctxs) 3618 goto free_cpumask; 3619 3620 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3621 gfp, node, false, false)) 3622 goto free_ctxs; 3623 hctx->nr_ctx = 0; 3624 3625 spin_lock_init(&hctx->dispatch_wait_lock); 3626 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3627 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3628 3629 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3630 if (!hctx->fq) 3631 goto free_bitmap; 3632 3633 blk_mq_hctx_kobj_init(hctx); 3634 3635 return hctx; 3636 3637 free_bitmap: 3638 sbitmap_free(&hctx->ctx_map); 3639 free_ctxs: 3640 kfree(hctx->ctxs); 3641 free_cpumask: 3642 free_cpumask_var(hctx->cpumask); 3643 free_hctx: 3644 kfree(hctx); 3645 fail_alloc_hctx: 3646 return NULL; 3647 } 3648 3649 static void blk_mq_init_cpu_queues(struct request_queue *q, 3650 unsigned int nr_hw_queues) 3651 { 3652 struct blk_mq_tag_set *set = q->tag_set; 3653 unsigned int i, j; 3654 3655 for_each_possible_cpu(i) { 3656 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3657 struct blk_mq_hw_ctx *hctx; 3658 int k; 3659 3660 __ctx->cpu = i; 3661 spin_lock_init(&__ctx->lock); 3662 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3663 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3664 3665 __ctx->queue = q; 3666 3667 /* 3668 * Set local node, IFF we have more than one hw queue. If 3669 * not, we remain on the home node of the device 3670 */ 3671 for (j = 0; j < set->nr_maps; j++) { 3672 hctx = blk_mq_map_queue_type(q, j, i); 3673 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3674 hctx->numa_node = cpu_to_node(i); 3675 } 3676 } 3677 } 3678 3679 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3680 unsigned int hctx_idx, 3681 unsigned int depth) 3682 { 3683 struct blk_mq_tags *tags; 3684 int ret; 3685 3686 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3687 if (!tags) 3688 return NULL; 3689 3690 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3691 if (ret) { 3692 blk_mq_free_rq_map(tags); 3693 return NULL; 3694 } 3695 3696 return tags; 3697 } 3698 3699 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3700 int hctx_idx) 3701 { 3702 if (blk_mq_is_shared_tags(set->flags)) { 3703 set->tags[hctx_idx] = set->shared_tags; 3704 3705 return true; 3706 } 3707 3708 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3709 set->queue_depth); 3710 3711 return set->tags[hctx_idx]; 3712 } 3713 3714 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3715 struct blk_mq_tags *tags, 3716 unsigned int hctx_idx) 3717 { 3718 if (tags) { 3719 blk_mq_free_rqs(set, tags, hctx_idx); 3720 blk_mq_free_rq_map(tags); 3721 } 3722 } 3723 3724 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3725 unsigned int hctx_idx) 3726 { 3727 if (!blk_mq_is_shared_tags(set->flags)) 3728 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3729 3730 set->tags[hctx_idx] = NULL; 3731 } 3732 3733 static void blk_mq_map_swqueue(struct request_queue *q) 3734 { 3735 unsigned int j, hctx_idx; 3736 unsigned long i; 3737 struct blk_mq_hw_ctx *hctx; 3738 struct blk_mq_ctx *ctx; 3739 struct blk_mq_tag_set *set = q->tag_set; 3740 3741 queue_for_each_hw_ctx(q, hctx, i) { 3742 cpumask_clear(hctx->cpumask); 3743 hctx->nr_ctx = 0; 3744 hctx->dispatch_from = NULL; 3745 } 3746 3747 /* 3748 * Map software to hardware queues. 3749 * 3750 * If the cpu isn't present, the cpu is mapped to first hctx. 3751 */ 3752 for_each_possible_cpu(i) { 3753 3754 ctx = per_cpu_ptr(q->queue_ctx, i); 3755 for (j = 0; j < set->nr_maps; j++) { 3756 if (!set->map[j].nr_queues) { 3757 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3758 HCTX_TYPE_DEFAULT, i); 3759 continue; 3760 } 3761 hctx_idx = set->map[j].mq_map[i]; 3762 /* unmapped hw queue can be remapped after CPU topo changed */ 3763 if (!set->tags[hctx_idx] && 3764 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3765 /* 3766 * If tags initialization fail for some hctx, 3767 * that hctx won't be brought online. In this 3768 * case, remap the current ctx to hctx[0] which 3769 * is guaranteed to always have tags allocated 3770 */ 3771 set->map[j].mq_map[i] = 0; 3772 } 3773 3774 hctx = blk_mq_map_queue_type(q, j, i); 3775 ctx->hctxs[j] = hctx; 3776 /* 3777 * If the CPU is already set in the mask, then we've 3778 * mapped this one already. This can happen if 3779 * devices share queues across queue maps. 3780 */ 3781 if (cpumask_test_cpu(i, hctx->cpumask)) 3782 continue; 3783 3784 cpumask_set_cpu(i, hctx->cpumask); 3785 hctx->type = j; 3786 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3787 hctx->ctxs[hctx->nr_ctx++] = ctx; 3788 3789 /* 3790 * If the nr_ctx type overflows, we have exceeded the 3791 * amount of sw queues we can support. 3792 */ 3793 BUG_ON(!hctx->nr_ctx); 3794 } 3795 3796 for (; j < HCTX_MAX_TYPES; j++) 3797 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3798 HCTX_TYPE_DEFAULT, i); 3799 } 3800 3801 queue_for_each_hw_ctx(q, hctx, i) { 3802 /* 3803 * If no software queues are mapped to this hardware queue, 3804 * disable it and free the request entries. 3805 */ 3806 if (!hctx->nr_ctx) { 3807 /* Never unmap queue 0. We need it as a 3808 * fallback in case of a new remap fails 3809 * allocation 3810 */ 3811 if (i) 3812 __blk_mq_free_map_and_rqs(set, i); 3813 3814 hctx->tags = NULL; 3815 continue; 3816 } 3817 3818 hctx->tags = set->tags[i]; 3819 WARN_ON(!hctx->tags); 3820 3821 /* 3822 * Set the map size to the number of mapped software queues. 3823 * This is more accurate and more efficient than looping 3824 * over all possibly mapped software queues. 3825 */ 3826 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3827 3828 /* 3829 * Initialize batch roundrobin counts 3830 */ 3831 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3832 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3833 } 3834 } 3835 3836 /* 3837 * Caller needs to ensure that we're either frozen/quiesced, or that 3838 * the queue isn't live yet. 3839 */ 3840 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3841 { 3842 struct blk_mq_hw_ctx *hctx; 3843 unsigned long i; 3844 3845 queue_for_each_hw_ctx(q, hctx, i) { 3846 if (shared) { 3847 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3848 } else { 3849 blk_mq_tag_idle(hctx); 3850 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3851 } 3852 } 3853 } 3854 3855 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3856 bool shared) 3857 { 3858 struct request_queue *q; 3859 3860 lockdep_assert_held(&set->tag_list_lock); 3861 3862 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3863 blk_mq_freeze_queue(q); 3864 queue_set_hctx_shared(q, shared); 3865 blk_mq_unfreeze_queue(q); 3866 } 3867 } 3868 3869 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3870 { 3871 struct blk_mq_tag_set *set = q->tag_set; 3872 3873 mutex_lock(&set->tag_list_lock); 3874 list_del(&q->tag_set_list); 3875 if (list_is_singular(&set->tag_list)) { 3876 /* just transitioned to unshared */ 3877 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3878 /* update existing queue */ 3879 blk_mq_update_tag_set_shared(set, false); 3880 } 3881 mutex_unlock(&set->tag_list_lock); 3882 INIT_LIST_HEAD(&q->tag_set_list); 3883 } 3884 3885 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3886 struct request_queue *q) 3887 { 3888 mutex_lock(&set->tag_list_lock); 3889 3890 /* 3891 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3892 */ 3893 if (!list_empty(&set->tag_list) && 3894 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3895 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3896 /* update existing queue */ 3897 blk_mq_update_tag_set_shared(set, true); 3898 } 3899 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3900 queue_set_hctx_shared(q, true); 3901 list_add_tail(&q->tag_set_list, &set->tag_list); 3902 3903 mutex_unlock(&set->tag_list_lock); 3904 } 3905 3906 /* All allocations will be freed in release handler of q->mq_kobj */ 3907 static int blk_mq_alloc_ctxs(struct request_queue *q) 3908 { 3909 struct blk_mq_ctxs *ctxs; 3910 int cpu; 3911 3912 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3913 if (!ctxs) 3914 return -ENOMEM; 3915 3916 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3917 if (!ctxs->queue_ctx) 3918 goto fail; 3919 3920 for_each_possible_cpu(cpu) { 3921 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3922 ctx->ctxs = ctxs; 3923 } 3924 3925 q->mq_kobj = &ctxs->kobj; 3926 q->queue_ctx = ctxs->queue_ctx; 3927 3928 return 0; 3929 fail: 3930 kfree(ctxs); 3931 return -ENOMEM; 3932 } 3933 3934 /* 3935 * It is the actual release handler for mq, but we do it from 3936 * request queue's release handler for avoiding use-after-free 3937 * and headache because q->mq_kobj shouldn't have been introduced, 3938 * but we can't group ctx/kctx kobj without it. 3939 */ 3940 void blk_mq_release(struct request_queue *q) 3941 { 3942 struct blk_mq_hw_ctx *hctx, *next; 3943 unsigned long i; 3944 3945 queue_for_each_hw_ctx(q, hctx, i) 3946 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3947 3948 /* all hctx are in .unused_hctx_list now */ 3949 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3950 list_del_init(&hctx->hctx_list); 3951 kobject_put(&hctx->kobj); 3952 } 3953 3954 xa_destroy(&q->hctx_table); 3955 3956 /* 3957 * release .mq_kobj and sw queue's kobject now because 3958 * both share lifetime with request queue. 3959 */ 3960 blk_mq_sysfs_deinit(q); 3961 } 3962 3963 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3964 void *queuedata) 3965 { 3966 struct request_queue *q; 3967 int ret; 3968 3969 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); 3970 if (!q) 3971 return ERR_PTR(-ENOMEM); 3972 q->queuedata = queuedata; 3973 ret = blk_mq_init_allocated_queue(set, q); 3974 if (ret) { 3975 blk_put_queue(q); 3976 return ERR_PTR(ret); 3977 } 3978 return q; 3979 } 3980 3981 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3982 { 3983 return blk_mq_init_queue_data(set, NULL); 3984 } 3985 EXPORT_SYMBOL(blk_mq_init_queue); 3986 3987 /** 3988 * blk_mq_destroy_queue - shutdown a request queue 3989 * @q: request queue to shutdown 3990 * 3991 * This shuts down a request queue allocated by blk_mq_init_queue() and drops 3992 * the initial reference. All future requests will failed with -ENODEV. 3993 * 3994 * Context: can sleep 3995 */ 3996 void blk_mq_destroy_queue(struct request_queue *q) 3997 { 3998 WARN_ON_ONCE(!queue_is_mq(q)); 3999 WARN_ON_ONCE(blk_queue_registered(q)); 4000 4001 might_sleep(); 4002 4003 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4004 blk_queue_start_drain(q); 4005 blk_freeze_queue(q); 4006 4007 blk_sync_queue(q); 4008 blk_mq_cancel_work_sync(q); 4009 blk_mq_exit_queue(q); 4010 4011 /* @q is and will stay empty, shutdown and put */ 4012 blk_put_queue(q); 4013 } 4014 EXPORT_SYMBOL(blk_mq_destroy_queue); 4015 4016 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4017 struct lock_class_key *lkclass) 4018 { 4019 struct request_queue *q; 4020 struct gendisk *disk; 4021 4022 q = blk_mq_init_queue_data(set, queuedata); 4023 if (IS_ERR(q)) 4024 return ERR_CAST(q); 4025 4026 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4027 if (!disk) { 4028 blk_mq_destroy_queue(q); 4029 return ERR_PTR(-ENOMEM); 4030 } 4031 set_bit(GD_OWNS_QUEUE, &disk->state); 4032 return disk; 4033 } 4034 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4035 4036 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4037 struct lock_class_key *lkclass) 4038 { 4039 if (!blk_get_queue(q)) 4040 return NULL; 4041 return __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4042 } 4043 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4044 4045 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4046 struct blk_mq_tag_set *set, struct request_queue *q, 4047 int hctx_idx, int node) 4048 { 4049 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4050 4051 /* reuse dead hctx first */ 4052 spin_lock(&q->unused_hctx_lock); 4053 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4054 if (tmp->numa_node == node) { 4055 hctx = tmp; 4056 break; 4057 } 4058 } 4059 if (hctx) 4060 list_del_init(&hctx->hctx_list); 4061 spin_unlock(&q->unused_hctx_lock); 4062 4063 if (!hctx) 4064 hctx = blk_mq_alloc_hctx(q, set, node); 4065 if (!hctx) 4066 goto fail; 4067 4068 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4069 goto free_hctx; 4070 4071 return hctx; 4072 4073 free_hctx: 4074 kobject_put(&hctx->kobj); 4075 fail: 4076 return NULL; 4077 } 4078 4079 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4080 struct request_queue *q) 4081 { 4082 struct blk_mq_hw_ctx *hctx; 4083 unsigned long i, j; 4084 4085 /* protect against switching io scheduler */ 4086 mutex_lock(&q->sysfs_lock); 4087 for (i = 0; i < set->nr_hw_queues; i++) { 4088 int old_node; 4089 int node = blk_mq_get_hctx_node(set, i); 4090 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4091 4092 if (old_hctx) { 4093 old_node = old_hctx->numa_node; 4094 blk_mq_exit_hctx(q, set, old_hctx, i); 4095 } 4096 4097 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4098 if (!old_hctx) 4099 break; 4100 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4101 node, old_node); 4102 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4103 WARN_ON_ONCE(!hctx); 4104 } 4105 } 4106 /* 4107 * Increasing nr_hw_queues fails. Free the newly allocated 4108 * hctxs and keep the previous q->nr_hw_queues. 4109 */ 4110 if (i != set->nr_hw_queues) { 4111 j = q->nr_hw_queues; 4112 } else { 4113 j = i; 4114 q->nr_hw_queues = set->nr_hw_queues; 4115 } 4116 4117 xa_for_each_start(&q->hctx_table, j, hctx, j) 4118 blk_mq_exit_hctx(q, set, hctx, j); 4119 mutex_unlock(&q->sysfs_lock); 4120 } 4121 4122 static void blk_mq_update_poll_flag(struct request_queue *q) 4123 { 4124 struct blk_mq_tag_set *set = q->tag_set; 4125 4126 if (set->nr_maps > HCTX_TYPE_POLL && 4127 set->map[HCTX_TYPE_POLL].nr_queues) 4128 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4129 else 4130 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4131 } 4132 4133 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4134 struct request_queue *q) 4135 { 4136 WARN_ON_ONCE(blk_queue_has_srcu(q) != 4137 !!(set->flags & BLK_MQ_F_BLOCKING)); 4138 4139 /* mark the queue as mq asap */ 4140 q->mq_ops = set->ops; 4141 4142 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4143 blk_mq_poll_stats_bkt, 4144 BLK_MQ_POLL_STATS_BKTS, q); 4145 if (!q->poll_cb) 4146 goto err_exit; 4147 4148 if (blk_mq_alloc_ctxs(q)) 4149 goto err_poll; 4150 4151 /* init q->mq_kobj and sw queues' kobjects */ 4152 blk_mq_sysfs_init(q); 4153 4154 INIT_LIST_HEAD(&q->unused_hctx_list); 4155 spin_lock_init(&q->unused_hctx_lock); 4156 4157 xa_init(&q->hctx_table); 4158 4159 blk_mq_realloc_hw_ctxs(set, q); 4160 if (!q->nr_hw_queues) 4161 goto err_hctxs; 4162 4163 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4164 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4165 4166 q->tag_set = set; 4167 4168 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4169 blk_mq_update_poll_flag(q); 4170 4171 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4172 INIT_LIST_HEAD(&q->requeue_list); 4173 spin_lock_init(&q->requeue_lock); 4174 4175 q->nr_requests = set->queue_depth; 4176 4177 /* 4178 * Default to classic polling 4179 */ 4180 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4181 4182 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4183 blk_mq_add_queue_tag_set(set, q); 4184 blk_mq_map_swqueue(q); 4185 return 0; 4186 4187 err_hctxs: 4188 xa_destroy(&q->hctx_table); 4189 q->nr_hw_queues = 0; 4190 blk_mq_sysfs_deinit(q); 4191 err_poll: 4192 blk_stat_free_callback(q->poll_cb); 4193 q->poll_cb = NULL; 4194 err_exit: 4195 q->mq_ops = NULL; 4196 return -ENOMEM; 4197 } 4198 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4199 4200 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4201 void blk_mq_exit_queue(struct request_queue *q) 4202 { 4203 struct blk_mq_tag_set *set = q->tag_set; 4204 4205 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4206 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4207 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4208 blk_mq_del_queue_tag_set(q); 4209 } 4210 4211 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4212 { 4213 int i; 4214 4215 if (blk_mq_is_shared_tags(set->flags)) { 4216 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4217 BLK_MQ_NO_HCTX_IDX, 4218 set->queue_depth); 4219 if (!set->shared_tags) 4220 return -ENOMEM; 4221 } 4222 4223 for (i = 0; i < set->nr_hw_queues; i++) { 4224 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4225 goto out_unwind; 4226 cond_resched(); 4227 } 4228 4229 return 0; 4230 4231 out_unwind: 4232 while (--i >= 0) 4233 __blk_mq_free_map_and_rqs(set, i); 4234 4235 if (blk_mq_is_shared_tags(set->flags)) { 4236 blk_mq_free_map_and_rqs(set, set->shared_tags, 4237 BLK_MQ_NO_HCTX_IDX); 4238 } 4239 4240 return -ENOMEM; 4241 } 4242 4243 /* 4244 * Allocate the request maps associated with this tag_set. Note that this 4245 * may reduce the depth asked for, if memory is tight. set->queue_depth 4246 * will be updated to reflect the allocated depth. 4247 */ 4248 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4249 { 4250 unsigned int depth; 4251 int err; 4252 4253 depth = set->queue_depth; 4254 do { 4255 err = __blk_mq_alloc_rq_maps(set); 4256 if (!err) 4257 break; 4258 4259 set->queue_depth >>= 1; 4260 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4261 err = -ENOMEM; 4262 break; 4263 } 4264 } while (set->queue_depth); 4265 4266 if (!set->queue_depth || err) { 4267 pr_err("blk-mq: failed to allocate request map\n"); 4268 return -ENOMEM; 4269 } 4270 4271 if (depth != set->queue_depth) 4272 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4273 depth, set->queue_depth); 4274 4275 return 0; 4276 } 4277 4278 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4279 { 4280 /* 4281 * blk_mq_map_queues() and multiple .map_queues() implementations 4282 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4283 * number of hardware queues. 4284 */ 4285 if (set->nr_maps == 1) 4286 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4287 4288 if (set->ops->map_queues && !is_kdump_kernel()) { 4289 int i; 4290 4291 /* 4292 * transport .map_queues is usually done in the following 4293 * way: 4294 * 4295 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4296 * mask = get_cpu_mask(queue) 4297 * for_each_cpu(cpu, mask) 4298 * set->map[x].mq_map[cpu] = queue; 4299 * } 4300 * 4301 * When we need to remap, the table has to be cleared for 4302 * killing stale mapping since one CPU may not be mapped 4303 * to any hw queue. 4304 */ 4305 for (i = 0; i < set->nr_maps; i++) 4306 blk_mq_clear_mq_map(&set->map[i]); 4307 4308 set->ops->map_queues(set); 4309 } else { 4310 BUG_ON(set->nr_maps > 1); 4311 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4312 } 4313 } 4314 4315 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4316 int cur_nr_hw_queues, int new_nr_hw_queues) 4317 { 4318 struct blk_mq_tags **new_tags; 4319 4320 if (cur_nr_hw_queues >= new_nr_hw_queues) 4321 return 0; 4322 4323 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4324 GFP_KERNEL, set->numa_node); 4325 if (!new_tags) 4326 return -ENOMEM; 4327 4328 if (set->tags) 4329 memcpy(new_tags, set->tags, cur_nr_hw_queues * 4330 sizeof(*set->tags)); 4331 kfree(set->tags); 4332 set->tags = new_tags; 4333 set->nr_hw_queues = new_nr_hw_queues; 4334 4335 return 0; 4336 } 4337 4338 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 4339 int new_nr_hw_queues) 4340 { 4341 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 4342 } 4343 4344 /* 4345 * Alloc a tag set to be associated with one or more request queues. 4346 * May fail with EINVAL for various error conditions. May adjust the 4347 * requested depth down, if it's too large. In that case, the set 4348 * value will be stored in set->queue_depth. 4349 */ 4350 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4351 { 4352 int i, ret; 4353 4354 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4355 4356 if (!set->nr_hw_queues) 4357 return -EINVAL; 4358 if (!set->queue_depth) 4359 return -EINVAL; 4360 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4361 return -EINVAL; 4362 4363 if (!set->ops->queue_rq) 4364 return -EINVAL; 4365 4366 if (!set->ops->get_budget ^ !set->ops->put_budget) 4367 return -EINVAL; 4368 4369 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4370 pr_info("blk-mq: reduced tag depth to %u\n", 4371 BLK_MQ_MAX_DEPTH); 4372 set->queue_depth = BLK_MQ_MAX_DEPTH; 4373 } 4374 4375 if (!set->nr_maps) 4376 set->nr_maps = 1; 4377 else if (set->nr_maps > HCTX_MAX_TYPES) 4378 return -EINVAL; 4379 4380 /* 4381 * If a crashdump is active, then we are potentially in a very 4382 * memory constrained environment. Limit us to 1 queue and 4383 * 64 tags to prevent using too much memory. 4384 */ 4385 if (is_kdump_kernel()) { 4386 set->nr_hw_queues = 1; 4387 set->nr_maps = 1; 4388 set->queue_depth = min(64U, set->queue_depth); 4389 } 4390 /* 4391 * There is no use for more h/w queues than cpus if we just have 4392 * a single map 4393 */ 4394 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4395 set->nr_hw_queues = nr_cpu_ids; 4396 4397 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 4398 return -ENOMEM; 4399 4400 ret = -ENOMEM; 4401 for (i = 0; i < set->nr_maps; i++) { 4402 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4403 sizeof(set->map[i].mq_map[0]), 4404 GFP_KERNEL, set->numa_node); 4405 if (!set->map[i].mq_map) 4406 goto out_free_mq_map; 4407 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4408 } 4409 4410 blk_mq_update_queue_map(set); 4411 4412 ret = blk_mq_alloc_set_map_and_rqs(set); 4413 if (ret) 4414 goto out_free_mq_map; 4415 4416 mutex_init(&set->tag_list_lock); 4417 INIT_LIST_HEAD(&set->tag_list); 4418 4419 return 0; 4420 4421 out_free_mq_map: 4422 for (i = 0; i < set->nr_maps; i++) { 4423 kfree(set->map[i].mq_map); 4424 set->map[i].mq_map = NULL; 4425 } 4426 kfree(set->tags); 4427 set->tags = NULL; 4428 return ret; 4429 } 4430 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4431 4432 /* allocate and initialize a tagset for a simple single-queue device */ 4433 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4434 const struct blk_mq_ops *ops, unsigned int queue_depth, 4435 unsigned int set_flags) 4436 { 4437 memset(set, 0, sizeof(*set)); 4438 set->ops = ops; 4439 set->nr_hw_queues = 1; 4440 set->nr_maps = 1; 4441 set->queue_depth = queue_depth; 4442 set->numa_node = NUMA_NO_NODE; 4443 set->flags = set_flags; 4444 return blk_mq_alloc_tag_set(set); 4445 } 4446 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4447 4448 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4449 { 4450 int i, j; 4451 4452 for (i = 0; i < set->nr_hw_queues; i++) 4453 __blk_mq_free_map_and_rqs(set, i); 4454 4455 if (blk_mq_is_shared_tags(set->flags)) { 4456 blk_mq_free_map_and_rqs(set, set->shared_tags, 4457 BLK_MQ_NO_HCTX_IDX); 4458 } 4459 4460 for (j = 0; j < set->nr_maps; j++) { 4461 kfree(set->map[j].mq_map); 4462 set->map[j].mq_map = NULL; 4463 } 4464 4465 kfree(set->tags); 4466 set->tags = NULL; 4467 } 4468 EXPORT_SYMBOL(blk_mq_free_tag_set); 4469 4470 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4471 { 4472 struct blk_mq_tag_set *set = q->tag_set; 4473 struct blk_mq_hw_ctx *hctx; 4474 int ret; 4475 unsigned long i; 4476 4477 if (!set) 4478 return -EINVAL; 4479 4480 if (q->nr_requests == nr) 4481 return 0; 4482 4483 blk_mq_freeze_queue(q); 4484 blk_mq_quiesce_queue(q); 4485 4486 ret = 0; 4487 queue_for_each_hw_ctx(q, hctx, i) { 4488 if (!hctx->tags) 4489 continue; 4490 /* 4491 * If we're using an MQ scheduler, just update the scheduler 4492 * queue depth. This is similar to what the old code would do. 4493 */ 4494 if (hctx->sched_tags) { 4495 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4496 nr, true); 4497 } else { 4498 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4499 false); 4500 } 4501 if (ret) 4502 break; 4503 if (q->elevator && q->elevator->type->ops.depth_updated) 4504 q->elevator->type->ops.depth_updated(hctx); 4505 } 4506 if (!ret) { 4507 q->nr_requests = nr; 4508 if (blk_mq_is_shared_tags(set->flags)) { 4509 if (q->elevator) 4510 blk_mq_tag_update_sched_shared_tags(q); 4511 else 4512 blk_mq_tag_resize_shared_tags(set, nr); 4513 } 4514 } 4515 4516 blk_mq_unquiesce_queue(q); 4517 blk_mq_unfreeze_queue(q); 4518 4519 return ret; 4520 } 4521 4522 /* 4523 * request_queue and elevator_type pair. 4524 * It is just used by __blk_mq_update_nr_hw_queues to cache 4525 * the elevator_type associated with a request_queue. 4526 */ 4527 struct blk_mq_qe_pair { 4528 struct list_head node; 4529 struct request_queue *q; 4530 struct elevator_type *type; 4531 }; 4532 4533 /* 4534 * Cache the elevator_type in qe pair list and switch the 4535 * io scheduler to 'none' 4536 */ 4537 static bool blk_mq_elv_switch_none(struct list_head *head, 4538 struct request_queue *q) 4539 { 4540 struct blk_mq_qe_pair *qe; 4541 4542 if (!q->elevator) 4543 return true; 4544 4545 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4546 if (!qe) 4547 return false; 4548 4549 /* q->elevator needs protection from ->sysfs_lock */ 4550 mutex_lock(&q->sysfs_lock); 4551 4552 INIT_LIST_HEAD(&qe->node); 4553 qe->q = q; 4554 qe->type = q->elevator->type; 4555 list_add(&qe->node, head); 4556 4557 /* 4558 * After elevator_switch, the previous elevator_queue will be 4559 * released by elevator_release. The reference of the io scheduler 4560 * module get by elevator_get will also be put. So we need to get 4561 * a reference of the io scheduler module here to prevent it to be 4562 * removed. 4563 */ 4564 __module_get(qe->type->elevator_owner); 4565 elevator_switch(q, NULL); 4566 mutex_unlock(&q->sysfs_lock); 4567 4568 return true; 4569 } 4570 4571 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4572 struct request_queue *q) 4573 { 4574 struct blk_mq_qe_pair *qe; 4575 4576 list_for_each_entry(qe, head, node) 4577 if (qe->q == q) 4578 return qe; 4579 4580 return NULL; 4581 } 4582 4583 static void blk_mq_elv_switch_back(struct list_head *head, 4584 struct request_queue *q) 4585 { 4586 struct blk_mq_qe_pair *qe; 4587 struct elevator_type *t; 4588 4589 qe = blk_lookup_qe_pair(head, q); 4590 if (!qe) 4591 return; 4592 t = qe->type; 4593 list_del(&qe->node); 4594 kfree(qe); 4595 4596 mutex_lock(&q->sysfs_lock); 4597 elevator_switch(q, t); 4598 mutex_unlock(&q->sysfs_lock); 4599 } 4600 4601 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4602 int nr_hw_queues) 4603 { 4604 struct request_queue *q; 4605 LIST_HEAD(head); 4606 int prev_nr_hw_queues; 4607 4608 lockdep_assert_held(&set->tag_list_lock); 4609 4610 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4611 nr_hw_queues = nr_cpu_ids; 4612 if (nr_hw_queues < 1) 4613 return; 4614 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4615 return; 4616 4617 list_for_each_entry(q, &set->tag_list, tag_set_list) 4618 blk_mq_freeze_queue(q); 4619 /* 4620 * Switch IO scheduler to 'none', cleaning up the data associated 4621 * with the previous scheduler. We will switch back once we are done 4622 * updating the new sw to hw queue mappings. 4623 */ 4624 list_for_each_entry(q, &set->tag_list, tag_set_list) 4625 if (!blk_mq_elv_switch_none(&head, q)) 4626 goto switch_back; 4627 4628 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4629 blk_mq_debugfs_unregister_hctxs(q); 4630 blk_mq_sysfs_unregister_hctxs(q); 4631 } 4632 4633 prev_nr_hw_queues = set->nr_hw_queues; 4634 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4635 0) 4636 goto reregister; 4637 4638 set->nr_hw_queues = nr_hw_queues; 4639 fallback: 4640 blk_mq_update_queue_map(set); 4641 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4642 blk_mq_realloc_hw_ctxs(set, q); 4643 blk_mq_update_poll_flag(q); 4644 if (q->nr_hw_queues != set->nr_hw_queues) { 4645 int i = prev_nr_hw_queues; 4646 4647 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4648 nr_hw_queues, prev_nr_hw_queues); 4649 for (; i < set->nr_hw_queues; i++) 4650 __blk_mq_free_map_and_rqs(set, i); 4651 4652 set->nr_hw_queues = prev_nr_hw_queues; 4653 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4654 goto fallback; 4655 } 4656 blk_mq_map_swqueue(q); 4657 } 4658 4659 reregister: 4660 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4661 blk_mq_sysfs_register_hctxs(q); 4662 blk_mq_debugfs_register_hctxs(q); 4663 } 4664 4665 switch_back: 4666 list_for_each_entry(q, &set->tag_list, tag_set_list) 4667 blk_mq_elv_switch_back(&head, q); 4668 4669 list_for_each_entry(q, &set->tag_list, tag_set_list) 4670 blk_mq_unfreeze_queue(q); 4671 } 4672 4673 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4674 { 4675 mutex_lock(&set->tag_list_lock); 4676 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4677 mutex_unlock(&set->tag_list_lock); 4678 } 4679 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4680 4681 /* Enable polling stats and return whether they were already enabled. */ 4682 static bool blk_poll_stats_enable(struct request_queue *q) 4683 { 4684 if (q->poll_stat) 4685 return true; 4686 4687 return blk_stats_alloc_enable(q); 4688 } 4689 4690 static void blk_mq_poll_stats_start(struct request_queue *q) 4691 { 4692 /* 4693 * We don't arm the callback if polling stats are not enabled or the 4694 * callback is already active. 4695 */ 4696 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4697 return; 4698 4699 blk_stat_activate_msecs(q->poll_cb, 100); 4700 } 4701 4702 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4703 { 4704 struct request_queue *q = cb->data; 4705 int bucket; 4706 4707 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4708 if (cb->stat[bucket].nr_samples) 4709 q->poll_stat[bucket] = cb->stat[bucket]; 4710 } 4711 } 4712 4713 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4714 struct request *rq) 4715 { 4716 unsigned long ret = 0; 4717 int bucket; 4718 4719 /* 4720 * If stats collection isn't on, don't sleep but turn it on for 4721 * future users 4722 */ 4723 if (!blk_poll_stats_enable(q)) 4724 return 0; 4725 4726 /* 4727 * As an optimistic guess, use half of the mean service time 4728 * for this type of request. We can (and should) make this smarter. 4729 * For instance, if the completion latencies are tight, we can 4730 * get closer than just half the mean. This is especially 4731 * important on devices where the completion latencies are longer 4732 * than ~10 usec. We do use the stats for the relevant IO size 4733 * if available which does lead to better estimates. 4734 */ 4735 bucket = blk_mq_poll_stats_bkt(rq); 4736 if (bucket < 0) 4737 return ret; 4738 4739 if (q->poll_stat[bucket].nr_samples) 4740 ret = (q->poll_stat[bucket].mean + 1) / 2; 4741 4742 return ret; 4743 } 4744 4745 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4746 { 4747 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4748 struct request *rq = blk_qc_to_rq(hctx, qc); 4749 struct hrtimer_sleeper hs; 4750 enum hrtimer_mode mode; 4751 unsigned int nsecs; 4752 ktime_t kt; 4753 4754 /* 4755 * If a request has completed on queue that uses an I/O scheduler, we 4756 * won't get back a request from blk_qc_to_rq. 4757 */ 4758 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4759 return false; 4760 4761 /* 4762 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4763 * 4764 * 0: use half of prev avg 4765 * >0: use this specific value 4766 */ 4767 if (q->poll_nsec > 0) 4768 nsecs = q->poll_nsec; 4769 else 4770 nsecs = blk_mq_poll_nsecs(q, rq); 4771 4772 if (!nsecs) 4773 return false; 4774 4775 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4776 4777 /* 4778 * This will be replaced with the stats tracking code, using 4779 * 'avg_completion_time / 2' as the pre-sleep target. 4780 */ 4781 kt = nsecs; 4782 4783 mode = HRTIMER_MODE_REL; 4784 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4785 hrtimer_set_expires(&hs.timer, kt); 4786 4787 do { 4788 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4789 break; 4790 set_current_state(TASK_UNINTERRUPTIBLE); 4791 hrtimer_sleeper_start_expires(&hs, mode); 4792 if (hs.task) 4793 io_schedule(); 4794 hrtimer_cancel(&hs.timer); 4795 mode = HRTIMER_MODE_ABS; 4796 } while (hs.task && !signal_pending(current)); 4797 4798 __set_current_state(TASK_RUNNING); 4799 destroy_hrtimer_on_stack(&hs.timer); 4800 4801 /* 4802 * If we sleep, have the caller restart the poll loop to reset the 4803 * state. Like for the other success return cases, the caller is 4804 * responsible for checking if the IO completed. If the IO isn't 4805 * complete, we'll get called again and will go straight to the busy 4806 * poll loop. 4807 */ 4808 return true; 4809 } 4810 4811 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4812 struct io_comp_batch *iob, unsigned int flags) 4813 { 4814 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4815 long state = get_current_state(); 4816 int ret; 4817 4818 do { 4819 ret = q->mq_ops->poll(hctx, iob); 4820 if (ret > 0) { 4821 __set_current_state(TASK_RUNNING); 4822 return ret; 4823 } 4824 4825 if (signal_pending_state(state, current)) 4826 __set_current_state(TASK_RUNNING); 4827 if (task_is_running(current)) 4828 return 1; 4829 4830 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4831 break; 4832 cpu_relax(); 4833 } while (!need_resched()); 4834 4835 __set_current_state(TASK_RUNNING); 4836 return 0; 4837 } 4838 4839 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4840 unsigned int flags) 4841 { 4842 if (!(flags & BLK_POLL_NOSLEEP) && 4843 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4844 if (blk_mq_poll_hybrid(q, cookie)) 4845 return 1; 4846 } 4847 return blk_mq_poll_classic(q, cookie, iob, flags); 4848 } 4849 4850 unsigned int blk_mq_rq_cpu(struct request *rq) 4851 { 4852 return rq->mq_ctx->cpu; 4853 } 4854 EXPORT_SYMBOL(blk_mq_rq_cpu); 4855 4856 void blk_mq_cancel_work_sync(struct request_queue *q) 4857 { 4858 if (queue_is_mq(q)) { 4859 struct blk_mq_hw_ctx *hctx; 4860 unsigned long i; 4861 4862 cancel_delayed_work_sync(&q->requeue_work); 4863 4864 queue_for_each_hw_ctx(q, hctx, i) 4865 cancel_delayed_work_sync(&hctx->run_work); 4866 } 4867 } 4868 4869 static int __init blk_mq_init(void) 4870 { 4871 int i; 4872 4873 for_each_possible_cpu(i) 4874 init_llist_head(&per_cpu(blk_cpu_done, i)); 4875 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4876 4877 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4878 "block/softirq:dead", NULL, 4879 blk_softirq_cpu_dead); 4880 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4881 blk_mq_hctx_notify_dead); 4882 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4883 blk_mq_hctx_notify_online, 4884 blk_mq_hctx_notify_offline); 4885 return 0; 4886 } 4887 subsys_initcall(blk_mq_init); 4888