xref: /openbmc/linux/block/blk-mq.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PM)
298 		rq->rq_flags |= RQF_PM;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush/passthrough requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    !blk_op_is_passthrough(data->cmd_flags) &&
370 		    e->type->ops.limit_depth &&
371 		    !(data->flags & BLK_MQ_REQ_RESERVED))
372 			e->type->ops.limit_depth(data->cmd_flags, data);
373 	}
374 
375 retry:
376 	data->ctx = blk_mq_get_ctx(q);
377 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378 	if (!e)
379 		blk_mq_tag_busy(data->hctx);
380 
381 	/*
382 	 * Waiting allocations only fail because of an inactive hctx.  In that
383 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
384 	 * should have migrated us to an online CPU by now.
385 	 */
386 	tag = blk_mq_get_tag(data);
387 	if (tag == BLK_MQ_NO_TAG) {
388 		if (data->flags & BLK_MQ_REQ_NOWAIT)
389 			return NULL;
390 
391 		/*
392 		 * Give up the CPU and sleep for a random short time to ensure
393 		 * that thread using a realtime scheduling class are migrated
394 		 * off the CPU, and thus off the hctx that is going away.
395 		 */
396 		msleep(3);
397 		goto retry;
398 	}
399 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401 
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403 		blk_mq_req_flags_t flags)
404 {
405 	struct blk_mq_alloc_data data = {
406 		.q		= q,
407 		.flags		= flags,
408 		.cmd_flags	= op,
409 	};
410 	struct request *rq;
411 	int ret;
412 
413 	ret = blk_queue_enter(q, flags);
414 	if (ret)
415 		return ERR_PTR(ret);
416 
417 	rq = __blk_mq_alloc_request(&data);
418 	if (!rq)
419 		goto out_queue_exit;
420 	rq->__data_len = 0;
421 	rq->__sector = (sector_t) -1;
422 	rq->bio = rq->biotail = NULL;
423 	return rq;
424 out_queue_exit:
425 	blk_queue_exit(q);
426 	return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429 
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433 	struct blk_mq_alloc_data data = {
434 		.q		= q,
435 		.flags		= flags,
436 		.cmd_flags	= op,
437 	};
438 	u64 alloc_time_ns = 0;
439 	unsigned int cpu;
440 	unsigned int tag;
441 	int ret;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	/*
448 	 * If the tag allocator sleeps we could get an allocation for a
449 	 * different hardware context.  No need to complicate the low level
450 	 * allocator for this for the rare use case of a command tied to
451 	 * a specific queue.
452 	 */
453 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454 		return ERR_PTR(-EINVAL);
455 
456 	if (hctx_idx >= q->nr_hw_queues)
457 		return ERR_PTR(-EIO);
458 
459 	ret = blk_queue_enter(q, flags);
460 	if (ret)
461 		return ERR_PTR(ret);
462 
463 	/*
464 	 * Check if the hardware context is actually mapped to anything.
465 	 * If not tell the caller that it should skip this queue.
466 	 */
467 	ret = -EXDEV;
468 	data.hctx = q->queue_hw_ctx[hctx_idx];
469 	if (!blk_mq_hw_queue_mapped(data.hctx))
470 		goto out_queue_exit;
471 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472 	data.ctx = __blk_mq_get_ctx(q, cpu);
473 
474 	if (!q->elevator)
475 		blk_mq_tag_busy(data.hctx);
476 
477 	ret = -EWOULDBLOCK;
478 	tag = blk_mq_get_tag(&data);
479 	if (tag == BLK_MQ_NO_TAG)
480 		goto out_queue_exit;
481 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482 
483 out_queue_exit:
484 	blk_queue_exit(q);
485 	return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488 
489 static void __blk_mq_free_request(struct request *rq)
490 {
491 	struct request_queue *q = rq->q;
492 	struct blk_mq_ctx *ctx = rq->mq_ctx;
493 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 	const int sched_tag = rq->internal_tag;
495 
496 	blk_crypto_free_request(rq);
497 	blk_pm_mark_last_busy(rq);
498 	rq->mq_hctx = NULL;
499 	if (rq->tag != BLK_MQ_NO_TAG)
500 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501 	if (sched_tag != BLK_MQ_NO_TAG)
502 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503 	blk_mq_sched_restart(hctx);
504 	blk_queue_exit(q);
505 }
506 
507 void blk_mq_free_request(struct request *rq)
508 {
509 	struct request_queue *q = rq->q;
510 	struct elevator_queue *e = q->elevator;
511 	struct blk_mq_ctx *ctx = rq->mq_ctx;
512 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513 
514 	if (rq->rq_flags & RQF_ELVPRIV) {
515 		if (e && e->type->ops.finish_request)
516 			e->type->ops.finish_request(rq);
517 		if (rq->elv.icq) {
518 			put_io_context(rq->elv.icq->ioc);
519 			rq->elv.icq = NULL;
520 		}
521 	}
522 
523 	ctx->rq_completed[rq_is_sync(rq)]++;
524 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
525 		__blk_mq_dec_active_requests(hctx);
526 
527 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 		laptop_io_completion(q->backing_dev_info);
529 
530 	rq_qos_done(q, rq);
531 
532 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 	if (refcount_dec_and_test(&rq->ref))
534 		__blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537 
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540 	u64 now = 0;
541 
542 	if (blk_mq_need_time_stamp(rq))
543 		now = ktime_get_ns();
544 
545 	if (rq->rq_flags & RQF_STATS) {
546 		blk_mq_poll_stats_start(rq->q);
547 		blk_stat_add(rq, now);
548 	}
549 
550 	blk_mq_sched_completed_request(rq, now);
551 
552 	blk_account_io_done(rq, now);
553 
554 	if (rq->end_io) {
555 		rq_qos_done(rq->q, rq);
556 		rq->end_io(rq, error);
557 	} else {
558 		blk_mq_free_request(rq);
559 	}
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562 
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566 		BUG();
567 	__blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570 
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574 	struct request *rq, *next;
575 
576 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
577 		rq->q->mq_ops->complete(rq);
578 }
579 
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584 
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588 	return 0;
589 }
590 
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595 
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598 	int cpu = raw_smp_processor_id();
599 
600 	if (!IS_ENABLED(CONFIG_SMP) ||
601 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602 		return false;
603 	/*
604 	 * With force threaded interrupts enabled, raising softirq from an SMP
605 	 * function call will always result in waking the ksoftirqd thread.
606 	 * This is probably worse than completing the request on a different
607 	 * cache domain.
608 	 */
609 	if (force_irqthreads)
610 		return false;
611 
612 	/* same CPU or cache domain?  Complete locally */
613 	if (cpu == rq->mq_ctx->cpu ||
614 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616 		return false;
617 
618 	/* don't try to IPI to an offline CPU */
619 	return cpu_online(rq->mq_ctx->cpu);
620 }
621 
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624 	struct llist_head *list;
625 	unsigned int cpu;
626 
627 	cpu = rq->mq_ctx->cpu;
628 	list = &per_cpu(blk_cpu_done, cpu);
629 	if (llist_add(&rq->ipi_list, list)) {
630 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631 		smp_call_function_single_async(cpu, &rq->csd);
632 	}
633 }
634 
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637 	struct llist_head *list;
638 
639 	preempt_disable();
640 	list = this_cpu_ptr(&blk_cpu_done);
641 	if (llist_add(&rq->ipi_list, list))
642 		raise_softirq(BLOCK_SOFTIRQ);
643 	preempt_enable();
644 }
645 
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649 
650 	/*
651 	 * For a polled request, always complete locallly, it's pointless
652 	 * to redirect the completion.
653 	 */
654 	if (rq->cmd_flags & REQ_HIPRI)
655 		return false;
656 
657 	if (blk_mq_complete_need_ipi(rq)) {
658 		blk_mq_complete_send_ipi(rq);
659 		return true;
660 	}
661 
662 	if (rq->q->nr_hw_queues == 1) {
663 		blk_mq_raise_softirq(rq);
664 		return true;
665 	}
666 	return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669 
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:		the request being processed
673  *
674  * Description:
675  *	Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679 	if (!blk_mq_complete_request_remote(rq))
680 		rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683 
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685 	__releases(hctx->srcu)
686 {
687 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688 		rcu_read_unlock();
689 	else
690 		srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692 
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694 	__acquires(hctx->srcu)
695 {
696 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697 		/* shut up gcc false positive */
698 		*srcu_idx = 0;
699 		rcu_read_lock();
700 	} else
701 		*srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703 
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714 	struct request_queue *q = rq->q;
715 
716 	trace_block_rq_issue(rq);
717 
718 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719 		rq->io_start_time_ns = ktime_get_ns();
720 		rq->stats_sectors = blk_rq_sectors(rq);
721 		rq->rq_flags |= RQF_STATS;
722 		rq_qos_issue(q, rq);
723 	}
724 
725 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726 
727 	blk_add_timer(rq);
728 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729 
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732 		q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736 
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739 	struct request_queue *q = rq->q;
740 
741 	blk_mq_put_driver_tag(rq);
742 
743 	trace_block_rq_requeue(rq);
744 	rq_qos_requeue(q, rq);
745 
746 	if (blk_mq_request_started(rq)) {
747 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748 		rq->rq_flags &= ~RQF_TIMED_OUT;
749 	}
750 }
751 
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754 	__blk_mq_requeue_request(rq);
755 
756 	/* this request will be re-inserted to io scheduler queue */
757 	blk_mq_sched_requeue_request(rq);
758 
759 	BUG_ON(!list_empty(&rq->queuelist));
760 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763 
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766 	struct request_queue *q =
767 		container_of(work, struct request_queue, requeue_work.work);
768 	LIST_HEAD(rq_list);
769 	struct request *rq, *next;
770 
771 	spin_lock_irq(&q->requeue_lock);
772 	list_splice_init(&q->requeue_list, &rq_list);
773 	spin_unlock_irq(&q->requeue_lock);
774 
775 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777 			continue;
778 
779 		rq->rq_flags &= ~RQF_SOFTBARRIER;
780 		list_del_init(&rq->queuelist);
781 		/*
782 		 * If RQF_DONTPREP, rq has contained some driver specific
783 		 * data, so insert it to hctx dispatch list to avoid any
784 		 * merge.
785 		 */
786 		if (rq->rq_flags & RQF_DONTPREP)
787 			blk_mq_request_bypass_insert(rq, false, false);
788 		else
789 			blk_mq_sched_insert_request(rq, true, false, false);
790 	}
791 
792 	while (!list_empty(&rq_list)) {
793 		rq = list_entry(rq_list.next, struct request, queuelist);
794 		list_del_init(&rq->queuelist);
795 		blk_mq_sched_insert_request(rq, false, false, false);
796 	}
797 
798 	blk_mq_run_hw_queues(q, false);
799 }
800 
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802 				bool kick_requeue_list)
803 {
804 	struct request_queue *q = rq->q;
805 	unsigned long flags;
806 
807 	/*
808 	 * We abuse this flag that is otherwise used by the I/O scheduler to
809 	 * request head insertion from the workqueue.
810 	 */
811 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812 
813 	spin_lock_irqsave(&q->requeue_lock, flags);
814 	if (at_head) {
815 		rq->rq_flags |= RQF_SOFTBARRIER;
816 		list_add(&rq->queuelist, &q->requeue_list);
817 	} else {
818 		list_add_tail(&rq->queuelist, &q->requeue_list);
819 	}
820 	spin_unlock_irqrestore(&q->requeue_lock, flags);
821 
822 	if (kick_requeue_list)
823 		blk_mq_kick_requeue_list(q);
824 }
825 
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831 
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833 				    unsigned long msecs)
834 {
835 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836 				    msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839 
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842 	if (tag < tags->nr_tags) {
843 		prefetch(tags->rqs[tag]);
844 		return tags->rqs[tag];
845 	}
846 
847 	return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850 
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852 			       void *priv, bool reserved)
853 {
854 	/*
855 	 * If we find a request that isn't idle and the queue matches,
856 	 * we know the queue is busy. Return false to stop the iteration.
857 	 */
858 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859 		bool *busy = priv;
860 
861 		*busy = true;
862 		return false;
863 	}
864 
865 	return true;
866 }
867 
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870 	bool busy = false;
871 
872 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873 	return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876 
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879 	req->rq_flags |= RQF_TIMED_OUT;
880 	if (req->q->mq_ops->timeout) {
881 		enum blk_eh_timer_return ret;
882 
883 		ret = req->q->mq_ops->timeout(req, reserved);
884 		if (ret == BLK_EH_DONE)
885 			return;
886 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887 	}
888 
889 	blk_add_timer(req);
890 }
891 
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894 	unsigned long deadline;
895 
896 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897 		return false;
898 	if (rq->rq_flags & RQF_TIMED_OUT)
899 		return false;
900 
901 	deadline = READ_ONCE(rq->deadline);
902 	if (time_after_eq(jiffies, deadline))
903 		return true;
904 
905 	if (*next == 0)
906 		*next = deadline;
907 	else if (time_after(*next, deadline))
908 		*next = deadline;
909 	return false;
910 }
911 
912 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
913 		struct request *rq, void *priv, bool reserved)
914 {
915 	unsigned long *next = priv;
916 
917 	/*
918 	 * Just do a quick check if it is expired before locking the request in
919 	 * so we're not unnecessarilly synchronizing across CPUs.
920 	 */
921 	if (!blk_mq_req_expired(rq, next))
922 		return true;
923 
924 	/*
925 	 * We have reason to believe the request may be expired. Take a
926 	 * reference on the request to lock this request lifetime into its
927 	 * currently allocated context to prevent it from being reallocated in
928 	 * the event the completion by-passes this timeout handler.
929 	 *
930 	 * If the reference was already released, then the driver beat the
931 	 * timeout handler to posting a natural completion.
932 	 */
933 	if (!refcount_inc_not_zero(&rq->ref))
934 		return true;
935 
936 	/*
937 	 * The request is now locked and cannot be reallocated underneath the
938 	 * timeout handler's processing. Re-verify this exact request is truly
939 	 * expired; if it is not expired, then the request was completed and
940 	 * reallocated as a new request.
941 	 */
942 	if (blk_mq_req_expired(rq, next))
943 		blk_mq_rq_timed_out(rq, reserved);
944 
945 	if (is_flush_rq(rq, hctx))
946 		rq->end_io(rq, 0);
947 	else if (refcount_dec_and_test(&rq->ref))
948 		__blk_mq_free_request(rq);
949 
950 	return true;
951 }
952 
953 static void blk_mq_timeout_work(struct work_struct *work)
954 {
955 	struct request_queue *q =
956 		container_of(work, struct request_queue, timeout_work);
957 	unsigned long next = 0;
958 	struct blk_mq_hw_ctx *hctx;
959 	int i;
960 
961 	/* A deadlock might occur if a request is stuck requiring a
962 	 * timeout at the same time a queue freeze is waiting
963 	 * completion, since the timeout code would not be able to
964 	 * acquire the queue reference here.
965 	 *
966 	 * That's why we don't use blk_queue_enter here; instead, we use
967 	 * percpu_ref_tryget directly, because we need to be able to
968 	 * obtain a reference even in the short window between the queue
969 	 * starting to freeze, by dropping the first reference in
970 	 * blk_freeze_queue_start, and the moment the last request is
971 	 * consumed, marked by the instant q_usage_counter reaches
972 	 * zero.
973 	 */
974 	if (!percpu_ref_tryget(&q->q_usage_counter))
975 		return;
976 
977 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
978 
979 	if (next != 0) {
980 		mod_timer(&q->timeout, next);
981 	} else {
982 		/*
983 		 * Request timeouts are handled as a forward rolling timer. If
984 		 * we end up here it means that no requests are pending and
985 		 * also that no request has been pending for a while. Mark
986 		 * each hctx as idle.
987 		 */
988 		queue_for_each_hw_ctx(q, hctx, i) {
989 			/* the hctx may be unmapped, so check it here */
990 			if (blk_mq_hw_queue_mapped(hctx))
991 				blk_mq_tag_idle(hctx);
992 		}
993 	}
994 	blk_queue_exit(q);
995 }
996 
997 struct flush_busy_ctx_data {
998 	struct blk_mq_hw_ctx *hctx;
999 	struct list_head *list;
1000 };
1001 
1002 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1003 {
1004 	struct flush_busy_ctx_data *flush_data = data;
1005 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1006 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1007 	enum hctx_type type = hctx->type;
1008 
1009 	spin_lock(&ctx->lock);
1010 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1011 	sbitmap_clear_bit(sb, bitnr);
1012 	spin_unlock(&ctx->lock);
1013 	return true;
1014 }
1015 
1016 /*
1017  * Process software queues that have been marked busy, splicing them
1018  * to the for-dispatch
1019  */
1020 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1021 {
1022 	struct flush_busy_ctx_data data = {
1023 		.hctx = hctx,
1024 		.list = list,
1025 	};
1026 
1027 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1028 }
1029 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1030 
1031 struct dispatch_rq_data {
1032 	struct blk_mq_hw_ctx *hctx;
1033 	struct request *rq;
1034 };
1035 
1036 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1037 		void *data)
1038 {
1039 	struct dispatch_rq_data *dispatch_data = data;
1040 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1041 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1042 	enum hctx_type type = hctx->type;
1043 
1044 	spin_lock(&ctx->lock);
1045 	if (!list_empty(&ctx->rq_lists[type])) {
1046 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1047 		list_del_init(&dispatch_data->rq->queuelist);
1048 		if (list_empty(&ctx->rq_lists[type]))
1049 			sbitmap_clear_bit(sb, bitnr);
1050 	}
1051 	spin_unlock(&ctx->lock);
1052 
1053 	return !dispatch_data->rq;
1054 }
1055 
1056 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1057 					struct blk_mq_ctx *start)
1058 {
1059 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1060 	struct dispatch_rq_data data = {
1061 		.hctx = hctx,
1062 		.rq   = NULL,
1063 	};
1064 
1065 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1066 			       dispatch_rq_from_ctx, &data);
1067 
1068 	return data.rq;
1069 }
1070 
1071 static inline unsigned int queued_to_index(unsigned int queued)
1072 {
1073 	if (!queued)
1074 		return 0;
1075 
1076 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1077 }
1078 
1079 static bool __blk_mq_get_driver_tag(struct request *rq)
1080 {
1081 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1082 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1083 	int tag;
1084 
1085 	blk_mq_tag_busy(rq->mq_hctx);
1086 
1087 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1088 		bt = rq->mq_hctx->tags->breserved_tags;
1089 		tag_offset = 0;
1090 	} else {
1091 		if (!hctx_may_queue(rq->mq_hctx, bt))
1092 			return false;
1093 	}
1094 
1095 	tag = __sbitmap_queue_get(bt);
1096 	if (tag == BLK_MQ_NO_TAG)
1097 		return false;
1098 
1099 	rq->tag = tag + tag_offset;
1100 	return true;
1101 }
1102 
1103 static bool blk_mq_get_driver_tag(struct request *rq)
1104 {
1105 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1106 
1107 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1108 		return false;
1109 
1110 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1111 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1112 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1113 		__blk_mq_inc_active_requests(hctx);
1114 	}
1115 	hctx->tags->rqs[rq->tag] = rq;
1116 	return true;
1117 }
1118 
1119 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1120 				int flags, void *key)
1121 {
1122 	struct blk_mq_hw_ctx *hctx;
1123 
1124 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1125 
1126 	spin_lock(&hctx->dispatch_wait_lock);
1127 	if (!list_empty(&wait->entry)) {
1128 		struct sbitmap_queue *sbq;
1129 
1130 		list_del_init(&wait->entry);
1131 		sbq = hctx->tags->bitmap_tags;
1132 		atomic_dec(&sbq->ws_active);
1133 	}
1134 	spin_unlock(&hctx->dispatch_wait_lock);
1135 
1136 	blk_mq_run_hw_queue(hctx, true);
1137 	return 1;
1138 }
1139 
1140 /*
1141  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1142  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1143  * restart. For both cases, take care to check the condition again after
1144  * marking us as waiting.
1145  */
1146 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1147 				 struct request *rq)
1148 {
1149 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1150 	struct wait_queue_head *wq;
1151 	wait_queue_entry_t *wait;
1152 	bool ret;
1153 
1154 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1155 		blk_mq_sched_mark_restart_hctx(hctx);
1156 
1157 		/*
1158 		 * It's possible that a tag was freed in the window between the
1159 		 * allocation failure and adding the hardware queue to the wait
1160 		 * queue.
1161 		 *
1162 		 * Don't clear RESTART here, someone else could have set it.
1163 		 * At most this will cost an extra queue run.
1164 		 */
1165 		return blk_mq_get_driver_tag(rq);
1166 	}
1167 
1168 	wait = &hctx->dispatch_wait;
1169 	if (!list_empty_careful(&wait->entry))
1170 		return false;
1171 
1172 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1173 
1174 	spin_lock_irq(&wq->lock);
1175 	spin_lock(&hctx->dispatch_wait_lock);
1176 	if (!list_empty(&wait->entry)) {
1177 		spin_unlock(&hctx->dispatch_wait_lock);
1178 		spin_unlock_irq(&wq->lock);
1179 		return false;
1180 	}
1181 
1182 	atomic_inc(&sbq->ws_active);
1183 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1184 	__add_wait_queue(wq, wait);
1185 
1186 	/*
1187 	 * It's possible that a tag was freed in the window between the
1188 	 * allocation failure and adding the hardware queue to the wait
1189 	 * queue.
1190 	 */
1191 	ret = blk_mq_get_driver_tag(rq);
1192 	if (!ret) {
1193 		spin_unlock(&hctx->dispatch_wait_lock);
1194 		spin_unlock_irq(&wq->lock);
1195 		return false;
1196 	}
1197 
1198 	/*
1199 	 * We got a tag, remove ourselves from the wait queue to ensure
1200 	 * someone else gets the wakeup.
1201 	 */
1202 	list_del_init(&wait->entry);
1203 	atomic_dec(&sbq->ws_active);
1204 	spin_unlock(&hctx->dispatch_wait_lock);
1205 	spin_unlock_irq(&wq->lock);
1206 
1207 	return true;
1208 }
1209 
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1211 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1212 /*
1213  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1214  * - EWMA is one simple way to compute running average value
1215  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1216  * - take 4 as factor for avoiding to get too small(0) result, and this
1217  *   factor doesn't matter because EWMA decreases exponentially
1218  */
1219 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1220 {
1221 	unsigned int ewma;
1222 
1223 	if (hctx->queue->elevator)
1224 		return;
1225 
1226 	ewma = hctx->dispatch_busy;
1227 
1228 	if (!ewma && !busy)
1229 		return;
1230 
1231 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1232 	if (busy)
1233 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1234 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1235 
1236 	hctx->dispatch_busy = ewma;
1237 }
1238 
1239 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1240 
1241 static void blk_mq_handle_dev_resource(struct request *rq,
1242 				       struct list_head *list)
1243 {
1244 	struct request *next =
1245 		list_first_entry_or_null(list, struct request, queuelist);
1246 
1247 	/*
1248 	 * If an I/O scheduler has been configured and we got a driver tag for
1249 	 * the next request already, free it.
1250 	 */
1251 	if (next)
1252 		blk_mq_put_driver_tag(next);
1253 
1254 	list_add(&rq->queuelist, list);
1255 	__blk_mq_requeue_request(rq);
1256 }
1257 
1258 static void blk_mq_handle_zone_resource(struct request *rq,
1259 					struct list_head *zone_list)
1260 {
1261 	/*
1262 	 * If we end up here it is because we cannot dispatch a request to a
1263 	 * specific zone due to LLD level zone-write locking or other zone
1264 	 * related resource not being available. In this case, set the request
1265 	 * aside in zone_list for retrying it later.
1266 	 */
1267 	list_add(&rq->queuelist, zone_list);
1268 	__blk_mq_requeue_request(rq);
1269 }
1270 
1271 enum prep_dispatch {
1272 	PREP_DISPATCH_OK,
1273 	PREP_DISPATCH_NO_TAG,
1274 	PREP_DISPATCH_NO_BUDGET,
1275 };
1276 
1277 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1278 						  bool need_budget)
1279 {
1280 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1281 	int budget_token = -1;
1282 
1283 	if (need_budget) {
1284 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1285 		if (budget_token < 0) {
1286 			blk_mq_put_driver_tag(rq);
1287 			return PREP_DISPATCH_NO_BUDGET;
1288 		}
1289 		blk_mq_set_rq_budget_token(rq, budget_token);
1290 	}
1291 
1292 	if (!blk_mq_get_driver_tag(rq)) {
1293 		/*
1294 		 * The initial allocation attempt failed, so we need to
1295 		 * rerun the hardware queue when a tag is freed. The
1296 		 * waitqueue takes care of that. If the queue is run
1297 		 * before we add this entry back on the dispatch list,
1298 		 * we'll re-run it below.
1299 		 */
1300 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1301 			/*
1302 			 * All budgets not got from this function will be put
1303 			 * together during handling partial dispatch
1304 			 */
1305 			if (need_budget)
1306 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1307 			return PREP_DISPATCH_NO_TAG;
1308 		}
1309 	}
1310 
1311 	return PREP_DISPATCH_OK;
1312 }
1313 
1314 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1315 static void blk_mq_release_budgets(struct request_queue *q,
1316 		struct list_head *list)
1317 {
1318 	struct request *rq;
1319 
1320 	list_for_each_entry(rq, list, queuelist) {
1321 		int budget_token = blk_mq_get_rq_budget_token(rq);
1322 
1323 		if (budget_token >= 0)
1324 			blk_mq_put_dispatch_budget(q, budget_token);
1325 	}
1326 }
1327 
1328 /*
1329  * Returns true if we did some work AND can potentially do more.
1330  */
1331 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1332 			     unsigned int nr_budgets)
1333 {
1334 	enum prep_dispatch prep;
1335 	struct request_queue *q = hctx->queue;
1336 	struct request *rq, *nxt;
1337 	int errors, queued;
1338 	blk_status_t ret = BLK_STS_OK;
1339 	LIST_HEAD(zone_list);
1340 
1341 	if (list_empty(list))
1342 		return false;
1343 
1344 	/*
1345 	 * Now process all the entries, sending them to the driver.
1346 	 */
1347 	errors = queued = 0;
1348 	do {
1349 		struct blk_mq_queue_data bd;
1350 
1351 		rq = list_first_entry(list, struct request, queuelist);
1352 
1353 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1354 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1355 		if (prep != PREP_DISPATCH_OK)
1356 			break;
1357 
1358 		list_del_init(&rq->queuelist);
1359 
1360 		bd.rq = rq;
1361 
1362 		/*
1363 		 * Flag last if we have no more requests, or if we have more
1364 		 * but can't assign a driver tag to it.
1365 		 */
1366 		if (list_empty(list))
1367 			bd.last = true;
1368 		else {
1369 			nxt = list_first_entry(list, struct request, queuelist);
1370 			bd.last = !blk_mq_get_driver_tag(nxt);
1371 		}
1372 
1373 		/*
1374 		 * once the request is queued to lld, no need to cover the
1375 		 * budget any more
1376 		 */
1377 		if (nr_budgets)
1378 			nr_budgets--;
1379 		ret = q->mq_ops->queue_rq(hctx, &bd);
1380 		switch (ret) {
1381 		case BLK_STS_OK:
1382 			queued++;
1383 			break;
1384 		case BLK_STS_RESOURCE:
1385 		case BLK_STS_DEV_RESOURCE:
1386 			blk_mq_handle_dev_resource(rq, list);
1387 			goto out;
1388 		case BLK_STS_ZONE_RESOURCE:
1389 			/*
1390 			 * Move the request to zone_list and keep going through
1391 			 * the dispatch list to find more requests the drive can
1392 			 * accept.
1393 			 */
1394 			blk_mq_handle_zone_resource(rq, &zone_list);
1395 			break;
1396 		default:
1397 			errors++;
1398 			blk_mq_end_request(rq, ret);
1399 		}
1400 	} while (!list_empty(list));
1401 out:
1402 	if (!list_empty(&zone_list))
1403 		list_splice_tail_init(&zone_list, list);
1404 
1405 	hctx->dispatched[queued_to_index(queued)]++;
1406 
1407 	/* If we didn't flush the entire list, we could have told the driver
1408 	 * there was more coming, but that turned out to be a lie.
1409 	 */
1410 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1411 		q->mq_ops->commit_rqs(hctx);
1412 	/*
1413 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1414 	 * that is where we will continue on next queue run.
1415 	 */
1416 	if (!list_empty(list)) {
1417 		bool needs_restart;
1418 		/* For non-shared tags, the RESTART check will suffice */
1419 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1420 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1421 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1422 
1423 		if (nr_budgets)
1424 			blk_mq_release_budgets(q, list);
1425 
1426 		spin_lock(&hctx->lock);
1427 		list_splice_tail_init(list, &hctx->dispatch);
1428 		spin_unlock(&hctx->lock);
1429 
1430 		/*
1431 		 * Order adding requests to hctx->dispatch and checking
1432 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1433 		 * in blk_mq_sched_restart(). Avoid restart code path to
1434 		 * miss the new added requests to hctx->dispatch, meantime
1435 		 * SCHED_RESTART is observed here.
1436 		 */
1437 		smp_mb();
1438 
1439 		/*
1440 		 * If SCHED_RESTART was set by the caller of this function and
1441 		 * it is no longer set that means that it was cleared by another
1442 		 * thread and hence that a queue rerun is needed.
1443 		 *
1444 		 * If 'no_tag' is set, that means that we failed getting
1445 		 * a driver tag with an I/O scheduler attached. If our dispatch
1446 		 * waitqueue is no longer active, ensure that we run the queue
1447 		 * AFTER adding our entries back to the list.
1448 		 *
1449 		 * If no I/O scheduler has been configured it is possible that
1450 		 * the hardware queue got stopped and restarted before requests
1451 		 * were pushed back onto the dispatch list. Rerun the queue to
1452 		 * avoid starvation. Notes:
1453 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1454 		 *   been stopped before rerunning a queue.
1455 		 * - Some but not all block drivers stop a queue before
1456 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1457 		 *   and dm-rq.
1458 		 *
1459 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1460 		 * bit is set, run queue after a delay to avoid IO stalls
1461 		 * that could otherwise occur if the queue is idle.  We'll do
1462 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1463 		 */
1464 		needs_restart = blk_mq_sched_needs_restart(hctx);
1465 		if (!needs_restart ||
1466 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1467 			blk_mq_run_hw_queue(hctx, true);
1468 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1469 					   no_budget_avail))
1470 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1471 
1472 		blk_mq_update_dispatch_busy(hctx, true);
1473 		return false;
1474 	} else
1475 		blk_mq_update_dispatch_busy(hctx, false);
1476 
1477 	return (queued + errors) != 0;
1478 }
1479 
1480 /**
1481  * __blk_mq_run_hw_queue - Run a hardware queue.
1482  * @hctx: Pointer to the hardware queue to run.
1483  *
1484  * Send pending requests to the hardware.
1485  */
1486 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1487 {
1488 	int srcu_idx;
1489 
1490 	/*
1491 	 * We can't run the queue inline with ints disabled. Ensure that
1492 	 * we catch bad users of this early.
1493 	 */
1494 	WARN_ON_ONCE(in_interrupt());
1495 
1496 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1497 
1498 	hctx_lock(hctx, &srcu_idx);
1499 	blk_mq_sched_dispatch_requests(hctx);
1500 	hctx_unlock(hctx, srcu_idx);
1501 }
1502 
1503 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1504 {
1505 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1506 
1507 	if (cpu >= nr_cpu_ids)
1508 		cpu = cpumask_first(hctx->cpumask);
1509 	return cpu;
1510 }
1511 
1512 /*
1513  * It'd be great if the workqueue API had a way to pass
1514  * in a mask and had some smarts for more clever placement.
1515  * For now we just round-robin here, switching for every
1516  * BLK_MQ_CPU_WORK_BATCH queued items.
1517  */
1518 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1519 {
1520 	bool tried = false;
1521 	int next_cpu = hctx->next_cpu;
1522 
1523 	if (hctx->queue->nr_hw_queues == 1)
1524 		return WORK_CPU_UNBOUND;
1525 
1526 	if (--hctx->next_cpu_batch <= 0) {
1527 select_cpu:
1528 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1529 				cpu_online_mask);
1530 		if (next_cpu >= nr_cpu_ids)
1531 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1532 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1533 	}
1534 
1535 	/*
1536 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1537 	 * and it should only happen in the path of handling CPU DEAD.
1538 	 */
1539 	if (!cpu_online(next_cpu)) {
1540 		if (!tried) {
1541 			tried = true;
1542 			goto select_cpu;
1543 		}
1544 
1545 		/*
1546 		 * Make sure to re-select CPU next time once after CPUs
1547 		 * in hctx->cpumask become online again.
1548 		 */
1549 		hctx->next_cpu = next_cpu;
1550 		hctx->next_cpu_batch = 1;
1551 		return WORK_CPU_UNBOUND;
1552 	}
1553 
1554 	hctx->next_cpu = next_cpu;
1555 	return next_cpu;
1556 }
1557 
1558 /**
1559  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1560  * @hctx: Pointer to the hardware queue to run.
1561  * @async: If we want to run the queue asynchronously.
1562  * @msecs: Milliseconds of delay to wait before running the queue.
1563  *
1564  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1565  * with a delay of @msecs.
1566  */
1567 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1568 					unsigned long msecs)
1569 {
1570 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1571 		return;
1572 
1573 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1574 		int cpu = get_cpu();
1575 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1576 			__blk_mq_run_hw_queue(hctx);
1577 			put_cpu();
1578 			return;
1579 		}
1580 
1581 		put_cpu();
1582 	}
1583 
1584 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1585 				    msecs_to_jiffies(msecs));
1586 }
1587 
1588 /**
1589  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1590  * @hctx: Pointer to the hardware queue to run.
1591  * @msecs: Milliseconds of delay to wait before running the queue.
1592  *
1593  * Run a hardware queue asynchronously with a delay of @msecs.
1594  */
1595 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1596 {
1597 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1598 }
1599 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1600 
1601 /**
1602  * blk_mq_run_hw_queue - Start to run a hardware queue.
1603  * @hctx: Pointer to the hardware queue to run.
1604  * @async: If we want to run the queue asynchronously.
1605  *
1606  * Check if the request queue is not in a quiesced state and if there are
1607  * pending requests to be sent. If this is true, run the queue to send requests
1608  * to hardware.
1609  */
1610 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1611 {
1612 	int srcu_idx;
1613 	bool need_run;
1614 
1615 	/*
1616 	 * When queue is quiesced, we may be switching io scheduler, or
1617 	 * updating nr_hw_queues, or other things, and we can't run queue
1618 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1619 	 *
1620 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1621 	 * quiesced.
1622 	 */
1623 	hctx_lock(hctx, &srcu_idx);
1624 	need_run = !blk_queue_quiesced(hctx->queue) &&
1625 		blk_mq_hctx_has_pending(hctx);
1626 	hctx_unlock(hctx, srcu_idx);
1627 
1628 	if (need_run)
1629 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1630 }
1631 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1632 
1633 /*
1634  * Is the request queue handled by an IO scheduler that does not respect
1635  * hardware queues when dispatching?
1636  */
1637 static bool blk_mq_has_sqsched(struct request_queue *q)
1638 {
1639 	struct elevator_queue *e = q->elevator;
1640 
1641 	if (e && e->type->ops.dispatch_request &&
1642 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1643 		return true;
1644 	return false;
1645 }
1646 
1647 /*
1648  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1649  * scheduler.
1650  */
1651 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1652 {
1653 	struct blk_mq_hw_ctx *hctx;
1654 
1655 	/*
1656 	 * If the IO scheduler does not respect hardware queues when
1657 	 * dispatching, we just don't bother with multiple HW queues and
1658 	 * dispatch from hctx for the current CPU since running multiple queues
1659 	 * just causes lock contention inside the scheduler and pointless cache
1660 	 * bouncing.
1661 	 */
1662 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1663 				     raw_smp_processor_id());
1664 	if (!blk_mq_hctx_stopped(hctx))
1665 		return hctx;
1666 	return NULL;
1667 }
1668 
1669 /**
1670  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1671  * @q: Pointer to the request queue to run.
1672  * @async: If we want to run the queue asynchronously.
1673  */
1674 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1675 {
1676 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1677 	int i;
1678 
1679 	sq_hctx = NULL;
1680 	if (blk_mq_has_sqsched(q))
1681 		sq_hctx = blk_mq_get_sq_hctx(q);
1682 	queue_for_each_hw_ctx(q, hctx, i) {
1683 		if (blk_mq_hctx_stopped(hctx))
1684 			continue;
1685 		/*
1686 		 * Dispatch from this hctx either if there's no hctx preferred
1687 		 * by IO scheduler or if it has requests that bypass the
1688 		 * scheduler.
1689 		 */
1690 		if (!sq_hctx || sq_hctx == hctx ||
1691 		    !list_empty_careful(&hctx->dispatch))
1692 			blk_mq_run_hw_queue(hctx, async);
1693 	}
1694 }
1695 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1696 
1697 /**
1698  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1699  * @q: Pointer to the request queue to run.
1700  * @msecs: Milliseconds of delay to wait before running the queues.
1701  */
1702 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1703 {
1704 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1705 	int i;
1706 
1707 	sq_hctx = NULL;
1708 	if (blk_mq_has_sqsched(q))
1709 		sq_hctx = blk_mq_get_sq_hctx(q);
1710 	queue_for_each_hw_ctx(q, hctx, i) {
1711 		if (blk_mq_hctx_stopped(hctx))
1712 			continue;
1713 		/*
1714 		 * Dispatch from this hctx either if there's no hctx preferred
1715 		 * by IO scheduler or if it has requests that bypass the
1716 		 * scheduler.
1717 		 */
1718 		if (!sq_hctx || sq_hctx == hctx ||
1719 		    !list_empty_careful(&hctx->dispatch))
1720 			blk_mq_delay_run_hw_queue(hctx, msecs);
1721 	}
1722 }
1723 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1724 
1725 /**
1726  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1727  * @q: request queue.
1728  *
1729  * The caller is responsible for serializing this function against
1730  * blk_mq_{start,stop}_hw_queue().
1731  */
1732 bool blk_mq_queue_stopped(struct request_queue *q)
1733 {
1734 	struct blk_mq_hw_ctx *hctx;
1735 	int i;
1736 
1737 	queue_for_each_hw_ctx(q, hctx, i)
1738 		if (blk_mq_hctx_stopped(hctx))
1739 			return true;
1740 
1741 	return false;
1742 }
1743 EXPORT_SYMBOL(blk_mq_queue_stopped);
1744 
1745 /*
1746  * This function is often used for pausing .queue_rq() by driver when
1747  * there isn't enough resource or some conditions aren't satisfied, and
1748  * BLK_STS_RESOURCE is usually returned.
1749  *
1750  * We do not guarantee that dispatch can be drained or blocked
1751  * after blk_mq_stop_hw_queue() returns. Please use
1752  * blk_mq_quiesce_queue() for that requirement.
1753  */
1754 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1755 {
1756 	cancel_delayed_work(&hctx->run_work);
1757 
1758 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1761 
1762 /*
1763  * This function is often used for pausing .queue_rq() by driver when
1764  * there isn't enough resource or some conditions aren't satisfied, and
1765  * BLK_STS_RESOURCE is usually returned.
1766  *
1767  * We do not guarantee that dispatch can be drained or blocked
1768  * after blk_mq_stop_hw_queues() returns. Please use
1769  * blk_mq_quiesce_queue() for that requirement.
1770  */
1771 void blk_mq_stop_hw_queues(struct request_queue *q)
1772 {
1773 	struct blk_mq_hw_ctx *hctx;
1774 	int i;
1775 
1776 	queue_for_each_hw_ctx(q, hctx, i)
1777 		blk_mq_stop_hw_queue(hctx);
1778 }
1779 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1780 
1781 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1782 {
1783 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1784 
1785 	blk_mq_run_hw_queue(hctx, false);
1786 }
1787 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1788 
1789 void blk_mq_start_hw_queues(struct request_queue *q)
1790 {
1791 	struct blk_mq_hw_ctx *hctx;
1792 	int i;
1793 
1794 	queue_for_each_hw_ctx(q, hctx, i)
1795 		blk_mq_start_hw_queue(hctx);
1796 }
1797 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1798 
1799 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1800 {
1801 	if (!blk_mq_hctx_stopped(hctx))
1802 		return;
1803 
1804 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1805 	blk_mq_run_hw_queue(hctx, async);
1806 }
1807 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1808 
1809 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1810 {
1811 	struct blk_mq_hw_ctx *hctx;
1812 	int i;
1813 
1814 	queue_for_each_hw_ctx(q, hctx, i)
1815 		blk_mq_start_stopped_hw_queue(hctx, async);
1816 }
1817 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1818 
1819 static void blk_mq_run_work_fn(struct work_struct *work)
1820 {
1821 	struct blk_mq_hw_ctx *hctx;
1822 
1823 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1824 
1825 	/*
1826 	 * If we are stopped, don't run the queue.
1827 	 */
1828 	if (blk_mq_hctx_stopped(hctx))
1829 		return;
1830 
1831 	__blk_mq_run_hw_queue(hctx);
1832 }
1833 
1834 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1835 					    struct request *rq,
1836 					    bool at_head)
1837 {
1838 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1839 	enum hctx_type type = hctx->type;
1840 
1841 	lockdep_assert_held(&ctx->lock);
1842 
1843 	trace_block_rq_insert(rq);
1844 
1845 	if (at_head)
1846 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1847 	else
1848 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1849 }
1850 
1851 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1852 			     bool at_head)
1853 {
1854 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1855 
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	__blk_mq_insert_req_list(hctx, rq, at_head);
1859 	blk_mq_hctx_mark_pending(hctx, ctx);
1860 }
1861 
1862 /**
1863  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1864  * @rq: Pointer to request to be inserted.
1865  * @at_head: true if the request should be inserted at the head of the list.
1866  * @run_queue: If we should run the hardware queue after inserting the request.
1867  *
1868  * Should only be used carefully, when the caller knows we want to
1869  * bypass a potential IO scheduler on the target device.
1870  */
1871 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1872 				  bool run_queue)
1873 {
1874 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1875 
1876 	spin_lock(&hctx->lock);
1877 	if (at_head)
1878 		list_add(&rq->queuelist, &hctx->dispatch);
1879 	else
1880 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1881 	spin_unlock(&hctx->lock);
1882 
1883 	if (run_queue)
1884 		blk_mq_run_hw_queue(hctx, false);
1885 }
1886 
1887 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1888 			    struct list_head *list)
1889 
1890 {
1891 	struct request *rq;
1892 	enum hctx_type type = hctx->type;
1893 
1894 	/*
1895 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1896 	 * offline now
1897 	 */
1898 	list_for_each_entry(rq, list, queuelist) {
1899 		BUG_ON(rq->mq_ctx != ctx);
1900 		trace_block_rq_insert(rq);
1901 	}
1902 
1903 	spin_lock(&ctx->lock);
1904 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1905 	blk_mq_hctx_mark_pending(hctx, ctx);
1906 	spin_unlock(&ctx->lock);
1907 }
1908 
1909 static int plug_rq_cmp(void *priv, const struct list_head *a,
1910 		       const struct list_head *b)
1911 {
1912 	struct request *rqa = container_of(a, struct request, queuelist);
1913 	struct request *rqb = container_of(b, struct request, queuelist);
1914 
1915 	if (rqa->mq_ctx != rqb->mq_ctx)
1916 		return rqa->mq_ctx > rqb->mq_ctx;
1917 	if (rqa->mq_hctx != rqb->mq_hctx)
1918 		return rqa->mq_hctx > rqb->mq_hctx;
1919 
1920 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1921 }
1922 
1923 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1924 {
1925 	LIST_HEAD(list);
1926 
1927 	if (list_empty(&plug->mq_list))
1928 		return;
1929 	list_splice_init(&plug->mq_list, &list);
1930 
1931 	if (plug->rq_count > 2 && plug->multiple_queues)
1932 		list_sort(NULL, &list, plug_rq_cmp);
1933 
1934 	plug->rq_count = 0;
1935 
1936 	do {
1937 		struct list_head rq_list;
1938 		struct request *rq, *head_rq = list_entry_rq(list.next);
1939 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1940 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1941 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1942 		unsigned int depth = 1;
1943 
1944 		list_for_each_continue(pos, &list) {
1945 			rq = list_entry_rq(pos);
1946 			BUG_ON(!rq->q);
1947 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1948 				break;
1949 			depth++;
1950 		}
1951 
1952 		list_cut_before(&rq_list, &list, pos);
1953 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1954 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1955 						from_schedule);
1956 	} while(!list_empty(&list));
1957 }
1958 
1959 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1960 		unsigned int nr_segs)
1961 {
1962 	int err;
1963 
1964 	if (bio->bi_opf & REQ_RAHEAD)
1965 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1966 
1967 	rq->__sector = bio->bi_iter.bi_sector;
1968 	rq->write_hint = bio->bi_write_hint;
1969 	blk_rq_bio_prep(rq, bio, nr_segs);
1970 
1971 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1972 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1973 	WARN_ON_ONCE(err);
1974 
1975 	blk_account_io_start(rq);
1976 }
1977 
1978 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1979 					    struct request *rq,
1980 					    blk_qc_t *cookie, bool last)
1981 {
1982 	struct request_queue *q = rq->q;
1983 	struct blk_mq_queue_data bd = {
1984 		.rq = rq,
1985 		.last = last,
1986 	};
1987 	blk_qc_t new_cookie;
1988 	blk_status_t ret;
1989 
1990 	new_cookie = request_to_qc_t(hctx, rq);
1991 
1992 	/*
1993 	 * For OK queue, we are done. For error, caller may kill it.
1994 	 * Any other error (busy), just add it to our list as we
1995 	 * previously would have done.
1996 	 */
1997 	ret = q->mq_ops->queue_rq(hctx, &bd);
1998 	switch (ret) {
1999 	case BLK_STS_OK:
2000 		blk_mq_update_dispatch_busy(hctx, false);
2001 		*cookie = new_cookie;
2002 		break;
2003 	case BLK_STS_RESOURCE:
2004 	case BLK_STS_DEV_RESOURCE:
2005 		blk_mq_update_dispatch_busy(hctx, true);
2006 		__blk_mq_requeue_request(rq);
2007 		break;
2008 	default:
2009 		blk_mq_update_dispatch_busy(hctx, false);
2010 		*cookie = BLK_QC_T_NONE;
2011 		break;
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2018 						struct request *rq,
2019 						blk_qc_t *cookie,
2020 						bool bypass_insert, bool last)
2021 {
2022 	struct request_queue *q = rq->q;
2023 	bool run_queue = true;
2024 	int budget_token;
2025 
2026 	/*
2027 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2028 	 *
2029 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2030 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2031 	 * and avoid driver to try to dispatch again.
2032 	 */
2033 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2034 		run_queue = false;
2035 		bypass_insert = false;
2036 		goto insert;
2037 	}
2038 
2039 	if (q->elevator && !bypass_insert)
2040 		goto insert;
2041 
2042 	budget_token = blk_mq_get_dispatch_budget(q);
2043 	if (budget_token < 0)
2044 		goto insert;
2045 
2046 	blk_mq_set_rq_budget_token(rq, budget_token);
2047 
2048 	if (!blk_mq_get_driver_tag(rq)) {
2049 		blk_mq_put_dispatch_budget(q, budget_token);
2050 		goto insert;
2051 	}
2052 
2053 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2054 insert:
2055 	if (bypass_insert)
2056 		return BLK_STS_RESOURCE;
2057 
2058 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2059 
2060 	return BLK_STS_OK;
2061 }
2062 
2063 /**
2064  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2065  * @hctx: Pointer of the associated hardware queue.
2066  * @rq: Pointer to request to be sent.
2067  * @cookie: Request queue cookie.
2068  *
2069  * If the device has enough resources to accept a new request now, send the
2070  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2071  * we can try send it another time in the future. Requests inserted at this
2072  * queue have higher priority.
2073  */
2074 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2075 		struct request *rq, blk_qc_t *cookie)
2076 {
2077 	blk_status_t ret;
2078 	int srcu_idx;
2079 
2080 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2081 
2082 	hctx_lock(hctx, &srcu_idx);
2083 
2084 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2085 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2086 		blk_mq_request_bypass_insert(rq, false, true);
2087 	else if (ret != BLK_STS_OK)
2088 		blk_mq_end_request(rq, ret);
2089 
2090 	hctx_unlock(hctx, srcu_idx);
2091 }
2092 
2093 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2094 {
2095 	blk_status_t ret;
2096 	int srcu_idx;
2097 	blk_qc_t unused_cookie;
2098 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2099 
2100 	hctx_lock(hctx, &srcu_idx);
2101 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2102 	hctx_unlock(hctx, srcu_idx);
2103 
2104 	return ret;
2105 }
2106 
2107 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2108 		struct list_head *list)
2109 {
2110 	int queued = 0;
2111 	int errors = 0;
2112 
2113 	while (!list_empty(list)) {
2114 		blk_status_t ret;
2115 		struct request *rq = list_first_entry(list, struct request,
2116 				queuelist);
2117 
2118 		list_del_init(&rq->queuelist);
2119 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2120 		if (ret != BLK_STS_OK) {
2121 			if (ret == BLK_STS_RESOURCE ||
2122 					ret == BLK_STS_DEV_RESOURCE) {
2123 				blk_mq_request_bypass_insert(rq, false,
2124 							list_empty(list));
2125 				break;
2126 			}
2127 			blk_mq_end_request(rq, ret);
2128 			errors++;
2129 		} else
2130 			queued++;
2131 	}
2132 
2133 	/*
2134 	 * If we didn't flush the entire list, we could have told
2135 	 * the driver there was more coming, but that turned out to
2136 	 * be a lie.
2137 	 */
2138 	if ((!list_empty(list) || errors) &&
2139 	     hctx->queue->mq_ops->commit_rqs && queued)
2140 		hctx->queue->mq_ops->commit_rqs(hctx);
2141 }
2142 
2143 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2144 {
2145 	list_add_tail(&rq->queuelist, &plug->mq_list);
2146 	plug->rq_count++;
2147 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2148 		struct request *tmp;
2149 
2150 		tmp = list_first_entry(&plug->mq_list, struct request,
2151 						queuelist);
2152 		if (tmp->q != rq->q)
2153 			plug->multiple_queues = true;
2154 	}
2155 }
2156 
2157 /**
2158  * blk_mq_submit_bio - Create and send a request to block device.
2159  * @bio: Bio pointer.
2160  *
2161  * Builds up a request structure from @q and @bio and send to the device. The
2162  * request may not be queued directly to hardware if:
2163  * * This request can be merged with another one
2164  * * We want to place request at plug queue for possible future merging
2165  * * There is an IO scheduler active at this queue
2166  *
2167  * It will not queue the request if there is an error with the bio, or at the
2168  * request creation.
2169  *
2170  * Returns: Request queue cookie.
2171  */
2172 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2173 {
2174 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2175 	const int is_sync = op_is_sync(bio->bi_opf);
2176 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2177 	struct blk_mq_alloc_data data = {
2178 		.q		= q,
2179 	};
2180 	struct request *rq;
2181 	struct blk_plug *plug;
2182 	struct request *same_queue_rq = NULL;
2183 	unsigned int nr_segs;
2184 	blk_qc_t cookie;
2185 	blk_status_t ret;
2186 	bool hipri;
2187 
2188 	blk_queue_bounce(q, &bio);
2189 	__blk_queue_split(&bio, &nr_segs);
2190 
2191 	if (!bio_integrity_prep(bio))
2192 		goto queue_exit;
2193 
2194 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2195 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2196 		goto queue_exit;
2197 
2198 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2199 		goto queue_exit;
2200 
2201 	rq_qos_throttle(q, bio);
2202 
2203 	hipri = bio->bi_opf & REQ_HIPRI;
2204 
2205 	data.cmd_flags = bio->bi_opf;
2206 	rq = __blk_mq_alloc_request(&data);
2207 	if (unlikely(!rq)) {
2208 		rq_qos_cleanup(q, bio);
2209 		if (bio->bi_opf & REQ_NOWAIT)
2210 			bio_wouldblock_error(bio);
2211 		goto queue_exit;
2212 	}
2213 
2214 	trace_block_getrq(bio);
2215 
2216 	rq_qos_track(q, rq, bio);
2217 
2218 	cookie = request_to_qc_t(data.hctx, rq);
2219 
2220 	blk_mq_bio_to_request(rq, bio, nr_segs);
2221 
2222 	ret = blk_crypto_init_request(rq);
2223 	if (ret != BLK_STS_OK) {
2224 		bio->bi_status = ret;
2225 		bio_endio(bio);
2226 		blk_mq_free_request(rq);
2227 		return BLK_QC_T_NONE;
2228 	}
2229 
2230 	plug = blk_mq_plug(q, bio);
2231 	if (unlikely(is_flush_fua)) {
2232 		/* Bypass scheduler for flush requests */
2233 		blk_insert_flush(rq);
2234 		blk_mq_run_hw_queue(data.hctx, true);
2235 	} else if (plug && (q->nr_hw_queues == 1 ||
2236 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2237 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2238 		/*
2239 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2240 		 * we know the driver uses bd->last in a smart fashion.
2241 		 *
2242 		 * Use normal plugging if this disk is slow HDD, as sequential
2243 		 * IO may benefit a lot from plug merging.
2244 		 */
2245 		unsigned int request_count = plug->rq_count;
2246 		struct request *last = NULL;
2247 
2248 		if (!request_count)
2249 			trace_block_plug(q);
2250 		else
2251 			last = list_entry_rq(plug->mq_list.prev);
2252 
2253 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2254 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2255 			blk_flush_plug_list(plug, false);
2256 			trace_block_plug(q);
2257 		}
2258 
2259 		blk_add_rq_to_plug(plug, rq);
2260 	} else if (q->elevator) {
2261 		/* Insert the request at the IO scheduler queue */
2262 		blk_mq_sched_insert_request(rq, false, true, true);
2263 	} else if (plug && !blk_queue_nomerges(q)) {
2264 		/*
2265 		 * We do limited plugging. If the bio can be merged, do that.
2266 		 * Otherwise the existing request in the plug list will be
2267 		 * issued. So the plug list will have one request at most
2268 		 * The plug list might get flushed before this. If that happens,
2269 		 * the plug list is empty, and same_queue_rq is invalid.
2270 		 */
2271 		if (list_empty(&plug->mq_list))
2272 			same_queue_rq = NULL;
2273 		if (same_queue_rq) {
2274 			list_del_init(&same_queue_rq->queuelist);
2275 			plug->rq_count--;
2276 		}
2277 		blk_add_rq_to_plug(plug, rq);
2278 		trace_block_plug(q);
2279 
2280 		if (same_queue_rq) {
2281 			data.hctx = same_queue_rq->mq_hctx;
2282 			trace_block_unplug(q, 1, true);
2283 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2284 					&cookie);
2285 		}
2286 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2287 			!data.hctx->dispatch_busy) {
2288 		/*
2289 		 * There is no scheduler and we can try to send directly
2290 		 * to the hardware.
2291 		 */
2292 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2293 	} else {
2294 		/* Default case. */
2295 		blk_mq_sched_insert_request(rq, false, true, true);
2296 	}
2297 
2298 	if (!hipri)
2299 		return BLK_QC_T_NONE;
2300 	return cookie;
2301 queue_exit:
2302 	blk_queue_exit(q);
2303 	return BLK_QC_T_NONE;
2304 }
2305 
2306 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2307 		     unsigned int hctx_idx)
2308 {
2309 	struct page *page;
2310 
2311 	if (tags->rqs && set->ops->exit_request) {
2312 		int i;
2313 
2314 		for (i = 0; i < tags->nr_tags; i++) {
2315 			struct request *rq = tags->static_rqs[i];
2316 
2317 			if (!rq)
2318 				continue;
2319 			set->ops->exit_request(set, rq, hctx_idx);
2320 			tags->static_rqs[i] = NULL;
2321 		}
2322 	}
2323 
2324 	while (!list_empty(&tags->page_list)) {
2325 		page = list_first_entry(&tags->page_list, struct page, lru);
2326 		list_del_init(&page->lru);
2327 		/*
2328 		 * Remove kmemleak object previously allocated in
2329 		 * blk_mq_alloc_rqs().
2330 		 */
2331 		kmemleak_free(page_address(page));
2332 		__free_pages(page, page->private);
2333 	}
2334 }
2335 
2336 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2337 {
2338 	kfree(tags->rqs);
2339 	tags->rqs = NULL;
2340 	kfree(tags->static_rqs);
2341 	tags->static_rqs = NULL;
2342 
2343 	blk_mq_free_tags(tags, flags);
2344 }
2345 
2346 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2347 					unsigned int hctx_idx,
2348 					unsigned int nr_tags,
2349 					unsigned int reserved_tags,
2350 					unsigned int flags)
2351 {
2352 	struct blk_mq_tags *tags;
2353 	int node;
2354 
2355 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2356 	if (node == NUMA_NO_NODE)
2357 		node = set->numa_node;
2358 
2359 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2360 	if (!tags)
2361 		return NULL;
2362 
2363 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2364 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2365 				 node);
2366 	if (!tags->rqs) {
2367 		blk_mq_free_tags(tags, flags);
2368 		return NULL;
2369 	}
2370 
2371 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2372 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2373 					node);
2374 	if (!tags->static_rqs) {
2375 		kfree(tags->rqs);
2376 		blk_mq_free_tags(tags, flags);
2377 		return NULL;
2378 	}
2379 
2380 	return tags;
2381 }
2382 
2383 static size_t order_to_size(unsigned int order)
2384 {
2385 	return (size_t)PAGE_SIZE << order;
2386 }
2387 
2388 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2389 			       unsigned int hctx_idx, int node)
2390 {
2391 	int ret;
2392 
2393 	if (set->ops->init_request) {
2394 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2395 		if (ret)
2396 			return ret;
2397 	}
2398 
2399 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2400 	return 0;
2401 }
2402 
2403 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2404 		     unsigned int hctx_idx, unsigned int depth)
2405 {
2406 	unsigned int i, j, entries_per_page, max_order = 4;
2407 	size_t rq_size, left;
2408 	int node;
2409 
2410 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2411 	if (node == NUMA_NO_NODE)
2412 		node = set->numa_node;
2413 
2414 	INIT_LIST_HEAD(&tags->page_list);
2415 
2416 	/*
2417 	 * rq_size is the size of the request plus driver payload, rounded
2418 	 * to the cacheline size
2419 	 */
2420 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2421 				cache_line_size());
2422 	left = rq_size * depth;
2423 
2424 	for (i = 0; i < depth; ) {
2425 		int this_order = max_order;
2426 		struct page *page;
2427 		int to_do;
2428 		void *p;
2429 
2430 		while (this_order && left < order_to_size(this_order - 1))
2431 			this_order--;
2432 
2433 		do {
2434 			page = alloc_pages_node(node,
2435 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2436 				this_order);
2437 			if (page)
2438 				break;
2439 			if (!this_order--)
2440 				break;
2441 			if (order_to_size(this_order) < rq_size)
2442 				break;
2443 		} while (1);
2444 
2445 		if (!page)
2446 			goto fail;
2447 
2448 		page->private = this_order;
2449 		list_add_tail(&page->lru, &tags->page_list);
2450 
2451 		p = page_address(page);
2452 		/*
2453 		 * Allow kmemleak to scan these pages as they contain pointers
2454 		 * to additional allocations like via ops->init_request().
2455 		 */
2456 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2457 		entries_per_page = order_to_size(this_order) / rq_size;
2458 		to_do = min(entries_per_page, depth - i);
2459 		left -= to_do * rq_size;
2460 		for (j = 0; j < to_do; j++) {
2461 			struct request *rq = p;
2462 
2463 			tags->static_rqs[i] = rq;
2464 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2465 				tags->static_rqs[i] = NULL;
2466 				goto fail;
2467 			}
2468 
2469 			p += rq_size;
2470 			i++;
2471 		}
2472 	}
2473 	return 0;
2474 
2475 fail:
2476 	blk_mq_free_rqs(set, tags, hctx_idx);
2477 	return -ENOMEM;
2478 }
2479 
2480 struct rq_iter_data {
2481 	struct blk_mq_hw_ctx *hctx;
2482 	bool has_rq;
2483 };
2484 
2485 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2486 {
2487 	struct rq_iter_data *iter_data = data;
2488 
2489 	if (rq->mq_hctx != iter_data->hctx)
2490 		return true;
2491 	iter_data->has_rq = true;
2492 	return false;
2493 }
2494 
2495 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2496 {
2497 	struct blk_mq_tags *tags = hctx->sched_tags ?
2498 			hctx->sched_tags : hctx->tags;
2499 	struct rq_iter_data data = {
2500 		.hctx	= hctx,
2501 	};
2502 
2503 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2504 	return data.has_rq;
2505 }
2506 
2507 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2508 		struct blk_mq_hw_ctx *hctx)
2509 {
2510 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2511 		return false;
2512 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2513 		return false;
2514 	return true;
2515 }
2516 
2517 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2518 {
2519 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2520 			struct blk_mq_hw_ctx, cpuhp_online);
2521 
2522 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2523 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2524 		return 0;
2525 
2526 	/*
2527 	 * Prevent new request from being allocated on the current hctx.
2528 	 *
2529 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2530 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2531 	 * seen once we return from the tag allocator.
2532 	 */
2533 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2534 	smp_mb__after_atomic();
2535 
2536 	/*
2537 	 * Try to grab a reference to the queue and wait for any outstanding
2538 	 * requests.  If we could not grab a reference the queue has been
2539 	 * frozen and there are no requests.
2540 	 */
2541 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2542 		while (blk_mq_hctx_has_requests(hctx))
2543 			msleep(5);
2544 		percpu_ref_put(&hctx->queue->q_usage_counter);
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2551 {
2552 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2553 			struct blk_mq_hw_ctx, cpuhp_online);
2554 
2555 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2556 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2557 	return 0;
2558 }
2559 
2560 /*
2561  * 'cpu' is going away. splice any existing rq_list entries from this
2562  * software queue to the hw queue dispatch list, and ensure that it
2563  * gets run.
2564  */
2565 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2566 {
2567 	struct blk_mq_hw_ctx *hctx;
2568 	struct blk_mq_ctx *ctx;
2569 	LIST_HEAD(tmp);
2570 	enum hctx_type type;
2571 
2572 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2573 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2574 		return 0;
2575 
2576 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2577 	type = hctx->type;
2578 
2579 	spin_lock(&ctx->lock);
2580 	if (!list_empty(&ctx->rq_lists[type])) {
2581 		list_splice_init(&ctx->rq_lists[type], &tmp);
2582 		blk_mq_hctx_clear_pending(hctx, ctx);
2583 	}
2584 	spin_unlock(&ctx->lock);
2585 
2586 	if (list_empty(&tmp))
2587 		return 0;
2588 
2589 	spin_lock(&hctx->lock);
2590 	list_splice_tail_init(&tmp, &hctx->dispatch);
2591 	spin_unlock(&hctx->lock);
2592 
2593 	blk_mq_run_hw_queue(hctx, true);
2594 	return 0;
2595 }
2596 
2597 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2598 {
2599 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2600 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2601 						    &hctx->cpuhp_online);
2602 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2603 					    &hctx->cpuhp_dead);
2604 }
2605 
2606 /* hctx->ctxs will be freed in queue's release handler */
2607 static void blk_mq_exit_hctx(struct request_queue *q,
2608 		struct blk_mq_tag_set *set,
2609 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2610 {
2611 	if (blk_mq_hw_queue_mapped(hctx))
2612 		blk_mq_tag_idle(hctx);
2613 
2614 	if (set->ops->exit_request)
2615 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2616 
2617 	if (set->ops->exit_hctx)
2618 		set->ops->exit_hctx(hctx, hctx_idx);
2619 
2620 	blk_mq_remove_cpuhp(hctx);
2621 
2622 	spin_lock(&q->unused_hctx_lock);
2623 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2624 	spin_unlock(&q->unused_hctx_lock);
2625 }
2626 
2627 static void blk_mq_exit_hw_queues(struct request_queue *q,
2628 		struct blk_mq_tag_set *set, int nr_queue)
2629 {
2630 	struct blk_mq_hw_ctx *hctx;
2631 	unsigned int i;
2632 
2633 	queue_for_each_hw_ctx(q, hctx, i) {
2634 		if (i == nr_queue)
2635 			break;
2636 		blk_mq_debugfs_unregister_hctx(hctx);
2637 		blk_mq_exit_hctx(q, set, hctx, i);
2638 	}
2639 }
2640 
2641 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2642 {
2643 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2644 
2645 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2646 			   __alignof__(struct blk_mq_hw_ctx)) !=
2647 		     sizeof(struct blk_mq_hw_ctx));
2648 
2649 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2650 		hw_ctx_size += sizeof(struct srcu_struct);
2651 
2652 	return hw_ctx_size;
2653 }
2654 
2655 static int blk_mq_init_hctx(struct request_queue *q,
2656 		struct blk_mq_tag_set *set,
2657 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2658 {
2659 	hctx->queue_num = hctx_idx;
2660 
2661 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2662 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2663 				&hctx->cpuhp_online);
2664 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2665 
2666 	hctx->tags = set->tags[hctx_idx];
2667 
2668 	if (set->ops->init_hctx &&
2669 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2670 		goto unregister_cpu_notifier;
2671 
2672 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2673 				hctx->numa_node))
2674 		goto exit_hctx;
2675 	return 0;
2676 
2677  exit_hctx:
2678 	if (set->ops->exit_hctx)
2679 		set->ops->exit_hctx(hctx, hctx_idx);
2680  unregister_cpu_notifier:
2681 	blk_mq_remove_cpuhp(hctx);
2682 	return -1;
2683 }
2684 
2685 static struct blk_mq_hw_ctx *
2686 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2687 		int node)
2688 {
2689 	struct blk_mq_hw_ctx *hctx;
2690 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2691 
2692 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2693 	if (!hctx)
2694 		goto fail_alloc_hctx;
2695 
2696 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2697 		goto free_hctx;
2698 
2699 	atomic_set(&hctx->nr_active, 0);
2700 	if (node == NUMA_NO_NODE)
2701 		node = set->numa_node;
2702 	hctx->numa_node = node;
2703 
2704 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2705 	spin_lock_init(&hctx->lock);
2706 	INIT_LIST_HEAD(&hctx->dispatch);
2707 	hctx->queue = q;
2708 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2709 
2710 	INIT_LIST_HEAD(&hctx->hctx_list);
2711 
2712 	/*
2713 	 * Allocate space for all possible cpus to avoid allocation at
2714 	 * runtime
2715 	 */
2716 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2717 			gfp, node);
2718 	if (!hctx->ctxs)
2719 		goto free_cpumask;
2720 
2721 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2722 				gfp, node, false, false))
2723 		goto free_ctxs;
2724 	hctx->nr_ctx = 0;
2725 
2726 	spin_lock_init(&hctx->dispatch_wait_lock);
2727 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2728 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2729 
2730 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2731 	if (!hctx->fq)
2732 		goto free_bitmap;
2733 
2734 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2735 		init_srcu_struct(hctx->srcu);
2736 	blk_mq_hctx_kobj_init(hctx);
2737 
2738 	return hctx;
2739 
2740  free_bitmap:
2741 	sbitmap_free(&hctx->ctx_map);
2742  free_ctxs:
2743 	kfree(hctx->ctxs);
2744  free_cpumask:
2745 	free_cpumask_var(hctx->cpumask);
2746  free_hctx:
2747 	kfree(hctx);
2748  fail_alloc_hctx:
2749 	return NULL;
2750 }
2751 
2752 static void blk_mq_init_cpu_queues(struct request_queue *q,
2753 				   unsigned int nr_hw_queues)
2754 {
2755 	struct blk_mq_tag_set *set = q->tag_set;
2756 	unsigned int i, j;
2757 
2758 	for_each_possible_cpu(i) {
2759 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2760 		struct blk_mq_hw_ctx *hctx;
2761 		int k;
2762 
2763 		__ctx->cpu = i;
2764 		spin_lock_init(&__ctx->lock);
2765 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2766 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2767 
2768 		__ctx->queue = q;
2769 
2770 		/*
2771 		 * Set local node, IFF we have more than one hw queue. If
2772 		 * not, we remain on the home node of the device
2773 		 */
2774 		for (j = 0; j < set->nr_maps; j++) {
2775 			hctx = blk_mq_map_queue_type(q, j, i);
2776 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2777 				hctx->numa_node = cpu_to_node(i);
2778 		}
2779 	}
2780 }
2781 
2782 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2783 					int hctx_idx)
2784 {
2785 	unsigned int flags = set->flags;
2786 	int ret = 0;
2787 
2788 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2789 					set->queue_depth, set->reserved_tags, flags);
2790 	if (!set->tags[hctx_idx])
2791 		return false;
2792 
2793 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2794 				set->queue_depth);
2795 	if (!ret)
2796 		return true;
2797 
2798 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2799 	set->tags[hctx_idx] = NULL;
2800 	return false;
2801 }
2802 
2803 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2804 					 unsigned int hctx_idx)
2805 {
2806 	unsigned int flags = set->flags;
2807 
2808 	if (set->tags && set->tags[hctx_idx]) {
2809 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2810 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2811 		set->tags[hctx_idx] = NULL;
2812 	}
2813 }
2814 
2815 static void blk_mq_map_swqueue(struct request_queue *q)
2816 {
2817 	unsigned int i, j, hctx_idx;
2818 	struct blk_mq_hw_ctx *hctx;
2819 	struct blk_mq_ctx *ctx;
2820 	struct blk_mq_tag_set *set = q->tag_set;
2821 
2822 	queue_for_each_hw_ctx(q, hctx, i) {
2823 		cpumask_clear(hctx->cpumask);
2824 		hctx->nr_ctx = 0;
2825 		hctx->dispatch_from = NULL;
2826 	}
2827 
2828 	/*
2829 	 * Map software to hardware queues.
2830 	 *
2831 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2832 	 */
2833 	for_each_possible_cpu(i) {
2834 
2835 		ctx = per_cpu_ptr(q->queue_ctx, i);
2836 		for (j = 0; j < set->nr_maps; j++) {
2837 			if (!set->map[j].nr_queues) {
2838 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2839 						HCTX_TYPE_DEFAULT, i);
2840 				continue;
2841 			}
2842 			hctx_idx = set->map[j].mq_map[i];
2843 			/* unmapped hw queue can be remapped after CPU topo changed */
2844 			if (!set->tags[hctx_idx] &&
2845 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2846 				/*
2847 				 * If tags initialization fail for some hctx,
2848 				 * that hctx won't be brought online.  In this
2849 				 * case, remap the current ctx to hctx[0] which
2850 				 * is guaranteed to always have tags allocated
2851 				 */
2852 				set->map[j].mq_map[i] = 0;
2853 			}
2854 
2855 			hctx = blk_mq_map_queue_type(q, j, i);
2856 			ctx->hctxs[j] = hctx;
2857 			/*
2858 			 * If the CPU is already set in the mask, then we've
2859 			 * mapped this one already. This can happen if
2860 			 * devices share queues across queue maps.
2861 			 */
2862 			if (cpumask_test_cpu(i, hctx->cpumask))
2863 				continue;
2864 
2865 			cpumask_set_cpu(i, hctx->cpumask);
2866 			hctx->type = j;
2867 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2868 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2869 
2870 			/*
2871 			 * If the nr_ctx type overflows, we have exceeded the
2872 			 * amount of sw queues we can support.
2873 			 */
2874 			BUG_ON(!hctx->nr_ctx);
2875 		}
2876 
2877 		for (; j < HCTX_MAX_TYPES; j++)
2878 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2879 					HCTX_TYPE_DEFAULT, i);
2880 	}
2881 
2882 	queue_for_each_hw_ctx(q, hctx, i) {
2883 		/*
2884 		 * If no software queues are mapped to this hardware queue,
2885 		 * disable it and free the request entries.
2886 		 */
2887 		if (!hctx->nr_ctx) {
2888 			/* Never unmap queue 0.  We need it as a
2889 			 * fallback in case of a new remap fails
2890 			 * allocation
2891 			 */
2892 			if (i && set->tags[i])
2893 				blk_mq_free_map_and_requests(set, i);
2894 
2895 			hctx->tags = NULL;
2896 			continue;
2897 		}
2898 
2899 		hctx->tags = set->tags[i];
2900 		WARN_ON(!hctx->tags);
2901 
2902 		/*
2903 		 * Set the map size to the number of mapped software queues.
2904 		 * This is more accurate and more efficient than looping
2905 		 * over all possibly mapped software queues.
2906 		 */
2907 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2908 
2909 		/*
2910 		 * Initialize batch roundrobin counts
2911 		 */
2912 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2913 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2914 	}
2915 }
2916 
2917 /*
2918  * Caller needs to ensure that we're either frozen/quiesced, or that
2919  * the queue isn't live yet.
2920  */
2921 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2922 {
2923 	struct blk_mq_hw_ctx *hctx;
2924 	int i;
2925 
2926 	queue_for_each_hw_ctx(q, hctx, i) {
2927 		if (shared)
2928 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2929 		else
2930 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2931 	}
2932 }
2933 
2934 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2935 					 bool shared)
2936 {
2937 	struct request_queue *q;
2938 
2939 	lockdep_assert_held(&set->tag_list_lock);
2940 
2941 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2942 		blk_mq_freeze_queue(q);
2943 		queue_set_hctx_shared(q, shared);
2944 		blk_mq_unfreeze_queue(q);
2945 	}
2946 }
2947 
2948 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2949 {
2950 	struct blk_mq_tag_set *set = q->tag_set;
2951 
2952 	mutex_lock(&set->tag_list_lock);
2953 	list_del(&q->tag_set_list);
2954 	if (list_is_singular(&set->tag_list)) {
2955 		/* just transitioned to unshared */
2956 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2957 		/* update existing queue */
2958 		blk_mq_update_tag_set_shared(set, false);
2959 	}
2960 	mutex_unlock(&set->tag_list_lock);
2961 	INIT_LIST_HEAD(&q->tag_set_list);
2962 }
2963 
2964 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2965 				     struct request_queue *q)
2966 {
2967 	mutex_lock(&set->tag_list_lock);
2968 
2969 	/*
2970 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2971 	 */
2972 	if (!list_empty(&set->tag_list) &&
2973 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2974 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2975 		/* update existing queue */
2976 		blk_mq_update_tag_set_shared(set, true);
2977 	}
2978 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2979 		queue_set_hctx_shared(q, true);
2980 	list_add_tail(&q->tag_set_list, &set->tag_list);
2981 
2982 	mutex_unlock(&set->tag_list_lock);
2983 }
2984 
2985 /* All allocations will be freed in release handler of q->mq_kobj */
2986 static int blk_mq_alloc_ctxs(struct request_queue *q)
2987 {
2988 	struct blk_mq_ctxs *ctxs;
2989 	int cpu;
2990 
2991 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2992 	if (!ctxs)
2993 		return -ENOMEM;
2994 
2995 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2996 	if (!ctxs->queue_ctx)
2997 		goto fail;
2998 
2999 	for_each_possible_cpu(cpu) {
3000 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3001 		ctx->ctxs = ctxs;
3002 	}
3003 
3004 	q->mq_kobj = &ctxs->kobj;
3005 	q->queue_ctx = ctxs->queue_ctx;
3006 
3007 	return 0;
3008  fail:
3009 	kfree(ctxs);
3010 	return -ENOMEM;
3011 }
3012 
3013 /*
3014  * It is the actual release handler for mq, but we do it from
3015  * request queue's release handler for avoiding use-after-free
3016  * and headache because q->mq_kobj shouldn't have been introduced,
3017  * but we can't group ctx/kctx kobj without it.
3018  */
3019 void blk_mq_release(struct request_queue *q)
3020 {
3021 	struct blk_mq_hw_ctx *hctx, *next;
3022 	int i;
3023 
3024 	queue_for_each_hw_ctx(q, hctx, i)
3025 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3026 
3027 	/* all hctx are in .unused_hctx_list now */
3028 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3029 		list_del_init(&hctx->hctx_list);
3030 		kobject_put(&hctx->kobj);
3031 	}
3032 
3033 	kfree(q->queue_hw_ctx);
3034 
3035 	/*
3036 	 * release .mq_kobj and sw queue's kobject now because
3037 	 * both share lifetime with request queue.
3038 	 */
3039 	blk_mq_sysfs_deinit(q);
3040 }
3041 
3042 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3043 		void *queuedata)
3044 {
3045 	struct request_queue *uninit_q, *q;
3046 
3047 	uninit_q = blk_alloc_queue(set->numa_node);
3048 	if (!uninit_q)
3049 		return ERR_PTR(-ENOMEM);
3050 	uninit_q->queuedata = queuedata;
3051 
3052 	/*
3053 	 * Initialize the queue without an elevator. device_add_disk() will do
3054 	 * the initialization.
3055 	 */
3056 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3057 	if (IS_ERR(q))
3058 		blk_cleanup_queue(uninit_q);
3059 
3060 	return q;
3061 }
3062 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3063 
3064 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3065 {
3066 	return blk_mq_init_queue_data(set, NULL);
3067 }
3068 EXPORT_SYMBOL(blk_mq_init_queue);
3069 
3070 /*
3071  * Helper for setting up a queue with mq ops, given queue depth, and
3072  * the passed in mq ops flags.
3073  */
3074 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3075 					   const struct blk_mq_ops *ops,
3076 					   unsigned int queue_depth,
3077 					   unsigned int set_flags)
3078 {
3079 	struct request_queue *q;
3080 	int ret;
3081 
3082 	memset(set, 0, sizeof(*set));
3083 	set->ops = ops;
3084 	set->nr_hw_queues = 1;
3085 	set->nr_maps = 1;
3086 	set->queue_depth = queue_depth;
3087 	set->numa_node = NUMA_NO_NODE;
3088 	set->flags = set_flags;
3089 
3090 	ret = blk_mq_alloc_tag_set(set);
3091 	if (ret)
3092 		return ERR_PTR(ret);
3093 
3094 	q = blk_mq_init_queue(set);
3095 	if (IS_ERR(q)) {
3096 		blk_mq_free_tag_set(set);
3097 		return q;
3098 	}
3099 
3100 	return q;
3101 }
3102 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3103 
3104 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3105 		struct blk_mq_tag_set *set, struct request_queue *q,
3106 		int hctx_idx, int node)
3107 {
3108 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3109 
3110 	/* reuse dead hctx first */
3111 	spin_lock(&q->unused_hctx_lock);
3112 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3113 		if (tmp->numa_node == node) {
3114 			hctx = tmp;
3115 			break;
3116 		}
3117 	}
3118 	if (hctx)
3119 		list_del_init(&hctx->hctx_list);
3120 	spin_unlock(&q->unused_hctx_lock);
3121 
3122 	if (!hctx)
3123 		hctx = blk_mq_alloc_hctx(q, set, node);
3124 	if (!hctx)
3125 		goto fail;
3126 
3127 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3128 		goto free_hctx;
3129 
3130 	return hctx;
3131 
3132  free_hctx:
3133 	kobject_put(&hctx->kobj);
3134  fail:
3135 	return NULL;
3136 }
3137 
3138 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3139 						struct request_queue *q)
3140 {
3141 	int i, j, end;
3142 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3143 
3144 	if (q->nr_hw_queues < set->nr_hw_queues) {
3145 		struct blk_mq_hw_ctx **new_hctxs;
3146 
3147 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3148 				       sizeof(*new_hctxs), GFP_KERNEL,
3149 				       set->numa_node);
3150 		if (!new_hctxs)
3151 			return;
3152 		if (hctxs)
3153 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3154 			       sizeof(*hctxs));
3155 		q->queue_hw_ctx = new_hctxs;
3156 		kfree(hctxs);
3157 		hctxs = new_hctxs;
3158 	}
3159 
3160 	/* protect against switching io scheduler  */
3161 	mutex_lock(&q->sysfs_lock);
3162 	for (i = 0; i < set->nr_hw_queues; i++) {
3163 		int node;
3164 		struct blk_mq_hw_ctx *hctx;
3165 
3166 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3167 		/*
3168 		 * If the hw queue has been mapped to another numa node,
3169 		 * we need to realloc the hctx. If allocation fails, fallback
3170 		 * to use the previous one.
3171 		 */
3172 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3173 			continue;
3174 
3175 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3176 		if (hctx) {
3177 			if (hctxs[i])
3178 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3179 			hctxs[i] = hctx;
3180 		} else {
3181 			if (hctxs[i])
3182 				pr_warn("Allocate new hctx on node %d fails,\
3183 						fallback to previous one on node %d\n",
3184 						node, hctxs[i]->numa_node);
3185 			else
3186 				break;
3187 		}
3188 	}
3189 	/*
3190 	 * Increasing nr_hw_queues fails. Free the newly allocated
3191 	 * hctxs and keep the previous q->nr_hw_queues.
3192 	 */
3193 	if (i != set->nr_hw_queues) {
3194 		j = q->nr_hw_queues;
3195 		end = i;
3196 	} else {
3197 		j = i;
3198 		end = q->nr_hw_queues;
3199 		q->nr_hw_queues = set->nr_hw_queues;
3200 	}
3201 
3202 	for (; j < end; j++) {
3203 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3204 
3205 		if (hctx) {
3206 			if (hctx->tags)
3207 				blk_mq_free_map_and_requests(set, j);
3208 			blk_mq_exit_hctx(q, set, hctx, j);
3209 			hctxs[j] = NULL;
3210 		}
3211 	}
3212 	mutex_unlock(&q->sysfs_lock);
3213 }
3214 
3215 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3216 						  struct request_queue *q,
3217 						  bool elevator_init)
3218 {
3219 	/* mark the queue as mq asap */
3220 	q->mq_ops = set->ops;
3221 
3222 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3223 					     blk_mq_poll_stats_bkt,
3224 					     BLK_MQ_POLL_STATS_BKTS, q);
3225 	if (!q->poll_cb)
3226 		goto err_exit;
3227 
3228 	if (blk_mq_alloc_ctxs(q))
3229 		goto err_poll;
3230 
3231 	/* init q->mq_kobj and sw queues' kobjects */
3232 	blk_mq_sysfs_init(q);
3233 
3234 	INIT_LIST_HEAD(&q->unused_hctx_list);
3235 	spin_lock_init(&q->unused_hctx_lock);
3236 
3237 	blk_mq_realloc_hw_ctxs(set, q);
3238 	if (!q->nr_hw_queues)
3239 		goto err_hctxs;
3240 
3241 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3242 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3243 
3244 	q->tag_set = set;
3245 
3246 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3247 	if (set->nr_maps > HCTX_TYPE_POLL &&
3248 	    set->map[HCTX_TYPE_POLL].nr_queues)
3249 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3250 
3251 	q->sg_reserved_size = INT_MAX;
3252 
3253 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3254 	INIT_LIST_HEAD(&q->requeue_list);
3255 	spin_lock_init(&q->requeue_lock);
3256 
3257 	q->nr_requests = set->queue_depth;
3258 
3259 	/*
3260 	 * Default to classic polling
3261 	 */
3262 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3263 
3264 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3265 	blk_mq_add_queue_tag_set(set, q);
3266 	blk_mq_map_swqueue(q);
3267 
3268 	if (elevator_init)
3269 		elevator_init_mq(q);
3270 
3271 	return q;
3272 
3273 err_hctxs:
3274 	kfree(q->queue_hw_ctx);
3275 	q->nr_hw_queues = 0;
3276 	blk_mq_sysfs_deinit(q);
3277 err_poll:
3278 	blk_stat_free_callback(q->poll_cb);
3279 	q->poll_cb = NULL;
3280 err_exit:
3281 	q->mq_ops = NULL;
3282 	return ERR_PTR(-ENOMEM);
3283 }
3284 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3285 
3286 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3287 void blk_mq_exit_queue(struct request_queue *q)
3288 {
3289 	struct blk_mq_tag_set *set = q->tag_set;
3290 
3291 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3292 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3293 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3294 	blk_mq_del_queue_tag_set(q);
3295 }
3296 
3297 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3298 {
3299 	int i;
3300 
3301 	for (i = 0; i < set->nr_hw_queues; i++) {
3302 		if (!__blk_mq_alloc_map_and_request(set, i))
3303 			goto out_unwind;
3304 		cond_resched();
3305 	}
3306 
3307 	return 0;
3308 
3309 out_unwind:
3310 	while (--i >= 0)
3311 		blk_mq_free_map_and_requests(set, i);
3312 
3313 	return -ENOMEM;
3314 }
3315 
3316 /*
3317  * Allocate the request maps associated with this tag_set. Note that this
3318  * may reduce the depth asked for, if memory is tight. set->queue_depth
3319  * will be updated to reflect the allocated depth.
3320  */
3321 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3322 {
3323 	unsigned int depth;
3324 	int err;
3325 
3326 	depth = set->queue_depth;
3327 	do {
3328 		err = __blk_mq_alloc_rq_maps(set);
3329 		if (!err)
3330 			break;
3331 
3332 		set->queue_depth >>= 1;
3333 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3334 			err = -ENOMEM;
3335 			break;
3336 		}
3337 	} while (set->queue_depth);
3338 
3339 	if (!set->queue_depth || err) {
3340 		pr_err("blk-mq: failed to allocate request map\n");
3341 		return -ENOMEM;
3342 	}
3343 
3344 	if (depth != set->queue_depth)
3345 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3346 						depth, set->queue_depth);
3347 
3348 	return 0;
3349 }
3350 
3351 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3352 {
3353 	/*
3354 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3355 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3356 	 * number of hardware queues.
3357 	 */
3358 	if (set->nr_maps == 1)
3359 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3360 
3361 	if (set->ops->map_queues && !is_kdump_kernel()) {
3362 		int i;
3363 
3364 		/*
3365 		 * transport .map_queues is usually done in the following
3366 		 * way:
3367 		 *
3368 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3369 		 * 	mask = get_cpu_mask(queue)
3370 		 * 	for_each_cpu(cpu, mask)
3371 		 * 		set->map[x].mq_map[cpu] = queue;
3372 		 * }
3373 		 *
3374 		 * When we need to remap, the table has to be cleared for
3375 		 * killing stale mapping since one CPU may not be mapped
3376 		 * to any hw queue.
3377 		 */
3378 		for (i = 0; i < set->nr_maps; i++)
3379 			blk_mq_clear_mq_map(&set->map[i]);
3380 
3381 		return set->ops->map_queues(set);
3382 	} else {
3383 		BUG_ON(set->nr_maps > 1);
3384 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3385 	}
3386 }
3387 
3388 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3389 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3390 {
3391 	struct blk_mq_tags **new_tags;
3392 
3393 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3394 		return 0;
3395 
3396 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3397 				GFP_KERNEL, set->numa_node);
3398 	if (!new_tags)
3399 		return -ENOMEM;
3400 
3401 	if (set->tags)
3402 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3403 		       sizeof(*set->tags));
3404 	kfree(set->tags);
3405 	set->tags = new_tags;
3406 	set->nr_hw_queues = new_nr_hw_queues;
3407 
3408 	return 0;
3409 }
3410 
3411 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3412 				int new_nr_hw_queues)
3413 {
3414 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3415 }
3416 
3417 /*
3418  * Alloc a tag set to be associated with one or more request queues.
3419  * May fail with EINVAL for various error conditions. May adjust the
3420  * requested depth down, if it's too large. In that case, the set
3421  * value will be stored in set->queue_depth.
3422  */
3423 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3424 {
3425 	int i, ret;
3426 
3427 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3428 
3429 	if (!set->nr_hw_queues)
3430 		return -EINVAL;
3431 	if (!set->queue_depth)
3432 		return -EINVAL;
3433 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3434 		return -EINVAL;
3435 
3436 	if (!set->ops->queue_rq)
3437 		return -EINVAL;
3438 
3439 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3440 		return -EINVAL;
3441 
3442 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3443 		pr_info("blk-mq: reduced tag depth to %u\n",
3444 			BLK_MQ_MAX_DEPTH);
3445 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3446 	}
3447 
3448 	if (!set->nr_maps)
3449 		set->nr_maps = 1;
3450 	else if (set->nr_maps > HCTX_MAX_TYPES)
3451 		return -EINVAL;
3452 
3453 	/*
3454 	 * If a crashdump is active, then we are potentially in a very
3455 	 * memory constrained environment. Limit us to 1 queue and
3456 	 * 64 tags to prevent using too much memory.
3457 	 */
3458 	if (is_kdump_kernel()) {
3459 		set->nr_hw_queues = 1;
3460 		set->nr_maps = 1;
3461 		set->queue_depth = min(64U, set->queue_depth);
3462 	}
3463 	/*
3464 	 * There is no use for more h/w queues than cpus if we just have
3465 	 * a single map
3466 	 */
3467 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3468 		set->nr_hw_queues = nr_cpu_ids;
3469 
3470 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3471 		return -ENOMEM;
3472 
3473 	ret = -ENOMEM;
3474 	for (i = 0; i < set->nr_maps; i++) {
3475 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3476 						  sizeof(set->map[i].mq_map[0]),
3477 						  GFP_KERNEL, set->numa_node);
3478 		if (!set->map[i].mq_map)
3479 			goto out_free_mq_map;
3480 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3481 	}
3482 
3483 	ret = blk_mq_update_queue_map(set);
3484 	if (ret)
3485 		goto out_free_mq_map;
3486 
3487 	ret = blk_mq_alloc_map_and_requests(set);
3488 	if (ret)
3489 		goto out_free_mq_map;
3490 
3491 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3492 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3493 
3494 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3495 			ret = -ENOMEM;
3496 			goto out_free_mq_rq_maps;
3497 		}
3498 	}
3499 
3500 	mutex_init(&set->tag_list_lock);
3501 	INIT_LIST_HEAD(&set->tag_list);
3502 
3503 	return 0;
3504 
3505 out_free_mq_rq_maps:
3506 	for (i = 0; i < set->nr_hw_queues; i++)
3507 		blk_mq_free_map_and_requests(set, i);
3508 out_free_mq_map:
3509 	for (i = 0; i < set->nr_maps; i++) {
3510 		kfree(set->map[i].mq_map);
3511 		set->map[i].mq_map = NULL;
3512 	}
3513 	kfree(set->tags);
3514 	set->tags = NULL;
3515 	return ret;
3516 }
3517 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3518 
3519 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3520 {
3521 	int i, j;
3522 
3523 	for (i = 0; i < set->nr_hw_queues; i++)
3524 		blk_mq_free_map_and_requests(set, i);
3525 
3526 	if (blk_mq_is_sbitmap_shared(set->flags))
3527 		blk_mq_exit_shared_sbitmap(set);
3528 
3529 	for (j = 0; j < set->nr_maps; j++) {
3530 		kfree(set->map[j].mq_map);
3531 		set->map[j].mq_map = NULL;
3532 	}
3533 
3534 	kfree(set->tags);
3535 	set->tags = NULL;
3536 }
3537 EXPORT_SYMBOL(blk_mq_free_tag_set);
3538 
3539 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3540 {
3541 	struct blk_mq_tag_set *set = q->tag_set;
3542 	struct blk_mq_hw_ctx *hctx;
3543 	int i, ret;
3544 
3545 	if (!set)
3546 		return -EINVAL;
3547 
3548 	if (q->nr_requests == nr)
3549 		return 0;
3550 
3551 	blk_mq_freeze_queue(q);
3552 	blk_mq_quiesce_queue(q);
3553 
3554 	ret = 0;
3555 	queue_for_each_hw_ctx(q, hctx, i) {
3556 		if (!hctx->tags)
3557 			continue;
3558 		/*
3559 		 * If we're using an MQ scheduler, just update the scheduler
3560 		 * queue depth. This is similar to what the old code would do.
3561 		 */
3562 		if (!hctx->sched_tags) {
3563 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3564 							false);
3565 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3566 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3567 		} else {
3568 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3569 							nr, true);
3570 		}
3571 		if (ret)
3572 			break;
3573 		if (q->elevator && q->elevator->type->ops.depth_updated)
3574 			q->elevator->type->ops.depth_updated(hctx);
3575 	}
3576 
3577 	if (!ret)
3578 		q->nr_requests = nr;
3579 
3580 	blk_mq_unquiesce_queue(q);
3581 	blk_mq_unfreeze_queue(q);
3582 
3583 	return ret;
3584 }
3585 
3586 /*
3587  * request_queue and elevator_type pair.
3588  * It is just used by __blk_mq_update_nr_hw_queues to cache
3589  * the elevator_type associated with a request_queue.
3590  */
3591 struct blk_mq_qe_pair {
3592 	struct list_head node;
3593 	struct request_queue *q;
3594 	struct elevator_type *type;
3595 };
3596 
3597 /*
3598  * Cache the elevator_type in qe pair list and switch the
3599  * io scheduler to 'none'
3600  */
3601 static bool blk_mq_elv_switch_none(struct list_head *head,
3602 		struct request_queue *q)
3603 {
3604 	struct blk_mq_qe_pair *qe;
3605 
3606 	if (!q->elevator)
3607 		return true;
3608 
3609 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3610 	if (!qe)
3611 		return false;
3612 
3613 	INIT_LIST_HEAD(&qe->node);
3614 	qe->q = q;
3615 	qe->type = q->elevator->type;
3616 	list_add(&qe->node, head);
3617 
3618 	mutex_lock(&q->sysfs_lock);
3619 	/*
3620 	 * After elevator_switch_mq, the previous elevator_queue will be
3621 	 * released by elevator_release. The reference of the io scheduler
3622 	 * module get by elevator_get will also be put. So we need to get
3623 	 * a reference of the io scheduler module here to prevent it to be
3624 	 * removed.
3625 	 */
3626 	__module_get(qe->type->elevator_owner);
3627 	elevator_switch_mq(q, NULL);
3628 	mutex_unlock(&q->sysfs_lock);
3629 
3630 	return true;
3631 }
3632 
3633 static void blk_mq_elv_switch_back(struct list_head *head,
3634 		struct request_queue *q)
3635 {
3636 	struct blk_mq_qe_pair *qe;
3637 	struct elevator_type *t = NULL;
3638 
3639 	list_for_each_entry(qe, head, node)
3640 		if (qe->q == q) {
3641 			t = qe->type;
3642 			break;
3643 		}
3644 
3645 	if (!t)
3646 		return;
3647 
3648 	list_del(&qe->node);
3649 	kfree(qe);
3650 
3651 	mutex_lock(&q->sysfs_lock);
3652 	elevator_switch_mq(q, t);
3653 	mutex_unlock(&q->sysfs_lock);
3654 }
3655 
3656 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3657 							int nr_hw_queues)
3658 {
3659 	struct request_queue *q;
3660 	LIST_HEAD(head);
3661 	int prev_nr_hw_queues;
3662 
3663 	lockdep_assert_held(&set->tag_list_lock);
3664 
3665 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3666 		nr_hw_queues = nr_cpu_ids;
3667 	if (nr_hw_queues < 1)
3668 		return;
3669 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3670 		return;
3671 
3672 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3673 		blk_mq_freeze_queue(q);
3674 	/*
3675 	 * Switch IO scheduler to 'none', cleaning up the data associated
3676 	 * with the previous scheduler. We will switch back once we are done
3677 	 * updating the new sw to hw queue mappings.
3678 	 */
3679 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3680 		if (!blk_mq_elv_switch_none(&head, q))
3681 			goto switch_back;
3682 
3683 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3684 		blk_mq_debugfs_unregister_hctxs(q);
3685 		blk_mq_sysfs_unregister(q);
3686 	}
3687 
3688 	prev_nr_hw_queues = set->nr_hw_queues;
3689 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3690 	    0)
3691 		goto reregister;
3692 
3693 	set->nr_hw_queues = nr_hw_queues;
3694 fallback:
3695 	blk_mq_update_queue_map(set);
3696 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3697 		blk_mq_realloc_hw_ctxs(set, q);
3698 		if (q->nr_hw_queues != set->nr_hw_queues) {
3699 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3700 					nr_hw_queues, prev_nr_hw_queues);
3701 			set->nr_hw_queues = prev_nr_hw_queues;
3702 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3703 			goto fallback;
3704 		}
3705 		blk_mq_map_swqueue(q);
3706 	}
3707 
3708 reregister:
3709 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3710 		blk_mq_sysfs_register(q);
3711 		blk_mq_debugfs_register_hctxs(q);
3712 	}
3713 
3714 switch_back:
3715 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3716 		blk_mq_elv_switch_back(&head, q);
3717 
3718 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3719 		blk_mq_unfreeze_queue(q);
3720 }
3721 
3722 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3723 {
3724 	mutex_lock(&set->tag_list_lock);
3725 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3726 	mutex_unlock(&set->tag_list_lock);
3727 }
3728 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3729 
3730 /* Enable polling stats and return whether they were already enabled. */
3731 static bool blk_poll_stats_enable(struct request_queue *q)
3732 {
3733 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3734 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3735 		return true;
3736 	blk_stat_add_callback(q, q->poll_cb);
3737 	return false;
3738 }
3739 
3740 static void blk_mq_poll_stats_start(struct request_queue *q)
3741 {
3742 	/*
3743 	 * We don't arm the callback if polling stats are not enabled or the
3744 	 * callback is already active.
3745 	 */
3746 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3747 	    blk_stat_is_active(q->poll_cb))
3748 		return;
3749 
3750 	blk_stat_activate_msecs(q->poll_cb, 100);
3751 }
3752 
3753 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3754 {
3755 	struct request_queue *q = cb->data;
3756 	int bucket;
3757 
3758 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3759 		if (cb->stat[bucket].nr_samples)
3760 			q->poll_stat[bucket] = cb->stat[bucket];
3761 	}
3762 }
3763 
3764 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3765 				       struct request *rq)
3766 {
3767 	unsigned long ret = 0;
3768 	int bucket;
3769 
3770 	/*
3771 	 * If stats collection isn't on, don't sleep but turn it on for
3772 	 * future users
3773 	 */
3774 	if (!blk_poll_stats_enable(q))
3775 		return 0;
3776 
3777 	/*
3778 	 * As an optimistic guess, use half of the mean service time
3779 	 * for this type of request. We can (and should) make this smarter.
3780 	 * For instance, if the completion latencies are tight, we can
3781 	 * get closer than just half the mean. This is especially
3782 	 * important on devices where the completion latencies are longer
3783 	 * than ~10 usec. We do use the stats for the relevant IO size
3784 	 * if available which does lead to better estimates.
3785 	 */
3786 	bucket = blk_mq_poll_stats_bkt(rq);
3787 	if (bucket < 0)
3788 		return ret;
3789 
3790 	if (q->poll_stat[bucket].nr_samples)
3791 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3792 
3793 	return ret;
3794 }
3795 
3796 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3797 				     struct request *rq)
3798 {
3799 	struct hrtimer_sleeper hs;
3800 	enum hrtimer_mode mode;
3801 	unsigned int nsecs;
3802 	ktime_t kt;
3803 
3804 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3805 		return false;
3806 
3807 	/*
3808 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3809 	 *
3810 	 *  0:	use half of prev avg
3811 	 * >0:	use this specific value
3812 	 */
3813 	if (q->poll_nsec > 0)
3814 		nsecs = q->poll_nsec;
3815 	else
3816 		nsecs = blk_mq_poll_nsecs(q, rq);
3817 
3818 	if (!nsecs)
3819 		return false;
3820 
3821 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3822 
3823 	/*
3824 	 * This will be replaced with the stats tracking code, using
3825 	 * 'avg_completion_time / 2' as the pre-sleep target.
3826 	 */
3827 	kt = nsecs;
3828 
3829 	mode = HRTIMER_MODE_REL;
3830 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3831 	hrtimer_set_expires(&hs.timer, kt);
3832 
3833 	do {
3834 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3835 			break;
3836 		set_current_state(TASK_UNINTERRUPTIBLE);
3837 		hrtimer_sleeper_start_expires(&hs, mode);
3838 		if (hs.task)
3839 			io_schedule();
3840 		hrtimer_cancel(&hs.timer);
3841 		mode = HRTIMER_MODE_ABS;
3842 	} while (hs.task && !signal_pending(current));
3843 
3844 	__set_current_state(TASK_RUNNING);
3845 	destroy_hrtimer_on_stack(&hs.timer);
3846 	return true;
3847 }
3848 
3849 static bool blk_mq_poll_hybrid(struct request_queue *q,
3850 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3851 {
3852 	struct request *rq;
3853 
3854 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3855 		return false;
3856 
3857 	if (!blk_qc_t_is_internal(cookie))
3858 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3859 	else {
3860 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3861 		/*
3862 		 * With scheduling, if the request has completed, we'll
3863 		 * get a NULL return here, as we clear the sched tag when
3864 		 * that happens. The request still remains valid, like always,
3865 		 * so we should be safe with just the NULL check.
3866 		 */
3867 		if (!rq)
3868 			return false;
3869 	}
3870 
3871 	return blk_mq_poll_hybrid_sleep(q, rq);
3872 }
3873 
3874 /**
3875  * blk_poll - poll for IO completions
3876  * @q:  the queue
3877  * @cookie: cookie passed back at IO submission time
3878  * @spin: whether to spin for completions
3879  *
3880  * Description:
3881  *    Poll for completions on the passed in queue. Returns number of
3882  *    completed entries found. If @spin is true, then blk_poll will continue
3883  *    looping until at least one completion is found, unless the task is
3884  *    otherwise marked running (or we need to reschedule).
3885  */
3886 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3887 {
3888 	struct blk_mq_hw_ctx *hctx;
3889 	long state;
3890 
3891 	if (!blk_qc_t_valid(cookie) ||
3892 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3893 		return 0;
3894 
3895 	if (current->plug)
3896 		blk_flush_plug_list(current->plug, false);
3897 
3898 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3899 
3900 	/*
3901 	 * If we sleep, have the caller restart the poll loop to reset
3902 	 * the state. Like for the other success return cases, the
3903 	 * caller is responsible for checking if the IO completed. If
3904 	 * the IO isn't complete, we'll get called again and will go
3905 	 * straight to the busy poll loop. If specified not to spin,
3906 	 * we also should not sleep.
3907 	 */
3908 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3909 		return 1;
3910 
3911 	hctx->poll_considered++;
3912 
3913 	state = current->state;
3914 	do {
3915 		int ret;
3916 
3917 		hctx->poll_invoked++;
3918 
3919 		ret = q->mq_ops->poll(hctx);
3920 		if (ret > 0) {
3921 			hctx->poll_success++;
3922 			__set_current_state(TASK_RUNNING);
3923 			return ret;
3924 		}
3925 
3926 		if (signal_pending_state(state, current))
3927 			__set_current_state(TASK_RUNNING);
3928 
3929 		if (current->state == TASK_RUNNING)
3930 			return 1;
3931 		if (ret < 0 || !spin)
3932 			break;
3933 		cpu_relax();
3934 	} while (!need_resched());
3935 
3936 	__set_current_state(TASK_RUNNING);
3937 	return 0;
3938 }
3939 EXPORT_SYMBOL_GPL(blk_poll);
3940 
3941 unsigned int blk_mq_rq_cpu(struct request *rq)
3942 {
3943 	return rq->mq_ctx->cpu;
3944 }
3945 EXPORT_SYMBOL(blk_mq_rq_cpu);
3946 
3947 static int __init blk_mq_init(void)
3948 {
3949 	int i;
3950 
3951 	for_each_possible_cpu(i)
3952 		init_llist_head(&per_cpu(blk_cpu_done, i));
3953 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3954 
3955 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3956 				  "block/softirq:dead", NULL,
3957 				  blk_softirq_cpu_dead);
3958 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3959 				blk_mq_hctx_notify_dead);
3960 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3961 				blk_mq_hctx_notify_online,
3962 				blk_mq_hctx_notify_offline);
3963 	return 0;
3964 }
3965 subsys_initcall(blk_mq_init);
3966