xref: /openbmc/linux/block/blk-mq.c (revision f7d84fa7)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42 
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46 
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 	int ddir, bytes, bucket;
50 
51 	ddir = rq_data_dir(rq);
52 	bytes = blk_rq_bytes(rq);
53 
54 	bucket = ddir + 2*(ilog2(bytes) - 9);
55 
56 	if (bucket < 0)
57 		return -1;
58 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60 
61 	return bucket;
62 }
63 
64 /*
65  * Check if any of the ctx's have pending work in this hardware queue
66  */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 	return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			!list_empty_careful(&hctx->dispatch) ||
71 			blk_mq_sched_has_work(hctx);
72 }
73 
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 				     struct blk_mq_ctx *ctx)
79 {
80 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83 
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 				      struct blk_mq_ctx *ctx)
86 {
87 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89 
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92 	int freeze_depth;
93 
94 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 	if (freeze_depth == 1) {
96 		percpu_ref_kill(&q->q_usage_counter);
97 		blk_mq_run_hw_queues(q, false);
98 	}
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101 
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107 
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 				     unsigned long timeout)
110 {
111 	return wait_event_timeout(q->mq_freeze_wq,
112 					percpu_ref_is_zero(&q->q_usage_counter),
113 					timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116 
117 /*
118  * Guarantee no request is in use, so we can change any data structure of
119  * the queue afterward.
120  */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123 	/*
124 	 * In the !blk_mq case we are only calling this to kill the
125 	 * q_usage_counter, otherwise this increases the freeze depth
126 	 * and waits for it to return to zero.  For this reason there is
127 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 	 * exported to drivers as the only user for unfreeze is blk_mq.
129 	 */
130 	blk_freeze_queue_start(q);
131 	blk_mq_freeze_queue_wait(q);
132 }
133 
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 	/*
137 	 * ...just an alias to keep freeze and unfreeze actions balanced
138 	 * in the blk_mq_* namespace
139 	 */
140 	blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143 
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 	int freeze_depth;
147 
148 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 	WARN_ON_ONCE(freeze_depth < 0);
150 	if (!freeze_depth) {
151 		percpu_ref_reinit(&q->q_usage_counter);
152 		wake_up_all(&q->mq_freeze_wq);
153 	}
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156 
157 /**
158  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159  * @q: request queue.
160  *
161  * Note: this function does not prevent that the struct request end_io()
162  * callback function is invoked. Additionally, it is not prevented that
163  * new queue_rq() calls occur unless the queue has been stopped first.
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167 	struct blk_mq_hw_ctx *hctx;
168 	unsigned int i;
169 	bool rcu = false;
170 
171 	__blk_mq_stop_hw_queues(q, true);
172 
173 	queue_for_each_hw_ctx(q, hctx, i) {
174 		if (hctx->flags & BLK_MQ_F_BLOCKING)
175 			synchronize_srcu(&hctx->queue_rq_srcu);
176 		else
177 			rcu = true;
178 	}
179 	if (rcu)
180 		synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183 
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186 	struct blk_mq_hw_ctx *hctx;
187 	unsigned int i;
188 
189 	queue_for_each_hw_ctx(q, hctx, i)
190 		if (blk_mq_hw_queue_mapped(hctx))
191 			blk_mq_tag_wakeup_all(hctx->tags, true);
192 
193 	/*
194 	 * If we are called because the queue has now been marked as
195 	 * dying, we need to ensure that processes currently waiting on
196 	 * the queue are notified as well.
197 	 */
198 	wake_up_all(&q->mq_freeze_wq);
199 }
200 
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203 	return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206 
207 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208 			struct request *rq, unsigned int op)
209 {
210 	INIT_LIST_HEAD(&rq->queuelist);
211 	/* csd/requeue_work/fifo_time is initialized before use */
212 	rq->q = q;
213 	rq->mq_ctx = ctx;
214 	rq->cmd_flags = op;
215 	if (blk_queue_io_stat(q))
216 		rq->rq_flags |= RQF_IO_STAT;
217 	/* do not touch atomic flags, it needs atomic ops against the timer */
218 	rq->cpu = -1;
219 	INIT_HLIST_NODE(&rq->hash);
220 	RB_CLEAR_NODE(&rq->rb_node);
221 	rq->rq_disk = NULL;
222 	rq->part = NULL;
223 	rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225 	rq->rl = NULL;
226 	set_start_time_ns(rq);
227 	rq->io_start_time_ns = 0;
228 #endif
229 	rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231 	rq->nr_integrity_segments = 0;
232 #endif
233 	rq->special = NULL;
234 	/* tag was already set */
235 	rq->extra_len = 0;
236 
237 	INIT_LIST_HEAD(&rq->timeout_list);
238 	rq->timeout = 0;
239 
240 	rq->end_io = NULL;
241 	rq->end_io_data = NULL;
242 	rq->next_rq = NULL;
243 
244 	ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
247 
248 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
249 				       unsigned int op)
250 {
251 	struct request *rq;
252 	unsigned int tag;
253 
254 	tag = blk_mq_get_tag(data);
255 	if (tag != BLK_MQ_TAG_FAIL) {
256 		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
257 
258 		rq = tags->static_rqs[tag];
259 
260 		if (data->flags & BLK_MQ_REQ_INTERNAL) {
261 			rq->tag = -1;
262 			rq->internal_tag = tag;
263 		} else {
264 			if (blk_mq_tag_busy(data->hctx)) {
265 				rq->rq_flags = RQF_MQ_INFLIGHT;
266 				atomic_inc(&data->hctx->nr_active);
267 			}
268 			rq->tag = tag;
269 			rq->internal_tag = -1;
270 			data->hctx->tags->rqs[rq->tag] = rq;
271 		}
272 
273 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
274 		return rq;
275 	}
276 
277 	return NULL;
278 }
279 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
280 
281 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
282 		unsigned int flags)
283 {
284 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
285 	struct request *rq;
286 	int ret;
287 
288 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
289 	if (ret)
290 		return ERR_PTR(ret);
291 
292 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
293 
294 	blk_mq_put_ctx(alloc_data.ctx);
295 	blk_queue_exit(q);
296 
297 	if (!rq)
298 		return ERR_PTR(-EWOULDBLOCK);
299 
300 	rq->__data_len = 0;
301 	rq->__sector = (sector_t) -1;
302 	rq->bio = rq->biotail = NULL;
303 	return rq;
304 }
305 EXPORT_SYMBOL(blk_mq_alloc_request);
306 
307 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
308 		unsigned int flags, unsigned int hctx_idx)
309 {
310 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
311 	struct request *rq;
312 	unsigned int cpu;
313 	int ret;
314 
315 	/*
316 	 * If the tag allocator sleeps we could get an allocation for a
317 	 * different hardware context.  No need to complicate the low level
318 	 * allocator for this for the rare use case of a command tied to
319 	 * a specific queue.
320 	 */
321 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
322 		return ERR_PTR(-EINVAL);
323 
324 	if (hctx_idx >= q->nr_hw_queues)
325 		return ERR_PTR(-EIO);
326 
327 	ret = blk_queue_enter(q, true);
328 	if (ret)
329 		return ERR_PTR(ret);
330 
331 	/*
332 	 * Check if the hardware context is actually mapped to anything.
333 	 * If not tell the caller that it should skip this queue.
334 	 */
335 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
336 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
337 		blk_queue_exit(q);
338 		return ERR_PTR(-EXDEV);
339 	}
340 	cpu = cpumask_first(alloc_data.hctx->cpumask);
341 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
342 
343 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
344 
345 	blk_queue_exit(q);
346 
347 	if (!rq)
348 		return ERR_PTR(-EWOULDBLOCK);
349 
350 	return rq;
351 }
352 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
353 
354 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
355 			     struct request *rq)
356 {
357 	const int sched_tag = rq->internal_tag;
358 	struct request_queue *q = rq->q;
359 
360 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
361 		atomic_dec(&hctx->nr_active);
362 
363 	wbt_done(q->rq_wb, &rq->issue_stat);
364 	rq->rq_flags = 0;
365 
366 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
367 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
368 	if (rq->tag != -1)
369 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
370 	if (sched_tag != -1)
371 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
372 	blk_mq_sched_restart(hctx);
373 	blk_queue_exit(q);
374 }
375 
376 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
377 				     struct request *rq)
378 {
379 	struct blk_mq_ctx *ctx = rq->mq_ctx;
380 
381 	ctx->rq_completed[rq_is_sync(rq)]++;
382 	__blk_mq_finish_request(hctx, ctx, rq);
383 }
384 
385 void blk_mq_finish_request(struct request *rq)
386 {
387 	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
388 }
389 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
390 
391 void blk_mq_free_request(struct request *rq)
392 {
393 	blk_mq_sched_put_request(rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_free_request);
396 
397 inline void __blk_mq_end_request(struct request *rq, int error)
398 {
399 	blk_account_io_done(rq);
400 
401 	if (rq->end_io) {
402 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
403 		rq->end_io(rq, error);
404 	} else {
405 		if (unlikely(blk_bidi_rq(rq)))
406 			blk_mq_free_request(rq->next_rq);
407 		blk_mq_free_request(rq);
408 	}
409 }
410 EXPORT_SYMBOL(__blk_mq_end_request);
411 
412 void blk_mq_end_request(struct request *rq, int error)
413 {
414 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
415 		BUG();
416 	__blk_mq_end_request(rq, error);
417 }
418 EXPORT_SYMBOL(blk_mq_end_request);
419 
420 static void __blk_mq_complete_request_remote(void *data)
421 {
422 	struct request *rq = data;
423 
424 	rq->q->softirq_done_fn(rq);
425 }
426 
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429 	struct blk_mq_ctx *ctx = rq->mq_ctx;
430 	bool shared = false;
431 	int cpu;
432 
433 	if (rq->internal_tag != -1)
434 		blk_mq_sched_completed_request(rq);
435 	if (rq->rq_flags & RQF_STATS) {
436 		blk_mq_poll_stats_start(rq->q);
437 		blk_stat_add(rq);
438 	}
439 
440 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
441 		rq->q->softirq_done_fn(rq);
442 		return;
443 	}
444 
445 	cpu = get_cpu();
446 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
447 		shared = cpus_share_cache(cpu, ctx->cpu);
448 
449 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
450 		rq->csd.func = __blk_mq_complete_request_remote;
451 		rq->csd.info = rq;
452 		rq->csd.flags = 0;
453 		smp_call_function_single_async(ctx->cpu, &rq->csd);
454 	} else {
455 		rq->q->softirq_done_fn(rq);
456 	}
457 	put_cpu();
458 }
459 
460 /**
461  * blk_mq_complete_request - end I/O on a request
462  * @rq:		the request being processed
463  *
464  * Description:
465  *	Ends all I/O on a request. It does not handle partial completions.
466  *	The actual completion happens out-of-order, through a IPI handler.
467  **/
468 void blk_mq_complete_request(struct request *rq)
469 {
470 	struct request_queue *q = rq->q;
471 
472 	if (unlikely(blk_should_fake_timeout(q)))
473 		return;
474 	if (!blk_mark_rq_complete(rq))
475 		__blk_mq_complete_request(rq);
476 }
477 EXPORT_SYMBOL(blk_mq_complete_request);
478 
479 int blk_mq_request_started(struct request *rq)
480 {
481 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
484 
485 void blk_mq_start_request(struct request *rq)
486 {
487 	struct request_queue *q = rq->q;
488 
489 	blk_mq_sched_started_request(rq);
490 
491 	trace_block_rq_issue(q, rq);
492 
493 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495 		rq->rq_flags |= RQF_STATS;
496 		wbt_issue(q->rq_wb, &rq->issue_stat);
497 	}
498 
499 	blk_add_timer(rq);
500 
501 	/*
502 	 * Ensure that ->deadline is visible before set the started
503 	 * flag and clear the completed flag.
504 	 */
505 	smp_mb__before_atomic();
506 
507 	/*
508 	 * Mark us as started and clear complete. Complete might have been
509 	 * set if requeue raced with timeout, which then marked it as
510 	 * complete. So be sure to clear complete again when we start
511 	 * the request, otherwise we'll ignore the completion event.
512 	 */
513 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517 
518 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 		/*
520 		 * Make sure space for the drain appears.  We know we can do
521 		 * this because max_hw_segments has been adjusted to be one
522 		 * fewer than the device can handle.
523 		 */
524 		rq->nr_phys_segments++;
525 	}
526 }
527 EXPORT_SYMBOL(blk_mq_start_request);
528 
529 /*
530  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531  * flag isn't set yet, so there may be race with timeout handler,
532  * but given rq->deadline is just set in .queue_rq() under
533  * this situation, the race won't be possible in reality because
534  * rq->timeout should be set as big enough to cover the window
535  * between blk_mq_start_request() called from .queue_rq() and
536  * clearing REQ_ATOM_STARTED here.
537  */
538 static void __blk_mq_requeue_request(struct request *rq)
539 {
540 	struct request_queue *q = rq->q;
541 
542 	trace_block_rq_requeue(q, rq);
543 	wbt_requeue(q->rq_wb, &rq->issue_stat);
544 	blk_mq_sched_requeue_request(rq);
545 
546 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
547 		if (q->dma_drain_size && blk_rq_bytes(rq))
548 			rq->nr_phys_segments--;
549 	}
550 }
551 
552 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 {
554 	__blk_mq_requeue_request(rq);
555 
556 	BUG_ON(blk_queued_rq(rq));
557 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 }
559 EXPORT_SYMBOL(blk_mq_requeue_request);
560 
561 static void blk_mq_requeue_work(struct work_struct *work)
562 {
563 	struct request_queue *q =
564 		container_of(work, struct request_queue, requeue_work.work);
565 	LIST_HEAD(rq_list);
566 	struct request *rq, *next;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&q->requeue_lock, flags);
570 	list_splice_init(&q->requeue_list, &rq_list);
571 	spin_unlock_irqrestore(&q->requeue_lock, flags);
572 
573 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
575 			continue;
576 
577 		rq->rq_flags &= ~RQF_SOFTBARRIER;
578 		list_del_init(&rq->queuelist);
579 		blk_mq_sched_insert_request(rq, true, false, false, true);
580 	}
581 
582 	while (!list_empty(&rq_list)) {
583 		rq = list_entry(rq_list.next, struct request, queuelist);
584 		list_del_init(&rq->queuelist);
585 		blk_mq_sched_insert_request(rq, false, false, false, true);
586 	}
587 
588 	blk_mq_run_hw_queues(q, false);
589 }
590 
591 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
592 				bool kick_requeue_list)
593 {
594 	struct request_queue *q = rq->q;
595 	unsigned long flags;
596 
597 	/*
598 	 * We abuse this flag that is otherwise used by the I/O scheduler to
599 	 * request head insertation from the workqueue.
600 	 */
601 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602 
603 	spin_lock_irqsave(&q->requeue_lock, flags);
604 	if (at_head) {
605 		rq->rq_flags |= RQF_SOFTBARRIER;
606 		list_add(&rq->queuelist, &q->requeue_list);
607 	} else {
608 		list_add_tail(&rq->queuelist, &q->requeue_list);
609 	}
610 	spin_unlock_irqrestore(&q->requeue_lock, flags);
611 
612 	if (kick_requeue_list)
613 		blk_mq_kick_requeue_list(q);
614 }
615 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
616 
617 void blk_mq_kick_requeue_list(struct request_queue *q)
618 {
619 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 }
621 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
622 
623 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
624 				    unsigned long msecs)
625 {
626 	kblockd_schedule_delayed_work(&q->requeue_work,
627 				      msecs_to_jiffies(msecs));
628 }
629 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
630 
631 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
632 {
633 	if (tag < tags->nr_tags) {
634 		prefetch(tags->rqs[tag]);
635 		return tags->rqs[tag];
636 	}
637 
638 	return NULL;
639 }
640 EXPORT_SYMBOL(blk_mq_tag_to_rq);
641 
642 struct blk_mq_timeout_data {
643 	unsigned long next;
644 	unsigned int next_set;
645 };
646 
647 void blk_mq_rq_timed_out(struct request *req, bool reserved)
648 {
649 	const struct blk_mq_ops *ops = req->q->mq_ops;
650 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
651 
652 	/*
653 	 * We know that complete is set at this point. If STARTED isn't set
654 	 * anymore, then the request isn't active and the "timeout" should
655 	 * just be ignored. This can happen due to the bitflag ordering.
656 	 * Timeout first checks if STARTED is set, and if it is, assumes
657 	 * the request is active. But if we race with completion, then
658 	 * both flags will get cleared. So check here again, and ignore
659 	 * a timeout event with a request that isn't active.
660 	 */
661 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
662 		return;
663 
664 	if (ops->timeout)
665 		ret = ops->timeout(req, reserved);
666 
667 	switch (ret) {
668 	case BLK_EH_HANDLED:
669 		__blk_mq_complete_request(req);
670 		break;
671 	case BLK_EH_RESET_TIMER:
672 		blk_add_timer(req);
673 		blk_clear_rq_complete(req);
674 		break;
675 	case BLK_EH_NOT_HANDLED:
676 		break;
677 	default:
678 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
679 		break;
680 	}
681 }
682 
683 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
684 		struct request *rq, void *priv, bool reserved)
685 {
686 	struct blk_mq_timeout_data *data = priv;
687 
688 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
689 		return;
690 
691 	/*
692 	 * The rq being checked may have been freed and reallocated
693 	 * out already here, we avoid this race by checking rq->deadline
694 	 * and REQ_ATOM_COMPLETE flag together:
695 	 *
696 	 * - if rq->deadline is observed as new value because of
697 	 *   reusing, the rq won't be timed out because of timing.
698 	 * - if rq->deadline is observed as previous value,
699 	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
700 	 *   because we put a barrier between setting rq->deadline
701 	 *   and clearing the flag in blk_mq_start_request(), so
702 	 *   this rq won't be timed out too.
703 	 */
704 	if (time_after_eq(jiffies, rq->deadline)) {
705 		if (!blk_mark_rq_complete(rq))
706 			blk_mq_rq_timed_out(rq, reserved);
707 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
708 		data->next = rq->deadline;
709 		data->next_set = 1;
710 	}
711 }
712 
713 static void blk_mq_timeout_work(struct work_struct *work)
714 {
715 	struct request_queue *q =
716 		container_of(work, struct request_queue, timeout_work);
717 	struct blk_mq_timeout_data data = {
718 		.next		= 0,
719 		.next_set	= 0,
720 	};
721 	int i;
722 
723 	/* A deadlock might occur if a request is stuck requiring a
724 	 * timeout at the same time a queue freeze is waiting
725 	 * completion, since the timeout code would not be able to
726 	 * acquire the queue reference here.
727 	 *
728 	 * That's why we don't use blk_queue_enter here; instead, we use
729 	 * percpu_ref_tryget directly, because we need to be able to
730 	 * obtain a reference even in the short window between the queue
731 	 * starting to freeze, by dropping the first reference in
732 	 * blk_freeze_queue_start, and the moment the last request is
733 	 * consumed, marked by the instant q_usage_counter reaches
734 	 * zero.
735 	 */
736 	if (!percpu_ref_tryget(&q->q_usage_counter))
737 		return;
738 
739 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
740 
741 	if (data.next_set) {
742 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
743 		mod_timer(&q->timeout, data.next);
744 	} else {
745 		struct blk_mq_hw_ctx *hctx;
746 
747 		queue_for_each_hw_ctx(q, hctx, i) {
748 			/* the hctx may be unmapped, so check it here */
749 			if (blk_mq_hw_queue_mapped(hctx))
750 				blk_mq_tag_idle(hctx);
751 		}
752 	}
753 	blk_queue_exit(q);
754 }
755 
756 /*
757  * Reverse check our software queue for entries that we could potentially
758  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
759  * too much time checking for merges.
760  */
761 static bool blk_mq_attempt_merge(struct request_queue *q,
762 				 struct blk_mq_ctx *ctx, struct bio *bio)
763 {
764 	struct request *rq;
765 	int checked = 8;
766 
767 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
768 		bool merged = false;
769 
770 		if (!checked--)
771 			break;
772 
773 		if (!blk_rq_merge_ok(rq, bio))
774 			continue;
775 
776 		switch (blk_try_merge(rq, bio)) {
777 		case ELEVATOR_BACK_MERGE:
778 			if (blk_mq_sched_allow_merge(q, rq, bio))
779 				merged = bio_attempt_back_merge(q, rq, bio);
780 			break;
781 		case ELEVATOR_FRONT_MERGE:
782 			if (blk_mq_sched_allow_merge(q, rq, bio))
783 				merged = bio_attempt_front_merge(q, rq, bio);
784 			break;
785 		case ELEVATOR_DISCARD_MERGE:
786 			merged = bio_attempt_discard_merge(q, rq, bio);
787 			break;
788 		default:
789 			continue;
790 		}
791 
792 		if (merged)
793 			ctx->rq_merged++;
794 		return merged;
795 	}
796 
797 	return false;
798 }
799 
800 struct flush_busy_ctx_data {
801 	struct blk_mq_hw_ctx *hctx;
802 	struct list_head *list;
803 };
804 
805 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
806 {
807 	struct flush_busy_ctx_data *flush_data = data;
808 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
809 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
810 
811 	sbitmap_clear_bit(sb, bitnr);
812 	spin_lock(&ctx->lock);
813 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
814 	spin_unlock(&ctx->lock);
815 	return true;
816 }
817 
818 /*
819  * Process software queues that have been marked busy, splicing them
820  * to the for-dispatch
821  */
822 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
823 {
824 	struct flush_busy_ctx_data data = {
825 		.hctx = hctx,
826 		.list = list,
827 	};
828 
829 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
830 }
831 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
832 
833 static inline unsigned int queued_to_index(unsigned int queued)
834 {
835 	if (!queued)
836 		return 0;
837 
838 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
839 }
840 
841 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
842 			   bool wait)
843 {
844 	struct blk_mq_alloc_data data = {
845 		.q = rq->q,
846 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
847 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
848 	};
849 
850 	might_sleep_if(wait);
851 
852 	if (rq->tag != -1)
853 		goto done;
854 
855 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
856 		data.flags |= BLK_MQ_REQ_RESERVED;
857 
858 	rq->tag = blk_mq_get_tag(&data);
859 	if (rq->tag >= 0) {
860 		if (blk_mq_tag_busy(data.hctx)) {
861 			rq->rq_flags |= RQF_MQ_INFLIGHT;
862 			atomic_inc(&data.hctx->nr_active);
863 		}
864 		data.hctx->tags->rqs[rq->tag] = rq;
865 	}
866 
867 done:
868 	if (hctx)
869 		*hctx = data.hctx;
870 	return rq->tag != -1;
871 }
872 
873 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
874 				    struct request *rq)
875 {
876 	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
877 	rq->tag = -1;
878 
879 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
880 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
881 		atomic_dec(&hctx->nr_active);
882 	}
883 }
884 
885 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
886 				       struct request *rq)
887 {
888 	if (rq->tag == -1 || rq->internal_tag == -1)
889 		return;
890 
891 	__blk_mq_put_driver_tag(hctx, rq);
892 }
893 
894 static void blk_mq_put_driver_tag(struct request *rq)
895 {
896 	struct blk_mq_hw_ctx *hctx;
897 
898 	if (rq->tag == -1 || rq->internal_tag == -1)
899 		return;
900 
901 	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
902 	__blk_mq_put_driver_tag(hctx, rq);
903 }
904 
905 /*
906  * If we fail getting a driver tag because all the driver tags are already
907  * assigned and on the dispatch list, BUT the first entry does not have a
908  * tag, then we could deadlock. For that case, move entries with assigned
909  * driver tags to the front, leaving the set of tagged requests in the
910  * same order, and the untagged set in the same order.
911  */
912 static bool reorder_tags_to_front(struct list_head *list)
913 {
914 	struct request *rq, *tmp, *first = NULL;
915 
916 	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
917 		if (rq == first)
918 			break;
919 		if (rq->tag != -1) {
920 			list_move(&rq->queuelist, list);
921 			if (!first)
922 				first = rq;
923 		}
924 	}
925 
926 	return first != NULL;
927 }
928 
929 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
930 				void *key)
931 {
932 	struct blk_mq_hw_ctx *hctx;
933 
934 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
935 
936 	list_del(&wait->task_list);
937 	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
938 	blk_mq_run_hw_queue(hctx, true);
939 	return 1;
940 }
941 
942 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
943 {
944 	struct sbq_wait_state *ws;
945 
946 	/*
947 	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
948 	 * The thread which wins the race to grab this bit adds the hardware
949 	 * queue to the wait queue.
950 	 */
951 	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
952 	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
953 		return false;
954 
955 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
956 	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
957 
958 	/*
959 	 * As soon as this returns, it's no longer safe to fiddle with
960 	 * hctx->dispatch_wait, since a completion can wake up the wait queue
961 	 * and unlock the bit.
962 	 */
963 	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
964 	return true;
965 }
966 
967 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
968 {
969 	struct blk_mq_hw_ctx *hctx;
970 	struct request *rq;
971 	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
972 
973 	if (list_empty(list))
974 		return false;
975 
976 	/*
977 	 * Now process all the entries, sending them to the driver.
978 	 */
979 	errors = queued = 0;
980 	do {
981 		struct blk_mq_queue_data bd;
982 
983 		rq = list_first_entry(list, struct request, queuelist);
984 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
985 			if (!queued && reorder_tags_to_front(list))
986 				continue;
987 
988 			/*
989 			 * The initial allocation attempt failed, so we need to
990 			 * rerun the hardware queue when a tag is freed.
991 			 */
992 			if (!blk_mq_dispatch_wait_add(hctx))
993 				break;
994 
995 			/*
996 			 * It's possible that a tag was freed in the window
997 			 * between the allocation failure and adding the
998 			 * hardware queue to the wait queue.
999 			 */
1000 			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1001 				break;
1002 		}
1003 
1004 		list_del_init(&rq->queuelist);
1005 
1006 		bd.rq = rq;
1007 
1008 		/*
1009 		 * Flag last if we have no more requests, or if we have more
1010 		 * but can't assign a driver tag to it.
1011 		 */
1012 		if (list_empty(list))
1013 			bd.last = true;
1014 		else {
1015 			struct request *nxt;
1016 
1017 			nxt = list_first_entry(list, struct request, queuelist);
1018 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1019 		}
1020 
1021 		ret = q->mq_ops->queue_rq(hctx, &bd);
1022 		switch (ret) {
1023 		case BLK_MQ_RQ_QUEUE_OK:
1024 			queued++;
1025 			break;
1026 		case BLK_MQ_RQ_QUEUE_BUSY:
1027 			blk_mq_put_driver_tag_hctx(hctx, rq);
1028 			list_add(&rq->queuelist, list);
1029 			__blk_mq_requeue_request(rq);
1030 			break;
1031 		default:
1032 			pr_err("blk-mq: bad return on queue: %d\n", ret);
1033 		case BLK_MQ_RQ_QUEUE_ERROR:
1034 			errors++;
1035 			blk_mq_end_request(rq, -EIO);
1036 			break;
1037 		}
1038 
1039 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1040 			break;
1041 	} while (!list_empty(list));
1042 
1043 	hctx->dispatched[queued_to_index(queued)]++;
1044 
1045 	/*
1046 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1047 	 * that is where we will continue on next queue run.
1048 	 */
1049 	if (!list_empty(list)) {
1050 		/*
1051 		 * If an I/O scheduler has been configured and we got a driver
1052 		 * tag for the next request already, free it again.
1053 		 */
1054 		rq = list_first_entry(list, struct request, queuelist);
1055 		blk_mq_put_driver_tag(rq);
1056 
1057 		spin_lock(&hctx->lock);
1058 		list_splice_init(list, &hctx->dispatch);
1059 		spin_unlock(&hctx->lock);
1060 
1061 		/*
1062 		 * If SCHED_RESTART was set by the caller of this function and
1063 		 * it is no longer set that means that it was cleared by another
1064 		 * thread and hence that a queue rerun is needed.
1065 		 *
1066 		 * If TAG_WAITING is set that means that an I/O scheduler has
1067 		 * been configured and another thread is waiting for a driver
1068 		 * tag. To guarantee fairness, do not rerun this hardware queue
1069 		 * but let the other thread grab the driver tag.
1070 		 *
1071 		 * If no I/O scheduler has been configured it is possible that
1072 		 * the hardware queue got stopped and restarted before requests
1073 		 * were pushed back onto the dispatch list. Rerun the queue to
1074 		 * avoid starvation. Notes:
1075 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1076 		 *   been stopped before rerunning a queue.
1077 		 * - Some but not all block drivers stop a queue before
1078 		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1079 		 *   and dm-rq.
1080 		 */
1081 		if (!blk_mq_sched_needs_restart(hctx) &&
1082 		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1083 			blk_mq_run_hw_queue(hctx, true);
1084 	}
1085 
1086 	return (queued + errors) != 0;
1087 }
1088 
1089 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1090 {
1091 	int srcu_idx;
1092 
1093 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1094 		cpu_online(hctx->next_cpu));
1095 
1096 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1097 		rcu_read_lock();
1098 		blk_mq_sched_dispatch_requests(hctx);
1099 		rcu_read_unlock();
1100 	} else {
1101 		might_sleep();
1102 
1103 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1104 		blk_mq_sched_dispatch_requests(hctx);
1105 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1106 	}
1107 }
1108 
1109 /*
1110  * It'd be great if the workqueue API had a way to pass
1111  * in a mask and had some smarts for more clever placement.
1112  * For now we just round-robin here, switching for every
1113  * BLK_MQ_CPU_WORK_BATCH queued items.
1114  */
1115 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1116 {
1117 	if (hctx->queue->nr_hw_queues == 1)
1118 		return WORK_CPU_UNBOUND;
1119 
1120 	if (--hctx->next_cpu_batch <= 0) {
1121 		int next_cpu;
1122 
1123 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1124 		if (next_cpu >= nr_cpu_ids)
1125 			next_cpu = cpumask_first(hctx->cpumask);
1126 
1127 		hctx->next_cpu = next_cpu;
1128 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1129 	}
1130 
1131 	return hctx->next_cpu;
1132 }
1133 
1134 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1135 					unsigned long msecs)
1136 {
1137 	if (unlikely(blk_mq_hctx_stopped(hctx) ||
1138 		     !blk_mq_hw_queue_mapped(hctx)))
1139 		return;
1140 
1141 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1142 		int cpu = get_cpu();
1143 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1144 			__blk_mq_run_hw_queue(hctx);
1145 			put_cpu();
1146 			return;
1147 		}
1148 
1149 		put_cpu();
1150 	}
1151 
1152 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1153 					 &hctx->run_work,
1154 					 msecs_to_jiffies(msecs));
1155 }
1156 
1157 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1158 {
1159 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1160 }
1161 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1162 
1163 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1164 {
1165 	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1166 }
1167 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1168 
1169 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1170 {
1171 	struct blk_mq_hw_ctx *hctx;
1172 	int i;
1173 
1174 	queue_for_each_hw_ctx(q, hctx, i) {
1175 		if (!blk_mq_hctx_has_pending(hctx) ||
1176 		    blk_mq_hctx_stopped(hctx))
1177 			continue;
1178 
1179 		blk_mq_run_hw_queue(hctx, async);
1180 	}
1181 }
1182 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1183 
1184 /**
1185  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1186  * @q: request queue.
1187  *
1188  * The caller is responsible for serializing this function against
1189  * blk_mq_{start,stop}_hw_queue().
1190  */
1191 bool blk_mq_queue_stopped(struct request_queue *q)
1192 {
1193 	struct blk_mq_hw_ctx *hctx;
1194 	int i;
1195 
1196 	queue_for_each_hw_ctx(q, hctx, i)
1197 		if (blk_mq_hctx_stopped(hctx))
1198 			return true;
1199 
1200 	return false;
1201 }
1202 EXPORT_SYMBOL(blk_mq_queue_stopped);
1203 
1204 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1205 {
1206 	if (sync)
1207 		cancel_delayed_work_sync(&hctx->run_work);
1208 	else
1209 		cancel_delayed_work(&hctx->run_work);
1210 
1211 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1212 }
1213 
1214 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1215 {
1216 	__blk_mq_stop_hw_queue(hctx, false);
1217 }
1218 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1219 
1220 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1221 {
1222 	struct blk_mq_hw_ctx *hctx;
1223 	int i;
1224 
1225 	queue_for_each_hw_ctx(q, hctx, i)
1226 		__blk_mq_stop_hw_queue(hctx, sync);
1227 }
1228 
1229 void blk_mq_stop_hw_queues(struct request_queue *q)
1230 {
1231 	__blk_mq_stop_hw_queues(q, false);
1232 }
1233 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1234 
1235 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1236 {
1237 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1238 
1239 	blk_mq_run_hw_queue(hctx, false);
1240 }
1241 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1242 
1243 void blk_mq_start_hw_queues(struct request_queue *q)
1244 {
1245 	struct blk_mq_hw_ctx *hctx;
1246 	int i;
1247 
1248 	queue_for_each_hw_ctx(q, hctx, i)
1249 		blk_mq_start_hw_queue(hctx);
1250 }
1251 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1252 
1253 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1254 {
1255 	if (!blk_mq_hctx_stopped(hctx))
1256 		return;
1257 
1258 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1259 	blk_mq_run_hw_queue(hctx, async);
1260 }
1261 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1262 
1263 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1264 {
1265 	struct blk_mq_hw_ctx *hctx;
1266 	int i;
1267 
1268 	queue_for_each_hw_ctx(q, hctx, i)
1269 		blk_mq_start_stopped_hw_queue(hctx, async);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1272 
1273 static void blk_mq_run_work_fn(struct work_struct *work)
1274 {
1275 	struct blk_mq_hw_ctx *hctx;
1276 
1277 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1278 
1279 	/*
1280 	 * If we are stopped, don't run the queue. The exception is if
1281 	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1282 	 * the STOPPED bit and run it.
1283 	 */
1284 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1285 		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1286 			return;
1287 
1288 		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1289 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1290 	}
1291 
1292 	__blk_mq_run_hw_queue(hctx);
1293 }
1294 
1295 
1296 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1297 {
1298 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1299 		return;
1300 
1301 	/*
1302 	 * Stop the hw queue, then modify currently delayed work.
1303 	 * This should prevent us from running the queue prematurely.
1304 	 * Mark the queue as auto-clearing STOPPED when it runs.
1305 	 */
1306 	blk_mq_stop_hw_queue(hctx);
1307 	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1308 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1309 					&hctx->run_work,
1310 					msecs_to_jiffies(msecs));
1311 }
1312 EXPORT_SYMBOL(blk_mq_delay_queue);
1313 
1314 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1315 					    struct request *rq,
1316 					    bool at_head)
1317 {
1318 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1319 
1320 	trace_block_rq_insert(hctx->queue, rq);
1321 
1322 	if (at_head)
1323 		list_add(&rq->queuelist, &ctx->rq_list);
1324 	else
1325 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1326 }
1327 
1328 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1329 			     bool at_head)
1330 {
1331 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1332 
1333 	__blk_mq_insert_req_list(hctx, rq, at_head);
1334 	blk_mq_hctx_mark_pending(hctx, ctx);
1335 }
1336 
1337 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1338 			    struct list_head *list)
1339 
1340 {
1341 	/*
1342 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1343 	 * offline now
1344 	 */
1345 	spin_lock(&ctx->lock);
1346 	while (!list_empty(list)) {
1347 		struct request *rq;
1348 
1349 		rq = list_first_entry(list, struct request, queuelist);
1350 		BUG_ON(rq->mq_ctx != ctx);
1351 		list_del_init(&rq->queuelist);
1352 		__blk_mq_insert_req_list(hctx, rq, false);
1353 	}
1354 	blk_mq_hctx_mark_pending(hctx, ctx);
1355 	spin_unlock(&ctx->lock);
1356 }
1357 
1358 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1359 {
1360 	struct request *rqa = container_of(a, struct request, queuelist);
1361 	struct request *rqb = container_of(b, struct request, queuelist);
1362 
1363 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1364 		 (rqa->mq_ctx == rqb->mq_ctx &&
1365 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1366 }
1367 
1368 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1369 {
1370 	struct blk_mq_ctx *this_ctx;
1371 	struct request_queue *this_q;
1372 	struct request *rq;
1373 	LIST_HEAD(list);
1374 	LIST_HEAD(ctx_list);
1375 	unsigned int depth;
1376 
1377 	list_splice_init(&plug->mq_list, &list);
1378 
1379 	list_sort(NULL, &list, plug_ctx_cmp);
1380 
1381 	this_q = NULL;
1382 	this_ctx = NULL;
1383 	depth = 0;
1384 
1385 	while (!list_empty(&list)) {
1386 		rq = list_entry_rq(list.next);
1387 		list_del_init(&rq->queuelist);
1388 		BUG_ON(!rq->q);
1389 		if (rq->mq_ctx != this_ctx) {
1390 			if (this_ctx) {
1391 				trace_block_unplug(this_q, depth, from_schedule);
1392 				blk_mq_sched_insert_requests(this_q, this_ctx,
1393 								&ctx_list,
1394 								from_schedule);
1395 			}
1396 
1397 			this_ctx = rq->mq_ctx;
1398 			this_q = rq->q;
1399 			depth = 0;
1400 		}
1401 
1402 		depth++;
1403 		list_add_tail(&rq->queuelist, &ctx_list);
1404 	}
1405 
1406 	/*
1407 	 * If 'this_ctx' is set, we know we have entries to complete
1408 	 * on 'ctx_list'. Do those.
1409 	 */
1410 	if (this_ctx) {
1411 		trace_block_unplug(this_q, depth, from_schedule);
1412 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1413 						from_schedule);
1414 	}
1415 }
1416 
1417 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1418 {
1419 	blk_init_request_from_bio(rq, bio);
1420 
1421 	blk_account_io_start(rq, true);
1422 }
1423 
1424 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1425 {
1426 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1427 		!blk_queue_nomerges(hctx->queue);
1428 }
1429 
1430 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1431 					 struct blk_mq_ctx *ctx,
1432 					 struct request *rq, struct bio *bio)
1433 {
1434 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1435 		blk_mq_bio_to_request(rq, bio);
1436 		spin_lock(&ctx->lock);
1437 insert_rq:
1438 		__blk_mq_insert_request(hctx, rq, false);
1439 		spin_unlock(&ctx->lock);
1440 		return false;
1441 	} else {
1442 		struct request_queue *q = hctx->queue;
1443 
1444 		spin_lock(&ctx->lock);
1445 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1446 			blk_mq_bio_to_request(rq, bio);
1447 			goto insert_rq;
1448 		}
1449 
1450 		spin_unlock(&ctx->lock);
1451 		__blk_mq_finish_request(hctx, ctx, rq);
1452 		return true;
1453 	}
1454 }
1455 
1456 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1457 {
1458 	if (rq->tag != -1)
1459 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1460 
1461 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1462 }
1463 
1464 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1465 					struct request *rq,
1466 					blk_qc_t *cookie, bool may_sleep)
1467 {
1468 	struct request_queue *q = rq->q;
1469 	struct blk_mq_queue_data bd = {
1470 		.rq = rq,
1471 		.last = true,
1472 	};
1473 	blk_qc_t new_cookie;
1474 	int ret;
1475 	bool run_queue = true;
1476 
1477 	if (blk_mq_hctx_stopped(hctx)) {
1478 		run_queue = false;
1479 		goto insert;
1480 	}
1481 
1482 	if (q->elevator)
1483 		goto insert;
1484 
1485 	if (!blk_mq_get_driver_tag(rq, NULL, false))
1486 		goto insert;
1487 
1488 	new_cookie = request_to_qc_t(hctx, rq);
1489 
1490 	/*
1491 	 * For OK queue, we are done. For error, kill it. Any other
1492 	 * error (busy), just add it to our list as we previously
1493 	 * would have done
1494 	 */
1495 	ret = q->mq_ops->queue_rq(hctx, &bd);
1496 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1497 		*cookie = new_cookie;
1498 		return;
1499 	}
1500 
1501 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1502 		*cookie = BLK_QC_T_NONE;
1503 		blk_mq_end_request(rq, -EIO);
1504 		return;
1505 	}
1506 
1507 	__blk_mq_requeue_request(rq);
1508 insert:
1509 	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1510 }
1511 
1512 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1513 		struct request *rq, blk_qc_t *cookie)
1514 {
1515 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1516 		rcu_read_lock();
1517 		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1518 		rcu_read_unlock();
1519 	} else {
1520 		unsigned int srcu_idx;
1521 
1522 		might_sleep();
1523 
1524 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1525 		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1526 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1527 	}
1528 }
1529 
1530 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1531 {
1532 	const int is_sync = op_is_sync(bio->bi_opf);
1533 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1534 	struct blk_mq_alloc_data data = { .flags = 0 };
1535 	struct request *rq;
1536 	unsigned int request_count = 0;
1537 	struct blk_plug *plug;
1538 	struct request *same_queue_rq = NULL;
1539 	blk_qc_t cookie;
1540 	unsigned int wb_acct;
1541 
1542 	blk_queue_bounce(q, &bio);
1543 
1544 	blk_queue_split(q, &bio, q->bio_split);
1545 
1546 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1547 		bio_io_error(bio);
1548 		return BLK_QC_T_NONE;
1549 	}
1550 
1551 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1552 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1553 		return BLK_QC_T_NONE;
1554 
1555 	if (blk_mq_sched_bio_merge(q, bio))
1556 		return BLK_QC_T_NONE;
1557 
1558 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1559 
1560 	trace_block_getrq(q, bio, bio->bi_opf);
1561 
1562 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1563 	if (unlikely(!rq)) {
1564 		__wbt_done(q->rq_wb, wb_acct);
1565 		return BLK_QC_T_NONE;
1566 	}
1567 
1568 	wbt_track(&rq->issue_stat, wb_acct);
1569 
1570 	cookie = request_to_qc_t(data.hctx, rq);
1571 
1572 	plug = current->plug;
1573 	if (unlikely(is_flush_fua)) {
1574 		blk_mq_put_ctx(data.ctx);
1575 		blk_mq_bio_to_request(rq, bio);
1576 		if (q->elevator) {
1577 			blk_mq_sched_insert_request(rq, false, true, true,
1578 					true);
1579 		} else {
1580 			blk_insert_flush(rq);
1581 			blk_mq_run_hw_queue(data.hctx, true);
1582 		}
1583 	} else if (plug && q->nr_hw_queues == 1) {
1584 		struct request *last = NULL;
1585 
1586 		blk_mq_put_ctx(data.ctx);
1587 		blk_mq_bio_to_request(rq, bio);
1588 
1589 		/*
1590 		 * @request_count may become stale because of schedule
1591 		 * out, so check the list again.
1592 		 */
1593 		if (list_empty(&plug->mq_list))
1594 			request_count = 0;
1595 		else if (blk_queue_nomerges(q))
1596 			request_count = blk_plug_queued_count(q);
1597 
1598 		if (!request_count)
1599 			trace_block_plug(q);
1600 		else
1601 			last = list_entry_rq(plug->mq_list.prev);
1602 
1603 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1604 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1605 			blk_flush_plug_list(plug, false);
1606 			trace_block_plug(q);
1607 		}
1608 
1609 		list_add_tail(&rq->queuelist, &plug->mq_list);
1610 	} else if (plug && !blk_queue_nomerges(q)) {
1611 		blk_mq_bio_to_request(rq, bio);
1612 
1613 		/*
1614 		 * We do limited plugging. If the bio can be merged, do that.
1615 		 * Otherwise the existing request in the plug list will be
1616 		 * issued. So the plug list will have one request at most
1617 		 * The plug list might get flushed before this. If that happens,
1618 		 * the plug list is empty, and same_queue_rq is invalid.
1619 		 */
1620 		if (list_empty(&plug->mq_list))
1621 			same_queue_rq = NULL;
1622 		if (same_queue_rq)
1623 			list_del_init(&same_queue_rq->queuelist);
1624 		list_add_tail(&rq->queuelist, &plug->mq_list);
1625 
1626 		blk_mq_put_ctx(data.ctx);
1627 
1628 		if (same_queue_rq) {
1629 			data.hctx = blk_mq_map_queue(q,
1630 					same_queue_rq->mq_ctx->cpu);
1631 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1632 					&cookie);
1633 		}
1634 	} else if (q->nr_hw_queues > 1 && is_sync) {
1635 		blk_mq_put_ctx(data.ctx);
1636 		blk_mq_bio_to_request(rq, bio);
1637 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1638 	} else if (q->elevator) {
1639 		blk_mq_put_ctx(data.ctx);
1640 		blk_mq_bio_to_request(rq, bio);
1641 		blk_mq_sched_insert_request(rq, false, true, true, true);
1642 	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1643 		blk_mq_put_ctx(data.ctx);
1644 		blk_mq_run_hw_queue(data.hctx, true);
1645 	} else
1646 		blk_mq_put_ctx(data.ctx);
1647 
1648 	return cookie;
1649 }
1650 
1651 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1652 		     unsigned int hctx_idx)
1653 {
1654 	struct page *page;
1655 
1656 	if (tags->rqs && set->ops->exit_request) {
1657 		int i;
1658 
1659 		for (i = 0; i < tags->nr_tags; i++) {
1660 			struct request *rq = tags->static_rqs[i];
1661 
1662 			if (!rq)
1663 				continue;
1664 			set->ops->exit_request(set, rq, hctx_idx);
1665 			tags->static_rqs[i] = NULL;
1666 		}
1667 	}
1668 
1669 	while (!list_empty(&tags->page_list)) {
1670 		page = list_first_entry(&tags->page_list, struct page, lru);
1671 		list_del_init(&page->lru);
1672 		/*
1673 		 * Remove kmemleak object previously allocated in
1674 		 * blk_mq_init_rq_map().
1675 		 */
1676 		kmemleak_free(page_address(page));
1677 		__free_pages(page, page->private);
1678 	}
1679 }
1680 
1681 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1682 {
1683 	kfree(tags->rqs);
1684 	tags->rqs = NULL;
1685 	kfree(tags->static_rqs);
1686 	tags->static_rqs = NULL;
1687 
1688 	blk_mq_free_tags(tags);
1689 }
1690 
1691 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1692 					unsigned int hctx_idx,
1693 					unsigned int nr_tags,
1694 					unsigned int reserved_tags)
1695 {
1696 	struct blk_mq_tags *tags;
1697 	int node;
1698 
1699 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1700 	if (node == NUMA_NO_NODE)
1701 		node = set->numa_node;
1702 
1703 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1704 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1705 	if (!tags)
1706 		return NULL;
1707 
1708 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1709 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1710 				 node);
1711 	if (!tags->rqs) {
1712 		blk_mq_free_tags(tags);
1713 		return NULL;
1714 	}
1715 
1716 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1717 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1718 				 node);
1719 	if (!tags->static_rqs) {
1720 		kfree(tags->rqs);
1721 		blk_mq_free_tags(tags);
1722 		return NULL;
1723 	}
1724 
1725 	return tags;
1726 }
1727 
1728 static size_t order_to_size(unsigned int order)
1729 {
1730 	return (size_t)PAGE_SIZE << order;
1731 }
1732 
1733 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1734 		     unsigned int hctx_idx, unsigned int depth)
1735 {
1736 	unsigned int i, j, entries_per_page, max_order = 4;
1737 	size_t rq_size, left;
1738 	int node;
1739 
1740 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1741 	if (node == NUMA_NO_NODE)
1742 		node = set->numa_node;
1743 
1744 	INIT_LIST_HEAD(&tags->page_list);
1745 
1746 	/*
1747 	 * rq_size is the size of the request plus driver payload, rounded
1748 	 * to the cacheline size
1749 	 */
1750 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1751 				cache_line_size());
1752 	left = rq_size * depth;
1753 
1754 	for (i = 0; i < depth; ) {
1755 		int this_order = max_order;
1756 		struct page *page;
1757 		int to_do;
1758 		void *p;
1759 
1760 		while (this_order && left < order_to_size(this_order - 1))
1761 			this_order--;
1762 
1763 		do {
1764 			page = alloc_pages_node(node,
1765 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1766 				this_order);
1767 			if (page)
1768 				break;
1769 			if (!this_order--)
1770 				break;
1771 			if (order_to_size(this_order) < rq_size)
1772 				break;
1773 		} while (1);
1774 
1775 		if (!page)
1776 			goto fail;
1777 
1778 		page->private = this_order;
1779 		list_add_tail(&page->lru, &tags->page_list);
1780 
1781 		p = page_address(page);
1782 		/*
1783 		 * Allow kmemleak to scan these pages as they contain pointers
1784 		 * to additional allocations like via ops->init_request().
1785 		 */
1786 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1787 		entries_per_page = order_to_size(this_order) / rq_size;
1788 		to_do = min(entries_per_page, depth - i);
1789 		left -= to_do * rq_size;
1790 		for (j = 0; j < to_do; j++) {
1791 			struct request *rq = p;
1792 
1793 			tags->static_rqs[i] = rq;
1794 			if (set->ops->init_request) {
1795 				if (set->ops->init_request(set, rq, hctx_idx,
1796 						node)) {
1797 					tags->static_rqs[i] = NULL;
1798 					goto fail;
1799 				}
1800 			}
1801 
1802 			p += rq_size;
1803 			i++;
1804 		}
1805 	}
1806 	return 0;
1807 
1808 fail:
1809 	blk_mq_free_rqs(set, tags, hctx_idx);
1810 	return -ENOMEM;
1811 }
1812 
1813 /*
1814  * 'cpu' is going away. splice any existing rq_list entries from this
1815  * software queue to the hw queue dispatch list, and ensure that it
1816  * gets run.
1817  */
1818 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1819 {
1820 	struct blk_mq_hw_ctx *hctx;
1821 	struct blk_mq_ctx *ctx;
1822 	LIST_HEAD(tmp);
1823 
1824 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1825 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1826 
1827 	spin_lock(&ctx->lock);
1828 	if (!list_empty(&ctx->rq_list)) {
1829 		list_splice_init(&ctx->rq_list, &tmp);
1830 		blk_mq_hctx_clear_pending(hctx, ctx);
1831 	}
1832 	spin_unlock(&ctx->lock);
1833 
1834 	if (list_empty(&tmp))
1835 		return 0;
1836 
1837 	spin_lock(&hctx->lock);
1838 	list_splice_tail_init(&tmp, &hctx->dispatch);
1839 	spin_unlock(&hctx->lock);
1840 
1841 	blk_mq_run_hw_queue(hctx, true);
1842 	return 0;
1843 }
1844 
1845 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1846 {
1847 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1848 					    &hctx->cpuhp_dead);
1849 }
1850 
1851 /* hctx->ctxs will be freed in queue's release handler */
1852 static void blk_mq_exit_hctx(struct request_queue *q,
1853 		struct blk_mq_tag_set *set,
1854 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1855 {
1856 	blk_mq_debugfs_unregister_hctx(hctx);
1857 
1858 	blk_mq_tag_idle(hctx);
1859 
1860 	if (set->ops->exit_request)
1861 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1862 
1863 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1864 
1865 	if (set->ops->exit_hctx)
1866 		set->ops->exit_hctx(hctx, hctx_idx);
1867 
1868 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1869 		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1870 
1871 	blk_mq_remove_cpuhp(hctx);
1872 	blk_free_flush_queue(hctx->fq);
1873 	sbitmap_free(&hctx->ctx_map);
1874 }
1875 
1876 static void blk_mq_exit_hw_queues(struct request_queue *q,
1877 		struct blk_mq_tag_set *set, int nr_queue)
1878 {
1879 	struct blk_mq_hw_ctx *hctx;
1880 	unsigned int i;
1881 
1882 	queue_for_each_hw_ctx(q, hctx, i) {
1883 		if (i == nr_queue)
1884 			break;
1885 		blk_mq_exit_hctx(q, set, hctx, i);
1886 	}
1887 }
1888 
1889 static int blk_mq_init_hctx(struct request_queue *q,
1890 		struct blk_mq_tag_set *set,
1891 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1892 {
1893 	int node;
1894 
1895 	node = hctx->numa_node;
1896 	if (node == NUMA_NO_NODE)
1897 		node = hctx->numa_node = set->numa_node;
1898 
1899 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1900 	spin_lock_init(&hctx->lock);
1901 	INIT_LIST_HEAD(&hctx->dispatch);
1902 	hctx->queue = q;
1903 	hctx->queue_num = hctx_idx;
1904 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1905 
1906 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1907 
1908 	hctx->tags = set->tags[hctx_idx];
1909 
1910 	/*
1911 	 * Allocate space for all possible cpus to avoid allocation at
1912 	 * runtime
1913 	 */
1914 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1915 					GFP_KERNEL, node);
1916 	if (!hctx->ctxs)
1917 		goto unregister_cpu_notifier;
1918 
1919 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1920 			      node))
1921 		goto free_ctxs;
1922 
1923 	hctx->nr_ctx = 0;
1924 
1925 	if (set->ops->init_hctx &&
1926 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1927 		goto free_bitmap;
1928 
1929 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1930 		goto exit_hctx;
1931 
1932 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1933 	if (!hctx->fq)
1934 		goto sched_exit_hctx;
1935 
1936 	if (set->ops->init_request &&
1937 	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1938 				   node))
1939 		goto free_fq;
1940 
1941 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1942 		init_srcu_struct(&hctx->queue_rq_srcu);
1943 
1944 	blk_mq_debugfs_register_hctx(q, hctx);
1945 
1946 	return 0;
1947 
1948  free_fq:
1949 	kfree(hctx->fq);
1950  sched_exit_hctx:
1951 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1952  exit_hctx:
1953 	if (set->ops->exit_hctx)
1954 		set->ops->exit_hctx(hctx, hctx_idx);
1955  free_bitmap:
1956 	sbitmap_free(&hctx->ctx_map);
1957  free_ctxs:
1958 	kfree(hctx->ctxs);
1959  unregister_cpu_notifier:
1960 	blk_mq_remove_cpuhp(hctx);
1961 	return -1;
1962 }
1963 
1964 static void blk_mq_init_cpu_queues(struct request_queue *q,
1965 				   unsigned int nr_hw_queues)
1966 {
1967 	unsigned int i;
1968 
1969 	for_each_possible_cpu(i) {
1970 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1971 		struct blk_mq_hw_ctx *hctx;
1972 
1973 		__ctx->cpu = i;
1974 		spin_lock_init(&__ctx->lock);
1975 		INIT_LIST_HEAD(&__ctx->rq_list);
1976 		__ctx->queue = q;
1977 
1978 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1979 		if (!cpu_online(i))
1980 			continue;
1981 
1982 		hctx = blk_mq_map_queue(q, i);
1983 
1984 		/*
1985 		 * Set local node, IFF we have more than one hw queue. If
1986 		 * not, we remain on the home node of the device
1987 		 */
1988 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1989 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1990 	}
1991 }
1992 
1993 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1994 {
1995 	int ret = 0;
1996 
1997 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1998 					set->queue_depth, set->reserved_tags);
1999 	if (!set->tags[hctx_idx])
2000 		return false;
2001 
2002 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2003 				set->queue_depth);
2004 	if (!ret)
2005 		return true;
2006 
2007 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2008 	set->tags[hctx_idx] = NULL;
2009 	return false;
2010 }
2011 
2012 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2013 					 unsigned int hctx_idx)
2014 {
2015 	if (set->tags[hctx_idx]) {
2016 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2017 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2018 		set->tags[hctx_idx] = NULL;
2019 	}
2020 }
2021 
2022 static void blk_mq_map_swqueue(struct request_queue *q,
2023 			       const struct cpumask *online_mask)
2024 {
2025 	unsigned int i, hctx_idx;
2026 	struct blk_mq_hw_ctx *hctx;
2027 	struct blk_mq_ctx *ctx;
2028 	struct blk_mq_tag_set *set = q->tag_set;
2029 
2030 	/*
2031 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2032 	 */
2033 	mutex_lock(&q->sysfs_lock);
2034 
2035 	queue_for_each_hw_ctx(q, hctx, i) {
2036 		cpumask_clear(hctx->cpumask);
2037 		hctx->nr_ctx = 0;
2038 	}
2039 
2040 	/*
2041 	 * Map software to hardware queues
2042 	 */
2043 	for_each_possible_cpu(i) {
2044 		/* If the cpu isn't online, the cpu is mapped to first hctx */
2045 		if (!cpumask_test_cpu(i, online_mask))
2046 			continue;
2047 
2048 		hctx_idx = q->mq_map[i];
2049 		/* unmapped hw queue can be remapped after CPU topo changed */
2050 		if (!set->tags[hctx_idx] &&
2051 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2052 			/*
2053 			 * If tags initialization fail for some hctx,
2054 			 * that hctx won't be brought online.  In this
2055 			 * case, remap the current ctx to hctx[0] which
2056 			 * is guaranteed to always have tags allocated
2057 			 */
2058 			q->mq_map[i] = 0;
2059 		}
2060 
2061 		ctx = per_cpu_ptr(q->queue_ctx, i);
2062 		hctx = blk_mq_map_queue(q, i);
2063 
2064 		cpumask_set_cpu(i, hctx->cpumask);
2065 		ctx->index_hw = hctx->nr_ctx;
2066 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2067 	}
2068 
2069 	mutex_unlock(&q->sysfs_lock);
2070 
2071 	queue_for_each_hw_ctx(q, hctx, i) {
2072 		/*
2073 		 * If no software queues are mapped to this hardware queue,
2074 		 * disable it and free the request entries.
2075 		 */
2076 		if (!hctx->nr_ctx) {
2077 			/* Never unmap queue 0.  We need it as a
2078 			 * fallback in case of a new remap fails
2079 			 * allocation
2080 			 */
2081 			if (i && set->tags[i])
2082 				blk_mq_free_map_and_requests(set, i);
2083 
2084 			hctx->tags = NULL;
2085 			continue;
2086 		}
2087 
2088 		hctx->tags = set->tags[i];
2089 		WARN_ON(!hctx->tags);
2090 
2091 		/*
2092 		 * Set the map size to the number of mapped software queues.
2093 		 * This is more accurate and more efficient than looping
2094 		 * over all possibly mapped software queues.
2095 		 */
2096 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2097 
2098 		/*
2099 		 * Initialize batch roundrobin counts
2100 		 */
2101 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2102 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2103 	}
2104 }
2105 
2106 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2107 {
2108 	struct blk_mq_hw_ctx *hctx;
2109 	int i;
2110 
2111 	queue_for_each_hw_ctx(q, hctx, i) {
2112 		if (shared)
2113 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2114 		else
2115 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2116 	}
2117 }
2118 
2119 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2120 {
2121 	struct request_queue *q;
2122 
2123 	lockdep_assert_held(&set->tag_list_lock);
2124 
2125 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2126 		blk_mq_freeze_queue(q);
2127 		queue_set_hctx_shared(q, shared);
2128 		blk_mq_unfreeze_queue(q);
2129 	}
2130 }
2131 
2132 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2133 {
2134 	struct blk_mq_tag_set *set = q->tag_set;
2135 
2136 	mutex_lock(&set->tag_list_lock);
2137 	list_del_rcu(&q->tag_set_list);
2138 	INIT_LIST_HEAD(&q->tag_set_list);
2139 	if (list_is_singular(&set->tag_list)) {
2140 		/* just transitioned to unshared */
2141 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2142 		/* update existing queue */
2143 		blk_mq_update_tag_set_depth(set, false);
2144 	}
2145 	mutex_unlock(&set->tag_list_lock);
2146 
2147 	synchronize_rcu();
2148 }
2149 
2150 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2151 				     struct request_queue *q)
2152 {
2153 	q->tag_set = set;
2154 
2155 	mutex_lock(&set->tag_list_lock);
2156 
2157 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2158 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2159 		set->flags |= BLK_MQ_F_TAG_SHARED;
2160 		/* update existing queue */
2161 		blk_mq_update_tag_set_depth(set, true);
2162 	}
2163 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2164 		queue_set_hctx_shared(q, true);
2165 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2166 
2167 	mutex_unlock(&set->tag_list_lock);
2168 }
2169 
2170 /*
2171  * It is the actual release handler for mq, but we do it from
2172  * request queue's release handler for avoiding use-after-free
2173  * and headache because q->mq_kobj shouldn't have been introduced,
2174  * but we can't group ctx/kctx kobj without it.
2175  */
2176 void blk_mq_release(struct request_queue *q)
2177 {
2178 	struct blk_mq_hw_ctx *hctx;
2179 	unsigned int i;
2180 
2181 	/* hctx kobj stays in hctx */
2182 	queue_for_each_hw_ctx(q, hctx, i) {
2183 		if (!hctx)
2184 			continue;
2185 		kobject_put(&hctx->kobj);
2186 	}
2187 
2188 	q->mq_map = NULL;
2189 
2190 	kfree(q->queue_hw_ctx);
2191 
2192 	/*
2193 	 * release .mq_kobj and sw queue's kobject now because
2194 	 * both share lifetime with request queue.
2195 	 */
2196 	blk_mq_sysfs_deinit(q);
2197 
2198 	free_percpu(q->queue_ctx);
2199 }
2200 
2201 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2202 {
2203 	struct request_queue *uninit_q, *q;
2204 
2205 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2206 	if (!uninit_q)
2207 		return ERR_PTR(-ENOMEM);
2208 
2209 	q = blk_mq_init_allocated_queue(set, uninit_q);
2210 	if (IS_ERR(q))
2211 		blk_cleanup_queue(uninit_q);
2212 
2213 	return q;
2214 }
2215 EXPORT_SYMBOL(blk_mq_init_queue);
2216 
2217 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2218 						struct request_queue *q)
2219 {
2220 	int i, j;
2221 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2222 
2223 	blk_mq_sysfs_unregister(q);
2224 	for (i = 0; i < set->nr_hw_queues; i++) {
2225 		int node;
2226 
2227 		if (hctxs[i])
2228 			continue;
2229 
2230 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2231 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2232 					GFP_KERNEL, node);
2233 		if (!hctxs[i])
2234 			break;
2235 
2236 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2237 						node)) {
2238 			kfree(hctxs[i]);
2239 			hctxs[i] = NULL;
2240 			break;
2241 		}
2242 
2243 		atomic_set(&hctxs[i]->nr_active, 0);
2244 		hctxs[i]->numa_node = node;
2245 		hctxs[i]->queue_num = i;
2246 
2247 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2248 			free_cpumask_var(hctxs[i]->cpumask);
2249 			kfree(hctxs[i]);
2250 			hctxs[i] = NULL;
2251 			break;
2252 		}
2253 		blk_mq_hctx_kobj_init(hctxs[i]);
2254 	}
2255 	for (j = i; j < q->nr_hw_queues; j++) {
2256 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2257 
2258 		if (hctx) {
2259 			if (hctx->tags)
2260 				blk_mq_free_map_and_requests(set, j);
2261 			blk_mq_exit_hctx(q, set, hctx, j);
2262 			kobject_put(&hctx->kobj);
2263 			hctxs[j] = NULL;
2264 
2265 		}
2266 	}
2267 	q->nr_hw_queues = i;
2268 	blk_mq_sysfs_register(q);
2269 }
2270 
2271 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2272 						  struct request_queue *q)
2273 {
2274 	/* mark the queue as mq asap */
2275 	q->mq_ops = set->ops;
2276 
2277 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2278 					     blk_mq_poll_stats_bkt,
2279 					     BLK_MQ_POLL_STATS_BKTS, q);
2280 	if (!q->poll_cb)
2281 		goto err_exit;
2282 
2283 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2284 	if (!q->queue_ctx)
2285 		goto err_exit;
2286 
2287 	/* init q->mq_kobj and sw queues' kobjects */
2288 	blk_mq_sysfs_init(q);
2289 
2290 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2291 						GFP_KERNEL, set->numa_node);
2292 	if (!q->queue_hw_ctx)
2293 		goto err_percpu;
2294 
2295 	q->mq_map = set->mq_map;
2296 
2297 	blk_mq_realloc_hw_ctxs(set, q);
2298 	if (!q->nr_hw_queues)
2299 		goto err_hctxs;
2300 
2301 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2302 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2303 
2304 	q->nr_queues = nr_cpu_ids;
2305 
2306 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2307 
2308 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2309 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2310 
2311 	q->sg_reserved_size = INT_MAX;
2312 
2313 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2314 	INIT_LIST_HEAD(&q->requeue_list);
2315 	spin_lock_init(&q->requeue_lock);
2316 
2317 	blk_queue_make_request(q, blk_mq_make_request);
2318 
2319 	/*
2320 	 * Do this after blk_queue_make_request() overrides it...
2321 	 */
2322 	q->nr_requests = set->queue_depth;
2323 
2324 	/*
2325 	 * Default to classic polling
2326 	 */
2327 	q->poll_nsec = -1;
2328 
2329 	if (set->ops->complete)
2330 		blk_queue_softirq_done(q, set->ops->complete);
2331 
2332 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2333 
2334 	get_online_cpus();
2335 	mutex_lock(&all_q_mutex);
2336 
2337 	list_add_tail(&q->all_q_node, &all_q_list);
2338 	blk_mq_add_queue_tag_set(set, q);
2339 	blk_mq_map_swqueue(q, cpu_online_mask);
2340 
2341 	mutex_unlock(&all_q_mutex);
2342 	put_online_cpus();
2343 
2344 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2345 		int ret;
2346 
2347 		ret = blk_mq_sched_init(q);
2348 		if (ret)
2349 			return ERR_PTR(ret);
2350 	}
2351 
2352 	return q;
2353 
2354 err_hctxs:
2355 	kfree(q->queue_hw_ctx);
2356 err_percpu:
2357 	free_percpu(q->queue_ctx);
2358 err_exit:
2359 	q->mq_ops = NULL;
2360 	return ERR_PTR(-ENOMEM);
2361 }
2362 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2363 
2364 void blk_mq_free_queue(struct request_queue *q)
2365 {
2366 	struct blk_mq_tag_set	*set = q->tag_set;
2367 
2368 	mutex_lock(&all_q_mutex);
2369 	list_del_init(&q->all_q_node);
2370 	mutex_unlock(&all_q_mutex);
2371 
2372 	blk_mq_del_queue_tag_set(q);
2373 
2374 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2375 }
2376 
2377 /* Basically redo blk_mq_init_queue with queue frozen */
2378 static void blk_mq_queue_reinit(struct request_queue *q,
2379 				const struct cpumask *online_mask)
2380 {
2381 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2382 
2383 	blk_mq_debugfs_unregister_hctxs(q);
2384 	blk_mq_sysfs_unregister(q);
2385 
2386 	/*
2387 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2388 	 * we should change hctx numa_node according to new topology (this
2389 	 * involves free and re-allocate memory, worthy doing?)
2390 	 */
2391 
2392 	blk_mq_map_swqueue(q, online_mask);
2393 
2394 	blk_mq_sysfs_register(q);
2395 	blk_mq_debugfs_register_hctxs(q);
2396 }
2397 
2398 /*
2399  * New online cpumask which is going to be set in this hotplug event.
2400  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2401  * one-by-one and dynamically allocating this could result in a failure.
2402  */
2403 static struct cpumask cpuhp_online_new;
2404 
2405 static void blk_mq_queue_reinit_work(void)
2406 {
2407 	struct request_queue *q;
2408 
2409 	mutex_lock(&all_q_mutex);
2410 	/*
2411 	 * We need to freeze and reinit all existing queues.  Freezing
2412 	 * involves synchronous wait for an RCU grace period and doing it
2413 	 * one by one may take a long time.  Start freezing all queues in
2414 	 * one swoop and then wait for the completions so that freezing can
2415 	 * take place in parallel.
2416 	 */
2417 	list_for_each_entry(q, &all_q_list, all_q_node)
2418 		blk_freeze_queue_start(q);
2419 	list_for_each_entry(q, &all_q_list, all_q_node)
2420 		blk_mq_freeze_queue_wait(q);
2421 
2422 	list_for_each_entry(q, &all_q_list, all_q_node)
2423 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2424 
2425 	list_for_each_entry(q, &all_q_list, all_q_node)
2426 		blk_mq_unfreeze_queue(q);
2427 
2428 	mutex_unlock(&all_q_mutex);
2429 }
2430 
2431 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2432 {
2433 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2434 	blk_mq_queue_reinit_work();
2435 	return 0;
2436 }
2437 
2438 /*
2439  * Before hotadded cpu starts handling requests, new mappings must be
2440  * established.  Otherwise, these requests in hw queue might never be
2441  * dispatched.
2442  *
2443  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2444  * for CPU0, and ctx1 for CPU1).
2445  *
2446  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2447  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2448  *
2449  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2450  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2451  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2452  * ignored.
2453  */
2454 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2455 {
2456 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2457 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2458 	blk_mq_queue_reinit_work();
2459 	return 0;
2460 }
2461 
2462 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2463 {
2464 	int i;
2465 
2466 	for (i = 0; i < set->nr_hw_queues; i++)
2467 		if (!__blk_mq_alloc_rq_map(set, i))
2468 			goto out_unwind;
2469 
2470 	return 0;
2471 
2472 out_unwind:
2473 	while (--i >= 0)
2474 		blk_mq_free_rq_map(set->tags[i]);
2475 
2476 	return -ENOMEM;
2477 }
2478 
2479 /*
2480  * Allocate the request maps associated with this tag_set. Note that this
2481  * may reduce the depth asked for, if memory is tight. set->queue_depth
2482  * will be updated to reflect the allocated depth.
2483  */
2484 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2485 {
2486 	unsigned int depth;
2487 	int err;
2488 
2489 	depth = set->queue_depth;
2490 	do {
2491 		err = __blk_mq_alloc_rq_maps(set);
2492 		if (!err)
2493 			break;
2494 
2495 		set->queue_depth >>= 1;
2496 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2497 			err = -ENOMEM;
2498 			break;
2499 		}
2500 	} while (set->queue_depth);
2501 
2502 	if (!set->queue_depth || err) {
2503 		pr_err("blk-mq: failed to allocate request map\n");
2504 		return -ENOMEM;
2505 	}
2506 
2507 	if (depth != set->queue_depth)
2508 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2509 						depth, set->queue_depth);
2510 
2511 	return 0;
2512 }
2513 
2514 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2515 {
2516 	if (set->ops->map_queues)
2517 		return set->ops->map_queues(set);
2518 	else
2519 		return blk_mq_map_queues(set);
2520 }
2521 
2522 /*
2523  * Alloc a tag set to be associated with one or more request queues.
2524  * May fail with EINVAL for various error conditions. May adjust the
2525  * requested depth down, if if it too large. In that case, the set
2526  * value will be stored in set->queue_depth.
2527  */
2528 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2529 {
2530 	int ret;
2531 
2532 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2533 
2534 	if (!set->nr_hw_queues)
2535 		return -EINVAL;
2536 	if (!set->queue_depth)
2537 		return -EINVAL;
2538 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2539 		return -EINVAL;
2540 
2541 	if (!set->ops->queue_rq)
2542 		return -EINVAL;
2543 
2544 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2545 		pr_info("blk-mq: reduced tag depth to %u\n",
2546 			BLK_MQ_MAX_DEPTH);
2547 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2548 	}
2549 
2550 	/*
2551 	 * If a crashdump is active, then we are potentially in a very
2552 	 * memory constrained environment. Limit us to 1 queue and
2553 	 * 64 tags to prevent using too much memory.
2554 	 */
2555 	if (is_kdump_kernel()) {
2556 		set->nr_hw_queues = 1;
2557 		set->queue_depth = min(64U, set->queue_depth);
2558 	}
2559 	/*
2560 	 * There is no use for more h/w queues than cpus.
2561 	 */
2562 	if (set->nr_hw_queues > nr_cpu_ids)
2563 		set->nr_hw_queues = nr_cpu_ids;
2564 
2565 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2566 				 GFP_KERNEL, set->numa_node);
2567 	if (!set->tags)
2568 		return -ENOMEM;
2569 
2570 	ret = -ENOMEM;
2571 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2572 			GFP_KERNEL, set->numa_node);
2573 	if (!set->mq_map)
2574 		goto out_free_tags;
2575 
2576 	ret = blk_mq_update_queue_map(set);
2577 	if (ret)
2578 		goto out_free_mq_map;
2579 
2580 	ret = blk_mq_alloc_rq_maps(set);
2581 	if (ret)
2582 		goto out_free_mq_map;
2583 
2584 	mutex_init(&set->tag_list_lock);
2585 	INIT_LIST_HEAD(&set->tag_list);
2586 
2587 	return 0;
2588 
2589 out_free_mq_map:
2590 	kfree(set->mq_map);
2591 	set->mq_map = NULL;
2592 out_free_tags:
2593 	kfree(set->tags);
2594 	set->tags = NULL;
2595 	return ret;
2596 }
2597 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2598 
2599 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2600 {
2601 	int i;
2602 
2603 	for (i = 0; i < nr_cpu_ids; i++)
2604 		blk_mq_free_map_and_requests(set, i);
2605 
2606 	kfree(set->mq_map);
2607 	set->mq_map = NULL;
2608 
2609 	kfree(set->tags);
2610 	set->tags = NULL;
2611 }
2612 EXPORT_SYMBOL(blk_mq_free_tag_set);
2613 
2614 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2615 {
2616 	struct blk_mq_tag_set *set = q->tag_set;
2617 	struct blk_mq_hw_ctx *hctx;
2618 	int i, ret;
2619 
2620 	if (!set)
2621 		return -EINVAL;
2622 
2623 	blk_mq_freeze_queue(q);
2624 
2625 	ret = 0;
2626 	queue_for_each_hw_ctx(q, hctx, i) {
2627 		if (!hctx->tags)
2628 			continue;
2629 		/*
2630 		 * If we're using an MQ scheduler, just update the scheduler
2631 		 * queue depth. This is similar to what the old code would do.
2632 		 */
2633 		if (!hctx->sched_tags) {
2634 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2635 							min(nr, set->queue_depth),
2636 							false);
2637 		} else {
2638 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2639 							nr, true);
2640 		}
2641 		if (ret)
2642 			break;
2643 	}
2644 
2645 	if (!ret)
2646 		q->nr_requests = nr;
2647 
2648 	blk_mq_unfreeze_queue(q);
2649 
2650 	return ret;
2651 }
2652 
2653 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2654 							int nr_hw_queues)
2655 {
2656 	struct request_queue *q;
2657 
2658 	lockdep_assert_held(&set->tag_list_lock);
2659 
2660 	if (nr_hw_queues > nr_cpu_ids)
2661 		nr_hw_queues = nr_cpu_ids;
2662 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2663 		return;
2664 
2665 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2666 		blk_mq_freeze_queue(q);
2667 
2668 	set->nr_hw_queues = nr_hw_queues;
2669 	blk_mq_update_queue_map(set);
2670 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2671 		blk_mq_realloc_hw_ctxs(set, q);
2672 		blk_mq_queue_reinit(q, cpu_online_mask);
2673 	}
2674 
2675 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2676 		blk_mq_unfreeze_queue(q);
2677 }
2678 
2679 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2680 {
2681 	mutex_lock(&set->tag_list_lock);
2682 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2683 	mutex_unlock(&set->tag_list_lock);
2684 }
2685 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2686 
2687 /* Enable polling stats and return whether they were already enabled. */
2688 static bool blk_poll_stats_enable(struct request_queue *q)
2689 {
2690 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2691 	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2692 		return true;
2693 	blk_stat_add_callback(q, q->poll_cb);
2694 	return false;
2695 }
2696 
2697 static void blk_mq_poll_stats_start(struct request_queue *q)
2698 {
2699 	/*
2700 	 * We don't arm the callback if polling stats are not enabled or the
2701 	 * callback is already active.
2702 	 */
2703 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2704 	    blk_stat_is_active(q->poll_cb))
2705 		return;
2706 
2707 	blk_stat_activate_msecs(q->poll_cb, 100);
2708 }
2709 
2710 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2711 {
2712 	struct request_queue *q = cb->data;
2713 	int bucket;
2714 
2715 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2716 		if (cb->stat[bucket].nr_samples)
2717 			q->poll_stat[bucket] = cb->stat[bucket];
2718 	}
2719 }
2720 
2721 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2722 				       struct blk_mq_hw_ctx *hctx,
2723 				       struct request *rq)
2724 {
2725 	unsigned long ret = 0;
2726 	int bucket;
2727 
2728 	/*
2729 	 * If stats collection isn't on, don't sleep but turn it on for
2730 	 * future users
2731 	 */
2732 	if (!blk_poll_stats_enable(q))
2733 		return 0;
2734 
2735 	/*
2736 	 * As an optimistic guess, use half of the mean service time
2737 	 * for this type of request. We can (and should) make this smarter.
2738 	 * For instance, if the completion latencies are tight, we can
2739 	 * get closer than just half the mean. This is especially
2740 	 * important on devices where the completion latencies are longer
2741 	 * than ~10 usec. We do use the stats for the relevant IO size
2742 	 * if available which does lead to better estimates.
2743 	 */
2744 	bucket = blk_mq_poll_stats_bkt(rq);
2745 	if (bucket < 0)
2746 		return ret;
2747 
2748 	if (q->poll_stat[bucket].nr_samples)
2749 		ret = (q->poll_stat[bucket].mean + 1) / 2;
2750 
2751 	return ret;
2752 }
2753 
2754 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2755 				     struct blk_mq_hw_ctx *hctx,
2756 				     struct request *rq)
2757 {
2758 	struct hrtimer_sleeper hs;
2759 	enum hrtimer_mode mode;
2760 	unsigned int nsecs;
2761 	ktime_t kt;
2762 
2763 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2764 		return false;
2765 
2766 	/*
2767 	 * poll_nsec can be:
2768 	 *
2769 	 * -1:	don't ever hybrid sleep
2770 	 *  0:	use half of prev avg
2771 	 * >0:	use this specific value
2772 	 */
2773 	if (q->poll_nsec == -1)
2774 		return false;
2775 	else if (q->poll_nsec > 0)
2776 		nsecs = q->poll_nsec;
2777 	else
2778 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2779 
2780 	if (!nsecs)
2781 		return false;
2782 
2783 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2784 
2785 	/*
2786 	 * This will be replaced with the stats tracking code, using
2787 	 * 'avg_completion_time / 2' as the pre-sleep target.
2788 	 */
2789 	kt = nsecs;
2790 
2791 	mode = HRTIMER_MODE_REL;
2792 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2793 	hrtimer_set_expires(&hs.timer, kt);
2794 
2795 	hrtimer_init_sleeper(&hs, current);
2796 	do {
2797 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2798 			break;
2799 		set_current_state(TASK_UNINTERRUPTIBLE);
2800 		hrtimer_start_expires(&hs.timer, mode);
2801 		if (hs.task)
2802 			io_schedule();
2803 		hrtimer_cancel(&hs.timer);
2804 		mode = HRTIMER_MODE_ABS;
2805 	} while (hs.task && !signal_pending(current));
2806 
2807 	__set_current_state(TASK_RUNNING);
2808 	destroy_hrtimer_on_stack(&hs.timer);
2809 	return true;
2810 }
2811 
2812 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2813 {
2814 	struct request_queue *q = hctx->queue;
2815 	long state;
2816 
2817 	/*
2818 	 * If we sleep, have the caller restart the poll loop to reset
2819 	 * the state. Like for the other success return cases, the
2820 	 * caller is responsible for checking if the IO completed. If
2821 	 * the IO isn't complete, we'll get called again and will go
2822 	 * straight to the busy poll loop.
2823 	 */
2824 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2825 		return true;
2826 
2827 	hctx->poll_considered++;
2828 
2829 	state = current->state;
2830 	while (!need_resched()) {
2831 		int ret;
2832 
2833 		hctx->poll_invoked++;
2834 
2835 		ret = q->mq_ops->poll(hctx, rq->tag);
2836 		if (ret > 0) {
2837 			hctx->poll_success++;
2838 			set_current_state(TASK_RUNNING);
2839 			return true;
2840 		}
2841 
2842 		if (signal_pending_state(state, current))
2843 			set_current_state(TASK_RUNNING);
2844 
2845 		if (current->state == TASK_RUNNING)
2846 			return true;
2847 		if (ret < 0)
2848 			break;
2849 		cpu_relax();
2850 	}
2851 
2852 	return false;
2853 }
2854 
2855 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2856 {
2857 	struct blk_mq_hw_ctx *hctx;
2858 	struct blk_plug *plug;
2859 	struct request *rq;
2860 
2861 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2862 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2863 		return false;
2864 
2865 	plug = current->plug;
2866 	if (plug)
2867 		blk_flush_plug_list(plug, false);
2868 
2869 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2870 	if (!blk_qc_t_is_internal(cookie))
2871 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2872 	else {
2873 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2874 		/*
2875 		 * With scheduling, if the request has completed, we'll
2876 		 * get a NULL return here, as we clear the sched tag when
2877 		 * that happens. The request still remains valid, like always,
2878 		 * so we should be safe with just the NULL check.
2879 		 */
2880 		if (!rq)
2881 			return false;
2882 	}
2883 
2884 	return __blk_mq_poll(hctx, rq);
2885 }
2886 EXPORT_SYMBOL_GPL(blk_mq_poll);
2887 
2888 void blk_mq_disable_hotplug(void)
2889 {
2890 	mutex_lock(&all_q_mutex);
2891 }
2892 
2893 void blk_mq_enable_hotplug(void)
2894 {
2895 	mutex_unlock(&all_q_mutex);
2896 }
2897 
2898 static int __init blk_mq_init(void)
2899 {
2900 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2901 				blk_mq_hctx_notify_dead);
2902 
2903 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2904 				  blk_mq_queue_reinit_prepare,
2905 				  blk_mq_queue_reinit_dead);
2906 	return 0;
2907 }
2908 subsys_initcall(blk_mq_init);
2909