1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 47 48 static void blk_mq_poll_stats_start(struct request_queue *q); 49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 50 51 static int blk_mq_poll_stats_bkt(const struct request *rq) 52 { 53 int ddir, sectors, bucket; 54 55 ddir = rq_data_dir(rq); 56 sectors = blk_rq_stats_sectors(rq); 57 58 bucket = ddir + 2 * ilog2(sectors); 59 60 if (bucket < 0) 61 return -1; 62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 64 65 return bucket; 66 } 67 68 #define BLK_QC_T_SHIFT 16 69 #define BLK_QC_T_INTERNAL (1U << 31) 70 71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 72 blk_qc_t qc) 73 { 74 return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT]; 75 } 76 77 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 78 blk_qc_t qc) 79 { 80 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 81 82 if (qc & BLK_QC_T_INTERNAL) 83 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 84 return blk_mq_tag_to_rq(hctx->tags, tag); 85 } 86 87 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 88 { 89 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 90 (rq->tag != -1 ? 91 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 92 } 93 94 /* 95 * Check if any of the ctx, dispatch list or elevator 96 * have pending work in this hardware queue. 97 */ 98 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 99 { 100 return !list_empty_careful(&hctx->dispatch) || 101 sbitmap_any_bit_set(&hctx->ctx_map) || 102 blk_mq_sched_has_work(hctx); 103 } 104 105 /* 106 * Mark this ctx as having pending work in this hardware queue 107 */ 108 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 109 struct blk_mq_ctx *ctx) 110 { 111 const int bit = ctx->index_hw[hctx->type]; 112 113 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 114 sbitmap_set_bit(&hctx->ctx_map, bit); 115 } 116 117 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 118 struct blk_mq_ctx *ctx) 119 { 120 const int bit = ctx->index_hw[hctx->type]; 121 122 sbitmap_clear_bit(&hctx->ctx_map, bit); 123 } 124 125 struct mq_inflight { 126 struct block_device *part; 127 unsigned int inflight[2]; 128 }; 129 130 static bool blk_mq_check_inflight(struct request *rq, void *priv, 131 bool reserved) 132 { 133 struct mq_inflight *mi = priv; 134 135 if ((!mi->part->bd_partno || rq->part == mi->part) && 136 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 137 mi->inflight[rq_data_dir(rq)]++; 138 139 return true; 140 } 141 142 unsigned int blk_mq_in_flight(struct request_queue *q, 143 struct block_device *part) 144 { 145 struct mq_inflight mi = { .part = part }; 146 147 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 148 149 return mi.inflight[0] + mi.inflight[1]; 150 } 151 152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 153 unsigned int inflight[2]) 154 { 155 struct mq_inflight mi = { .part = part }; 156 157 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 158 inflight[0] = mi.inflight[0]; 159 inflight[1] = mi.inflight[1]; 160 } 161 162 void blk_freeze_queue_start(struct request_queue *q) 163 { 164 mutex_lock(&q->mq_freeze_lock); 165 if (++q->mq_freeze_depth == 1) { 166 percpu_ref_kill(&q->q_usage_counter); 167 mutex_unlock(&q->mq_freeze_lock); 168 if (queue_is_mq(q)) 169 blk_mq_run_hw_queues(q, false); 170 } else { 171 mutex_unlock(&q->mq_freeze_lock); 172 } 173 } 174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 175 176 void blk_mq_freeze_queue_wait(struct request_queue *q) 177 { 178 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 179 } 180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 181 182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 183 unsigned long timeout) 184 { 185 return wait_event_timeout(q->mq_freeze_wq, 186 percpu_ref_is_zero(&q->q_usage_counter), 187 timeout); 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 190 191 /* 192 * Guarantee no request is in use, so we can change any data structure of 193 * the queue afterward. 194 */ 195 void blk_freeze_queue(struct request_queue *q) 196 { 197 /* 198 * In the !blk_mq case we are only calling this to kill the 199 * q_usage_counter, otherwise this increases the freeze depth 200 * and waits for it to return to zero. For this reason there is 201 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 202 * exported to drivers as the only user for unfreeze is blk_mq. 203 */ 204 blk_freeze_queue_start(q); 205 blk_mq_freeze_queue_wait(q); 206 } 207 208 void blk_mq_freeze_queue(struct request_queue *q) 209 { 210 /* 211 * ...just an alias to keep freeze and unfreeze actions balanced 212 * in the blk_mq_* namespace 213 */ 214 blk_freeze_queue(q); 215 } 216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 217 218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 219 { 220 mutex_lock(&q->mq_freeze_lock); 221 if (force_atomic) 222 q->q_usage_counter.data->force_atomic = true; 223 q->mq_freeze_depth--; 224 WARN_ON_ONCE(q->mq_freeze_depth < 0); 225 if (!q->mq_freeze_depth) { 226 percpu_ref_resurrect(&q->q_usage_counter); 227 wake_up_all(&q->mq_freeze_wq); 228 } 229 mutex_unlock(&q->mq_freeze_lock); 230 } 231 232 void blk_mq_unfreeze_queue(struct request_queue *q) 233 { 234 __blk_mq_unfreeze_queue(q, false); 235 } 236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 237 238 /* 239 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 240 * mpt3sas driver such that this function can be removed. 241 */ 242 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 243 { 244 unsigned long flags; 245 246 spin_lock_irqsave(&q->queue_lock, flags); 247 if (!q->quiesce_depth++) 248 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 249 spin_unlock_irqrestore(&q->queue_lock, flags); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 252 253 /** 254 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 255 * @q: request queue. 256 * 257 * Note: it is driver's responsibility for making sure that quiesce has 258 * been started. 259 */ 260 void blk_mq_wait_quiesce_done(struct request_queue *q) 261 { 262 if (blk_queue_has_srcu(q)) 263 synchronize_srcu(q->srcu); 264 else 265 synchronize_rcu(); 266 } 267 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 268 269 /** 270 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 271 * @q: request queue. 272 * 273 * Note: this function does not prevent that the struct request end_io() 274 * callback function is invoked. Once this function is returned, we make 275 * sure no dispatch can happen until the queue is unquiesced via 276 * blk_mq_unquiesce_queue(). 277 */ 278 void blk_mq_quiesce_queue(struct request_queue *q) 279 { 280 blk_mq_quiesce_queue_nowait(q); 281 blk_mq_wait_quiesce_done(q); 282 } 283 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 284 285 /* 286 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 287 * @q: request queue. 288 * 289 * This function recovers queue into the state before quiescing 290 * which is done by blk_mq_quiesce_queue. 291 */ 292 void blk_mq_unquiesce_queue(struct request_queue *q) 293 { 294 unsigned long flags; 295 bool run_queue = false; 296 297 spin_lock_irqsave(&q->queue_lock, flags); 298 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 299 ; 300 } else if (!--q->quiesce_depth) { 301 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 302 run_queue = true; 303 } 304 spin_unlock_irqrestore(&q->queue_lock, flags); 305 306 /* dispatch requests which are inserted during quiescing */ 307 if (run_queue) 308 blk_mq_run_hw_queues(q, true); 309 } 310 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 311 312 void blk_mq_wake_waiters(struct request_queue *q) 313 { 314 struct blk_mq_hw_ctx *hctx; 315 unsigned int i; 316 317 queue_for_each_hw_ctx(q, hctx, i) 318 if (blk_mq_hw_queue_mapped(hctx)) 319 blk_mq_tag_wakeup_all(hctx->tags, true); 320 } 321 322 void blk_rq_init(struct request_queue *q, struct request *rq) 323 { 324 memset(rq, 0, sizeof(*rq)); 325 326 INIT_LIST_HEAD(&rq->queuelist); 327 rq->q = q; 328 rq->__sector = (sector_t) -1; 329 INIT_HLIST_NODE(&rq->hash); 330 RB_CLEAR_NODE(&rq->rb_node); 331 rq->tag = BLK_MQ_NO_TAG; 332 rq->internal_tag = BLK_MQ_NO_TAG; 333 rq->start_time_ns = ktime_get_ns(); 334 rq->part = NULL; 335 blk_crypto_rq_set_defaults(rq); 336 } 337 EXPORT_SYMBOL(blk_rq_init); 338 339 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 340 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 341 { 342 struct blk_mq_ctx *ctx = data->ctx; 343 struct blk_mq_hw_ctx *hctx = data->hctx; 344 struct request_queue *q = data->q; 345 struct request *rq = tags->static_rqs[tag]; 346 347 rq->q = q; 348 rq->mq_ctx = ctx; 349 rq->mq_hctx = hctx; 350 rq->cmd_flags = data->cmd_flags; 351 352 if (data->flags & BLK_MQ_REQ_PM) 353 data->rq_flags |= RQF_PM; 354 if (blk_queue_io_stat(q)) 355 data->rq_flags |= RQF_IO_STAT; 356 rq->rq_flags = data->rq_flags; 357 358 if (!(data->rq_flags & RQF_ELV)) { 359 rq->tag = tag; 360 rq->internal_tag = BLK_MQ_NO_TAG; 361 } else { 362 rq->tag = BLK_MQ_NO_TAG; 363 rq->internal_tag = tag; 364 } 365 rq->timeout = 0; 366 367 if (blk_mq_need_time_stamp(rq)) 368 rq->start_time_ns = ktime_get_ns(); 369 else 370 rq->start_time_ns = 0; 371 rq->part = NULL; 372 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 373 rq->alloc_time_ns = alloc_time_ns; 374 #endif 375 rq->io_start_time_ns = 0; 376 rq->stats_sectors = 0; 377 rq->nr_phys_segments = 0; 378 #if defined(CONFIG_BLK_DEV_INTEGRITY) 379 rq->nr_integrity_segments = 0; 380 #endif 381 rq->end_io = NULL; 382 rq->end_io_data = NULL; 383 384 blk_crypto_rq_set_defaults(rq); 385 INIT_LIST_HEAD(&rq->queuelist); 386 /* tag was already set */ 387 WRITE_ONCE(rq->deadline, 0); 388 req_ref_set(rq, 1); 389 390 if (rq->rq_flags & RQF_ELV) { 391 struct elevator_queue *e = data->q->elevator; 392 393 INIT_HLIST_NODE(&rq->hash); 394 RB_CLEAR_NODE(&rq->rb_node); 395 396 if (!op_is_flush(data->cmd_flags) && 397 e->type->ops.prepare_request) { 398 e->type->ops.prepare_request(rq); 399 rq->rq_flags |= RQF_ELVPRIV; 400 } 401 } 402 403 return rq; 404 } 405 406 static inline struct request * 407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 408 u64 alloc_time_ns) 409 { 410 unsigned int tag, tag_offset; 411 struct blk_mq_tags *tags; 412 struct request *rq; 413 unsigned long tag_mask; 414 int i, nr = 0; 415 416 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 417 if (unlikely(!tag_mask)) 418 return NULL; 419 420 tags = blk_mq_tags_from_data(data); 421 for (i = 0; tag_mask; i++) { 422 if (!(tag_mask & (1UL << i))) 423 continue; 424 tag = tag_offset + i; 425 prefetch(tags->static_rqs[tag]); 426 tag_mask &= ~(1UL << i); 427 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 428 rq_list_add(data->cached_rq, rq); 429 nr++; 430 } 431 /* caller already holds a reference, add for remainder */ 432 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 433 data->nr_tags -= nr; 434 435 return rq_list_pop(data->cached_rq); 436 } 437 438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 439 { 440 struct request_queue *q = data->q; 441 u64 alloc_time_ns = 0; 442 struct request *rq; 443 unsigned int tag; 444 445 /* alloc_time includes depth and tag waits */ 446 if (blk_queue_rq_alloc_time(q)) 447 alloc_time_ns = ktime_get_ns(); 448 449 if (data->cmd_flags & REQ_NOWAIT) 450 data->flags |= BLK_MQ_REQ_NOWAIT; 451 452 if (q->elevator) { 453 struct elevator_queue *e = q->elevator; 454 455 data->rq_flags |= RQF_ELV; 456 457 /* 458 * Flush/passthrough requests are special and go directly to the 459 * dispatch list. Don't include reserved tags in the 460 * limiting, as it isn't useful. 461 */ 462 if (!op_is_flush(data->cmd_flags) && 463 !blk_op_is_passthrough(data->cmd_flags) && 464 e->type->ops.limit_depth && 465 !(data->flags & BLK_MQ_REQ_RESERVED)) 466 e->type->ops.limit_depth(data->cmd_flags, data); 467 } 468 469 retry: 470 data->ctx = blk_mq_get_ctx(q); 471 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 472 if (!(data->rq_flags & RQF_ELV)) 473 blk_mq_tag_busy(data->hctx); 474 475 /* 476 * Try batched alloc if we want more than 1 tag. 477 */ 478 if (data->nr_tags > 1) { 479 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 480 if (rq) 481 return rq; 482 data->nr_tags = 1; 483 } 484 485 /* 486 * Waiting allocations only fail because of an inactive hctx. In that 487 * case just retry the hctx assignment and tag allocation as CPU hotplug 488 * should have migrated us to an online CPU by now. 489 */ 490 tag = blk_mq_get_tag(data); 491 if (tag == BLK_MQ_NO_TAG) { 492 if (data->flags & BLK_MQ_REQ_NOWAIT) 493 return NULL; 494 /* 495 * Give up the CPU and sleep for a random short time to 496 * ensure that thread using a realtime scheduling class 497 * are migrated off the CPU, and thus off the hctx that 498 * is going away. 499 */ 500 msleep(3); 501 goto retry; 502 } 503 504 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 505 alloc_time_ns); 506 } 507 508 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 509 blk_mq_req_flags_t flags) 510 { 511 struct blk_mq_alloc_data data = { 512 .q = q, 513 .flags = flags, 514 .cmd_flags = op, 515 .nr_tags = 1, 516 }; 517 struct request *rq; 518 int ret; 519 520 ret = blk_queue_enter(q, flags); 521 if (ret) 522 return ERR_PTR(ret); 523 524 rq = __blk_mq_alloc_requests(&data); 525 if (!rq) 526 goto out_queue_exit; 527 rq->__data_len = 0; 528 rq->__sector = (sector_t) -1; 529 rq->bio = rq->biotail = NULL; 530 return rq; 531 out_queue_exit: 532 blk_queue_exit(q); 533 return ERR_PTR(-EWOULDBLOCK); 534 } 535 EXPORT_SYMBOL(blk_mq_alloc_request); 536 537 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 538 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 539 { 540 struct blk_mq_alloc_data data = { 541 .q = q, 542 .flags = flags, 543 .cmd_flags = op, 544 .nr_tags = 1, 545 }; 546 u64 alloc_time_ns = 0; 547 unsigned int cpu; 548 unsigned int tag; 549 int ret; 550 551 /* alloc_time includes depth and tag waits */ 552 if (blk_queue_rq_alloc_time(q)) 553 alloc_time_ns = ktime_get_ns(); 554 555 /* 556 * If the tag allocator sleeps we could get an allocation for a 557 * different hardware context. No need to complicate the low level 558 * allocator for this for the rare use case of a command tied to 559 * a specific queue. 560 */ 561 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 562 return ERR_PTR(-EINVAL); 563 564 if (hctx_idx >= q->nr_hw_queues) 565 return ERR_PTR(-EIO); 566 567 ret = blk_queue_enter(q, flags); 568 if (ret) 569 return ERR_PTR(ret); 570 571 /* 572 * Check if the hardware context is actually mapped to anything. 573 * If not tell the caller that it should skip this queue. 574 */ 575 ret = -EXDEV; 576 data.hctx = q->queue_hw_ctx[hctx_idx]; 577 if (!blk_mq_hw_queue_mapped(data.hctx)) 578 goto out_queue_exit; 579 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 580 data.ctx = __blk_mq_get_ctx(q, cpu); 581 582 if (!q->elevator) 583 blk_mq_tag_busy(data.hctx); 584 else 585 data.rq_flags |= RQF_ELV; 586 587 ret = -EWOULDBLOCK; 588 tag = blk_mq_get_tag(&data); 589 if (tag == BLK_MQ_NO_TAG) 590 goto out_queue_exit; 591 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 592 alloc_time_ns); 593 594 out_queue_exit: 595 blk_queue_exit(q); 596 return ERR_PTR(ret); 597 } 598 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 599 600 static void __blk_mq_free_request(struct request *rq) 601 { 602 struct request_queue *q = rq->q; 603 struct blk_mq_ctx *ctx = rq->mq_ctx; 604 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 605 const int sched_tag = rq->internal_tag; 606 607 blk_crypto_free_request(rq); 608 blk_pm_mark_last_busy(rq); 609 rq->mq_hctx = NULL; 610 if (rq->tag != BLK_MQ_NO_TAG) 611 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 612 if (sched_tag != BLK_MQ_NO_TAG) 613 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 614 blk_mq_sched_restart(hctx); 615 blk_queue_exit(q); 616 } 617 618 void blk_mq_free_request(struct request *rq) 619 { 620 struct request_queue *q = rq->q; 621 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 622 623 if ((rq->rq_flags & RQF_ELVPRIV) && 624 q->elevator->type->ops.finish_request) 625 q->elevator->type->ops.finish_request(rq); 626 627 if (rq->rq_flags & RQF_MQ_INFLIGHT) 628 __blk_mq_dec_active_requests(hctx); 629 630 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 631 laptop_io_completion(q->disk->bdi); 632 633 rq_qos_done(q, rq); 634 635 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 636 if (req_ref_put_and_test(rq)) 637 __blk_mq_free_request(rq); 638 } 639 EXPORT_SYMBOL_GPL(blk_mq_free_request); 640 641 void blk_mq_free_plug_rqs(struct blk_plug *plug) 642 { 643 struct request *rq; 644 645 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 646 blk_mq_free_request(rq); 647 } 648 649 void blk_dump_rq_flags(struct request *rq, char *msg) 650 { 651 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 652 rq->q->disk ? rq->q->disk->disk_name : "?", 653 (unsigned long long) rq->cmd_flags); 654 655 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 656 (unsigned long long)blk_rq_pos(rq), 657 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 658 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 659 rq->bio, rq->biotail, blk_rq_bytes(rq)); 660 } 661 EXPORT_SYMBOL(blk_dump_rq_flags); 662 663 static void req_bio_endio(struct request *rq, struct bio *bio, 664 unsigned int nbytes, blk_status_t error) 665 { 666 if (unlikely(error)) { 667 bio->bi_status = error; 668 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 669 /* 670 * Partial zone append completions cannot be supported as the 671 * BIO fragments may end up not being written sequentially. 672 */ 673 if (bio->bi_iter.bi_size != nbytes) 674 bio->bi_status = BLK_STS_IOERR; 675 else 676 bio->bi_iter.bi_sector = rq->__sector; 677 } 678 679 bio_advance(bio, nbytes); 680 681 if (unlikely(rq->rq_flags & RQF_QUIET)) 682 bio_set_flag(bio, BIO_QUIET); 683 /* don't actually finish bio if it's part of flush sequence */ 684 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 685 bio_endio(bio); 686 } 687 688 static void blk_account_io_completion(struct request *req, unsigned int bytes) 689 { 690 if (req->part && blk_do_io_stat(req)) { 691 const int sgrp = op_stat_group(req_op(req)); 692 693 part_stat_lock(); 694 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 695 part_stat_unlock(); 696 } 697 } 698 699 static void blk_print_req_error(struct request *req, blk_status_t status) 700 { 701 printk_ratelimited(KERN_ERR 702 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 703 "phys_seg %u prio class %u\n", 704 blk_status_to_str(status), 705 req->q->disk ? req->q->disk->disk_name : "?", 706 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 707 req->cmd_flags & ~REQ_OP_MASK, 708 req->nr_phys_segments, 709 IOPRIO_PRIO_CLASS(req->ioprio)); 710 } 711 712 /* 713 * Fully end IO on a request. Does not support partial completions, or 714 * errors. 715 */ 716 static void blk_complete_request(struct request *req) 717 { 718 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 719 int total_bytes = blk_rq_bytes(req); 720 struct bio *bio = req->bio; 721 722 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 723 724 if (!bio) 725 return; 726 727 #ifdef CONFIG_BLK_DEV_INTEGRITY 728 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 729 req->q->integrity.profile->complete_fn(req, total_bytes); 730 #endif 731 732 blk_account_io_completion(req, total_bytes); 733 734 do { 735 struct bio *next = bio->bi_next; 736 737 /* Completion has already been traced */ 738 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 739 if (!is_flush) 740 bio_endio(bio); 741 bio = next; 742 } while (bio); 743 744 /* 745 * Reset counters so that the request stacking driver 746 * can find how many bytes remain in the request 747 * later. 748 */ 749 req->bio = NULL; 750 req->__data_len = 0; 751 } 752 753 /** 754 * blk_update_request - Complete multiple bytes without completing the request 755 * @req: the request being processed 756 * @error: block status code 757 * @nr_bytes: number of bytes to complete for @req 758 * 759 * Description: 760 * Ends I/O on a number of bytes attached to @req, but doesn't complete 761 * the request structure even if @req doesn't have leftover. 762 * If @req has leftover, sets it up for the next range of segments. 763 * 764 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 765 * %false return from this function. 766 * 767 * Note: 768 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 769 * except in the consistency check at the end of this function. 770 * 771 * Return: 772 * %false - this request doesn't have any more data 773 * %true - this request has more data 774 **/ 775 bool blk_update_request(struct request *req, blk_status_t error, 776 unsigned int nr_bytes) 777 { 778 int total_bytes; 779 780 trace_block_rq_complete(req, error, nr_bytes); 781 782 if (!req->bio) 783 return false; 784 785 #ifdef CONFIG_BLK_DEV_INTEGRITY 786 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 787 error == BLK_STS_OK) 788 req->q->integrity.profile->complete_fn(req, nr_bytes); 789 #endif 790 791 if (unlikely(error && !blk_rq_is_passthrough(req) && 792 !(req->rq_flags & RQF_QUIET))) 793 blk_print_req_error(req, error); 794 795 blk_account_io_completion(req, nr_bytes); 796 797 total_bytes = 0; 798 while (req->bio) { 799 struct bio *bio = req->bio; 800 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 801 802 if (bio_bytes == bio->bi_iter.bi_size) 803 req->bio = bio->bi_next; 804 805 /* Completion has already been traced */ 806 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 807 req_bio_endio(req, bio, bio_bytes, error); 808 809 total_bytes += bio_bytes; 810 nr_bytes -= bio_bytes; 811 812 if (!nr_bytes) 813 break; 814 } 815 816 /* 817 * completely done 818 */ 819 if (!req->bio) { 820 /* 821 * Reset counters so that the request stacking driver 822 * can find how many bytes remain in the request 823 * later. 824 */ 825 req->__data_len = 0; 826 return false; 827 } 828 829 req->__data_len -= total_bytes; 830 831 /* update sector only for requests with clear definition of sector */ 832 if (!blk_rq_is_passthrough(req)) 833 req->__sector += total_bytes >> 9; 834 835 /* mixed attributes always follow the first bio */ 836 if (req->rq_flags & RQF_MIXED_MERGE) { 837 req->cmd_flags &= ~REQ_FAILFAST_MASK; 838 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 839 } 840 841 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 842 /* 843 * If total number of sectors is less than the first segment 844 * size, something has gone terribly wrong. 845 */ 846 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 847 blk_dump_rq_flags(req, "request botched"); 848 req->__data_len = blk_rq_cur_bytes(req); 849 } 850 851 /* recalculate the number of segments */ 852 req->nr_phys_segments = blk_recalc_rq_segments(req); 853 } 854 855 return true; 856 } 857 EXPORT_SYMBOL_GPL(blk_update_request); 858 859 static void __blk_account_io_done(struct request *req, u64 now) 860 { 861 const int sgrp = op_stat_group(req_op(req)); 862 863 part_stat_lock(); 864 update_io_ticks(req->part, jiffies, true); 865 part_stat_inc(req->part, ios[sgrp]); 866 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 867 part_stat_unlock(); 868 } 869 870 static inline void blk_account_io_done(struct request *req, u64 now) 871 { 872 /* 873 * Account IO completion. flush_rq isn't accounted as a 874 * normal IO on queueing nor completion. Accounting the 875 * containing request is enough. 876 */ 877 if (blk_do_io_stat(req) && req->part && 878 !(req->rq_flags & RQF_FLUSH_SEQ)) 879 __blk_account_io_done(req, now); 880 } 881 882 static void __blk_account_io_start(struct request *rq) 883 { 884 /* passthrough requests can hold bios that do not have ->bi_bdev set */ 885 if (rq->bio && rq->bio->bi_bdev) 886 rq->part = rq->bio->bi_bdev; 887 else if (rq->q->disk) 888 rq->part = rq->q->disk->part0; 889 890 part_stat_lock(); 891 update_io_ticks(rq->part, jiffies, false); 892 part_stat_unlock(); 893 } 894 895 static inline void blk_account_io_start(struct request *req) 896 { 897 if (blk_do_io_stat(req)) 898 __blk_account_io_start(req); 899 } 900 901 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 902 { 903 if (rq->rq_flags & RQF_STATS) { 904 blk_mq_poll_stats_start(rq->q); 905 blk_stat_add(rq, now); 906 } 907 908 blk_mq_sched_completed_request(rq, now); 909 blk_account_io_done(rq, now); 910 } 911 912 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 913 { 914 if (blk_mq_need_time_stamp(rq)) 915 __blk_mq_end_request_acct(rq, ktime_get_ns()); 916 917 if (rq->end_io) { 918 rq_qos_done(rq->q, rq); 919 rq->end_io(rq, error); 920 } else { 921 blk_mq_free_request(rq); 922 } 923 } 924 EXPORT_SYMBOL(__blk_mq_end_request); 925 926 void blk_mq_end_request(struct request *rq, blk_status_t error) 927 { 928 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 929 BUG(); 930 __blk_mq_end_request(rq, error); 931 } 932 EXPORT_SYMBOL(blk_mq_end_request); 933 934 #define TAG_COMP_BATCH 32 935 936 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 937 int *tag_array, int nr_tags) 938 { 939 struct request_queue *q = hctx->queue; 940 941 /* 942 * All requests should have been marked as RQF_MQ_INFLIGHT, so 943 * update hctx->nr_active in batch 944 */ 945 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 946 __blk_mq_sub_active_requests(hctx, nr_tags); 947 948 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 949 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 950 } 951 952 void blk_mq_end_request_batch(struct io_comp_batch *iob) 953 { 954 int tags[TAG_COMP_BATCH], nr_tags = 0; 955 struct blk_mq_hw_ctx *cur_hctx = NULL; 956 struct request *rq; 957 u64 now = 0; 958 959 if (iob->need_ts) 960 now = ktime_get_ns(); 961 962 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 963 prefetch(rq->bio); 964 prefetch(rq->rq_next); 965 966 blk_complete_request(rq); 967 if (iob->need_ts) 968 __blk_mq_end_request_acct(rq, now); 969 970 rq_qos_done(rq->q, rq); 971 972 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 973 if (!req_ref_put_and_test(rq)) 974 continue; 975 976 blk_crypto_free_request(rq); 977 blk_pm_mark_last_busy(rq); 978 979 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 980 if (cur_hctx) 981 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 982 nr_tags = 0; 983 cur_hctx = rq->mq_hctx; 984 } 985 tags[nr_tags++] = rq->tag; 986 } 987 988 if (nr_tags) 989 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 990 } 991 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 992 993 static void blk_complete_reqs(struct llist_head *list) 994 { 995 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 996 struct request *rq, *next; 997 998 llist_for_each_entry_safe(rq, next, entry, ipi_list) 999 rq->q->mq_ops->complete(rq); 1000 } 1001 1002 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1003 { 1004 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1005 } 1006 1007 static int blk_softirq_cpu_dead(unsigned int cpu) 1008 { 1009 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1010 return 0; 1011 } 1012 1013 static void __blk_mq_complete_request_remote(void *data) 1014 { 1015 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1016 } 1017 1018 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1019 { 1020 int cpu = raw_smp_processor_id(); 1021 1022 if (!IS_ENABLED(CONFIG_SMP) || 1023 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1024 return false; 1025 /* 1026 * With force threaded interrupts enabled, raising softirq from an SMP 1027 * function call will always result in waking the ksoftirqd thread. 1028 * This is probably worse than completing the request on a different 1029 * cache domain. 1030 */ 1031 if (force_irqthreads()) 1032 return false; 1033 1034 /* same CPU or cache domain? Complete locally */ 1035 if (cpu == rq->mq_ctx->cpu || 1036 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1037 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1038 return false; 1039 1040 /* don't try to IPI to an offline CPU */ 1041 return cpu_online(rq->mq_ctx->cpu); 1042 } 1043 1044 static void blk_mq_complete_send_ipi(struct request *rq) 1045 { 1046 struct llist_head *list; 1047 unsigned int cpu; 1048 1049 cpu = rq->mq_ctx->cpu; 1050 list = &per_cpu(blk_cpu_done, cpu); 1051 if (llist_add(&rq->ipi_list, list)) { 1052 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1053 smp_call_function_single_async(cpu, &rq->csd); 1054 } 1055 } 1056 1057 static void blk_mq_raise_softirq(struct request *rq) 1058 { 1059 struct llist_head *list; 1060 1061 preempt_disable(); 1062 list = this_cpu_ptr(&blk_cpu_done); 1063 if (llist_add(&rq->ipi_list, list)) 1064 raise_softirq(BLOCK_SOFTIRQ); 1065 preempt_enable(); 1066 } 1067 1068 bool blk_mq_complete_request_remote(struct request *rq) 1069 { 1070 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1071 1072 /* 1073 * For a polled request, always complete locallly, it's pointless 1074 * to redirect the completion. 1075 */ 1076 if (rq->cmd_flags & REQ_POLLED) 1077 return false; 1078 1079 if (blk_mq_complete_need_ipi(rq)) { 1080 blk_mq_complete_send_ipi(rq); 1081 return true; 1082 } 1083 1084 if (rq->q->nr_hw_queues == 1) { 1085 blk_mq_raise_softirq(rq); 1086 return true; 1087 } 1088 return false; 1089 } 1090 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1091 1092 /** 1093 * blk_mq_complete_request - end I/O on a request 1094 * @rq: the request being processed 1095 * 1096 * Description: 1097 * Complete a request by scheduling the ->complete_rq operation. 1098 **/ 1099 void blk_mq_complete_request(struct request *rq) 1100 { 1101 if (!blk_mq_complete_request_remote(rq)) 1102 rq->q->mq_ops->complete(rq); 1103 } 1104 EXPORT_SYMBOL(blk_mq_complete_request); 1105 1106 /** 1107 * blk_mq_start_request - Start processing a request 1108 * @rq: Pointer to request to be started 1109 * 1110 * Function used by device drivers to notify the block layer that a request 1111 * is going to be processed now, so blk layer can do proper initializations 1112 * such as starting the timeout timer. 1113 */ 1114 void blk_mq_start_request(struct request *rq) 1115 { 1116 struct request_queue *q = rq->q; 1117 1118 trace_block_rq_issue(rq); 1119 1120 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1121 u64 start_time; 1122 #ifdef CONFIG_BLK_CGROUP 1123 if (rq->bio) 1124 start_time = bio_issue_time(&rq->bio->bi_issue); 1125 else 1126 #endif 1127 start_time = ktime_get_ns(); 1128 rq->io_start_time_ns = start_time; 1129 rq->stats_sectors = blk_rq_sectors(rq); 1130 rq->rq_flags |= RQF_STATS; 1131 rq_qos_issue(q, rq); 1132 } 1133 1134 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1135 1136 blk_add_timer(rq); 1137 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1138 1139 #ifdef CONFIG_BLK_DEV_INTEGRITY 1140 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1141 q->integrity.profile->prepare_fn(rq); 1142 #endif 1143 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1144 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1145 } 1146 EXPORT_SYMBOL(blk_mq_start_request); 1147 1148 /** 1149 * blk_end_sync_rq - executes a completion event on a request 1150 * @rq: request to complete 1151 * @error: end I/O status of the request 1152 */ 1153 static void blk_end_sync_rq(struct request *rq, blk_status_t error) 1154 { 1155 struct completion *waiting = rq->end_io_data; 1156 1157 rq->end_io_data = (void *)(uintptr_t)error; 1158 1159 /* 1160 * complete last, if this is a stack request the process (and thus 1161 * the rq pointer) could be invalid right after this complete() 1162 */ 1163 complete(waiting); 1164 } 1165 1166 /** 1167 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1168 * @rq: request to insert 1169 * @at_head: insert request at head or tail of queue 1170 * @done: I/O completion handler 1171 * 1172 * Description: 1173 * Insert a fully prepared request at the back of the I/O scheduler queue 1174 * for execution. Don't wait for completion. 1175 * 1176 * Note: 1177 * This function will invoke @done directly if the queue is dead. 1178 */ 1179 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done) 1180 { 1181 WARN_ON(irqs_disabled()); 1182 WARN_ON(!blk_rq_is_passthrough(rq)); 1183 1184 rq->end_io = done; 1185 1186 blk_account_io_start(rq); 1187 1188 /* 1189 * don't check dying flag for MQ because the request won't 1190 * be reused after dying flag is set 1191 */ 1192 blk_mq_sched_insert_request(rq, at_head, true, false); 1193 } 1194 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1195 1196 static bool blk_rq_is_poll(struct request *rq) 1197 { 1198 if (!rq->mq_hctx) 1199 return false; 1200 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1201 return false; 1202 if (WARN_ON_ONCE(!rq->bio)) 1203 return false; 1204 return true; 1205 } 1206 1207 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1208 { 1209 do { 1210 bio_poll(rq->bio, NULL, 0); 1211 cond_resched(); 1212 } while (!completion_done(wait)); 1213 } 1214 1215 /** 1216 * blk_execute_rq - insert a request into queue for execution 1217 * @rq: request to insert 1218 * @at_head: insert request at head or tail of queue 1219 * 1220 * Description: 1221 * Insert a fully prepared request at the back of the I/O scheduler queue 1222 * for execution and wait for completion. 1223 * Return: The blk_status_t result provided to blk_mq_end_request(). 1224 */ 1225 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1226 { 1227 DECLARE_COMPLETION_ONSTACK(wait); 1228 unsigned long hang_check; 1229 1230 rq->end_io_data = &wait; 1231 blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq); 1232 1233 /* Prevent hang_check timer from firing at us during very long I/O */ 1234 hang_check = sysctl_hung_task_timeout_secs; 1235 1236 if (blk_rq_is_poll(rq)) 1237 blk_rq_poll_completion(rq, &wait); 1238 else if (hang_check) 1239 while (!wait_for_completion_io_timeout(&wait, 1240 hang_check * (HZ/2))) 1241 ; 1242 else 1243 wait_for_completion_io(&wait); 1244 1245 return (blk_status_t)(uintptr_t)rq->end_io_data; 1246 } 1247 EXPORT_SYMBOL(blk_execute_rq); 1248 1249 static void __blk_mq_requeue_request(struct request *rq) 1250 { 1251 struct request_queue *q = rq->q; 1252 1253 blk_mq_put_driver_tag(rq); 1254 1255 trace_block_rq_requeue(rq); 1256 rq_qos_requeue(q, rq); 1257 1258 if (blk_mq_request_started(rq)) { 1259 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1260 rq->rq_flags &= ~RQF_TIMED_OUT; 1261 } 1262 } 1263 1264 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1265 { 1266 __blk_mq_requeue_request(rq); 1267 1268 /* this request will be re-inserted to io scheduler queue */ 1269 blk_mq_sched_requeue_request(rq); 1270 1271 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1272 } 1273 EXPORT_SYMBOL(blk_mq_requeue_request); 1274 1275 static void blk_mq_requeue_work(struct work_struct *work) 1276 { 1277 struct request_queue *q = 1278 container_of(work, struct request_queue, requeue_work.work); 1279 LIST_HEAD(rq_list); 1280 struct request *rq, *next; 1281 1282 spin_lock_irq(&q->requeue_lock); 1283 list_splice_init(&q->requeue_list, &rq_list); 1284 spin_unlock_irq(&q->requeue_lock); 1285 1286 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1287 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1288 continue; 1289 1290 rq->rq_flags &= ~RQF_SOFTBARRIER; 1291 list_del_init(&rq->queuelist); 1292 /* 1293 * If RQF_DONTPREP, rq has contained some driver specific 1294 * data, so insert it to hctx dispatch list to avoid any 1295 * merge. 1296 */ 1297 if (rq->rq_flags & RQF_DONTPREP) 1298 blk_mq_request_bypass_insert(rq, false, false); 1299 else 1300 blk_mq_sched_insert_request(rq, true, false, false); 1301 } 1302 1303 while (!list_empty(&rq_list)) { 1304 rq = list_entry(rq_list.next, struct request, queuelist); 1305 list_del_init(&rq->queuelist); 1306 blk_mq_sched_insert_request(rq, false, false, false); 1307 } 1308 1309 blk_mq_run_hw_queues(q, false); 1310 } 1311 1312 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1313 bool kick_requeue_list) 1314 { 1315 struct request_queue *q = rq->q; 1316 unsigned long flags; 1317 1318 /* 1319 * We abuse this flag that is otherwise used by the I/O scheduler to 1320 * request head insertion from the workqueue. 1321 */ 1322 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1323 1324 spin_lock_irqsave(&q->requeue_lock, flags); 1325 if (at_head) { 1326 rq->rq_flags |= RQF_SOFTBARRIER; 1327 list_add(&rq->queuelist, &q->requeue_list); 1328 } else { 1329 list_add_tail(&rq->queuelist, &q->requeue_list); 1330 } 1331 spin_unlock_irqrestore(&q->requeue_lock, flags); 1332 1333 if (kick_requeue_list) 1334 blk_mq_kick_requeue_list(q); 1335 } 1336 1337 void blk_mq_kick_requeue_list(struct request_queue *q) 1338 { 1339 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1340 } 1341 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1342 1343 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1344 unsigned long msecs) 1345 { 1346 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1347 msecs_to_jiffies(msecs)); 1348 } 1349 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1350 1351 static bool blk_mq_rq_inflight(struct request *rq, void *priv, 1352 bool reserved) 1353 { 1354 /* 1355 * If we find a request that isn't idle we know the queue is busy 1356 * as it's checked in the iter. 1357 * Return false to stop the iteration. 1358 */ 1359 if (blk_mq_request_started(rq)) { 1360 bool *busy = priv; 1361 1362 *busy = true; 1363 return false; 1364 } 1365 1366 return true; 1367 } 1368 1369 bool blk_mq_queue_inflight(struct request_queue *q) 1370 { 1371 bool busy = false; 1372 1373 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1374 return busy; 1375 } 1376 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1377 1378 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 1379 { 1380 req->rq_flags |= RQF_TIMED_OUT; 1381 if (req->q->mq_ops->timeout) { 1382 enum blk_eh_timer_return ret; 1383 1384 ret = req->q->mq_ops->timeout(req, reserved); 1385 if (ret == BLK_EH_DONE) 1386 return; 1387 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1388 } 1389 1390 blk_add_timer(req); 1391 } 1392 1393 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1394 { 1395 unsigned long deadline; 1396 1397 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1398 return false; 1399 if (rq->rq_flags & RQF_TIMED_OUT) 1400 return false; 1401 1402 deadline = READ_ONCE(rq->deadline); 1403 if (time_after_eq(jiffies, deadline)) 1404 return true; 1405 1406 if (*next == 0) 1407 *next = deadline; 1408 else if (time_after(*next, deadline)) 1409 *next = deadline; 1410 return false; 1411 } 1412 1413 void blk_mq_put_rq_ref(struct request *rq) 1414 { 1415 if (is_flush_rq(rq)) 1416 rq->end_io(rq, 0); 1417 else if (req_ref_put_and_test(rq)) 1418 __blk_mq_free_request(rq); 1419 } 1420 1421 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved) 1422 { 1423 unsigned long *next = priv; 1424 1425 /* 1426 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1427 * be reallocated underneath the timeout handler's processing, then 1428 * the expire check is reliable. If the request is not expired, then 1429 * it was completed and reallocated as a new request after returning 1430 * from blk_mq_check_expired(). 1431 */ 1432 if (blk_mq_req_expired(rq, next)) 1433 blk_mq_rq_timed_out(rq, reserved); 1434 return true; 1435 } 1436 1437 static void blk_mq_timeout_work(struct work_struct *work) 1438 { 1439 struct request_queue *q = 1440 container_of(work, struct request_queue, timeout_work); 1441 unsigned long next = 0; 1442 struct blk_mq_hw_ctx *hctx; 1443 int i; 1444 1445 /* A deadlock might occur if a request is stuck requiring a 1446 * timeout at the same time a queue freeze is waiting 1447 * completion, since the timeout code would not be able to 1448 * acquire the queue reference here. 1449 * 1450 * That's why we don't use blk_queue_enter here; instead, we use 1451 * percpu_ref_tryget directly, because we need to be able to 1452 * obtain a reference even in the short window between the queue 1453 * starting to freeze, by dropping the first reference in 1454 * blk_freeze_queue_start, and the moment the last request is 1455 * consumed, marked by the instant q_usage_counter reaches 1456 * zero. 1457 */ 1458 if (!percpu_ref_tryget(&q->q_usage_counter)) 1459 return; 1460 1461 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1462 1463 if (next != 0) { 1464 mod_timer(&q->timeout, next); 1465 } else { 1466 /* 1467 * Request timeouts are handled as a forward rolling timer. If 1468 * we end up here it means that no requests are pending and 1469 * also that no request has been pending for a while. Mark 1470 * each hctx as idle. 1471 */ 1472 queue_for_each_hw_ctx(q, hctx, i) { 1473 /* the hctx may be unmapped, so check it here */ 1474 if (blk_mq_hw_queue_mapped(hctx)) 1475 blk_mq_tag_idle(hctx); 1476 } 1477 } 1478 blk_queue_exit(q); 1479 } 1480 1481 struct flush_busy_ctx_data { 1482 struct blk_mq_hw_ctx *hctx; 1483 struct list_head *list; 1484 }; 1485 1486 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1487 { 1488 struct flush_busy_ctx_data *flush_data = data; 1489 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1490 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1491 enum hctx_type type = hctx->type; 1492 1493 spin_lock(&ctx->lock); 1494 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1495 sbitmap_clear_bit(sb, bitnr); 1496 spin_unlock(&ctx->lock); 1497 return true; 1498 } 1499 1500 /* 1501 * Process software queues that have been marked busy, splicing them 1502 * to the for-dispatch 1503 */ 1504 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1505 { 1506 struct flush_busy_ctx_data data = { 1507 .hctx = hctx, 1508 .list = list, 1509 }; 1510 1511 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1512 } 1513 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1514 1515 struct dispatch_rq_data { 1516 struct blk_mq_hw_ctx *hctx; 1517 struct request *rq; 1518 }; 1519 1520 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1521 void *data) 1522 { 1523 struct dispatch_rq_data *dispatch_data = data; 1524 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1525 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1526 enum hctx_type type = hctx->type; 1527 1528 spin_lock(&ctx->lock); 1529 if (!list_empty(&ctx->rq_lists[type])) { 1530 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1531 list_del_init(&dispatch_data->rq->queuelist); 1532 if (list_empty(&ctx->rq_lists[type])) 1533 sbitmap_clear_bit(sb, bitnr); 1534 } 1535 spin_unlock(&ctx->lock); 1536 1537 return !dispatch_data->rq; 1538 } 1539 1540 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1541 struct blk_mq_ctx *start) 1542 { 1543 unsigned off = start ? start->index_hw[hctx->type] : 0; 1544 struct dispatch_rq_data data = { 1545 .hctx = hctx, 1546 .rq = NULL, 1547 }; 1548 1549 __sbitmap_for_each_set(&hctx->ctx_map, off, 1550 dispatch_rq_from_ctx, &data); 1551 1552 return data.rq; 1553 } 1554 1555 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1556 { 1557 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1558 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1559 int tag; 1560 1561 blk_mq_tag_busy(rq->mq_hctx); 1562 1563 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1564 bt = &rq->mq_hctx->tags->breserved_tags; 1565 tag_offset = 0; 1566 } else { 1567 if (!hctx_may_queue(rq->mq_hctx, bt)) 1568 return false; 1569 } 1570 1571 tag = __sbitmap_queue_get(bt); 1572 if (tag == BLK_MQ_NO_TAG) 1573 return false; 1574 1575 rq->tag = tag + tag_offset; 1576 return true; 1577 } 1578 1579 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1580 { 1581 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1582 return false; 1583 1584 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1585 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1586 rq->rq_flags |= RQF_MQ_INFLIGHT; 1587 __blk_mq_inc_active_requests(hctx); 1588 } 1589 hctx->tags->rqs[rq->tag] = rq; 1590 return true; 1591 } 1592 1593 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1594 int flags, void *key) 1595 { 1596 struct blk_mq_hw_ctx *hctx; 1597 1598 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1599 1600 spin_lock(&hctx->dispatch_wait_lock); 1601 if (!list_empty(&wait->entry)) { 1602 struct sbitmap_queue *sbq; 1603 1604 list_del_init(&wait->entry); 1605 sbq = &hctx->tags->bitmap_tags; 1606 atomic_dec(&sbq->ws_active); 1607 } 1608 spin_unlock(&hctx->dispatch_wait_lock); 1609 1610 blk_mq_run_hw_queue(hctx, true); 1611 return 1; 1612 } 1613 1614 /* 1615 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1616 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1617 * restart. For both cases, take care to check the condition again after 1618 * marking us as waiting. 1619 */ 1620 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1621 struct request *rq) 1622 { 1623 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1624 struct wait_queue_head *wq; 1625 wait_queue_entry_t *wait; 1626 bool ret; 1627 1628 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1629 blk_mq_sched_mark_restart_hctx(hctx); 1630 1631 /* 1632 * It's possible that a tag was freed in the window between the 1633 * allocation failure and adding the hardware queue to the wait 1634 * queue. 1635 * 1636 * Don't clear RESTART here, someone else could have set it. 1637 * At most this will cost an extra queue run. 1638 */ 1639 return blk_mq_get_driver_tag(rq); 1640 } 1641 1642 wait = &hctx->dispatch_wait; 1643 if (!list_empty_careful(&wait->entry)) 1644 return false; 1645 1646 wq = &bt_wait_ptr(sbq, hctx)->wait; 1647 1648 spin_lock_irq(&wq->lock); 1649 spin_lock(&hctx->dispatch_wait_lock); 1650 if (!list_empty(&wait->entry)) { 1651 spin_unlock(&hctx->dispatch_wait_lock); 1652 spin_unlock_irq(&wq->lock); 1653 return false; 1654 } 1655 1656 atomic_inc(&sbq->ws_active); 1657 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1658 __add_wait_queue(wq, wait); 1659 1660 /* 1661 * It's possible that a tag was freed in the window between the 1662 * allocation failure and adding the hardware queue to the wait 1663 * queue. 1664 */ 1665 ret = blk_mq_get_driver_tag(rq); 1666 if (!ret) { 1667 spin_unlock(&hctx->dispatch_wait_lock); 1668 spin_unlock_irq(&wq->lock); 1669 return false; 1670 } 1671 1672 /* 1673 * We got a tag, remove ourselves from the wait queue to ensure 1674 * someone else gets the wakeup. 1675 */ 1676 list_del_init(&wait->entry); 1677 atomic_dec(&sbq->ws_active); 1678 spin_unlock(&hctx->dispatch_wait_lock); 1679 spin_unlock_irq(&wq->lock); 1680 1681 return true; 1682 } 1683 1684 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1685 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1686 /* 1687 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1688 * - EWMA is one simple way to compute running average value 1689 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1690 * - take 4 as factor for avoiding to get too small(0) result, and this 1691 * factor doesn't matter because EWMA decreases exponentially 1692 */ 1693 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1694 { 1695 unsigned int ewma; 1696 1697 ewma = hctx->dispatch_busy; 1698 1699 if (!ewma && !busy) 1700 return; 1701 1702 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1703 if (busy) 1704 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1705 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1706 1707 hctx->dispatch_busy = ewma; 1708 } 1709 1710 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1711 1712 static void blk_mq_handle_dev_resource(struct request *rq, 1713 struct list_head *list) 1714 { 1715 struct request *next = 1716 list_first_entry_or_null(list, struct request, queuelist); 1717 1718 /* 1719 * If an I/O scheduler has been configured and we got a driver tag for 1720 * the next request already, free it. 1721 */ 1722 if (next) 1723 blk_mq_put_driver_tag(next); 1724 1725 list_add(&rq->queuelist, list); 1726 __blk_mq_requeue_request(rq); 1727 } 1728 1729 static void blk_mq_handle_zone_resource(struct request *rq, 1730 struct list_head *zone_list) 1731 { 1732 /* 1733 * If we end up here it is because we cannot dispatch a request to a 1734 * specific zone due to LLD level zone-write locking or other zone 1735 * related resource not being available. In this case, set the request 1736 * aside in zone_list for retrying it later. 1737 */ 1738 list_add(&rq->queuelist, zone_list); 1739 __blk_mq_requeue_request(rq); 1740 } 1741 1742 enum prep_dispatch { 1743 PREP_DISPATCH_OK, 1744 PREP_DISPATCH_NO_TAG, 1745 PREP_DISPATCH_NO_BUDGET, 1746 }; 1747 1748 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1749 bool need_budget) 1750 { 1751 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1752 int budget_token = -1; 1753 1754 if (need_budget) { 1755 budget_token = blk_mq_get_dispatch_budget(rq->q); 1756 if (budget_token < 0) { 1757 blk_mq_put_driver_tag(rq); 1758 return PREP_DISPATCH_NO_BUDGET; 1759 } 1760 blk_mq_set_rq_budget_token(rq, budget_token); 1761 } 1762 1763 if (!blk_mq_get_driver_tag(rq)) { 1764 /* 1765 * The initial allocation attempt failed, so we need to 1766 * rerun the hardware queue when a tag is freed. The 1767 * waitqueue takes care of that. If the queue is run 1768 * before we add this entry back on the dispatch list, 1769 * we'll re-run it below. 1770 */ 1771 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1772 /* 1773 * All budgets not got from this function will be put 1774 * together during handling partial dispatch 1775 */ 1776 if (need_budget) 1777 blk_mq_put_dispatch_budget(rq->q, budget_token); 1778 return PREP_DISPATCH_NO_TAG; 1779 } 1780 } 1781 1782 return PREP_DISPATCH_OK; 1783 } 1784 1785 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1786 static void blk_mq_release_budgets(struct request_queue *q, 1787 struct list_head *list) 1788 { 1789 struct request *rq; 1790 1791 list_for_each_entry(rq, list, queuelist) { 1792 int budget_token = blk_mq_get_rq_budget_token(rq); 1793 1794 if (budget_token >= 0) 1795 blk_mq_put_dispatch_budget(q, budget_token); 1796 } 1797 } 1798 1799 /* 1800 * Returns true if we did some work AND can potentially do more. 1801 */ 1802 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1803 unsigned int nr_budgets) 1804 { 1805 enum prep_dispatch prep; 1806 struct request_queue *q = hctx->queue; 1807 struct request *rq, *nxt; 1808 int errors, queued; 1809 blk_status_t ret = BLK_STS_OK; 1810 LIST_HEAD(zone_list); 1811 bool needs_resource = false; 1812 1813 if (list_empty(list)) 1814 return false; 1815 1816 /* 1817 * Now process all the entries, sending them to the driver. 1818 */ 1819 errors = queued = 0; 1820 do { 1821 struct blk_mq_queue_data bd; 1822 1823 rq = list_first_entry(list, struct request, queuelist); 1824 1825 WARN_ON_ONCE(hctx != rq->mq_hctx); 1826 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1827 if (prep != PREP_DISPATCH_OK) 1828 break; 1829 1830 list_del_init(&rq->queuelist); 1831 1832 bd.rq = rq; 1833 1834 /* 1835 * Flag last if we have no more requests, or if we have more 1836 * but can't assign a driver tag to it. 1837 */ 1838 if (list_empty(list)) 1839 bd.last = true; 1840 else { 1841 nxt = list_first_entry(list, struct request, queuelist); 1842 bd.last = !blk_mq_get_driver_tag(nxt); 1843 } 1844 1845 /* 1846 * once the request is queued to lld, no need to cover the 1847 * budget any more 1848 */ 1849 if (nr_budgets) 1850 nr_budgets--; 1851 ret = q->mq_ops->queue_rq(hctx, &bd); 1852 switch (ret) { 1853 case BLK_STS_OK: 1854 queued++; 1855 break; 1856 case BLK_STS_RESOURCE: 1857 needs_resource = true; 1858 fallthrough; 1859 case BLK_STS_DEV_RESOURCE: 1860 blk_mq_handle_dev_resource(rq, list); 1861 goto out; 1862 case BLK_STS_ZONE_RESOURCE: 1863 /* 1864 * Move the request to zone_list and keep going through 1865 * the dispatch list to find more requests the drive can 1866 * accept. 1867 */ 1868 blk_mq_handle_zone_resource(rq, &zone_list); 1869 needs_resource = true; 1870 break; 1871 default: 1872 errors++; 1873 blk_mq_end_request(rq, ret); 1874 } 1875 } while (!list_empty(list)); 1876 out: 1877 if (!list_empty(&zone_list)) 1878 list_splice_tail_init(&zone_list, list); 1879 1880 /* If we didn't flush the entire list, we could have told the driver 1881 * there was more coming, but that turned out to be a lie. 1882 */ 1883 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1884 q->mq_ops->commit_rqs(hctx); 1885 /* 1886 * Any items that need requeuing? Stuff them into hctx->dispatch, 1887 * that is where we will continue on next queue run. 1888 */ 1889 if (!list_empty(list)) { 1890 bool needs_restart; 1891 /* For non-shared tags, the RESTART check will suffice */ 1892 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1893 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1894 1895 if (nr_budgets) 1896 blk_mq_release_budgets(q, list); 1897 1898 spin_lock(&hctx->lock); 1899 list_splice_tail_init(list, &hctx->dispatch); 1900 spin_unlock(&hctx->lock); 1901 1902 /* 1903 * Order adding requests to hctx->dispatch and checking 1904 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1905 * in blk_mq_sched_restart(). Avoid restart code path to 1906 * miss the new added requests to hctx->dispatch, meantime 1907 * SCHED_RESTART is observed here. 1908 */ 1909 smp_mb(); 1910 1911 /* 1912 * If SCHED_RESTART was set by the caller of this function and 1913 * it is no longer set that means that it was cleared by another 1914 * thread and hence that a queue rerun is needed. 1915 * 1916 * If 'no_tag' is set, that means that we failed getting 1917 * a driver tag with an I/O scheduler attached. If our dispatch 1918 * waitqueue is no longer active, ensure that we run the queue 1919 * AFTER adding our entries back to the list. 1920 * 1921 * If no I/O scheduler has been configured it is possible that 1922 * the hardware queue got stopped and restarted before requests 1923 * were pushed back onto the dispatch list. Rerun the queue to 1924 * avoid starvation. Notes: 1925 * - blk_mq_run_hw_queue() checks whether or not a queue has 1926 * been stopped before rerunning a queue. 1927 * - Some but not all block drivers stop a queue before 1928 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1929 * and dm-rq. 1930 * 1931 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1932 * bit is set, run queue after a delay to avoid IO stalls 1933 * that could otherwise occur if the queue is idle. We'll do 1934 * similar if we couldn't get budget or couldn't lock a zone 1935 * and SCHED_RESTART is set. 1936 */ 1937 needs_restart = blk_mq_sched_needs_restart(hctx); 1938 if (prep == PREP_DISPATCH_NO_BUDGET) 1939 needs_resource = true; 1940 if (!needs_restart || 1941 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1942 blk_mq_run_hw_queue(hctx, true); 1943 else if (needs_restart && needs_resource) 1944 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1945 1946 blk_mq_update_dispatch_busy(hctx, true); 1947 return false; 1948 } else 1949 blk_mq_update_dispatch_busy(hctx, false); 1950 1951 return (queued + errors) != 0; 1952 } 1953 1954 /** 1955 * __blk_mq_run_hw_queue - Run a hardware queue. 1956 * @hctx: Pointer to the hardware queue to run. 1957 * 1958 * Send pending requests to the hardware. 1959 */ 1960 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1961 { 1962 /* 1963 * We can't run the queue inline with ints disabled. Ensure that 1964 * we catch bad users of this early. 1965 */ 1966 WARN_ON_ONCE(in_interrupt()); 1967 1968 blk_mq_run_dispatch_ops(hctx->queue, 1969 blk_mq_sched_dispatch_requests(hctx)); 1970 } 1971 1972 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1973 { 1974 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1975 1976 if (cpu >= nr_cpu_ids) 1977 cpu = cpumask_first(hctx->cpumask); 1978 return cpu; 1979 } 1980 1981 /* 1982 * It'd be great if the workqueue API had a way to pass 1983 * in a mask and had some smarts for more clever placement. 1984 * For now we just round-robin here, switching for every 1985 * BLK_MQ_CPU_WORK_BATCH queued items. 1986 */ 1987 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1988 { 1989 bool tried = false; 1990 int next_cpu = hctx->next_cpu; 1991 1992 if (hctx->queue->nr_hw_queues == 1) 1993 return WORK_CPU_UNBOUND; 1994 1995 if (--hctx->next_cpu_batch <= 0) { 1996 select_cpu: 1997 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1998 cpu_online_mask); 1999 if (next_cpu >= nr_cpu_ids) 2000 next_cpu = blk_mq_first_mapped_cpu(hctx); 2001 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2002 } 2003 2004 /* 2005 * Do unbound schedule if we can't find a online CPU for this hctx, 2006 * and it should only happen in the path of handling CPU DEAD. 2007 */ 2008 if (!cpu_online(next_cpu)) { 2009 if (!tried) { 2010 tried = true; 2011 goto select_cpu; 2012 } 2013 2014 /* 2015 * Make sure to re-select CPU next time once after CPUs 2016 * in hctx->cpumask become online again. 2017 */ 2018 hctx->next_cpu = next_cpu; 2019 hctx->next_cpu_batch = 1; 2020 return WORK_CPU_UNBOUND; 2021 } 2022 2023 hctx->next_cpu = next_cpu; 2024 return next_cpu; 2025 } 2026 2027 /** 2028 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2029 * @hctx: Pointer to the hardware queue to run. 2030 * @async: If we want to run the queue asynchronously. 2031 * @msecs: Milliseconds of delay to wait before running the queue. 2032 * 2033 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2034 * with a delay of @msecs. 2035 */ 2036 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2037 unsigned long msecs) 2038 { 2039 if (unlikely(blk_mq_hctx_stopped(hctx))) 2040 return; 2041 2042 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2043 int cpu = get_cpu(); 2044 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 2045 __blk_mq_run_hw_queue(hctx); 2046 put_cpu(); 2047 return; 2048 } 2049 2050 put_cpu(); 2051 } 2052 2053 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2054 msecs_to_jiffies(msecs)); 2055 } 2056 2057 /** 2058 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2059 * @hctx: Pointer to the hardware queue to run. 2060 * @msecs: Milliseconds of delay to wait before running the queue. 2061 * 2062 * Run a hardware queue asynchronously with a delay of @msecs. 2063 */ 2064 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2065 { 2066 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2067 } 2068 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2069 2070 /** 2071 * blk_mq_run_hw_queue - Start to run a hardware queue. 2072 * @hctx: Pointer to the hardware queue to run. 2073 * @async: If we want to run the queue asynchronously. 2074 * 2075 * Check if the request queue is not in a quiesced state and if there are 2076 * pending requests to be sent. If this is true, run the queue to send requests 2077 * to hardware. 2078 */ 2079 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2080 { 2081 bool need_run; 2082 2083 /* 2084 * When queue is quiesced, we may be switching io scheduler, or 2085 * updating nr_hw_queues, or other things, and we can't run queue 2086 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2087 * 2088 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2089 * quiesced. 2090 */ 2091 __blk_mq_run_dispatch_ops(hctx->queue, false, 2092 need_run = !blk_queue_quiesced(hctx->queue) && 2093 blk_mq_hctx_has_pending(hctx)); 2094 2095 if (need_run) 2096 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2097 } 2098 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2099 2100 /* 2101 * Is the request queue handled by an IO scheduler that does not respect 2102 * hardware queues when dispatching? 2103 */ 2104 static bool blk_mq_has_sqsched(struct request_queue *q) 2105 { 2106 struct elevator_queue *e = q->elevator; 2107 2108 if (e && e->type->ops.dispatch_request && 2109 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 2110 return true; 2111 return false; 2112 } 2113 2114 /* 2115 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2116 * scheduler. 2117 */ 2118 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2119 { 2120 struct blk_mq_hw_ctx *hctx; 2121 2122 /* 2123 * If the IO scheduler does not respect hardware queues when 2124 * dispatching, we just don't bother with multiple HW queues and 2125 * dispatch from hctx for the current CPU since running multiple queues 2126 * just causes lock contention inside the scheduler and pointless cache 2127 * bouncing. 2128 */ 2129 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 2130 raw_smp_processor_id()); 2131 if (!blk_mq_hctx_stopped(hctx)) 2132 return hctx; 2133 return NULL; 2134 } 2135 2136 /** 2137 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2138 * @q: Pointer to the request queue to run. 2139 * @async: If we want to run the queue asynchronously. 2140 */ 2141 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2142 { 2143 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2144 int i; 2145 2146 sq_hctx = NULL; 2147 if (blk_mq_has_sqsched(q)) 2148 sq_hctx = blk_mq_get_sq_hctx(q); 2149 queue_for_each_hw_ctx(q, hctx, i) { 2150 if (blk_mq_hctx_stopped(hctx)) 2151 continue; 2152 /* 2153 * Dispatch from this hctx either if there's no hctx preferred 2154 * by IO scheduler or if it has requests that bypass the 2155 * scheduler. 2156 */ 2157 if (!sq_hctx || sq_hctx == hctx || 2158 !list_empty_careful(&hctx->dispatch)) 2159 blk_mq_run_hw_queue(hctx, async); 2160 } 2161 } 2162 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2163 2164 /** 2165 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2166 * @q: Pointer to the request queue to run. 2167 * @msecs: Milliseconds of delay to wait before running the queues. 2168 */ 2169 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2170 { 2171 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2172 int i; 2173 2174 sq_hctx = NULL; 2175 if (blk_mq_has_sqsched(q)) 2176 sq_hctx = blk_mq_get_sq_hctx(q); 2177 queue_for_each_hw_ctx(q, hctx, i) { 2178 if (blk_mq_hctx_stopped(hctx)) 2179 continue; 2180 /* 2181 * Dispatch from this hctx either if there's no hctx preferred 2182 * by IO scheduler or if it has requests that bypass the 2183 * scheduler. 2184 */ 2185 if (!sq_hctx || sq_hctx == hctx || 2186 !list_empty_careful(&hctx->dispatch)) 2187 blk_mq_delay_run_hw_queue(hctx, msecs); 2188 } 2189 } 2190 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2191 2192 /** 2193 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 2194 * @q: request queue. 2195 * 2196 * The caller is responsible for serializing this function against 2197 * blk_mq_{start,stop}_hw_queue(). 2198 */ 2199 bool blk_mq_queue_stopped(struct request_queue *q) 2200 { 2201 struct blk_mq_hw_ctx *hctx; 2202 int i; 2203 2204 queue_for_each_hw_ctx(q, hctx, i) 2205 if (blk_mq_hctx_stopped(hctx)) 2206 return true; 2207 2208 return false; 2209 } 2210 EXPORT_SYMBOL(blk_mq_queue_stopped); 2211 2212 /* 2213 * This function is often used for pausing .queue_rq() by driver when 2214 * there isn't enough resource or some conditions aren't satisfied, and 2215 * BLK_STS_RESOURCE is usually returned. 2216 * 2217 * We do not guarantee that dispatch can be drained or blocked 2218 * after blk_mq_stop_hw_queue() returns. Please use 2219 * blk_mq_quiesce_queue() for that requirement. 2220 */ 2221 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2222 { 2223 cancel_delayed_work(&hctx->run_work); 2224 2225 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2226 } 2227 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2228 2229 /* 2230 * This function is often used for pausing .queue_rq() by driver when 2231 * there isn't enough resource or some conditions aren't satisfied, and 2232 * BLK_STS_RESOURCE is usually returned. 2233 * 2234 * We do not guarantee that dispatch can be drained or blocked 2235 * after blk_mq_stop_hw_queues() returns. Please use 2236 * blk_mq_quiesce_queue() for that requirement. 2237 */ 2238 void blk_mq_stop_hw_queues(struct request_queue *q) 2239 { 2240 struct blk_mq_hw_ctx *hctx; 2241 int i; 2242 2243 queue_for_each_hw_ctx(q, hctx, i) 2244 blk_mq_stop_hw_queue(hctx); 2245 } 2246 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2247 2248 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2249 { 2250 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2251 2252 blk_mq_run_hw_queue(hctx, false); 2253 } 2254 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2255 2256 void blk_mq_start_hw_queues(struct request_queue *q) 2257 { 2258 struct blk_mq_hw_ctx *hctx; 2259 int i; 2260 2261 queue_for_each_hw_ctx(q, hctx, i) 2262 blk_mq_start_hw_queue(hctx); 2263 } 2264 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2265 2266 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2267 { 2268 if (!blk_mq_hctx_stopped(hctx)) 2269 return; 2270 2271 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2272 blk_mq_run_hw_queue(hctx, async); 2273 } 2274 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2275 2276 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2277 { 2278 struct blk_mq_hw_ctx *hctx; 2279 int i; 2280 2281 queue_for_each_hw_ctx(q, hctx, i) 2282 blk_mq_start_stopped_hw_queue(hctx, async); 2283 } 2284 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2285 2286 static void blk_mq_run_work_fn(struct work_struct *work) 2287 { 2288 struct blk_mq_hw_ctx *hctx; 2289 2290 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2291 2292 /* 2293 * If we are stopped, don't run the queue. 2294 */ 2295 if (blk_mq_hctx_stopped(hctx)) 2296 return; 2297 2298 __blk_mq_run_hw_queue(hctx); 2299 } 2300 2301 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2302 struct request *rq, 2303 bool at_head) 2304 { 2305 struct blk_mq_ctx *ctx = rq->mq_ctx; 2306 enum hctx_type type = hctx->type; 2307 2308 lockdep_assert_held(&ctx->lock); 2309 2310 trace_block_rq_insert(rq); 2311 2312 if (at_head) 2313 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2314 else 2315 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2316 } 2317 2318 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2319 bool at_head) 2320 { 2321 struct blk_mq_ctx *ctx = rq->mq_ctx; 2322 2323 lockdep_assert_held(&ctx->lock); 2324 2325 __blk_mq_insert_req_list(hctx, rq, at_head); 2326 blk_mq_hctx_mark_pending(hctx, ctx); 2327 } 2328 2329 /** 2330 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2331 * @rq: Pointer to request to be inserted. 2332 * @at_head: true if the request should be inserted at the head of the list. 2333 * @run_queue: If we should run the hardware queue after inserting the request. 2334 * 2335 * Should only be used carefully, when the caller knows we want to 2336 * bypass a potential IO scheduler on the target device. 2337 */ 2338 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2339 bool run_queue) 2340 { 2341 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2342 2343 spin_lock(&hctx->lock); 2344 if (at_head) 2345 list_add(&rq->queuelist, &hctx->dispatch); 2346 else 2347 list_add_tail(&rq->queuelist, &hctx->dispatch); 2348 spin_unlock(&hctx->lock); 2349 2350 if (run_queue) 2351 blk_mq_run_hw_queue(hctx, false); 2352 } 2353 2354 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2355 struct list_head *list) 2356 2357 { 2358 struct request *rq; 2359 enum hctx_type type = hctx->type; 2360 2361 /* 2362 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2363 * offline now 2364 */ 2365 list_for_each_entry(rq, list, queuelist) { 2366 BUG_ON(rq->mq_ctx != ctx); 2367 trace_block_rq_insert(rq); 2368 } 2369 2370 spin_lock(&ctx->lock); 2371 list_splice_tail_init(list, &ctx->rq_lists[type]); 2372 blk_mq_hctx_mark_pending(hctx, ctx); 2373 spin_unlock(&ctx->lock); 2374 } 2375 2376 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2377 bool from_schedule) 2378 { 2379 if (hctx->queue->mq_ops->commit_rqs) { 2380 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2381 hctx->queue->mq_ops->commit_rqs(hctx); 2382 } 2383 *queued = 0; 2384 } 2385 2386 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2387 unsigned int nr_segs) 2388 { 2389 int err; 2390 2391 if (bio->bi_opf & REQ_RAHEAD) 2392 rq->cmd_flags |= REQ_FAILFAST_MASK; 2393 2394 rq->__sector = bio->bi_iter.bi_sector; 2395 rq->write_hint = bio->bi_write_hint; 2396 blk_rq_bio_prep(rq, bio, nr_segs); 2397 2398 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2399 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2400 WARN_ON_ONCE(err); 2401 2402 blk_account_io_start(rq); 2403 } 2404 2405 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2406 struct request *rq, bool last) 2407 { 2408 struct request_queue *q = rq->q; 2409 struct blk_mq_queue_data bd = { 2410 .rq = rq, 2411 .last = last, 2412 }; 2413 blk_status_t ret; 2414 2415 /* 2416 * For OK queue, we are done. For error, caller may kill it. 2417 * Any other error (busy), just add it to our list as we 2418 * previously would have done. 2419 */ 2420 ret = q->mq_ops->queue_rq(hctx, &bd); 2421 switch (ret) { 2422 case BLK_STS_OK: 2423 blk_mq_update_dispatch_busy(hctx, false); 2424 break; 2425 case BLK_STS_RESOURCE: 2426 case BLK_STS_DEV_RESOURCE: 2427 blk_mq_update_dispatch_busy(hctx, true); 2428 __blk_mq_requeue_request(rq); 2429 break; 2430 default: 2431 blk_mq_update_dispatch_busy(hctx, false); 2432 break; 2433 } 2434 2435 return ret; 2436 } 2437 2438 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2439 struct request *rq, 2440 bool bypass_insert, bool last) 2441 { 2442 struct request_queue *q = rq->q; 2443 bool run_queue = true; 2444 int budget_token; 2445 2446 /* 2447 * RCU or SRCU read lock is needed before checking quiesced flag. 2448 * 2449 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2450 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2451 * and avoid driver to try to dispatch again. 2452 */ 2453 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2454 run_queue = false; 2455 bypass_insert = false; 2456 goto insert; 2457 } 2458 2459 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2460 goto insert; 2461 2462 budget_token = blk_mq_get_dispatch_budget(q); 2463 if (budget_token < 0) 2464 goto insert; 2465 2466 blk_mq_set_rq_budget_token(rq, budget_token); 2467 2468 if (!blk_mq_get_driver_tag(rq)) { 2469 blk_mq_put_dispatch_budget(q, budget_token); 2470 goto insert; 2471 } 2472 2473 return __blk_mq_issue_directly(hctx, rq, last); 2474 insert: 2475 if (bypass_insert) 2476 return BLK_STS_RESOURCE; 2477 2478 blk_mq_sched_insert_request(rq, false, run_queue, false); 2479 2480 return BLK_STS_OK; 2481 } 2482 2483 /** 2484 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2485 * @hctx: Pointer of the associated hardware queue. 2486 * @rq: Pointer to request to be sent. 2487 * 2488 * If the device has enough resources to accept a new request now, send the 2489 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2490 * we can try send it another time in the future. Requests inserted at this 2491 * queue have higher priority. 2492 */ 2493 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2494 struct request *rq) 2495 { 2496 blk_status_t ret = 2497 __blk_mq_try_issue_directly(hctx, rq, false, true); 2498 2499 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2500 blk_mq_request_bypass_insert(rq, false, true); 2501 else if (ret != BLK_STS_OK) 2502 blk_mq_end_request(rq, ret); 2503 } 2504 2505 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2506 { 2507 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2508 } 2509 2510 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2511 { 2512 struct blk_mq_hw_ctx *hctx = NULL; 2513 struct request *rq; 2514 int queued = 0; 2515 int errors = 0; 2516 2517 while ((rq = rq_list_pop(&plug->mq_list))) { 2518 bool last = rq_list_empty(plug->mq_list); 2519 blk_status_t ret; 2520 2521 if (hctx != rq->mq_hctx) { 2522 if (hctx) 2523 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2524 hctx = rq->mq_hctx; 2525 } 2526 2527 ret = blk_mq_request_issue_directly(rq, last); 2528 switch (ret) { 2529 case BLK_STS_OK: 2530 queued++; 2531 break; 2532 case BLK_STS_RESOURCE: 2533 case BLK_STS_DEV_RESOURCE: 2534 blk_mq_request_bypass_insert(rq, false, last); 2535 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2536 return; 2537 default: 2538 blk_mq_end_request(rq, ret); 2539 errors++; 2540 break; 2541 } 2542 } 2543 2544 /* 2545 * If we didn't flush the entire list, we could have told the driver 2546 * there was more coming, but that turned out to be a lie. 2547 */ 2548 if (errors) 2549 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2550 } 2551 2552 static void __blk_mq_flush_plug_list(struct request_queue *q, 2553 struct blk_plug *plug) 2554 { 2555 if (blk_queue_quiesced(q)) 2556 return; 2557 q->mq_ops->queue_rqs(&plug->mq_list); 2558 } 2559 2560 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2561 { 2562 struct blk_mq_hw_ctx *this_hctx; 2563 struct blk_mq_ctx *this_ctx; 2564 struct request *rq; 2565 unsigned int depth; 2566 LIST_HEAD(list); 2567 2568 if (rq_list_empty(plug->mq_list)) 2569 return; 2570 plug->rq_count = 0; 2571 2572 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2573 struct request_queue *q; 2574 2575 rq = rq_list_peek(&plug->mq_list); 2576 q = rq->q; 2577 2578 /* 2579 * Peek first request and see if we have a ->queue_rqs() hook. 2580 * If we do, we can dispatch the whole plug list in one go. We 2581 * already know at this point that all requests belong to the 2582 * same queue, caller must ensure that's the case. 2583 * 2584 * Since we pass off the full list to the driver at this point, 2585 * we do not increment the active request count for the queue. 2586 * Bypass shared tags for now because of that. 2587 */ 2588 if (q->mq_ops->queue_rqs && 2589 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2590 blk_mq_run_dispatch_ops(q, 2591 __blk_mq_flush_plug_list(q, plug)); 2592 if (rq_list_empty(plug->mq_list)) 2593 return; 2594 } 2595 2596 blk_mq_run_dispatch_ops(q, 2597 blk_mq_plug_issue_direct(plug, false)); 2598 if (rq_list_empty(plug->mq_list)) 2599 return; 2600 } 2601 2602 this_hctx = NULL; 2603 this_ctx = NULL; 2604 depth = 0; 2605 do { 2606 rq = rq_list_pop(&plug->mq_list); 2607 2608 if (!this_hctx) { 2609 this_hctx = rq->mq_hctx; 2610 this_ctx = rq->mq_ctx; 2611 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2612 trace_block_unplug(this_hctx->queue, depth, 2613 !from_schedule); 2614 blk_mq_sched_insert_requests(this_hctx, this_ctx, 2615 &list, from_schedule); 2616 depth = 0; 2617 this_hctx = rq->mq_hctx; 2618 this_ctx = rq->mq_ctx; 2619 2620 } 2621 2622 list_add(&rq->queuelist, &list); 2623 depth++; 2624 } while (!rq_list_empty(plug->mq_list)); 2625 2626 if (!list_empty(&list)) { 2627 trace_block_unplug(this_hctx->queue, depth, !from_schedule); 2628 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, 2629 from_schedule); 2630 } 2631 } 2632 2633 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2634 struct list_head *list) 2635 { 2636 int queued = 0; 2637 int errors = 0; 2638 2639 while (!list_empty(list)) { 2640 blk_status_t ret; 2641 struct request *rq = list_first_entry(list, struct request, 2642 queuelist); 2643 2644 list_del_init(&rq->queuelist); 2645 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2646 if (ret != BLK_STS_OK) { 2647 if (ret == BLK_STS_RESOURCE || 2648 ret == BLK_STS_DEV_RESOURCE) { 2649 blk_mq_request_bypass_insert(rq, false, 2650 list_empty(list)); 2651 break; 2652 } 2653 blk_mq_end_request(rq, ret); 2654 errors++; 2655 } else 2656 queued++; 2657 } 2658 2659 /* 2660 * If we didn't flush the entire list, we could have told 2661 * the driver there was more coming, but that turned out to 2662 * be a lie. 2663 */ 2664 if ((!list_empty(list) || errors) && 2665 hctx->queue->mq_ops->commit_rqs && queued) 2666 hctx->queue->mq_ops->commit_rqs(hctx); 2667 } 2668 2669 /* 2670 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 2671 * queues. This is important for md arrays to benefit from merging 2672 * requests. 2673 */ 2674 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 2675 { 2676 if (plug->multiple_queues) 2677 return BLK_MAX_REQUEST_COUNT * 2; 2678 return BLK_MAX_REQUEST_COUNT; 2679 } 2680 2681 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2682 { 2683 struct request *last = rq_list_peek(&plug->mq_list); 2684 2685 if (!plug->rq_count) { 2686 trace_block_plug(rq->q); 2687 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 2688 (!blk_queue_nomerges(rq->q) && 2689 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2690 blk_mq_flush_plug_list(plug, false); 2691 trace_block_plug(rq->q); 2692 } 2693 2694 if (!plug->multiple_queues && last && last->q != rq->q) 2695 plug->multiple_queues = true; 2696 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 2697 plug->has_elevator = true; 2698 rq->rq_next = NULL; 2699 rq_list_add(&plug->mq_list, rq); 2700 plug->rq_count++; 2701 } 2702 2703 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2704 struct bio *bio, unsigned int nr_segs) 2705 { 2706 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2707 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2708 return true; 2709 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2710 return true; 2711 } 2712 return false; 2713 } 2714 2715 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2716 struct blk_plug *plug, 2717 struct bio *bio) 2718 { 2719 struct blk_mq_alloc_data data = { 2720 .q = q, 2721 .nr_tags = 1, 2722 .cmd_flags = bio->bi_opf, 2723 }; 2724 struct request *rq; 2725 2726 if (unlikely(bio_queue_enter(bio))) 2727 return NULL; 2728 2729 if (plug) { 2730 data.nr_tags = plug->nr_ios; 2731 plug->nr_ios = 1; 2732 data.cached_rq = &plug->cached_rq; 2733 } 2734 2735 rq = __blk_mq_alloc_requests(&data); 2736 if (rq) 2737 return rq; 2738 rq_qos_cleanup(q, bio); 2739 if (bio->bi_opf & REQ_NOWAIT) 2740 bio_wouldblock_error(bio); 2741 blk_queue_exit(q); 2742 return NULL; 2743 } 2744 2745 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2746 struct blk_plug *plug, struct bio *bio) 2747 { 2748 struct request *rq; 2749 2750 if (!plug) 2751 return NULL; 2752 rq = rq_list_peek(&plug->cached_rq); 2753 if (!rq || rq->q != q) 2754 return NULL; 2755 2756 if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type) 2757 return NULL; 2758 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2759 return NULL; 2760 2761 rq->cmd_flags = bio->bi_opf; 2762 plug->cached_rq = rq_list_next(rq); 2763 INIT_LIST_HEAD(&rq->queuelist); 2764 return rq; 2765 } 2766 2767 /** 2768 * blk_mq_submit_bio - Create and send a request to block device. 2769 * @bio: Bio pointer. 2770 * 2771 * Builds up a request structure from @q and @bio and send to the device. The 2772 * request may not be queued directly to hardware if: 2773 * * This request can be merged with another one 2774 * * We want to place request at plug queue for possible future merging 2775 * * There is an IO scheduler active at this queue 2776 * 2777 * It will not queue the request if there is an error with the bio, or at the 2778 * request creation. 2779 */ 2780 void blk_mq_submit_bio(struct bio *bio) 2781 { 2782 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2783 struct blk_plug *plug = blk_mq_plug(q, bio); 2784 const int is_sync = op_is_sync(bio->bi_opf); 2785 struct request *rq; 2786 unsigned int nr_segs = 1; 2787 blk_status_t ret; 2788 2789 if (unlikely(!blk_crypto_bio_prep(&bio))) 2790 return; 2791 2792 blk_queue_bounce(q, &bio); 2793 if (blk_may_split(q, bio)) 2794 __blk_queue_split(q, &bio, &nr_segs); 2795 2796 if (!bio_integrity_prep(bio)) 2797 return; 2798 2799 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2800 return; 2801 2802 rq_qos_throttle(q, bio); 2803 2804 rq = blk_mq_get_cached_request(q, plug, bio); 2805 if (!rq) { 2806 rq = blk_mq_get_new_requests(q, plug, bio); 2807 if (unlikely(!rq)) 2808 return; 2809 } 2810 2811 trace_block_getrq(bio); 2812 2813 rq_qos_track(q, rq, bio); 2814 2815 blk_mq_bio_to_request(rq, bio, nr_segs); 2816 2817 ret = blk_crypto_init_request(rq); 2818 if (ret != BLK_STS_OK) { 2819 bio->bi_status = ret; 2820 bio_endio(bio); 2821 blk_mq_free_request(rq); 2822 return; 2823 } 2824 2825 if (op_is_flush(bio->bi_opf)) { 2826 blk_insert_flush(rq); 2827 return; 2828 } 2829 2830 if (plug) 2831 blk_add_rq_to_plug(plug, rq); 2832 else if ((rq->rq_flags & RQF_ELV) || 2833 (rq->mq_hctx->dispatch_busy && 2834 (q->nr_hw_queues == 1 || !is_sync))) 2835 blk_mq_sched_insert_request(rq, false, true, true); 2836 else 2837 blk_mq_run_dispatch_ops(rq->q, 2838 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2839 } 2840 2841 /** 2842 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2843 * for the new queue limits 2844 * @q: the queue 2845 * @rq: the request being checked 2846 * 2847 * Description: 2848 * @rq may have been made based on weaker limitations of upper-level queues 2849 * in request stacking drivers, and it may violate the limitation of @q. 2850 * Since the block layer and the underlying device driver trust @rq 2851 * after it is inserted to @q, it should be checked against @q before 2852 * the insertion using this generic function. 2853 * 2854 * Request stacking drivers like request-based dm may change the queue 2855 * limits when retrying requests on other queues. Those requests need 2856 * to be checked against the new queue limits again during dispatch. 2857 */ 2858 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 2859 struct request *rq) 2860 { 2861 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 2862 2863 if (blk_rq_sectors(rq) > max_sectors) { 2864 /* 2865 * SCSI device does not have a good way to return if 2866 * Write Same/Zero is actually supported. If a device rejects 2867 * a non-read/write command (discard, write same,etc.) the 2868 * low-level device driver will set the relevant queue limit to 2869 * 0 to prevent blk-lib from issuing more of the offending 2870 * operations. Commands queued prior to the queue limit being 2871 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 2872 * errors being propagated to upper layers. 2873 */ 2874 if (max_sectors == 0) 2875 return BLK_STS_NOTSUPP; 2876 2877 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 2878 __func__, blk_rq_sectors(rq), max_sectors); 2879 return BLK_STS_IOERR; 2880 } 2881 2882 /* 2883 * The queue settings related to segment counting may differ from the 2884 * original queue. 2885 */ 2886 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 2887 if (rq->nr_phys_segments > queue_max_segments(q)) { 2888 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 2889 __func__, rq->nr_phys_segments, queue_max_segments(q)); 2890 return BLK_STS_IOERR; 2891 } 2892 2893 return BLK_STS_OK; 2894 } 2895 2896 /** 2897 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2898 * @q: the queue to submit the request 2899 * @rq: the request being queued 2900 */ 2901 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2902 { 2903 blk_status_t ret; 2904 2905 ret = blk_cloned_rq_check_limits(q, rq); 2906 if (ret != BLK_STS_OK) 2907 return ret; 2908 2909 if (rq->q->disk && 2910 should_fail_request(rq->q->disk->part0, blk_rq_bytes(rq))) 2911 return BLK_STS_IOERR; 2912 2913 if (blk_crypto_insert_cloned_request(rq)) 2914 return BLK_STS_IOERR; 2915 2916 blk_account_io_start(rq); 2917 2918 /* 2919 * Since we have a scheduler attached on the top device, 2920 * bypass a potential scheduler on the bottom device for 2921 * insert. 2922 */ 2923 blk_mq_run_dispatch_ops(rq->q, 2924 ret = blk_mq_request_issue_directly(rq, true)); 2925 if (ret) 2926 blk_account_io_done(rq, ktime_get_ns()); 2927 return ret; 2928 } 2929 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2930 2931 /** 2932 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2933 * @rq: the clone request to be cleaned up 2934 * 2935 * Description: 2936 * Free all bios in @rq for a cloned request. 2937 */ 2938 void blk_rq_unprep_clone(struct request *rq) 2939 { 2940 struct bio *bio; 2941 2942 while ((bio = rq->bio) != NULL) { 2943 rq->bio = bio->bi_next; 2944 2945 bio_put(bio); 2946 } 2947 } 2948 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2949 2950 /** 2951 * blk_rq_prep_clone - Helper function to setup clone request 2952 * @rq: the request to be setup 2953 * @rq_src: original request to be cloned 2954 * @bs: bio_set that bios for clone are allocated from 2955 * @gfp_mask: memory allocation mask for bio 2956 * @bio_ctr: setup function to be called for each clone bio. 2957 * Returns %0 for success, non %0 for failure. 2958 * @data: private data to be passed to @bio_ctr 2959 * 2960 * Description: 2961 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2962 * Also, pages which the original bios are pointing to are not copied 2963 * and the cloned bios just point same pages. 2964 * So cloned bios must be completed before original bios, which means 2965 * the caller must complete @rq before @rq_src. 2966 */ 2967 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2968 struct bio_set *bs, gfp_t gfp_mask, 2969 int (*bio_ctr)(struct bio *, struct bio *, void *), 2970 void *data) 2971 { 2972 struct bio *bio, *bio_src; 2973 2974 if (!bs) 2975 bs = &fs_bio_set; 2976 2977 __rq_for_each_bio(bio_src, rq_src) { 2978 bio = bio_clone_fast(bio_src, gfp_mask, bs); 2979 if (!bio) 2980 goto free_and_out; 2981 bio->bi_bdev = rq->q->disk->part0; 2982 2983 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2984 goto free_and_out; 2985 2986 if (rq->bio) { 2987 rq->biotail->bi_next = bio; 2988 rq->biotail = bio; 2989 } else { 2990 rq->bio = rq->biotail = bio; 2991 } 2992 bio = NULL; 2993 } 2994 2995 /* Copy attributes of the original request to the clone request. */ 2996 rq->__sector = blk_rq_pos(rq_src); 2997 rq->__data_len = blk_rq_bytes(rq_src); 2998 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 2999 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3000 rq->special_vec = rq_src->special_vec; 3001 } 3002 rq->nr_phys_segments = rq_src->nr_phys_segments; 3003 rq->ioprio = rq_src->ioprio; 3004 3005 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3006 goto free_and_out; 3007 3008 return 0; 3009 3010 free_and_out: 3011 if (bio) 3012 bio_put(bio); 3013 blk_rq_unprep_clone(rq); 3014 3015 return -ENOMEM; 3016 } 3017 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3018 3019 /* 3020 * Steal bios from a request and add them to a bio list. 3021 * The request must not have been partially completed before. 3022 */ 3023 void blk_steal_bios(struct bio_list *list, struct request *rq) 3024 { 3025 if (rq->bio) { 3026 if (list->tail) 3027 list->tail->bi_next = rq->bio; 3028 else 3029 list->head = rq->bio; 3030 list->tail = rq->biotail; 3031 3032 rq->bio = NULL; 3033 rq->biotail = NULL; 3034 } 3035 3036 rq->__data_len = 0; 3037 } 3038 EXPORT_SYMBOL_GPL(blk_steal_bios); 3039 3040 static size_t order_to_size(unsigned int order) 3041 { 3042 return (size_t)PAGE_SIZE << order; 3043 } 3044 3045 /* called before freeing request pool in @tags */ 3046 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3047 struct blk_mq_tags *tags) 3048 { 3049 struct page *page; 3050 unsigned long flags; 3051 3052 /* There is no need to clear a driver tags own mapping */ 3053 if (drv_tags == tags) 3054 return; 3055 3056 list_for_each_entry(page, &tags->page_list, lru) { 3057 unsigned long start = (unsigned long)page_address(page); 3058 unsigned long end = start + order_to_size(page->private); 3059 int i; 3060 3061 for (i = 0; i < drv_tags->nr_tags; i++) { 3062 struct request *rq = drv_tags->rqs[i]; 3063 unsigned long rq_addr = (unsigned long)rq; 3064 3065 if (rq_addr >= start && rq_addr < end) { 3066 WARN_ON_ONCE(req_ref_read(rq) != 0); 3067 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3068 } 3069 } 3070 } 3071 3072 /* 3073 * Wait until all pending iteration is done. 3074 * 3075 * Request reference is cleared and it is guaranteed to be observed 3076 * after the ->lock is released. 3077 */ 3078 spin_lock_irqsave(&drv_tags->lock, flags); 3079 spin_unlock_irqrestore(&drv_tags->lock, flags); 3080 } 3081 3082 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3083 unsigned int hctx_idx) 3084 { 3085 struct blk_mq_tags *drv_tags; 3086 struct page *page; 3087 3088 if (blk_mq_is_shared_tags(set->flags)) 3089 drv_tags = set->shared_tags; 3090 else 3091 drv_tags = set->tags[hctx_idx]; 3092 3093 if (tags->static_rqs && set->ops->exit_request) { 3094 int i; 3095 3096 for (i = 0; i < tags->nr_tags; i++) { 3097 struct request *rq = tags->static_rqs[i]; 3098 3099 if (!rq) 3100 continue; 3101 set->ops->exit_request(set, rq, hctx_idx); 3102 tags->static_rqs[i] = NULL; 3103 } 3104 } 3105 3106 blk_mq_clear_rq_mapping(drv_tags, tags); 3107 3108 while (!list_empty(&tags->page_list)) { 3109 page = list_first_entry(&tags->page_list, struct page, lru); 3110 list_del_init(&page->lru); 3111 /* 3112 * Remove kmemleak object previously allocated in 3113 * blk_mq_alloc_rqs(). 3114 */ 3115 kmemleak_free(page_address(page)); 3116 __free_pages(page, page->private); 3117 } 3118 } 3119 3120 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3121 { 3122 kfree(tags->rqs); 3123 tags->rqs = NULL; 3124 kfree(tags->static_rqs); 3125 tags->static_rqs = NULL; 3126 3127 blk_mq_free_tags(tags); 3128 } 3129 3130 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3131 unsigned int hctx_idx, 3132 unsigned int nr_tags, 3133 unsigned int reserved_tags) 3134 { 3135 struct blk_mq_tags *tags; 3136 int node; 3137 3138 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 3139 if (node == NUMA_NO_NODE) 3140 node = set->numa_node; 3141 3142 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3143 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3144 if (!tags) 3145 return NULL; 3146 3147 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3148 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3149 node); 3150 if (!tags->rqs) { 3151 blk_mq_free_tags(tags); 3152 return NULL; 3153 } 3154 3155 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3156 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3157 node); 3158 if (!tags->static_rqs) { 3159 kfree(tags->rqs); 3160 blk_mq_free_tags(tags); 3161 return NULL; 3162 } 3163 3164 return tags; 3165 } 3166 3167 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3168 unsigned int hctx_idx, int node) 3169 { 3170 int ret; 3171 3172 if (set->ops->init_request) { 3173 ret = set->ops->init_request(set, rq, hctx_idx, node); 3174 if (ret) 3175 return ret; 3176 } 3177 3178 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3179 return 0; 3180 } 3181 3182 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3183 struct blk_mq_tags *tags, 3184 unsigned int hctx_idx, unsigned int depth) 3185 { 3186 unsigned int i, j, entries_per_page, max_order = 4; 3187 size_t rq_size, left; 3188 int node; 3189 3190 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 3191 if (node == NUMA_NO_NODE) 3192 node = set->numa_node; 3193 3194 INIT_LIST_HEAD(&tags->page_list); 3195 3196 /* 3197 * rq_size is the size of the request plus driver payload, rounded 3198 * to the cacheline size 3199 */ 3200 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3201 cache_line_size()); 3202 left = rq_size * depth; 3203 3204 for (i = 0; i < depth; ) { 3205 int this_order = max_order; 3206 struct page *page; 3207 int to_do; 3208 void *p; 3209 3210 while (this_order && left < order_to_size(this_order - 1)) 3211 this_order--; 3212 3213 do { 3214 page = alloc_pages_node(node, 3215 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3216 this_order); 3217 if (page) 3218 break; 3219 if (!this_order--) 3220 break; 3221 if (order_to_size(this_order) < rq_size) 3222 break; 3223 } while (1); 3224 3225 if (!page) 3226 goto fail; 3227 3228 page->private = this_order; 3229 list_add_tail(&page->lru, &tags->page_list); 3230 3231 p = page_address(page); 3232 /* 3233 * Allow kmemleak to scan these pages as they contain pointers 3234 * to additional allocations like via ops->init_request(). 3235 */ 3236 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3237 entries_per_page = order_to_size(this_order) / rq_size; 3238 to_do = min(entries_per_page, depth - i); 3239 left -= to_do * rq_size; 3240 for (j = 0; j < to_do; j++) { 3241 struct request *rq = p; 3242 3243 tags->static_rqs[i] = rq; 3244 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3245 tags->static_rqs[i] = NULL; 3246 goto fail; 3247 } 3248 3249 p += rq_size; 3250 i++; 3251 } 3252 } 3253 return 0; 3254 3255 fail: 3256 blk_mq_free_rqs(set, tags, hctx_idx); 3257 return -ENOMEM; 3258 } 3259 3260 struct rq_iter_data { 3261 struct blk_mq_hw_ctx *hctx; 3262 bool has_rq; 3263 }; 3264 3265 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 3266 { 3267 struct rq_iter_data *iter_data = data; 3268 3269 if (rq->mq_hctx != iter_data->hctx) 3270 return true; 3271 iter_data->has_rq = true; 3272 return false; 3273 } 3274 3275 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3276 { 3277 struct blk_mq_tags *tags = hctx->sched_tags ? 3278 hctx->sched_tags : hctx->tags; 3279 struct rq_iter_data data = { 3280 .hctx = hctx, 3281 }; 3282 3283 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3284 return data.has_rq; 3285 } 3286 3287 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3288 struct blk_mq_hw_ctx *hctx) 3289 { 3290 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3291 return false; 3292 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3293 return false; 3294 return true; 3295 } 3296 3297 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3298 { 3299 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3300 struct blk_mq_hw_ctx, cpuhp_online); 3301 3302 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3303 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3304 return 0; 3305 3306 /* 3307 * Prevent new request from being allocated on the current hctx. 3308 * 3309 * The smp_mb__after_atomic() Pairs with the implied barrier in 3310 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3311 * seen once we return from the tag allocator. 3312 */ 3313 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3314 smp_mb__after_atomic(); 3315 3316 /* 3317 * Try to grab a reference to the queue and wait for any outstanding 3318 * requests. If we could not grab a reference the queue has been 3319 * frozen and there are no requests. 3320 */ 3321 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3322 while (blk_mq_hctx_has_requests(hctx)) 3323 msleep(5); 3324 percpu_ref_put(&hctx->queue->q_usage_counter); 3325 } 3326 3327 return 0; 3328 } 3329 3330 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3331 { 3332 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3333 struct blk_mq_hw_ctx, cpuhp_online); 3334 3335 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3336 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3337 return 0; 3338 } 3339 3340 /* 3341 * 'cpu' is going away. splice any existing rq_list entries from this 3342 * software queue to the hw queue dispatch list, and ensure that it 3343 * gets run. 3344 */ 3345 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3346 { 3347 struct blk_mq_hw_ctx *hctx; 3348 struct blk_mq_ctx *ctx; 3349 LIST_HEAD(tmp); 3350 enum hctx_type type; 3351 3352 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3353 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3354 return 0; 3355 3356 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3357 type = hctx->type; 3358 3359 spin_lock(&ctx->lock); 3360 if (!list_empty(&ctx->rq_lists[type])) { 3361 list_splice_init(&ctx->rq_lists[type], &tmp); 3362 blk_mq_hctx_clear_pending(hctx, ctx); 3363 } 3364 spin_unlock(&ctx->lock); 3365 3366 if (list_empty(&tmp)) 3367 return 0; 3368 3369 spin_lock(&hctx->lock); 3370 list_splice_tail_init(&tmp, &hctx->dispatch); 3371 spin_unlock(&hctx->lock); 3372 3373 blk_mq_run_hw_queue(hctx, true); 3374 return 0; 3375 } 3376 3377 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3378 { 3379 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3380 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3381 &hctx->cpuhp_online); 3382 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3383 &hctx->cpuhp_dead); 3384 } 3385 3386 /* 3387 * Before freeing hw queue, clearing the flush request reference in 3388 * tags->rqs[] for avoiding potential UAF. 3389 */ 3390 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3391 unsigned int queue_depth, struct request *flush_rq) 3392 { 3393 int i; 3394 unsigned long flags; 3395 3396 /* The hw queue may not be mapped yet */ 3397 if (!tags) 3398 return; 3399 3400 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3401 3402 for (i = 0; i < queue_depth; i++) 3403 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3404 3405 /* 3406 * Wait until all pending iteration is done. 3407 * 3408 * Request reference is cleared and it is guaranteed to be observed 3409 * after the ->lock is released. 3410 */ 3411 spin_lock_irqsave(&tags->lock, flags); 3412 spin_unlock_irqrestore(&tags->lock, flags); 3413 } 3414 3415 /* hctx->ctxs will be freed in queue's release handler */ 3416 static void blk_mq_exit_hctx(struct request_queue *q, 3417 struct blk_mq_tag_set *set, 3418 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3419 { 3420 struct request *flush_rq = hctx->fq->flush_rq; 3421 3422 if (blk_mq_hw_queue_mapped(hctx)) 3423 blk_mq_tag_idle(hctx); 3424 3425 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3426 set->queue_depth, flush_rq); 3427 if (set->ops->exit_request) 3428 set->ops->exit_request(set, flush_rq, hctx_idx); 3429 3430 if (set->ops->exit_hctx) 3431 set->ops->exit_hctx(hctx, hctx_idx); 3432 3433 blk_mq_remove_cpuhp(hctx); 3434 3435 spin_lock(&q->unused_hctx_lock); 3436 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3437 spin_unlock(&q->unused_hctx_lock); 3438 } 3439 3440 static void blk_mq_exit_hw_queues(struct request_queue *q, 3441 struct blk_mq_tag_set *set, int nr_queue) 3442 { 3443 struct blk_mq_hw_ctx *hctx; 3444 unsigned int i; 3445 3446 queue_for_each_hw_ctx(q, hctx, i) { 3447 if (i == nr_queue) 3448 break; 3449 blk_mq_debugfs_unregister_hctx(hctx); 3450 blk_mq_exit_hctx(q, set, hctx, i); 3451 } 3452 } 3453 3454 static int blk_mq_init_hctx(struct request_queue *q, 3455 struct blk_mq_tag_set *set, 3456 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3457 { 3458 hctx->queue_num = hctx_idx; 3459 3460 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3461 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3462 &hctx->cpuhp_online); 3463 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3464 3465 hctx->tags = set->tags[hctx_idx]; 3466 3467 if (set->ops->init_hctx && 3468 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3469 goto unregister_cpu_notifier; 3470 3471 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3472 hctx->numa_node)) 3473 goto exit_hctx; 3474 return 0; 3475 3476 exit_hctx: 3477 if (set->ops->exit_hctx) 3478 set->ops->exit_hctx(hctx, hctx_idx); 3479 unregister_cpu_notifier: 3480 blk_mq_remove_cpuhp(hctx); 3481 return -1; 3482 } 3483 3484 static struct blk_mq_hw_ctx * 3485 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3486 int node) 3487 { 3488 struct blk_mq_hw_ctx *hctx; 3489 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3490 3491 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3492 if (!hctx) 3493 goto fail_alloc_hctx; 3494 3495 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3496 goto free_hctx; 3497 3498 atomic_set(&hctx->nr_active, 0); 3499 if (node == NUMA_NO_NODE) 3500 node = set->numa_node; 3501 hctx->numa_node = node; 3502 3503 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3504 spin_lock_init(&hctx->lock); 3505 INIT_LIST_HEAD(&hctx->dispatch); 3506 hctx->queue = q; 3507 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3508 3509 INIT_LIST_HEAD(&hctx->hctx_list); 3510 3511 /* 3512 * Allocate space for all possible cpus to avoid allocation at 3513 * runtime 3514 */ 3515 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3516 gfp, node); 3517 if (!hctx->ctxs) 3518 goto free_cpumask; 3519 3520 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3521 gfp, node, false, false)) 3522 goto free_ctxs; 3523 hctx->nr_ctx = 0; 3524 3525 spin_lock_init(&hctx->dispatch_wait_lock); 3526 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3527 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3528 3529 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3530 if (!hctx->fq) 3531 goto free_bitmap; 3532 3533 blk_mq_hctx_kobj_init(hctx); 3534 3535 return hctx; 3536 3537 free_bitmap: 3538 sbitmap_free(&hctx->ctx_map); 3539 free_ctxs: 3540 kfree(hctx->ctxs); 3541 free_cpumask: 3542 free_cpumask_var(hctx->cpumask); 3543 free_hctx: 3544 kfree(hctx); 3545 fail_alloc_hctx: 3546 return NULL; 3547 } 3548 3549 static void blk_mq_init_cpu_queues(struct request_queue *q, 3550 unsigned int nr_hw_queues) 3551 { 3552 struct blk_mq_tag_set *set = q->tag_set; 3553 unsigned int i, j; 3554 3555 for_each_possible_cpu(i) { 3556 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3557 struct blk_mq_hw_ctx *hctx; 3558 int k; 3559 3560 __ctx->cpu = i; 3561 spin_lock_init(&__ctx->lock); 3562 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3563 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3564 3565 __ctx->queue = q; 3566 3567 /* 3568 * Set local node, IFF we have more than one hw queue. If 3569 * not, we remain on the home node of the device 3570 */ 3571 for (j = 0; j < set->nr_maps; j++) { 3572 hctx = blk_mq_map_queue_type(q, j, i); 3573 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3574 hctx->numa_node = cpu_to_node(i); 3575 } 3576 } 3577 } 3578 3579 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3580 unsigned int hctx_idx, 3581 unsigned int depth) 3582 { 3583 struct blk_mq_tags *tags; 3584 int ret; 3585 3586 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3587 if (!tags) 3588 return NULL; 3589 3590 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3591 if (ret) { 3592 blk_mq_free_rq_map(tags); 3593 return NULL; 3594 } 3595 3596 return tags; 3597 } 3598 3599 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3600 int hctx_idx) 3601 { 3602 if (blk_mq_is_shared_tags(set->flags)) { 3603 set->tags[hctx_idx] = set->shared_tags; 3604 3605 return true; 3606 } 3607 3608 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3609 set->queue_depth); 3610 3611 return set->tags[hctx_idx]; 3612 } 3613 3614 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3615 struct blk_mq_tags *tags, 3616 unsigned int hctx_idx) 3617 { 3618 if (tags) { 3619 blk_mq_free_rqs(set, tags, hctx_idx); 3620 blk_mq_free_rq_map(tags); 3621 } 3622 } 3623 3624 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3625 unsigned int hctx_idx) 3626 { 3627 if (!blk_mq_is_shared_tags(set->flags)) 3628 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3629 3630 set->tags[hctx_idx] = NULL; 3631 } 3632 3633 static void blk_mq_map_swqueue(struct request_queue *q) 3634 { 3635 unsigned int i, j, hctx_idx; 3636 struct blk_mq_hw_ctx *hctx; 3637 struct blk_mq_ctx *ctx; 3638 struct blk_mq_tag_set *set = q->tag_set; 3639 3640 queue_for_each_hw_ctx(q, hctx, i) { 3641 cpumask_clear(hctx->cpumask); 3642 hctx->nr_ctx = 0; 3643 hctx->dispatch_from = NULL; 3644 } 3645 3646 /* 3647 * Map software to hardware queues. 3648 * 3649 * If the cpu isn't present, the cpu is mapped to first hctx. 3650 */ 3651 for_each_possible_cpu(i) { 3652 3653 ctx = per_cpu_ptr(q->queue_ctx, i); 3654 for (j = 0; j < set->nr_maps; j++) { 3655 if (!set->map[j].nr_queues) { 3656 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3657 HCTX_TYPE_DEFAULT, i); 3658 continue; 3659 } 3660 hctx_idx = set->map[j].mq_map[i]; 3661 /* unmapped hw queue can be remapped after CPU topo changed */ 3662 if (!set->tags[hctx_idx] && 3663 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3664 /* 3665 * If tags initialization fail for some hctx, 3666 * that hctx won't be brought online. In this 3667 * case, remap the current ctx to hctx[0] which 3668 * is guaranteed to always have tags allocated 3669 */ 3670 set->map[j].mq_map[i] = 0; 3671 } 3672 3673 hctx = blk_mq_map_queue_type(q, j, i); 3674 ctx->hctxs[j] = hctx; 3675 /* 3676 * If the CPU is already set in the mask, then we've 3677 * mapped this one already. This can happen if 3678 * devices share queues across queue maps. 3679 */ 3680 if (cpumask_test_cpu(i, hctx->cpumask)) 3681 continue; 3682 3683 cpumask_set_cpu(i, hctx->cpumask); 3684 hctx->type = j; 3685 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3686 hctx->ctxs[hctx->nr_ctx++] = ctx; 3687 3688 /* 3689 * If the nr_ctx type overflows, we have exceeded the 3690 * amount of sw queues we can support. 3691 */ 3692 BUG_ON(!hctx->nr_ctx); 3693 } 3694 3695 for (; j < HCTX_MAX_TYPES; j++) 3696 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3697 HCTX_TYPE_DEFAULT, i); 3698 } 3699 3700 queue_for_each_hw_ctx(q, hctx, i) { 3701 /* 3702 * If no software queues are mapped to this hardware queue, 3703 * disable it and free the request entries. 3704 */ 3705 if (!hctx->nr_ctx) { 3706 /* Never unmap queue 0. We need it as a 3707 * fallback in case of a new remap fails 3708 * allocation 3709 */ 3710 if (i) 3711 __blk_mq_free_map_and_rqs(set, i); 3712 3713 hctx->tags = NULL; 3714 continue; 3715 } 3716 3717 hctx->tags = set->tags[i]; 3718 WARN_ON(!hctx->tags); 3719 3720 /* 3721 * Set the map size to the number of mapped software queues. 3722 * This is more accurate and more efficient than looping 3723 * over all possibly mapped software queues. 3724 */ 3725 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3726 3727 /* 3728 * Initialize batch roundrobin counts 3729 */ 3730 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3731 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3732 } 3733 } 3734 3735 /* 3736 * Caller needs to ensure that we're either frozen/quiesced, or that 3737 * the queue isn't live yet. 3738 */ 3739 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3740 { 3741 struct blk_mq_hw_ctx *hctx; 3742 int i; 3743 3744 queue_for_each_hw_ctx(q, hctx, i) { 3745 if (shared) { 3746 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3747 } else { 3748 blk_mq_tag_idle(hctx); 3749 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3750 } 3751 } 3752 } 3753 3754 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3755 bool shared) 3756 { 3757 struct request_queue *q; 3758 3759 lockdep_assert_held(&set->tag_list_lock); 3760 3761 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3762 blk_mq_freeze_queue(q); 3763 queue_set_hctx_shared(q, shared); 3764 blk_mq_unfreeze_queue(q); 3765 } 3766 } 3767 3768 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3769 { 3770 struct blk_mq_tag_set *set = q->tag_set; 3771 3772 mutex_lock(&set->tag_list_lock); 3773 list_del(&q->tag_set_list); 3774 if (list_is_singular(&set->tag_list)) { 3775 /* just transitioned to unshared */ 3776 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3777 /* update existing queue */ 3778 blk_mq_update_tag_set_shared(set, false); 3779 } 3780 mutex_unlock(&set->tag_list_lock); 3781 INIT_LIST_HEAD(&q->tag_set_list); 3782 } 3783 3784 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3785 struct request_queue *q) 3786 { 3787 mutex_lock(&set->tag_list_lock); 3788 3789 /* 3790 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3791 */ 3792 if (!list_empty(&set->tag_list) && 3793 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3794 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3795 /* update existing queue */ 3796 blk_mq_update_tag_set_shared(set, true); 3797 } 3798 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3799 queue_set_hctx_shared(q, true); 3800 list_add_tail(&q->tag_set_list, &set->tag_list); 3801 3802 mutex_unlock(&set->tag_list_lock); 3803 } 3804 3805 /* All allocations will be freed in release handler of q->mq_kobj */ 3806 static int blk_mq_alloc_ctxs(struct request_queue *q) 3807 { 3808 struct blk_mq_ctxs *ctxs; 3809 int cpu; 3810 3811 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3812 if (!ctxs) 3813 return -ENOMEM; 3814 3815 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3816 if (!ctxs->queue_ctx) 3817 goto fail; 3818 3819 for_each_possible_cpu(cpu) { 3820 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3821 ctx->ctxs = ctxs; 3822 } 3823 3824 q->mq_kobj = &ctxs->kobj; 3825 q->queue_ctx = ctxs->queue_ctx; 3826 3827 return 0; 3828 fail: 3829 kfree(ctxs); 3830 return -ENOMEM; 3831 } 3832 3833 /* 3834 * It is the actual release handler for mq, but we do it from 3835 * request queue's release handler for avoiding use-after-free 3836 * and headache because q->mq_kobj shouldn't have been introduced, 3837 * but we can't group ctx/kctx kobj without it. 3838 */ 3839 void blk_mq_release(struct request_queue *q) 3840 { 3841 struct blk_mq_hw_ctx *hctx, *next; 3842 int i; 3843 3844 queue_for_each_hw_ctx(q, hctx, i) 3845 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3846 3847 /* all hctx are in .unused_hctx_list now */ 3848 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3849 list_del_init(&hctx->hctx_list); 3850 kobject_put(&hctx->kobj); 3851 } 3852 3853 kfree(q->queue_hw_ctx); 3854 3855 /* 3856 * release .mq_kobj and sw queue's kobject now because 3857 * both share lifetime with request queue. 3858 */ 3859 blk_mq_sysfs_deinit(q); 3860 } 3861 3862 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3863 void *queuedata) 3864 { 3865 struct request_queue *q; 3866 int ret; 3867 3868 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); 3869 if (!q) 3870 return ERR_PTR(-ENOMEM); 3871 q->queuedata = queuedata; 3872 ret = blk_mq_init_allocated_queue(set, q); 3873 if (ret) { 3874 blk_cleanup_queue(q); 3875 return ERR_PTR(ret); 3876 } 3877 return q; 3878 } 3879 3880 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3881 { 3882 return blk_mq_init_queue_data(set, NULL); 3883 } 3884 EXPORT_SYMBOL(blk_mq_init_queue); 3885 3886 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3887 struct lock_class_key *lkclass) 3888 { 3889 struct request_queue *q; 3890 struct gendisk *disk; 3891 3892 q = blk_mq_init_queue_data(set, queuedata); 3893 if (IS_ERR(q)) 3894 return ERR_CAST(q); 3895 3896 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3897 if (!disk) { 3898 blk_cleanup_queue(q); 3899 return ERR_PTR(-ENOMEM); 3900 } 3901 return disk; 3902 } 3903 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3904 3905 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3906 struct blk_mq_tag_set *set, struct request_queue *q, 3907 int hctx_idx, int node) 3908 { 3909 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3910 3911 /* reuse dead hctx first */ 3912 spin_lock(&q->unused_hctx_lock); 3913 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3914 if (tmp->numa_node == node) { 3915 hctx = tmp; 3916 break; 3917 } 3918 } 3919 if (hctx) 3920 list_del_init(&hctx->hctx_list); 3921 spin_unlock(&q->unused_hctx_lock); 3922 3923 if (!hctx) 3924 hctx = blk_mq_alloc_hctx(q, set, node); 3925 if (!hctx) 3926 goto fail; 3927 3928 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3929 goto free_hctx; 3930 3931 return hctx; 3932 3933 free_hctx: 3934 kobject_put(&hctx->kobj); 3935 fail: 3936 return NULL; 3937 } 3938 3939 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3940 struct request_queue *q) 3941 { 3942 int i, j, end; 3943 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3944 3945 if (q->nr_hw_queues < set->nr_hw_queues) { 3946 struct blk_mq_hw_ctx **new_hctxs; 3947 3948 new_hctxs = kcalloc_node(set->nr_hw_queues, 3949 sizeof(*new_hctxs), GFP_KERNEL, 3950 set->numa_node); 3951 if (!new_hctxs) 3952 return; 3953 if (hctxs) 3954 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3955 sizeof(*hctxs)); 3956 q->queue_hw_ctx = new_hctxs; 3957 kfree(hctxs); 3958 hctxs = new_hctxs; 3959 } 3960 3961 /* protect against switching io scheduler */ 3962 mutex_lock(&q->sysfs_lock); 3963 for (i = 0; i < set->nr_hw_queues; i++) { 3964 int node; 3965 struct blk_mq_hw_ctx *hctx; 3966 3967 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3968 /* 3969 * If the hw queue has been mapped to another numa node, 3970 * we need to realloc the hctx. If allocation fails, fallback 3971 * to use the previous one. 3972 */ 3973 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3974 continue; 3975 3976 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3977 if (hctx) { 3978 if (hctxs[i]) 3979 blk_mq_exit_hctx(q, set, hctxs[i], i); 3980 hctxs[i] = hctx; 3981 } else { 3982 if (hctxs[i]) 3983 pr_warn("Allocate new hctx on node %d fails,\ 3984 fallback to previous one on node %d\n", 3985 node, hctxs[i]->numa_node); 3986 else 3987 break; 3988 } 3989 } 3990 /* 3991 * Increasing nr_hw_queues fails. Free the newly allocated 3992 * hctxs and keep the previous q->nr_hw_queues. 3993 */ 3994 if (i != set->nr_hw_queues) { 3995 j = q->nr_hw_queues; 3996 end = i; 3997 } else { 3998 j = i; 3999 end = q->nr_hw_queues; 4000 q->nr_hw_queues = set->nr_hw_queues; 4001 } 4002 4003 for (; j < end; j++) { 4004 struct blk_mq_hw_ctx *hctx = hctxs[j]; 4005 4006 if (hctx) { 4007 blk_mq_exit_hctx(q, set, hctx, j); 4008 hctxs[j] = NULL; 4009 } 4010 } 4011 mutex_unlock(&q->sysfs_lock); 4012 } 4013 4014 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4015 struct request_queue *q) 4016 { 4017 WARN_ON_ONCE(blk_queue_has_srcu(q) != 4018 !!(set->flags & BLK_MQ_F_BLOCKING)); 4019 4020 /* mark the queue as mq asap */ 4021 q->mq_ops = set->ops; 4022 4023 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4024 blk_mq_poll_stats_bkt, 4025 BLK_MQ_POLL_STATS_BKTS, q); 4026 if (!q->poll_cb) 4027 goto err_exit; 4028 4029 if (blk_mq_alloc_ctxs(q)) 4030 goto err_poll; 4031 4032 /* init q->mq_kobj and sw queues' kobjects */ 4033 blk_mq_sysfs_init(q); 4034 4035 INIT_LIST_HEAD(&q->unused_hctx_list); 4036 spin_lock_init(&q->unused_hctx_lock); 4037 4038 blk_mq_realloc_hw_ctxs(set, q); 4039 if (!q->nr_hw_queues) 4040 goto err_hctxs; 4041 4042 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4043 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4044 4045 q->tag_set = set; 4046 4047 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4048 if (set->nr_maps > HCTX_TYPE_POLL && 4049 set->map[HCTX_TYPE_POLL].nr_queues) 4050 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4051 4052 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4053 INIT_LIST_HEAD(&q->requeue_list); 4054 spin_lock_init(&q->requeue_lock); 4055 4056 q->nr_requests = set->queue_depth; 4057 4058 /* 4059 * Default to classic polling 4060 */ 4061 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4062 4063 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4064 blk_mq_add_queue_tag_set(set, q); 4065 blk_mq_map_swqueue(q); 4066 return 0; 4067 4068 err_hctxs: 4069 kfree(q->queue_hw_ctx); 4070 q->nr_hw_queues = 0; 4071 blk_mq_sysfs_deinit(q); 4072 err_poll: 4073 blk_stat_free_callback(q->poll_cb); 4074 q->poll_cb = NULL; 4075 err_exit: 4076 q->mq_ops = NULL; 4077 return -ENOMEM; 4078 } 4079 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4080 4081 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4082 void blk_mq_exit_queue(struct request_queue *q) 4083 { 4084 struct blk_mq_tag_set *set = q->tag_set; 4085 4086 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4087 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4088 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4089 blk_mq_del_queue_tag_set(q); 4090 } 4091 4092 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4093 { 4094 int i; 4095 4096 if (blk_mq_is_shared_tags(set->flags)) { 4097 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4098 BLK_MQ_NO_HCTX_IDX, 4099 set->queue_depth); 4100 if (!set->shared_tags) 4101 return -ENOMEM; 4102 } 4103 4104 for (i = 0; i < set->nr_hw_queues; i++) { 4105 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4106 goto out_unwind; 4107 cond_resched(); 4108 } 4109 4110 return 0; 4111 4112 out_unwind: 4113 while (--i >= 0) 4114 __blk_mq_free_map_and_rqs(set, i); 4115 4116 if (blk_mq_is_shared_tags(set->flags)) { 4117 blk_mq_free_map_and_rqs(set, set->shared_tags, 4118 BLK_MQ_NO_HCTX_IDX); 4119 } 4120 4121 return -ENOMEM; 4122 } 4123 4124 /* 4125 * Allocate the request maps associated with this tag_set. Note that this 4126 * may reduce the depth asked for, if memory is tight. set->queue_depth 4127 * will be updated to reflect the allocated depth. 4128 */ 4129 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4130 { 4131 unsigned int depth; 4132 int err; 4133 4134 depth = set->queue_depth; 4135 do { 4136 err = __blk_mq_alloc_rq_maps(set); 4137 if (!err) 4138 break; 4139 4140 set->queue_depth >>= 1; 4141 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4142 err = -ENOMEM; 4143 break; 4144 } 4145 } while (set->queue_depth); 4146 4147 if (!set->queue_depth || err) { 4148 pr_err("blk-mq: failed to allocate request map\n"); 4149 return -ENOMEM; 4150 } 4151 4152 if (depth != set->queue_depth) 4153 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4154 depth, set->queue_depth); 4155 4156 return 0; 4157 } 4158 4159 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4160 { 4161 /* 4162 * blk_mq_map_queues() and multiple .map_queues() implementations 4163 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4164 * number of hardware queues. 4165 */ 4166 if (set->nr_maps == 1) 4167 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4168 4169 if (set->ops->map_queues && !is_kdump_kernel()) { 4170 int i; 4171 4172 /* 4173 * transport .map_queues is usually done in the following 4174 * way: 4175 * 4176 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4177 * mask = get_cpu_mask(queue) 4178 * for_each_cpu(cpu, mask) 4179 * set->map[x].mq_map[cpu] = queue; 4180 * } 4181 * 4182 * When we need to remap, the table has to be cleared for 4183 * killing stale mapping since one CPU may not be mapped 4184 * to any hw queue. 4185 */ 4186 for (i = 0; i < set->nr_maps; i++) 4187 blk_mq_clear_mq_map(&set->map[i]); 4188 4189 return set->ops->map_queues(set); 4190 } else { 4191 BUG_ON(set->nr_maps > 1); 4192 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4193 } 4194 } 4195 4196 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4197 int cur_nr_hw_queues, int new_nr_hw_queues) 4198 { 4199 struct blk_mq_tags **new_tags; 4200 4201 if (cur_nr_hw_queues >= new_nr_hw_queues) 4202 return 0; 4203 4204 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4205 GFP_KERNEL, set->numa_node); 4206 if (!new_tags) 4207 return -ENOMEM; 4208 4209 if (set->tags) 4210 memcpy(new_tags, set->tags, cur_nr_hw_queues * 4211 sizeof(*set->tags)); 4212 kfree(set->tags); 4213 set->tags = new_tags; 4214 set->nr_hw_queues = new_nr_hw_queues; 4215 4216 return 0; 4217 } 4218 4219 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 4220 int new_nr_hw_queues) 4221 { 4222 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 4223 } 4224 4225 /* 4226 * Alloc a tag set to be associated with one or more request queues. 4227 * May fail with EINVAL for various error conditions. May adjust the 4228 * requested depth down, if it's too large. In that case, the set 4229 * value will be stored in set->queue_depth. 4230 */ 4231 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4232 { 4233 int i, ret; 4234 4235 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4236 4237 if (!set->nr_hw_queues) 4238 return -EINVAL; 4239 if (!set->queue_depth) 4240 return -EINVAL; 4241 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4242 return -EINVAL; 4243 4244 if (!set->ops->queue_rq) 4245 return -EINVAL; 4246 4247 if (!set->ops->get_budget ^ !set->ops->put_budget) 4248 return -EINVAL; 4249 4250 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4251 pr_info("blk-mq: reduced tag depth to %u\n", 4252 BLK_MQ_MAX_DEPTH); 4253 set->queue_depth = BLK_MQ_MAX_DEPTH; 4254 } 4255 4256 if (!set->nr_maps) 4257 set->nr_maps = 1; 4258 else if (set->nr_maps > HCTX_MAX_TYPES) 4259 return -EINVAL; 4260 4261 /* 4262 * If a crashdump is active, then we are potentially in a very 4263 * memory constrained environment. Limit us to 1 queue and 4264 * 64 tags to prevent using too much memory. 4265 */ 4266 if (is_kdump_kernel()) { 4267 set->nr_hw_queues = 1; 4268 set->nr_maps = 1; 4269 set->queue_depth = min(64U, set->queue_depth); 4270 } 4271 /* 4272 * There is no use for more h/w queues than cpus if we just have 4273 * a single map 4274 */ 4275 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4276 set->nr_hw_queues = nr_cpu_ids; 4277 4278 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 4279 return -ENOMEM; 4280 4281 ret = -ENOMEM; 4282 for (i = 0; i < set->nr_maps; i++) { 4283 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4284 sizeof(set->map[i].mq_map[0]), 4285 GFP_KERNEL, set->numa_node); 4286 if (!set->map[i].mq_map) 4287 goto out_free_mq_map; 4288 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4289 } 4290 4291 ret = blk_mq_update_queue_map(set); 4292 if (ret) 4293 goto out_free_mq_map; 4294 4295 ret = blk_mq_alloc_set_map_and_rqs(set); 4296 if (ret) 4297 goto out_free_mq_map; 4298 4299 mutex_init(&set->tag_list_lock); 4300 INIT_LIST_HEAD(&set->tag_list); 4301 4302 return 0; 4303 4304 out_free_mq_map: 4305 for (i = 0; i < set->nr_maps; i++) { 4306 kfree(set->map[i].mq_map); 4307 set->map[i].mq_map = NULL; 4308 } 4309 kfree(set->tags); 4310 set->tags = NULL; 4311 return ret; 4312 } 4313 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4314 4315 /* allocate and initialize a tagset for a simple single-queue device */ 4316 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4317 const struct blk_mq_ops *ops, unsigned int queue_depth, 4318 unsigned int set_flags) 4319 { 4320 memset(set, 0, sizeof(*set)); 4321 set->ops = ops; 4322 set->nr_hw_queues = 1; 4323 set->nr_maps = 1; 4324 set->queue_depth = queue_depth; 4325 set->numa_node = NUMA_NO_NODE; 4326 set->flags = set_flags; 4327 return blk_mq_alloc_tag_set(set); 4328 } 4329 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4330 4331 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4332 { 4333 int i, j; 4334 4335 for (i = 0; i < set->nr_hw_queues; i++) 4336 __blk_mq_free_map_and_rqs(set, i); 4337 4338 if (blk_mq_is_shared_tags(set->flags)) { 4339 blk_mq_free_map_and_rqs(set, set->shared_tags, 4340 BLK_MQ_NO_HCTX_IDX); 4341 } 4342 4343 for (j = 0; j < set->nr_maps; j++) { 4344 kfree(set->map[j].mq_map); 4345 set->map[j].mq_map = NULL; 4346 } 4347 4348 kfree(set->tags); 4349 set->tags = NULL; 4350 } 4351 EXPORT_SYMBOL(blk_mq_free_tag_set); 4352 4353 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4354 { 4355 struct blk_mq_tag_set *set = q->tag_set; 4356 struct blk_mq_hw_ctx *hctx; 4357 int i, ret; 4358 4359 if (!set) 4360 return -EINVAL; 4361 4362 if (q->nr_requests == nr) 4363 return 0; 4364 4365 blk_mq_freeze_queue(q); 4366 blk_mq_quiesce_queue(q); 4367 4368 ret = 0; 4369 queue_for_each_hw_ctx(q, hctx, i) { 4370 if (!hctx->tags) 4371 continue; 4372 /* 4373 * If we're using an MQ scheduler, just update the scheduler 4374 * queue depth. This is similar to what the old code would do. 4375 */ 4376 if (hctx->sched_tags) { 4377 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4378 nr, true); 4379 } else { 4380 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4381 false); 4382 } 4383 if (ret) 4384 break; 4385 if (q->elevator && q->elevator->type->ops.depth_updated) 4386 q->elevator->type->ops.depth_updated(hctx); 4387 } 4388 if (!ret) { 4389 q->nr_requests = nr; 4390 if (blk_mq_is_shared_tags(set->flags)) { 4391 if (q->elevator) 4392 blk_mq_tag_update_sched_shared_tags(q); 4393 else 4394 blk_mq_tag_resize_shared_tags(set, nr); 4395 } 4396 } 4397 4398 blk_mq_unquiesce_queue(q); 4399 blk_mq_unfreeze_queue(q); 4400 4401 return ret; 4402 } 4403 4404 /* 4405 * request_queue and elevator_type pair. 4406 * It is just used by __blk_mq_update_nr_hw_queues to cache 4407 * the elevator_type associated with a request_queue. 4408 */ 4409 struct blk_mq_qe_pair { 4410 struct list_head node; 4411 struct request_queue *q; 4412 struct elevator_type *type; 4413 }; 4414 4415 /* 4416 * Cache the elevator_type in qe pair list and switch the 4417 * io scheduler to 'none' 4418 */ 4419 static bool blk_mq_elv_switch_none(struct list_head *head, 4420 struct request_queue *q) 4421 { 4422 struct blk_mq_qe_pair *qe; 4423 4424 if (!q->elevator) 4425 return true; 4426 4427 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4428 if (!qe) 4429 return false; 4430 4431 INIT_LIST_HEAD(&qe->node); 4432 qe->q = q; 4433 qe->type = q->elevator->type; 4434 list_add(&qe->node, head); 4435 4436 mutex_lock(&q->sysfs_lock); 4437 /* 4438 * After elevator_switch_mq, the previous elevator_queue will be 4439 * released by elevator_release. The reference of the io scheduler 4440 * module get by elevator_get will also be put. So we need to get 4441 * a reference of the io scheduler module here to prevent it to be 4442 * removed. 4443 */ 4444 __module_get(qe->type->elevator_owner); 4445 elevator_switch_mq(q, NULL); 4446 mutex_unlock(&q->sysfs_lock); 4447 4448 return true; 4449 } 4450 4451 static void blk_mq_elv_switch_back(struct list_head *head, 4452 struct request_queue *q) 4453 { 4454 struct blk_mq_qe_pair *qe; 4455 struct elevator_type *t = NULL; 4456 4457 list_for_each_entry(qe, head, node) 4458 if (qe->q == q) { 4459 t = qe->type; 4460 break; 4461 } 4462 4463 if (!t) 4464 return; 4465 4466 list_del(&qe->node); 4467 kfree(qe); 4468 4469 mutex_lock(&q->sysfs_lock); 4470 elevator_switch_mq(q, t); 4471 mutex_unlock(&q->sysfs_lock); 4472 } 4473 4474 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4475 int nr_hw_queues) 4476 { 4477 struct request_queue *q; 4478 LIST_HEAD(head); 4479 int prev_nr_hw_queues; 4480 4481 lockdep_assert_held(&set->tag_list_lock); 4482 4483 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4484 nr_hw_queues = nr_cpu_ids; 4485 if (nr_hw_queues < 1) 4486 return; 4487 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4488 return; 4489 4490 list_for_each_entry(q, &set->tag_list, tag_set_list) 4491 blk_mq_freeze_queue(q); 4492 /* 4493 * Switch IO scheduler to 'none', cleaning up the data associated 4494 * with the previous scheduler. We will switch back once we are done 4495 * updating the new sw to hw queue mappings. 4496 */ 4497 list_for_each_entry(q, &set->tag_list, tag_set_list) 4498 if (!blk_mq_elv_switch_none(&head, q)) 4499 goto switch_back; 4500 4501 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4502 blk_mq_debugfs_unregister_hctxs(q); 4503 blk_mq_sysfs_unregister(q); 4504 } 4505 4506 prev_nr_hw_queues = set->nr_hw_queues; 4507 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4508 0) 4509 goto reregister; 4510 4511 set->nr_hw_queues = nr_hw_queues; 4512 fallback: 4513 blk_mq_update_queue_map(set); 4514 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4515 blk_mq_realloc_hw_ctxs(set, q); 4516 if (q->nr_hw_queues != set->nr_hw_queues) { 4517 int i = prev_nr_hw_queues; 4518 4519 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4520 nr_hw_queues, prev_nr_hw_queues); 4521 for (; i < set->nr_hw_queues; i++) 4522 __blk_mq_free_map_and_rqs(set, i); 4523 4524 set->nr_hw_queues = prev_nr_hw_queues; 4525 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4526 goto fallback; 4527 } 4528 blk_mq_map_swqueue(q); 4529 } 4530 4531 reregister: 4532 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4533 blk_mq_sysfs_register(q); 4534 blk_mq_debugfs_register_hctxs(q); 4535 } 4536 4537 switch_back: 4538 list_for_each_entry(q, &set->tag_list, tag_set_list) 4539 blk_mq_elv_switch_back(&head, q); 4540 4541 list_for_each_entry(q, &set->tag_list, tag_set_list) 4542 blk_mq_unfreeze_queue(q); 4543 } 4544 4545 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4546 { 4547 mutex_lock(&set->tag_list_lock); 4548 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4549 mutex_unlock(&set->tag_list_lock); 4550 } 4551 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4552 4553 /* Enable polling stats and return whether they were already enabled. */ 4554 static bool blk_poll_stats_enable(struct request_queue *q) 4555 { 4556 if (q->poll_stat) 4557 return true; 4558 4559 return blk_stats_alloc_enable(q); 4560 } 4561 4562 static void blk_mq_poll_stats_start(struct request_queue *q) 4563 { 4564 /* 4565 * We don't arm the callback if polling stats are not enabled or the 4566 * callback is already active. 4567 */ 4568 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4569 return; 4570 4571 blk_stat_activate_msecs(q->poll_cb, 100); 4572 } 4573 4574 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4575 { 4576 struct request_queue *q = cb->data; 4577 int bucket; 4578 4579 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4580 if (cb->stat[bucket].nr_samples) 4581 q->poll_stat[bucket] = cb->stat[bucket]; 4582 } 4583 } 4584 4585 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4586 struct request *rq) 4587 { 4588 unsigned long ret = 0; 4589 int bucket; 4590 4591 /* 4592 * If stats collection isn't on, don't sleep but turn it on for 4593 * future users 4594 */ 4595 if (!blk_poll_stats_enable(q)) 4596 return 0; 4597 4598 /* 4599 * As an optimistic guess, use half of the mean service time 4600 * for this type of request. We can (and should) make this smarter. 4601 * For instance, if the completion latencies are tight, we can 4602 * get closer than just half the mean. This is especially 4603 * important on devices where the completion latencies are longer 4604 * than ~10 usec. We do use the stats for the relevant IO size 4605 * if available which does lead to better estimates. 4606 */ 4607 bucket = blk_mq_poll_stats_bkt(rq); 4608 if (bucket < 0) 4609 return ret; 4610 4611 if (q->poll_stat[bucket].nr_samples) 4612 ret = (q->poll_stat[bucket].mean + 1) / 2; 4613 4614 return ret; 4615 } 4616 4617 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4618 { 4619 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4620 struct request *rq = blk_qc_to_rq(hctx, qc); 4621 struct hrtimer_sleeper hs; 4622 enum hrtimer_mode mode; 4623 unsigned int nsecs; 4624 ktime_t kt; 4625 4626 /* 4627 * If a request has completed on queue that uses an I/O scheduler, we 4628 * won't get back a request from blk_qc_to_rq. 4629 */ 4630 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4631 return false; 4632 4633 /* 4634 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4635 * 4636 * 0: use half of prev avg 4637 * >0: use this specific value 4638 */ 4639 if (q->poll_nsec > 0) 4640 nsecs = q->poll_nsec; 4641 else 4642 nsecs = blk_mq_poll_nsecs(q, rq); 4643 4644 if (!nsecs) 4645 return false; 4646 4647 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4648 4649 /* 4650 * This will be replaced with the stats tracking code, using 4651 * 'avg_completion_time / 2' as the pre-sleep target. 4652 */ 4653 kt = nsecs; 4654 4655 mode = HRTIMER_MODE_REL; 4656 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4657 hrtimer_set_expires(&hs.timer, kt); 4658 4659 do { 4660 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4661 break; 4662 set_current_state(TASK_UNINTERRUPTIBLE); 4663 hrtimer_sleeper_start_expires(&hs, mode); 4664 if (hs.task) 4665 io_schedule(); 4666 hrtimer_cancel(&hs.timer); 4667 mode = HRTIMER_MODE_ABS; 4668 } while (hs.task && !signal_pending(current)); 4669 4670 __set_current_state(TASK_RUNNING); 4671 destroy_hrtimer_on_stack(&hs.timer); 4672 4673 /* 4674 * If we sleep, have the caller restart the poll loop to reset the 4675 * state. Like for the other success return cases, the caller is 4676 * responsible for checking if the IO completed. If the IO isn't 4677 * complete, we'll get called again and will go straight to the busy 4678 * poll loop. 4679 */ 4680 return true; 4681 } 4682 4683 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4684 struct io_comp_batch *iob, unsigned int flags) 4685 { 4686 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4687 long state = get_current_state(); 4688 int ret; 4689 4690 do { 4691 ret = q->mq_ops->poll(hctx, iob); 4692 if (ret > 0) { 4693 __set_current_state(TASK_RUNNING); 4694 return ret; 4695 } 4696 4697 if (signal_pending_state(state, current)) 4698 __set_current_state(TASK_RUNNING); 4699 if (task_is_running(current)) 4700 return 1; 4701 4702 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4703 break; 4704 cpu_relax(); 4705 } while (!need_resched()); 4706 4707 __set_current_state(TASK_RUNNING); 4708 return 0; 4709 } 4710 4711 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4712 unsigned int flags) 4713 { 4714 if (!(flags & BLK_POLL_NOSLEEP) && 4715 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4716 if (blk_mq_poll_hybrid(q, cookie)) 4717 return 1; 4718 } 4719 return blk_mq_poll_classic(q, cookie, iob, flags); 4720 } 4721 4722 unsigned int blk_mq_rq_cpu(struct request *rq) 4723 { 4724 return rq->mq_ctx->cpu; 4725 } 4726 EXPORT_SYMBOL(blk_mq_rq_cpu); 4727 4728 void blk_mq_cancel_work_sync(struct request_queue *q) 4729 { 4730 if (queue_is_mq(q)) { 4731 struct blk_mq_hw_ctx *hctx; 4732 int i; 4733 4734 cancel_delayed_work_sync(&q->requeue_work); 4735 4736 queue_for_each_hw_ctx(q, hctx, i) 4737 cancel_delayed_work_sync(&hctx->run_work); 4738 } 4739 } 4740 4741 static int __init blk_mq_init(void) 4742 { 4743 int i; 4744 4745 for_each_possible_cpu(i) 4746 init_llist_head(&per_cpu(blk_cpu_done, i)); 4747 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4748 4749 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4750 "block/softirq:dead", NULL, 4751 blk_softirq_cpu_dead); 4752 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4753 blk_mq_hctx_notify_dead); 4754 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4755 blk_mq_hctx_notify_online, 4756 blk_mq_hctx_notify_offline); 4757 return 0; 4758 } 4759 subsys_initcall(blk_mq_init); 4760