xref: /openbmc/linux/block/blk-mq.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PM)
298 		rq->rq_flags |= RQF_PM;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush/passthrough requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    !blk_op_is_passthrough(data->cmd_flags) &&
370 		    e->type->ops.limit_depth &&
371 		    !(data->flags & BLK_MQ_REQ_RESERVED))
372 			e->type->ops.limit_depth(data->cmd_flags, data);
373 	}
374 
375 retry:
376 	data->ctx = blk_mq_get_ctx(q);
377 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378 	if (!e)
379 		blk_mq_tag_busy(data->hctx);
380 
381 	/*
382 	 * Waiting allocations only fail because of an inactive hctx.  In that
383 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
384 	 * should have migrated us to an online CPU by now.
385 	 */
386 	tag = blk_mq_get_tag(data);
387 	if (tag == BLK_MQ_NO_TAG) {
388 		if (data->flags & BLK_MQ_REQ_NOWAIT)
389 			return NULL;
390 
391 		/*
392 		 * Give up the CPU and sleep for a random short time to ensure
393 		 * that thread using a realtime scheduling class are migrated
394 		 * off the CPU, and thus off the hctx that is going away.
395 		 */
396 		msleep(3);
397 		goto retry;
398 	}
399 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401 
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403 		blk_mq_req_flags_t flags)
404 {
405 	struct blk_mq_alloc_data data = {
406 		.q		= q,
407 		.flags		= flags,
408 		.cmd_flags	= op,
409 	};
410 	struct request *rq;
411 	int ret;
412 
413 	ret = blk_queue_enter(q, flags);
414 	if (ret)
415 		return ERR_PTR(ret);
416 
417 	rq = __blk_mq_alloc_request(&data);
418 	if (!rq)
419 		goto out_queue_exit;
420 	rq->__data_len = 0;
421 	rq->__sector = (sector_t) -1;
422 	rq->bio = rq->biotail = NULL;
423 	return rq;
424 out_queue_exit:
425 	blk_queue_exit(q);
426 	return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429 
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433 	struct blk_mq_alloc_data data = {
434 		.q		= q,
435 		.flags		= flags,
436 		.cmd_flags	= op,
437 	};
438 	u64 alloc_time_ns = 0;
439 	unsigned int cpu;
440 	unsigned int tag;
441 	int ret;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	/*
448 	 * If the tag allocator sleeps we could get an allocation for a
449 	 * different hardware context.  No need to complicate the low level
450 	 * allocator for this for the rare use case of a command tied to
451 	 * a specific queue.
452 	 */
453 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454 		return ERR_PTR(-EINVAL);
455 
456 	if (hctx_idx >= q->nr_hw_queues)
457 		return ERR_PTR(-EIO);
458 
459 	ret = blk_queue_enter(q, flags);
460 	if (ret)
461 		return ERR_PTR(ret);
462 
463 	/*
464 	 * Check if the hardware context is actually mapped to anything.
465 	 * If not tell the caller that it should skip this queue.
466 	 */
467 	ret = -EXDEV;
468 	data.hctx = q->queue_hw_ctx[hctx_idx];
469 	if (!blk_mq_hw_queue_mapped(data.hctx))
470 		goto out_queue_exit;
471 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472 	data.ctx = __blk_mq_get_ctx(q, cpu);
473 
474 	if (!q->elevator)
475 		blk_mq_tag_busy(data.hctx);
476 
477 	ret = -EWOULDBLOCK;
478 	tag = blk_mq_get_tag(&data);
479 	if (tag == BLK_MQ_NO_TAG)
480 		goto out_queue_exit;
481 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482 
483 out_queue_exit:
484 	blk_queue_exit(q);
485 	return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488 
489 static void __blk_mq_free_request(struct request *rq)
490 {
491 	struct request_queue *q = rq->q;
492 	struct blk_mq_ctx *ctx = rq->mq_ctx;
493 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 	const int sched_tag = rq->internal_tag;
495 
496 	blk_crypto_free_request(rq);
497 	blk_pm_mark_last_busy(rq);
498 	rq->mq_hctx = NULL;
499 	if (rq->tag != BLK_MQ_NO_TAG)
500 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501 	if (sched_tag != BLK_MQ_NO_TAG)
502 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503 	blk_mq_sched_restart(hctx);
504 	blk_queue_exit(q);
505 }
506 
507 void blk_mq_free_request(struct request *rq)
508 {
509 	struct request_queue *q = rq->q;
510 	struct elevator_queue *e = q->elevator;
511 	struct blk_mq_ctx *ctx = rq->mq_ctx;
512 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513 
514 	if (rq->rq_flags & RQF_ELVPRIV) {
515 		if (e && e->type->ops.finish_request)
516 			e->type->ops.finish_request(rq);
517 		if (rq->elv.icq) {
518 			put_io_context(rq->elv.icq->ioc);
519 			rq->elv.icq = NULL;
520 		}
521 	}
522 
523 	ctx->rq_completed[rq_is_sync(rq)]++;
524 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
525 		__blk_mq_dec_active_requests(hctx);
526 
527 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 		laptop_io_completion(q->backing_dev_info);
529 
530 	rq_qos_done(q, rq);
531 
532 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 	if (refcount_dec_and_test(&rq->ref))
534 		__blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537 
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540 	u64 now = 0;
541 
542 	if (blk_mq_need_time_stamp(rq))
543 		now = ktime_get_ns();
544 
545 	if (rq->rq_flags & RQF_STATS) {
546 		blk_mq_poll_stats_start(rq->q);
547 		blk_stat_add(rq, now);
548 	}
549 
550 	blk_mq_sched_completed_request(rq, now);
551 
552 	blk_account_io_done(rq, now);
553 
554 	if (rq->end_io) {
555 		rq_qos_done(rq->q, rq);
556 		rq->end_io(rq, error);
557 	} else {
558 		blk_mq_free_request(rq);
559 	}
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562 
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566 		BUG();
567 	__blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570 
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574 	struct request *rq, *next;
575 
576 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
577 		rq->q->mq_ops->complete(rq);
578 }
579 
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584 
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588 	return 0;
589 }
590 
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595 
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598 	int cpu = raw_smp_processor_id();
599 
600 	if (!IS_ENABLED(CONFIG_SMP) ||
601 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602 		return false;
603 	/*
604 	 * With force threaded interrupts enabled, raising softirq from an SMP
605 	 * function call will always result in waking the ksoftirqd thread.
606 	 * This is probably worse than completing the request on a different
607 	 * cache domain.
608 	 */
609 	if (force_irqthreads)
610 		return false;
611 
612 	/* same CPU or cache domain?  Complete locally */
613 	if (cpu == rq->mq_ctx->cpu ||
614 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616 		return false;
617 
618 	/* don't try to IPI to an offline CPU */
619 	return cpu_online(rq->mq_ctx->cpu);
620 }
621 
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624 	struct llist_head *list;
625 	unsigned int cpu;
626 
627 	cpu = rq->mq_ctx->cpu;
628 	list = &per_cpu(blk_cpu_done, cpu);
629 	if (llist_add(&rq->ipi_list, list)) {
630 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631 		smp_call_function_single_async(cpu, &rq->csd);
632 	}
633 }
634 
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637 	struct llist_head *list;
638 
639 	preempt_disable();
640 	list = this_cpu_ptr(&blk_cpu_done);
641 	if (llist_add(&rq->ipi_list, list))
642 		raise_softirq(BLOCK_SOFTIRQ);
643 	preempt_enable();
644 }
645 
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649 
650 	/*
651 	 * For a polled request, always complete locallly, it's pointless
652 	 * to redirect the completion.
653 	 */
654 	if (rq->cmd_flags & REQ_HIPRI)
655 		return false;
656 
657 	if (blk_mq_complete_need_ipi(rq)) {
658 		blk_mq_complete_send_ipi(rq);
659 		return true;
660 	}
661 
662 	if (rq->q->nr_hw_queues == 1) {
663 		blk_mq_raise_softirq(rq);
664 		return true;
665 	}
666 	return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669 
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:		the request being processed
673  *
674  * Description:
675  *	Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679 	if (!blk_mq_complete_request_remote(rq))
680 		rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683 
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685 	__releases(hctx->srcu)
686 {
687 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688 		rcu_read_unlock();
689 	else
690 		srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692 
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694 	__acquires(hctx->srcu)
695 {
696 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697 		/* shut up gcc false positive */
698 		*srcu_idx = 0;
699 		rcu_read_lock();
700 	} else
701 		*srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703 
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714 	struct request_queue *q = rq->q;
715 
716 	trace_block_rq_issue(rq);
717 
718 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719 		rq->io_start_time_ns = ktime_get_ns();
720 		rq->stats_sectors = blk_rq_sectors(rq);
721 		rq->rq_flags |= RQF_STATS;
722 		rq_qos_issue(q, rq);
723 	}
724 
725 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726 
727 	blk_add_timer(rq);
728 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729 
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732 		q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736 
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739 	struct request_queue *q = rq->q;
740 
741 	blk_mq_put_driver_tag(rq);
742 
743 	trace_block_rq_requeue(rq);
744 	rq_qos_requeue(q, rq);
745 
746 	if (blk_mq_request_started(rq)) {
747 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748 		rq->rq_flags &= ~RQF_TIMED_OUT;
749 	}
750 }
751 
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754 	__blk_mq_requeue_request(rq);
755 
756 	/* this request will be re-inserted to io scheduler queue */
757 	blk_mq_sched_requeue_request(rq);
758 
759 	BUG_ON(!list_empty(&rq->queuelist));
760 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763 
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766 	struct request_queue *q =
767 		container_of(work, struct request_queue, requeue_work.work);
768 	LIST_HEAD(rq_list);
769 	struct request *rq, *next;
770 
771 	spin_lock_irq(&q->requeue_lock);
772 	list_splice_init(&q->requeue_list, &rq_list);
773 	spin_unlock_irq(&q->requeue_lock);
774 
775 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777 			continue;
778 
779 		rq->rq_flags &= ~RQF_SOFTBARRIER;
780 		list_del_init(&rq->queuelist);
781 		/*
782 		 * If RQF_DONTPREP, rq has contained some driver specific
783 		 * data, so insert it to hctx dispatch list to avoid any
784 		 * merge.
785 		 */
786 		if (rq->rq_flags & RQF_DONTPREP)
787 			blk_mq_request_bypass_insert(rq, false, false);
788 		else
789 			blk_mq_sched_insert_request(rq, true, false, false);
790 	}
791 
792 	while (!list_empty(&rq_list)) {
793 		rq = list_entry(rq_list.next, struct request, queuelist);
794 		list_del_init(&rq->queuelist);
795 		blk_mq_sched_insert_request(rq, false, false, false);
796 	}
797 
798 	blk_mq_run_hw_queues(q, false);
799 }
800 
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802 				bool kick_requeue_list)
803 {
804 	struct request_queue *q = rq->q;
805 	unsigned long flags;
806 
807 	/*
808 	 * We abuse this flag that is otherwise used by the I/O scheduler to
809 	 * request head insertion from the workqueue.
810 	 */
811 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812 
813 	spin_lock_irqsave(&q->requeue_lock, flags);
814 	if (at_head) {
815 		rq->rq_flags |= RQF_SOFTBARRIER;
816 		list_add(&rq->queuelist, &q->requeue_list);
817 	} else {
818 		list_add_tail(&rq->queuelist, &q->requeue_list);
819 	}
820 	spin_unlock_irqrestore(&q->requeue_lock, flags);
821 
822 	if (kick_requeue_list)
823 		blk_mq_kick_requeue_list(q);
824 }
825 
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831 
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833 				    unsigned long msecs)
834 {
835 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836 				    msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839 
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842 	if (tag < tags->nr_tags) {
843 		prefetch(tags->rqs[tag]);
844 		return tags->rqs[tag];
845 	}
846 
847 	return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850 
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852 			       void *priv, bool reserved)
853 {
854 	/*
855 	 * If we find a request that isn't idle and the queue matches,
856 	 * we know the queue is busy. Return false to stop the iteration.
857 	 */
858 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859 		bool *busy = priv;
860 
861 		*busy = true;
862 		return false;
863 	}
864 
865 	return true;
866 }
867 
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870 	bool busy = false;
871 
872 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873 	return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876 
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879 	req->rq_flags |= RQF_TIMED_OUT;
880 	if (req->q->mq_ops->timeout) {
881 		enum blk_eh_timer_return ret;
882 
883 		ret = req->q->mq_ops->timeout(req, reserved);
884 		if (ret == BLK_EH_DONE)
885 			return;
886 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887 	}
888 
889 	blk_add_timer(req);
890 }
891 
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894 	unsigned long deadline;
895 
896 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897 		return false;
898 	if (rq->rq_flags & RQF_TIMED_OUT)
899 		return false;
900 
901 	deadline = READ_ONCE(rq->deadline);
902 	if (time_after_eq(jiffies, deadline))
903 		return true;
904 
905 	if (*next == 0)
906 		*next = deadline;
907 	else if (time_after(*next, deadline))
908 		*next = deadline;
909 	return false;
910 }
911 
912 void blk_mq_put_rq_ref(struct request *rq)
913 {
914 	if (is_flush_rq(rq, rq->mq_hctx))
915 		rq->end_io(rq, 0);
916 	else if (refcount_dec_and_test(&rq->ref))
917 		__blk_mq_free_request(rq);
918 }
919 
920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
921 		struct request *rq, void *priv, bool reserved)
922 {
923 	unsigned long *next = priv;
924 
925 	/*
926 	 * Just do a quick check if it is expired before locking the request in
927 	 * so we're not unnecessarilly synchronizing across CPUs.
928 	 */
929 	if (!blk_mq_req_expired(rq, next))
930 		return true;
931 
932 	/*
933 	 * We have reason to believe the request may be expired. Take a
934 	 * reference on the request to lock this request lifetime into its
935 	 * currently allocated context to prevent it from being reallocated in
936 	 * the event the completion by-passes this timeout handler.
937 	 *
938 	 * If the reference was already released, then the driver beat the
939 	 * timeout handler to posting a natural completion.
940 	 */
941 	if (!refcount_inc_not_zero(&rq->ref))
942 		return true;
943 
944 	/*
945 	 * The request is now locked and cannot be reallocated underneath the
946 	 * timeout handler's processing. Re-verify this exact request is truly
947 	 * expired; if it is not expired, then the request was completed and
948 	 * reallocated as a new request.
949 	 */
950 	if (blk_mq_req_expired(rq, next))
951 		blk_mq_rq_timed_out(rq, reserved);
952 
953 	blk_mq_put_rq_ref(rq);
954 	return true;
955 }
956 
957 static void blk_mq_timeout_work(struct work_struct *work)
958 {
959 	struct request_queue *q =
960 		container_of(work, struct request_queue, timeout_work);
961 	unsigned long next = 0;
962 	struct blk_mq_hw_ctx *hctx;
963 	int i;
964 
965 	/* A deadlock might occur if a request is stuck requiring a
966 	 * timeout at the same time a queue freeze is waiting
967 	 * completion, since the timeout code would not be able to
968 	 * acquire the queue reference here.
969 	 *
970 	 * That's why we don't use blk_queue_enter here; instead, we use
971 	 * percpu_ref_tryget directly, because we need to be able to
972 	 * obtain a reference even in the short window between the queue
973 	 * starting to freeze, by dropping the first reference in
974 	 * blk_freeze_queue_start, and the moment the last request is
975 	 * consumed, marked by the instant q_usage_counter reaches
976 	 * zero.
977 	 */
978 	if (!percpu_ref_tryget(&q->q_usage_counter))
979 		return;
980 
981 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
982 
983 	if (next != 0) {
984 		mod_timer(&q->timeout, next);
985 	} else {
986 		/*
987 		 * Request timeouts are handled as a forward rolling timer. If
988 		 * we end up here it means that no requests are pending and
989 		 * also that no request has been pending for a while. Mark
990 		 * each hctx as idle.
991 		 */
992 		queue_for_each_hw_ctx(q, hctx, i) {
993 			/* the hctx may be unmapped, so check it here */
994 			if (blk_mq_hw_queue_mapped(hctx))
995 				blk_mq_tag_idle(hctx);
996 		}
997 	}
998 	blk_queue_exit(q);
999 }
1000 
1001 struct flush_busy_ctx_data {
1002 	struct blk_mq_hw_ctx *hctx;
1003 	struct list_head *list;
1004 };
1005 
1006 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1007 {
1008 	struct flush_busy_ctx_data *flush_data = data;
1009 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1010 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1011 	enum hctx_type type = hctx->type;
1012 
1013 	spin_lock(&ctx->lock);
1014 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1015 	sbitmap_clear_bit(sb, bitnr);
1016 	spin_unlock(&ctx->lock);
1017 	return true;
1018 }
1019 
1020 /*
1021  * Process software queues that have been marked busy, splicing them
1022  * to the for-dispatch
1023  */
1024 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1025 {
1026 	struct flush_busy_ctx_data data = {
1027 		.hctx = hctx,
1028 		.list = list,
1029 	};
1030 
1031 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1032 }
1033 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1034 
1035 struct dispatch_rq_data {
1036 	struct blk_mq_hw_ctx *hctx;
1037 	struct request *rq;
1038 };
1039 
1040 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1041 		void *data)
1042 {
1043 	struct dispatch_rq_data *dispatch_data = data;
1044 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1045 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1046 	enum hctx_type type = hctx->type;
1047 
1048 	spin_lock(&ctx->lock);
1049 	if (!list_empty(&ctx->rq_lists[type])) {
1050 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1051 		list_del_init(&dispatch_data->rq->queuelist);
1052 		if (list_empty(&ctx->rq_lists[type]))
1053 			sbitmap_clear_bit(sb, bitnr);
1054 	}
1055 	spin_unlock(&ctx->lock);
1056 
1057 	return !dispatch_data->rq;
1058 }
1059 
1060 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1061 					struct blk_mq_ctx *start)
1062 {
1063 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1064 	struct dispatch_rq_data data = {
1065 		.hctx = hctx,
1066 		.rq   = NULL,
1067 	};
1068 
1069 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1070 			       dispatch_rq_from_ctx, &data);
1071 
1072 	return data.rq;
1073 }
1074 
1075 static inline unsigned int queued_to_index(unsigned int queued)
1076 {
1077 	if (!queued)
1078 		return 0;
1079 
1080 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1081 }
1082 
1083 static bool __blk_mq_get_driver_tag(struct request *rq)
1084 {
1085 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1086 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1087 	int tag;
1088 
1089 	blk_mq_tag_busy(rq->mq_hctx);
1090 
1091 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1092 		bt = rq->mq_hctx->tags->breserved_tags;
1093 		tag_offset = 0;
1094 	} else {
1095 		if (!hctx_may_queue(rq->mq_hctx, bt))
1096 			return false;
1097 	}
1098 
1099 	tag = __sbitmap_queue_get(bt);
1100 	if (tag == BLK_MQ_NO_TAG)
1101 		return false;
1102 
1103 	rq->tag = tag + tag_offset;
1104 	return true;
1105 }
1106 
1107 bool blk_mq_get_driver_tag(struct request *rq)
1108 {
1109 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1110 
1111 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1112 		return false;
1113 
1114 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1115 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1116 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1117 		__blk_mq_inc_active_requests(hctx);
1118 	}
1119 	hctx->tags->rqs[rq->tag] = rq;
1120 	return true;
1121 }
1122 
1123 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1124 				int flags, void *key)
1125 {
1126 	struct blk_mq_hw_ctx *hctx;
1127 
1128 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1129 
1130 	spin_lock(&hctx->dispatch_wait_lock);
1131 	if (!list_empty(&wait->entry)) {
1132 		struct sbitmap_queue *sbq;
1133 
1134 		list_del_init(&wait->entry);
1135 		sbq = hctx->tags->bitmap_tags;
1136 		atomic_dec(&sbq->ws_active);
1137 	}
1138 	spin_unlock(&hctx->dispatch_wait_lock);
1139 
1140 	blk_mq_run_hw_queue(hctx, true);
1141 	return 1;
1142 }
1143 
1144 /*
1145  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1146  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1147  * restart. For both cases, take care to check the condition again after
1148  * marking us as waiting.
1149  */
1150 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1151 				 struct request *rq)
1152 {
1153 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1154 	struct wait_queue_head *wq;
1155 	wait_queue_entry_t *wait;
1156 	bool ret;
1157 
1158 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1159 		blk_mq_sched_mark_restart_hctx(hctx);
1160 
1161 		/*
1162 		 * It's possible that a tag was freed in the window between the
1163 		 * allocation failure and adding the hardware queue to the wait
1164 		 * queue.
1165 		 *
1166 		 * Don't clear RESTART here, someone else could have set it.
1167 		 * At most this will cost an extra queue run.
1168 		 */
1169 		return blk_mq_get_driver_tag(rq);
1170 	}
1171 
1172 	wait = &hctx->dispatch_wait;
1173 	if (!list_empty_careful(&wait->entry))
1174 		return false;
1175 
1176 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1177 
1178 	spin_lock_irq(&wq->lock);
1179 	spin_lock(&hctx->dispatch_wait_lock);
1180 	if (!list_empty(&wait->entry)) {
1181 		spin_unlock(&hctx->dispatch_wait_lock);
1182 		spin_unlock_irq(&wq->lock);
1183 		return false;
1184 	}
1185 
1186 	atomic_inc(&sbq->ws_active);
1187 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1188 	__add_wait_queue(wq, wait);
1189 
1190 	/*
1191 	 * It's possible that a tag was freed in the window between the
1192 	 * allocation failure and adding the hardware queue to the wait
1193 	 * queue.
1194 	 */
1195 	ret = blk_mq_get_driver_tag(rq);
1196 	if (!ret) {
1197 		spin_unlock(&hctx->dispatch_wait_lock);
1198 		spin_unlock_irq(&wq->lock);
1199 		return false;
1200 	}
1201 
1202 	/*
1203 	 * We got a tag, remove ourselves from the wait queue to ensure
1204 	 * someone else gets the wakeup.
1205 	 */
1206 	list_del_init(&wait->entry);
1207 	atomic_dec(&sbq->ws_active);
1208 	spin_unlock(&hctx->dispatch_wait_lock);
1209 	spin_unlock_irq(&wq->lock);
1210 
1211 	return true;
1212 }
1213 
1214 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1215 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1216 /*
1217  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1218  * - EWMA is one simple way to compute running average value
1219  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1220  * - take 4 as factor for avoiding to get too small(0) result, and this
1221  *   factor doesn't matter because EWMA decreases exponentially
1222  */
1223 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1224 {
1225 	unsigned int ewma;
1226 
1227 	ewma = hctx->dispatch_busy;
1228 
1229 	if (!ewma && !busy)
1230 		return;
1231 
1232 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1233 	if (busy)
1234 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1235 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1236 
1237 	hctx->dispatch_busy = ewma;
1238 }
1239 
1240 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1241 
1242 static void blk_mq_handle_dev_resource(struct request *rq,
1243 				       struct list_head *list)
1244 {
1245 	struct request *next =
1246 		list_first_entry_or_null(list, struct request, queuelist);
1247 
1248 	/*
1249 	 * If an I/O scheduler has been configured and we got a driver tag for
1250 	 * the next request already, free it.
1251 	 */
1252 	if (next)
1253 		blk_mq_put_driver_tag(next);
1254 
1255 	list_add(&rq->queuelist, list);
1256 	__blk_mq_requeue_request(rq);
1257 }
1258 
1259 static void blk_mq_handle_zone_resource(struct request *rq,
1260 					struct list_head *zone_list)
1261 {
1262 	/*
1263 	 * If we end up here it is because we cannot dispatch a request to a
1264 	 * specific zone due to LLD level zone-write locking or other zone
1265 	 * related resource not being available. In this case, set the request
1266 	 * aside in zone_list for retrying it later.
1267 	 */
1268 	list_add(&rq->queuelist, zone_list);
1269 	__blk_mq_requeue_request(rq);
1270 }
1271 
1272 enum prep_dispatch {
1273 	PREP_DISPATCH_OK,
1274 	PREP_DISPATCH_NO_TAG,
1275 	PREP_DISPATCH_NO_BUDGET,
1276 };
1277 
1278 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1279 						  bool need_budget)
1280 {
1281 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1282 	int budget_token = -1;
1283 
1284 	if (need_budget) {
1285 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1286 		if (budget_token < 0) {
1287 			blk_mq_put_driver_tag(rq);
1288 			return PREP_DISPATCH_NO_BUDGET;
1289 		}
1290 		blk_mq_set_rq_budget_token(rq, budget_token);
1291 	}
1292 
1293 	if (!blk_mq_get_driver_tag(rq)) {
1294 		/*
1295 		 * The initial allocation attempt failed, so we need to
1296 		 * rerun the hardware queue when a tag is freed. The
1297 		 * waitqueue takes care of that. If the queue is run
1298 		 * before we add this entry back on the dispatch list,
1299 		 * we'll re-run it below.
1300 		 */
1301 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1302 			/*
1303 			 * All budgets not got from this function will be put
1304 			 * together during handling partial dispatch
1305 			 */
1306 			if (need_budget)
1307 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1308 			return PREP_DISPATCH_NO_TAG;
1309 		}
1310 	}
1311 
1312 	return PREP_DISPATCH_OK;
1313 }
1314 
1315 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1316 static void blk_mq_release_budgets(struct request_queue *q,
1317 		struct list_head *list)
1318 {
1319 	struct request *rq;
1320 
1321 	list_for_each_entry(rq, list, queuelist) {
1322 		int budget_token = blk_mq_get_rq_budget_token(rq);
1323 
1324 		if (budget_token >= 0)
1325 			blk_mq_put_dispatch_budget(q, budget_token);
1326 	}
1327 }
1328 
1329 /*
1330  * Returns true if we did some work AND can potentially do more.
1331  */
1332 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1333 			     unsigned int nr_budgets)
1334 {
1335 	enum prep_dispatch prep;
1336 	struct request_queue *q = hctx->queue;
1337 	struct request *rq, *nxt;
1338 	int errors, queued;
1339 	blk_status_t ret = BLK_STS_OK;
1340 	LIST_HEAD(zone_list);
1341 
1342 	if (list_empty(list))
1343 		return false;
1344 
1345 	/*
1346 	 * Now process all the entries, sending them to the driver.
1347 	 */
1348 	errors = queued = 0;
1349 	do {
1350 		struct blk_mq_queue_data bd;
1351 
1352 		rq = list_first_entry(list, struct request, queuelist);
1353 
1354 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1355 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1356 		if (prep != PREP_DISPATCH_OK)
1357 			break;
1358 
1359 		list_del_init(&rq->queuelist);
1360 
1361 		bd.rq = rq;
1362 
1363 		/*
1364 		 * Flag last if we have no more requests, or if we have more
1365 		 * but can't assign a driver tag to it.
1366 		 */
1367 		if (list_empty(list))
1368 			bd.last = true;
1369 		else {
1370 			nxt = list_first_entry(list, struct request, queuelist);
1371 			bd.last = !blk_mq_get_driver_tag(nxt);
1372 		}
1373 
1374 		/*
1375 		 * once the request is queued to lld, no need to cover the
1376 		 * budget any more
1377 		 */
1378 		if (nr_budgets)
1379 			nr_budgets--;
1380 		ret = q->mq_ops->queue_rq(hctx, &bd);
1381 		switch (ret) {
1382 		case BLK_STS_OK:
1383 			queued++;
1384 			break;
1385 		case BLK_STS_RESOURCE:
1386 		case BLK_STS_DEV_RESOURCE:
1387 			blk_mq_handle_dev_resource(rq, list);
1388 			goto out;
1389 		case BLK_STS_ZONE_RESOURCE:
1390 			/*
1391 			 * Move the request to zone_list and keep going through
1392 			 * the dispatch list to find more requests the drive can
1393 			 * accept.
1394 			 */
1395 			blk_mq_handle_zone_resource(rq, &zone_list);
1396 			break;
1397 		default:
1398 			errors++;
1399 			blk_mq_end_request(rq, ret);
1400 		}
1401 	} while (!list_empty(list));
1402 out:
1403 	if (!list_empty(&zone_list))
1404 		list_splice_tail_init(&zone_list, list);
1405 
1406 	hctx->dispatched[queued_to_index(queued)]++;
1407 
1408 	/* If we didn't flush the entire list, we could have told the driver
1409 	 * there was more coming, but that turned out to be a lie.
1410 	 */
1411 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1412 		q->mq_ops->commit_rqs(hctx);
1413 	/*
1414 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1415 	 * that is where we will continue on next queue run.
1416 	 */
1417 	if (!list_empty(list)) {
1418 		bool needs_restart;
1419 		/* For non-shared tags, the RESTART check will suffice */
1420 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1421 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1422 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1423 
1424 		if (nr_budgets)
1425 			blk_mq_release_budgets(q, list);
1426 
1427 		spin_lock(&hctx->lock);
1428 		list_splice_tail_init(list, &hctx->dispatch);
1429 		spin_unlock(&hctx->lock);
1430 
1431 		/*
1432 		 * Order adding requests to hctx->dispatch and checking
1433 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1434 		 * in blk_mq_sched_restart(). Avoid restart code path to
1435 		 * miss the new added requests to hctx->dispatch, meantime
1436 		 * SCHED_RESTART is observed here.
1437 		 */
1438 		smp_mb();
1439 
1440 		/*
1441 		 * If SCHED_RESTART was set by the caller of this function and
1442 		 * it is no longer set that means that it was cleared by another
1443 		 * thread and hence that a queue rerun is needed.
1444 		 *
1445 		 * If 'no_tag' is set, that means that we failed getting
1446 		 * a driver tag with an I/O scheduler attached. If our dispatch
1447 		 * waitqueue is no longer active, ensure that we run the queue
1448 		 * AFTER adding our entries back to the list.
1449 		 *
1450 		 * If no I/O scheduler has been configured it is possible that
1451 		 * the hardware queue got stopped and restarted before requests
1452 		 * were pushed back onto the dispatch list. Rerun the queue to
1453 		 * avoid starvation. Notes:
1454 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1455 		 *   been stopped before rerunning a queue.
1456 		 * - Some but not all block drivers stop a queue before
1457 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1458 		 *   and dm-rq.
1459 		 *
1460 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1461 		 * bit is set, run queue after a delay to avoid IO stalls
1462 		 * that could otherwise occur if the queue is idle.  We'll do
1463 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1464 		 */
1465 		needs_restart = blk_mq_sched_needs_restart(hctx);
1466 		if (!needs_restart ||
1467 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1468 			blk_mq_run_hw_queue(hctx, true);
1469 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1470 					   no_budget_avail))
1471 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1472 
1473 		blk_mq_update_dispatch_busy(hctx, true);
1474 		return false;
1475 	} else
1476 		blk_mq_update_dispatch_busy(hctx, false);
1477 
1478 	return (queued + errors) != 0;
1479 }
1480 
1481 /**
1482  * __blk_mq_run_hw_queue - Run a hardware queue.
1483  * @hctx: Pointer to the hardware queue to run.
1484  *
1485  * Send pending requests to the hardware.
1486  */
1487 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1488 {
1489 	int srcu_idx;
1490 
1491 	/*
1492 	 * We can't run the queue inline with ints disabled. Ensure that
1493 	 * we catch bad users of this early.
1494 	 */
1495 	WARN_ON_ONCE(in_interrupt());
1496 
1497 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1498 
1499 	hctx_lock(hctx, &srcu_idx);
1500 	blk_mq_sched_dispatch_requests(hctx);
1501 	hctx_unlock(hctx, srcu_idx);
1502 }
1503 
1504 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1505 {
1506 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1507 
1508 	if (cpu >= nr_cpu_ids)
1509 		cpu = cpumask_first(hctx->cpumask);
1510 	return cpu;
1511 }
1512 
1513 /*
1514  * It'd be great if the workqueue API had a way to pass
1515  * in a mask and had some smarts for more clever placement.
1516  * For now we just round-robin here, switching for every
1517  * BLK_MQ_CPU_WORK_BATCH queued items.
1518  */
1519 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1520 {
1521 	bool tried = false;
1522 	int next_cpu = hctx->next_cpu;
1523 
1524 	if (hctx->queue->nr_hw_queues == 1)
1525 		return WORK_CPU_UNBOUND;
1526 
1527 	if (--hctx->next_cpu_batch <= 0) {
1528 select_cpu:
1529 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1530 				cpu_online_mask);
1531 		if (next_cpu >= nr_cpu_ids)
1532 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1533 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1534 	}
1535 
1536 	/*
1537 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1538 	 * and it should only happen in the path of handling CPU DEAD.
1539 	 */
1540 	if (!cpu_online(next_cpu)) {
1541 		if (!tried) {
1542 			tried = true;
1543 			goto select_cpu;
1544 		}
1545 
1546 		/*
1547 		 * Make sure to re-select CPU next time once after CPUs
1548 		 * in hctx->cpumask become online again.
1549 		 */
1550 		hctx->next_cpu = next_cpu;
1551 		hctx->next_cpu_batch = 1;
1552 		return WORK_CPU_UNBOUND;
1553 	}
1554 
1555 	hctx->next_cpu = next_cpu;
1556 	return next_cpu;
1557 }
1558 
1559 /**
1560  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1561  * @hctx: Pointer to the hardware queue to run.
1562  * @async: If we want to run the queue asynchronously.
1563  * @msecs: Milliseconds of delay to wait before running the queue.
1564  *
1565  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1566  * with a delay of @msecs.
1567  */
1568 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1569 					unsigned long msecs)
1570 {
1571 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1572 		return;
1573 
1574 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1575 		int cpu = get_cpu();
1576 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1577 			__blk_mq_run_hw_queue(hctx);
1578 			put_cpu();
1579 			return;
1580 		}
1581 
1582 		put_cpu();
1583 	}
1584 
1585 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1586 				    msecs_to_jiffies(msecs));
1587 }
1588 
1589 /**
1590  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1591  * @hctx: Pointer to the hardware queue to run.
1592  * @msecs: Milliseconds of delay to wait before running the queue.
1593  *
1594  * Run a hardware queue asynchronously with a delay of @msecs.
1595  */
1596 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1597 {
1598 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1599 }
1600 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1601 
1602 /**
1603  * blk_mq_run_hw_queue - Start to run a hardware queue.
1604  * @hctx: Pointer to the hardware queue to run.
1605  * @async: If we want to run the queue asynchronously.
1606  *
1607  * Check if the request queue is not in a quiesced state and if there are
1608  * pending requests to be sent. If this is true, run the queue to send requests
1609  * to hardware.
1610  */
1611 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1612 {
1613 	int srcu_idx;
1614 	bool need_run;
1615 
1616 	/*
1617 	 * When queue is quiesced, we may be switching io scheduler, or
1618 	 * updating nr_hw_queues, or other things, and we can't run queue
1619 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1620 	 *
1621 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1622 	 * quiesced.
1623 	 */
1624 	hctx_lock(hctx, &srcu_idx);
1625 	need_run = !blk_queue_quiesced(hctx->queue) &&
1626 		blk_mq_hctx_has_pending(hctx);
1627 	hctx_unlock(hctx, srcu_idx);
1628 
1629 	if (need_run)
1630 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1631 }
1632 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1633 
1634 /*
1635  * Is the request queue handled by an IO scheduler that does not respect
1636  * hardware queues when dispatching?
1637  */
1638 static bool blk_mq_has_sqsched(struct request_queue *q)
1639 {
1640 	struct elevator_queue *e = q->elevator;
1641 
1642 	if (e && e->type->ops.dispatch_request &&
1643 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1644 		return true;
1645 	return false;
1646 }
1647 
1648 /*
1649  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1650  * scheduler.
1651  */
1652 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1653 {
1654 	struct blk_mq_hw_ctx *hctx;
1655 
1656 	/*
1657 	 * If the IO scheduler does not respect hardware queues when
1658 	 * dispatching, we just don't bother with multiple HW queues and
1659 	 * dispatch from hctx for the current CPU since running multiple queues
1660 	 * just causes lock contention inside the scheduler and pointless cache
1661 	 * bouncing.
1662 	 */
1663 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1664 				     raw_smp_processor_id());
1665 	if (!blk_mq_hctx_stopped(hctx))
1666 		return hctx;
1667 	return NULL;
1668 }
1669 
1670 /**
1671  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1672  * @q: Pointer to the request queue to run.
1673  * @async: If we want to run the queue asynchronously.
1674  */
1675 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1676 {
1677 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1678 	int i;
1679 
1680 	sq_hctx = NULL;
1681 	if (blk_mq_has_sqsched(q))
1682 		sq_hctx = blk_mq_get_sq_hctx(q);
1683 	queue_for_each_hw_ctx(q, hctx, i) {
1684 		if (blk_mq_hctx_stopped(hctx))
1685 			continue;
1686 		/*
1687 		 * Dispatch from this hctx either if there's no hctx preferred
1688 		 * by IO scheduler or if it has requests that bypass the
1689 		 * scheduler.
1690 		 */
1691 		if (!sq_hctx || sq_hctx == hctx ||
1692 		    !list_empty_careful(&hctx->dispatch))
1693 			blk_mq_run_hw_queue(hctx, async);
1694 	}
1695 }
1696 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1697 
1698 /**
1699  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1700  * @q: Pointer to the request queue to run.
1701  * @msecs: Milliseconds of delay to wait before running the queues.
1702  */
1703 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1704 {
1705 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1706 	int i;
1707 
1708 	sq_hctx = NULL;
1709 	if (blk_mq_has_sqsched(q))
1710 		sq_hctx = blk_mq_get_sq_hctx(q);
1711 	queue_for_each_hw_ctx(q, hctx, i) {
1712 		if (blk_mq_hctx_stopped(hctx))
1713 			continue;
1714 		/*
1715 		 * Dispatch from this hctx either if there's no hctx preferred
1716 		 * by IO scheduler or if it has requests that bypass the
1717 		 * scheduler.
1718 		 */
1719 		if (!sq_hctx || sq_hctx == hctx ||
1720 		    !list_empty_careful(&hctx->dispatch))
1721 			blk_mq_delay_run_hw_queue(hctx, msecs);
1722 	}
1723 }
1724 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1725 
1726 /**
1727  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1728  * @q: request queue.
1729  *
1730  * The caller is responsible for serializing this function against
1731  * blk_mq_{start,stop}_hw_queue().
1732  */
1733 bool blk_mq_queue_stopped(struct request_queue *q)
1734 {
1735 	struct blk_mq_hw_ctx *hctx;
1736 	int i;
1737 
1738 	queue_for_each_hw_ctx(q, hctx, i)
1739 		if (blk_mq_hctx_stopped(hctx))
1740 			return true;
1741 
1742 	return false;
1743 }
1744 EXPORT_SYMBOL(blk_mq_queue_stopped);
1745 
1746 /*
1747  * This function is often used for pausing .queue_rq() by driver when
1748  * there isn't enough resource or some conditions aren't satisfied, and
1749  * BLK_STS_RESOURCE is usually returned.
1750  *
1751  * We do not guarantee that dispatch can be drained or blocked
1752  * after blk_mq_stop_hw_queue() returns. Please use
1753  * blk_mq_quiesce_queue() for that requirement.
1754  */
1755 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1756 {
1757 	cancel_delayed_work(&hctx->run_work);
1758 
1759 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1760 }
1761 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1762 
1763 /*
1764  * This function is often used for pausing .queue_rq() by driver when
1765  * there isn't enough resource or some conditions aren't satisfied, and
1766  * BLK_STS_RESOURCE is usually returned.
1767  *
1768  * We do not guarantee that dispatch can be drained or blocked
1769  * after blk_mq_stop_hw_queues() returns. Please use
1770  * blk_mq_quiesce_queue() for that requirement.
1771  */
1772 void blk_mq_stop_hw_queues(struct request_queue *q)
1773 {
1774 	struct blk_mq_hw_ctx *hctx;
1775 	int i;
1776 
1777 	queue_for_each_hw_ctx(q, hctx, i)
1778 		blk_mq_stop_hw_queue(hctx);
1779 }
1780 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1781 
1782 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1783 {
1784 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1785 
1786 	blk_mq_run_hw_queue(hctx, false);
1787 }
1788 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1789 
1790 void blk_mq_start_hw_queues(struct request_queue *q)
1791 {
1792 	struct blk_mq_hw_ctx *hctx;
1793 	int i;
1794 
1795 	queue_for_each_hw_ctx(q, hctx, i)
1796 		blk_mq_start_hw_queue(hctx);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1799 
1800 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1801 {
1802 	if (!blk_mq_hctx_stopped(hctx))
1803 		return;
1804 
1805 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1806 	blk_mq_run_hw_queue(hctx, async);
1807 }
1808 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1809 
1810 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1811 {
1812 	struct blk_mq_hw_ctx *hctx;
1813 	int i;
1814 
1815 	queue_for_each_hw_ctx(q, hctx, i)
1816 		blk_mq_start_stopped_hw_queue(hctx, async);
1817 }
1818 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1819 
1820 static void blk_mq_run_work_fn(struct work_struct *work)
1821 {
1822 	struct blk_mq_hw_ctx *hctx;
1823 
1824 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1825 
1826 	/*
1827 	 * If we are stopped, don't run the queue.
1828 	 */
1829 	if (blk_mq_hctx_stopped(hctx))
1830 		return;
1831 
1832 	__blk_mq_run_hw_queue(hctx);
1833 }
1834 
1835 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1836 					    struct request *rq,
1837 					    bool at_head)
1838 {
1839 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1840 	enum hctx_type type = hctx->type;
1841 
1842 	lockdep_assert_held(&ctx->lock);
1843 
1844 	trace_block_rq_insert(rq);
1845 
1846 	if (at_head)
1847 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1848 	else
1849 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1850 }
1851 
1852 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1853 			     bool at_head)
1854 {
1855 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1856 
1857 	lockdep_assert_held(&ctx->lock);
1858 
1859 	__blk_mq_insert_req_list(hctx, rq, at_head);
1860 	blk_mq_hctx_mark_pending(hctx, ctx);
1861 }
1862 
1863 /**
1864  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1865  * @rq: Pointer to request to be inserted.
1866  * @at_head: true if the request should be inserted at the head of the list.
1867  * @run_queue: If we should run the hardware queue after inserting the request.
1868  *
1869  * Should only be used carefully, when the caller knows we want to
1870  * bypass a potential IO scheduler on the target device.
1871  */
1872 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1873 				  bool run_queue)
1874 {
1875 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1876 
1877 	spin_lock(&hctx->lock);
1878 	if (at_head)
1879 		list_add(&rq->queuelist, &hctx->dispatch);
1880 	else
1881 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1882 	spin_unlock(&hctx->lock);
1883 
1884 	if (run_queue)
1885 		blk_mq_run_hw_queue(hctx, false);
1886 }
1887 
1888 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1889 			    struct list_head *list)
1890 
1891 {
1892 	struct request *rq;
1893 	enum hctx_type type = hctx->type;
1894 
1895 	/*
1896 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1897 	 * offline now
1898 	 */
1899 	list_for_each_entry(rq, list, queuelist) {
1900 		BUG_ON(rq->mq_ctx != ctx);
1901 		trace_block_rq_insert(rq);
1902 	}
1903 
1904 	spin_lock(&ctx->lock);
1905 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1906 	blk_mq_hctx_mark_pending(hctx, ctx);
1907 	spin_unlock(&ctx->lock);
1908 }
1909 
1910 static int plug_rq_cmp(void *priv, const struct list_head *a,
1911 		       const struct list_head *b)
1912 {
1913 	struct request *rqa = container_of(a, struct request, queuelist);
1914 	struct request *rqb = container_of(b, struct request, queuelist);
1915 
1916 	if (rqa->mq_ctx != rqb->mq_ctx)
1917 		return rqa->mq_ctx > rqb->mq_ctx;
1918 	if (rqa->mq_hctx != rqb->mq_hctx)
1919 		return rqa->mq_hctx > rqb->mq_hctx;
1920 
1921 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1922 }
1923 
1924 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1925 {
1926 	LIST_HEAD(list);
1927 
1928 	if (list_empty(&plug->mq_list))
1929 		return;
1930 	list_splice_init(&plug->mq_list, &list);
1931 
1932 	if (plug->rq_count > 2 && plug->multiple_queues)
1933 		list_sort(NULL, &list, plug_rq_cmp);
1934 
1935 	plug->rq_count = 0;
1936 
1937 	do {
1938 		struct list_head rq_list;
1939 		struct request *rq, *head_rq = list_entry_rq(list.next);
1940 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1941 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1942 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1943 		unsigned int depth = 1;
1944 
1945 		list_for_each_continue(pos, &list) {
1946 			rq = list_entry_rq(pos);
1947 			BUG_ON(!rq->q);
1948 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1949 				break;
1950 			depth++;
1951 		}
1952 
1953 		list_cut_before(&rq_list, &list, pos);
1954 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1955 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1956 						from_schedule);
1957 	} while(!list_empty(&list));
1958 }
1959 
1960 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1961 		unsigned int nr_segs)
1962 {
1963 	int err;
1964 
1965 	if (bio->bi_opf & REQ_RAHEAD)
1966 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1967 
1968 	rq->__sector = bio->bi_iter.bi_sector;
1969 	rq->write_hint = bio->bi_write_hint;
1970 	blk_rq_bio_prep(rq, bio, nr_segs);
1971 
1972 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1973 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1974 	WARN_ON_ONCE(err);
1975 
1976 	blk_account_io_start(rq);
1977 }
1978 
1979 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1980 					    struct request *rq,
1981 					    blk_qc_t *cookie, bool last)
1982 {
1983 	struct request_queue *q = rq->q;
1984 	struct blk_mq_queue_data bd = {
1985 		.rq = rq,
1986 		.last = last,
1987 	};
1988 	blk_qc_t new_cookie;
1989 	blk_status_t ret;
1990 
1991 	new_cookie = request_to_qc_t(hctx, rq);
1992 
1993 	/*
1994 	 * For OK queue, we are done. For error, caller may kill it.
1995 	 * Any other error (busy), just add it to our list as we
1996 	 * previously would have done.
1997 	 */
1998 	ret = q->mq_ops->queue_rq(hctx, &bd);
1999 	switch (ret) {
2000 	case BLK_STS_OK:
2001 		blk_mq_update_dispatch_busy(hctx, false);
2002 		*cookie = new_cookie;
2003 		break;
2004 	case BLK_STS_RESOURCE:
2005 	case BLK_STS_DEV_RESOURCE:
2006 		blk_mq_update_dispatch_busy(hctx, true);
2007 		__blk_mq_requeue_request(rq);
2008 		break;
2009 	default:
2010 		blk_mq_update_dispatch_busy(hctx, false);
2011 		*cookie = BLK_QC_T_NONE;
2012 		break;
2013 	}
2014 
2015 	return ret;
2016 }
2017 
2018 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2019 						struct request *rq,
2020 						blk_qc_t *cookie,
2021 						bool bypass_insert, bool last)
2022 {
2023 	struct request_queue *q = rq->q;
2024 	bool run_queue = true;
2025 	int budget_token;
2026 
2027 	/*
2028 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2029 	 *
2030 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2031 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2032 	 * and avoid driver to try to dispatch again.
2033 	 */
2034 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2035 		run_queue = false;
2036 		bypass_insert = false;
2037 		goto insert;
2038 	}
2039 
2040 	if (q->elevator && !bypass_insert)
2041 		goto insert;
2042 
2043 	budget_token = blk_mq_get_dispatch_budget(q);
2044 	if (budget_token < 0)
2045 		goto insert;
2046 
2047 	blk_mq_set_rq_budget_token(rq, budget_token);
2048 
2049 	if (!blk_mq_get_driver_tag(rq)) {
2050 		blk_mq_put_dispatch_budget(q, budget_token);
2051 		goto insert;
2052 	}
2053 
2054 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2055 insert:
2056 	if (bypass_insert)
2057 		return BLK_STS_RESOURCE;
2058 
2059 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2060 
2061 	return BLK_STS_OK;
2062 }
2063 
2064 /**
2065  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2066  * @hctx: Pointer of the associated hardware queue.
2067  * @rq: Pointer to request to be sent.
2068  * @cookie: Request queue cookie.
2069  *
2070  * If the device has enough resources to accept a new request now, send the
2071  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2072  * we can try send it another time in the future. Requests inserted at this
2073  * queue have higher priority.
2074  */
2075 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2076 		struct request *rq, blk_qc_t *cookie)
2077 {
2078 	blk_status_t ret;
2079 	int srcu_idx;
2080 
2081 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2082 
2083 	hctx_lock(hctx, &srcu_idx);
2084 
2085 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2086 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2087 		blk_mq_request_bypass_insert(rq, false, true);
2088 	else if (ret != BLK_STS_OK)
2089 		blk_mq_end_request(rq, ret);
2090 
2091 	hctx_unlock(hctx, srcu_idx);
2092 }
2093 
2094 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2095 {
2096 	blk_status_t ret;
2097 	int srcu_idx;
2098 	blk_qc_t unused_cookie;
2099 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2100 
2101 	hctx_lock(hctx, &srcu_idx);
2102 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2103 	hctx_unlock(hctx, srcu_idx);
2104 
2105 	return ret;
2106 }
2107 
2108 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2109 		struct list_head *list)
2110 {
2111 	int queued = 0;
2112 	int errors = 0;
2113 
2114 	while (!list_empty(list)) {
2115 		blk_status_t ret;
2116 		struct request *rq = list_first_entry(list, struct request,
2117 				queuelist);
2118 
2119 		list_del_init(&rq->queuelist);
2120 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2121 		if (ret != BLK_STS_OK) {
2122 			if (ret == BLK_STS_RESOURCE ||
2123 					ret == BLK_STS_DEV_RESOURCE) {
2124 				blk_mq_request_bypass_insert(rq, false,
2125 							list_empty(list));
2126 				break;
2127 			}
2128 			blk_mq_end_request(rq, ret);
2129 			errors++;
2130 		} else
2131 			queued++;
2132 	}
2133 
2134 	/*
2135 	 * If we didn't flush the entire list, we could have told
2136 	 * the driver there was more coming, but that turned out to
2137 	 * be a lie.
2138 	 */
2139 	if ((!list_empty(list) || errors) &&
2140 	     hctx->queue->mq_ops->commit_rqs && queued)
2141 		hctx->queue->mq_ops->commit_rqs(hctx);
2142 }
2143 
2144 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2145 {
2146 	list_add_tail(&rq->queuelist, &plug->mq_list);
2147 	plug->rq_count++;
2148 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2149 		struct request *tmp;
2150 
2151 		tmp = list_first_entry(&plug->mq_list, struct request,
2152 						queuelist);
2153 		if (tmp->q != rq->q)
2154 			plug->multiple_queues = true;
2155 	}
2156 }
2157 
2158 /**
2159  * blk_mq_submit_bio - Create and send a request to block device.
2160  * @bio: Bio pointer.
2161  *
2162  * Builds up a request structure from @q and @bio and send to the device. The
2163  * request may not be queued directly to hardware if:
2164  * * This request can be merged with another one
2165  * * We want to place request at plug queue for possible future merging
2166  * * There is an IO scheduler active at this queue
2167  *
2168  * It will not queue the request if there is an error with the bio, or at the
2169  * request creation.
2170  *
2171  * Returns: Request queue cookie.
2172  */
2173 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2174 {
2175 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2176 	const int is_sync = op_is_sync(bio->bi_opf);
2177 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2178 	struct blk_mq_alloc_data data = {
2179 		.q		= q,
2180 	};
2181 	struct request *rq;
2182 	struct blk_plug *plug;
2183 	struct request *same_queue_rq = NULL;
2184 	unsigned int nr_segs;
2185 	blk_qc_t cookie;
2186 	blk_status_t ret;
2187 	bool hipri;
2188 
2189 	blk_queue_bounce(q, &bio);
2190 	__blk_queue_split(&bio, &nr_segs);
2191 
2192 	if (!bio_integrity_prep(bio))
2193 		goto queue_exit;
2194 
2195 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2196 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2197 		goto queue_exit;
2198 
2199 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2200 		goto queue_exit;
2201 
2202 	rq_qos_throttle(q, bio);
2203 
2204 	hipri = bio->bi_opf & REQ_HIPRI;
2205 
2206 	data.cmd_flags = bio->bi_opf;
2207 	rq = __blk_mq_alloc_request(&data);
2208 	if (unlikely(!rq)) {
2209 		rq_qos_cleanup(q, bio);
2210 		if (bio->bi_opf & REQ_NOWAIT)
2211 			bio_wouldblock_error(bio);
2212 		goto queue_exit;
2213 	}
2214 
2215 	trace_block_getrq(bio);
2216 
2217 	rq_qos_track(q, rq, bio);
2218 
2219 	cookie = request_to_qc_t(data.hctx, rq);
2220 
2221 	blk_mq_bio_to_request(rq, bio, nr_segs);
2222 
2223 	ret = blk_crypto_init_request(rq);
2224 	if (ret != BLK_STS_OK) {
2225 		bio->bi_status = ret;
2226 		bio_endio(bio);
2227 		blk_mq_free_request(rq);
2228 		return BLK_QC_T_NONE;
2229 	}
2230 
2231 	plug = blk_mq_plug(q, bio);
2232 	if (unlikely(is_flush_fua)) {
2233 		/* Bypass scheduler for flush requests */
2234 		blk_insert_flush(rq);
2235 		blk_mq_run_hw_queue(data.hctx, true);
2236 	} else if (plug && (q->nr_hw_queues == 1 ||
2237 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2238 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2239 		/*
2240 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2241 		 * we know the driver uses bd->last in a smart fashion.
2242 		 *
2243 		 * Use normal plugging if this disk is slow HDD, as sequential
2244 		 * IO may benefit a lot from plug merging.
2245 		 */
2246 		unsigned int request_count = plug->rq_count;
2247 		struct request *last = NULL;
2248 
2249 		if (!request_count)
2250 			trace_block_plug(q);
2251 		else
2252 			last = list_entry_rq(plug->mq_list.prev);
2253 
2254 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2255 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2256 			blk_flush_plug_list(plug, false);
2257 			trace_block_plug(q);
2258 		}
2259 
2260 		blk_add_rq_to_plug(plug, rq);
2261 	} else if (q->elevator) {
2262 		/* Insert the request at the IO scheduler queue */
2263 		blk_mq_sched_insert_request(rq, false, true, true);
2264 	} else if (plug && !blk_queue_nomerges(q)) {
2265 		/*
2266 		 * We do limited plugging. If the bio can be merged, do that.
2267 		 * Otherwise the existing request in the plug list will be
2268 		 * issued. So the plug list will have one request at most
2269 		 * The plug list might get flushed before this. If that happens,
2270 		 * the plug list is empty, and same_queue_rq is invalid.
2271 		 */
2272 		if (list_empty(&plug->mq_list))
2273 			same_queue_rq = NULL;
2274 		if (same_queue_rq) {
2275 			list_del_init(&same_queue_rq->queuelist);
2276 			plug->rq_count--;
2277 		}
2278 		blk_add_rq_to_plug(plug, rq);
2279 		trace_block_plug(q);
2280 
2281 		if (same_queue_rq) {
2282 			data.hctx = same_queue_rq->mq_hctx;
2283 			trace_block_unplug(q, 1, true);
2284 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2285 					&cookie);
2286 		}
2287 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2288 			!data.hctx->dispatch_busy) {
2289 		/*
2290 		 * There is no scheduler and we can try to send directly
2291 		 * to the hardware.
2292 		 */
2293 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2294 	} else {
2295 		/* Default case. */
2296 		blk_mq_sched_insert_request(rq, false, true, true);
2297 	}
2298 
2299 	if (!hipri)
2300 		return BLK_QC_T_NONE;
2301 	return cookie;
2302 queue_exit:
2303 	blk_queue_exit(q);
2304 	return BLK_QC_T_NONE;
2305 }
2306 
2307 static size_t order_to_size(unsigned int order)
2308 {
2309 	return (size_t)PAGE_SIZE << order;
2310 }
2311 
2312 /* called before freeing request pool in @tags */
2313 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2314 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2315 {
2316 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2317 	struct page *page;
2318 	unsigned long flags;
2319 
2320 	list_for_each_entry(page, &tags->page_list, lru) {
2321 		unsigned long start = (unsigned long)page_address(page);
2322 		unsigned long end = start + order_to_size(page->private);
2323 		int i;
2324 
2325 		for (i = 0; i < set->queue_depth; i++) {
2326 			struct request *rq = drv_tags->rqs[i];
2327 			unsigned long rq_addr = (unsigned long)rq;
2328 
2329 			if (rq_addr >= start && rq_addr < end) {
2330 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2331 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2332 			}
2333 		}
2334 	}
2335 
2336 	/*
2337 	 * Wait until all pending iteration is done.
2338 	 *
2339 	 * Request reference is cleared and it is guaranteed to be observed
2340 	 * after the ->lock is released.
2341 	 */
2342 	spin_lock_irqsave(&drv_tags->lock, flags);
2343 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2344 }
2345 
2346 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2347 		     unsigned int hctx_idx)
2348 {
2349 	struct page *page;
2350 
2351 	if (tags->rqs && set->ops->exit_request) {
2352 		int i;
2353 
2354 		for (i = 0; i < tags->nr_tags; i++) {
2355 			struct request *rq = tags->static_rqs[i];
2356 
2357 			if (!rq)
2358 				continue;
2359 			set->ops->exit_request(set, rq, hctx_idx);
2360 			tags->static_rqs[i] = NULL;
2361 		}
2362 	}
2363 
2364 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2365 
2366 	while (!list_empty(&tags->page_list)) {
2367 		page = list_first_entry(&tags->page_list, struct page, lru);
2368 		list_del_init(&page->lru);
2369 		/*
2370 		 * Remove kmemleak object previously allocated in
2371 		 * blk_mq_alloc_rqs().
2372 		 */
2373 		kmemleak_free(page_address(page));
2374 		__free_pages(page, page->private);
2375 	}
2376 }
2377 
2378 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2379 {
2380 	kfree(tags->rqs);
2381 	tags->rqs = NULL;
2382 	kfree(tags->static_rqs);
2383 	tags->static_rqs = NULL;
2384 
2385 	blk_mq_free_tags(tags, flags);
2386 }
2387 
2388 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2389 					unsigned int hctx_idx,
2390 					unsigned int nr_tags,
2391 					unsigned int reserved_tags,
2392 					unsigned int flags)
2393 {
2394 	struct blk_mq_tags *tags;
2395 	int node;
2396 
2397 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2398 	if (node == NUMA_NO_NODE)
2399 		node = set->numa_node;
2400 
2401 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2402 	if (!tags)
2403 		return NULL;
2404 
2405 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2406 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2407 				 node);
2408 	if (!tags->rqs) {
2409 		blk_mq_free_tags(tags, flags);
2410 		return NULL;
2411 	}
2412 
2413 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2414 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2415 					node);
2416 	if (!tags->static_rqs) {
2417 		kfree(tags->rqs);
2418 		blk_mq_free_tags(tags, flags);
2419 		return NULL;
2420 	}
2421 
2422 	return tags;
2423 }
2424 
2425 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2426 			       unsigned int hctx_idx, int node)
2427 {
2428 	int ret;
2429 
2430 	if (set->ops->init_request) {
2431 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2432 		if (ret)
2433 			return ret;
2434 	}
2435 
2436 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2437 	return 0;
2438 }
2439 
2440 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2441 		     unsigned int hctx_idx, unsigned int depth)
2442 {
2443 	unsigned int i, j, entries_per_page, max_order = 4;
2444 	size_t rq_size, left;
2445 	int node;
2446 
2447 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2448 	if (node == NUMA_NO_NODE)
2449 		node = set->numa_node;
2450 
2451 	INIT_LIST_HEAD(&tags->page_list);
2452 
2453 	/*
2454 	 * rq_size is the size of the request plus driver payload, rounded
2455 	 * to the cacheline size
2456 	 */
2457 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2458 				cache_line_size());
2459 	left = rq_size * depth;
2460 
2461 	for (i = 0; i < depth; ) {
2462 		int this_order = max_order;
2463 		struct page *page;
2464 		int to_do;
2465 		void *p;
2466 
2467 		while (this_order && left < order_to_size(this_order - 1))
2468 			this_order--;
2469 
2470 		do {
2471 			page = alloc_pages_node(node,
2472 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2473 				this_order);
2474 			if (page)
2475 				break;
2476 			if (!this_order--)
2477 				break;
2478 			if (order_to_size(this_order) < rq_size)
2479 				break;
2480 		} while (1);
2481 
2482 		if (!page)
2483 			goto fail;
2484 
2485 		page->private = this_order;
2486 		list_add_tail(&page->lru, &tags->page_list);
2487 
2488 		p = page_address(page);
2489 		/*
2490 		 * Allow kmemleak to scan these pages as they contain pointers
2491 		 * to additional allocations like via ops->init_request().
2492 		 */
2493 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2494 		entries_per_page = order_to_size(this_order) / rq_size;
2495 		to_do = min(entries_per_page, depth - i);
2496 		left -= to_do * rq_size;
2497 		for (j = 0; j < to_do; j++) {
2498 			struct request *rq = p;
2499 
2500 			tags->static_rqs[i] = rq;
2501 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2502 				tags->static_rqs[i] = NULL;
2503 				goto fail;
2504 			}
2505 
2506 			p += rq_size;
2507 			i++;
2508 		}
2509 	}
2510 	return 0;
2511 
2512 fail:
2513 	blk_mq_free_rqs(set, tags, hctx_idx);
2514 	return -ENOMEM;
2515 }
2516 
2517 struct rq_iter_data {
2518 	struct blk_mq_hw_ctx *hctx;
2519 	bool has_rq;
2520 };
2521 
2522 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2523 {
2524 	struct rq_iter_data *iter_data = data;
2525 
2526 	if (rq->mq_hctx != iter_data->hctx)
2527 		return true;
2528 	iter_data->has_rq = true;
2529 	return false;
2530 }
2531 
2532 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2533 {
2534 	struct blk_mq_tags *tags = hctx->sched_tags ?
2535 			hctx->sched_tags : hctx->tags;
2536 	struct rq_iter_data data = {
2537 		.hctx	= hctx,
2538 	};
2539 
2540 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2541 	return data.has_rq;
2542 }
2543 
2544 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2545 		struct blk_mq_hw_ctx *hctx)
2546 {
2547 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2548 		return false;
2549 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2550 		return false;
2551 	return true;
2552 }
2553 
2554 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2555 {
2556 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2557 			struct blk_mq_hw_ctx, cpuhp_online);
2558 
2559 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2560 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2561 		return 0;
2562 
2563 	/*
2564 	 * Prevent new request from being allocated on the current hctx.
2565 	 *
2566 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2567 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2568 	 * seen once we return from the tag allocator.
2569 	 */
2570 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2571 	smp_mb__after_atomic();
2572 
2573 	/*
2574 	 * Try to grab a reference to the queue and wait for any outstanding
2575 	 * requests.  If we could not grab a reference the queue has been
2576 	 * frozen and there are no requests.
2577 	 */
2578 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2579 		while (blk_mq_hctx_has_requests(hctx))
2580 			msleep(5);
2581 		percpu_ref_put(&hctx->queue->q_usage_counter);
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2588 {
2589 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2590 			struct blk_mq_hw_ctx, cpuhp_online);
2591 
2592 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2593 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2594 	return 0;
2595 }
2596 
2597 /*
2598  * 'cpu' is going away. splice any existing rq_list entries from this
2599  * software queue to the hw queue dispatch list, and ensure that it
2600  * gets run.
2601  */
2602 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2603 {
2604 	struct blk_mq_hw_ctx *hctx;
2605 	struct blk_mq_ctx *ctx;
2606 	LIST_HEAD(tmp);
2607 	enum hctx_type type;
2608 
2609 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2610 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2611 		return 0;
2612 
2613 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2614 	type = hctx->type;
2615 
2616 	spin_lock(&ctx->lock);
2617 	if (!list_empty(&ctx->rq_lists[type])) {
2618 		list_splice_init(&ctx->rq_lists[type], &tmp);
2619 		blk_mq_hctx_clear_pending(hctx, ctx);
2620 	}
2621 	spin_unlock(&ctx->lock);
2622 
2623 	if (list_empty(&tmp))
2624 		return 0;
2625 
2626 	spin_lock(&hctx->lock);
2627 	list_splice_tail_init(&tmp, &hctx->dispatch);
2628 	spin_unlock(&hctx->lock);
2629 
2630 	blk_mq_run_hw_queue(hctx, true);
2631 	return 0;
2632 }
2633 
2634 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2635 {
2636 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2637 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2638 						    &hctx->cpuhp_online);
2639 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2640 					    &hctx->cpuhp_dead);
2641 }
2642 
2643 /*
2644  * Before freeing hw queue, clearing the flush request reference in
2645  * tags->rqs[] for avoiding potential UAF.
2646  */
2647 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2648 		unsigned int queue_depth, struct request *flush_rq)
2649 {
2650 	int i;
2651 	unsigned long flags;
2652 
2653 	/* The hw queue may not be mapped yet */
2654 	if (!tags)
2655 		return;
2656 
2657 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2658 
2659 	for (i = 0; i < queue_depth; i++)
2660 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2661 
2662 	/*
2663 	 * Wait until all pending iteration is done.
2664 	 *
2665 	 * Request reference is cleared and it is guaranteed to be observed
2666 	 * after the ->lock is released.
2667 	 */
2668 	spin_lock_irqsave(&tags->lock, flags);
2669 	spin_unlock_irqrestore(&tags->lock, flags);
2670 }
2671 
2672 /* hctx->ctxs will be freed in queue's release handler */
2673 static void blk_mq_exit_hctx(struct request_queue *q,
2674 		struct blk_mq_tag_set *set,
2675 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2676 {
2677 	struct request *flush_rq = hctx->fq->flush_rq;
2678 
2679 	if (blk_mq_hw_queue_mapped(hctx))
2680 		blk_mq_tag_idle(hctx);
2681 
2682 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2683 			set->queue_depth, flush_rq);
2684 	if (set->ops->exit_request)
2685 		set->ops->exit_request(set, flush_rq, hctx_idx);
2686 
2687 	if (set->ops->exit_hctx)
2688 		set->ops->exit_hctx(hctx, hctx_idx);
2689 
2690 	blk_mq_remove_cpuhp(hctx);
2691 
2692 	spin_lock(&q->unused_hctx_lock);
2693 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2694 	spin_unlock(&q->unused_hctx_lock);
2695 }
2696 
2697 static void blk_mq_exit_hw_queues(struct request_queue *q,
2698 		struct blk_mq_tag_set *set, int nr_queue)
2699 {
2700 	struct blk_mq_hw_ctx *hctx;
2701 	unsigned int i;
2702 
2703 	queue_for_each_hw_ctx(q, hctx, i) {
2704 		if (i == nr_queue)
2705 			break;
2706 		blk_mq_debugfs_unregister_hctx(hctx);
2707 		blk_mq_exit_hctx(q, set, hctx, i);
2708 	}
2709 }
2710 
2711 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2712 {
2713 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2714 
2715 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2716 			   __alignof__(struct blk_mq_hw_ctx)) !=
2717 		     sizeof(struct blk_mq_hw_ctx));
2718 
2719 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2720 		hw_ctx_size += sizeof(struct srcu_struct);
2721 
2722 	return hw_ctx_size;
2723 }
2724 
2725 static int blk_mq_init_hctx(struct request_queue *q,
2726 		struct blk_mq_tag_set *set,
2727 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2728 {
2729 	hctx->queue_num = hctx_idx;
2730 
2731 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2732 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2733 				&hctx->cpuhp_online);
2734 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2735 
2736 	hctx->tags = set->tags[hctx_idx];
2737 
2738 	if (set->ops->init_hctx &&
2739 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2740 		goto unregister_cpu_notifier;
2741 
2742 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2743 				hctx->numa_node))
2744 		goto exit_hctx;
2745 	return 0;
2746 
2747  exit_hctx:
2748 	if (set->ops->exit_hctx)
2749 		set->ops->exit_hctx(hctx, hctx_idx);
2750  unregister_cpu_notifier:
2751 	blk_mq_remove_cpuhp(hctx);
2752 	return -1;
2753 }
2754 
2755 static struct blk_mq_hw_ctx *
2756 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2757 		int node)
2758 {
2759 	struct blk_mq_hw_ctx *hctx;
2760 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2761 
2762 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2763 	if (!hctx)
2764 		goto fail_alloc_hctx;
2765 
2766 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2767 		goto free_hctx;
2768 
2769 	atomic_set(&hctx->nr_active, 0);
2770 	if (node == NUMA_NO_NODE)
2771 		node = set->numa_node;
2772 	hctx->numa_node = node;
2773 
2774 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2775 	spin_lock_init(&hctx->lock);
2776 	INIT_LIST_HEAD(&hctx->dispatch);
2777 	hctx->queue = q;
2778 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2779 
2780 	INIT_LIST_HEAD(&hctx->hctx_list);
2781 
2782 	/*
2783 	 * Allocate space for all possible cpus to avoid allocation at
2784 	 * runtime
2785 	 */
2786 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2787 			gfp, node);
2788 	if (!hctx->ctxs)
2789 		goto free_cpumask;
2790 
2791 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2792 				gfp, node, false, false))
2793 		goto free_ctxs;
2794 	hctx->nr_ctx = 0;
2795 
2796 	spin_lock_init(&hctx->dispatch_wait_lock);
2797 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2798 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2799 
2800 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2801 	if (!hctx->fq)
2802 		goto free_bitmap;
2803 
2804 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2805 		init_srcu_struct(hctx->srcu);
2806 	blk_mq_hctx_kobj_init(hctx);
2807 
2808 	return hctx;
2809 
2810  free_bitmap:
2811 	sbitmap_free(&hctx->ctx_map);
2812  free_ctxs:
2813 	kfree(hctx->ctxs);
2814  free_cpumask:
2815 	free_cpumask_var(hctx->cpumask);
2816  free_hctx:
2817 	kfree(hctx);
2818  fail_alloc_hctx:
2819 	return NULL;
2820 }
2821 
2822 static void blk_mq_init_cpu_queues(struct request_queue *q,
2823 				   unsigned int nr_hw_queues)
2824 {
2825 	struct blk_mq_tag_set *set = q->tag_set;
2826 	unsigned int i, j;
2827 
2828 	for_each_possible_cpu(i) {
2829 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2830 		struct blk_mq_hw_ctx *hctx;
2831 		int k;
2832 
2833 		__ctx->cpu = i;
2834 		spin_lock_init(&__ctx->lock);
2835 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2836 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2837 
2838 		__ctx->queue = q;
2839 
2840 		/*
2841 		 * Set local node, IFF we have more than one hw queue. If
2842 		 * not, we remain on the home node of the device
2843 		 */
2844 		for (j = 0; j < set->nr_maps; j++) {
2845 			hctx = blk_mq_map_queue_type(q, j, i);
2846 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2847 				hctx->numa_node = cpu_to_node(i);
2848 		}
2849 	}
2850 }
2851 
2852 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2853 					int hctx_idx)
2854 {
2855 	unsigned int flags = set->flags;
2856 	int ret = 0;
2857 
2858 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2859 					set->queue_depth, set->reserved_tags, flags);
2860 	if (!set->tags[hctx_idx])
2861 		return false;
2862 
2863 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2864 				set->queue_depth);
2865 	if (!ret)
2866 		return true;
2867 
2868 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2869 	set->tags[hctx_idx] = NULL;
2870 	return false;
2871 }
2872 
2873 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2874 					 unsigned int hctx_idx)
2875 {
2876 	unsigned int flags = set->flags;
2877 
2878 	if (set->tags && set->tags[hctx_idx]) {
2879 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2880 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2881 		set->tags[hctx_idx] = NULL;
2882 	}
2883 }
2884 
2885 static void blk_mq_map_swqueue(struct request_queue *q)
2886 {
2887 	unsigned int i, j, hctx_idx;
2888 	struct blk_mq_hw_ctx *hctx;
2889 	struct blk_mq_ctx *ctx;
2890 	struct blk_mq_tag_set *set = q->tag_set;
2891 
2892 	queue_for_each_hw_ctx(q, hctx, i) {
2893 		cpumask_clear(hctx->cpumask);
2894 		hctx->nr_ctx = 0;
2895 		hctx->dispatch_from = NULL;
2896 	}
2897 
2898 	/*
2899 	 * Map software to hardware queues.
2900 	 *
2901 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2902 	 */
2903 	for_each_possible_cpu(i) {
2904 
2905 		ctx = per_cpu_ptr(q->queue_ctx, i);
2906 		for (j = 0; j < set->nr_maps; j++) {
2907 			if (!set->map[j].nr_queues) {
2908 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2909 						HCTX_TYPE_DEFAULT, i);
2910 				continue;
2911 			}
2912 			hctx_idx = set->map[j].mq_map[i];
2913 			/* unmapped hw queue can be remapped after CPU topo changed */
2914 			if (!set->tags[hctx_idx] &&
2915 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2916 				/*
2917 				 * If tags initialization fail for some hctx,
2918 				 * that hctx won't be brought online.  In this
2919 				 * case, remap the current ctx to hctx[0] which
2920 				 * is guaranteed to always have tags allocated
2921 				 */
2922 				set->map[j].mq_map[i] = 0;
2923 			}
2924 
2925 			hctx = blk_mq_map_queue_type(q, j, i);
2926 			ctx->hctxs[j] = hctx;
2927 			/*
2928 			 * If the CPU is already set in the mask, then we've
2929 			 * mapped this one already. This can happen if
2930 			 * devices share queues across queue maps.
2931 			 */
2932 			if (cpumask_test_cpu(i, hctx->cpumask))
2933 				continue;
2934 
2935 			cpumask_set_cpu(i, hctx->cpumask);
2936 			hctx->type = j;
2937 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2938 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2939 
2940 			/*
2941 			 * If the nr_ctx type overflows, we have exceeded the
2942 			 * amount of sw queues we can support.
2943 			 */
2944 			BUG_ON(!hctx->nr_ctx);
2945 		}
2946 
2947 		for (; j < HCTX_MAX_TYPES; j++)
2948 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2949 					HCTX_TYPE_DEFAULT, i);
2950 	}
2951 
2952 	queue_for_each_hw_ctx(q, hctx, i) {
2953 		/*
2954 		 * If no software queues are mapped to this hardware queue,
2955 		 * disable it and free the request entries.
2956 		 */
2957 		if (!hctx->nr_ctx) {
2958 			/* Never unmap queue 0.  We need it as a
2959 			 * fallback in case of a new remap fails
2960 			 * allocation
2961 			 */
2962 			if (i && set->tags[i])
2963 				blk_mq_free_map_and_requests(set, i);
2964 
2965 			hctx->tags = NULL;
2966 			continue;
2967 		}
2968 
2969 		hctx->tags = set->tags[i];
2970 		WARN_ON(!hctx->tags);
2971 
2972 		/*
2973 		 * Set the map size to the number of mapped software queues.
2974 		 * This is more accurate and more efficient than looping
2975 		 * over all possibly mapped software queues.
2976 		 */
2977 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2978 
2979 		/*
2980 		 * Initialize batch roundrobin counts
2981 		 */
2982 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2983 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2984 	}
2985 }
2986 
2987 /*
2988  * Caller needs to ensure that we're either frozen/quiesced, or that
2989  * the queue isn't live yet.
2990  */
2991 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2992 {
2993 	struct blk_mq_hw_ctx *hctx;
2994 	int i;
2995 
2996 	queue_for_each_hw_ctx(q, hctx, i) {
2997 		if (shared) {
2998 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2999 		} else {
3000 			blk_mq_tag_idle(hctx);
3001 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3002 		}
3003 	}
3004 }
3005 
3006 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3007 					 bool shared)
3008 {
3009 	struct request_queue *q;
3010 
3011 	lockdep_assert_held(&set->tag_list_lock);
3012 
3013 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3014 		blk_mq_freeze_queue(q);
3015 		queue_set_hctx_shared(q, shared);
3016 		blk_mq_unfreeze_queue(q);
3017 	}
3018 }
3019 
3020 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3021 {
3022 	struct blk_mq_tag_set *set = q->tag_set;
3023 
3024 	mutex_lock(&set->tag_list_lock);
3025 	list_del(&q->tag_set_list);
3026 	if (list_is_singular(&set->tag_list)) {
3027 		/* just transitioned to unshared */
3028 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3029 		/* update existing queue */
3030 		blk_mq_update_tag_set_shared(set, false);
3031 	}
3032 	mutex_unlock(&set->tag_list_lock);
3033 	INIT_LIST_HEAD(&q->tag_set_list);
3034 }
3035 
3036 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3037 				     struct request_queue *q)
3038 {
3039 	mutex_lock(&set->tag_list_lock);
3040 
3041 	/*
3042 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3043 	 */
3044 	if (!list_empty(&set->tag_list) &&
3045 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3046 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3047 		/* update existing queue */
3048 		blk_mq_update_tag_set_shared(set, true);
3049 	}
3050 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3051 		queue_set_hctx_shared(q, true);
3052 	list_add_tail(&q->tag_set_list, &set->tag_list);
3053 
3054 	mutex_unlock(&set->tag_list_lock);
3055 }
3056 
3057 /* All allocations will be freed in release handler of q->mq_kobj */
3058 static int blk_mq_alloc_ctxs(struct request_queue *q)
3059 {
3060 	struct blk_mq_ctxs *ctxs;
3061 	int cpu;
3062 
3063 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3064 	if (!ctxs)
3065 		return -ENOMEM;
3066 
3067 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3068 	if (!ctxs->queue_ctx)
3069 		goto fail;
3070 
3071 	for_each_possible_cpu(cpu) {
3072 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3073 		ctx->ctxs = ctxs;
3074 	}
3075 
3076 	q->mq_kobj = &ctxs->kobj;
3077 	q->queue_ctx = ctxs->queue_ctx;
3078 
3079 	return 0;
3080  fail:
3081 	kfree(ctxs);
3082 	return -ENOMEM;
3083 }
3084 
3085 /*
3086  * It is the actual release handler for mq, but we do it from
3087  * request queue's release handler for avoiding use-after-free
3088  * and headache because q->mq_kobj shouldn't have been introduced,
3089  * but we can't group ctx/kctx kobj without it.
3090  */
3091 void blk_mq_release(struct request_queue *q)
3092 {
3093 	struct blk_mq_hw_ctx *hctx, *next;
3094 	int i;
3095 
3096 	queue_for_each_hw_ctx(q, hctx, i)
3097 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3098 
3099 	/* all hctx are in .unused_hctx_list now */
3100 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3101 		list_del_init(&hctx->hctx_list);
3102 		kobject_put(&hctx->kobj);
3103 	}
3104 
3105 	kfree(q->queue_hw_ctx);
3106 
3107 	/*
3108 	 * release .mq_kobj and sw queue's kobject now because
3109 	 * both share lifetime with request queue.
3110 	 */
3111 	blk_mq_sysfs_deinit(q);
3112 }
3113 
3114 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3115 		void *queuedata)
3116 {
3117 	struct request_queue *q;
3118 	int ret;
3119 
3120 	q = blk_alloc_queue(set->numa_node);
3121 	if (!q)
3122 		return ERR_PTR(-ENOMEM);
3123 	q->queuedata = queuedata;
3124 	ret = blk_mq_init_allocated_queue(set, q);
3125 	if (ret) {
3126 		blk_cleanup_queue(q);
3127 		return ERR_PTR(ret);
3128 	}
3129 	return q;
3130 }
3131 
3132 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3133 {
3134 	return blk_mq_init_queue_data(set, NULL);
3135 }
3136 EXPORT_SYMBOL(blk_mq_init_queue);
3137 
3138 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata)
3139 {
3140 	struct request_queue *q;
3141 	struct gendisk *disk;
3142 
3143 	q = blk_mq_init_queue_data(set, queuedata);
3144 	if (IS_ERR(q))
3145 		return ERR_CAST(q);
3146 
3147 	disk = __alloc_disk_node(0, set->numa_node);
3148 	if (!disk) {
3149 		blk_cleanup_queue(q);
3150 		return ERR_PTR(-ENOMEM);
3151 	}
3152 	disk->queue = q;
3153 	return disk;
3154 }
3155 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3156 
3157 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3158 		struct blk_mq_tag_set *set, struct request_queue *q,
3159 		int hctx_idx, int node)
3160 {
3161 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3162 
3163 	/* reuse dead hctx first */
3164 	spin_lock(&q->unused_hctx_lock);
3165 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3166 		if (tmp->numa_node == node) {
3167 			hctx = tmp;
3168 			break;
3169 		}
3170 	}
3171 	if (hctx)
3172 		list_del_init(&hctx->hctx_list);
3173 	spin_unlock(&q->unused_hctx_lock);
3174 
3175 	if (!hctx)
3176 		hctx = blk_mq_alloc_hctx(q, set, node);
3177 	if (!hctx)
3178 		goto fail;
3179 
3180 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3181 		goto free_hctx;
3182 
3183 	return hctx;
3184 
3185  free_hctx:
3186 	kobject_put(&hctx->kobj);
3187  fail:
3188 	return NULL;
3189 }
3190 
3191 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3192 						struct request_queue *q)
3193 {
3194 	int i, j, end;
3195 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3196 
3197 	if (q->nr_hw_queues < set->nr_hw_queues) {
3198 		struct blk_mq_hw_ctx **new_hctxs;
3199 
3200 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3201 				       sizeof(*new_hctxs), GFP_KERNEL,
3202 				       set->numa_node);
3203 		if (!new_hctxs)
3204 			return;
3205 		if (hctxs)
3206 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3207 			       sizeof(*hctxs));
3208 		q->queue_hw_ctx = new_hctxs;
3209 		kfree(hctxs);
3210 		hctxs = new_hctxs;
3211 	}
3212 
3213 	/* protect against switching io scheduler  */
3214 	mutex_lock(&q->sysfs_lock);
3215 	for (i = 0; i < set->nr_hw_queues; i++) {
3216 		int node;
3217 		struct blk_mq_hw_ctx *hctx;
3218 
3219 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3220 		/*
3221 		 * If the hw queue has been mapped to another numa node,
3222 		 * we need to realloc the hctx. If allocation fails, fallback
3223 		 * to use the previous one.
3224 		 */
3225 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3226 			continue;
3227 
3228 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3229 		if (hctx) {
3230 			if (hctxs[i])
3231 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3232 			hctxs[i] = hctx;
3233 		} else {
3234 			if (hctxs[i])
3235 				pr_warn("Allocate new hctx on node %d fails,\
3236 						fallback to previous one on node %d\n",
3237 						node, hctxs[i]->numa_node);
3238 			else
3239 				break;
3240 		}
3241 	}
3242 	/*
3243 	 * Increasing nr_hw_queues fails. Free the newly allocated
3244 	 * hctxs and keep the previous q->nr_hw_queues.
3245 	 */
3246 	if (i != set->nr_hw_queues) {
3247 		j = q->nr_hw_queues;
3248 		end = i;
3249 	} else {
3250 		j = i;
3251 		end = q->nr_hw_queues;
3252 		q->nr_hw_queues = set->nr_hw_queues;
3253 	}
3254 
3255 	for (; j < end; j++) {
3256 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3257 
3258 		if (hctx) {
3259 			if (hctx->tags)
3260 				blk_mq_free_map_and_requests(set, j);
3261 			blk_mq_exit_hctx(q, set, hctx, j);
3262 			hctxs[j] = NULL;
3263 		}
3264 	}
3265 	mutex_unlock(&q->sysfs_lock);
3266 }
3267 
3268 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3269 		struct request_queue *q)
3270 {
3271 	/* mark the queue as mq asap */
3272 	q->mq_ops = set->ops;
3273 
3274 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3275 					     blk_mq_poll_stats_bkt,
3276 					     BLK_MQ_POLL_STATS_BKTS, q);
3277 	if (!q->poll_cb)
3278 		goto err_exit;
3279 
3280 	if (blk_mq_alloc_ctxs(q))
3281 		goto err_poll;
3282 
3283 	/* init q->mq_kobj and sw queues' kobjects */
3284 	blk_mq_sysfs_init(q);
3285 
3286 	INIT_LIST_HEAD(&q->unused_hctx_list);
3287 	spin_lock_init(&q->unused_hctx_lock);
3288 
3289 	blk_mq_realloc_hw_ctxs(set, q);
3290 	if (!q->nr_hw_queues)
3291 		goto err_hctxs;
3292 
3293 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3294 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3295 
3296 	q->tag_set = set;
3297 
3298 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3299 	if (set->nr_maps > HCTX_TYPE_POLL &&
3300 	    set->map[HCTX_TYPE_POLL].nr_queues)
3301 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3302 
3303 	q->sg_reserved_size = INT_MAX;
3304 
3305 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3306 	INIT_LIST_HEAD(&q->requeue_list);
3307 	spin_lock_init(&q->requeue_lock);
3308 
3309 	q->nr_requests = set->queue_depth;
3310 
3311 	/*
3312 	 * Default to classic polling
3313 	 */
3314 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3315 
3316 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3317 	blk_mq_add_queue_tag_set(set, q);
3318 	blk_mq_map_swqueue(q);
3319 	return 0;
3320 
3321 err_hctxs:
3322 	kfree(q->queue_hw_ctx);
3323 	q->nr_hw_queues = 0;
3324 	blk_mq_sysfs_deinit(q);
3325 err_poll:
3326 	blk_stat_free_callback(q->poll_cb);
3327 	q->poll_cb = NULL;
3328 err_exit:
3329 	q->mq_ops = NULL;
3330 	return -ENOMEM;
3331 }
3332 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3333 
3334 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3335 void blk_mq_exit_queue(struct request_queue *q)
3336 {
3337 	struct blk_mq_tag_set *set = q->tag_set;
3338 
3339 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3340 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3341 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3342 	blk_mq_del_queue_tag_set(q);
3343 }
3344 
3345 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3346 {
3347 	int i;
3348 
3349 	for (i = 0; i < set->nr_hw_queues; i++) {
3350 		if (!__blk_mq_alloc_map_and_request(set, i))
3351 			goto out_unwind;
3352 		cond_resched();
3353 	}
3354 
3355 	return 0;
3356 
3357 out_unwind:
3358 	while (--i >= 0)
3359 		blk_mq_free_map_and_requests(set, i);
3360 
3361 	return -ENOMEM;
3362 }
3363 
3364 /*
3365  * Allocate the request maps associated with this tag_set. Note that this
3366  * may reduce the depth asked for, if memory is tight. set->queue_depth
3367  * will be updated to reflect the allocated depth.
3368  */
3369 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3370 {
3371 	unsigned int depth;
3372 	int err;
3373 
3374 	depth = set->queue_depth;
3375 	do {
3376 		err = __blk_mq_alloc_rq_maps(set);
3377 		if (!err)
3378 			break;
3379 
3380 		set->queue_depth >>= 1;
3381 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3382 			err = -ENOMEM;
3383 			break;
3384 		}
3385 	} while (set->queue_depth);
3386 
3387 	if (!set->queue_depth || err) {
3388 		pr_err("blk-mq: failed to allocate request map\n");
3389 		return -ENOMEM;
3390 	}
3391 
3392 	if (depth != set->queue_depth)
3393 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3394 						depth, set->queue_depth);
3395 
3396 	return 0;
3397 }
3398 
3399 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3400 {
3401 	/*
3402 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3403 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3404 	 * number of hardware queues.
3405 	 */
3406 	if (set->nr_maps == 1)
3407 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3408 
3409 	if (set->ops->map_queues && !is_kdump_kernel()) {
3410 		int i;
3411 
3412 		/*
3413 		 * transport .map_queues is usually done in the following
3414 		 * way:
3415 		 *
3416 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3417 		 * 	mask = get_cpu_mask(queue)
3418 		 * 	for_each_cpu(cpu, mask)
3419 		 * 		set->map[x].mq_map[cpu] = queue;
3420 		 * }
3421 		 *
3422 		 * When we need to remap, the table has to be cleared for
3423 		 * killing stale mapping since one CPU may not be mapped
3424 		 * to any hw queue.
3425 		 */
3426 		for (i = 0; i < set->nr_maps; i++)
3427 			blk_mq_clear_mq_map(&set->map[i]);
3428 
3429 		return set->ops->map_queues(set);
3430 	} else {
3431 		BUG_ON(set->nr_maps > 1);
3432 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3433 	}
3434 }
3435 
3436 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3437 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3438 {
3439 	struct blk_mq_tags **new_tags;
3440 
3441 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3442 		return 0;
3443 
3444 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3445 				GFP_KERNEL, set->numa_node);
3446 	if (!new_tags)
3447 		return -ENOMEM;
3448 
3449 	if (set->tags)
3450 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3451 		       sizeof(*set->tags));
3452 	kfree(set->tags);
3453 	set->tags = new_tags;
3454 	set->nr_hw_queues = new_nr_hw_queues;
3455 
3456 	return 0;
3457 }
3458 
3459 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3460 				int new_nr_hw_queues)
3461 {
3462 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3463 }
3464 
3465 /*
3466  * Alloc a tag set to be associated with one or more request queues.
3467  * May fail with EINVAL for various error conditions. May adjust the
3468  * requested depth down, if it's too large. In that case, the set
3469  * value will be stored in set->queue_depth.
3470  */
3471 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3472 {
3473 	int i, ret;
3474 
3475 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3476 
3477 	if (!set->nr_hw_queues)
3478 		return -EINVAL;
3479 	if (!set->queue_depth)
3480 		return -EINVAL;
3481 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3482 		return -EINVAL;
3483 
3484 	if (!set->ops->queue_rq)
3485 		return -EINVAL;
3486 
3487 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3488 		return -EINVAL;
3489 
3490 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3491 		pr_info("blk-mq: reduced tag depth to %u\n",
3492 			BLK_MQ_MAX_DEPTH);
3493 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3494 	}
3495 
3496 	if (!set->nr_maps)
3497 		set->nr_maps = 1;
3498 	else if (set->nr_maps > HCTX_MAX_TYPES)
3499 		return -EINVAL;
3500 
3501 	/*
3502 	 * If a crashdump is active, then we are potentially in a very
3503 	 * memory constrained environment. Limit us to 1 queue and
3504 	 * 64 tags to prevent using too much memory.
3505 	 */
3506 	if (is_kdump_kernel()) {
3507 		set->nr_hw_queues = 1;
3508 		set->nr_maps = 1;
3509 		set->queue_depth = min(64U, set->queue_depth);
3510 	}
3511 	/*
3512 	 * There is no use for more h/w queues than cpus if we just have
3513 	 * a single map
3514 	 */
3515 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3516 		set->nr_hw_queues = nr_cpu_ids;
3517 
3518 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3519 		return -ENOMEM;
3520 
3521 	ret = -ENOMEM;
3522 	for (i = 0; i < set->nr_maps; i++) {
3523 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3524 						  sizeof(set->map[i].mq_map[0]),
3525 						  GFP_KERNEL, set->numa_node);
3526 		if (!set->map[i].mq_map)
3527 			goto out_free_mq_map;
3528 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3529 	}
3530 
3531 	ret = blk_mq_update_queue_map(set);
3532 	if (ret)
3533 		goto out_free_mq_map;
3534 
3535 	ret = blk_mq_alloc_map_and_requests(set);
3536 	if (ret)
3537 		goto out_free_mq_map;
3538 
3539 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3540 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3541 
3542 		if (blk_mq_init_shared_sbitmap(set)) {
3543 			ret = -ENOMEM;
3544 			goto out_free_mq_rq_maps;
3545 		}
3546 	}
3547 
3548 	mutex_init(&set->tag_list_lock);
3549 	INIT_LIST_HEAD(&set->tag_list);
3550 
3551 	return 0;
3552 
3553 out_free_mq_rq_maps:
3554 	for (i = 0; i < set->nr_hw_queues; i++)
3555 		blk_mq_free_map_and_requests(set, i);
3556 out_free_mq_map:
3557 	for (i = 0; i < set->nr_maps; i++) {
3558 		kfree(set->map[i].mq_map);
3559 		set->map[i].mq_map = NULL;
3560 	}
3561 	kfree(set->tags);
3562 	set->tags = NULL;
3563 	return ret;
3564 }
3565 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3566 
3567 /* allocate and initialize a tagset for a simple single-queue device */
3568 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3569 		const struct blk_mq_ops *ops, unsigned int queue_depth,
3570 		unsigned int set_flags)
3571 {
3572 	memset(set, 0, sizeof(*set));
3573 	set->ops = ops;
3574 	set->nr_hw_queues = 1;
3575 	set->nr_maps = 1;
3576 	set->queue_depth = queue_depth;
3577 	set->numa_node = NUMA_NO_NODE;
3578 	set->flags = set_flags;
3579 	return blk_mq_alloc_tag_set(set);
3580 }
3581 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3582 
3583 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3584 {
3585 	int i, j;
3586 
3587 	for (i = 0; i < set->nr_hw_queues; i++)
3588 		blk_mq_free_map_and_requests(set, i);
3589 
3590 	if (blk_mq_is_sbitmap_shared(set->flags))
3591 		blk_mq_exit_shared_sbitmap(set);
3592 
3593 	for (j = 0; j < set->nr_maps; j++) {
3594 		kfree(set->map[j].mq_map);
3595 		set->map[j].mq_map = NULL;
3596 	}
3597 
3598 	kfree(set->tags);
3599 	set->tags = NULL;
3600 }
3601 EXPORT_SYMBOL(blk_mq_free_tag_set);
3602 
3603 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3604 {
3605 	struct blk_mq_tag_set *set = q->tag_set;
3606 	struct blk_mq_hw_ctx *hctx;
3607 	int i, ret;
3608 
3609 	if (!set)
3610 		return -EINVAL;
3611 
3612 	if (q->nr_requests == nr)
3613 		return 0;
3614 
3615 	blk_mq_freeze_queue(q);
3616 	blk_mq_quiesce_queue(q);
3617 
3618 	ret = 0;
3619 	queue_for_each_hw_ctx(q, hctx, i) {
3620 		if (!hctx->tags)
3621 			continue;
3622 		/*
3623 		 * If we're using an MQ scheduler, just update the scheduler
3624 		 * queue depth. This is similar to what the old code would do.
3625 		 */
3626 		if (!hctx->sched_tags) {
3627 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3628 							false);
3629 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3630 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3631 		} else {
3632 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3633 							nr, true);
3634 			if (blk_mq_is_sbitmap_shared(set->flags)) {
3635 				hctx->sched_tags->bitmap_tags =
3636 					&q->sched_bitmap_tags;
3637 				hctx->sched_tags->breserved_tags =
3638 					&q->sched_breserved_tags;
3639 			}
3640 		}
3641 		if (ret)
3642 			break;
3643 		if (q->elevator && q->elevator->type->ops.depth_updated)
3644 			q->elevator->type->ops.depth_updated(hctx);
3645 	}
3646 	if (!ret) {
3647 		q->nr_requests = nr;
3648 		if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3649 			sbitmap_queue_resize(&q->sched_bitmap_tags,
3650 					     nr - set->reserved_tags);
3651 	}
3652 
3653 	blk_mq_unquiesce_queue(q);
3654 	blk_mq_unfreeze_queue(q);
3655 
3656 	return ret;
3657 }
3658 
3659 /*
3660  * request_queue and elevator_type pair.
3661  * It is just used by __blk_mq_update_nr_hw_queues to cache
3662  * the elevator_type associated with a request_queue.
3663  */
3664 struct blk_mq_qe_pair {
3665 	struct list_head node;
3666 	struct request_queue *q;
3667 	struct elevator_type *type;
3668 };
3669 
3670 /*
3671  * Cache the elevator_type in qe pair list and switch the
3672  * io scheduler to 'none'
3673  */
3674 static bool blk_mq_elv_switch_none(struct list_head *head,
3675 		struct request_queue *q)
3676 {
3677 	struct blk_mq_qe_pair *qe;
3678 
3679 	if (!q->elevator)
3680 		return true;
3681 
3682 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3683 	if (!qe)
3684 		return false;
3685 
3686 	INIT_LIST_HEAD(&qe->node);
3687 	qe->q = q;
3688 	qe->type = q->elevator->type;
3689 	list_add(&qe->node, head);
3690 
3691 	mutex_lock(&q->sysfs_lock);
3692 	/*
3693 	 * After elevator_switch_mq, the previous elevator_queue will be
3694 	 * released by elevator_release. The reference of the io scheduler
3695 	 * module get by elevator_get will also be put. So we need to get
3696 	 * a reference of the io scheduler module here to prevent it to be
3697 	 * removed.
3698 	 */
3699 	__module_get(qe->type->elevator_owner);
3700 	elevator_switch_mq(q, NULL);
3701 	mutex_unlock(&q->sysfs_lock);
3702 
3703 	return true;
3704 }
3705 
3706 static void blk_mq_elv_switch_back(struct list_head *head,
3707 		struct request_queue *q)
3708 {
3709 	struct blk_mq_qe_pair *qe;
3710 	struct elevator_type *t = NULL;
3711 
3712 	list_for_each_entry(qe, head, node)
3713 		if (qe->q == q) {
3714 			t = qe->type;
3715 			break;
3716 		}
3717 
3718 	if (!t)
3719 		return;
3720 
3721 	list_del(&qe->node);
3722 	kfree(qe);
3723 
3724 	mutex_lock(&q->sysfs_lock);
3725 	elevator_switch_mq(q, t);
3726 	mutex_unlock(&q->sysfs_lock);
3727 }
3728 
3729 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3730 							int nr_hw_queues)
3731 {
3732 	struct request_queue *q;
3733 	LIST_HEAD(head);
3734 	int prev_nr_hw_queues;
3735 
3736 	lockdep_assert_held(&set->tag_list_lock);
3737 
3738 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3739 		nr_hw_queues = nr_cpu_ids;
3740 	if (nr_hw_queues < 1)
3741 		return;
3742 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3743 		return;
3744 
3745 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3746 		blk_mq_freeze_queue(q);
3747 	/*
3748 	 * Switch IO scheduler to 'none', cleaning up the data associated
3749 	 * with the previous scheduler. We will switch back once we are done
3750 	 * updating the new sw to hw queue mappings.
3751 	 */
3752 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3753 		if (!blk_mq_elv_switch_none(&head, q))
3754 			goto switch_back;
3755 
3756 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3757 		blk_mq_debugfs_unregister_hctxs(q);
3758 		blk_mq_sysfs_unregister(q);
3759 	}
3760 
3761 	prev_nr_hw_queues = set->nr_hw_queues;
3762 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3763 	    0)
3764 		goto reregister;
3765 
3766 	set->nr_hw_queues = nr_hw_queues;
3767 fallback:
3768 	blk_mq_update_queue_map(set);
3769 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3770 		blk_mq_realloc_hw_ctxs(set, q);
3771 		if (q->nr_hw_queues != set->nr_hw_queues) {
3772 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3773 					nr_hw_queues, prev_nr_hw_queues);
3774 			set->nr_hw_queues = prev_nr_hw_queues;
3775 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3776 			goto fallback;
3777 		}
3778 		blk_mq_map_swqueue(q);
3779 	}
3780 
3781 reregister:
3782 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3783 		blk_mq_sysfs_register(q);
3784 		blk_mq_debugfs_register_hctxs(q);
3785 	}
3786 
3787 switch_back:
3788 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3789 		blk_mq_elv_switch_back(&head, q);
3790 
3791 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3792 		blk_mq_unfreeze_queue(q);
3793 }
3794 
3795 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3796 {
3797 	mutex_lock(&set->tag_list_lock);
3798 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3799 	mutex_unlock(&set->tag_list_lock);
3800 }
3801 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3802 
3803 /* Enable polling stats and return whether they were already enabled. */
3804 static bool blk_poll_stats_enable(struct request_queue *q)
3805 {
3806 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3807 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3808 		return true;
3809 	blk_stat_add_callback(q, q->poll_cb);
3810 	return false;
3811 }
3812 
3813 static void blk_mq_poll_stats_start(struct request_queue *q)
3814 {
3815 	/*
3816 	 * We don't arm the callback if polling stats are not enabled or the
3817 	 * callback is already active.
3818 	 */
3819 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3820 	    blk_stat_is_active(q->poll_cb))
3821 		return;
3822 
3823 	blk_stat_activate_msecs(q->poll_cb, 100);
3824 }
3825 
3826 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3827 {
3828 	struct request_queue *q = cb->data;
3829 	int bucket;
3830 
3831 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3832 		if (cb->stat[bucket].nr_samples)
3833 			q->poll_stat[bucket] = cb->stat[bucket];
3834 	}
3835 }
3836 
3837 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3838 				       struct request *rq)
3839 {
3840 	unsigned long ret = 0;
3841 	int bucket;
3842 
3843 	/*
3844 	 * If stats collection isn't on, don't sleep but turn it on for
3845 	 * future users
3846 	 */
3847 	if (!blk_poll_stats_enable(q))
3848 		return 0;
3849 
3850 	/*
3851 	 * As an optimistic guess, use half of the mean service time
3852 	 * for this type of request. We can (and should) make this smarter.
3853 	 * For instance, if the completion latencies are tight, we can
3854 	 * get closer than just half the mean. This is especially
3855 	 * important on devices where the completion latencies are longer
3856 	 * than ~10 usec. We do use the stats for the relevant IO size
3857 	 * if available which does lead to better estimates.
3858 	 */
3859 	bucket = blk_mq_poll_stats_bkt(rq);
3860 	if (bucket < 0)
3861 		return ret;
3862 
3863 	if (q->poll_stat[bucket].nr_samples)
3864 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3865 
3866 	return ret;
3867 }
3868 
3869 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3870 				     struct request *rq)
3871 {
3872 	struct hrtimer_sleeper hs;
3873 	enum hrtimer_mode mode;
3874 	unsigned int nsecs;
3875 	ktime_t kt;
3876 
3877 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3878 		return false;
3879 
3880 	/*
3881 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3882 	 *
3883 	 *  0:	use half of prev avg
3884 	 * >0:	use this specific value
3885 	 */
3886 	if (q->poll_nsec > 0)
3887 		nsecs = q->poll_nsec;
3888 	else
3889 		nsecs = blk_mq_poll_nsecs(q, rq);
3890 
3891 	if (!nsecs)
3892 		return false;
3893 
3894 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3895 
3896 	/*
3897 	 * This will be replaced with the stats tracking code, using
3898 	 * 'avg_completion_time / 2' as the pre-sleep target.
3899 	 */
3900 	kt = nsecs;
3901 
3902 	mode = HRTIMER_MODE_REL;
3903 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3904 	hrtimer_set_expires(&hs.timer, kt);
3905 
3906 	do {
3907 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3908 			break;
3909 		set_current_state(TASK_UNINTERRUPTIBLE);
3910 		hrtimer_sleeper_start_expires(&hs, mode);
3911 		if (hs.task)
3912 			io_schedule();
3913 		hrtimer_cancel(&hs.timer);
3914 		mode = HRTIMER_MODE_ABS;
3915 	} while (hs.task && !signal_pending(current));
3916 
3917 	__set_current_state(TASK_RUNNING);
3918 	destroy_hrtimer_on_stack(&hs.timer);
3919 	return true;
3920 }
3921 
3922 static bool blk_mq_poll_hybrid(struct request_queue *q,
3923 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3924 {
3925 	struct request *rq;
3926 
3927 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3928 		return false;
3929 
3930 	if (!blk_qc_t_is_internal(cookie))
3931 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3932 	else {
3933 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3934 		/*
3935 		 * With scheduling, if the request has completed, we'll
3936 		 * get a NULL return here, as we clear the sched tag when
3937 		 * that happens. The request still remains valid, like always,
3938 		 * so we should be safe with just the NULL check.
3939 		 */
3940 		if (!rq)
3941 			return false;
3942 	}
3943 
3944 	return blk_mq_poll_hybrid_sleep(q, rq);
3945 }
3946 
3947 /**
3948  * blk_poll - poll for IO completions
3949  * @q:  the queue
3950  * @cookie: cookie passed back at IO submission time
3951  * @spin: whether to spin for completions
3952  *
3953  * Description:
3954  *    Poll for completions on the passed in queue. Returns number of
3955  *    completed entries found. If @spin is true, then blk_poll will continue
3956  *    looping until at least one completion is found, unless the task is
3957  *    otherwise marked running (or we need to reschedule).
3958  */
3959 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3960 {
3961 	struct blk_mq_hw_ctx *hctx;
3962 	unsigned int state;
3963 
3964 	if (!blk_qc_t_valid(cookie) ||
3965 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3966 		return 0;
3967 
3968 	if (current->plug)
3969 		blk_flush_plug_list(current->plug, false);
3970 
3971 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3972 
3973 	/*
3974 	 * If we sleep, have the caller restart the poll loop to reset
3975 	 * the state. Like for the other success return cases, the
3976 	 * caller is responsible for checking if the IO completed. If
3977 	 * the IO isn't complete, we'll get called again and will go
3978 	 * straight to the busy poll loop. If specified not to spin,
3979 	 * we also should not sleep.
3980 	 */
3981 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3982 		return 1;
3983 
3984 	hctx->poll_considered++;
3985 
3986 	state = get_current_state();
3987 	do {
3988 		int ret;
3989 
3990 		hctx->poll_invoked++;
3991 
3992 		ret = q->mq_ops->poll(hctx);
3993 		if (ret > 0) {
3994 			hctx->poll_success++;
3995 			__set_current_state(TASK_RUNNING);
3996 			return ret;
3997 		}
3998 
3999 		if (signal_pending_state(state, current))
4000 			__set_current_state(TASK_RUNNING);
4001 
4002 		if (task_is_running(current))
4003 			return 1;
4004 		if (ret < 0 || !spin)
4005 			break;
4006 		cpu_relax();
4007 	} while (!need_resched());
4008 
4009 	__set_current_state(TASK_RUNNING);
4010 	return 0;
4011 }
4012 EXPORT_SYMBOL_GPL(blk_poll);
4013 
4014 unsigned int blk_mq_rq_cpu(struct request *rq)
4015 {
4016 	return rq->mq_ctx->cpu;
4017 }
4018 EXPORT_SYMBOL(blk_mq_rq_cpu);
4019 
4020 static int __init blk_mq_init(void)
4021 {
4022 	int i;
4023 
4024 	for_each_possible_cpu(i)
4025 		init_llist_head(&per_cpu(blk_cpu_done, i));
4026 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4027 
4028 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4029 				  "block/softirq:dead", NULL,
4030 				  blk_softirq_cpu_dead);
4031 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4032 				blk_mq_hctx_notify_dead);
4033 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4034 				blk_mq_hctx_notify_online,
4035 				blk_mq_hctx_notify_offline);
4036 	return 0;
4037 }
4038 subsys_initcall(blk_mq_init);
4039