xref: /openbmc/linux/block/blk-mq.c (revision ed1666f6)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40 
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	const int bit = ctx->index_hw[hctx->type];
78 
79 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 		sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82 
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 				      struct blk_mq_ctx *ctx)
85 {
86 	const int bit = ctx->index_hw[hctx->type];
87 
88 	sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90 
91 struct mq_inflight {
92 	struct hd_struct *part;
93 	unsigned int *inflight;
94 };
95 
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 				  struct request *rq, void *priv,
98 				  bool reserved)
99 {
100 	struct mq_inflight *mi = priv;
101 
102 	/*
103 	 * index[0] counts the specific partition that was asked for.
104 	 */
105 	if (rq->part == mi->part)
106 		mi->inflight[0]++;
107 
108 	return true;
109 }
110 
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 	unsigned inflight[2];
114 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
115 
116 	inflight[0] = inflight[1] = 0;
117 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 
119 	return inflight[0];
120 }
121 
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 				     struct request *rq, void *priv,
124 				     bool reserved)
125 {
126 	struct mq_inflight *mi = priv;
127 
128 	if (rq->part == mi->part)
129 		mi->inflight[rq_data_dir(rq)]++;
130 
131 	return true;
132 }
133 
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 			 unsigned int inflight[2])
136 {
137 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
138 
139 	inflight[0] = inflight[1] = 0;
140 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142 
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145 	int freeze_depth;
146 
147 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 	if (freeze_depth == 1) {
149 		percpu_ref_kill(&q->q_usage_counter);
150 		if (queue_is_mq(q))
151 			blk_mq_run_hw_queues(q, false);
152 	}
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155 
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161 
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 				     unsigned long timeout)
164 {
165 	return wait_event_timeout(q->mq_freeze_wq,
166 					percpu_ref_is_zero(&q->q_usage_counter),
167 					timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170 
171 /*
172  * Guarantee no request is in use, so we can change any data structure of
173  * the queue afterward.
174  */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177 	/*
178 	 * In the !blk_mq case we are only calling this to kill the
179 	 * q_usage_counter, otherwise this increases the freeze depth
180 	 * and waits for it to return to zero.  For this reason there is
181 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 	 * exported to drivers as the only user for unfreeze is blk_mq.
183 	 */
184 	blk_freeze_queue_start(q);
185 	blk_mq_freeze_queue_wait(q);
186 }
187 
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 	/*
191 	 * ...just an alias to keep freeze and unfreeze actions balanced
192 	 * in the blk_mq_* namespace
193 	 */
194 	blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197 
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 	int freeze_depth;
201 
202 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 	WARN_ON_ONCE(freeze_depth < 0);
204 	if (!freeze_depth) {
205 		percpu_ref_resurrect(&q->q_usage_counter);
206 		wake_up_all(&q->mq_freeze_wq);
207 	}
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210 
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220 
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 	struct blk_mq_hw_ctx *hctx;
233 	unsigned int i;
234 	bool rcu = false;
235 
236 	blk_mq_quiesce_queue_nowait(q);
237 
238 	queue_for_each_hw_ctx(q, hctx, i) {
239 		if (hctx->flags & BLK_MQ_F_BLOCKING)
240 			synchronize_srcu(hctx->srcu);
241 		else
242 			rcu = true;
243 	}
244 	if (rcu)
245 		synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248 
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259 
260 	/* dispatch requests which are inserted during quiescing */
261 	blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264 
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 	struct blk_mq_hw_ctx *hctx;
268 	unsigned int i;
269 
270 	queue_for_each_hw_ctx(q, hctx, i)
271 		if (blk_mq_hw_queue_mapped(hctx))
272 			blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274 
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277 	return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280 
281 /*
282  * Only need start/end time stamping if we have stats enabled, or using
283  * an IO scheduler.
284  */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289 
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 		unsigned int tag, unsigned int op)
292 {
293 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 	struct request *rq = tags->static_rqs[tag];
295 	req_flags_t rq_flags = 0;
296 
297 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 		rq->tag = -1;
299 		rq->internal_tag = tag;
300 	} else {
301 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 			rq_flags = RQF_MQ_INFLIGHT;
303 			atomic_inc(&data->hctx->nr_active);
304 		}
305 		rq->tag = tag;
306 		rq->internal_tag = -1;
307 		data->hctx->tags->rqs[rq->tag] = rq;
308 	}
309 
310 	/* csd/requeue_work/fifo_time is initialized before use */
311 	rq->q = data->q;
312 	rq->mq_ctx = data->ctx;
313 	rq->mq_hctx = data->hctx;
314 	rq->rq_flags = rq_flags;
315 	rq->cmd_flags = op;
316 	if (data->flags & BLK_MQ_REQ_PREEMPT)
317 		rq->rq_flags |= RQF_PREEMPT;
318 	if (blk_queue_io_stat(data->q))
319 		rq->rq_flags |= RQF_IO_STAT;
320 	INIT_LIST_HEAD(&rq->queuelist);
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->rq_disk = NULL;
324 	rq->part = NULL;
325 	if (blk_mq_need_time_stamp(rq))
326 		rq->start_time_ns = ktime_get_ns();
327 	else
328 		rq->start_time_ns = 0;
329 	rq->io_start_time_ns = 0;
330 	rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 	rq->nr_integrity_segments = 0;
333 #endif
334 	/* tag was already set */
335 	rq->extra_len = 0;
336 	WRITE_ONCE(rq->deadline, 0);
337 
338 	rq->timeout = 0;
339 
340 	rq->end_io = NULL;
341 	rq->end_io_data = NULL;
342 
343 	data->ctx->rq_dispatched[op_is_sync(op)]++;
344 	refcount_set(&rq->ref, 1);
345 	return rq;
346 }
347 
348 static struct request *blk_mq_get_request(struct request_queue *q,
349 					  struct bio *bio,
350 					  struct blk_mq_alloc_data *data)
351 {
352 	struct elevator_queue *e = q->elevator;
353 	struct request *rq;
354 	unsigned int tag;
355 	bool put_ctx_on_error = false;
356 
357 	blk_queue_enter_live(q);
358 	data->q = q;
359 	if (likely(!data->ctx)) {
360 		data->ctx = blk_mq_get_ctx(q);
361 		put_ctx_on_error = true;
362 	}
363 	if (likely(!data->hctx))
364 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
365 						data->ctx);
366 	if (data->cmd_flags & REQ_NOWAIT)
367 		data->flags |= BLK_MQ_REQ_NOWAIT;
368 
369 	if (e) {
370 		data->flags |= BLK_MQ_REQ_INTERNAL;
371 
372 		/*
373 		 * Flush requests are special and go directly to the
374 		 * dispatch list. Don't include reserved tags in the
375 		 * limiting, as it isn't useful.
376 		 */
377 		if (!op_is_flush(data->cmd_flags) &&
378 		    e->type->ops.limit_depth &&
379 		    !(data->flags & BLK_MQ_REQ_RESERVED))
380 			e->type->ops.limit_depth(data->cmd_flags, data);
381 	} else {
382 		blk_mq_tag_busy(data->hctx);
383 	}
384 
385 	tag = blk_mq_get_tag(data);
386 	if (tag == BLK_MQ_TAG_FAIL) {
387 		if (put_ctx_on_error) {
388 			blk_mq_put_ctx(data->ctx);
389 			data->ctx = NULL;
390 		}
391 		blk_queue_exit(q);
392 		return NULL;
393 	}
394 
395 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
396 	if (!op_is_flush(data->cmd_flags)) {
397 		rq->elv.icq = NULL;
398 		if (e && e->type->ops.prepare_request) {
399 			if (e->type->icq_cache)
400 				blk_mq_sched_assign_ioc(rq);
401 
402 			e->type->ops.prepare_request(rq, bio);
403 			rq->rq_flags |= RQF_ELVPRIV;
404 		}
405 	}
406 	data->hctx->queued++;
407 	return rq;
408 }
409 
410 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
411 		blk_mq_req_flags_t flags)
412 {
413 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
414 	struct request *rq;
415 	int ret;
416 
417 	ret = blk_queue_enter(q, flags);
418 	if (ret)
419 		return ERR_PTR(ret);
420 
421 	rq = blk_mq_get_request(q, NULL, &alloc_data);
422 	blk_queue_exit(q);
423 
424 	if (!rq)
425 		return ERR_PTR(-EWOULDBLOCK);
426 
427 	blk_mq_put_ctx(alloc_data.ctx);
428 
429 	rq->__data_len = 0;
430 	rq->__sector = (sector_t) -1;
431 	rq->bio = rq->biotail = NULL;
432 	return rq;
433 }
434 EXPORT_SYMBOL(blk_mq_alloc_request);
435 
436 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
437 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
438 {
439 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
440 	struct request *rq;
441 	unsigned int cpu;
442 	int ret;
443 
444 	/*
445 	 * If the tag allocator sleeps we could get an allocation for a
446 	 * different hardware context.  No need to complicate the low level
447 	 * allocator for this for the rare use case of a command tied to
448 	 * a specific queue.
449 	 */
450 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
451 		return ERR_PTR(-EINVAL);
452 
453 	if (hctx_idx >= q->nr_hw_queues)
454 		return ERR_PTR(-EIO);
455 
456 	ret = blk_queue_enter(q, flags);
457 	if (ret)
458 		return ERR_PTR(ret);
459 
460 	/*
461 	 * Check if the hardware context is actually mapped to anything.
462 	 * If not tell the caller that it should skip this queue.
463 	 */
464 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
465 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
466 		blk_queue_exit(q);
467 		return ERR_PTR(-EXDEV);
468 	}
469 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
470 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
471 
472 	rq = blk_mq_get_request(q, NULL, &alloc_data);
473 	blk_queue_exit(q);
474 
475 	if (!rq)
476 		return ERR_PTR(-EWOULDBLOCK);
477 
478 	return rq;
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
481 
482 static void __blk_mq_free_request(struct request *rq)
483 {
484 	struct request_queue *q = rq->q;
485 	struct blk_mq_ctx *ctx = rq->mq_ctx;
486 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
487 	const int sched_tag = rq->internal_tag;
488 
489 	blk_pm_mark_last_busy(rq);
490 	rq->mq_hctx = NULL;
491 	if (rq->tag != -1)
492 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
493 	if (sched_tag != -1)
494 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
495 	blk_mq_sched_restart(hctx);
496 	blk_queue_exit(q);
497 }
498 
499 void blk_mq_free_request(struct request *rq)
500 {
501 	struct request_queue *q = rq->q;
502 	struct elevator_queue *e = q->elevator;
503 	struct blk_mq_ctx *ctx = rq->mq_ctx;
504 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
505 
506 	if (rq->rq_flags & RQF_ELVPRIV) {
507 		if (e && e->type->ops.finish_request)
508 			e->type->ops.finish_request(rq);
509 		if (rq->elv.icq) {
510 			put_io_context(rq->elv.icq->ioc);
511 			rq->elv.icq = NULL;
512 		}
513 	}
514 
515 	ctx->rq_completed[rq_is_sync(rq)]++;
516 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
517 		atomic_dec(&hctx->nr_active);
518 
519 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
520 		laptop_io_completion(q->backing_dev_info);
521 
522 	rq_qos_done(q, rq);
523 
524 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
525 	if (refcount_dec_and_test(&rq->ref))
526 		__blk_mq_free_request(rq);
527 }
528 EXPORT_SYMBOL_GPL(blk_mq_free_request);
529 
530 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
531 {
532 	u64 now = 0;
533 
534 	if (blk_mq_need_time_stamp(rq))
535 		now = ktime_get_ns();
536 
537 	if (rq->rq_flags & RQF_STATS) {
538 		blk_mq_poll_stats_start(rq->q);
539 		blk_stat_add(rq, now);
540 	}
541 
542 	if (rq->internal_tag != -1)
543 		blk_mq_sched_completed_request(rq, now);
544 
545 	blk_account_io_done(rq, now);
546 
547 	if (rq->end_io) {
548 		rq_qos_done(rq->q, rq);
549 		rq->end_io(rq, error);
550 	} else {
551 		blk_mq_free_request(rq);
552 	}
553 }
554 EXPORT_SYMBOL(__blk_mq_end_request);
555 
556 void blk_mq_end_request(struct request *rq, blk_status_t error)
557 {
558 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
559 		BUG();
560 	__blk_mq_end_request(rq, error);
561 }
562 EXPORT_SYMBOL(blk_mq_end_request);
563 
564 static void __blk_mq_complete_request_remote(void *data)
565 {
566 	struct request *rq = data;
567 	struct request_queue *q = rq->q;
568 
569 	q->mq_ops->complete(rq);
570 }
571 
572 static void __blk_mq_complete_request(struct request *rq)
573 {
574 	struct blk_mq_ctx *ctx = rq->mq_ctx;
575 	struct request_queue *q = rq->q;
576 	bool shared = false;
577 	int cpu;
578 
579 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
580 	/*
581 	 * Most of single queue controllers, there is only one irq vector
582 	 * for handling IO completion, and the only irq's affinity is set
583 	 * as all possible CPUs. On most of ARCHs, this affinity means the
584 	 * irq is handled on one specific CPU.
585 	 *
586 	 * So complete IO reqeust in softirq context in case of single queue
587 	 * for not degrading IO performance by irqsoff latency.
588 	 */
589 	if (q->nr_hw_queues == 1) {
590 		__blk_complete_request(rq);
591 		return;
592 	}
593 
594 	/*
595 	 * For a polled request, always complete locallly, it's pointless
596 	 * to redirect the completion.
597 	 */
598 	if ((rq->cmd_flags & REQ_HIPRI) ||
599 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
600 		q->mq_ops->complete(rq);
601 		return;
602 	}
603 
604 	cpu = get_cpu();
605 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
606 		shared = cpus_share_cache(cpu, ctx->cpu);
607 
608 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
609 		rq->csd.func = __blk_mq_complete_request_remote;
610 		rq->csd.info = rq;
611 		rq->csd.flags = 0;
612 		smp_call_function_single_async(ctx->cpu, &rq->csd);
613 	} else {
614 		q->mq_ops->complete(rq);
615 	}
616 	put_cpu();
617 }
618 
619 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
620 	__releases(hctx->srcu)
621 {
622 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
623 		rcu_read_unlock();
624 	else
625 		srcu_read_unlock(hctx->srcu, srcu_idx);
626 }
627 
628 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
629 	__acquires(hctx->srcu)
630 {
631 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
632 		/* shut up gcc false positive */
633 		*srcu_idx = 0;
634 		rcu_read_lock();
635 	} else
636 		*srcu_idx = srcu_read_lock(hctx->srcu);
637 }
638 
639 /**
640  * blk_mq_complete_request - end I/O on a request
641  * @rq:		the request being processed
642  *
643  * Description:
644  *	Ends all I/O on a request. It does not handle partial completions.
645  *	The actual completion happens out-of-order, through a IPI handler.
646  **/
647 bool blk_mq_complete_request(struct request *rq)
648 {
649 	if (unlikely(blk_should_fake_timeout(rq->q)))
650 		return false;
651 	__blk_mq_complete_request(rq);
652 	return true;
653 }
654 EXPORT_SYMBOL(blk_mq_complete_request);
655 
656 int blk_mq_request_started(struct request *rq)
657 {
658 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_request_started);
661 
662 void blk_mq_start_request(struct request *rq)
663 {
664 	struct request_queue *q = rq->q;
665 
666 	blk_mq_sched_started_request(rq);
667 
668 	trace_block_rq_issue(q, rq);
669 
670 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
671 		rq->io_start_time_ns = ktime_get_ns();
672 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
673 		rq->throtl_size = blk_rq_sectors(rq);
674 #endif
675 		rq->rq_flags |= RQF_STATS;
676 		rq_qos_issue(q, rq);
677 	}
678 
679 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
680 
681 	blk_add_timer(rq);
682 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
683 
684 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
685 		/*
686 		 * Make sure space for the drain appears.  We know we can do
687 		 * this because max_hw_segments has been adjusted to be one
688 		 * fewer than the device can handle.
689 		 */
690 		rq->nr_phys_segments++;
691 	}
692 }
693 EXPORT_SYMBOL(blk_mq_start_request);
694 
695 static void __blk_mq_requeue_request(struct request *rq)
696 {
697 	struct request_queue *q = rq->q;
698 
699 	blk_mq_put_driver_tag(rq);
700 
701 	trace_block_rq_requeue(q, rq);
702 	rq_qos_requeue(q, rq);
703 
704 	if (blk_mq_request_started(rq)) {
705 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
706 		rq->rq_flags &= ~RQF_TIMED_OUT;
707 		if (q->dma_drain_size && blk_rq_bytes(rq))
708 			rq->nr_phys_segments--;
709 	}
710 }
711 
712 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
713 {
714 	__blk_mq_requeue_request(rq);
715 
716 	/* this request will be re-inserted to io scheduler queue */
717 	blk_mq_sched_requeue_request(rq);
718 
719 	BUG_ON(!list_empty(&rq->queuelist));
720 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
721 }
722 EXPORT_SYMBOL(blk_mq_requeue_request);
723 
724 static void blk_mq_requeue_work(struct work_struct *work)
725 {
726 	struct request_queue *q =
727 		container_of(work, struct request_queue, requeue_work.work);
728 	LIST_HEAD(rq_list);
729 	struct request *rq, *next;
730 
731 	spin_lock_irq(&q->requeue_lock);
732 	list_splice_init(&q->requeue_list, &rq_list);
733 	spin_unlock_irq(&q->requeue_lock);
734 
735 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
736 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
737 			continue;
738 
739 		rq->rq_flags &= ~RQF_SOFTBARRIER;
740 		list_del_init(&rq->queuelist);
741 		/*
742 		 * If RQF_DONTPREP, rq has contained some driver specific
743 		 * data, so insert it to hctx dispatch list to avoid any
744 		 * merge.
745 		 */
746 		if (rq->rq_flags & RQF_DONTPREP)
747 			blk_mq_request_bypass_insert(rq, false);
748 		else
749 			blk_mq_sched_insert_request(rq, true, false, false);
750 	}
751 
752 	while (!list_empty(&rq_list)) {
753 		rq = list_entry(rq_list.next, struct request, queuelist);
754 		list_del_init(&rq->queuelist);
755 		blk_mq_sched_insert_request(rq, false, false, false);
756 	}
757 
758 	blk_mq_run_hw_queues(q, false);
759 }
760 
761 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
762 				bool kick_requeue_list)
763 {
764 	struct request_queue *q = rq->q;
765 	unsigned long flags;
766 
767 	/*
768 	 * We abuse this flag that is otherwise used by the I/O scheduler to
769 	 * request head insertion from the workqueue.
770 	 */
771 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
772 
773 	spin_lock_irqsave(&q->requeue_lock, flags);
774 	if (at_head) {
775 		rq->rq_flags |= RQF_SOFTBARRIER;
776 		list_add(&rq->queuelist, &q->requeue_list);
777 	} else {
778 		list_add_tail(&rq->queuelist, &q->requeue_list);
779 	}
780 	spin_unlock_irqrestore(&q->requeue_lock, flags);
781 
782 	if (kick_requeue_list)
783 		blk_mq_kick_requeue_list(q);
784 }
785 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
786 
787 void blk_mq_kick_requeue_list(struct request_queue *q)
788 {
789 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
790 }
791 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
792 
793 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
794 				    unsigned long msecs)
795 {
796 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
797 				    msecs_to_jiffies(msecs));
798 }
799 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
800 
801 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
802 {
803 	if (tag < tags->nr_tags) {
804 		prefetch(tags->rqs[tag]);
805 		return tags->rqs[tag];
806 	}
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(blk_mq_tag_to_rq);
811 
812 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
813 			       void *priv, bool reserved)
814 {
815 	/*
816 	 * If we find a request that is inflight and the queue matches,
817 	 * we know the queue is busy. Return false to stop the iteration.
818 	 */
819 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
820 		bool *busy = priv;
821 
822 		*busy = true;
823 		return false;
824 	}
825 
826 	return true;
827 }
828 
829 bool blk_mq_queue_inflight(struct request_queue *q)
830 {
831 	bool busy = false;
832 
833 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
834 	return busy;
835 }
836 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
837 
838 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
839 {
840 	req->rq_flags |= RQF_TIMED_OUT;
841 	if (req->q->mq_ops->timeout) {
842 		enum blk_eh_timer_return ret;
843 
844 		ret = req->q->mq_ops->timeout(req, reserved);
845 		if (ret == BLK_EH_DONE)
846 			return;
847 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
848 	}
849 
850 	blk_add_timer(req);
851 }
852 
853 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
854 {
855 	unsigned long deadline;
856 
857 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
858 		return false;
859 	if (rq->rq_flags & RQF_TIMED_OUT)
860 		return false;
861 
862 	deadline = READ_ONCE(rq->deadline);
863 	if (time_after_eq(jiffies, deadline))
864 		return true;
865 
866 	if (*next == 0)
867 		*next = deadline;
868 	else if (time_after(*next, deadline))
869 		*next = deadline;
870 	return false;
871 }
872 
873 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
874 		struct request *rq, void *priv, bool reserved)
875 {
876 	unsigned long *next = priv;
877 
878 	/*
879 	 * Just do a quick check if it is expired before locking the request in
880 	 * so we're not unnecessarilly synchronizing across CPUs.
881 	 */
882 	if (!blk_mq_req_expired(rq, next))
883 		return true;
884 
885 	/*
886 	 * We have reason to believe the request may be expired. Take a
887 	 * reference on the request to lock this request lifetime into its
888 	 * currently allocated context to prevent it from being reallocated in
889 	 * the event the completion by-passes this timeout handler.
890 	 *
891 	 * If the reference was already released, then the driver beat the
892 	 * timeout handler to posting a natural completion.
893 	 */
894 	if (!refcount_inc_not_zero(&rq->ref))
895 		return true;
896 
897 	/*
898 	 * The request is now locked and cannot be reallocated underneath the
899 	 * timeout handler's processing. Re-verify this exact request is truly
900 	 * expired; if it is not expired, then the request was completed and
901 	 * reallocated as a new request.
902 	 */
903 	if (blk_mq_req_expired(rq, next))
904 		blk_mq_rq_timed_out(rq, reserved);
905 	if (refcount_dec_and_test(&rq->ref))
906 		__blk_mq_free_request(rq);
907 
908 	return true;
909 }
910 
911 static void blk_mq_timeout_work(struct work_struct *work)
912 {
913 	struct request_queue *q =
914 		container_of(work, struct request_queue, timeout_work);
915 	unsigned long next = 0;
916 	struct blk_mq_hw_ctx *hctx;
917 	int i;
918 
919 	/* A deadlock might occur if a request is stuck requiring a
920 	 * timeout at the same time a queue freeze is waiting
921 	 * completion, since the timeout code would not be able to
922 	 * acquire the queue reference here.
923 	 *
924 	 * That's why we don't use blk_queue_enter here; instead, we use
925 	 * percpu_ref_tryget directly, because we need to be able to
926 	 * obtain a reference even in the short window between the queue
927 	 * starting to freeze, by dropping the first reference in
928 	 * blk_freeze_queue_start, and the moment the last request is
929 	 * consumed, marked by the instant q_usage_counter reaches
930 	 * zero.
931 	 */
932 	if (!percpu_ref_tryget(&q->q_usage_counter))
933 		return;
934 
935 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
936 
937 	if (next != 0) {
938 		mod_timer(&q->timeout, next);
939 	} else {
940 		/*
941 		 * Request timeouts are handled as a forward rolling timer. If
942 		 * we end up here it means that no requests are pending and
943 		 * also that no request has been pending for a while. Mark
944 		 * each hctx as idle.
945 		 */
946 		queue_for_each_hw_ctx(q, hctx, i) {
947 			/* the hctx may be unmapped, so check it here */
948 			if (blk_mq_hw_queue_mapped(hctx))
949 				blk_mq_tag_idle(hctx);
950 		}
951 	}
952 	blk_queue_exit(q);
953 }
954 
955 struct flush_busy_ctx_data {
956 	struct blk_mq_hw_ctx *hctx;
957 	struct list_head *list;
958 };
959 
960 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
961 {
962 	struct flush_busy_ctx_data *flush_data = data;
963 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
964 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
965 	enum hctx_type type = hctx->type;
966 
967 	spin_lock(&ctx->lock);
968 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
969 	sbitmap_clear_bit(sb, bitnr);
970 	spin_unlock(&ctx->lock);
971 	return true;
972 }
973 
974 /*
975  * Process software queues that have been marked busy, splicing them
976  * to the for-dispatch
977  */
978 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
979 {
980 	struct flush_busy_ctx_data data = {
981 		.hctx = hctx,
982 		.list = list,
983 	};
984 
985 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
986 }
987 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
988 
989 struct dispatch_rq_data {
990 	struct blk_mq_hw_ctx *hctx;
991 	struct request *rq;
992 };
993 
994 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
995 		void *data)
996 {
997 	struct dispatch_rq_data *dispatch_data = data;
998 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
999 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1000 	enum hctx_type type = hctx->type;
1001 
1002 	spin_lock(&ctx->lock);
1003 	if (!list_empty(&ctx->rq_lists[type])) {
1004 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1005 		list_del_init(&dispatch_data->rq->queuelist);
1006 		if (list_empty(&ctx->rq_lists[type]))
1007 			sbitmap_clear_bit(sb, bitnr);
1008 	}
1009 	spin_unlock(&ctx->lock);
1010 
1011 	return !dispatch_data->rq;
1012 }
1013 
1014 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1015 					struct blk_mq_ctx *start)
1016 {
1017 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1018 	struct dispatch_rq_data data = {
1019 		.hctx = hctx,
1020 		.rq   = NULL,
1021 	};
1022 
1023 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1024 			       dispatch_rq_from_ctx, &data);
1025 
1026 	return data.rq;
1027 }
1028 
1029 static inline unsigned int queued_to_index(unsigned int queued)
1030 {
1031 	if (!queued)
1032 		return 0;
1033 
1034 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1035 }
1036 
1037 bool blk_mq_get_driver_tag(struct request *rq)
1038 {
1039 	struct blk_mq_alloc_data data = {
1040 		.q = rq->q,
1041 		.hctx = rq->mq_hctx,
1042 		.flags = BLK_MQ_REQ_NOWAIT,
1043 		.cmd_flags = rq->cmd_flags,
1044 	};
1045 	bool shared;
1046 
1047 	if (rq->tag != -1)
1048 		goto done;
1049 
1050 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1051 		data.flags |= BLK_MQ_REQ_RESERVED;
1052 
1053 	shared = blk_mq_tag_busy(data.hctx);
1054 	rq->tag = blk_mq_get_tag(&data);
1055 	if (rq->tag >= 0) {
1056 		if (shared) {
1057 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1058 			atomic_inc(&data.hctx->nr_active);
1059 		}
1060 		data.hctx->tags->rqs[rq->tag] = rq;
1061 	}
1062 
1063 done:
1064 	return rq->tag != -1;
1065 }
1066 
1067 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1068 				int flags, void *key)
1069 {
1070 	struct blk_mq_hw_ctx *hctx;
1071 
1072 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1073 
1074 	spin_lock(&hctx->dispatch_wait_lock);
1075 	list_del_init(&wait->entry);
1076 	spin_unlock(&hctx->dispatch_wait_lock);
1077 
1078 	blk_mq_run_hw_queue(hctx, true);
1079 	return 1;
1080 }
1081 
1082 /*
1083  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1084  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1085  * restart. For both cases, take care to check the condition again after
1086  * marking us as waiting.
1087  */
1088 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1089 				 struct request *rq)
1090 {
1091 	struct wait_queue_head *wq;
1092 	wait_queue_entry_t *wait;
1093 	bool ret;
1094 
1095 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1096 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1097 			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1098 
1099 		/*
1100 		 * It's possible that a tag was freed in the window between the
1101 		 * allocation failure and adding the hardware queue to the wait
1102 		 * queue.
1103 		 *
1104 		 * Don't clear RESTART here, someone else could have set it.
1105 		 * At most this will cost an extra queue run.
1106 		 */
1107 		return blk_mq_get_driver_tag(rq);
1108 	}
1109 
1110 	wait = &hctx->dispatch_wait;
1111 	if (!list_empty_careful(&wait->entry))
1112 		return false;
1113 
1114 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1115 
1116 	spin_lock_irq(&wq->lock);
1117 	spin_lock(&hctx->dispatch_wait_lock);
1118 	if (!list_empty(&wait->entry)) {
1119 		spin_unlock(&hctx->dispatch_wait_lock);
1120 		spin_unlock_irq(&wq->lock);
1121 		return false;
1122 	}
1123 
1124 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1125 	__add_wait_queue(wq, wait);
1126 
1127 	/*
1128 	 * It's possible that a tag was freed in the window between the
1129 	 * allocation failure and adding the hardware queue to the wait
1130 	 * queue.
1131 	 */
1132 	ret = blk_mq_get_driver_tag(rq);
1133 	if (!ret) {
1134 		spin_unlock(&hctx->dispatch_wait_lock);
1135 		spin_unlock_irq(&wq->lock);
1136 		return false;
1137 	}
1138 
1139 	/*
1140 	 * We got a tag, remove ourselves from the wait queue to ensure
1141 	 * someone else gets the wakeup.
1142 	 */
1143 	list_del_init(&wait->entry);
1144 	spin_unlock(&hctx->dispatch_wait_lock);
1145 	spin_unlock_irq(&wq->lock);
1146 
1147 	return true;
1148 }
1149 
1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1151 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1152 /*
1153  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1154  * - EWMA is one simple way to compute running average value
1155  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1156  * - take 4 as factor for avoiding to get too small(0) result, and this
1157  *   factor doesn't matter because EWMA decreases exponentially
1158  */
1159 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1160 {
1161 	unsigned int ewma;
1162 
1163 	if (hctx->queue->elevator)
1164 		return;
1165 
1166 	ewma = hctx->dispatch_busy;
1167 
1168 	if (!ewma && !busy)
1169 		return;
1170 
1171 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1172 	if (busy)
1173 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1174 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1175 
1176 	hctx->dispatch_busy = ewma;
1177 }
1178 
1179 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1180 
1181 /*
1182  * Returns true if we did some work AND can potentially do more.
1183  */
1184 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1185 			     bool got_budget)
1186 {
1187 	struct blk_mq_hw_ctx *hctx;
1188 	struct request *rq, *nxt;
1189 	bool no_tag = false;
1190 	int errors, queued;
1191 	blk_status_t ret = BLK_STS_OK;
1192 
1193 	if (list_empty(list))
1194 		return false;
1195 
1196 	WARN_ON(!list_is_singular(list) && got_budget);
1197 
1198 	/*
1199 	 * Now process all the entries, sending them to the driver.
1200 	 */
1201 	errors = queued = 0;
1202 	do {
1203 		struct blk_mq_queue_data bd;
1204 
1205 		rq = list_first_entry(list, struct request, queuelist);
1206 
1207 		hctx = rq->mq_hctx;
1208 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1209 			break;
1210 
1211 		if (!blk_mq_get_driver_tag(rq)) {
1212 			/*
1213 			 * The initial allocation attempt failed, so we need to
1214 			 * rerun the hardware queue when a tag is freed. The
1215 			 * waitqueue takes care of that. If the queue is run
1216 			 * before we add this entry back on the dispatch list,
1217 			 * we'll re-run it below.
1218 			 */
1219 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1220 				blk_mq_put_dispatch_budget(hctx);
1221 				/*
1222 				 * For non-shared tags, the RESTART check
1223 				 * will suffice.
1224 				 */
1225 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1226 					no_tag = true;
1227 				break;
1228 			}
1229 		}
1230 
1231 		list_del_init(&rq->queuelist);
1232 
1233 		bd.rq = rq;
1234 
1235 		/*
1236 		 * Flag last if we have no more requests, or if we have more
1237 		 * but can't assign a driver tag to it.
1238 		 */
1239 		if (list_empty(list))
1240 			bd.last = true;
1241 		else {
1242 			nxt = list_first_entry(list, struct request, queuelist);
1243 			bd.last = !blk_mq_get_driver_tag(nxt);
1244 		}
1245 
1246 		ret = q->mq_ops->queue_rq(hctx, &bd);
1247 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1248 			/*
1249 			 * If an I/O scheduler has been configured and we got a
1250 			 * driver tag for the next request already, free it
1251 			 * again.
1252 			 */
1253 			if (!list_empty(list)) {
1254 				nxt = list_first_entry(list, struct request, queuelist);
1255 				blk_mq_put_driver_tag(nxt);
1256 			}
1257 			list_add(&rq->queuelist, list);
1258 			__blk_mq_requeue_request(rq);
1259 			break;
1260 		}
1261 
1262 		if (unlikely(ret != BLK_STS_OK)) {
1263 			errors++;
1264 			blk_mq_end_request(rq, BLK_STS_IOERR);
1265 			continue;
1266 		}
1267 
1268 		queued++;
1269 	} while (!list_empty(list));
1270 
1271 	hctx->dispatched[queued_to_index(queued)]++;
1272 
1273 	/*
1274 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1275 	 * that is where we will continue on next queue run.
1276 	 */
1277 	if (!list_empty(list)) {
1278 		bool needs_restart;
1279 
1280 		/*
1281 		 * If we didn't flush the entire list, we could have told
1282 		 * the driver there was more coming, but that turned out to
1283 		 * be a lie.
1284 		 */
1285 		if (q->mq_ops->commit_rqs)
1286 			q->mq_ops->commit_rqs(hctx);
1287 
1288 		spin_lock(&hctx->lock);
1289 		list_splice_init(list, &hctx->dispatch);
1290 		spin_unlock(&hctx->lock);
1291 
1292 		/*
1293 		 * If SCHED_RESTART was set by the caller of this function and
1294 		 * it is no longer set that means that it was cleared by another
1295 		 * thread and hence that a queue rerun is needed.
1296 		 *
1297 		 * If 'no_tag' is set, that means that we failed getting
1298 		 * a driver tag with an I/O scheduler attached. If our dispatch
1299 		 * waitqueue is no longer active, ensure that we run the queue
1300 		 * AFTER adding our entries back to the list.
1301 		 *
1302 		 * If no I/O scheduler has been configured it is possible that
1303 		 * the hardware queue got stopped and restarted before requests
1304 		 * were pushed back onto the dispatch list. Rerun the queue to
1305 		 * avoid starvation. Notes:
1306 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1307 		 *   been stopped before rerunning a queue.
1308 		 * - Some but not all block drivers stop a queue before
1309 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1310 		 *   and dm-rq.
1311 		 *
1312 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1313 		 * bit is set, run queue after a delay to avoid IO stalls
1314 		 * that could otherwise occur if the queue is idle.
1315 		 */
1316 		needs_restart = blk_mq_sched_needs_restart(hctx);
1317 		if (!needs_restart ||
1318 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1319 			blk_mq_run_hw_queue(hctx, true);
1320 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1321 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1322 
1323 		blk_mq_update_dispatch_busy(hctx, true);
1324 		return false;
1325 	} else
1326 		blk_mq_update_dispatch_busy(hctx, false);
1327 
1328 	/*
1329 	 * If the host/device is unable to accept more work, inform the
1330 	 * caller of that.
1331 	 */
1332 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1333 		return false;
1334 
1335 	return (queued + errors) != 0;
1336 }
1337 
1338 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1339 {
1340 	int srcu_idx;
1341 
1342 	/*
1343 	 * We should be running this queue from one of the CPUs that
1344 	 * are mapped to it.
1345 	 *
1346 	 * There are at least two related races now between setting
1347 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1348 	 * __blk_mq_run_hw_queue():
1349 	 *
1350 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1351 	 *   but later it becomes online, then this warning is harmless
1352 	 *   at all
1353 	 *
1354 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1355 	 *   but later it becomes offline, then the warning can't be
1356 	 *   triggered, and we depend on blk-mq timeout handler to
1357 	 *   handle dispatched requests to this hctx
1358 	 */
1359 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1360 		cpu_online(hctx->next_cpu)) {
1361 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1362 			raw_smp_processor_id(),
1363 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1364 		dump_stack();
1365 	}
1366 
1367 	/*
1368 	 * We can't run the queue inline with ints disabled. Ensure that
1369 	 * we catch bad users of this early.
1370 	 */
1371 	WARN_ON_ONCE(in_interrupt());
1372 
1373 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1374 
1375 	hctx_lock(hctx, &srcu_idx);
1376 	blk_mq_sched_dispatch_requests(hctx);
1377 	hctx_unlock(hctx, srcu_idx);
1378 }
1379 
1380 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1381 {
1382 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1383 
1384 	if (cpu >= nr_cpu_ids)
1385 		cpu = cpumask_first(hctx->cpumask);
1386 	return cpu;
1387 }
1388 
1389 /*
1390  * It'd be great if the workqueue API had a way to pass
1391  * in a mask and had some smarts for more clever placement.
1392  * For now we just round-robin here, switching for every
1393  * BLK_MQ_CPU_WORK_BATCH queued items.
1394  */
1395 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1396 {
1397 	bool tried = false;
1398 	int next_cpu = hctx->next_cpu;
1399 
1400 	if (hctx->queue->nr_hw_queues == 1)
1401 		return WORK_CPU_UNBOUND;
1402 
1403 	if (--hctx->next_cpu_batch <= 0) {
1404 select_cpu:
1405 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1406 				cpu_online_mask);
1407 		if (next_cpu >= nr_cpu_ids)
1408 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1409 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1410 	}
1411 
1412 	/*
1413 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1414 	 * and it should only happen in the path of handling CPU DEAD.
1415 	 */
1416 	if (!cpu_online(next_cpu)) {
1417 		if (!tried) {
1418 			tried = true;
1419 			goto select_cpu;
1420 		}
1421 
1422 		/*
1423 		 * Make sure to re-select CPU next time once after CPUs
1424 		 * in hctx->cpumask become online again.
1425 		 */
1426 		hctx->next_cpu = next_cpu;
1427 		hctx->next_cpu_batch = 1;
1428 		return WORK_CPU_UNBOUND;
1429 	}
1430 
1431 	hctx->next_cpu = next_cpu;
1432 	return next_cpu;
1433 }
1434 
1435 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1436 					unsigned long msecs)
1437 {
1438 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1439 		return;
1440 
1441 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1442 		int cpu = get_cpu();
1443 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1444 			__blk_mq_run_hw_queue(hctx);
1445 			put_cpu();
1446 			return;
1447 		}
1448 
1449 		put_cpu();
1450 	}
1451 
1452 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1453 				    msecs_to_jiffies(msecs));
1454 }
1455 
1456 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1457 {
1458 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1459 }
1460 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1461 
1462 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1463 {
1464 	int srcu_idx;
1465 	bool need_run;
1466 
1467 	/*
1468 	 * When queue is quiesced, we may be switching io scheduler, or
1469 	 * updating nr_hw_queues, or other things, and we can't run queue
1470 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1471 	 *
1472 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1473 	 * quiesced.
1474 	 */
1475 	hctx_lock(hctx, &srcu_idx);
1476 	need_run = !blk_queue_quiesced(hctx->queue) &&
1477 		blk_mq_hctx_has_pending(hctx);
1478 	hctx_unlock(hctx, srcu_idx);
1479 
1480 	if (need_run) {
1481 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1482 		return true;
1483 	}
1484 
1485 	return false;
1486 }
1487 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1488 
1489 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1490 {
1491 	struct blk_mq_hw_ctx *hctx;
1492 	int i;
1493 
1494 	queue_for_each_hw_ctx(q, hctx, i) {
1495 		if (blk_mq_hctx_stopped(hctx))
1496 			continue;
1497 
1498 		blk_mq_run_hw_queue(hctx, async);
1499 	}
1500 }
1501 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1502 
1503 /**
1504  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1505  * @q: request queue.
1506  *
1507  * The caller is responsible for serializing this function against
1508  * blk_mq_{start,stop}_hw_queue().
1509  */
1510 bool blk_mq_queue_stopped(struct request_queue *q)
1511 {
1512 	struct blk_mq_hw_ctx *hctx;
1513 	int i;
1514 
1515 	queue_for_each_hw_ctx(q, hctx, i)
1516 		if (blk_mq_hctx_stopped(hctx))
1517 			return true;
1518 
1519 	return false;
1520 }
1521 EXPORT_SYMBOL(blk_mq_queue_stopped);
1522 
1523 /*
1524  * This function is often used for pausing .queue_rq() by driver when
1525  * there isn't enough resource or some conditions aren't satisfied, and
1526  * BLK_STS_RESOURCE is usually returned.
1527  *
1528  * We do not guarantee that dispatch can be drained or blocked
1529  * after blk_mq_stop_hw_queue() returns. Please use
1530  * blk_mq_quiesce_queue() for that requirement.
1531  */
1532 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1533 {
1534 	cancel_delayed_work(&hctx->run_work);
1535 
1536 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1537 }
1538 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1539 
1540 /*
1541  * This function is often used for pausing .queue_rq() by driver when
1542  * there isn't enough resource or some conditions aren't satisfied, and
1543  * BLK_STS_RESOURCE is usually returned.
1544  *
1545  * We do not guarantee that dispatch can be drained or blocked
1546  * after blk_mq_stop_hw_queues() returns. Please use
1547  * blk_mq_quiesce_queue() for that requirement.
1548  */
1549 void blk_mq_stop_hw_queues(struct request_queue *q)
1550 {
1551 	struct blk_mq_hw_ctx *hctx;
1552 	int i;
1553 
1554 	queue_for_each_hw_ctx(q, hctx, i)
1555 		blk_mq_stop_hw_queue(hctx);
1556 }
1557 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1558 
1559 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1560 {
1561 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1562 
1563 	blk_mq_run_hw_queue(hctx, false);
1564 }
1565 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1566 
1567 void blk_mq_start_hw_queues(struct request_queue *q)
1568 {
1569 	struct blk_mq_hw_ctx *hctx;
1570 	int i;
1571 
1572 	queue_for_each_hw_ctx(q, hctx, i)
1573 		blk_mq_start_hw_queue(hctx);
1574 }
1575 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1576 
1577 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1578 {
1579 	if (!blk_mq_hctx_stopped(hctx))
1580 		return;
1581 
1582 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1583 	blk_mq_run_hw_queue(hctx, async);
1584 }
1585 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1586 
1587 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1588 {
1589 	struct blk_mq_hw_ctx *hctx;
1590 	int i;
1591 
1592 	queue_for_each_hw_ctx(q, hctx, i)
1593 		blk_mq_start_stopped_hw_queue(hctx, async);
1594 }
1595 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1596 
1597 static void blk_mq_run_work_fn(struct work_struct *work)
1598 {
1599 	struct blk_mq_hw_ctx *hctx;
1600 
1601 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1602 
1603 	/*
1604 	 * If we are stopped, don't run the queue.
1605 	 */
1606 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1607 		return;
1608 
1609 	__blk_mq_run_hw_queue(hctx);
1610 }
1611 
1612 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1613 					    struct request *rq,
1614 					    bool at_head)
1615 {
1616 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1617 	enum hctx_type type = hctx->type;
1618 
1619 	lockdep_assert_held(&ctx->lock);
1620 
1621 	trace_block_rq_insert(hctx->queue, rq);
1622 
1623 	if (at_head)
1624 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1625 	else
1626 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1627 }
1628 
1629 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1630 			     bool at_head)
1631 {
1632 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1633 
1634 	lockdep_assert_held(&ctx->lock);
1635 
1636 	__blk_mq_insert_req_list(hctx, rq, at_head);
1637 	blk_mq_hctx_mark_pending(hctx, ctx);
1638 }
1639 
1640 /*
1641  * Should only be used carefully, when the caller knows we want to
1642  * bypass a potential IO scheduler on the target device.
1643  */
1644 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1645 {
1646 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1647 
1648 	spin_lock(&hctx->lock);
1649 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1650 	spin_unlock(&hctx->lock);
1651 
1652 	if (run_queue)
1653 		blk_mq_run_hw_queue(hctx, false);
1654 }
1655 
1656 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1657 			    struct list_head *list)
1658 
1659 {
1660 	struct request *rq;
1661 	enum hctx_type type = hctx->type;
1662 
1663 	/*
1664 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1665 	 * offline now
1666 	 */
1667 	list_for_each_entry(rq, list, queuelist) {
1668 		BUG_ON(rq->mq_ctx != ctx);
1669 		trace_block_rq_insert(hctx->queue, rq);
1670 	}
1671 
1672 	spin_lock(&ctx->lock);
1673 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1674 	blk_mq_hctx_mark_pending(hctx, ctx);
1675 	spin_unlock(&ctx->lock);
1676 }
1677 
1678 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1679 {
1680 	struct request *rqa = container_of(a, struct request, queuelist);
1681 	struct request *rqb = container_of(b, struct request, queuelist);
1682 
1683 	if (rqa->mq_ctx < rqb->mq_ctx)
1684 		return -1;
1685 	else if (rqa->mq_ctx > rqb->mq_ctx)
1686 		return 1;
1687 	else if (rqa->mq_hctx < rqb->mq_hctx)
1688 		return -1;
1689 	else if (rqa->mq_hctx > rqb->mq_hctx)
1690 		return 1;
1691 
1692 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1693 }
1694 
1695 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1696 {
1697 	struct blk_mq_hw_ctx *this_hctx;
1698 	struct blk_mq_ctx *this_ctx;
1699 	struct request_queue *this_q;
1700 	struct request *rq;
1701 	LIST_HEAD(list);
1702 	LIST_HEAD(rq_list);
1703 	unsigned int depth;
1704 
1705 	list_splice_init(&plug->mq_list, &list);
1706 	plug->rq_count = 0;
1707 
1708 	if (plug->rq_count > 2 && plug->multiple_queues)
1709 		list_sort(NULL, &list, plug_rq_cmp);
1710 
1711 	this_q = NULL;
1712 	this_hctx = NULL;
1713 	this_ctx = NULL;
1714 	depth = 0;
1715 
1716 	while (!list_empty(&list)) {
1717 		rq = list_entry_rq(list.next);
1718 		list_del_init(&rq->queuelist);
1719 		BUG_ON(!rq->q);
1720 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1721 			if (this_hctx) {
1722 				trace_block_unplug(this_q, depth, !from_schedule);
1723 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1724 								&rq_list,
1725 								from_schedule);
1726 			}
1727 
1728 			this_q = rq->q;
1729 			this_ctx = rq->mq_ctx;
1730 			this_hctx = rq->mq_hctx;
1731 			depth = 0;
1732 		}
1733 
1734 		depth++;
1735 		list_add_tail(&rq->queuelist, &rq_list);
1736 	}
1737 
1738 	/*
1739 	 * If 'this_hctx' is set, we know we have entries to complete
1740 	 * on 'rq_list'. Do those.
1741 	 */
1742 	if (this_hctx) {
1743 		trace_block_unplug(this_q, depth, !from_schedule);
1744 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1745 						from_schedule);
1746 	}
1747 }
1748 
1749 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1750 {
1751 	blk_init_request_from_bio(rq, bio);
1752 
1753 	blk_account_io_start(rq, true);
1754 }
1755 
1756 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1757 					    struct request *rq,
1758 					    blk_qc_t *cookie, bool last)
1759 {
1760 	struct request_queue *q = rq->q;
1761 	struct blk_mq_queue_data bd = {
1762 		.rq = rq,
1763 		.last = last,
1764 	};
1765 	blk_qc_t new_cookie;
1766 	blk_status_t ret;
1767 
1768 	new_cookie = request_to_qc_t(hctx, rq);
1769 
1770 	/*
1771 	 * For OK queue, we are done. For error, caller may kill it.
1772 	 * Any other error (busy), just add it to our list as we
1773 	 * previously would have done.
1774 	 */
1775 	ret = q->mq_ops->queue_rq(hctx, &bd);
1776 	switch (ret) {
1777 	case BLK_STS_OK:
1778 		blk_mq_update_dispatch_busy(hctx, false);
1779 		*cookie = new_cookie;
1780 		break;
1781 	case BLK_STS_RESOURCE:
1782 	case BLK_STS_DEV_RESOURCE:
1783 		blk_mq_update_dispatch_busy(hctx, true);
1784 		__blk_mq_requeue_request(rq);
1785 		break;
1786 	default:
1787 		blk_mq_update_dispatch_busy(hctx, false);
1788 		*cookie = BLK_QC_T_NONE;
1789 		break;
1790 	}
1791 
1792 	return ret;
1793 }
1794 
1795 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1796 						struct request *rq,
1797 						blk_qc_t *cookie,
1798 						bool bypass, bool last)
1799 {
1800 	struct request_queue *q = rq->q;
1801 	bool run_queue = true;
1802 	blk_status_t ret = BLK_STS_RESOURCE;
1803 	int srcu_idx;
1804 	bool force = false;
1805 
1806 	hctx_lock(hctx, &srcu_idx);
1807 	/*
1808 	 * hctx_lock is needed before checking quiesced flag.
1809 	 *
1810 	 * When queue is stopped or quiesced, ignore 'bypass', insert
1811 	 * and return BLK_STS_OK to caller, and avoid driver to try to
1812 	 * dispatch again.
1813 	 */
1814 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1815 		run_queue = false;
1816 		bypass = false;
1817 		goto out_unlock;
1818 	}
1819 
1820 	if (unlikely(q->elevator && !bypass))
1821 		goto out_unlock;
1822 
1823 	if (!blk_mq_get_dispatch_budget(hctx))
1824 		goto out_unlock;
1825 
1826 	if (!blk_mq_get_driver_tag(rq)) {
1827 		blk_mq_put_dispatch_budget(hctx);
1828 		goto out_unlock;
1829 	}
1830 
1831 	/*
1832 	 * Always add a request that has been through
1833 	 *.queue_rq() to the hardware dispatch list.
1834 	 */
1835 	force = true;
1836 	ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1837 out_unlock:
1838 	hctx_unlock(hctx, srcu_idx);
1839 	switch (ret) {
1840 	case BLK_STS_OK:
1841 		break;
1842 	case BLK_STS_DEV_RESOURCE:
1843 	case BLK_STS_RESOURCE:
1844 		if (force) {
1845 			blk_mq_request_bypass_insert(rq, run_queue);
1846 			/*
1847 			 * We have to return BLK_STS_OK for the DM
1848 			 * to avoid livelock. Otherwise, we return
1849 			 * the real result to indicate whether the
1850 			 * request is direct-issued successfully.
1851 			 */
1852 			ret = bypass ? BLK_STS_OK : ret;
1853 		} else if (!bypass) {
1854 			blk_mq_sched_insert_request(rq, false,
1855 						    run_queue, false);
1856 		}
1857 		break;
1858 	default:
1859 		if (!bypass)
1860 			blk_mq_end_request(rq, ret);
1861 		break;
1862 	}
1863 
1864 	return ret;
1865 }
1866 
1867 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1868 		struct list_head *list)
1869 {
1870 	blk_qc_t unused;
1871 	blk_status_t ret = BLK_STS_OK;
1872 
1873 	while (!list_empty(list)) {
1874 		struct request *rq = list_first_entry(list, struct request,
1875 				queuelist);
1876 
1877 		list_del_init(&rq->queuelist);
1878 		if (ret == BLK_STS_OK)
1879 			ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1880 							false,
1881 							list_empty(list));
1882 		else
1883 			blk_mq_sched_insert_request(rq, false, true, false);
1884 	}
1885 
1886 	/*
1887 	 * If we didn't flush the entire list, we could have told
1888 	 * the driver there was more coming, but that turned out to
1889 	 * be a lie.
1890 	 */
1891 	if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1892 		hctx->queue->mq_ops->commit_rqs(hctx);
1893 }
1894 
1895 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1896 {
1897 	list_add_tail(&rq->queuelist, &plug->mq_list);
1898 	plug->rq_count++;
1899 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1900 		struct request *tmp;
1901 
1902 		tmp = list_first_entry(&plug->mq_list, struct request,
1903 						queuelist);
1904 		if (tmp->q != rq->q)
1905 			plug->multiple_queues = true;
1906 	}
1907 }
1908 
1909 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1910 {
1911 	const int is_sync = op_is_sync(bio->bi_opf);
1912 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1913 	struct blk_mq_alloc_data data = { .flags = 0};
1914 	struct request *rq;
1915 	struct blk_plug *plug;
1916 	struct request *same_queue_rq = NULL;
1917 	blk_qc_t cookie;
1918 
1919 	blk_queue_bounce(q, &bio);
1920 
1921 	blk_queue_split(q, &bio);
1922 
1923 	if (!bio_integrity_prep(bio))
1924 		return BLK_QC_T_NONE;
1925 
1926 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1927 	    blk_attempt_plug_merge(q, bio, &same_queue_rq))
1928 		return BLK_QC_T_NONE;
1929 
1930 	if (blk_mq_sched_bio_merge(q, bio))
1931 		return BLK_QC_T_NONE;
1932 
1933 	rq_qos_throttle(q, bio);
1934 
1935 	data.cmd_flags = bio->bi_opf;
1936 	rq = blk_mq_get_request(q, bio, &data);
1937 	if (unlikely(!rq)) {
1938 		rq_qos_cleanup(q, bio);
1939 		if (bio->bi_opf & REQ_NOWAIT)
1940 			bio_wouldblock_error(bio);
1941 		return BLK_QC_T_NONE;
1942 	}
1943 
1944 	trace_block_getrq(q, bio, bio->bi_opf);
1945 
1946 	rq_qos_track(q, rq, bio);
1947 
1948 	cookie = request_to_qc_t(data.hctx, rq);
1949 
1950 	plug = current->plug;
1951 	if (unlikely(is_flush_fua)) {
1952 		blk_mq_put_ctx(data.ctx);
1953 		blk_mq_bio_to_request(rq, bio);
1954 
1955 		/* bypass scheduler for flush rq */
1956 		blk_insert_flush(rq);
1957 		blk_mq_run_hw_queue(data.hctx, true);
1958 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1959 		/*
1960 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1961 		 * we know the driver uses bd->last in a smart fashion.
1962 		 */
1963 		unsigned int request_count = plug->rq_count;
1964 		struct request *last = NULL;
1965 
1966 		blk_mq_put_ctx(data.ctx);
1967 		blk_mq_bio_to_request(rq, bio);
1968 
1969 		if (!request_count)
1970 			trace_block_plug(q);
1971 		else
1972 			last = list_entry_rq(plug->mq_list.prev);
1973 
1974 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1975 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1976 			blk_flush_plug_list(plug, false);
1977 			trace_block_plug(q);
1978 		}
1979 
1980 		blk_add_rq_to_plug(plug, rq);
1981 	} else if (plug && !blk_queue_nomerges(q)) {
1982 		blk_mq_bio_to_request(rq, bio);
1983 
1984 		/*
1985 		 * We do limited plugging. If the bio can be merged, do that.
1986 		 * Otherwise the existing request in the plug list will be
1987 		 * issued. So the plug list will have one request at most
1988 		 * The plug list might get flushed before this. If that happens,
1989 		 * the plug list is empty, and same_queue_rq is invalid.
1990 		 */
1991 		if (list_empty(&plug->mq_list))
1992 			same_queue_rq = NULL;
1993 		if (same_queue_rq) {
1994 			list_del_init(&same_queue_rq->queuelist);
1995 			plug->rq_count--;
1996 		}
1997 		blk_add_rq_to_plug(plug, rq);
1998 
1999 		blk_mq_put_ctx(data.ctx);
2000 
2001 		if (same_queue_rq) {
2002 			data.hctx = same_queue_rq->mq_hctx;
2003 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2004 					&cookie, false, true);
2005 		}
2006 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2007 			!data.hctx->dispatch_busy)) {
2008 		blk_mq_put_ctx(data.ctx);
2009 		blk_mq_bio_to_request(rq, bio);
2010 		blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2011 	} else {
2012 		blk_mq_put_ctx(data.ctx);
2013 		blk_mq_bio_to_request(rq, bio);
2014 		blk_mq_sched_insert_request(rq, false, true, true);
2015 	}
2016 
2017 	return cookie;
2018 }
2019 
2020 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2021 		     unsigned int hctx_idx)
2022 {
2023 	struct page *page;
2024 
2025 	if (tags->rqs && set->ops->exit_request) {
2026 		int i;
2027 
2028 		for (i = 0; i < tags->nr_tags; i++) {
2029 			struct request *rq = tags->static_rqs[i];
2030 
2031 			if (!rq)
2032 				continue;
2033 			set->ops->exit_request(set, rq, hctx_idx);
2034 			tags->static_rqs[i] = NULL;
2035 		}
2036 	}
2037 
2038 	while (!list_empty(&tags->page_list)) {
2039 		page = list_first_entry(&tags->page_list, struct page, lru);
2040 		list_del_init(&page->lru);
2041 		/*
2042 		 * Remove kmemleak object previously allocated in
2043 		 * blk_mq_init_rq_map().
2044 		 */
2045 		kmemleak_free(page_address(page));
2046 		__free_pages(page, page->private);
2047 	}
2048 }
2049 
2050 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2051 {
2052 	kfree(tags->rqs);
2053 	tags->rqs = NULL;
2054 	kfree(tags->static_rqs);
2055 	tags->static_rqs = NULL;
2056 
2057 	blk_mq_free_tags(tags);
2058 }
2059 
2060 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2061 					unsigned int hctx_idx,
2062 					unsigned int nr_tags,
2063 					unsigned int reserved_tags)
2064 {
2065 	struct blk_mq_tags *tags;
2066 	int node;
2067 
2068 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2069 	if (node == NUMA_NO_NODE)
2070 		node = set->numa_node;
2071 
2072 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2073 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2074 	if (!tags)
2075 		return NULL;
2076 
2077 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2078 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2079 				 node);
2080 	if (!tags->rqs) {
2081 		blk_mq_free_tags(tags);
2082 		return NULL;
2083 	}
2084 
2085 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2086 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2087 					node);
2088 	if (!tags->static_rqs) {
2089 		kfree(tags->rqs);
2090 		blk_mq_free_tags(tags);
2091 		return NULL;
2092 	}
2093 
2094 	return tags;
2095 }
2096 
2097 static size_t order_to_size(unsigned int order)
2098 {
2099 	return (size_t)PAGE_SIZE << order;
2100 }
2101 
2102 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2103 			       unsigned int hctx_idx, int node)
2104 {
2105 	int ret;
2106 
2107 	if (set->ops->init_request) {
2108 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2109 		if (ret)
2110 			return ret;
2111 	}
2112 
2113 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2114 	return 0;
2115 }
2116 
2117 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2118 		     unsigned int hctx_idx, unsigned int depth)
2119 {
2120 	unsigned int i, j, entries_per_page, max_order = 4;
2121 	size_t rq_size, left;
2122 	int node;
2123 
2124 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2125 	if (node == NUMA_NO_NODE)
2126 		node = set->numa_node;
2127 
2128 	INIT_LIST_HEAD(&tags->page_list);
2129 
2130 	/*
2131 	 * rq_size is the size of the request plus driver payload, rounded
2132 	 * to the cacheline size
2133 	 */
2134 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2135 				cache_line_size());
2136 	left = rq_size * depth;
2137 
2138 	for (i = 0; i < depth; ) {
2139 		int this_order = max_order;
2140 		struct page *page;
2141 		int to_do;
2142 		void *p;
2143 
2144 		while (this_order && left < order_to_size(this_order - 1))
2145 			this_order--;
2146 
2147 		do {
2148 			page = alloc_pages_node(node,
2149 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2150 				this_order);
2151 			if (page)
2152 				break;
2153 			if (!this_order--)
2154 				break;
2155 			if (order_to_size(this_order) < rq_size)
2156 				break;
2157 		} while (1);
2158 
2159 		if (!page)
2160 			goto fail;
2161 
2162 		page->private = this_order;
2163 		list_add_tail(&page->lru, &tags->page_list);
2164 
2165 		p = page_address(page);
2166 		/*
2167 		 * Allow kmemleak to scan these pages as they contain pointers
2168 		 * to additional allocations like via ops->init_request().
2169 		 */
2170 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2171 		entries_per_page = order_to_size(this_order) / rq_size;
2172 		to_do = min(entries_per_page, depth - i);
2173 		left -= to_do * rq_size;
2174 		for (j = 0; j < to_do; j++) {
2175 			struct request *rq = p;
2176 
2177 			tags->static_rqs[i] = rq;
2178 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2179 				tags->static_rqs[i] = NULL;
2180 				goto fail;
2181 			}
2182 
2183 			p += rq_size;
2184 			i++;
2185 		}
2186 	}
2187 	return 0;
2188 
2189 fail:
2190 	blk_mq_free_rqs(set, tags, hctx_idx);
2191 	return -ENOMEM;
2192 }
2193 
2194 /*
2195  * 'cpu' is going away. splice any existing rq_list entries from this
2196  * software queue to the hw queue dispatch list, and ensure that it
2197  * gets run.
2198  */
2199 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2200 {
2201 	struct blk_mq_hw_ctx *hctx;
2202 	struct blk_mq_ctx *ctx;
2203 	LIST_HEAD(tmp);
2204 	enum hctx_type type;
2205 
2206 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2207 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2208 	type = hctx->type;
2209 
2210 	spin_lock(&ctx->lock);
2211 	if (!list_empty(&ctx->rq_lists[type])) {
2212 		list_splice_init(&ctx->rq_lists[type], &tmp);
2213 		blk_mq_hctx_clear_pending(hctx, ctx);
2214 	}
2215 	spin_unlock(&ctx->lock);
2216 
2217 	if (list_empty(&tmp))
2218 		return 0;
2219 
2220 	spin_lock(&hctx->lock);
2221 	list_splice_tail_init(&tmp, &hctx->dispatch);
2222 	spin_unlock(&hctx->lock);
2223 
2224 	blk_mq_run_hw_queue(hctx, true);
2225 	return 0;
2226 }
2227 
2228 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2229 {
2230 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2231 					    &hctx->cpuhp_dead);
2232 }
2233 
2234 /* hctx->ctxs will be freed in queue's release handler */
2235 static void blk_mq_exit_hctx(struct request_queue *q,
2236 		struct blk_mq_tag_set *set,
2237 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2238 {
2239 	if (blk_mq_hw_queue_mapped(hctx))
2240 		blk_mq_tag_idle(hctx);
2241 
2242 	if (set->ops->exit_request)
2243 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2244 
2245 	if (set->ops->exit_hctx)
2246 		set->ops->exit_hctx(hctx, hctx_idx);
2247 
2248 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2249 		cleanup_srcu_struct(hctx->srcu);
2250 
2251 	blk_mq_remove_cpuhp(hctx);
2252 	blk_free_flush_queue(hctx->fq);
2253 	sbitmap_free(&hctx->ctx_map);
2254 }
2255 
2256 static void blk_mq_exit_hw_queues(struct request_queue *q,
2257 		struct blk_mq_tag_set *set, int nr_queue)
2258 {
2259 	struct blk_mq_hw_ctx *hctx;
2260 	unsigned int i;
2261 
2262 	queue_for_each_hw_ctx(q, hctx, i) {
2263 		if (i == nr_queue)
2264 			break;
2265 		blk_mq_debugfs_unregister_hctx(hctx);
2266 		blk_mq_exit_hctx(q, set, hctx, i);
2267 	}
2268 }
2269 
2270 static int blk_mq_init_hctx(struct request_queue *q,
2271 		struct blk_mq_tag_set *set,
2272 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2273 {
2274 	int node;
2275 
2276 	node = hctx->numa_node;
2277 	if (node == NUMA_NO_NODE)
2278 		node = hctx->numa_node = set->numa_node;
2279 
2280 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2281 	spin_lock_init(&hctx->lock);
2282 	INIT_LIST_HEAD(&hctx->dispatch);
2283 	hctx->queue = q;
2284 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2285 
2286 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2287 
2288 	hctx->tags = set->tags[hctx_idx];
2289 
2290 	/*
2291 	 * Allocate space for all possible cpus to avoid allocation at
2292 	 * runtime
2293 	 */
2294 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2295 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2296 	if (!hctx->ctxs)
2297 		goto unregister_cpu_notifier;
2298 
2299 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2300 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2301 		goto free_ctxs;
2302 
2303 	hctx->nr_ctx = 0;
2304 
2305 	spin_lock_init(&hctx->dispatch_wait_lock);
2306 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2307 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2308 
2309 	if (set->ops->init_hctx &&
2310 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2311 		goto free_bitmap;
2312 
2313 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2314 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2315 	if (!hctx->fq)
2316 		goto exit_hctx;
2317 
2318 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2319 		goto free_fq;
2320 
2321 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2322 		init_srcu_struct(hctx->srcu);
2323 
2324 	return 0;
2325 
2326  free_fq:
2327 	kfree(hctx->fq);
2328  exit_hctx:
2329 	if (set->ops->exit_hctx)
2330 		set->ops->exit_hctx(hctx, hctx_idx);
2331  free_bitmap:
2332 	sbitmap_free(&hctx->ctx_map);
2333  free_ctxs:
2334 	kfree(hctx->ctxs);
2335  unregister_cpu_notifier:
2336 	blk_mq_remove_cpuhp(hctx);
2337 	return -1;
2338 }
2339 
2340 static void blk_mq_init_cpu_queues(struct request_queue *q,
2341 				   unsigned int nr_hw_queues)
2342 {
2343 	struct blk_mq_tag_set *set = q->tag_set;
2344 	unsigned int i, j;
2345 
2346 	for_each_possible_cpu(i) {
2347 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2348 		struct blk_mq_hw_ctx *hctx;
2349 		int k;
2350 
2351 		__ctx->cpu = i;
2352 		spin_lock_init(&__ctx->lock);
2353 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2354 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2355 
2356 		__ctx->queue = q;
2357 
2358 		/*
2359 		 * Set local node, IFF we have more than one hw queue. If
2360 		 * not, we remain on the home node of the device
2361 		 */
2362 		for (j = 0; j < set->nr_maps; j++) {
2363 			hctx = blk_mq_map_queue_type(q, j, i);
2364 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2365 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2366 		}
2367 	}
2368 }
2369 
2370 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2371 {
2372 	int ret = 0;
2373 
2374 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2375 					set->queue_depth, set->reserved_tags);
2376 	if (!set->tags[hctx_idx])
2377 		return false;
2378 
2379 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2380 				set->queue_depth);
2381 	if (!ret)
2382 		return true;
2383 
2384 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2385 	set->tags[hctx_idx] = NULL;
2386 	return false;
2387 }
2388 
2389 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2390 					 unsigned int hctx_idx)
2391 {
2392 	if (set->tags && set->tags[hctx_idx]) {
2393 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2394 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2395 		set->tags[hctx_idx] = NULL;
2396 	}
2397 }
2398 
2399 static void blk_mq_map_swqueue(struct request_queue *q)
2400 {
2401 	unsigned int i, j, hctx_idx;
2402 	struct blk_mq_hw_ctx *hctx;
2403 	struct blk_mq_ctx *ctx;
2404 	struct blk_mq_tag_set *set = q->tag_set;
2405 
2406 	/*
2407 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2408 	 */
2409 	mutex_lock(&q->sysfs_lock);
2410 
2411 	queue_for_each_hw_ctx(q, hctx, i) {
2412 		cpumask_clear(hctx->cpumask);
2413 		hctx->nr_ctx = 0;
2414 		hctx->dispatch_from = NULL;
2415 	}
2416 
2417 	/*
2418 	 * Map software to hardware queues.
2419 	 *
2420 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2421 	 */
2422 	for_each_possible_cpu(i) {
2423 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2424 		/* unmapped hw queue can be remapped after CPU topo changed */
2425 		if (!set->tags[hctx_idx] &&
2426 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2427 			/*
2428 			 * If tags initialization fail for some hctx,
2429 			 * that hctx won't be brought online.  In this
2430 			 * case, remap the current ctx to hctx[0] which
2431 			 * is guaranteed to always have tags allocated
2432 			 */
2433 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2434 		}
2435 
2436 		ctx = per_cpu_ptr(q->queue_ctx, i);
2437 		for (j = 0; j < set->nr_maps; j++) {
2438 			if (!set->map[j].nr_queues) {
2439 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2440 						HCTX_TYPE_DEFAULT, i);
2441 				continue;
2442 			}
2443 
2444 			hctx = blk_mq_map_queue_type(q, j, i);
2445 			ctx->hctxs[j] = hctx;
2446 			/*
2447 			 * If the CPU is already set in the mask, then we've
2448 			 * mapped this one already. This can happen if
2449 			 * devices share queues across queue maps.
2450 			 */
2451 			if (cpumask_test_cpu(i, hctx->cpumask))
2452 				continue;
2453 
2454 			cpumask_set_cpu(i, hctx->cpumask);
2455 			hctx->type = j;
2456 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2457 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2458 
2459 			/*
2460 			 * If the nr_ctx type overflows, we have exceeded the
2461 			 * amount of sw queues we can support.
2462 			 */
2463 			BUG_ON(!hctx->nr_ctx);
2464 		}
2465 
2466 		for (; j < HCTX_MAX_TYPES; j++)
2467 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2468 					HCTX_TYPE_DEFAULT, i);
2469 	}
2470 
2471 	mutex_unlock(&q->sysfs_lock);
2472 
2473 	queue_for_each_hw_ctx(q, hctx, i) {
2474 		/*
2475 		 * If no software queues are mapped to this hardware queue,
2476 		 * disable it and free the request entries.
2477 		 */
2478 		if (!hctx->nr_ctx) {
2479 			/* Never unmap queue 0.  We need it as a
2480 			 * fallback in case of a new remap fails
2481 			 * allocation
2482 			 */
2483 			if (i && set->tags[i])
2484 				blk_mq_free_map_and_requests(set, i);
2485 
2486 			hctx->tags = NULL;
2487 			continue;
2488 		}
2489 
2490 		hctx->tags = set->tags[i];
2491 		WARN_ON(!hctx->tags);
2492 
2493 		/*
2494 		 * Set the map size to the number of mapped software queues.
2495 		 * This is more accurate and more efficient than looping
2496 		 * over all possibly mapped software queues.
2497 		 */
2498 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2499 
2500 		/*
2501 		 * Initialize batch roundrobin counts
2502 		 */
2503 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2504 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2505 	}
2506 }
2507 
2508 /*
2509  * Caller needs to ensure that we're either frozen/quiesced, or that
2510  * the queue isn't live yet.
2511  */
2512 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2513 {
2514 	struct blk_mq_hw_ctx *hctx;
2515 	int i;
2516 
2517 	queue_for_each_hw_ctx(q, hctx, i) {
2518 		if (shared)
2519 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2520 		else
2521 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2522 	}
2523 }
2524 
2525 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2526 					bool shared)
2527 {
2528 	struct request_queue *q;
2529 
2530 	lockdep_assert_held(&set->tag_list_lock);
2531 
2532 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2533 		blk_mq_freeze_queue(q);
2534 		queue_set_hctx_shared(q, shared);
2535 		blk_mq_unfreeze_queue(q);
2536 	}
2537 }
2538 
2539 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2540 {
2541 	struct blk_mq_tag_set *set = q->tag_set;
2542 
2543 	mutex_lock(&set->tag_list_lock);
2544 	list_del_rcu(&q->tag_set_list);
2545 	if (list_is_singular(&set->tag_list)) {
2546 		/* just transitioned to unshared */
2547 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2548 		/* update existing queue */
2549 		blk_mq_update_tag_set_depth(set, false);
2550 	}
2551 	mutex_unlock(&set->tag_list_lock);
2552 	INIT_LIST_HEAD(&q->tag_set_list);
2553 }
2554 
2555 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2556 				     struct request_queue *q)
2557 {
2558 	mutex_lock(&set->tag_list_lock);
2559 
2560 	/*
2561 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2562 	 */
2563 	if (!list_empty(&set->tag_list) &&
2564 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2565 		set->flags |= BLK_MQ_F_TAG_SHARED;
2566 		/* update existing queue */
2567 		blk_mq_update_tag_set_depth(set, true);
2568 	}
2569 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2570 		queue_set_hctx_shared(q, true);
2571 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2572 
2573 	mutex_unlock(&set->tag_list_lock);
2574 }
2575 
2576 /* All allocations will be freed in release handler of q->mq_kobj */
2577 static int blk_mq_alloc_ctxs(struct request_queue *q)
2578 {
2579 	struct blk_mq_ctxs *ctxs;
2580 	int cpu;
2581 
2582 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2583 	if (!ctxs)
2584 		return -ENOMEM;
2585 
2586 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2587 	if (!ctxs->queue_ctx)
2588 		goto fail;
2589 
2590 	for_each_possible_cpu(cpu) {
2591 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2592 		ctx->ctxs = ctxs;
2593 	}
2594 
2595 	q->mq_kobj = &ctxs->kobj;
2596 	q->queue_ctx = ctxs->queue_ctx;
2597 
2598 	return 0;
2599  fail:
2600 	kfree(ctxs);
2601 	return -ENOMEM;
2602 }
2603 
2604 /*
2605  * It is the actual release handler for mq, but we do it from
2606  * request queue's release handler for avoiding use-after-free
2607  * and headache because q->mq_kobj shouldn't have been introduced,
2608  * but we can't group ctx/kctx kobj without it.
2609  */
2610 void blk_mq_release(struct request_queue *q)
2611 {
2612 	struct blk_mq_hw_ctx *hctx;
2613 	unsigned int i;
2614 
2615 	/* hctx kobj stays in hctx */
2616 	queue_for_each_hw_ctx(q, hctx, i) {
2617 		if (!hctx)
2618 			continue;
2619 		kobject_put(&hctx->kobj);
2620 	}
2621 
2622 	kfree(q->queue_hw_ctx);
2623 
2624 	/*
2625 	 * release .mq_kobj and sw queue's kobject now because
2626 	 * both share lifetime with request queue.
2627 	 */
2628 	blk_mq_sysfs_deinit(q);
2629 }
2630 
2631 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2632 {
2633 	struct request_queue *uninit_q, *q;
2634 
2635 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2636 	if (!uninit_q)
2637 		return ERR_PTR(-ENOMEM);
2638 
2639 	q = blk_mq_init_allocated_queue(set, uninit_q);
2640 	if (IS_ERR(q))
2641 		blk_cleanup_queue(uninit_q);
2642 
2643 	return q;
2644 }
2645 EXPORT_SYMBOL(blk_mq_init_queue);
2646 
2647 /*
2648  * Helper for setting up a queue with mq ops, given queue depth, and
2649  * the passed in mq ops flags.
2650  */
2651 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2652 					   const struct blk_mq_ops *ops,
2653 					   unsigned int queue_depth,
2654 					   unsigned int set_flags)
2655 {
2656 	struct request_queue *q;
2657 	int ret;
2658 
2659 	memset(set, 0, sizeof(*set));
2660 	set->ops = ops;
2661 	set->nr_hw_queues = 1;
2662 	set->nr_maps = 1;
2663 	set->queue_depth = queue_depth;
2664 	set->numa_node = NUMA_NO_NODE;
2665 	set->flags = set_flags;
2666 
2667 	ret = blk_mq_alloc_tag_set(set);
2668 	if (ret)
2669 		return ERR_PTR(ret);
2670 
2671 	q = blk_mq_init_queue(set);
2672 	if (IS_ERR(q)) {
2673 		blk_mq_free_tag_set(set);
2674 		return q;
2675 	}
2676 
2677 	return q;
2678 }
2679 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2680 
2681 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2682 {
2683 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2684 
2685 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2686 			   __alignof__(struct blk_mq_hw_ctx)) !=
2687 		     sizeof(struct blk_mq_hw_ctx));
2688 
2689 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2690 		hw_ctx_size += sizeof(struct srcu_struct);
2691 
2692 	return hw_ctx_size;
2693 }
2694 
2695 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2696 		struct blk_mq_tag_set *set, struct request_queue *q,
2697 		int hctx_idx, int node)
2698 {
2699 	struct blk_mq_hw_ctx *hctx;
2700 
2701 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2702 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2703 			node);
2704 	if (!hctx)
2705 		return NULL;
2706 
2707 	if (!zalloc_cpumask_var_node(&hctx->cpumask,
2708 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2709 				node)) {
2710 		kfree(hctx);
2711 		return NULL;
2712 	}
2713 
2714 	atomic_set(&hctx->nr_active, 0);
2715 	hctx->numa_node = node;
2716 	hctx->queue_num = hctx_idx;
2717 
2718 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2719 		free_cpumask_var(hctx->cpumask);
2720 		kfree(hctx);
2721 		return NULL;
2722 	}
2723 	blk_mq_hctx_kobj_init(hctx);
2724 
2725 	return hctx;
2726 }
2727 
2728 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2729 						struct request_queue *q)
2730 {
2731 	int i, j, end;
2732 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2733 
2734 	/* protect against switching io scheduler  */
2735 	mutex_lock(&q->sysfs_lock);
2736 	for (i = 0; i < set->nr_hw_queues; i++) {
2737 		int node;
2738 		struct blk_mq_hw_ctx *hctx;
2739 
2740 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2741 		/*
2742 		 * If the hw queue has been mapped to another numa node,
2743 		 * we need to realloc the hctx. If allocation fails, fallback
2744 		 * to use the previous one.
2745 		 */
2746 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2747 			continue;
2748 
2749 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2750 		if (hctx) {
2751 			if (hctxs[i]) {
2752 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2753 				kobject_put(&hctxs[i]->kobj);
2754 			}
2755 			hctxs[i] = hctx;
2756 		} else {
2757 			if (hctxs[i])
2758 				pr_warn("Allocate new hctx on node %d fails,\
2759 						fallback to previous one on node %d\n",
2760 						node, hctxs[i]->numa_node);
2761 			else
2762 				break;
2763 		}
2764 	}
2765 	/*
2766 	 * Increasing nr_hw_queues fails. Free the newly allocated
2767 	 * hctxs and keep the previous q->nr_hw_queues.
2768 	 */
2769 	if (i != set->nr_hw_queues) {
2770 		j = q->nr_hw_queues;
2771 		end = i;
2772 	} else {
2773 		j = i;
2774 		end = q->nr_hw_queues;
2775 		q->nr_hw_queues = set->nr_hw_queues;
2776 	}
2777 
2778 	for (; j < end; j++) {
2779 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2780 
2781 		if (hctx) {
2782 			if (hctx->tags)
2783 				blk_mq_free_map_and_requests(set, j);
2784 			blk_mq_exit_hctx(q, set, hctx, j);
2785 			kobject_put(&hctx->kobj);
2786 			hctxs[j] = NULL;
2787 
2788 		}
2789 	}
2790 	mutex_unlock(&q->sysfs_lock);
2791 }
2792 
2793 /*
2794  * Maximum number of hardware queues we support. For single sets, we'll never
2795  * have more than the CPUs (software queues). For multiple sets, the tag_set
2796  * user may have set ->nr_hw_queues larger.
2797  */
2798 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2799 {
2800 	if (set->nr_maps == 1)
2801 		return nr_cpu_ids;
2802 
2803 	return max(set->nr_hw_queues, nr_cpu_ids);
2804 }
2805 
2806 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2807 						  struct request_queue *q)
2808 {
2809 	/* mark the queue as mq asap */
2810 	q->mq_ops = set->ops;
2811 
2812 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2813 					     blk_mq_poll_stats_bkt,
2814 					     BLK_MQ_POLL_STATS_BKTS, q);
2815 	if (!q->poll_cb)
2816 		goto err_exit;
2817 
2818 	if (blk_mq_alloc_ctxs(q))
2819 		goto err_exit;
2820 
2821 	/* init q->mq_kobj and sw queues' kobjects */
2822 	blk_mq_sysfs_init(q);
2823 
2824 	q->nr_queues = nr_hw_queues(set);
2825 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2826 						GFP_KERNEL, set->numa_node);
2827 	if (!q->queue_hw_ctx)
2828 		goto err_sys_init;
2829 
2830 	blk_mq_realloc_hw_ctxs(set, q);
2831 	if (!q->nr_hw_queues)
2832 		goto err_hctxs;
2833 
2834 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2835 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2836 
2837 	q->tag_set = set;
2838 
2839 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2840 	if (set->nr_maps > HCTX_TYPE_POLL &&
2841 	    set->map[HCTX_TYPE_POLL].nr_queues)
2842 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2843 
2844 	q->sg_reserved_size = INT_MAX;
2845 
2846 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2847 	INIT_LIST_HEAD(&q->requeue_list);
2848 	spin_lock_init(&q->requeue_lock);
2849 
2850 	blk_queue_make_request(q, blk_mq_make_request);
2851 
2852 	/*
2853 	 * Do this after blk_queue_make_request() overrides it...
2854 	 */
2855 	q->nr_requests = set->queue_depth;
2856 
2857 	/*
2858 	 * Default to classic polling
2859 	 */
2860 	q->poll_nsec = -1;
2861 
2862 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2863 	blk_mq_add_queue_tag_set(set, q);
2864 	blk_mq_map_swqueue(q);
2865 
2866 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2867 		int ret;
2868 
2869 		ret = elevator_init_mq(q);
2870 		if (ret)
2871 			return ERR_PTR(ret);
2872 	}
2873 
2874 	return q;
2875 
2876 err_hctxs:
2877 	kfree(q->queue_hw_ctx);
2878 err_sys_init:
2879 	blk_mq_sysfs_deinit(q);
2880 err_exit:
2881 	q->mq_ops = NULL;
2882 	return ERR_PTR(-ENOMEM);
2883 }
2884 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2885 
2886 void blk_mq_free_queue(struct request_queue *q)
2887 {
2888 	struct blk_mq_tag_set	*set = q->tag_set;
2889 
2890 	blk_mq_del_queue_tag_set(q);
2891 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2892 }
2893 
2894 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2895 {
2896 	int i;
2897 
2898 	for (i = 0; i < set->nr_hw_queues; i++)
2899 		if (!__blk_mq_alloc_rq_map(set, i))
2900 			goto out_unwind;
2901 
2902 	return 0;
2903 
2904 out_unwind:
2905 	while (--i >= 0)
2906 		blk_mq_free_rq_map(set->tags[i]);
2907 
2908 	return -ENOMEM;
2909 }
2910 
2911 /*
2912  * Allocate the request maps associated with this tag_set. Note that this
2913  * may reduce the depth asked for, if memory is tight. set->queue_depth
2914  * will be updated to reflect the allocated depth.
2915  */
2916 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2917 {
2918 	unsigned int depth;
2919 	int err;
2920 
2921 	depth = set->queue_depth;
2922 	do {
2923 		err = __blk_mq_alloc_rq_maps(set);
2924 		if (!err)
2925 			break;
2926 
2927 		set->queue_depth >>= 1;
2928 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2929 			err = -ENOMEM;
2930 			break;
2931 		}
2932 	} while (set->queue_depth);
2933 
2934 	if (!set->queue_depth || err) {
2935 		pr_err("blk-mq: failed to allocate request map\n");
2936 		return -ENOMEM;
2937 	}
2938 
2939 	if (depth != set->queue_depth)
2940 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2941 						depth, set->queue_depth);
2942 
2943 	return 0;
2944 }
2945 
2946 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2947 {
2948 	if (set->ops->map_queues && !is_kdump_kernel()) {
2949 		int i;
2950 
2951 		/*
2952 		 * transport .map_queues is usually done in the following
2953 		 * way:
2954 		 *
2955 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2956 		 * 	mask = get_cpu_mask(queue)
2957 		 * 	for_each_cpu(cpu, mask)
2958 		 * 		set->map[x].mq_map[cpu] = queue;
2959 		 * }
2960 		 *
2961 		 * When we need to remap, the table has to be cleared for
2962 		 * killing stale mapping since one CPU may not be mapped
2963 		 * to any hw queue.
2964 		 */
2965 		for (i = 0; i < set->nr_maps; i++)
2966 			blk_mq_clear_mq_map(&set->map[i]);
2967 
2968 		return set->ops->map_queues(set);
2969 	} else {
2970 		BUG_ON(set->nr_maps > 1);
2971 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2972 	}
2973 }
2974 
2975 /*
2976  * Alloc a tag set to be associated with one or more request queues.
2977  * May fail with EINVAL for various error conditions. May adjust the
2978  * requested depth down, if it's too large. In that case, the set
2979  * value will be stored in set->queue_depth.
2980  */
2981 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2982 {
2983 	int i, ret;
2984 
2985 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2986 
2987 	if (!set->nr_hw_queues)
2988 		return -EINVAL;
2989 	if (!set->queue_depth)
2990 		return -EINVAL;
2991 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2992 		return -EINVAL;
2993 
2994 	if (!set->ops->queue_rq)
2995 		return -EINVAL;
2996 
2997 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2998 		return -EINVAL;
2999 
3000 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3001 		pr_info("blk-mq: reduced tag depth to %u\n",
3002 			BLK_MQ_MAX_DEPTH);
3003 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3004 	}
3005 
3006 	if (!set->nr_maps)
3007 		set->nr_maps = 1;
3008 	else if (set->nr_maps > HCTX_MAX_TYPES)
3009 		return -EINVAL;
3010 
3011 	/*
3012 	 * If a crashdump is active, then we are potentially in a very
3013 	 * memory constrained environment. Limit us to 1 queue and
3014 	 * 64 tags to prevent using too much memory.
3015 	 */
3016 	if (is_kdump_kernel()) {
3017 		set->nr_hw_queues = 1;
3018 		set->nr_maps = 1;
3019 		set->queue_depth = min(64U, set->queue_depth);
3020 	}
3021 	/*
3022 	 * There is no use for more h/w queues than cpus if we just have
3023 	 * a single map
3024 	 */
3025 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3026 		set->nr_hw_queues = nr_cpu_ids;
3027 
3028 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3029 				 GFP_KERNEL, set->numa_node);
3030 	if (!set->tags)
3031 		return -ENOMEM;
3032 
3033 	ret = -ENOMEM;
3034 	for (i = 0; i < set->nr_maps; i++) {
3035 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3036 						  sizeof(set->map[i].mq_map[0]),
3037 						  GFP_KERNEL, set->numa_node);
3038 		if (!set->map[i].mq_map)
3039 			goto out_free_mq_map;
3040 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3041 	}
3042 
3043 	ret = blk_mq_update_queue_map(set);
3044 	if (ret)
3045 		goto out_free_mq_map;
3046 
3047 	ret = blk_mq_alloc_rq_maps(set);
3048 	if (ret)
3049 		goto out_free_mq_map;
3050 
3051 	mutex_init(&set->tag_list_lock);
3052 	INIT_LIST_HEAD(&set->tag_list);
3053 
3054 	return 0;
3055 
3056 out_free_mq_map:
3057 	for (i = 0; i < set->nr_maps; i++) {
3058 		kfree(set->map[i].mq_map);
3059 		set->map[i].mq_map = NULL;
3060 	}
3061 	kfree(set->tags);
3062 	set->tags = NULL;
3063 	return ret;
3064 }
3065 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3066 
3067 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3068 {
3069 	int i, j;
3070 
3071 	for (i = 0; i < nr_hw_queues(set); i++)
3072 		blk_mq_free_map_and_requests(set, i);
3073 
3074 	for (j = 0; j < set->nr_maps; j++) {
3075 		kfree(set->map[j].mq_map);
3076 		set->map[j].mq_map = NULL;
3077 	}
3078 
3079 	kfree(set->tags);
3080 	set->tags = NULL;
3081 }
3082 EXPORT_SYMBOL(blk_mq_free_tag_set);
3083 
3084 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3085 {
3086 	struct blk_mq_tag_set *set = q->tag_set;
3087 	struct blk_mq_hw_ctx *hctx;
3088 	int i, ret;
3089 
3090 	if (!set)
3091 		return -EINVAL;
3092 
3093 	if (q->nr_requests == nr)
3094 		return 0;
3095 
3096 	blk_mq_freeze_queue(q);
3097 	blk_mq_quiesce_queue(q);
3098 
3099 	ret = 0;
3100 	queue_for_each_hw_ctx(q, hctx, i) {
3101 		if (!hctx->tags)
3102 			continue;
3103 		/*
3104 		 * If we're using an MQ scheduler, just update the scheduler
3105 		 * queue depth. This is similar to what the old code would do.
3106 		 */
3107 		if (!hctx->sched_tags) {
3108 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3109 							false);
3110 		} else {
3111 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3112 							nr, true);
3113 		}
3114 		if (ret)
3115 			break;
3116 	}
3117 
3118 	if (!ret)
3119 		q->nr_requests = nr;
3120 
3121 	blk_mq_unquiesce_queue(q);
3122 	blk_mq_unfreeze_queue(q);
3123 
3124 	return ret;
3125 }
3126 
3127 /*
3128  * request_queue and elevator_type pair.
3129  * It is just used by __blk_mq_update_nr_hw_queues to cache
3130  * the elevator_type associated with a request_queue.
3131  */
3132 struct blk_mq_qe_pair {
3133 	struct list_head node;
3134 	struct request_queue *q;
3135 	struct elevator_type *type;
3136 };
3137 
3138 /*
3139  * Cache the elevator_type in qe pair list and switch the
3140  * io scheduler to 'none'
3141  */
3142 static bool blk_mq_elv_switch_none(struct list_head *head,
3143 		struct request_queue *q)
3144 {
3145 	struct blk_mq_qe_pair *qe;
3146 
3147 	if (!q->elevator)
3148 		return true;
3149 
3150 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3151 	if (!qe)
3152 		return false;
3153 
3154 	INIT_LIST_HEAD(&qe->node);
3155 	qe->q = q;
3156 	qe->type = q->elevator->type;
3157 	list_add(&qe->node, head);
3158 
3159 	mutex_lock(&q->sysfs_lock);
3160 	/*
3161 	 * After elevator_switch_mq, the previous elevator_queue will be
3162 	 * released by elevator_release. The reference of the io scheduler
3163 	 * module get by elevator_get will also be put. So we need to get
3164 	 * a reference of the io scheduler module here to prevent it to be
3165 	 * removed.
3166 	 */
3167 	__module_get(qe->type->elevator_owner);
3168 	elevator_switch_mq(q, NULL);
3169 	mutex_unlock(&q->sysfs_lock);
3170 
3171 	return true;
3172 }
3173 
3174 static void blk_mq_elv_switch_back(struct list_head *head,
3175 		struct request_queue *q)
3176 {
3177 	struct blk_mq_qe_pair *qe;
3178 	struct elevator_type *t = NULL;
3179 
3180 	list_for_each_entry(qe, head, node)
3181 		if (qe->q == q) {
3182 			t = qe->type;
3183 			break;
3184 		}
3185 
3186 	if (!t)
3187 		return;
3188 
3189 	list_del(&qe->node);
3190 	kfree(qe);
3191 
3192 	mutex_lock(&q->sysfs_lock);
3193 	elevator_switch_mq(q, t);
3194 	mutex_unlock(&q->sysfs_lock);
3195 }
3196 
3197 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3198 							int nr_hw_queues)
3199 {
3200 	struct request_queue *q;
3201 	LIST_HEAD(head);
3202 	int prev_nr_hw_queues;
3203 
3204 	lockdep_assert_held(&set->tag_list_lock);
3205 
3206 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3207 		nr_hw_queues = nr_cpu_ids;
3208 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3209 		return;
3210 
3211 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3212 		blk_mq_freeze_queue(q);
3213 	/*
3214 	 * Sync with blk_mq_queue_tag_busy_iter.
3215 	 */
3216 	synchronize_rcu();
3217 	/*
3218 	 * Switch IO scheduler to 'none', cleaning up the data associated
3219 	 * with the previous scheduler. We will switch back once we are done
3220 	 * updating the new sw to hw queue mappings.
3221 	 */
3222 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3223 		if (!blk_mq_elv_switch_none(&head, q))
3224 			goto switch_back;
3225 
3226 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3227 		blk_mq_debugfs_unregister_hctxs(q);
3228 		blk_mq_sysfs_unregister(q);
3229 	}
3230 
3231 	prev_nr_hw_queues = set->nr_hw_queues;
3232 	set->nr_hw_queues = nr_hw_queues;
3233 	blk_mq_update_queue_map(set);
3234 fallback:
3235 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3236 		blk_mq_realloc_hw_ctxs(set, q);
3237 		if (q->nr_hw_queues != set->nr_hw_queues) {
3238 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3239 					nr_hw_queues, prev_nr_hw_queues);
3240 			set->nr_hw_queues = prev_nr_hw_queues;
3241 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3242 			goto fallback;
3243 		}
3244 		blk_mq_map_swqueue(q);
3245 	}
3246 
3247 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3248 		blk_mq_sysfs_register(q);
3249 		blk_mq_debugfs_register_hctxs(q);
3250 	}
3251 
3252 switch_back:
3253 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3254 		blk_mq_elv_switch_back(&head, q);
3255 
3256 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3257 		blk_mq_unfreeze_queue(q);
3258 }
3259 
3260 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3261 {
3262 	mutex_lock(&set->tag_list_lock);
3263 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3264 	mutex_unlock(&set->tag_list_lock);
3265 }
3266 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3267 
3268 /* Enable polling stats and return whether they were already enabled. */
3269 static bool blk_poll_stats_enable(struct request_queue *q)
3270 {
3271 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3272 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3273 		return true;
3274 	blk_stat_add_callback(q, q->poll_cb);
3275 	return false;
3276 }
3277 
3278 static void blk_mq_poll_stats_start(struct request_queue *q)
3279 {
3280 	/*
3281 	 * We don't arm the callback if polling stats are not enabled or the
3282 	 * callback is already active.
3283 	 */
3284 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3285 	    blk_stat_is_active(q->poll_cb))
3286 		return;
3287 
3288 	blk_stat_activate_msecs(q->poll_cb, 100);
3289 }
3290 
3291 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3292 {
3293 	struct request_queue *q = cb->data;
3294 	int bucket;
3295 
3296 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3297 		if (cb->stat[bucket].nr_samples)
3298 			q->poll_stat[bucket] = cb->stat[bucket];
3299 	}
3300 }
3301 
3302 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3303 				       struct blk_mq_hw_ctx *hctx,
3304 				       struct request *rq)
3305 {
3306 	unsigned long ret = 0;
3307 	int bucket;
3308 
3309 	/*
3310 	 * If stats collection isn't on, don't sleep but turn it on for
3311 	 * future users
3312 	 */
3313 	if (!blk_poll_stats_enable(q))
3314 		return 0;
3315 
3316 	/*
3317 	 * As an optimistic guess, use half of the mean service time
3318 	 * for this type of request. We can (and should) make this smarter.
3319 	 * For instance, if the completion latencies are tight, we can
3320 	 * get closer than just half the mean. This is especially
3321 	 * important on devices where the completion latencies are longer
3322 	 * than ~10 usec. We do use the stats for the relevant IO size
3323 	 * if available which does lead to better estimates.
3324 	 */
3325 	bucket = blk_mq_poll_stats_bkt(rq);
3326 	if (bucket < 0)
3327 		return ret;
3328 
3329 	if (q->poll_stat[bucket].nr_samples)
3330 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3331 
3332 	return ret;
3333 }
3334 
3335 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3336 				     struct blk_mq_hw_ctx *hctx,
3337 				     struct request *rq)
3338 {
3339 	struct hrtimer_sleeper hs;
3340 	enum hrtimer_mode mode;
3341 	unsigned int nsecs;
3342 	ktime_t kt;
3343 
3344 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3345 		return false;
3346 
3347 	/*
3348 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3349 	 *
3350 	 *  0:	use half of prev avg
3351 	 * >0:	use this specific value
3352 	 */
3353 	if (q->poll_nsec > 0)
3354 		nsecs = q->poll_nsec;
3355 	else
3356 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3357 
3358 	if (!nsecs)
3359 		return false;
3360 
3361 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3362 
3363 	/*
3364 	 * This will be replaced with the stats tracking code, using
3365 	 * 'avg_completion_time / 2' as the pre-sleep target.
3366 	 */
3367 	kt = nsecs;
3368 
3369 	mode = HRTIMER_MODE_REL;
3370 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3371 	hrtimer_set_expires(&hs.timer, kt);
3372 
3373 	hrtimer_init_sleeper(&hs, current);
3374 	do {
3375 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3376 			break;
3377 		set_current_state(TASK_UNINTERRUPTIBLE);
3378 		hrtimer_start_expires(&hs.timer, mode);
3379 		if (hs.task)
3380 			io_schedule();
3381 		hrtimer_cancel(&hs.timer);
3382 		mode = HRTIMER_MODE_ABS;
3383 	} while (hs.task && !signal_pending(current));
3384 
3385 	__set_current_state(TASK_RUNNING);
3386 	destroy_hrtimer_on_stack(&hs.timer);
3387 	return true;
3388 }
3389 
3390 static bool blk_mq_poll_hybrid(struct request_queue *q,
3391 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3392 {
3393 	struct request *rq;
3394 
3395 	if (q->poll_nsec == -1)
3396 		return false;
3397 
3398 	if (!blk_qc_t_is_internal(cookie))
3399 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3400 	else {
3401 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3402 		/*
3403 		 * With scheduling, if the request has completed, we'll
3404 		 * get a NULL return here, as we clear the sched tag when
3405 		 * that happens. The request still remains valid, like always,
3406 		 * so we should be safe with just the NULL check.
3407 		 */
3408 		if (!rq)
3409 			return false;
3410 	}
3411 
3412 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3413 }
3414 
3415 /**
3416  * blk_poll - poll for IO completions
3417  * @q:  the queue
3418  * @cookie: cookie passed back at IO submission time
3419  * @spin: whether to spin for completions
3420  *
3421  * Description:
3422  *    Poll for completions on the passed in queue. Returns number of
3423  *    completed entries found. If @spin is true, then blk_poll will continue
3424  *    looping until at least one completion is found, unless the task is
3425  *    otherwise marked running (or we need to reschedule).
3426  */
3427 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3428 {
3429 	struct blk_mq_hw_ctx *hctx;
3430 	long state;
3431 
3432 	if (!blk_qc_t_valid(cookie) ||
3433 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3434 		return 0;
3435 
3436 	if (current->plug)
3437 		blk_flush_plug_list(current->plug, false);
3438 
3439 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3440 
3441 	/*
3442 	 * If we sleep, have the caller restart the poll loop to reset
3443 	 * the state. Like for the other success return cases, the
3444 	 * caller is responsible for checking if the IO completed. If
3445 	 * the IO isn't complete, we'll get called again and will go
3446 	 * straight to the busy poll loop.
3447 	 */
3448 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3449 		return 1;
3450 
3451 	hctx->poll_considered++;
3452 
3453 	state = current->state;
3454 	do {
3455 		int ret;
3456 
3457 		hctx->poll_invoked++;
3458 
3459 		ret = q->mq_ops->poll(hctx);
3460 		if (ret > 0) {
3461 			hctx->poll_success++;
3462 			__set_current_state(TASK_RUNNING);
3463 			return ret;
3464 		}
3465 
3466 		if (signal_pending_state(state, current))
3467 			__set_current_state(TASK_RUNNING);
3468 
3469 		if (current->state == TASK_RUNNING)
3470 			return 1;
3471 		if (ret < 0 || !spin)
3472 			break;
3473 		cpu_relax();
3474 	} while (!need_resched());
3475 
3476 	__set_current_state(TASK_RUNNING);
3477 	return 0;
3478 }
3479 EXPORT_SYMBOL_GPL(blk_poll);
3480 
3481 unsigned int blk_mq_rq_cpu(struct request *rq)
3482 {
3483 	return rq->mq_ctx->cpu;
3484 }
3485 EXPORT_SYMBOL(blk_mq_rq_cpu);
3486 
3487 static int __init blk_mq_init(void)
3488 {
3489 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3490 				blk_mq_hctx_notify_dead);
3491 	return 0;
3492 }
3493 subsys_initcall(blk_mq_init);
3494