xref: /openbmc/linux/block/blk-mq.c (revision ecd2dc2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!mi->part->bd_partno || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	blk_mq_wait_quiesce_done(set);
287 	mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290 
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 	struct request_queue *q;
294 
295 	mutex_lock(&set->tag_list_lock);
296 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 		if (!blk_queue_skip_tagset_quiesce(q))
298 			blk_mq_unquiesce_queue(q);
299 	}
300 	mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303 
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 	struct blk_mq_hw_ctx *hctx;
307 	unsigned long i;
308 
309 	queue_for_each_hw_ctx(q, hctx, i)
310 		if (blk_mq_hw_queue_mapped(hctx))
311 			blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313 
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 	memset(rq, 0, sizeof(*rq));
317 
318 	INIT_LIST_HEAD(&rq->queuelist);
319 	rq->q = q;
320 	rq->__sector = (sector_t) -1;
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->tag = BLK_MQ_NO_TAG;
324 	rq->internal_tag = BLK_MQ_NO_TAG;
325 	rq->start_time_ns = ktime_get_ns();
326 	rq->part = NULL;
327 	blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330 
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334 	if (blk_mq_need_time_stamp(rq))
335 		rq->start_time_ns = ktime_get_ns();
336 	else
337 		rq->start_time_ns = 0;
338 
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 	if (blk_queue_rq_alloc_time(rq->q))
341 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 	else
343 		rq->alloc_time_ns = 0;
344 #endif
345 }
346 
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 		struct blk_mq_tags *tags, unsigned int tag)
349 {
350 	struct blk_mq_ctx *ctx = data->ctx;
351 	struct blk_mq_hw_ctx *hctx = data->hctx;
352 	struct request_queue *q = data->q;
353 	struct request *rq = tags->static_rqs[tag];
354 
355 	rq->q = q;
356 	rq->mq_ctx = ctx;
357 	rq->mq_hctx = hctx;
358 	rq->cmd_flags = data->cmd_flags;
359 
360 	if (data->flags & BLK_MQ_REQ_PM)
361 		data->rq_flags |= RQF_PM;
362 	if (blk_queue_io_stat(q))
363 		data->rq_flags |= RQF_IO_STAT;
364 	rq->rq_flags = data->rq_flags;
365 
366 	if (data->rq_flags & RQF_SCHED_TAGS) {
367 		rq->tag = BLK_MQ_NO_TAG;
368 		rq->internal_tag = tag;
369 	} else {
370 		rq->tag = tag;
371 		rq->internal_tag = BLK_MQ_NO_TAG;
372 	}
373 	rq->timeout = 0;
374 
375 	rq->part = NULL;
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_USE_SCHED) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (e->type->ops.prepare_request)
398 			e->type->ops.prepare_request(rq);
399 	}
400 
401 	return rq;
402 }
403 
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407 	unsigned int tag, tag_offset;
408 	struct blk_mq_tags *tags;
409 	struct request *rq;
410 	unsigned long tag_mask;
411 	int i, nr = 0;
412 
413 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 	if (unlikely(!tag_mask))
415 		return NULL;
416 
417 	tags = blk_mq_tags_from_data(data);
418 	for (i = 0; tag_mask; i++) {
419 		if (!(tag_mask & (1UL << i)))
420 			continue;
421 		tag = tag_offset + i;
422 		prefetch(tags->static_rqs[tag]);
423 		tag_mask &= ~(1UL << i);
424 		rq = blk_mq_rq_ctx_init(data, tags, tag);
425 		rq_list_add(data->cached_rq, rq);
426 		nr++;
427 	}
428 	/* caller already holds a reference, add for remainder */
429 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
430 	data->nr_tags -= nr;
431 
432 	return rq_list_pop(data->cached_rq);
433 }
434 
435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
436 {
437 	struct request_queue *q = data->q;
438 	u64 alloc_time_ns = 0;
439 	struct request *rq;
440 	unsigned int tag;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = ktime_get_ns();
445 
446 	if (data->cmd_flags & REQ_NOWAIT)
447 		data->flags |= BLK_MQ_REQ_NOWAIT;
448 
449 	if (q->elevator) {
450 		/*
451 		 * All requests use scheduler tags when an I/O scheduler is
452 		 * enabled for the queue.
453 		 */
454 		data->rq_flags |= RQF_SCHED_TAGS;
455 
456 		/*
457 		 * Flush/passthrough requests are special and go directly to the
458 		 * dispatch list.
459 		 */
460 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
461 		    !blk_op_is_passthrough(data->cmd_flags)) {
462 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
463 
464 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
465 
466 			data->rq_flags |= RQF_USE_SCHED;
467 			if (ops->limit_depth)
468 				ops->limit_depth(data->cmd_flags, data);
469 		}
470 	}
471 
472 retry:
473 	data->ctx = blk_mq_get_ctx(q);
474 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
475 	if (!(data->rq_flags & RQF_SCHED_TAGS))
476 		blk_mq_tag_busy(data->hctx);
477 
478 	if (data->flags & BLK_MQ_REQ_RESERVED)
479 		data->rq_flags |= RQF_RESV;
480 
481 	/*
482 	 * Try batched alloc if we want more than 1 tag.
483 	 */
484 	if (data->nr_tags > 1) {
485 		rq = __blk_mq_alloc_requests_batch(data);
486 		if (rq) {
487 			blk_mq_rq_time_init(rq, alloc_time_ns);
488 			return rq;
489 		}
490 		data->nr_tags = 1;
491 	}
492 
493 	/*
494 	 * Waiting allocations only fail because of an inactive hctx.  In that
495 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
496 	 * should have migrated us to an online CPU by now.
497 	 */
498 	tag = blk_mq_get_tag(data);
499 	if (tag == BLK_MQ_NO_TAG) {
500 		if (data->flags & BLK_MQ_REQ_NOWAIT)
501 			return NULL;
502 		/*
503 		 * Give up the CPU and sleep for a random short time to
504 		 * ensure that thread using a realtime scheduling class
505 		 * are migrated off the CPU, and thus off the hctx that
506 		 * is going away.
507 		 */
508 		msleep(3);
509 		goto retry;
510 	}
511 
512 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
513 	blk_mq_rq_time_init(rq, alloc_time_ns);
514 	return rq;
515 }
516 
517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
518 					    struct blk_plug *plug,
519 					    blk_opf_t opf,
520 					    blk_mq_req_flags_t flags)
521 {
522 	struct blk_mq_alloc_data data = {
523 		.q		= q,
524 		.flags		= flags,
525 		.cmd_flags	= opf,
526 		.nr_tags	= plug->nr_ios,
527 		.cached_rq	= &plug->cached_rq,
528 	};
529 	struct request *rq;
530 
531 	if (blk_queue_enter(q, flags))
532 		return NULL;
533 
534 	plug->nr_ios = 1;
535 
536 	rq = __blk_mq_alloc_requests(&data);
537 	if (unlikely(!rq))
538 		blk_queue_exit(q);
539 	return rq;
540 }
541 
542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
543 						   blk_opf_t opf,
544 						   blk_mq_req_flags_t flags)
545 {
546 	struct blk_plug *plug = current->plug;
547 	struct request *rq;
548 
549 	if (!plug)
550 		return NULL;
551 
552 	if (rq_list_empty(plug->cached_rq)) {
553 		if (plug->nr_ios == 1)
554 			return NULL;
555 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
556 		if (!rq)
557 			return NULL;
558 	} else {
559 		rq = rq_list_peek(&plug->cached_rq);
560 		if (!rq || rq->q != q)
561 			return NULL;
562 
563 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
564 			return NULL;
565 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
566 			return NULL;
567 
568 		plug->cached_rq = rq_list_next(rq);
569 		blk_mq_rq_time_init(rq, 0);
570 	}
571 
572 	rq->cmd_flags = opf;
573 	INIT_LIST_HEAD(&rq->queuelist);
574 	return rq;
575 }
576 
577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
578 		blk_mq_req_flags_t flags)
579 {
580 	struct request *rq;
581 
582 	rq = blk_mq_alloc_cached_request(q, opf, flags);
583 	if (!rq) {
584 		struct blk_mq_alloc_data data = {
585 			.q		= q,
586 			.flags		= flags,
587 			.cmd_flags	= opf,
588 			.nr_tags	= 1,
589 		};
590 		int ret;
591 
592 		ret = blk_queue_enter(q, flags);
593 		if (ret)
594 			return ERR_PTR(ret);
595 
596 		rq = __blk_mq_alloc_requests(&data);
597 		if (!rq)
598 			goto out_queue_exit;
599 	}
600 	rq->__data_len = 0;
601 	rq->__sector = (sector_t) -1;
602 	rq->bio = rq->biotail = NULL;
603 	return rq;
604 out_queue_exit:
605 	blk_queue_exit(q);
606 	return ERR_PTR(-EWOULDBLOCK);
607 }
608 EXPORT_SYMBOL(blk_mq_alloc_request);
609 
610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
611 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
612 {
613 	struct blk_mq_alloc_data data = {
614 		.q		= q,
615 		.flags		= flags,
616 		.cmd_flags	= opf,
617 		.nr_tags	= 1,
618 	};
619 	u64 alloc_time_ns = 0;
620 	struct request *rq;
621 	unsigned int cpu;
622 	unsigned int tag;
623 	int ret;
624 
625 	/* alloc_time includes depth and tag waits */
626 	if (blk_queue_rq_alloc_time(q))
627 		alloc_time_ns = ktime_get_ns();
628 
629 	/*
630 	 * If the tag allocator sleeps we could get an allocation for a
631 	 * different hardware context.  No need to complicate the low level
632 	 * allocator for this for the rare use case of a command tied to
633 	 * a specific queue.
634 	 */
635 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
636 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
637 		return ERR_PTR(-EINVAL);
638 
639 	if (hctx_idx >= q->nr_hw_queues)
640 		return ERR_PTR(-EIO);
641 
642 	ret = blk_queue_enter(q, flags);
643 	if (ret)
644 		return ERR_PTR(ret);
645 
646 	/*
647 	 * Check if the hardware context is actually mapped to anything.
648 	 * If not tell the caller that it should skip this queue.
649 	 */
650 	ret = -EXDEV;
651 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
652 	if (!blk_mq_hw_queue_mapped(data.hctx))
653 		goto out_queue_exit;
654 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
655 	if (cpu >= nr_cpu_ids)
656 		goto out_queue_exit;
657 	data.ctx = __blk_mq_get_ctx(q, cpu);
658 
659 	if (q->elevator)
660 		data.rq_flags |= RQF_SCHED_TAGS;
661 	else
662 		blk_mq_tag_busy(data.hctx);
663 
664 	if (flags & BLK_MQ_REQ_RESERVED)
665 		data.rq_flags |= RQF_RESV;
666 
667 	ret = -EWOULDBLOCK;
668 	tag = blk_mq_get_tag(&data);
669 	if (tag == BLK_MQ_NO_TAG)
670 		goto out_queue_exit;
671 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
672 	blk_mq_rq_time_init(rq, alloc_time_ns);
673 	rq->__data_len = 0;
674 	rq->__sector = (sector_t) -1;
675 	rq->bio = rq->biotail = NULL;
676 	return rq;
677 
678 out_queue_exit:
679 	blk_queue_exit(q);
680 	return ERR_PTR(ret);
681 }
682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
683 
684 static void __blk_mq_free_request(struct request *rq)
685 {
686 	struct request_queue *q = rq->q;
687 	struct blk_mq_ctx *ctx = rq->mq_ctx;
688 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
689 	const int sched_tag = rq->internal_tag;
690 
691 	blk_crypto_free_request(rq);
692 	blk_pm_mark_last_busy(rq);
693 	rq->mq_hctx = NULL;
694 
695 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
696 		__blk_mq_dec_active_requests(hctx);
697 
698 	if (rq->tag != BLK_MQ_NO_TAG)
699 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
700 	if (sched_tag != BLK_MQ_NO_TAG)
701 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
702 	blk_mq_sched_restart(hctx);
703 	blk_queue_exit(q);
704 }
705 
706 void blk_mq_free_request(struct request *rq)
707 {
708 	struct request_queue *q = rq->q;
709 
710 	if ((rq->rq_flags & RQF_USE_SCHED) &&
711 	    q->elevator->type->ops.finish_request)
712 		q->elevator->type->ops.finish_request(rq);
713 
714 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
715 		laptop_io_completion(q->disk->bdi);
716 
717 	rq_qos_done(q, rq);
718 
719 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
720 	if (req_ref_put_and_test(rq))
721 		__blk_mq_free_request(rq);
722 }
723 EXPORT_SYMBOL_GPL(blk_mq_free_request);
724 
725 void blk_mq_free_plug_rqs(struct blk_plug *plug)
726 {
727 	struct request *rq;
728 
729 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
730 		blk_mq_free_request(rq);
731 }
732 
733 void blk_dump_rq_flags(struct request *rq, char *msg)
734 {
735 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
736 		rq->q->disk ? rq->q->disk->disk_name : "?",
737 		(__force unsigned long long) rq->cmd_flags);
738 
739 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
740 	       (unsigned long long)blk_rq_pos(rq),
741 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
742 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
743 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
744 }
745 EXPORT_SYMBOL(blk_dump_rq_flags);
746 
747 static void req_bio_endio(struct request *rq, struct bio *bio,
748 			  unsigned int nbytes, blk_status_t error)
749 {
750 	if (unlikely(error)) {
751 		bio->bi_status = error;
752 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
753 		/*
754 		 * Partial zone append completions cannot be supported as the
755 		 * BIO fragments may end up not being written sequentially.
756 		 */
757 		if (bio->bi_iter.bi_size != nbytes)
758 			bio->bi_status = BLK_STS_IOERR;
759 		else
760 			bio->bi_iter.bi_sector = rq->__sector;
761 	}
762 
763 	bio_advance(bio, nbytes);
764 
765 	if (unlikely(rq->rq_flags & RQF_QUIET))
766 		bio_set_flag(bio, BIO_QUIET);
767 	/* don't actually finish bio if it's part of flush sequence */
768 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
769 		bio_endio(bio);
770 }
771 
772 static void blk_account_io_completion(struct request *req, unsigned int bytes)
773 {
774 	if (req->part && blk_do_io_stat(req)) {
775 		const int sgrp = op_stat_group(req_op(req));
776 
777 		part_stat_lock();
778 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
779 		part_stat_unlock();
780 	}
781 }
782 
783 static void blk_print_req_error(struct request *req, blk_status_t status)
784 {
785 	printk_ratelimited(KERN_ERR
786 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
787 		"phys_seg %u prio class %u\n",
788 		blk_status_to_str(status),
789 		req->q->disk ? req->q->disk->disk_name : "?",
790 		blk_rq_pos(req), (__force u32)req_op(req),
791 		blk_op_str(req_op(req)),
792 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
793 		req->nr_phys_segments,
794 		IOPRIO_PRIO_CLASS(req->ioprio));
795 }
796 
797 /*
798  * Fully end IO on a request. Does not support partial completions, or
799  * errors.
800  */
801 static void blk_complete_request(struct request *req)
802 {
803 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
804 	int total_bytes = blk_rq_bytes(req);
805 	struct bio *bio = req->bio;
806 
807 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
808 
809 	if (!bio)
810 		return;
811 
812 #ifdef CONFIG_BLK_DEV_INTEGRITY
813 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
814 		req->q->integrity.profile->complete_fn(req, total_bytes);
815 #endif
816 
817 	/*
818 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
819 	 * bio_endio().  Therefore, the keyslot must be released before that.
820 	 */
821 	blk_crypto_rq_put_keyslot(req);
822 
823 	blk_account_io_completion(req, total_bytes);
824 
825 	do {
826 		struct bio *next = bio->bi_next;
827 
828 		/* Completion has already been traced */
829 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
830 
831 		if (req_op(req) == REQ_OP_ZONE_APPEND)
832 			bio->bi_iter.bi_sector = req->__sector;
833 
834 		if (!is_flush)
835 			bio_endio(bio);
836 		bio = next;
837 	} while (bio);
838 
839 	/*
840 	 * Reset counters so that the request stacking driver
841 	 * can find how many bytes remain in the request
842 	 * later.
843 	 */
844 	if (!req->end_io) {
845 		req->bio = NULL;
846 		req->__data_len = 0;
847 	}
848 }
849 
850 /**
851  * blk_update_request - Complete multiple bytes without completing the request
852  * @req:      the request being processed
853  * @error:    block status code
854  * @nr_bytes: number of bytes to complete for @req
855  *
856  * Description:
857  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
858  *     the request structure even if @req doesn't have leftover.
859  *     If @req has leftover, sets it up for the next range of segments.
860  *
861  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
862  *     %false return from this function.
863  *
864  * Note:
865  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
866  *      except in the consistency check at the end of this function.
867  *
868  * Return:
869  *     %false - this request doesn't have any more data
870  *     %true  - this request has more data
871  **/
872 bool blk_update_request(struct request *req, blk_status_t error,
873 		unsigned int nr_bytes)
874 {
875 	int total_bytes;
876 
877 	trace_block_rq_complete(req, error, nr_bytes);
878 
879 	if (!req->bio)
880 		return false;
881 
882 #ifdef CONFIG_BLK_DEV_INTEGRITY
883 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
884 	    error == BLK_STS_OK)
885 		req->q->integrity.profile->complete_fn(req, nr_bytes);
886 #endif
887 
888 	/*
889 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
890 	 * bio_endio().  Therefore, the keyslot must be released before that.
891 	 */
892 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
893 		__blk_crypto_rq_put_keyslot(req);
894 
895 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
896 		     !(req->rq_flags & RQF_QUIET)) &&
897 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
898 		blk_print_req_error(req, error);
899 		trace_block_rq_error(req, error, nr_bytes);
900 	}
901 
902 	blk_account_io_completion(req, nr_bytes);
903 
904 	total_bytes = 0;
905 	while (req->bio) {
906 		struct bio *bio = req->bio;
907 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
908 
909 		if (bio_bytes == bio->bi_iter.bi_size)
910 			req->bio = bio->bi_next;
911 
912 		/* Completion has already been traced */
913 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
914 		req_bio_endio(req, bio, bio_bytes, error);
915 
916 		total_bytes += bio_bytes;
917 		nr_bytes -= bio_bytes;
918 
919 		if (!nr_bytes)
920 			break;
921 	}
922 
923 	/*
924 	 * completely done
925 	 */
926 	if (!req->bio) {
927 		/*
928 		 * Reset counters so that the request stacking driver
929 		 * can find how many bytes remain in the request
930 		 * later.
931 		 */
932 		req->__data_len = 0;
933 		return false;
934 	}
935 
936 	req->__data_len -= total_bytes;
937 
938 	/* update sector only for requests with clear definition of sector */
939 	if (!blk_rq_is_passthrough(req))
940 		req->__sector += total_bytes >> 9;
941 
942 	/* mixed attributes always follow the first bio */
943 	if (req->rq_flags & RQF_MIXED_MERGE) {
944 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
945 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
946 	}
947 
948 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
949 		/*
950 		 * If total number of sectors is less than the first segment
951 		 * size, something has gone terribly wrong.
952 		 */
953 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
954 			blk_dump_rq_flags(req, "request botched");
955 			req->__data_len = blk_rq_cur_bytes(req);
956 		}
957 
958 		/* recalculate the number of segments */
959 		req->nr_phys_segments = blk_recalc_rq_segments(req);
960 	}
961 
962 	return true;
963 }
964 EXPORT_SYMBOL_GPL(blk_update_request);
965 
966 static inline void blk_account_io_done(struct request *req, u64 now)
967 {
968 	trace_block_io_done(req);
969 
970 	/*
971 	 * Account IO completion.  flush_rq isn't accounted as a
972 	 * normal IO on queueing nor completion.  Accounting the
973 	 * containing request is enough.
974 	 */
975 	if (blk_do_io_stat(req) && req->part &&
976 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
977 		const int sgrp = op_stat_group(req_op(req));
978 
979 		part_stat_lock();
980 		update_io_ticks(req->part, jiffies, true);
981 		part_stat_inc(req->part, ios[sgrp]);
982 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
983 		part_stat_unlock();
984 	}
985 }
986 
987 static inline void blk_account_io_start(struct request *req)
988 {
989 	trace_block_io_start(req);
990 
991 	if (blk_do_io_stat(req)) {
992 		/*
993 		 * All non-passthrough requests are created from a bio with one
994 		 * exception: when a flush command that is part of a flush sequence
995 		 * generated by the state machine in blk-flush.c is cloned onto the
996 		 * lower device by dm-multipath we can get here without a bio.
997 		 */
998 		if (req->bio)
999 			req->part = req->bio->bi_bdev;
1000 		else
1001 			req->part = req->q->disk->part0;
1002 
1003 		part_stat_lock();
1004 		update_io_ticks(req->part, jiffies, false);
1005 		part_stat_unlock();
1006 	}
1007 }
1008 
1009 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1010 {
1011 	if (rq->rq_flags & RQF_STATS)
1012 		blk_stat_add(rq, now);
1013 
1014 	blk_mq_sched_completed_request(rq, now);
1015 	blk_account_io_done(rq, now);
1016 }
1017 
1018 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1019 {
1020 	if (blk_mq_need_time_stamp(rq))
1021 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1022 
1023 	if (rq->end_io) {
1024 		rq_qos_done(rq->q, rq);
1025 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1026 			blk_mq_free_request(rq);
1027 	} else {
1028 		blk_mq_free_request(rq);
1029 	}
1030 }
1031 EXPORT_SYMBOL(__blk_mq_end_request);
1032 
1033 void blk_mq_end_request(struct request *rq, blk_status_t error)
1034 {
1035 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1036 		BUG();
1037 	__blk_mq_end_request(rq, error);
1038 }
1039 EXPORT_SYMBOL(blk_mq_end_request);
1040 
1041 #define TAG_COMP_BATCH		32
1042 
1043 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1044 					  int *tag_array, int nr_tags)
1045 {
1046 	struct request_queue *q = hctx->queue;
1047 
1048 	/*
1049 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1050 	 * update hctx->nr_active in batch
1051 	 */
1052 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1053 		__blk_mq_sub_active_requests(hctx, nr_tags);
1054 
1055 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1056 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1057 }
1058 
1059 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1060 {
1061 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1062 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1063 	struct request *rq;
1064 	u64 now = 0;
1065 
1066 	if (iob->need_ts)
1067 		now = ktime_get_ns();
1068 
1069 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1070 		prefetch(rq->bio);
1071 		prefetch(rq->rq_next);
1072 
1073 		blk_complete_request(rq);
1074 		if (iob->need_ts)
1075 			__blk_mq_end_request_acct(rq, now);
1076 
1077 		rq_qos_done(rq->q, rq);
1078 
1079 		/*
1080 		 * If end_io handler returns NONE, then it still has
1081 		 * ownership of the request.
1082 		 */
1083 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1084 			continue;
1085 
1086 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1087 		if (!req_ref_put_and_test(rq))
1088 			continue;
1089 
1090 		blk_crypto_free_request(rq);
1091 		blk_pm_mark_last_busy(rq);
1092 
1093 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1094 			if (cur_hctx)
1095 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1096 			nr_tags = 0;
1097 			cur_hctx = rq->mq_hctx;
1098 		}
1099 		tags[nr_tags++] = rq->tag;
1100 	}
1101 
1102 	if (nr_tags)
1103 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1104 }
1105 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1106 
1107 static void blk_complete_reqs(struct llist_head *list)
1108 {
1109 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1110 	struct request *rq, *next;
1111 
1112 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1113 		rq->q->mq_ops->complete(rq);
1114 }
1115 
1116 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1117 {
1118 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1119 }
1120 
1121 static int blk_softirq_cpu_dead(unsigned int cpu)
1122 {
1123 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1124 	return 0;
1125 }
1126 
1127 static void __blk_mq_complete_request_remote(void *data)
1128 {
1129 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1130 }
1131 
1132 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1133 {
1134 	int cpu = raw_smp_processor_id();
1135 
1136 	if (!IS_ENABLED(CONFIG_SMP) ||
1137 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1138 		return false;
1139 	/*
1140 	 * With force threaded interrupts enabled, raising softirq from an SMP
1141 	 * function call will always result in waking the ksoftirqd thread.
1142 	 * This is probably worse than completing the request on a different
1143 	 * cache domain.
1144 	 */
1145 	if (force_irqthreads())
1146 		return false;
1147 
1148 	/* same CPU or cache domain?  Complete locally */
1149 	if (cpu == rq->mq_ctx->cpu ||
1150 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1151 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1152 		return false;
1153 
1154 	/* don't try to IPI to an offline CPU */
1155 	return cpu_online(rq->mq_ctx->cpu);
1156 }
1157 
1158 static void blk_mq_complete_send_ipi(struct request *rq)
1159 {
1160 	struct llist_head *list;
1161 	unsigned int cpu;
1162 
1163 	cpu = rq->mq_ctx->cpu;
1164 	list = &per_cpu(blk_cpu_done, cpu);
1165 	if (llist_add(&rq->ipi_list, list)) {
1166 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1167 		smp_call_function_single_async(cpu, &rq->csd);
1168 	}
1169 }
1170 
1171 static void blk_mq_raise_softirq(struct request *rq)
1172 {
1173 	struct llist_head *list;
1174 
1175 	preempt_disable();
1176 	list = this_cpu_ptr(&blk_cpu_done);
1177 	if (llist_add(&rq->ipi_list, list))
1178 		raise_softirq(BLOCK_SOFTIRQ);
1179 	preempt_enable();
1180 }
1181 
1182 bool blk_mq_complete_request_remote(struct request *rq)
1183 {
1184 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1185 
1186 	/*
1187 	 * For request which hctx has only one ctx mapping,
1188 	 * or a polled request, always complete locally,
1189 	 * it's pointless to redirect the completion.
1190 	 */
1191 	if ((rq->mq_hctx->nr_ctx == 1 &&
1192 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1193 	     rq->cmd_flags & REQ_POLLED)
1194 		return false;
1195 
1196 	if (blk_mq_complete_need_ipi(rq)) {
1197 		blk_mq_complete_send_ipi(rq);
1198 		return true;
1199 	}
1200 
1201 	if (rq->q->nr_hw_queues == 1) {
1202 		blk_mq_raise_softirq(rq);
1203 		return true;
1204 	}
1205 	return false;
1206 }
1207 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1208 
1209 /**
1210  * blk_mq_complete_request - end I/O on a request
1211  * @rq:		the request being processed
1212  *
1213  * Description:
1214  *	Complete a request by scheduling the ->complete_rq operation.
1215  **/
1216 void blk_mq_complete_request(struct request *rq)
1217 {
1218 	if (!blk_mq_complete_request_remote(rq))
1219 		rq->q->mq_ops->complete(rq);
1220 }
1221 EXPORT_SYMBOL(blk_mq_complete_request);
1222 
1223 /**
1224  * blk_mq_start_request - Start processing a request
1225  * @rq: Pointer to request to be started
1226  *
1227  * Function used by device drivers to notify the block layer that a request
1228  * is going to be processed now, so blk layer can do proper initializations
1229  * such as starting the timeout timer.
1230  */
1231 void blk_mq_start_request(struct request *rq)
1232 {
1233 	struct request_queue *q = rq->q;
1234 
1235 	trace_block_rq_issue(rq);
1236 
1237 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1238 		rq->io_start_time_ns = ktime_get_ns();
1239 		rq->stats_sectors = blk_rq_sectors(rq);
1240 		rq->rq_flags |= RQF_STATS;
1241 		rq_qos_issue(q, rq);
1242 	}
1243 
1244 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1245 
1246 	blk_add_timer(rq);
1247 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1248 
1249 #ifdef CONFIG_BLK_DEV_INTEGRITY
1250 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1251 		q->integrity.profile->prepare_fn(rq);
1252 #endif
1253 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1254 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1255 }
1256 EXPORT_SYMBOL(blk_mq_start_request);
1257 
1258 /*
1259  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1260  * queues. This is important for md arrays to benefit from merging
1261  * requests.
1262  */
1263 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1264 {
1265 	if (plug->multiple_queues)
1266 		return BLK_MAX_REQUEST_COUNT * 2;
1267 	return BLK_MAX_REQUEST_COUNT;
1268 }
1269 
1270 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1271 {
1272 	struct request *last = rq_list_peek(&plug->mq_list);
1273 
1274 	if (!plug->rq_count) {
1275 		trace_block_plug(rq->q);
1276 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1277 		   (!blk_queue_nomerges(rq->q) &&
1278 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1279 		blk_mq_flush_plug_list(plug, false);
1280 		last = NULL;
1281 		trace_block_plug(rq->q);
1282 	}
1283 
1284 	if (!plug->multiple_queues && last && last->q != rq->q)
1285 		plug->multiple_queues = true;
1286 	/*
1287 	 * Any request allocated from sched tags can't be issued to
1288 	 * ->queue_rqs() directly
1289 	 */
1290 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1291 		plug->has_elevator = true;
1292 	rq->rq_next = NULL;
1293 	rq_list_add(&plug->mq_list, rq);
1294 	plug->rq_count++;
1295 }
1296 
1297 /**
1298  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1299  * @rq:		request to insert
1300  * @at_head:    insert request at head or tail of queue
1301  *
1302  * Description:
1303  *    Insert a fully prepared request at the back of the I/O scheduler queue
1304  *    for execution.  Don't wait for completion.
1305  *
1306  * Note:
1307  *    This function will invoke @done directly if the queue is dead.
1308  */
1309 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1310 {
1311 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1312 
1313 	WARN_ON(irqs_disabled());
1314 	WARN_ON(!blk_rq_is_passthrough(rq));
1315 
1316 	blk_account_io_start(rq);
1317 
1318 	/*
1319 	 * As plugging can be enabled for passthrough requests on a zoned
1320 	 * device, directly accessing the plug instead of using blk_mq_plug()
1321 	 * should not have any consequences.
1322 	 */
1323 	if (current->plug && !at_head) {
1324 		blk_add_rq_to_plug(current->plug, rq);
1325 		return;
1326 	}
1327 
1328 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1329 	blk_mq_run_hw_queue(hctx, false);
1330 }
1331 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1332 
1333 struct blk_rq_wait {
1334 	struct completion done;
1335 	blk_status_t ret;
1336 };
1337 
1338 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1339 {
1340 	struct blk_rq_wait *wait = rq->end_io_data;
1341 
1342 	wait->ret = ret;
1343 	complete(&wait->done);
1344 	return RQ_END_IO_NONE;
1345 }
1346 
1347 bool blk_rq_is_poll(struct request *rq)
1348 {
1349 	if (!rq->mq_hctx)
1350 		return false;
1351 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1352 		return false;
1353 	return true;
1354 }
1355 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1356 
1357 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1358 {
1359 	do {
1360 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1361 		cond_resched();
1362 	} while (!completion_done(wait));
1363 }
1364 
1365 /**
1366  * blk_execute_rq - insert a request into queue for execution
1367  * @rq:		request to insert
1368  * @at_head:    insert request at head or tail of queue
1369  *
1370  * Description:
1371  *    Insert a fully prepared request at the back of the I/O scheduler queue
1372  *    for execution and wait for completion.
1373  * Return: The blk_status_t result provided to blk_mq_end_request().
1374  */
1375 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1376 {
1377 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1378 	struct blk_rq_wait wait = {
1379 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1380 	};
1381 
1382 	WARN_ON(irqs_disabled());
1383 	WARN_ON(!blk_rq_is_passthrough(rq));
1384 
1385 	rq->end_io_data = &wait;
1386 	rq->end_io = blk_end_sync_rq;
1387 
1388 	blk_account_io_start(rq);
1389 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1390 	blk_mq_run_hw_queue(hctx, false);
1391 
1392 	if (blk_rq_is_poll(rq)) {
1393 		blk_rq_poll_completion(rq, &wait.done);
1394 	} else {
1395 		/*
1396 		 * Prevent hang_check timer from firing at us during very long
1397 		 * I/O
1398 		 */
1399 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1400 
1401 		if (hang_check)
1402 			while (!wait_for_completion_io_timeout(&wait.done,
1403 					hang_check * (HZ/2)))
1404 				;
1405 		else
1406 			wait_for_completion_io(&wait.done);
1407 	}
1408 
1409 	return wait.ret;
1410 }
1411 EXPORT_SYMBOL(blk_execute_rq);
1412 
1413 static void __blk_mq_requeue_request(struct request *rq)
1414 {
1415 	struct request_queue *q = rq->q;
1416 
1417 	blk_mq_put_driver_tag(rq);
1418 
1419 	trace_block_rq_requeue(rq);
1420 	rq_qos_requeue(q, rq);
1421 
1422 	if (blk_mq_request_started(rq)) {
1423 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1424 		rq->rq_flags &= ~RQF_TIMED_OUT;
1425 	}
1426 }
1427 
1428 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1429 {
1430 	struct request_queue *q = rq->q;
1431 	unsigned long flags;
1432 
1433 	__blk_mq_requeue_request(rq);
1434 
1435 	/* this request will be re-inserted to io scheduler queue */
1436 	blk_mq_sched_requeue_request(rq);
1437 
1438 	spin_lock_irqsave(&q->requeue_lock, flags);
1439 	list_add_tail(&rq->queuelist, &q->requeue_list);
1440 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1441 
1442 	if (kick_requeue_list)
1443 		blk_mq_kick_requeue_list(q);
1444 }
1445 EXPORT_SYMBOL(blk_mq_requeue_request);
1446 
1447 static void blk_mq_requeue_work(struct work_struct *work)
1448 {
1449 	struct request_queue *q =
1450 		container_of(work, struct request_queue, requeue_work.work);
1451 	LIST_HEAD(rq_list);
1452 	LIST_HEAD(flush_list);
1453 	struct request *rq;
1454 
1455 	spin_lock_irq(&q->requeue_lock);
1456 	list_splice_init(&q->requeue_list, &rq_list);
1457 	list_splice_init(&q->flush_list, &flush_list);
1458 	spin_unlock_irq(&q->requeue_lock);
1459 
1460 	while (!list_empty(&rq_list)) {
1461 		rq = list_entry(rq_list.next, struct request, queuelist);
1462 		/*
1463 		 * If RQF_DONTPREP ist set, the request has been started by the
1464 		 * driver already and might have driver-specific data allocated
1465 		 * already.  Insert it into the hctx dispatch list to avoid
1466 		 * block layer merges for the request.
1467 		 */
1468 		if (rq->rq_flags & RQF_DONTPREP) {
1469 			list_del_init(&rq->queuelist);
1470 			blk_mq_request_bypass_insert(rq, 0);
1471 		} else {
1472 			list_del_init(&rq->queuelist);
1473 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1474 		}
1475 	}
1476 
1477 	while (!list_empty(&flush_list)) {
1478 		rq = list_entry(flush_list.next, struct request, queuelist);
1479 		list_del_init(&rq->queuelist);
1480 		blk_mq_insert_request(rq, 0);
1481 	}
1482 
1483 	blk_mq_run_hw_queues(q, false);
1484 }
1485 
1486 void blk_mq_kick_requeue_list(struct request_queue *q)
1487 {
1488 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1489 }
1490 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1491 
1492 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1493 				    unsigned long msecs)
1494 {
1495 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1496 				    msecs_to_jiffies(msecs));
1497 }
1498 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1499 
1500 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1501 {
1502 	/*
1503 	 * If we find a request that isn't idle we know the queue is busy
1504 	 * as it's checked in the iter.
1505 	 * Return false to stop the iteration.
1506 	 */
1507 	if (blk_mq_request_started(rq)) {
1508 		bool *busy = priv;
1509 
1510 		*busy = true;
1511 		return false;
1512 	}
1513 
1514 	return true;
1515 }
1516 
1517 bool blk_mq_queue_inflight(struct request_queue *q)
1518 {
1519 	bool busy = false;
1520 
1521 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1522 	return busy;
1523 }
1524 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1525 
1526 static void blk_mq_rq_timed_out(struct request *req)
1527 {
1528 	req->rq_flags |= RQF_TIMED_OUT;
1529 	if (req->q->mq_ops->timeout) {
1530 		enum blk_eh_timer_return ret;
1531 
1532 		ret = req->q->mq_ops->timeout(req);
1533 		if (ret == BLK_EH_DONE)
1534 			return;
1535 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1536 	}
1537 
1538 	blk_add_timer(req);
1539 }
1540 
1541 struct blk_expired_data {
1542 	bool has_timedout_rq;
1543 	unsigned long next;
1544 	unsigned long timeout_start;
1545 };
1546 
1547 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1548 {
1549 	unsigned long deadline;
1550 
1551 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1552 		return false;
1553 	if (rq->rq_flags & RQF_TIMED_OUT)
1554 		return false;
1555 
1556 	deadline = READ_ONCE(rq->deadline);
1557 	if (time_after_eq(expired->timeout_start, deadline))
1558 		return true;
1559 
1560 	if (expired->next == 0)
1561 		expired->next = deadline;
1562 	else if (time_after(expired->next, deadline))
1563 		expired->next = deadline;
1564 	return false;
1565 }
1566 
1567 void blk_mq_put_rq_ref(struct request *rq)
1568 {
1569 	if (is_flush_rq(rq)) {
1570 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1571 			blk_mq_free_request(rq);
1572 	} else if (req_ref_put_and_test(rq)) {
1573 		__blk_mq_free_request(rq);
1574 	}
1575 }
1576 
1577 static bool blk_mq_check_expired(struct request *rq, void *priv)
1578 {
1579 	struct blk_expired_data *expired = priv;
1580 
1581 	/*
1582 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1583 	 * be reallocated underneath the timeout handler's processing, then
1584 	 * the expire check is reliable. If the request is not expired, then
1585 	 * it was completed and reallocated as a new request after returning
1586 	 * from blk_mq_check_expired().
1587 	 */
1588 	if (blk_mq_req_expired(rq, expired)) {
1589 		expired->has_timedout_rq = true;
1590 		return false;
1591 	}
1592 	return true;
1593 }
1594 
1595 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1596 {
1597 	struct blk_expired_data *expired = priv;
1598 
1599 	if (blk_mq_req_expired(rq, expired))
1600 		blk_mq_rq_timed_out(rq);
1601 	return true;
1602 }
1603 
1604 static void blk_mq_timeout_work(struct work_struct *work)
1605 {
1606 	struct request_queue *q =
1607 		container_of(work, struct request_queue, timeout_work);
1608 	struct blk_expired_data expired = {
1609 		.timeout_start = jiffies,
1610 	};
1611 	struct blk_mq_hw_ctx *hctx;
1612 	unsigned long i;
1613 
1614 	/* A deadlock might occur if a request is stuck requiring a
1615 	 * timeout at the same time a queue freeze is waiting
1616 	 * completion, since the timeout code would not be able to
1617 	 * acquire the queue reference here.
1618 	 *
1619 	 * That's why we don't use blk_queue_enter here; instead, we use
1620 	 * percpu_ref_tryget directly, because we need to be able to
1621 	 * obtain a reference even in the short window between the queue
1622 	 * starting to freeze, by dropping the first reference in
1623 	 * blk_freeze_queue_start, and the moment the last request is
1624 	 * consumed, marked by the instant q_usage_counter reaches
1625 	 * zero.
1626 	 */
1627 	if (!percpu_ref_tryget(&q->q_usage_counter))
1628 		return;
1629 
1630 	/* check if there is any timed-out request */
1631 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1632 	if (expired.has_timedout_rq) {
1633 		/*
1634 		 * Before walking tags, we must ensure any submit started
1635 		 * before the current time has finished. Since the submit
1636 		 * uses srcu or rcu, wait for a synchronization point to
1637 		 * ensure all running submits have finished
1638 		 */
1639 		blk_mq_wait_quiesce_done(q->tag_set);
1640 
1641 		expired.next = 0;
1642 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1643 	}
1644 
1645 	if (expired.next != 0) {
1646 		mod_timer(&q->timeout, expired.next);
1647 	} else {
1648 		/*
1649 		 * Request timeouts are handled as a forward rolling timer. If
1650 		 * we end up here it means that no requests are pending and
1651 		 * also that no request has been pending for a while. Mark
1652 		 * each hctx as idle.
1653 		 */
1654 		queue_for_each_hw_ctx(q, hctx, i) {
1655 			/* the hctx may be unmapped, so check it here */
1656 			if (blk_mq_hw_queue_mapped(hctx))
1657 				blk_mq_tag_idle(hctx);
1658 		}
1659 	}
1660 	blk_queue_exit(q);
1661 }
1662 
1663 struct flush_busy_ctx_data {
1664 	struct blk_mq_hw_ctx *hctx;
1665 	struct list_head *list;
1666 };
1667 
1668 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1669 {
1670 	struct flush_busy_ctx_data *flush_data = data;
1671 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1672 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1673 	enum hctx_type type = hctx->type;
1674 
1675 	spin_lock(&ctx->lock);
1676 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1677 	sbitmap_clear_bit(sb, bitnr);
1678 	spin_unlock(&ctx->lock);
1679 	return true;
1680 }
1681 
1682 /*
1683  * Process software queues that have been marked busy, splicing them
1684  * to the for-dispatch
1685  */
1686 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1687 {
1688 	struct flush_busy_ctx_data data = {
1689 		.hctx = hctx,
1690 		.list = list,
1691 	};
1692 
1693 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1694 }
1695 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1696 
1697 struct dispatch_rq_data {
1698 	struct blk_mq_hw_ctx *hctx;
1699 	struct request *rq;
1700 };
1701 
1702 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1703 		void *data)
1704 {
1705 	struct dispatch_rq_data *dispatch_data = data;
1706 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1707 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1708 	enum hctx_type type = hctx->type;
1709 
1710 	spin_lock(&ctx->lock);
1711 	if (!list_empty(&ctx->rq_lists[type])) {
1712 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1713 		list_del_init(&dispatch_data->rq->queuelist);
1714 		if (list_empty(&ctx->rq_lists[type]))
1715 			sbitmap_clear_bit(sb, bitnr);
1716 	}
1717 	spin_unlock(&ctx->lock);
1718 
1719 	return !dispatch_data->rq;
1720 }
1721 
1722 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1723 					struct blk_mq_ctx *start)
1724 {
1725 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1726 	struct dispatch_rq_data data = {
1727 		.hctx = hctx,
1728 		.rq   = NULL,
1729 	};
1730 
1731 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1732 			       dispatch_rq_from_ctx, &data);
1733 
1734 	return data.rq;
1735 }
1736 
1737 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1738 {
1739 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1740 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1741 	int tag;
1742 
1743 	blk_mq_tag_busy(rq->mq_hctx);
1744 
1745 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1746 		bt = &rq->mq_hctx->tags->breserved_tags;
1747 		tag_offset = 0;
1748 	} else {
1749 		if (!hctx_may_queue(rq->mq_hctx, bt))
1750 			return false;
1751 	}
1752 
1753 	tag = __sbitmap_queue_get(bt);
1754 	if (tag == BLK_MQ_NO_TAG)
1755 		return false;
1756 
1757 	rq->tag = tag + tag_offset;
1758 	return true;
1759 }
1760 
1761 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1762 {
1763 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1764 		return false;
1765 
1766 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1767 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1768 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1769 		__blk_mq_inc_active_requests(hctx);
1770 	}
1771 	hctx->tags->rqs[rq->tag] = rq;
1772 	return true;
1773 }
1774 
1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1776 				int flags, void *key)
1777 {
1778 	struct blk_mq_hw_ctx *hctx;
1779 
1780 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1781 
1782 	spin_lock(&hctx->dispatch_wait_lock);
1783 	if (!list_empty(&wait->entry)) {
1784 		struct sbitmap_queue *sbq;
1785 
1786 		list_del_init(&wait->entry);
1787 		sbq = &hctx->tags->bitmap_tags;
1788 		atomic_dec(&sbq->ws_active);
1789 	}
1790 	spin_unlock(&hctx->dispatch_wait_lock);
1791 
1792 	blk_mq_run_hw_queue(hctx, true);
1793 	return 1;
1794 }
1795 
1796 /*
1797  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1798  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1799  * restart. For both cases, take care to check the condition again after
1800  * marking us as waiting.
1801  */
1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1803 				 struct request *rq)
1804 {
1805 	struct sbitmap_queue *sbq;
1806 	struct wait_queue_head *wq;
1807 	wait_queue_entry_t *wait;
1808 	bool ret;
1809 
1810 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1811 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1812 		blk_mq_sched_mark_restart_hctx(hctx);
1813 
1814 		/*
1815 		 * It's possible that a tag was freed in the window between the
1816 		 * allocation failure and adding the hardware queue to the wait
1817 		 * queue.
1818 		 *
1819 		 * Don't clear RESTART here, someone else could have set it.
1820 		 * At most this will cost an extra queue run.
1821 		 */
1822 		return blk_mq_get_driver_tag(rq);
1823 	}
1824 
1825 	wait = &hctx->dispatch_wait;
1826 	if (!list_empty_careful(&wait->entry))
1827 		return false;
1828 
1829 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1830 		sbq = &hctx->tags->breserved_tags;
1831 	else
1832 		sbq = &hctx->tags->bitmap_tags;
1833 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1834 
1835 	spin_lock_irq(&wq->lock);
1836 	spin_lock(&hctx->dispatch_wait_lock);
1837 	if (!list_empty(&wait->entry)) {
1838 		spin_unlock(&hctx->dispatch_wait_lock);
1839 		spin_unlock_irq(&wq->lock);
1840 		return false;
1841 	}
1842 
1843 	atomic_inc(&sbq->ws_active);
1844 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1845 	__add_wait_queue(wq, wait);
1846 
1847 	/*
1848 	 * It's possible that a tag was freed in the window between the
1849 	 * allocation failure and adding the hardware queue to the wait
1850 	 * queue.
1851 	 */
1852 	ret = blk_mq_get_driver_tag(rq);
1853 	if (!ret) {
1854 		spin_unlock(&hctx->dispatch_wait_lock);
1855 		spin_unlock_irq(&wq->lock);
1856 		return false;
1857 	}
1858 
1859 	/*
1860 	 * We got a tag, remove ourselves from the wait queue to ensure
1861 	 * someone else gets the wakeup.
1862 	 */
1863 	list_del_init(&wait->entry);
1864 	atomic_dec(&sbq->ws_active);
1865 	spin_unlock(&hctx->dispatch_wait_lock);
1866 	spin_unlock_irq(&wq->lock);
1867 
1868 	return true;
1869 }
1870 
1871 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1872 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1873 /*
1874  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1875  * - EWMA is one simple way to compute running average value
1876  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1877  * - take 4 as factor for avoiding to get too small(0) result, and this
1878  *   factor doesn't matter because EWMA decreases exponentially
1879  */
1880 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1881 {
1882 	unsigned int ewma;
1883 
1884 	ewma = hctx->dispatch_busy;
1885 
1886 	if (!ewma && !busy)
1887 		return;
1888 
1889 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1890 	if (busy)
1891 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1892 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1893 
1894 	hctx->dispatch_busy = ewma;
1895 }
1896 
1897 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1898 
1899 static void blk_mq_handle_dev_resource(struct request *rq,
1900 				       struct list_head *list)
1901 {
1902 	list_add(&rq->queuelist, list);
1903 	__blk_mq_requeue_request(rq);
1904 }
1905 
1906 static void blk_mq_handle_zone_resource(struct request *rq,
1907 					struct list_head *zone_list)
1908 {
1909 	/*
1910 	 * If we end up here it is because we cannot dispatch a request to a
1911 	 * specific zone due to LLD level zone-write locking or other zone
1912 	 * related resource not being available. In this case, set the request
1913 	 * aside in zone_list for retrying it later.
1914 	 */
1915 	list_add(&rq->queuelist, zone_list);
1916 	__blk_mq_requeue_request(rq);
1917 }
1918 
1919 enum prep_dispatch {
1920 	PREP_DISPATCH_OK,
1921 	PREP_DISPATCH_NO_TAG,
1922 	PREP_DISPATCH_NO_BUDGET,
1923 };
1924 
1925 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1926 						  bool need_budget)
1927 {
1928 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1929 	int budget_token = -1;
1930 
1931 	if (need_budget) {
1932 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1933 		if (budget_token < 0) {
1934 			blk_mq_put_driver_tag(rq);
1935 			return PREP_DISPATCH_NO_BUDGET;
1936 		}
1937 		blk_mq_set_rq_budget_token(rq, budget_token);
1938 	}
1939 
1940 	if (!blk_mq_get_driver_tag(rq)) {
1941 		/*
1942 		 * The initial allocation attempt failed, so we need to
1943 		 * rerun the hardware queue when a tag is freed. The
1944 		 * waitqueue takes care of that. If the queue is run
1945 		 * before we add this entry back on the dispatch list,
1946 		 * we'll re-run it below.
1947 		 */
1948 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1949 			/*
1950 			 * All budgets not got from this function will be put
1951 			 * together during handling partial dispatch
1952 			 */
1953 			if (need_budget)
1954 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1955 			return PREP_DISPATCH_NO_TAG;
1956 		}
1957 	}
1958 
1959 	return PREP_DISPATCH_OK;
1960 }
1961 
1962 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1963 static void blk_mq_release_budgets(struct request_queue *q,
1964 		struct list_head *list)
1965 {
1966 	struct request *rq;
1967 
1968 	list_for_each_entry(rq, list, queuelist) {
1969 		int budget_token = blk_mq_get_rq_budget_token(rq);
1970 
1971 		if (budget_token >= 0)
1972 			blk_mq_put_dispatch_budget(q, budget_token);
1973 	}
1974 }
1975 
1976 /*
1977  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1978  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1979  * details)
1980  * Attention, we should explicitly call this in unusual cases:
1981  *  1) did not queue everything initially scheduled to queue
1982  *  2) the last attempt to queue a request failed
1983  */
1984 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1985 			      bool from_schedule)
1986 {
1987 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1988 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1989 		hctx->queue->mq_ops->commit_rqs(hctx);
1990 	}
1991 }
1992 
1993 /*
1994  * Returns true if we did some work AND can potentially do more.
1995  */
1996 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1997 			     unsigned int nr_budgets)
1998 {
1999 	enum prep_dispatch prep;
2000 	struct request_queue *q = hctx->queue;
2001 	struct request *rq;
2002 	int queued;
2003 	blk_status_t ret = BLK_STS_OK;
2004 	LIST_HEAD(zone_list);
2005 	bool needs_resource = false;
2006 
2007 	if (list_empty(list))
2008 		return false;
2009 
2010 	/*
2011 	 * Now process all the entries, sending them to the driver.
2012 	 */
2013 	queued = 0;
2014 	do {
2015 		struct blk_mq_queue_data bd;
2016 
2017 		rq = list_first_entry(list, struct request, queuelist);
2018 
2019 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2020 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2021 		if (prep != PREP_DISPATCH_OK)
2022 			break;
2023 
2024 		list_del_init(&rq->queuelist);
2025 
2026 		bd.rq = rq;
2027 		bd.last = list_empty(list);
2028 
2029 		/*
2030 		 * once the request is queued to lld, no need to cover the
2031 		 * budget any more
2032 		 */
2033 		if (nr_budgets)
2034 			nr_budgets--;
2035 		ret = q->mq_ops->queue_rq(hctx, &bd);
2036 		switch (ret) {
2037 		case BLK_STS_OK:
2038 			queued++;
2039 			break;
2040 		case BLK_STS_RESOURCE:
2041 			needs_resource = true;
2042 			fallthrough;
2043 		case BLK_STS_DEV_RESOURCE:
2044 			blk_mq_handle_dev_resource(rq, list);
2045 			goto out;
2046 		case BLK_STS_ZONE_RESOURCE:
2047 			/*
2048 			 * Move the request to zone_list and keep going through
2049 			 * the dispatch list to find more requests the drive can
2050 			 * accept.
2051 			 */
2052 			blk_mq_handle_zone_resource(rq, &zone_list);
2053 			needs_resource = true;
2054 			break;
2055 		default:
2056 			blk_mq_end_request(rq, ret);
2057 		}
2058 	} while (!list_empty(list));
2059 out:
2060 	if (!list_empty(&zone_list))
2061 		list_splice_tail_init(&zone_list, list);
2062 
2063 	/* If we didn't flush the entire list, we could have told the driver
2064 	 * there was more coming, but that turned out to be a lie.
2065 	 */
2066 	if (!list_empty(list) || ret != BLK_STS_OK)
2067 		blk_mq_commit_rqs(hctx, queued, false);
2068 
2069 	/*
2070 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2071 	 * that is where we will continue on next queue run.
2072 	 */
2073 	if (!list_empty(list)) {
2074 		bool needs_restart;
2075 		/* For non-shared tags, the RESTART check will suffice */
2076 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2077 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2078 			blk_mq_is_shared_tags(hctx->flags));
2079 
2080 		if (nr_budgets)
2081 			blk_mq_release_budgets(q, list);
2082 
2083 		spin_lock(&hctx->lock);
2084 		list_splice_tail_init(list, &hctx->dispatch);
2085 		spin_unlock(&hctx->lock);
2086 
2087 		/*
2088 		 * Order adding requests to hctx->dispatch and checking
2089 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2090 		 * in blk_mq_sched_restart(). Avoid restart code path to
2091 		 * miss the new added requests to hctx->dispatch, meantime
2092 		 * SCHED_RESTART is observed here.
2093 		 */
2094 		smp_mb();
2095 
2096 		/*
2097 		 * If SCHED_RESTART was set by the caller of this function and
2098 		 * it is no longer set that means that it was cleared by another
2099 		 * thread and hence that a queue rerun is needed.
2100 		 *
2101 		 * If 'no_tag' is set, that means that we failed getting
2102 		 * a driver tag with an I/O scheduler attached. If our dispatch
2103 		 * waitqueue is no longer active, ensure that we run the queue
2104 		 * AFTER adding our entries back to the list.
2105 		 *
2106 		 * If no I/O scheduler has been configured it is possible that
2107 		 * the hardware queue got stopped and restarted before requests
2108 		 * were pushed back onto the dispatch list. Rerun the queue to
2109 		 * avoid starvation. Notes:
2110 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2111 		 *   been stopped before rerunning a queue.
2112 		 * - Some but not all block drivers stop a queue before
2113 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2114 		 *   and dm-rq.
2115 		 *
2116 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2117 		 * bit is set, run queue after a delay to avoid IO stalls
2118 		 * that could otherwise occur if the queue is idle.  We'll do
2119 		 * similar if we couldn't get budget or couldn't lock a zone
2120 		 * and SCHED_RESTART is set.
2121 		 */
2122 		needs_restart = blk_mq_sched_needs_restart(hctx);
2123 		if (prep == PREP_DISPATCH_NO_BUDGET)
2124 			needs_resource = true;
2125 		if (!needs_restart ||
2126 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2127 			blk_mq_run_hw_queue(hctx, true);
2128 		else if (needs_resource)
2129 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2130 
2131 		blk_mq_update_dispatch_busy(hctx, true);
2132 		return false;
2133 	}
2134 
2135 	blk_mq_update_dispatch_busy(hctx, false);
2136 	return true;
2137 }
2138 
2139 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2140 {
2141 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2142 
2143 	if (cpu >= nr_cpu_ids)
2144 		cpu = cpumask_first(hctx->cpumask);
2145 	return cpu;
2146 }
2147 
2148 /*
2149  * It'd be great if the workqueue API had a way to pass
2150  * in a mask and had some smarts for more clever placement.
2151  * For now we just round-robin here, switching for every
2152  * BLK_MQ_CPU_WORK_BATCH queued items.
2153  */
2154 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2155 {
2156 	bool tried = false;
2157 	int next_cpu = hctx->next_cpu;
2158 
2159 	if (hctx->queue->nr_hw_queues == 1)
2160 		return WORK_CPU_UNBOUND;
2161 
2162 	if (--hctx->next_cpu_batch <= 0) {
2163 select_cpu:
2164 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2165 				cpu_online_mask);
2166 		if (next_cpu >= nr_cpu_ids)
2167 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2168 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2169 	}
2170 
2171 	/*
2172 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2173 	 * and it should only happen in the path of handling CPU DEAD.
2174 	 */
2175 	if (!cpu_online(next_cpu)) {
2176 		if (!tried) {
2177 			tried = true;
2178 			goto select_cpu;
2179 		}
2180 
2181 		/*
2182 		 * Make sure to re-select CPU next time once after CPUs
2183 		 * in hctx->cpumask become online again.
2184 		 */
2185 		hctx->next_cpu = next_cpu;
2186 		hctx->next_cpu_batch = 1;
2187 		return WORK_CPU_UNBOUND;
2188 	}
2189 
2190 	hctx->next_cpu = next_cpu;
2191 	return next_cpu;
2192 }
2193 
2194 /**
2195  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2196  * @hctx: Pointer to the hardware queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queue.
2198  *
2199  * Run a hardware queue asynchronously with a delay of @msecs.
2200  */
2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2202 {
2203 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2204 		return;
2205 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2206 				    msecs_to_jiffies(msecs));
2207 }
2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2209 
2210 /**
2211  * blk_mq_run_hw_queue - Start to run a hardware queue.
2212  * @hctx: Pointer to the hardware queue to run.
2213  * @async: If we want to run the queue asynchronously.
2214  *
2215  * Check if the request queue is not in a quiesced state and if there are
2216  * pending requests to be sent. If this is true, run the queue to send requests
2217  * to hardware.
2218  */
2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2220 {
2221 	bool need_run;
2222 
2223 	/*
2224 	 * We can't run the queue inline with interrupts disabled.
2225 	 */
2226 	WARN_ON_ONCE(!async && in_interrupt());
2227 
2228 	/*
2229 	 * When queue is quiesced, we may be switching io scheduler, or
2230 	 * updating nr_hw_queues, or other things, and we can't run queue
2231 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2232 	 *
2233 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2234 	 * quiesced.
2235 	 */
2236 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2237 		need_run = !blk_queue_quiesced(hctx->queue) &&
2238 		blk_mq_hctx_has_pending(hctx));
2239 
2240 	if (!need_run)
2241 		return;
2242 
2243 	if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2244 	    !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2245 		blk_mq_delay_run_hw_queue(hctx, 0);
2246 		return;
2247 	}
2248 
2249 	blk_mq_run_dispatch_ops(hctx->queue,
2250 				blk_mq_sched_dispatch_requests(hctx));
2251 }
2252 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2253 
2254 /*
2255  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2256  * scheduler.
2257  */
2258 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2259 {
2260 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2261 	/*
2262 	 * If the IO scheduler does not respect hardware queues when
2263 	 * dispatching, we just don't bother with multiple HW queues and
2264 	 * dispatch from hctx for the current CPU since running multiple queues
2265 	 * just causes lock contention inside the scheduler and pointless cache
2266 	 * bouncing.
2267 	 */
2268 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2269 
2270 	if (!blk_mq_hctx_stopped(hctx))
2271 		return hctx;
2272 	return NULL;
2273 }
2274 
2275 /**
2276  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2277  * @q: Pointer to the request queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  */
2280 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2281 {
2282 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2283 	unsigned long i;
2284 
2285 	sq_hctx = NULL;
2286 	if (blk_queue_sq_sched(q))
2287 		sq_hctx = blk_mq_get_sq_hctx(q);
2288 	queue_for_each_hw_ctx(q, hctx, i) {
2289 		if (blk_mq_hctx_stopped(hctx))
2290 			continue;
2291 		/*
2292 		 * Dispatch from this hctx either if there's no hctx preferred
2293 		 * by IO scheduler or if it has requests that bypass the
2294 		 * scheduler.
2295 		 */
2296 		if (!sq_hctx || sq_hctx == hctx ||
2297 		    !list_empty_careful(&hctx->dispatch))
2298 			blk_mq_run_hw_queue(hctx, async);
2299 	}
2300 }
2301 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2302 
2303 /**
2304  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2305  * @q: Pointer to the request queue to run.
2306  * @msecs: Milliseconds of delay to wait before running the queues.
2307  */
2308 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2309 {
2310 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2311 	unsigned long i;
2312 
2313 	sq_hctx = NULL;
2314 	if (blk_queue_sq_sched(q))
2315 		sq_hctx = blk_mq_get_sq_hctx(q);
2316 	queue_for_each_hw_ctx(q, hctx, i) {
2317 		if (blk_mq_hctx_stopped(hctx))
2318 			continue;
2319 		/*
2320 		 * If there is already a run_work pending, leave the
2321 		 * pending delay untouched. Otherwise, a hctx can stall
2322 		 * if another hctx is re-delaying the other's work
2323 		 * before the work executes.
2324 		 */
2325 		if (delayed_work_pending(&hctx->run_work))
2326 			continue;
2327 		/*
2328 		 * Dispatch from this hctx either if there's no hctx preferred
2329 		 * by IO scheduler or if it has requests that bypass the
2330 		 * scheduler.
2331 		 */
2332 		if (!sq_hctx || sq_hctx == hctx ||
2333 		    !list_empty_careful(&hctx->dispatch))
2334 			blk_mq_delay_run_hw_queue(hctx, msecs);
2335 	}
2336 }
2337 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2338 
2339 /*
2340  * This function is often used for pausing .queue_rq() by driver when
2341  * there isn't enough resource or some conditions aren't satisfied, and
2342  * BLK_STS_RESOURCE is usually returned.
2343  *
2344  * We do not guarantee that dispatch can be drained or blocked
2345  * after blk_mq_stop_hw_queue() returns. Please use
2346  * blk_mq_quiesce_queue() for that requirement.
2347  */
2348 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2349 {
2350 	cancel_delayed_work(&hctx->run_work);
2351 
2352 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2353 }
2354 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2355 
2356 /*
2357  * This function is often used for pausing .queue_rq() by driver when
2358  * there isn't enough resource or some conditions aren't satisfied, and
2359  * BLK_STS_RESOURCE is usually returned.
2360  *
2361  * We do not guarantee that dispatch can be drained or blocked
2362  * after blk_mq_stop_hw_queues() returns. Please use
2363  * blk_mq_quiesce_queue() for that requirement.
2364  */
2365 void blk_mq_stop_hw_queues(struct request_queue *q)
2366 {
2367 	struct blk_mq_hw_ctx *hctx;
2368 	unsigned long i;
2369 
2370 	queue_for_each_hw_ctx(q, hctx, i)
2371 		blk_mq_stop_hw_queue(hctx);
2372 }
2373 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2374 
2375 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2376 {
2377 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2378 
2379 	blk_mq_run_hw_queue(hctx, false);
2380 }
2381 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2382 
2383 void blk_mq_start_hw_queues(struct request_queue *q)
2384 {
2385 	struct blk_mq_hw_ctx *hctx;
2386 	unsigned long i;
2387 
2388 	queue_for_each_hw_ctx(q, hctx, i)
2389 		blk_mq_start_hw_queue(hctx);
2390 }
2391 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2392 
2393 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2394 {
2395 	if (!blk_mq_hctx_stopped(hctx))
2396 		return;
2397 
2398 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2399 	blk_mq_run_hw_queue(hctx, async);
2400 }
2401 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2402 
2403 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2404 {
2405 	struct blk_mq_hw_ctx *hctx;
2406 	unsigned long i;
2407 
2408 	queue_for_each_hw_ctx(q, hctx, i)
2409 		blk_mq_start_stopped_hw_queue(hctx, async);
2410 }
2411 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2412 
2413 static void blk_mq_run_work_fn(struct work_struct *work)
2414 {
2415 	struct blk_mq_hw_ctx *hctx =
2416 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2417 
2418 	blk_mq_run_dispatch_ops(hctx->queue,
2419 				blk_mq_sched_dispatch_requests(hctx));
2420 }
2421 
2422 /**
2423  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2424  * @rq: Pointer to request to be inserted.
2425  * @flags: BLK_MQ_INSERT_*
2426  *
2427  * Should only be used carefully, when the caller knows we want to
2428  * bypass a potential IO scheduler on the target device.
2429  */
2430 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2431 {
2432 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2433 
2434 	spin_lock(&hctx->lock);
2435 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2436 		list_add(&rq->queuelist, &hctx->dispatch);
2437 	else
2438 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2439 	spin_unlock(&hctx->lock);
2440 }
2441 
2442 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2443 		struct blk_mq_ctx *ctx, struct list_head *list,
2444 		bool run_queue_async)
2445 {
2446 	struct request *rq;
2447 	enum hctx_type type = hctx->type;
2448 
2449 	/*
2450 	 * Try to issue requests directly if the hw queue isn't busy to save an
2451 	 * extra enqueue & dequeue to the sw queue.
2452 	 */
2453 	if (!hctx->dispatch_busy && !run_queue_async) {
2454 		blk_mq_run_dispatch_ops(hctx->queue,
2455 			blk_mq_try_issue_list_directly(hctx, list));
2456 		if (list_empty(list))
2457 			goto out;
2458 	}
2459 
2460 	/*
2461 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2462 	 * offline now
2463 	 */
2464 	list_for_each_entry(rq, list, queuelist) {
2465 		BUG_ON(rq->mq_ctx != ctx);
2466 		trace_block_rq_insert(rq);
2467 	}
2468 
2469 	spin_lock(&ctx->lock);
2470 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2471 	blk_mq_hctx_mark_pending(hctx, ctx);
2472 	spin_unlock(&ctx->lock);
2473 out:
2474 	blk_mq_run_hw_queue(hctx, run_queue_async);
2475 }
2476 
2477 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2478 {
2479 	struct request_queue *q = rq->q;
2480 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2481 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2482 
2483 	if (blk_rq_is_passthrough(rq)) {
2484 		/*
2485 		 * Passthrough request have to be added to hctx->dispatch
2486 		 * directly.  The device may be in a situation where it can't
2487 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2488 		 * them, which gets them added to hctx->dispatch.
2489 		 *
2490 		 * If a passthrough request is required to unblock the queues,
2491 		 * and it is added to the scheduler queue, there is no chance to
2492 		 * dispatch it given we prioritize requests in hctx->dispatch.
2493 		 */
2494 		blk_mq_request_bypass_insert(rq, flags);
2495 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2496 		/*
2497 		 * Firstly normal IO request is inserted to scheduler queue or
2498 		 * sw queue, meantime we add flush request to dispatch queue(
2499 		 * hctx->dispatch) directly and there is at most one in-flight
2500 		 * flush request for each hw queue, so it doesn't matter to add
2501 		 * flush request to tail or front of the dispatch queue.
2502 		 *
2503 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2504 		 * command, and queueing it will fail when there is any
2505 		 * in-flight normal IO request(NCQ command). When adding flush
2506 		 * rq to the front of hctx->dispatch, it is easier to introduce
2507 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2508 		 * compared with adding to the tail of dispatch queue, then
2509 		 * chance of flush merge is increased, and less flush requests
2510 		 * will be issued to controller. It is observed that ~10% time
2511 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2512 		 * drive when adding flush rq to the front of hctx->dispatch.
2513 		 *
2514 		 * Simply queue flush rq to the front of hctx->dispatch so that
2515 		 * intensive flush workloads can benefit in case of NCQ HW.
2516 		 */
2517 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2518 	} else if (q->elevator) {
2519 		LIST_HEAD(list);
2520 
2521 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2522 
2523 		list_add(&rq->queuelist, &list);
2524 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2525 	} else {
2526 		trace_block_rq_insert(rq);
2527 
2528 		spin_lock(&ctx->lock);
2529 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2530 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2531 		else
2532 			list_add_tail(&rq->queuelist,
2533 				      &ctx->rq_lists[hctx->type]);
2534 		blk_mq_hctx_mark_pending(hctx, ctx);
2535 		spin_unlock(&ctx->lock);
2536 	}
2537 }
2538 
2539 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2540 		unsigned int nr_segs)
2541 {
2542 	int err;
2543 
2544 	if (bio->bi_opf & REQ_RAHEAD)
2545 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2546 
2547 	rq->__sector = bio->bi_iter.bi_sector;
2548 	blk_rq_bio_prep(rq, bio, nr_segs);
2549 
2550 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2551 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2552 	WARN_ON_ONCE(err);
2553 
2554 	blk_account_io_start(rq);
2555 }
2556 
2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2558 					    struct request *rq, bool last)
2559 {
2560 	struct request_queue *q = rq->q;
2561 	struct blk_mq_queue_data bd = {
2562 		.rq = rq,
2563 		.last = last,
2564 	};
2565 	blk_status_t ret;
2566 
2567 	/*
2568 	 * For OK queue, we are done. For error, caller may kill it.
2569 	 * Any other error (busy), just add it to our list as we
2570 	 * previously would have done.
2571 	 */
2572 	ret = q->mq_ops->queue_rq(hctx, &bd);
2573 	switch (ret) {
2574 	case BLK_STS_OK:
2575 		blk_mq_update_dispatch_busy(hctx, false);
2576 		break;
2577 	case BLK_STS_RESOURCE:
2578 	case BLK_STS_DEV_RESOURCE:
2579 		blk_mq_update_dispatch_busy(hctx, true);
2580 		__blk_mq_requeue_request(rq);
2581 		break;
2582 	default:
2583 		blk_mq_update_dispatch_busy(hctx, false);
2584 		break;
2585 	}
2586 
2587 	return ret;
2588 }
2589 
2590 static bool blk_mq_get_budget_and_tag(struct request *rq)
2591 {
2592 	int budget_token;
2593 
2594 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2595 	if (budget_token < 0)
2596 		return false;
2597 	blk_mq_set_rq_budget_token(rq, budget_token);
2598 	if (!blk_mq_get_driver_tag(rq)) {
2599 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2600 		return false;
2601 	}
2602 	return true;
2603 }
2604 
2605 /**
2606  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2607  * @hctx: Pointer of the associated hardware queue.
2608  * @rq: Pointer to request to be sent.
2609  *
2610  * If the device has enough resources to accept a new request now, send the
2611  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2612  * we can try send it another time in the future. Requests inserted at this
2613  * queue have higher priority.
2614  */
2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2616 		struct request *rq)
2617 {
2618 	blk_status_t ret;
2619 
2620 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2621 		blk_mq_insert_request(rq, 0);
2622 		return;
2623 	}
2624 
2625 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2626 		blk_mq_insert_request(rq, 0);
2627 		blk_mq_run_hw_queue(hctx, false);
2628 		return;
2629 	}
2630 
2631 	ret = __blk_mq_issue_directly(hctx, rq, true);
2632 	switch (ret) {
2633 	case BLK_STS_OK:
2634 		break;
2635 	case BLK_STS_RESOURCE:
2636 	case BLK_STS_DEV_RESOURCE:
2637 		blk_mq_request_bypass_insert(rq, 0);
2638 		blk_mq_run_hw_queue(hctx, false);
2639 		break;
2640 	default:
2641 		blk_mq_end_request(rq, ret);
2642 		break;
2643 	}
2644 }
2645 
2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2647 {
2648 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2649 
2650 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651 		blk_mq_insert_request(rq, 0);
2652 		return BLK_STS_OK;
2653 	}
2654 
2655 	if (!blk_mq_get_budget_and_tag(rq))
2656 		return BLK_STS_RESOURCE;
2657 	return __blk_mq_issue_directly(hctx, rq, last);
2658 }
2659 
2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2661 {
2662 	struct blk_mq_hw_ctx *hctx = NULL;
2663 	struct request *rq;
2664 	int queued = 0;
2665 	blk_status_t ret = BLK_STS_OK;
2666 
2667 	while ((rq = rq_list_pop(&plug->mq_list))) {
2668 		bool last = rq_list_empty(plug->mq_list);
2669 
2670 		if (hctx != rq->mq_hctx) {
2671 			if (hctx) {
2672 				blk_mq_commit_rqs(hctx, queued, false);
2673 				queued = 0;
2674 			}
2675 			hctx = rq->mq_hctx;
2676 		}
2677 
2678 		ret = blk_mq_request_issue_directly(rq, last);
2679 		switch (ret) {
2680 		case BLK_STS_OK:
2681 			queued++;
2682 			break;
2683 		case BLK_STS_RESOURCE:
2684 		case BLK_STS_DEV_RESOURCE:
2685 			blk_mq_request_bypass_insert(rq, 0);
2686 			blk_mq_run_hw_queue(hctx, false);
2687 			goto out;
2688 		default:
2689 			blk_mq_end_request(rq, ret);
2690 			break;
2691 		}
2692 	}
2693 
2694 out:
2695 	if (ret != BLK_STS_OK)
2696 		blk_mq_commit_rqs(hctx, queued, false);
2697 }
2698 
2699 static void __blk_mq_flush_plug_list(struct request_queue *q,
2700 				     struct blk_plug *plug)
2701 {
2702 	if (blk_queue_quiesced(q))
2703 		return;
2704 	q->mq_ops->queue_rqs(&plug->mq_list);
2705 }
2706 
2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708 {
2709 	struct blk_mq_hw_ctx *this_hctx = NULL;
2710 	struct blk_mq_ctx *this_ctx = NULL;
2711 	struct request *requeue_list = NULL;
2712 	struct request **requeue_lastp = &requeue_list;
2713 	unsigned int depth = 0;
2714 	bool is_passthrough = false;
2715 	LIST_HEAD(list);
2716 
2717 	do {
2718 		struct request *rq = rq_list_pop(&plug->mq_list);
2719 
2720 		if (!this_hctx) {
2721 			this_hctx = rq->mq_hctx;
2722 			this_ctx = rq->mq_ctx;
2723 			is_passthrough = blk_rq_is_passthrough(rq);
2724 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2725 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2726 			rq_list_add_tail(&requeue_lastp, rq);
2727 			continue;
2728 		}
2729 		list_add(&rq->queuelist, &list);
2730 		depth++;
2731 	} while (!rq_list_empty(plug->mq_list));
2732 
2733 	plug->mq_list = requeue_list;
2734 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2735 
2736 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2737 	/* passthrough requests should never be issued to the I/O scheduler */
2738 	if (is_passthrough) {
2739 		spin_lock(&this_hctx->lock);
2740 		list_splice_tail_init(&list, &this_hctx->dispatch);
2741 		spin_unlock(&this_hctx->lock);
2742 		blk_mq_run_hw_queue(this_hctx, from_sched);
2743 	} else if (this_hctx->queue->elevator) {
2744 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2745 				&list, 0);
2746 		blk_mq_run_hw_queue(this_hctx, from_sched);
2747 	} else {
2748 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2749 	}
2750 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2751 }
2752 
2753 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2754 {
2755 	struct request *rq;
2756 
2757 	if (rq_list_empty(plug->mq_list))
2758 		return;
2759 	plug->rq_count = 0;
2760 
2761 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2762 		struct request_queue *q;
2763 
2764 		rq = rq_list_peek(&plug->mq_list);
2765 		q = rq->q;
2766 
2767 		/*
2768 		 * Peek first request and see if we have a ->queue_rqs() hook.
2769 		 * If we do, we can dispatch the whole plug list in one go. We
2770 		 * already know at this point that all requests belong to the
2771 		 * same queue, caller must ensure that's the case.
2772 		 *
2773 		 * Since we pass off the full list to the driver at this point,
2774 		 * we do not increment the active request count for the queue.
2775 		 * Bypass shared tags for now because of that.
2776 		 */
2777 		if (q->mq_ops->queue_rqs &&
2778 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2779 			blk_mq_run_dispatch_ops(q,
2780 				__blk_mq_flush_plug_list(q, plug));
2781 			if (rq_list_empty(plug->mq_list))
2782 				return;
2783 		}
2784 
2785 		blk_mq_run_dispatch_ops(q,
2786 				blk_mq_plug_issue_direct(plug));
2787 		if (rq_list_empty(plug->mq_list))
2788 			return;
2789 	}
2790 
2791 	do {
2792 		blk_mq_dispatch_plug_list(plug, from_schedule);
2793 	} while (!rq_list_empty(plug->mq_list));
2794 }
2795 
2796 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2797 		struct list_head *list)
2798 {
2799 	int queued = 0;
2800 	blk_status_t ret = BLK_STS_OK;
2801 
2802 	while (!list_empty(list)) {
2803 		struct request *rq = list_first_entry(list, struct request,
2804 				queuelist);
2805 
2806 		list_del_init(&rq->queuelist);
2807 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2808 		switch (ret) {
2809 		case BLK_STS_OK:
2810 			queued++;
2811 			break;
2812 		case BLK_STS_RESOURCE:
2813 		case BLK_STS_DEV_RESOURCE:
2814 			blk_mq_request_bypass_insert(rq, 0);
2815 			if (list_empty(list))
2816 				blk_mq_run_hw_queue(hctx, false);
2817 			goto out;
2818 		default:
2819 			blk_mq_end_request(rq, ret);
2820 			break;
2821 		}
2822 	}
2823 
2824 out:
2825 	if (ret != BLK_STS_OK)
2826 		blk_mq_commit_rqs(hctx, queued, false);
2827 }
2828 
2829 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2830 				     struct bio *bio, unsigned int nr_segs)
2831 {
2832 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2833 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2834 			return true;
2835 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2836 			return true;
2837 	}
2838 	return false;
2839 }
2840 
2841 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2842 					       struct blk_plug *plug,
2843 					       struct bio *bio,
2844 					       unsigned int nsegs)
2845 {
2846 	struct blk_mq_alloc_data data = {
2847 		.q		= q,
2848 		.nr_tags	= 1,
2849 		.cmd_flags	= bio->bi_opf,
2850 	};
2851 	struct request *rq;
2852 
2853 	if (unlikely(bio_queue_enter(bio)))
2854 		return NULL;
2855 
2856 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2857 		goto queue_exit;
2858 
2859 	rq_qos_throttle(q, bio);
2860 
2861 	if (plug) {
2862 		data.nr_tags = plug->nr_ios;
2863 		plug->nr_ios = 1;
2864 		data.cached_rq = &plug->cached_rq;
2865 	}
2866 
2867 	rq = __blk_mq_alloc_requests(&data);
2868 	if (rq)
2869 		return rq;
2870 	rq_qos_cleanup(q, bio);
2871 	if (bio->bi_opf & REQ_NOWAIT)
2872 		bio_wouldblock_error(bio);
2873 queue_exit:
2874 	blk_queue_exit(q);
2875 	return NULL;
2876 }
2877 
2878 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2879 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2880 {
2881 	struct request *rq;
2882 	enum hctx_type type, hctx_type;
2883 
2884 	if (!plug)
2885 		return NULL;
2886 	rq = rq_list_peek(&plug->cached_rq);
2887 	if (!rq || rq->q != q)
2888 		return NULL;
2889 
2890 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2891 		*bio = NULL;
2892 		return NULL;
2893 	}
2894 
2895 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2896 	hctx_type = rq->mq_hctx->type;
2897 	if (type != hctx_type &&
2898 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2899 		return NULL;
2900 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2901 		return NULL;
2902 
2903 	/*
2904 	 * If any qos ->throttle() end up blocking, we will have flushed the
2905 	 * plug and hence killed the cached_rq list as well. Pop this entry
2906 	 * before we throttle.
2907 	 */
2908 	plug->cached_rq = rq_list_next(rq);
2909 	rq_qos_throttle(q, *bio);
2910 
2911 	blk_mq_rq_time_init(rq, 0);
2912 	rq->cmd_flags = (*bio)->bi_opf;
2913 	INIT_LIST_HEAD(&rq->queuelist);
2914 	return rq;
2915 }
2916 
2917 static void bio_set_ioprio(struct bio *bio)
2918 {
2919 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2920 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2921 		bio->bi_ioprio = get_current_ioprio();
2922 	blkcg_set_ioprio(bio);
2923 }
2924 
2925 /**
2926  * blk_mq_submit_bio - Create and send a request to block device.
2927  * @bio: Bio pointer.
2928  *
2929  * Builds up a request structure from @q and @bio and send to the device. The
2930  * request may not be queued directly to hardware if:
2931  * * This request can be merged with another one
2932  * * We want to place request at plug queue for possible future merging
2933  * * There is an IO scheduler active at this queue
2934  *
2935  * It will not queue the request if there is an error with the bio, or at the
2936  * request creation.
2937  */
2938 void blk_mq_submit_bio(struct bio *bio)
2939 {
2940 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2941 	struct blk_plug *plug = blk_mq_plug(bio);
2942 	const int is_sync = op_is_sync(bio->bi_opf);
2943 	struct blk_mq_hw_ctx *hctx;
2944 	struct request *rq;
2945 	unsigned int nr_segs = 1;
2946 	blk_status_t ret;
2947 
2948 	bio = blk_queue_bounce(bio, q);
2949 	if (bio_may_exceed_limits(bio, &q->limits)) {
2950 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2951 		if (!bio)
2952 			return;
2953 	}
2954 
2955 	if (!bio_integrity_prep(bio))
2956 		return;
2957 
2958 	bio_set_ioprio(bio);
2959 
2960 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2961 	if (!rq) {
2962 		if (!bio)
2963 			return;
2964 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2965 		if (unlikely(!rq))
2966 			return;
2967 	}
2968 
2969 	trace_block_getrq(bio);
2970 
2971 	rq_qos_track(q, rq, bio);
2972 
2973 	blk_mq_bio_to_request(rq, bio, nr_segs);
2974 
2975 	ret = blk_crypto_rq_get_keyslot(rq);
2976 	if (ret != BLK_STS_OK) {
2977 		bio->bi_status = ret;
2978 		bio_endio(bio);
2979 		blk_mq_free_request(rq);
2980 		return;
2981 	}
2982 
2983 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2984 		return;
2985 
2986 	if (plug) {
2987 		blk_add_rq_to_plug(plug, rq);
2988 		return;
2989 	}
2990 
2991 	hctx = rq->mq_hctx;
2992 	if ((rq->rq_flags & RQF_USE_SCHED) ||
2993 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2994 		blk_mq_insert_request(rq, 0);
2995 		blk_mq_run_hw_queue(hctx, true);
2996 	} else {
2997 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2998 	}
2999 }
3000 
3001 #ifdef CONFIG_BLK_MQ_STACKING
3002 /**
3003  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3004  * @rq: the request being queued
3005  */
3006 blk_status_t blk_insert_cloned_request(struct request *rq)
3007 {
3008 	struct request_queue *q = rq->q;
3009 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3010 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3011 	blk_status_t ret;
3012 
3013 	if (blk_rq_sectors(rq) > max_sectors) {
3014 		/*
3015 		 * SCSI device does not have a good way to return if
3016 		 * Write Same/Zero is actually supported. If a device rejects
3017 		 * a non-read/write command (discard, write same,etc.) the
3018 		 * low-level device driver will set the relevant queue limit to
3019 		 * 0 to prevent blk-lib from issuing more of the offending
3020 		 * operations. Commands queued prior to the queue limit being
3021 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3022 		 * errors being propagated to upper layers.
3023 		 */
3024 		if (max_sectors == 0)
3025 			return BLK_STS_NOTSUPP;
3026 
3027 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3028 			__func__, blk_rq_sectors(rq), max_sectors);
3029 		return BLK_STS_IOERR;
3030 	}
3031 
3032 	/*
3033 	 * The queue settings related to segment counting may differ from the
3034 	 * original queue.
3035 	 */
3036 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3037 	if (rq->nr_phys_segments > max_segments) {
3038 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3039 			__func__, rq->nr_phys_segments, max_segments);
3040 		return BLK_STS_IOERR;
3041 	}
3042 
3043 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3044 		return BLK_STS_IOERR;
3045 
3046 	ret = blk_crypto_rq_get_keyslot(rq);
3047 	if (ret != BLK_STS_OK)
3048 		return ret;
3049 
3050 	blk_account_io_start(rq);
3051 
3052 	/*
3053 	 * Since we have a scheduler attached on the top device,
3054 	 * bypass a potential scheduler on the bottom device for
3055 	 * insert.
3056 	 */
3057 	blk_mq_run_dispatch_ops(q,
3058 			ret = blk_mq_request_issue_directly(rq, true));
3059 	if (ret)
3060 		blk_account_io_done(rq, ktime_get_ns());
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3064 
3065 /**
3066  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3067  * @rq: the clone request to be cleaned up
3068  *
3069  * Description:
3070  *     Free all bios in @rq for a cloned request.
3071  */
3072 void blk_rq_unprep_clone(struct request *rq)
3073 {
3074 	struct bio *bio;
3075 
3076 	while ((bio = rq->bio) != NULL) {
3077 		rq->bio = bio->bi_next;
3078 
3079 		bio_put(bio);
3080 	}
3081 }
3082 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3083 
3084 /**
3085  * blk_rq_prep_clone - Helper function to setup clone request
3086  * @rq: the request to be setup
3087  * @rq_src: original request to be cloned
3088  * @bs: bio_set that bios for clone are allocated from
3089  * @gfp_mask: memory allocation mask for bio
3090  * @bio_ctr: setup function to be called for each clone bio.
3091  *           Returns %0 for success, non %0 for failure.
3092  * @data: private data to be passed to @bio_ctr
3093  *
3094  * Description:
3095  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3096  *     Also, pages which the original bios are pointing to are not copied
3097  *     and the cloned bios just point same pages.
3098  *     So cloned bios must be completed before original bios, which means
3099  *     the caller must complete @rq before @rq_src.
3100  */
3101 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3102 		      struct bio_set *bs, gfp_t gfp_mask,
3103 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3104 		      void *data)
3105 {
3106 	struct bio *bio, *bio_src;
3107 
3108 	if (!bs)
3109 		bs = &fs_bio_set;
3110 
3111 	__rq_for_each_bio(bio_src, rq_src) {
3112 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3113 				      bs);
3114 		if (!bio)
3115 			goto free_and_out;
3116 
3117 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3118 			goto free_and_out;
3119 
3120 		if (rq->bio) {
3121 			rq->biotail->bi_next = bio;
3122 			rq->biotail = bio;
3123 		} else {
3124 			rq->bio = rq->biotail = bio;
3125 		}
3126 		bio = NULL;
3127 	}
3128 
3129 	/* Copy attributes of the original request to the clone request. */
3130 	rq->__sector = blk_rq_pos(rq_src);
3131 	rq->__data_len = blk_rq_bytes(rq_src);
3132 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3133 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3134 		rq->special_vec = rq_src->special_vec;
3135 	}
3136 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3137 	rq->ioprio = rq_src->ioprio;
3138 
3139 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3140 		goto free_and_out;
3141 
3142 	return 0;
3143 
3144 free_and_out:
3145 	if (bio)
3146 		bio_put(bio);
3147 	blk_rq_unprep_clone(rq);
3148 
3149 	return -ENOMEM;
3150 }
3151 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3152 #endif /* CONFIG_BLK_MQ_STACKING */
3153 
3154 /*
3155  * Steal bios from a request and add them to a bio list.
3156  * The request must not have been partially completed before.
3157  */
3158 void blk_steal_bios(struct bio_list *list, struct request *rq)
3159 {
3160 	if (rq->bio) {
3161 		if (list->tail)
3162 			list->tail->bi_next = rq->bio;
3163 		else
3164 			list->head = rq->bio;
3165 		list->tail = rq->biotail;
3166 
3167 		rq->bio = NULL;
3168 		rq->biotail = NULL;
3169 	}
3170 
3171 	rq->__data_len = 0;
3172 }
3173 EXPORT_SYMBOL_GPL(blk_steal_bios);
3174 
3175 static size_t order_to_size(unsigned int order)
3176 {
3177 	return (size_t)PAGE_SIZE << order;
3178 }
3179 
3180 /* called before freeing request pool in @tags */
3181 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3182 				    struct blk_mq_tags *tags)
3183 {
3184 	struct page *page;
3185 	unsigned long flags;
3186 
3187 	/*
3188 	 * There is no need to clear mapping if driver tags is not initialized
3189 	 * or the mapping belongs to the driver tags.
3190 	 */
3191 	if (!drv_tags || drv_tags == tags)
3192 		return;
3193 
3194 	list_for_each_entry(page, &tags->page_list, lru) {
3195 		unsigned long start = (unsigned long)page_address(page);
3196 		unsigned long end = start + order_to_size(page->private);
3197 		int i;
3198 
3199 		for (i = 0; i < drv_tags->nr_tags; i++) {
3200 			struct request *rq = drv_tags->rqs[i];
3201 			unsigned long rq_addr = (unsigned long)rq;
3202 
3203 			if (rq_addr >= start && rq_addr < end) {
3204 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3205 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3206 			}
3207 		}
3208 	}
3209 
3210 	/*
3211 	 * Wait until all pending iteration is done.
3212 	 *
3213 	 * Request reference is cleared and it is guaranteed to be observed
3214 	 * after the ->lock is released.
3215 	 */
3216 	spin_lock_irqsave(&drv_tags->lock, flags);
3217 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3218 }
3219 
3220 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3221 		     unsigned int hctx_idx)
3222 {
3223 	struct blk_mq_tags *drv_tags;
3224 	struct page *page;
3225 
3226 	if (list_empty(&tags->page_list))
3227 		return;
3228 
3229 	if (blk_mq_is_shared_tags(set->flags))
3230 		drv_tags = set->shared_tags;
3231 	else
3232 		drv_tags = set->tags[hctx_idx];
3233 
3234 	if (tags->static_rqs && set->ops->exit_request) {
3235 		int i;
3236 
3237 		for (i = 0; i < tags->nr_tags; i++) {
3238 			struct request *rq = tags->static_rqs[i];
3239 
3240 			if (!rq)
3241 				continue;
3242 			set->ops->exit_request(set, rq, hctx_idx);
3243 			tags->static_rqs[i] = NULL;
3244 		}
3245 	}
3246 
3247 	blk_mq_clear_rq_mapping(drv_tags, tags);
3248 
3249 	while (!list_empty(&tags->page_list)) {
3250 		page = list_first_entry(&tags->page_list, struct page, lru);
3251 		list_del_init(&page->lru);
3252 		/*
3253 		 * Remove kmemleak object previously allocated in
3254 		 * blk_mq_alloc_rqs().
3255 		 */
3256 		kmemleak_free(page_address(page));
3257 		__free_pages(page, page->private);
3258 	}
3259 }
3260 
3261 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3262 {
3263 	kfree(tags->rqs);
3264 	tags->rqs = NULL;
3265 	kfree(tags->static_rqs);
3266 	tags->static_rqs = NULL;
3267 
3268 	blk_mq_free_tags(tags);
3269 }
3270 
3271 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3272 		unsigned int hctx_idx)
3273 {
3274 	int i;
3275 
3276 	for (i = 0; i < set->nr_maps; i++) {
3277 		unsigned int start = set->map[i].queue_offset;
3278 		unsigned int end = start + set->map[i].nr_queues;
3279 
3280 		if (hctx_idx >= start && hctx_idx < end)
3281 			break;
3282 	}
3283 
3284 	if (i >= set->nr_maps)
3285 		i = HCTX_TYPE_DEFAULT;
3286 
3287 	return i;
3288 }
3289 
3290 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3291 		unsigned int hctx_idx)
3292 {
3293 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3294 
3295 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3296 }
3297 
3298 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3299 					       unsigned int hctx_idx,
3300 					       unsigned int nr_tags,
3301 					       unsigned int reserved_tags)
3302 {
3303 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3304 	struct blk_mq_tags *tags;
3305 
3306 	if (node == NUMA_NO_NODE)
3307 		node = set->numa_node;
3308 
3309 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3310 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3311 	if (!tags)
3312 		return NULL;
3313 
3314 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3315 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3316 				 node);
3317 	if (!tags->rqs)
3318 		goto err_free_tags;
3319 
3320 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3321 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3322 					node);
3323 	if (!tags->static_rqs)
3324 		goto err_free_rqs;
3325 
3326 	return tags;
3327 
3328 err_free_rqs:
3329 	kfree(tags->rqs);
3330 err_free_tags:
3331 	blk_mq_free_tags(tags);
3332 	return NULL;
3333 }
3334 
3335 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3336 			       unsigned int hctx_idx, int node)
3337 {
3338 	int ret;
3339 
3340 	if (set->ops->init_request) {
3341 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3342 		if (ret)
3343 			return ret;
3344 	}
3345 
3346 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3347 	return 0;
3348 }
3349 
3350 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3351 			    struct blk_mq_tags *tags,
3352 			    unsigned int hctx_idx, unsigned int depth)
3353 {
3354 	unsigned int i, j, entries_per_page, max_order = 4;
3355 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3356 	size_t rq_size, left;
3357 
3358 	if (node == NUMA_NO_NODE)
3359 		node = set->numa_node;
3360 
3361 	INIT_LIST_HEAD(&tags->page_list);
3362 
3363 	/*
3364 	 * rq_size is the size of the request plus driver payload, rounded
3365 	 * to the cacheline size
3366 	 */
3367 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3368 				cache_line_size());
3369 	left = rq_size * depth;
3370 
3371 	for (i = 0; i < depth; ) {
3372 		int this_order = max_order;
3373 		struct page *page;
3374 		int to_do;
3375 		void *p;
3376 
3377 		while (this_order && left < order_to_size(this_order - 1))
3378 			this_order--;
3379 
3380 		do {
3381 			page = alloc_pages_node(node,
3382 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3383 				this_order);
3384 			if (page)
3385 				break;
3386 			if (!this_order--)
3387 				break;
3388 			if (order_to_size(this_order) < rq_size)
3389 				break;
3390 		} while (1);
3391 
3392 		if (!page)
3393 			goto fail;
3394 
3395 		page->private = this_order;
3396 		list_add_tail(&page->lru, &tags->page_list);
3397 
3398 		p = page_address(page);
3399 		/*
3400 		 * Allow kmemleak to scan these pages as they contain pointers
3401 		 * to additional allocations like via ops->init_request().
3402 		 */
3403 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3404 		entries_per_page = order_to_size(this_order) / rq_size;
3405 		to_do = min(entries_per_page, depth - i);
3406 		left -= to_do * rq_size;
3407 		for (j = 0; j < to_do; j++) {
3408 			struct request *rq = p;
3409 
3410 			tags->static_rqs[i] = rq;
3411 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3412 				tags->static_rqs[i] = NULL;
3413 				goto fail;
3414 			}
3415 
3416 			p += rq_size;
3417 			i++;
3418 		}
3419 	}
3420 	return 0;
3421 
3422 fail:
3423 	blk_mq_free_rqs(set, tags, hctx_idx);
3424 	return -ENOMEM;
3425 }
3426 
3427 struct rq_iter_data {
3428 	struct blk_mq_hw_ctx *hctx;
3429 	bool has_rq;
3430 };
3431 
3432 static bool blk_mq_has_request(struct request *rq, void *data)
3433 {
3434 	struct rq_iter_data *iter_data = data;
3435 
3436 	if (rq->mq_hctx != iter_data->hctx)
3437 		return true;
3438 	iter_data->has_rq = true;
3439 	return false;
3440 }
3441 
3442 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3443 {
3444 	struct blk_mq_tags *tags = hctx->sched_tags ?
3445 			hctx->sched_tags : hctx->tags;
3446 	struct rq_iter_data data = {
3447 		.hctx	= hctx,
3448 	};
3449 
3450 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3451 	return data.has_rq;
3452 }
3453 
3454 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3455 		struct blk_mq_hw_ctx *hctx)
3456 {
3457 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3458 		return false;
3459 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3460 		return false;
3461 	return true;
3462 }
3463 
3464 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3465 {
3466 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3467 			struct blk_mq_hw_ctx, cpuhp_online);
3468 
3469 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3470 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3471 		return 0;
3472 
3473 	/*
3474 	 * Prevent new request from being allocated on the current hctx.
3475 	 *
3476 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3477 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3478 	 * seen once we return from the tag allocator.
3479 	 */
3480 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3481 	smp_mb__after_atomic();
3482 
3483 	/*
3484 	 * Try to grab a reference to the queue and wait for any outstanding
3485 	 * requests.  If we could not grab a reference the queue has been
3486 	 * frozen and there are no requests.
3487 	 */
3488 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3489 		while (blk_mq_hctx_has_requests(hctx))
3490 			msleep(5);
3491 		percpu_ref_put(&hctx->queue->q_usage_counter);
3492 	}
3493 
3494 	return 0;
3495 }
3496 
3497 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3498 {
3499 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3500 			struct blk_mq_hw_ctx, cpuhp_online);
3501 
3502 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3503 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3504 	return 0;
3505 }
3506 
3507 /*
3508  * 'cpu' is going away. splice any existing rq_list entries from this
3509  * software queue to the hw queue dispatch list, and ensure that it
3510  * gets run.
3511  */
3512 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3513 {
3514 	struct blk_mq_hw_ctx *hctx;
3515 	struct blk_mq_ctx *ctx;
3516 	LIST_HEAD(tmp);
3517 	enum hctx_type type;
3518 
3519 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3520 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3521 		return 0;
3522 
3523 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3524 	type = hctx->type;
3525 
3526 	spin_lock(&ctx->lock);
3527 	if (!list_empty(&ctx->rq_lists[type])) {
3528 		list_splice_init(&ctx->rq_lists[type], &tmp);
3529 		blk_mq_hctx_clear_pending(hctx, ctx);
3530 	}
3531 	spin_unlock(&ctx->lock);
3532 
3533 	if (list_empty(&tmp))
3534 		return 0;
3535 
3536 	spin_lock(&hctx->lock);
3537 	list_splice_tail_init(&tmp, &hctx->dispatch);
3538 	spin_unlock(&hctx->lock);
3539 
3540 	blk_mq_run_hw_queue(hctx, true);
3541 	return 0;
3542 }
3543 
3544 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3545 {
3546 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3547 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3548 						    &hctx->cpuhp_online);
3549 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3550 					    &hctx->cpuhp_dead);
3551 }
3552 
3553 /*
3554  * Before freeing hw queue, clearing the flush request reference in
3555  * tags->rqs[] for avoiding potential UAF.
3556  */
3557 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3558 		unsigned int queue_depth, struct request *flush_rq)
3559 {
3560 	int i;
3561 	unsigned long flags;
3562 
3563 	/* The hw queue may not be mapped yet */
3564 	if (!tags)
3565 		return;
3566 
3567 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3568 
3569 	for (i = 0; i < queue_depth; i++)
3570 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3571 
3572 	/*
3573 	 * Wait until all pending iteration is done.
3574 	 *
3575 	 * Request reference is cleared and it is guaranteed to be observed
3576 	 * after the ->lock is released.
3577 	 */
3578 	spin_lock_irqsave(&tags->lock, flags);
3579 	spin_unlock_irqrestore(&tags->lock, flags);
3580 }
3581 
3582 /* hctx->ctxs will be freed in queue's release handler */
3583 static void blk_mq_exit_hctx(struct request_queue *q,
3584 		struct blk_mq_tag_set *set,
3585 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3586 {
3587 	struct request *flush_rq = hctx->fq->flush_rq;
3588 
3589 	if (blk_mq_hw_queue_mapped(hctx))
3590 		blk_mq_tag_idle(hctx);
3591 
3592 	if (blk_queue_init_done(q))
3593 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3594 				set->queue_depth, flush_rq);
3595 	if (set->ops->exit_request)
3596 		set->ops->exit_request(set, flush_rq, hctx_idx);
3597 
3598 	if (set->ops->exit_hctx)
3599 		set->ops->exit_hctx(hctx, hctx_idx);
3600 
3601 	blk_mq_remove_cpuhp(hctx);
3602 
3603 	xa_erase(&q->hctx_table, hctx_idx);
3604 
3605 	spin_lock(&q->unused_hctx_lock);
3606 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3607 	spin_unlock(&q->unused_hctx_lock);
3608 }
3609 
3610 static void blk_mq_exit_hw_queues(struct request_queue *q,
3611 		struct blk_mq_tag_set *set, int nr_queue)
3612 {
3613 	struct blk_mq_hw_ctx *hctx;
3614 	unsigned long i;
3615 
3616 	queue_for_each_hw_ctx(q, hctx, i) {
3617 		if (i == nr_queue)
3618 			break;
3619 		blk_mq_exit_hctx(q, set, hctx, i);
3620 	}
3621 }
3622 
3623 static int blk_mq_init_hctx(struct request_queue *q,
3624 		struct blk_mq_tag_set *set,
3625 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3626 {
3627 	hctx->queue_num = hctx_idx;
3628 
3629 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3630 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3631 				&hctx->cpuhp_online);
3632 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3633 
3634 	hctx->tags = set->tags[hctx_idx];
3635 
3636 	if (set->ops->init_hctx &&
3637 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3638 		goto unregister_cpu_notifier;
3639 
3640 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3641 				hctx->numa_node))
3642 		goto exit_hctx;
3643 
3644 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3645 		goto exit_flush_rq;
3646 
3647 	return 0;
3648 
3649  exit_flush_rq:
3650 	if (set->ops->exit_request)
3651 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3652  exit_hctx:
3653 	if (set->ops->exit_hctx)
3654 		set->ops->exit_hctx(hctx, hctx_idx);
3655  unregister_cpu_notifier:
3656 	blk_mq_remove_cpuhp(hctx);
3657 	return -1;
3658 }
3659 
3660 static struct blk_mq_hw_ctx *
3661 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3662 		int node)
3663 {
3664 	struct blk_mq_hw_ctx *hctx;
3665 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3666 
3667 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3668 	if (!hctx)
3669 		goto fail_alloc_hctx;
3670 
3671 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3672 		goto free_hctx;
3673 
3674 	atomic_set(&hctx->nr_active, 0);
3675 	if (node == NUMA_NO_NODE)
3676 		node = set->numa_node;
3677 	hctx->numa_node = node;
3678 
3679 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3680 	spin_lock_init(&hctx->lock);
3681 	INIT_LIST_HEAD(&hctx->dispatch);
3682 	hctx->queue = q;
3683 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3684 
3685 	INIT_LIST_HEAD(&hctx->hctx_list);
3686 
3687 	/*
3688 	 * Allocate space for all possible cpus to avoid allocation at
3689 	 * runtime
3690 	 */
3691 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3692 			gfp, node);
3693 	if (!hctx->ctxs)
3694 		goto free_cpumask;
3695 
3696 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3697 				gfp, node, false, false))
3698 		goto free_ctxs;
3699 	hctx->nr_ctx = 0;
3700 
3701 	spin_lock_init(&hctx->dispatch_wait_lock);
3702 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3703 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3704 
3705 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3706 	if (!hctx->fq)
3707 		goto free_bitmap;
3708 
3709 	blk_mq_hctx_kobj_init(hctx);
3710 
3711 	return hctx;
3712 
3713  free_bitmap:
3714 	sbitmap_free(&hctx->ctx_map);
3715  free_ctxs:
3716 	kfree(hctx->ctxs);
3717  free_cpumask:
3718 	free_cpumask_var(hctx->cpumask);
3719  free_hctx:
3720 	kfree(hctx);
3721  fail_alloc_hctx:
3722 	return NULL;
3723 }
3724 
3725 static void blk_mq_init_cpu_queues(struct request_queue *q,
3726 				   unsigned int nr_hw_queues)
3727 {
3728 	struct blk_mq_tag_set *set = q->tag_set;
3729 	unsigned int i, j;
3730 
3731 	for_each_possible_cpu(i) {
3732 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3733 		struct blk_mq_hw_ctx *hctx;
3734 		int k;
3735 
3736 		__ctx->cpu = i;
3737 		spin_lock_init(&__ctx->lock);
3738 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3739 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3740 
3741 		__ctx->queue = q;
3742 
3743 		/*
3744 		 * Set local node, IFF we have more than one hw queue. If
3745 		 * not, we remain on the home node of the device
3746 		 */
3747 		for (j = 0; j < set->nr_maps; j++) {
3748 			hctx = blk_mq_map_queue_type(q, j, i);
3749 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3750 				hctx->numa_node = cpu_to_node(i);
3751 		}
3752 	}
3753 }
3754 
3755 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3756 					     unsigned int hctx_idx,
3757 					     unsigned int depth)
3758 {
3759 	struct blk_mq_tags *tags;
3760 	int ret;
3761 
3762 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3763 	if (!tags)
3764 		return NULL;
3765 
3766 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3767 	if (ret) {
3768 		blk_mq_free_rq_map(tags);
3769 		return NULL;
3770 	}
3771 
3772 	return tags;
3773 }
3774 
3775 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3776 				       int hctx_idx)
3777 {
3778 	if (blk_mq_is_shared_tags(set->flags)) {
3779 		set->tags[hctx_idx] = set->shared_tags;
3780 
3781 		return true;
3782 	}
3783 
3784 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3785 						       set->queue_depth);
3786 
3787 	return set->tags[hctx_idx];
3788 }
3789 
3790 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3791 			     struct blk_mq_tags *tags,
3792 			     unsigned int hctx_idx)
3793 {
3794 	if (tags) {
3795 		blk_mq_free_rqs(set, tags, hctx_idx);
3796 		blk_mq_free_rq_map(tags);
3797 	}
3798 }
3799 
3800 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3801 				      unsigned int hctx_idx)
3802 {
3803 	if (!blk_mq_is_shared_tags(set->flags))
3804 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3805 
3806 	set->tags[hctx_idx] = NULL;
3807 }
3808 
3809 static void blk_mq_map_swqueue(struct request_queue *q)
3810 {
3811 	unsigned int j, hctx_idx;
3812 	unsigned long i;
3813 	struct blk_mq_hw_ctx *hctx;
3814 	struct blk_mq_ctx *ctx;
3815 	struct blk_mq_tag_set *set = q->tag_set;
3816 
3817 	queue_for_each_hw_ctx(q, hctx, i) {
3818 		cpumask_clear(hctx->cpumask);
3819 		hctx->nr_ctx = 0;
3820 		hctx->dispatch_from = NULL;
3821 	}
3822 
3823 	/*
3824 	 * Map software to hardware queues.
3825 	 *
3826 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3827 	 */
3828 	for_each_possible_cpu(i) {
3829 
3830 		ctx = per_cpu_ptr(q->queue_ctx, i);
3831 		for (j = 0; j < set->nr_maps; j++) {
3832 			if (!set->map[j].nr_queues) {
3833 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3834 						HCTX_TYPE_DEFAULT, i);
3835 				continue;
3836 			}
3837 			hctx_idx = set->map[j].mq_map[i];
3838 			/* unmapped hw queue can be remapped after CPU topo changed */
3839 			if (!set->tags[hctx_idx] &&
3840 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3841 				/*
3842 				 * If tags initialization fail for some hctx,
3843 				 * that hctx won't be brought online.  In this
3844 				 * case, remap the current ctx to hctx[0] which
3845 				 * is guaranteed to always have tags allocated
3846 				 */
3847 				set->map[j].mq_map[i] = 0;
3848 			}
3849 
3850 			hctx = blk_mq_map_queue_type(q, j, i);
3851 			ctx->hctxs[j] = hctx;
3852 			/*
3853 			 * If the CPU is already set in the mask, then we've
3854 			 * mapped this one already. This can happen if
3855 			 * devices share queues across queue maps.
3856 			 */
3857 			if (cpumask_test_cpu(i, hctx->cpumask))
3858 				continue;
3859 
3860 			cpumask_set_cpu(i, hctx->cpumask);
3861 			hctx->type = j;
3862 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3863 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3864 
3865 			/*
3866 			 * If the nr_ctx type overflows, we have exceeded the
3867 			 * amount of sw queues we can support.
3868 			 */
3869 			BUG_ON(!hctx->nr_ctx);
3870 		}
3871 
3872 		for (; j < HCTX_MAX_TYPES; j++)
3873 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3874 					HCTX_TYPE_DEFAULT, i);
3875 	}
3876 
3877 	queue_for_each_hw_ctx(q, hctx, i) {
3878 		/*
3879 		 * If no software queues are mapped to this hardware queue,
3880 		 * disable it and free the request entries.
3881 		 */
3882 		if (!hctx->nr_ctx) {
3883 			/* Never unmap queue 0.  We need it as a
3884 			 * fallback in case of a new remap fails
3885 			 * allocation
3886 			 */
3887 			if (i)
3888 				__blk_mq_free_map_and_rqs(set, i);
3889 
3890 			hctx->tags = NULL;
3891 			continue;
3892 		}
3893 
3894 		hctx->tags = set->tags[i];
3895 		WARN_ON(!hctx->tags);
3896 
3897 		/*
3898 		 * Set the map size to the number of mapped software queues.
3899 		 * This is more accurate and more efficient than looping
3900 		 * over all possibly mapped software queues.
3901 		 */
3902 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3903 
3904 		/*
3905 		 * Initialize batch roundrobin counts
3906 		 */
3907 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3908 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3909 	}
3910 }
3911 
3912 /*
3913  * Caller needs to ensure that we're either frozen/quiesced, or that
3914  * the queue isn't live yet.
3915  */
3916 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3917 {
3918 	struct blk_mq_hw_ctx *hctx;
3919 	unsigned long i;
3920 
3921 	queue_for_each_hw_ctx(q, hctx, i) {
3922 		if (shared) {
3923 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3924 		} else {
3925 			blk_mq_tag_idle(hctx);
3926 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3927 		}
3928 	}
3929 }
3930 
3931 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3932 					 bool shared)
3933 {
3934 	struct request_queue *q;
3935 
3936 	lockdep_assert_held(&set->tag_list_lock);
3937 
3938 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3939 		blk_mq_freeze_queue(q);
3940 		queue_set_hctx_shared(q, shared);
3941 		blk_mq_unfreeze_queue(q);
3942 	}
3943 }
3944 
3945 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3946 {
3947 	struct blk_mq_tag_set *set = q->tag_set;
3948 
3949 	mutex_lock(&set->tag_list_lock);
3950 	list_del(&q->tag_set_list);
3951 	if (list_is_singular(&set->tag_list)) {
3952 		/* just transitioned to unshared */
3953 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3954 		/* update existing queue */
3955 		blk_mq_update_tag_set_shared(set, false);
3956 	}
3957 	mutex_unlock(&set->tag_list_lock);
3958 	INIT_LIST_HEAD(&q->tag_set_list);
3959 }
3960 
3961 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3962 				     struct request_queue *q)
3963 {
3964 	mutex_lock(&set->tag_list_lock);
3965 
3966 	/*
3967 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3968 	 */
3969 	if (!list_empty(&set->tag_list) &&
3970 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3971 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3972 		/* update existing queue */
3973 		blk_mq_update_tag_set_shared(set, true);
3974 	}
3975 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3976 		queue_set_hctx_shared(q, true);
3977 	list_add_tail(&q->tag_set_list, &set->tag_list);
3978 
3979 	mutex_unlock(&set->tag_list_lock);
3980 }
3981 
3982 /* All allocations will be freed in release handler of q->mq_kobj */
3983 static int blk_mq_alloc_ctxs(struct request_queue *q)
3984 {
3985 	struct blk_mq_ctxs *ctxs;
3986 	int cpu;
3987 
3988 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3989 	if (!ctxs)
3990 		return -ENOMEM;
3991 
3992 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3993 	if (!ctxs->queue_ctx)
3994 		goto fail;
3995 
3996 	for_each_possible_cpu(cpu) {
3997 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3998 		ctx->ctxs = ctxs;
3999 	}
4000 
4001 	q->mq_kobj = &ctxs->kobj;
4002 	q->queue_ctx = ctxs->queue_ctx;
4003 
4004 	return 0;
4005  fail:
4006 	kfree(ctxs);
4007 	return -ENOMEM;
4008 }
4009 
4010 /*
4011  * It is the actual release handler for mq, but we do it from
4012  * request queue's release handler for avoiding use-after-free
4013  * and headache because q->mq_kobj shouldn't have been introduced,
4014  * but we can't group ctx/kctx kobj without it.
4015  */
4016 void blk_mq_release(struct request_queue *q)
4017 {
4018 	struct blk_mq_hw_ctx *hctx, *next;
4019 	unsigned long i;
4020 
4021 	queue_for_each_hw_ctx(q, hctx, i)
4022 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4023 
4024 	/* all hctx are in .unused_hctx_list now */
4025 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4026 		list_del_init(&hctx->hctx_list);
4027 		kobject_put(&hctx->kobj);
4028 	}
4029 
4030 	xa_destroy(&q->hctx_table);
4031 
4032 	/*
4033 	 * release .mq_kobj and sw queue's kobject now because
4034 	 * both share lifetime with request queue.
4035 	 */
4036 	blk_mq_sysfs_deinit(q);
4037 }
4038 
4039 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4040 		void *queuedata)
4041 {
4042 	struct request_queue *q;
4043 	int ret;
4044 
4045 	q = blk_alloc_queue(set->numa_node);
4046 	if (!q)
4047 		return ERR_PTR(-ENOMEM);
4048 	q->queuedata = queuedata;
4049 	ret = blk_mq_init_allocated_queue(set, q);
4050 	if (ret) {
4051 		blk_put_queue(q);
4052 		return ERR_PTR(ret);
4053 	}
4054 	return q;
4055 }
4056 
4057 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4058 {
4059 	return blk_mq_init_queue_data(set, NULL);
4060 }
4061 EXPORT_SYMBOL(blk_mq_init_queue);
4062 
4063 /**
4064  * blk_mq_destroy_queue - shutdown a request queue
4065  * @q: request queue to shutdown
4066  *
4067  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4068  * requests will be failed with -ENODEV. The caller is responsible for dropping
4069  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4070  *
4071  * Context: can sleep
4072  */
4073 void blk_mq_destroy_queue(struct request_queue *q)
4074 {
4075 	WARN_ON_ONCE(!queue_is_mq(q));
4076 	WARN_ON_ONCE(blk_queue_registered(q));
4077 
4078 	might_sleep();
4079 
4080 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4081 	blk_queue_start_drain(q);
4082 	blk_mq_freeze_queue_wait(q);
4083 
4084 	blk_sync_queue(q);
4085 	blk_mq_cancel_work_sync(q);
4086 	blk_mq_exit_queue(q);
4087 }
4088 EXPORT_SYMBOL(blk_mq_destroy_queue);
4089 
4090 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4091 		struct lock_class_key *lkclass)
4092 {
4093 	struct request_queue *q;
4094 	struct gendisk *disk;
4095 
4096 	q = blk_mq_init_queue_data(set, queuedata);
4097 	if (IS_ERR(q))
4098 		return ERR_CAST(q);
4099 
4100 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4101 	if (!disk) {
4102 		blk_mq_destroy_queue(q);
4103 		blk_put_queue(q);
4104 		return ERR_PTR(-ENOMEM);
4105 	}
4106 	set_bit(GD_OWNS_QUEUE, &disk->state);
4107 	return disk;
4108 }
4109 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4110 
4111 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4112 		struct lock_class_key *lkclass)
4113 {
4114 	struct gendisk *disk;
4115 
4116 	if (!blk_get_queue(q))
4117 		return NULL;
4118 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4119 	if (!disk)
4120 		blk_put_queue(q);
4121 	return disk;
4122 }
4123 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4124 
4125 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4126 		struct blk_mq_tag_set *set, struct request_queue *q,
4127 		int hctx_idx, int node)
4128 {
4129 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4130 
4131 	/* reuse dead hctx first */
4132 	spin_lock(&q->unused_hctx_lock);
4133 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4134 		if (tmp->numa_node == node) {
4135 			hctx = tmp;
4136 			break;
4137 		}
4138 	}
4139 	if (hctx)
4140 		list_del_init(&hctx->hctx_list);
4141 	spin_unlock(&q->unused_hctx_lock);
4142 
4143 	if (!hctx)
4144 		hctx = blk_mq_alloc_hctx(q, set, node);
4145 	if (!hctx)
4146 		goto fail;
4147 
4148 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4149 		goto free_hctx;
4150 
4151 	return hctx;
4152 
4153  free_hctx:
4154 	kobject_put(&hctx->kobj);
4155  fail:
4156 	return NULL;
4157 }
4158 
4159 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4160 						struct request_queue *q)
4161 {
4162 	struct blk_mq_hw_ctx *hctx;
4163 	unsigned long i, j;
4164 
4165 	/* protect against switching io scheduler  */
4166 	mutex_lock(&q->sysfs_lock);
4167 	for (i = 0; i < set->nr_hw_queues; i++) {
4168 		int old_node;
4169 		int node = blk_mq_get_hctx_node(set, i);
4170 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4171 
4172 		if (old_hctx) {
4173 			old_node = old_hctx->numa_node;
4174 			blk_mq_exit_hctx(q, set, old_hctx, i);
4175 		}
4176 
4177 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4178 			if (!old_hctx)
4179 				break;
4180 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4181 					node, old_node);
4182 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4183 			WARN_ON_ONCE(!hctx);
4184 		}
4185 	}
4186 	/*
4187 	 * Increasing nr_hw_queues fails. Free the newly allocated
4188 	 * hctxs and keep the previous q->nr_hw_queues.
4189 	 */
4190 	if (i != set->nr_hw_queues) {
4191 		j = q->nr_hw_queues;
4192 	} else {
4193 		j = i;
4194 		q->nr_hw_queues = set->nr_hw_queues;
4195 	}
4196 
4197 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4198 		blk_mq_exit_hctx(q, set, hctx, j);
4199 	mutex_unlock(&q->sysfs_lock);
4200 }
4201 
4202 static void blk_mq_update_poll_flag(struct request_queue *q)
4203 {
4204 	struct blk_mq_tag_set *set = q->tag_set;
4205 
4206 	if (set->nr_maps > HCTX_TYPE_POLL &&
4207 	    set->map[HCTX_TYPE_POLL].nr_queues)
4208 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4209 	else
4210 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4211 }
4212 
4213 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4214 		struct request_queue *q)
4215 {
4216 	/* mark the queue as mq asap */
4217 	q->mq_ops = set->ops;
4218 
4219 	if (blk_mq_alloc_ctxs(q))
4220 		goto err_exit;
4221 
4222 	/* init q->mq_kobj and sw queues' kobjects */
4223 	blk_mq_sysfs_init(q);
4224 
4225 	INIT_LIST_HEAD(&q->unused_hctx_list);
4226 	spin_lock_init(&q->unused_hctx_lock);
4227 
4228 	xa_init(&q->hctx_table);
4229 
4230 	blk_mq_realloc_hw_ctxs(set, q);
4231 	if (!q->nr_hw_queues)
4232 		goto err_hctxs;
4233 
4234 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4235 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4236 
4237 	q->tag_set = set;
4238 
4239 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4240 	blk_mq_update_poll_flag(q);
4241 
4242 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4243 	INIT_LIST_HEAD(&q->flush_list);
4244 	INIT_LIST_HEAD(&q->requeue_list);
4245 	spin_lock_init(&q->requeue_lock);
4246 
4247 	q->nr_requests = set->queue_depth;
4248 
4249 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4250 	blk_mq_add_queue_tag_set(set, q);
4251 	blk_mq_map_swqueue(q);
4252 	return 0;
4253 
4254 err_hctxs:
4255 	blk_mq_release(q);
4256 err_exit:
4257 	q->mq_ops = NULL;
4258 	return -ENOMEM;
4259 }
4260 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4261 
4262 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4263 void blk_mq_exit_queue(struct request_queue *q)
4264 {
4265 	struct blk_mq_tag_set *set = q->tag_set;
4266 
4267 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4268 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4269 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4270 	blk_mq_del_queue_tag_set(q);
4271 }
4272 
4273 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4274 {
4275 	int i;
4276 
4277 	if (blk_mq_is_shared_tags(set->flags)) {
4278 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4279 						BLK_MQ_NO_HCTX_IDX,
4280 						set->queue_depth);
4281 		if (!set->shared_tags)
4282 			return -ENOMEM;
4283 	}
4284 
4285 	for (i = 0; i < set->nr_hw_queues; i++) {
4286 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4287 			goto out_unwind;
4288 		cond_resched();
4289 	}
4290 
4291 	return 0;
4292 
4293 out_unwind:
4294 	while (--i >= 0)
4295 		__blk_mq_free_map_and_rqs(set, i);
4296 
4297 	if (blk_mq_is_shared_tags(set->flags)) {
4298 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4299 					BLK_MQ_NO_HCTX_IDX);
4300 	}
4301 
4302 	return -ENOMEM;
4303 }
4304 
4305 /*
4306  * Allocate the request maps associated with this tag_set. Note that this
4307  * may reduce the depth asked for, if memory is tight. set->queue_depth
4308  * will be updated to reflect the allocated depth.
4309  */
4310 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4311 {
4312 	unsigned int depth;
4313 	int err;
4314 
4315 	depth = set->queue_depth;
4316 	do {
4317 		err = __blk_mq_alloc_rq_maps(set);
4318 		if (!err)
4319 			break;
4320 
4321 		set->queue_depth >>= 1;
4322 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4323 			err = -ENOMEM;
4324 			break;
4325 		}
4326 	} while (set->queue_depth);
4327 
4328 	if (!set->queue_depth || err) {
4329 		pr_err("blk-mq: failed to allocate request map\n");
4330 		return -ENOMEM;
4331 	}
4332 
4333 	if (depth != set->queue_depth)
4334 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4335 						depth, set->queue_depth);
4336 
4337 	return 0;
4338 }
4339 
4340 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4341 {
4342 	/*
4343 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4344 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4345 	 * number of hardware queues.
4346 	 */
4347 	if (set->nr_maps == 1)
4348 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4349 
4350 	if (set->ops->map_queues && !is_kdump_kernel()) {
4351 		int i;
4352 
4353 		/*
4354 		 * transport .map_queues is usually done in the following
4355 		 * way:
4356 		 *
4357 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4358 		 * 	mask = get_cpu_mask(queue)
4359 		 * 	for_each_cpu(cpu, mask)
4360 		 * 		set->map[x].mq_map[cpu] = queue;
4361 		 * }
4362 		 *
4363 		 * When we need to remap, the table has to be cleared for
4364 		 * killing stale mapping since one CPU may not be mapped
4365 		 * to any hw queue.
4366 		 */
4367 		for (i = 0; i < set->nr_maps; i++)
4368 			blk_mq_clear_mq_map(&set->map[i]);
4369 
4370 		set->ops->map_queues(set);
4371 	} else {
4372 		BUG_ON(set->nr_maps > 1);
4373 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4374 	}
4375 }
4376 
4377 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4378 				       int new_nr_hw_queues)
4379 {
4380 	struct blk_mq_tags **new_tags;
4381 
4382 	if (set->nr_hw_queues >= new_nr_hw_queues)
4383 		goto done;
4384 
4385 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4386 				GFP_KERNEL, set->numa_node);
4387 	if (!new_tags)
4388 		return -ENOMEM;
4389 
4390 	if (set->tags)
4391 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4392 		       sizeof(*set->tags));
4393 	kfree(set->tags);
4394 	set->tags = new_tags;
4395 done:
4396 	set->nr_hw_queues = new_nr_hw_queues;
4397 	return 0;
4398 }
4399 
4400 /*
4401  * Alloc a tag set to be associated with one or more request queues.
4402  * May fail with EINVAL for various error conditions. May adjust the
4403  * requested depth down, if it's too large. In that case, the set
4404  * value will be stored in set->queue_depth.
4405  */
4406 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4407 {
4408 	int i, ret;
4409 
4410 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4411 
4412 	if (!set->nr_hw_queues)
4413 		return -EINVAL;
4414 	if (!set->queue_depth)
4415 		return -EINVAL;
4416 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4417 		return -EINVAL;
4418 
4419 	if (!set->ops->queue_rq)
4420 		return -EINVAL;
4421 
4422 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4423 		return -EINVAL;
4424 
4425 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4426 		pr_info("blk-mq: reduced tag depth to %u\n",
4427 			BLK_MQ_MAX_DEPTH);
4428 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4429 	}
4430 
4431 	if (!set->nr_maps)
4432 		set->nr_maps = 1;
4433 	else if (set->nr_maps > HCTX_MAX_TYPES)
4434 		return -EINVAL;
4435 
4436 	/*
4437 	 * If a crashdump is active, then we are potentially in a very
4438 	 * memory constrained environment. Limit us to 1 queue and
4439 	 * 64 tags to prevent using too much memory.
4440 	 */
4441 	if (is_kdump_kernel()) {
4442 		set->nr_hw_queues = 1;
4443 		set->nr_maps = 1;
4444 		set->queue_depth = min(64U, set->queue_depth);
4445 	}
4446 	/*
4447 	 * There is no use for more h/w queues than cpus if we just have
4448 	 * a single map
4449 	 */
4450 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4451 		set->nr_hw_queues = nr_cpu_ids;
4452 
4453 	if (set->flags & BLK_MQ_F_BLOCKING) {
4454 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4455 		if (!set->srcu)
4456 			return -ENOMEM;
4457 		ret = init_srcu_struct(set->srcu);
4458 		if (ret)
4459 			goto out_free_srcu;
4460 	}
4461 
4462 	ret = -ENOMEM;
4463 	set->tags = kcalloc_node(set->nr_hw_queues,
4464 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4465 				 set->numa_node);
4466 	if (!set->tags)
4467 		goto out_cleanup_srcu;
4468 
4469 	for (i = 0; i < set->nr_maps; i++) {
4470 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4471 						  sizeof(set->map[i].mq_map[0]),
4472 						  GFP_KERNEL, set->numa_node);
4473 		if (!set->map[i].mq_map)
4474 			goto out_free_mq_map;
4475 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4476 	}
4477 
4478 	blk_mq_update_queue_map(set);
4479 
4480 	ret = blk_mq_alloc_set_map_and_rqs(set);
4481 	if (ret)
4482 		goto out_free_mq_map;
4483 
4484 	mutex_init(&set->tag_list_lock);
4485 	INIT_LIST_HEAD(&set->tag_list);
4486 
4487 	return 0;
4488 
4489 out_free_mq_map:
4490 	for (i = 0; i < set->nr_maps; i++) {
4491 		kfree(set->map[i].mq_map);
4492 		set->map[i].mq_map = NULL;
4493 	}
4494 	kfree(set->tags);
4495 	set->tags = NULL;
4496 out_cleanup_srcu:
4497 	if (set->flags & BLK_MQ_F_BLOCKING)
4498 		cleanup_srcu_struct(set->srcu);
4499 out_free_srcu:
4500 	if (set->flags & BLK_MQ_F_BLOCKING)
4501 		kfree(set->srcu);
4502 	return ret;
4503 }
4504 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4505 
4506 /* allocate and initialize a tagset for a simple single-queue device */
4507 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4508 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4509 		unsigned int set_flags)
4510 {
4511 	memset(set, 0, sizeof(*set));
4512 	set->ops = ops;
4513 	set->nr_hw_queues = 1;
4514 	set->nr_maps = 1;
4515 	set->queue_depth = queue_depth;
4516 	set->numa_node = NUMA_NO_NODE;
4517 	set->flags = set_flags;
4518 	return blk_mq_alloc_tag_set(set);
4519 }
4520 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4521 
4522 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4523 {
4524 	int i, j;
4525 
4526 	for (i = 0; i < set->nr_hw_queues; i++)
4527 		__blk_mq_free_map_and_rqs(set, i);
4528 
4529 	if (blk_mq_is_shared_tags(set->flags)) {
4530 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4531 					BLK_MQ_NO_HCTX_IDX);
4532 	}
4533 
4534 	for (j = 0; j < set->nr_maps; j++) {
4535 		kfree(set->map[j].mq_map);
4536 		set->map[j].mq_map = NULL;
4537 	}
4538 
4539 	kfree(set->tags);
4540 	set->tags = NULL;
4541 	if (set->flags & BLK_MQ_F_BLOCKING) {
4542 		cleanup_srcu_struct(set->srcu);
4543 		kfree(set->srcu);
4544 	}
4545 }
4546 EXPORT_SYMBOL(blk_mq_free_tag_set);
4547 
4548 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4549 {
4550 	struct blk_mq_tag_set *set = q->tag_set;
4551 	struct blk_mq_hw_ctx *hctx;
4552 	int ret;
4553 	unsigned long i;
4554 
4555 	if (!set)
4556 		return -EINVAL;
4557 
4558 	if (q->nr_requests == nr)
4559 		return 0;
4560 
4561 	blk_mq_freeze_queue(q);
4562 	blk_mq_quiesce_queue(q);
4563 
4564 	ret = 0;
4565 	queue_for_each_hw_ctx(q, hctx, i) {
4566 		if (!hctx->tags)
4567 			continue;
4568 		/*
4569 		 * If we're using an MQ scheduler, just update the scheduler
4570 		 * queue depth. This is similar to what the old code would do.
4571 		 */
4572 		if (hctx->sched_tags) {
4573 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4574 						      nr, true);
4575 		} else {
4576 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4577 						      false);
4578 		}
4579 		if (ret)
4580 			break;
4581 		if (q->elevator && q->elevator->type->ops.depth_updated)
4582 			q->elevator->type->ops.depth_updated(hctx);
4583 	}
4584 	if (!ret) {
4585 		q->nr_requests = nr;
4586 		if (blk_mq_is_shared_tags(set->flags)) {
4587 			if (q->elevator)
4588 				blk_mq_tag_update_sched_shared_tags(q);
4589 			else
4590 				blk_mq_tag_resize_shared_tags(set, nr);
4591 		}
4592 	}
4593 
4594 	blk_mq_unquiesce_queue(q);
4595 	blk_mq_unfreeze_queue(q);
4596 
4597 	return ret;
4598 }
4599 
4600 /*
4601  * request_queue and elevator_type pair.
4602  * It is just used by __blk_mq_update_nr_hw_queues to cache
4603  * the elevator_type associated with a request_queue.
4604  */
4605 struct blk_mq_qe_pair {
4606 	struct list_head node;
4607 	struct request_queue *q;
4608 	struct elevator_type *type;
4609 };
4610 
4611 /*
4612  * Cache the elevator_type in qe pair list and switch the
4613  * io scheduler to 'none'
4614  */
4615 static bool blk_mq_elv_switch_none(struct list_head *head,
4616 		struct request_queue *q)
4617 {
4618 	struct blk_mq_qe_pair *qe;
4619 
4620 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4621 	if (!qe)
4622 		return false;
4623 
4624 	/* q->elevator needs protection from ->sysfs_lock */
4625 	mutex_lock(&q->sysfs_lock);
4626 
4627 	/* the check has to be done with holding sysfs_lock */
4628 	if (!q->elevator) {
4629 		kfree(qe);
4630 		goto unlock;
4631 	}
4632 
4633 	INIT_LIST_HEAD(&qe->node);
4634 	qe->q = q;
4635 	qe->type = q->elevator->type;
4636 	/* keep a reference to the elevator module as we'll switch back */
4637 	__elevator_get(qe->type);
4638 	list_add(&qe->node, head);
4639 	elevator_disable(q);
4640 unlock:
4641 	mutex_unlock(&q->sysfs_lock);
4642 
4643 	return true;
4644 }
4645 
4646 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4647 						struct request_queue *q)
4648 {
4649 	struct blk_mq_qe_pair *qe;
4650 
4651 	list_for_each_entry(qe, head, node)
4652 		if (qe->q == q)
4653 			return qe;
4654 
4655 	return NULL;
4656 }
4657 
4658 static void blk_mq_elv_switch_back(struct list_head *head,
4659 				  struct request_queue *q)
4660 {
4661 	struct blk_mq_qe_pair *qe;
4662 	struct elevator_type *t;
4663 
4664 	qe = blk_lookup_qe_pair(head, q);
4665 	if (!qe)
4666 		return;
4667 	t = qe->type;
4668 	list_del(&qe->node);
4669 	kfree(qe);
4670 
4671 	mutex_lock(&q->sysfs_lock);
4672 	elevator_switch(q, t);
4673 	/* drop the reference acquired in blk_mq_elv_switch_none */
4674 	elevator_put(t);
4675 	mutex_unlock(&q->sysfs_lock);
4676 }
4677 
4678 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4679 							int nr_hw_queues)
4680 {
4681 	struct request_queue *q;
4682 	LIST_HEAD(head);
4683 	int prev_nr_hw_queues;
4684 
4685 	lockdep_assert_held(&set->tag_list_lock);
4686 
4687 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4688 		nr_hw_queues = nr_cpu_ids;
4689 	if (nr_hw_queues < 1)
4690 		return;
4691 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4692 		return;
4693 
4694 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4695 		blk_mq_freeze_queue(q);
4696 	/*
4697 	 * Switch IO scheduler to 'none', cleaning up the data associated
4698 	 * with the previous scheduler. We will switch back once we are done
4699 	 * updating the new sw to hw queue mappings.
4700 	 */
4701 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4702 		if (!blk_mq_elv_switch_none(&head, q))
4703 			goto switch_back;
4704 
4705 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4706 		blk_mq_debugfs_unregister_hctxs(q);
4707 		blk_mq_sysfs_unregister_hctxs(q);
4708 	}
4709 
4710 	prev_nr_hw_queues = set->nr_hw_queues;
4711 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4712 		goto reregister;
4713 
4714 fallback:
4715 	blk_mq_update_queue_map(set);
4716 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4717 		blk_mq_realloc_hw_ctxs(set, q);
4718 		blk_mq_update_poll_flag(q);
4719 		if (q->nr_hw_queues != set->nr_hw_queues) {
4720 			int i = prev_nr_hw_queues;
4721 
4722 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4723 					nr_hw_queues, prev_nr_hw_queues);
4724 			for (; i < set->nr_hw_queues; i++)
4725 				__blk_mq_free_map_and_rqs(set, i);
4726 
4727 			set->nr_hw_queues = prev_nr_hw_queues;
4728 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4729 			goto fallback;
4730 		}
4731 		blk_mq_map_swqueue(q);
4732 	}
4733 
4734 reregister:
4735 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4736 		blk_mq_sysfs_register_hctxs(q);
4737 		blk_mq_debugfs_register_hctxs(q);
4738 	}
4739 
4740 switch_back:
4741 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4742 		blk_mq_elv_switch_back(&head, q);
4743 
4744 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4745 		blk_mq_unfreeze_queue(q);
4746 }
4747 
4748 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4749 {
4750 	mutex_lock(&set->tag_list_lock);
4751 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4752 	mutex_unlock(&set->tag_list_lock);
4753 }
4754 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4755 
4756 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4757 			 struct io_comp_batch *iob, unsigned int flags)
4758 {
4759 	long state = get_current_state();
4760 	int ret;
4761 
4762 	do {
4763 		ret = q->mq_ops->poll(hctx, iob);
4764 		if (ret > 0) {
4765 			__set_current_state(TASK_RUNNING);
4766 			return ret;
4767 		}
4768 
4769 		if (signal_pending_state(state, current))
4770 			__set_current_state(TASK_RUNNING);
4771 		if (task_is_running(current))
4772 			return 1;
4773 
4774 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4775 			break;
4776 		cpu_relax();
4777 	} while (!need_resched());
4778 
4779 	__set_current_state(TASK_RUNNING);
4780 	return 0;
4781 }
4782 
4783 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4784 		struct io_comp_batch *iob, unsigned int flags)
4785 {
4786 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4787 
4788 	return blk_hctx_poll(q, hctx, iob, flags);
4789 }
4790 
4791 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4792 		unsigned int poll_flags)
4793 {
4794 	struct request_queue *q = rq->q;
4795 	int ret;
4796 
4797 	if (!blk_rq_is_poll(rq))
4798 		return 0;
4799 	if (!percpu_ref_tryget(&q->q_usage_counter))
4800 		return 0;
4801 
4802 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4803 	blk_queue_exit(q);
4804 
4805 	return ret;
4806 }
4807 EXPORT_SYMBOL_GPL(blk_rq_poll);
4808 
4809 unsigned int blk_mq_rq_cpu(struct request *rq)
4810 {
4811 	return rq->mq_ctx->cpu;
4812 }
4813 EXPORT_SYMBOL(blk_mq_rq_cpu);
4814 
4815 void blk_mq_cancel_work_sync(struct request_queue *q)
4816 {
4817 	struct blk_mq_hw_ctx *hctx;
4818 	unsigned long i;
4819 
4820 	cancel_delayed_work_sync(&q->requeue_work);
4821 
4822 	queue_for_each_hw_ctx(q, hctx, i)
4823 		cancel_delayed_work_sync(&hctx->run_work);
4824 }
4825 
4826 static int __init blk_mq_init(void)
4827 {
4828 	int i;
4829 
4830 	for_each_possible_cpu(i)
4831 		init_llist_head(&per_cpu(blk_cpu_done, i));
4832 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4833 
4834 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4835 				  "block/softirq:dead", NULL,
4836 				  blk_softirq_cpu_dead);
4837 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4838 				blk_mq_hctx_notify_dead);
4839 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4840 				blk_mq_hctx_notify_online,
4841 				blk_mq_hctx_notify_offline);
4842 	return 0;
4843 }
4844 subsys_initcall(blk_mq_init);
4845