xref: /openbmc/linux/block/blk-mq.c (revision e9b7b8b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->part && blk_do_io_stat(rq) &&
97 	    (!mi->part->bd_partno || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 	mutex_lock(&q->mq_freeze_lock);
127 	if (++q->mq_freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		mutex_unlock(&q->mq_freeze_lock);
130 		if (queue_is_mq(q))
131 			blk_mq_run_hw_queues(q, false);
132 	} else {
133 		mutex_unlock(&q->mq_freeze_lock);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 				     unsigned long timeout)
146 {
147 	return wait_event_timeout(q->mq_freeze_wq,
148 					percpu_ref_is_zero(&q->q_usage_counter),
149 					timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152 
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 	/*
160 	 * In the !blk_mq case we are only calling this to kill the
161 	 * q_usage_counter, otherwise this increases the freeze depth
162 	 * and waits for it to return to zero.  For this reason there is
163 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 	 * exported to drivers as the only user for unfreeze is blk_mq.
165 	 */
166 	blk_freeze_queue_start(q);
167 	blk_mq_freeze_queue_wait(q);
168 }
169 
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * ...just an alias to keep freeze and unfreeze actions balanced
174 	 * in the blk_mq_* namespace
175 	 */
176 	blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 	mutex_lock(&q->mq_freeze_lock);
183 	if (force_atomic)
184 		q->q_usage_counter.data->force_atomic = true;
185 	q->mq_freeze_depth--;
186 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 	if (!q->mq_freeze_depth) {
188 		percpu_ref_resurrect(&q->q_usage_counter);
189 		wake_up_all(&q->mq_freeze_wq);
190 	}
191 	mutex_unlock(&q->mq_freeze_lock);
192 }
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	__blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&q->queue_lock, flags);
209 	if (!q->quiesce_depth++)
210 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 	spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 	if (set->flags & BLK_MQ_F_BLOCKING)
227 		synchronize_srcu(set->srcu);
228 	else
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232 
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 	blk_mq_quiesce_queue_nowait(q);
245 	/* nothing to wait for non-mq queues */
246 	if (queue_is_mq(q))
247 		blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	unsigned long flags;
261 	bool run_queue = false;
262 
263 	spin_lock_irqsave(&q->queue_lock, flags);
264 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 		;
266 	} else if (!--q->quiesce_depth) {
267 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 		run_queue = true;
269 	}
270 	spin_unlock_irqrestore(&q->queue_lock, flags);
271 
272 	/* dispatch requests which are inserted during quiescing */
273 	if (run_queue)
274 		blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 	struct request_queue *q;
281 
282 	mutex_lock(&set->tag_list_lock);
283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 		if (!blk_queue_skip_tagset_quiesce(q))
285 			blk_mq_quiesce_queue_nowait(q);
286 	}
287 	blk_mq_wait_quiesce_done(set);
288 	mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 	struct request_queue *q;
295 
296 	mutex_lock(&set->tag_list_lock);
297 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 		if (!blk_queue_skip_tagset_quiesce(q))
299 			blk_mq_unquiesce_queue(q);
300 	}
301 	mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 	struct blk_mq_hw_ctx *hctx;
308 	unsigned long i;
309 
310 	queue_for_each_hw_ctx(q, hctx, i)
311 		if (blk_mq_hw_queue_mapped(hctx))
312 			blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314 
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 	memset(rq, 0, sizeof(*rq));
318 
319 	INIT_LIST_HEAD(&rq->queuelist);
320 	rq->q = q;
321 	rq->__sector = (sector_t) -1;
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->tag = BLK_MQ_NO_TAG;
325 	rq->internal_tag = BLK_MQ_NO_TAG;
326 	rq->start_time_ns = ktime_get_ns();
327 	rq->part = NULL;
328 	blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331 
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 	if (blk_mq_need_time_stamp(rq))
336 		rq->start_time_ns = ktime_get_ns();
337 	else
338 		rq->start_time_ns = 0;
339 
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 	if (blk_queue_rq_alloc_time(rq->q))
342 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 	else
344 		rq->alloc_time_ns = 0;
345 #endif
346 }
347 
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 		struct blk_mq_tags *tags, unsigned int tag)
350 {
351 	struct blk_mq_ctx *ctx = data->ctx;
352 	struct blk_mq_hw_ctx *hctx = data->hctx;
353 	struct request_queue *q = data->q;
354 	struct request *rq = tags->static_rqs[tag];
355 
356 	rq->q = q;
357 	rq->mq_ctx = ctx;
358 	rq->mq_hctx = hctx;
359 	rq->cmd_flags = data->cmd_flags;
360 
361 	if (data->flags & BLK_MQ_REQ_PM)
362 		data->rq_flags |= RQF_PM;
363 	if (blk_queue_io_stat(q))
364 		data->rq_flags |= RQF_IO_STAT;
365 	rq->rq_flags = data->rq_flags;
366 
367 	if (data->rq_flags & RQF_SCHED_TAGS) {
368 		rq->tag = BLK_MQ_NO_TAG;
369 		rq->internal_tag = tag;
370 	} else {
371 		rq->tag = tag;
372 		rq->internal_tag = BLK_MQ_NO_TAG;
373 	}
374 	rq->timeout = 0;
375 
376 	rq->part = NULL;
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_USE_SCHED) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (e->type->ops.prepare_request)
399 			e->type->ops.prepare_request(rq);
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	/* caller already holds a reference, add for remainder */
430 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 	data->nr_tags -= nr;
432 
433 	return rq_list_pop(data->cached_rq);
434 }
435 
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 	struct request_queue *q = data->q;
439 	u64 alloc_time_ns = 0;
440 	struct request *rq;
441 	unsigned int tag;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	if (data->cmd_flags & REQ_NOWAIT)
448 		data->flags |= BLK_MQ_REQ_NOWAIT;
449 
450 	if (q->elevator) {
451 		/*
452 		 * All requests use scheduler tags when an I/O scheduler is
453 		 * enabled for the queue.
454 		 */
455 		data->rq_flags |= RQF_SCHED_TAGS;
456 
457 		/*
458 		 * Flush/passthrough requests are special and go directly to the
459 		 * dispatch list.
460 		 */
461 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462 		    !blk_op_is_passthrough(data->cmd_flags)) {
463 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
464 
465 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466 
467 			data->rq_flags |= RQF_USE_SCHED;
468 			if (ops->limit_depth)
469 				ops->limit_depth(data->cmd_flags, data);
470 		}
471 	}
472 
473 retry:
474 	data->ctx = blk_mq_get_ctx(q);
475 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476 	if (!(data->rq_flags & RQF_SCHED_TAGS))
477 		blk_mq_tag_busy(data->hctx);
478 
479 	if (data->flags & BLK_MQ_REQ_RESERVED)
480 		data->rq_flags |= RQF_RESV;
481 
482 	/*
483 	 * Try batched alloc if we want more than 1 tag.
484 	 */
485 	if (data->nr_tags > 1) {
486 		rq = __blk_mq_alloc_requests_batch(data);
487 		if (rq) {
488 			blk_mq_rq_time_init(rq, alloc_time_ns);
489 			return rq;
490 		}
491 		data->nr_tags = 1;
492 	}
493 
494 	/*
495 	 * Waiting allocations only fail because of an inactive hctx.  In that
496 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 	 * should have migrated us to an online CPU by now.
498 	 */
499 	tag = blk_mq_get_tag(data);
500 	if (tag == BLK_MQ_NO_TAG) {
501 		if (data->flags & BLK_MQ_REQ_NOWAIT)
502 			return NULL;
503 		/*
504 		 * Give up the CPU and sleep for a random short time to
505 		 * ensure that thread using a realtime scheduling class
506 		 * are migrated off the CPU, and thus off the hctx that
507 		 * is going away.
508 		 */
509 		msleep(3);
510 		goto retry;
511 	}
512 
513 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514 	blk_mq_rq_time_init(rq, alloc_time_ns);
515 	return rq;
516 }
517 
518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519 					    struct blk_plug *plug,
520 					    blk_opf_t opf,
521 					    blk_mq_req_flags_t flags)
522 {
523 	struct blk_mq_alloc_data data = {
524 		.q		= q,
525 		.flags		= flags,
526 		.cmd_flags	= opf,
527 		.nr_tags	= plug->nr_ios,
528 		.cached_rq	= &plug->cached_rq,
529 	};
530 	struct request *rq;
531 
532 	if (blk_queue_enter(q, flags))
533 		return NULL;
534 
535 	plug->nr_ios = 1;
536 
537 	rq = __blk_mq_alloc_requests(&data);
538 	if (unlikely(!rq))
539 		blk_queue_exit(q);
540 	return rq;
541 }
542 
543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544 						   blk_opf_t opf,
545 						   blk_mq_req_flags_t flags)
546 {
547 	struct blk_plug *plug = current->plug;
548 	struct request *rq;
549 
550 	if (!plug)
551 		return NULL;
552 
553 	if (rq_list_empty(plug->cached_rq)) {
554 		if (plug->nr_ios == 1)
555 			return NULL;
556 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557 		if (!rq)
558 			return NULL;
559 	} else {
560 		rq = rq_list_peek(&plug->cached_rq);
561 		if (!rq || rq->q != q)
562 			return NULL;
563 
564 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565 			return NULL;
566 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567 			return NULL;
568 
569 		plug->cached_rq = rq_list_next(rq);
570 		blk_mq_rq_time_init(rq, 0);
571 	}
572 
573 	rq->cmd_flags = opf;
574 	INIT_LIST_HEAD(&rq->queuelist);
575 	return rq;
576 }
577 
578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579 		blk_mq_req_flags_t flags)
580 {
581 	struct request *rq;
582 
583 	rq = blk_mq_alloc_cached_request(q, opf, flags);
584 	if (!rq) {
585 		struct blk_mq_alloc_data data = {
586 			.q		= q,
587 			.flags		= flags,
588 			.cmd_flags	= opf,
589 			.nr_tags	= 1,
590 		};
591 		int ret;
592 
593 		ret = blk_queue_enter(q, flags);
594 		if (ret)
595 			return ERR_PTR(ret);
596 
597 		rq = __blk_mq_alloc_requests(&data);
598 		if (!rq)
599 			goto out_queue_exit;
600 	}
601 	rq->__data_len = 0;
602 	rq->__sector = (sector_t) -1;
603 	rq->bio = rq->biotail = NULL;
604 	return rq;
605 out_queue_exit:
606 	blk_queue_exit(q);
607 	return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610 
611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614 	struct blk_mq_alloc_data data = {
615 		.q		= q,
616 		.flags		= flags,
617 		.cmd_flags	= opf,
618 		.nr_tags	= 1,
619 	};
620 	u64 alloc_time_ns = 0;
621 	struct request *rq;
622 	unsigned int cpu;
623 	unsigned int tag;
624 	int ret;
625 
626 	/* alloc_time includes depth and tag waits */
627 	if (blk_queue_rq_alloc_time(q))
628 		alloc_time_ns = ktime_get_ns();
629 
630 	/*
631 	 * If the tag allocator sleeps we could get an allocation for a
632 	 * different hardware context.  No need to complicate the low level
633 	 * allocator for this for the rare use case of a command tied to
634 	 * a specific queue.
635 	 */
636 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638 		return ERR_PTR(-EINVAL);
639 
640 	if (hctx_idx >= q->nr_hw_queues)
641 		return ERR_PTR(-EIO);
642 
643 	ret = blk_queue_enter(q, flags);
644 	if (ret)
645 		return ERR_PTR(ret);
646 
647 	/*
648 	 * Check if the hardware context is actually mapped to anything.
649 	 * If not tell the caller that it should skip this queue.
650 	 */
651 	ret = -EXDEV;
652 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
653 	if (!blk_mq_hw_queue_mapped(data.hctx))
654 		goto out_queue_exit;
655 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656 	if (cpu >= nr_cpu_ids)
657 		goto out_queue_exit;
658 	data.ctx = __blk_mq_get_ctx(q, cpu);
659 
660 	if (q->elevator)
661 		data.rq_flags |= RQF_SCHED_TAGS;
662 	else
663 		blk_mq_tag_busy(data.hctx);
664 
665 	if (flags & BLK_MQ_REQ_RESERVED)
666 		data.rq_flags |= RQF_RESV;
667 
668 	ret = -EWOULDBLOCK;
669 	tag = blk_mq_get_tag(&data);
670 	if (tag == BLK_MQ_NO_TAG)
671 		goto out_queue_exit;
672 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673 	blk_mq_rq_time_init(rq, alloc_time_ns);
674 	rq->__data_len = 0;
675 	rq->__sector = (sector_t) -1;
676 	rq->bio = rq->biotail = NULL;
677 	return rq;
678 
679 out_queue_exit:
680 	blk_queue_exit(q);
681 	return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684 
685 static void blk_mq_finish_request(struct request *rq)
686 {
687 	struct request_queue *q = rq->q;
688 
689 	if (rq->rq_flags & RQF_USE_SCHED) {
690 		q->elevator->type->ops.finish_request(rq);
691 		/*
692 		 * For postflush request that may need to be
693 		 * completed twice, we should clear this flag
694 		 * to avoid double finish_request() on the rq.
695 		 */
696 		rq->rq_flags &= ~RQF_USE_SCHED;
697 	}
698 }
699 
700 static void __blk_mq_free_request(struct request *rq)
701 {
702 	struct request_queue *q = rq->q;
703 	struct blk_mq_ctx *ctx = rq->mq_ctx;
704 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705 	const int sched_tag = rq->internal_tag;
706 
707 	blk_crypto_free_request(rq);
708 	blk_pm_mark_last_busy(rq);
709 	rq->mq_hctx = NULL;
710 
711 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
712 		__blk_mq_dec_active_requests(hctx);
713 
714 	if (rq->tag != BLK_MQ_NO_TAG)
715 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716 	if (sched_tag != BLK_MQ_NO_TAG)
717 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718 	blk_mq_sched_restart(hctx);
719 	blk_queue_exit(q);
720 }
721 
722 void blk_mq_free_request(struct request *rq)
723 {
724 	struct request_queue *q = rq->q;
725 
726 	blk_mq_finish_request(rq);
727 
728 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729 		laptop_io_completion(q->disk->bdi);
730 
731 	rq_qos_done(q, rq);
732 
733 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734 	if (req_ref_put_and_test(rq))
735 		__blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738 
739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741 	struct request *rq;
742 
743 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744 		blk_mq_free_request(rq);
745 }
746 
747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750 		rq->q->disk ? rq->q->disk->disk_name : "?",
751 		(__force unsigned long long) rq->cmd_flags);
752 
753 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
754 	       (unsigned long long)blk_rq_pos(rq),
755 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
757 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760 
761 static void req_bio_endio(struct request *rq, struct bio *bio,
762 			  unsigned int nbytes, blk_status_t error)
763 {
764 	if (unlikely(error)) {
765 		bio->bi_status = error;
766 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767 		/*
768 		 * Partial zone append completions cannot be supported as the
769 		 * BIO fragments may end up not being written sequentially.
770 		 */
771 		if (bio->bi_iter.bi_size != nbytes)
772 			bio->bi_status = BLK_STS_IOERR;
773 		else
774 			bio->bi_iter.bi_sector = rq->__sector;
775 	}
776 
777 	bio_advance(bio, nbytes);
778 
779 	if (unlikely(rq->rq_flags & RQF_QUIET))
780 		bio_set_flag(bio, BIO_QUIET);
781 	/* don't actually finish bio if it's part of flush sequence */
782 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
783 		bio_endio(bio);
784 }
785 
786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
787 {
788 	if (req->part && blk_do_io_stat(req)) {
789 		const int sgrp = op_stat_group(req_op(req));
790 
791 		part_stat_lock();
792 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
793 		part_stat_unlock();
794 	}
795 }
796 
797 static void blk_print_req_error(struct request *req, blk_status_t status)
798 {
799 	printk_ratelimited(KERN_ERR
800 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
801 		"phys_seg %u prio class %u\n",
802 		blk_status_to_str(status),
803 		req->q->disk ? req->q->disk->disk_name : "?",
804 		blk_rq_pos(req), (__force u32)req_op(req),
805 		blk_op_str(req_op(req)),
806 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
807 		req->nr_phys_segments,
808 		IOPRIO_PRIO_CLASS(req->ioprio));
809 }
810 
811 /*
812  * Fully end IO on a request. Does not support partial completions, or
813  * errors.
814  */
815 static void blk_complete_request(struct request *req)
816 {
817 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
818 	int total_bytes = blk_rq_bytes(req);
819 	struct bio *bio = req->bio;
820 
821 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
822 
823 	if (!bio)
824 		return;
825 
826 #ifdef CONFIG_BLK_DEV_INTEGRITY
827 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
828 		req->q->integrity.profile->complete_fn(req, total_bytes);
829 #endif
830 
831 	/*
832 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
833 	 * bio_endio().  Therefore, the keyslot must be released before that.
834 	 */
835 	blk_crypto_rq_put_keyslot(req);
836 
837 	blk_account_io_completion(req, total_bytes);
838 
839 	do {
840 		struct bio *next = bio->bi_next;
841 
842 		/* Completion has already been traced */
843 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844 
845 		if (req_op(req) == REQ_OP_ZONE_APPEND)
846 			bio->bi_iter.bi_sector = req->__sector;
847 
848 		if (!is_flush)
849 			bio_endio(bio);
850 		bio = next;
851 	} while (bio);
852 
853 	/*
854 	 * Reset counters so that the request stacking driver
855 	 * can find how many bytes remain in the request
856 	 * later.
857 	 */
858 	if (!req->end_io) {
859 		req->bio = NULL;
860 		req->__data_len = 0;
861 	}
862 }
863 
864 /**
865  * blk_update_request - Complete multiple bytes without completing the request
866  * @req:      the request being processed
867  * @error:    block status code
868  * @nr_bytes: number of bytes to complete for @req
869  *
870  * Description:
871  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
872  *     the request structure even if @req doesn't have leftover.
873  *     If @req has leftover, sets it up for the next range of segments.
874  *
875  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876  *     %false return from this function.
877  *
878  * Note:
879  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880  *      except in the consistency check at the end of this function.
881  *
882  * Return:
883  *     %false - this request doesn't have any more data
884  *     %true  - this request has more data
885  **/
886 bool blk_update_request(struct request *req, blk_status_t error,
887 		unsigned int nr_bytes)
888 {
889 	int total_bytes;
890 
891 	trace_block_rq_complete(req, error, nr_bytes);
892 
893 	if (!req->bio)
894 		return false;
895 
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898 	    error == BLK_STS_OK)
899 		req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901 
902 	/*
903 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
904 	 * bio_endio().  Therefore, the keyslot must be released before that.
905 	 */
906 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
907 		__blk_crypto_rq_put_keyslot(req);
908 
909 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
910 		     !(req->rq_flags & RQF_QUIET)) &&
911 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
912 		blk_print_req_error(req, error);
913 		trace_block_rq_error(req, error, nr_bytes);
914 	}
915 
916 	blk_account_io_completion(req, nr_bytes);
917 
918 	total_bytes = 0;
919 	while (req->bio) {
920 		struct bio *bio = req->bio;
921 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922 
923 		if (bio_bytes == bio->bi_iter.bi_size)
924 			req->bio = bio->bi_next;
925 
926 		/* Completion has already been traced */
927 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
928 		req_bio_endio(req, bio, bio_bytes, error);
929 
930 		total_bytes += bio_bytes;
931 		nr_bytes -= bio_bytes;
932 
933 		if (!nr_bytes)
934 			break;
935 	}
936 
937 	/*
938 	 * completely done
939 	 */
940 	if (!req->bio) {
941 		/*
942 		 * Reset counters so that the request stacking driver
943 		 * can find how many bytes remain in the request
944 		 * later.
945 		 */
946 		req->__data_len = 0;
947 		return false;
948 	}
949 
950 	req->__data_len -= total_bytes;
951 
952 	/* update sector only for requests with clear definition of sector */
953 	if (!blk_rq_is_passthrough(req))
954 		req->__sector += total_bytes >> 9;
955 
956 	/* mixed attributes always follow the first bio */
957 	if (req->rq_flags & RQF_MIXED_MERGE) {
958 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
959 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960 	}
961 
962 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963 		/*
964 		 * If total number of sectors is less than the first segment
965 		 * size, something has gone terribly wrong.
966 		 */
967 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
968 			blk_dump_rq_flags(req, "request botched");
969 			req->__data_len = blk_rq_cur_bytes(req);
970 		}
971 
972 		/* recalculate the number of segments */
973 		req->nr_phys_segments = blk_recalc_rq_segments(req);
974 	}
975 
976 	return true;
977 }
978 EXPORT_SYMBOL_GPL(blk_update_request);
979 
980 static inline void blk_account_io_done(struct request *req, u64 now)
981 {
982 	trace_block_io_done(req);
983 
984 	/*
985 	 * Account IO completion.  flush_rq isn't accounted as a
986 	 * normal IO on queueing nor completion.  Accounting the
987 	 * containing request is enough.
988 	 */
989 	if (blk_do_io_stat(req) && req->part &&
990 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
991 		const int sgrp = op_stat_group(req_op(req));
992 
993 		part_stat_lock();
994 		update_io_ticks(req->part, jiffies, true);
995 		part_stat_inc(req->part, ios[sgrp]);
996 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
997 		part_stat_unlock();
998 	}
999 }
1000 
1001 static inline void blk_account_io_start(struct request *req)
1002 {
1003 	trace_block_io_start(req);
1004 
1005 	if (blk_do_io_stat(req)) {
1006 		/*
1007 		 * All non-passthrough requests are created from a bio with one
1008 		 * exception: when a flush command that is part of a flush sequence
1009 		 * generated by the state machine in blk-flush.c is cloned onto the
1010 		 * lower device by dm-multipath we can get here without a bio.
1011 		 */
1012 		if (req->bio)
1013 			req->part = req->bio->bi_bdev;
1014 		else
1015 			req->part = req->q->disk->part0;
1016 
1017 		part_stat_lock();
1018 		update_io_ticks(req->part, jiffies, false);
1019 		part_stat_unlock();
1020 	}
1021 }
1022 
1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1024 {
1025 	if (rq->rq_flags & RQF_STATS)
1026 		blk_stat_add(rq, now);
1027 
1028 	blk_mq_sched_completed_request(rq, now);
1029 	blk_account_io_done(rq, now);
1030 }
1031 
1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1033 {
1034 	if (blk_mq_need_time_stamp(rq))
1035 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1036 
1037 	blk_mq_finish_request(rq);
1038 
1039 	if (rq->end_io) {
1040 		rq_qos_done(rq->q, rq);
1041 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1042 			blk_mq_free_request(rq);
1043 	} else {
1044 		blk_mq_free_request(rq);
1045 	}
1046 }
1047 EXPORT_SYMBOL(__blk_mq_end_request);
1048 
1049 void blk_mq_end_request(struct request *rq, blk_status_t error)
1050 {
1051 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1052 		BUG();
1053 	__blk_mq_end_request(rq, error);
1054 }
1055 EXPORT_SYMBOL(blk_mq_end_request);
1056 
1057 #define TAG_COMP_BATCH		32
1058 
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1060 					  int *tag_array, int nr_tags)
1061 {
1062 	struct request_queue *q = hctx->queue;
1063 
1064 	/*
1065 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1066 	 * update hctx->nr_active in batch
1067 	 */
1068 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1069 		__blk_mq_sub_active_requests(hctx, nr_tags);
1070 
1071 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074 
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1078 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1079 	struct request *rq;
1080 	u64 now = 0;
1081 
1082 	if (iob->need_ts)
1083 		now = ktime_get_ns();
1084 
1085 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086 		prefetch(rq->bio);
1087 		prefetch(rq->rq_next);
1088 
1089 		blk_complete_request(rq);
1090 		if (iob->need_ts)
1091 			__blk_mq_end_request_acct(rq, now);
1092 
1093 		blk_mq_finish_request(rq);
1094 
1095 		rq_qos_done(rq->q, rq);
1096 
1097 		/*
1098 		 * If end_io handler returns NONE, then it still has
1099 		 * ownership of the request.
1100 		 */
1101 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102 			continue;
1103 
1104 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105 		if (!req_ref_put_and_test(rq))
1106 			continue;
1107 
1108 		blk_crypto_free_request(rq);
1109 		blk_pm_mark_last_busy(rq);
1110 
1111 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112 			if (cur_hctx)
1113 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114 			nr_tags = 0;
1115 			cur_hctx = rq->mq_hctx;
1116 		}
1117 		tags[nr_tags++] = rq->tag;
1118 	}
1119 
1120 	if (nr_tags)
1121 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124 
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128 	struct request *rq, *next;
1129 
1130 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131 		rq->q->mq_ops->complete(rq);
1132 }
1133 
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138 
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142 	return 0;
1143 }
1144 
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149 
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152 	int cpu = raw_smp_processor_id();
1153 
1154 	if (!IS_ENABLED(CONFIG_SMP) ||
1155 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156 		return false;
1157 	/*
1158 	 * With force threaded interrupts enabled, raising softirq from an SMP
1159 	 * function call will always result in waking the ksoftirqd thread.
1160 	 * This is probably worse than completing the request on a different
1161 	 * cache domain.
1162 	 */
1163 	if (force_irqthreads())
1164 		return false;
1165 
1166 	/* same CPU or cache domain?  Complete locally */
1167 	if (cpu == rq->mq_ctx->cpu ||
1168 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170 		return false;
1171 
1172 	/* don't try to IPI to an offline CPU */
1173 	return cpu_online(rq->mq_ctx->cpu);
1174 }
1175 
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178 	unsigned int cpu;
1179 
1180 	cpu = rq->mq_ctx->cpu;
1181 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184 
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187 	struct llist_head *list;
1188 
1189 	preempt_disable();
1190 	list = this_cpu_ptr(&blk_cpu_done);
1191 	if (llist_add(&rq->ipi_list, list))
1192 		raise_softirq(BLOCK_SOFTIRQ);
1193 	preempt_enable();
1194 }
1195 
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199 
1200 	/*
1201 	 * For request which hctx has only one ctx mapping,
1202 	 * or a polled request, always complete locally,
1203 	 * it's pointless to redirect the completion.
1204 	 */
1205 	if ((rq->mq_hctx->nr_ctx == 1 &&
1206 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207 	     rq->cmd_flags & REQ_POLLED)
1208 		return false;
1209 
1210 	if (blk_mq_complete_need_ipi(rq)) {
1211 		blk_mq_complete_send_ipi(rq);
1212 		return true;
1213 	}
1214 
1215 	if (rq->q->nr_hw_queues == 1) {
1216 		blk_mq_raise_softirq(rq);
1217 		return true;
1218 	}
1219 	return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222 
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:		the request being processed
1226  *
1227  * Description:
1228  *	Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232 	if (!blk_mq_complete_request_remote(rq))
1233 		rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236 
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247 	struct request_queue *q = rq->q;
1248 
1249 	trace_block_rq_issue(rq);
1250 
1251 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252 		rq->io_start_time_ns = ktime_get_ns();
1253 		rq->stats_sectors = blk_rq_sectors(rq);
1254 		rq->rq_flags |= RQF_STATS;
1255 		rq_qos_issue(q, rq);
1256 	}
1257 
1258 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259 
1260 	blk_add_timer(rq);
1261 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262 
1263 #ifdef CONFIG_BLK_DEV_INTEGRITY
1264 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1265 		q->integrity.profile->prepare_fn(rq);
1266 #endif
1267 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1268 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_request);
1271 
1272 /*
1273  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1274  * queues. This is important for md arrays to benefit from merging
1275  * requests.
1276  */
1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1278 {
1279 	if (plug->multiple_queues)
1280 		return BLK_MAX_REQUEST_COUNT * 2;
1281 	return BLK_MAX_REQUEST_COUNT;
1282 }
1283 
1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1285 {
1286 	struct request *last = rq_list_peek(&plug->mq_list);
1287 
1288 	if (!plug->rq_count) {
1289 		trace_block_plug(rq->q);
1290 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1291 		   (!blk_queue_nomerges(rq->q) &&
1292 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1293 		blk_mq_flush_plug_list(plug, false);
1294 		last = NULL;
1295 		trace_block_plug(rq->q);
1296 	}
1297 
1298 	if (!plug->multiple_queues && last && last->q != rq->q)
1299 		plug->multiple_queues = true;
1300 	/*
1301 	 * Any request allocated from sched tags can't be issued to
1302 	 * ->queue_rqs() directly
1303 	 */
1304 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1305 		plug->has_elevator = true;
1306 	rq->rq_next = NULL;
1307 	rq_list_add(&plug->mq_list, rq);
1308 	plug->rq_count++;
1309 }
1310 
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:		request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1326 
1327 	WARN_ON(irqs_disabled());
1328 	WARN_ON(!blk_rq_is_passthrough(rq));
1329 
1330 	blk_account_io_start(rq);
1331 
1332 	/*
1333 	 * As plugging can be enabled for passthrough requests on a zoned
1334 	 * device, directly accessing the plug instead of using blk_mq_plug()
1335 	 * should not have any consequences.
1336 	 */
1337 	if (current->plug && !at_head) {
1338 		blk_add_rq_to_plug(current->plug, rq);
1339 		return;
1340 	}
1341 
1342 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1343 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1344 }
1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1346 
1347 struct blk_rq_wait {
1348 	struct completion done;
1349 	blk_status_t ret;
1350 };
1351 
1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1353 {
1354 	struct blk_rq_wait *wait = rq->end_io_data;
1355 
1356 	wait->ret = ret;
1357 	complete(&wait->done);
1358 	return RQ_END_IO_NONE;
1359 }
1360 
1361 bool blk_rq_is_poll(struct request *rq)
1362 {
1363 	if (!rq->mq_hctx)
1364 		return false;
1365 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1366 		return false;
1367 	return true;
1368 }
1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1370 
1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1372 {
1373 	do {
1374 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1375 		cond_resched();
1376 	} while (!completion_done(wait));
1377 }
1378 
1379 /**
1380  * blk_execute_rq - insert a request into queue for execution
1381  * @rq:		request to insert
1382  * @at_head:    insert request at head or tail of queue
1383  *
1384  * Description:
1385  *    Insert a fully prepared request at the back of the I/O scheduler queue
1386  *    for execution and wait for completion.
1387  * Return: The blk_status_t result provided to blk_mq_end_request().
1388  */
1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1390 {
1391 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1392 	struct blk_rq_wait wait = {
1393 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1394 	};
1395 
1396 	WARN_ON(irqs_disabled());
1397 	WARN_ON(!blk_rq_is_passthrough(rq));
1398 
1399 	rq->end_io_data = &wait;
1400 	rq->end_io = blk_end_sync_rq;
1401 
1402 	blk_account_io_start(rq);
1403 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1404 	blk_mq_run_hw_queue(hctx, false);
1405 
1406 	if (blk_rq_is_poll(rq)) {
1407 		blk_rq_poll_completion(rq, &wait.done);
1408 	} else {
1409 		/*
1410 		 * Prevent hang_check timer from firing at us during very long
1411 		 * I/O
1412 		 */
1413 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1414 
1415 		if (hang_check)
1416 			while (!wait_for_completion_io_timeout(&wait.done,
1417 					hang_check * (HZ/2)))
1418 				;
1419 		else
1420 			wait_for_completion_io(&wait.done);
1421 	}
1422 
1423 	return wait.ret;
1424 }
1425 EXPORT_SYMBOL(blk_execute_rq);
1426 
1427 static void __blk_mq_requeue_request(struct request *rq)
1428 {
1429 	struct request_queue *q = rq->q;
1430 
1431 	blk_mq_put_driver_tag(rq);
1432 
1433 	trace_block_rq_requeue(rq);
1434 	rq_qos_requeue(q, rq);
1435 
1436 	if (blk_mq_request_started(rq)) {
1437 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1438 		rq->rq_flags &= ~RQF_TIMED_OUT;
1439 	}
1440 }
1441 
1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1443 {
1444 	struct request_queue *q = rq->q;
1445 	unsigned long flags;
1446 
1447 	__blk_mq_requeue_request(rq);
1448 
1449 	/* this request will be re-inserted to io scheduler queue */
1450 	blk_mq_sched_requeue_request(rq);
1451 
1452 	spin_lock_irqsave(&q->requeue_lock, flags);
1453 	list_add_tail(&rq->queuelist, &q->requeue_list);
1454 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1455 
1456 	if (kick_requeue_list)
1457 		blk_mq_kick_requeue_list(q);
1458 }
1459 EXPORT_SYMBOL(blk_mq_requeue_request);
1460 
1461 static void blk_mq_requeue_work(struct work_struct *work)
1462 {
1463 	struct request_queue *q =
1464 		container_of(work, struct request_queue, requeue_work.work);
1465 	LIST_HEAD(rq_list);
1466 	LIST_HEAD(flush_list);
1467 	struct request *rq;
1468 
1469 	spin_lock_irq(&q->requeue_lock);
1470 	list_splice_init(&q->requeue_list, &rq_list);
1471 	list_splice_init(&q->flush_list, &flush_list);
1472 	spin_unlock_irq(&q->requeue_lock);
1473 
1474 	while (!list_empty(&rq_list)) {
1475 		rq = list_entry(rq_list.next, struct request, queuelist);
1476 		/*
1477 		 * If RQF_DONTPREP ist set, the request has been started by the
1478 		 * driver already and might have driver-specific data allocated
1479 		 * already.  Insert it into the hctx dispatch list to avoid
1480 		 * block layer merges for the request.
1481 		 */
1482 		if (rq->rq_flags & RQF_DONTPREP) {
1483 			list_del_init(&rq->queuelist);
1484 			blk_mq_request_bypass_insert(rq, 0);
1485 		} else {
1486 			list_del_init(&rq->queuelist);
1487 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1488 		}
1489 	}
1490 
1491 	while (!list_empty(&flush_list)) {
1492 		rq = list_entry(flush_list.next, struct request, queuelist);
1493 		list_del_init(&rq->queuelist);
1494 		blk_mq_insert_request(rq, 0);
1495 	}
1496 
1497 	blk_mq_run_hw_queues(q, false);
1498 }
1499 
1500 void blk_mq_kick_requeue_list(struct request_queue *q)
1501 {
1502 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1503 }
1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1505 
1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1507 				    unsigned long msecs)
1508 {
1509 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1510 				    msecs_to_jiffies(msecs));
1511 }
1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1513 
1514 static bool blk_is_flush_data_rq(struct request *rq)
1515 {
1516 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1517 }
1518 
1519 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1520 {
1521 	/*
1522 	 * If we find a request that isn't idle we know the queue is busy
1523 	 * as it's checked in the iter.
1524 	 * Return false to stop the iteration.
1525 	 *
1526 	 * In case of queue quiesce, if one flush data request is completed,
1527 	 * don't count it as inflight given the flush sequence is suspended,
1528 	 * and the original flush data request is invisible to driver, just
1529 	 * like other pending requests because of quiesce
1530 	 */
1531 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1532 				blk_is_flush_data_rq(rq) &&
1533 				blk_mq_request_completed(rq))) {
1534 		bool *busy = priv;
1535 
1536 		*busy = true;
1537 		return false;
1538 	}
1539 
1540 	return true;
1541 }
1542 
1543 bool blk_mq_queue_inflight(struct request_queue *q)
1544 {
1545 	bool busy = false;
1546 
1547 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1548 	return busy;
1549 }
1550 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1551 
1552 static void blk_mq_rq_timed_out(struct request *req)
1553 {
1554 	req->rq_flags |= RQF_TIMED_OUT;
1555 	if (req->q->mq_ops->timeout) {
1556 		enum blk_eh_timer_return ret;
1557 
1558 		ret = req->q->mq_ops->timeout(req);
1559 		if (ret == BLK_EH_DONE)
1560 			return;
1561 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1562 	}
1563 
1564 	blk_add_timer(req);
1565 }
1566 
1567 struct blk_expired_data {
1568 	bool has_timedout_rq;
1569 	unsigned long next;
1570 	unsigned long timeout_start;
1571 };
1572 
1573 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1574 {
1575 	unsigned long deadline;
1576 
1577 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1578 		return false;
1579 	if (rq->rq_flags & RQF_TIMED_OUT)
1580 		return false;
1581 
1582 	deadline = READ_ONCE(rq->deadline);
1583 	if (time_after_eq(expired->timeout_start, deadline))
1584 		return true;
1585 
1586 	if (expired->next == 0)
1587 		expired->next = deadline;
1588 	else if (time_after(expired->next, deadline))
1589 		expired->next = deadline;
1590 	return false;
1591 }
1592 
1593 void blk_mq_put_rq_ref(struct request *rq)
1594 {
1595 	if (is_flush_rq(rq)) {
1596 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1597 			blk_mq_free_request(rq);
1598 	} else if (req_ref_put_and_test(rq)) {
1599 		__blk_mq_free_request(rq);
1600 	}
1601 }
1602 
1603 static bool blk_mq_check_expired(struct request *rq, void *priv)
1604 {
1605 	struct blk_expired_data *expired = priv;
1606 
1607 	/*
1608 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1609 	 * be reallocated underneath the timeout handler's processing, then
1610 	 * the expire check is reliable. If the request is not expired, then
1611 	 * it was completed and reallocated as a new request after returning
1612 	 * from blk_mq_check_expired().
1613 	 */
1614 	if (blk_mq_req_expired(rq, expired)) {
1615 		expired->has_timedout_rq = true;
1616 		return false;
1617 	}
1618 	return true;
1619 }
1620 
1621 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1622 {
1623 	struct blk_expired_data *expired = priv;
1624 
1625 	if (blk_mq_req_expired(rq, expired))
1626 		blk_mq_rq_timed_out(rq);
1627 	return true;
1628 }
1629 
1630 static void blk_mq_timeout_work(struct work_struct *work)
1631 {
1632 	struct request_queue *q =
1633 		container_of(work, struct request_queue, timeout_work);
1634 	struct blk_expired_data expired = {
1635 		.timeout_start = jiffies,
1636 	};
1637 	struct blk_mq_hw_ctx *hctx;
1638 	unsigned long i;
1639 
1640 	/* A deadlock might occur if a request is stuck requiring a
1641 	 * timeout at the same time a queue freeze is waiting
1642 	 * completion, since the timeout code would not be able to
1643 	 * acquire the queue reference here.
1644 	 *
1645 	 * That's why we don't use blk_queue_enter here; instead, we use
1646 	 * percpu_ref_tryget directly, because we need to be able to
1647 	 * obtain a reference even in the short window between the queue
1648 	 * starting to freeze, by dropping the first reference in
1649 	 * blk_freeze_queue_start, and the moment the last request is
1650 	 * consumed, marked by the instant q_usage_counter reaches
1651 	 * zero.
1652 	 */
1653 	if (!percpu_ref_tryget(&q->q_usage_counter))
1654 		return;
1655 
1656 	/* check if there is any timed-out request */
1657 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1658 	if (expired.has_timedout_rq) {
1659 		/*
1660 		 * Before walking tags, we must ensure any submit started
1661 		 * before the current time has finished. Since the submit
1662 		 * uses srcu or rcu, wait for a synchronization point to
1663 		 * ensure all running submits have finished
1664 		 */
1665 		blk_mq_wait_quiesce_done(q->tag_set);
1666 
1667 		expired.next = 0;
1668 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1669 	}
1670 
1671 	if (expired.next != 0) {
1672 		mod_timer(&q->timeout, expired.next);
1673 	} else {
1674 		/*
1675 		 * Request timeouts are handled as a forward rolling timer. If
1676 		 * we end up here it means that no requests are pending and
1677 		 * also that no request has been pending for a while. Mark
1678 		 * each hctx as idle.
1679 		 */
1680 		queue_for_each_hw_ctx(q, hctx, i) {
1681 			/* the hctx may be unmapped, so check it here */
1682 			if (blk_mq_hw_queue_mapped(hctx))
1683 				blk_mq_tag_idle(hctx);
1684 		}
1685 	}
1686 	blk_queue_exit(q);
1687 }
1688 
1689 struct flush_busy_ctx_data {
1690 	struct blk_mq_hw_ctx *hctx;
1691 	struct list_head *list;
1692 };
1693 
1694 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1695 {
1696 	struct flush_busy_ctx_data *flush_data = data;
1697 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1698 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1699 	enum hctx_type type = hctx->type;
1700 
1701 	spin_lock(&ctx->lock);
1702 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1703 	sbitmap_clear_bit(sb, bitnr);
1704 	spin_unlock(&ctx->lock);
1705 	return true;
1706 }
1707 
1708 /*
1709  * Process software queues that have been marked busy, splicing them
1710  * to the for-dispatch
1711  */
1712 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1713 {
1714 	struct flush_busy_ctx_data data = {
1715 		.hctx = hctx,
1716 		.list = list,
1717 	};
1718 
1719 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1720 }
1721 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1722 
1723 struct dispatch_rq_data {
1724 	struct blk_mq_hw_ctx *hctx;
1725 	struct request *rq;
1726 };
1727 
1728 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1729 		void *data)
1730 {
1731 	struct dispatch_rq_data *dispatch_data = data;
1732 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1733 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1734 	enum hctx_type type = hctx->type;
1735 
1736 	spin_lock(&ctx->lock);
1737 	if (!list_empty(&ctx->rq_lists[type])) {
1738 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1739 		list_del_init(&dispatch_data->rq->queuelist);
1740 		if (list_empty(&ctx->rq_lists[type]))
1741 			sbitmap_clear_bit(sb, bitnr);
1742 	}
1743 	spin_unlock(&ctx->lock);
1744 
1745 	return !dispatch_data->rq;
1746 }
1747 
1748 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1749 					struct blk_mq_ctx *start)
1750 {
1751 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1752 	struct dispatch_rq_data data = {
1753 		.hctx = hctx,
1754 		.rq   = NULL,
1755 	};
1756 
1757 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1758 			       dispatch_rq_from_ctx, &data);
1759 
1760 	return data.rq;
1761 }
1762 
1763 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1764 {
1765 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1766 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1767 	int tag;
1768 
1769 	blk_mq_tag_busy(rq->mq_hctx);
1770 
1771 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1772 		bt = &rq->mq_hctx->tags->breserved_tags;
1773 		tag_offset = 0;
1774 	} else {
1775 		if (!hctx_may_queue(rq->mq_hctx, bt))
1776 			return false;
1777 	}
1778 
1779 	tag = __sbitmap_queue_get(bt);
1780 	if (tag == BLK_MQ_NO_TAG)
1781 		return false;
1782 
1783 	rq->tag = tag + tag_offset;
1784 	return true;
1785 }
1786 
1787 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1788 {
1789 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1790 		return false;
1791 
1792 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1793 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1794 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1795 		__blk_mq_inc_active_requests(hctx);
1796 	}
1797 	hctx->tags->rqs[rq->tag] = rq;
1798 	return true;
1799 }
1800 
1801 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1802 				int flags, void *key)
1803 {
1804 	struct blk_mq_hw_ctx *hctx;
1805 
1806 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1807 
1808 	spin_lock(&hctx->dispatch_wait_lock);
1809 	if (!list_empty(&wait->entry)) {
1810 		struct sbitmap_queue *sbq;
1811 
1812 		list_del_init(&wait->entry);
1813 		sbq = &hctx->tags->bitmap_tags;
1814 		atomic_dec(&sbq->ws_active);
1815 	}
1816 	spin_unlock(&hctx->dispatch_wait_lock);
1817 
1818 	blk_mq_run_hw_queue(hctx, true);
1819 	return 1;
1820 }
1821 
1822 /*
1823  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1824  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1825  * restart. For both cases, take care to check the condition again after
1826  * marking us as waiting.
1827  */
1828 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1829 				 struct request *rq)
1830 {
1831 	struct sbitmap_queue *sbq;
1832 	struct wait_queue_head *wq;
1833 	wait_queue_entry_t *wait;
1834 	bool ret;
1835 
1836 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1837 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1838 		blk_mq_sched_mark_restart_hctx(hctx);
1839 
1840 		/*
1841 		 * It's possible that a tag was freed in the window between the
1842 		 * allocation failure and adding the hardware queue to the wait
1843 		 * queue.
1844 		 *
1845 		 * Don't clear RESTART here, someone else could have set it.
1846 		 * At most this will cost an extra queue run.
1847 		 */
1848 		return blk_mq_get_driver_tag(rq);
1849 	}
1850 
1851 	wait = &hctx->dispatch_wait;
1852 	if (!list_empty_careful(&wait->entry))
1853 		return false;
1854 
1855 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1856 		sbq = &hctx->tags->breserved_tags;
1857 	else
1858 		sbq = &hctx->tags->bitmap_tags;
1859 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1860 
1861 	spin_lock_irq(&wq->lock);
1862 	spin_lock(&hctx->dispatch_wait_lock);
1863 	if (!list_empty(&wait->entry)) {
1864 		spin_unlock(&hctx->dispatch_wait_lock);
1865 		spin_unlock_irq(&wq->lock);
1866 		return false;
1867 	}
1868 
1869 	atomic_inc(&sbq->ws_active);
1870 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1871 	__add_wait_queue(wq, wait);
1872 
1873 	/*
1874 	 * It's possible that a tag was freed in the window between the
1875 	 * allocation failure and adding the hardware queue to the wait
1876 	 * queue.
1877 	 */
1878 	ret = blk_mq_get_driver_tag(rq);
1879 	if (!ret) {
1880 		spin_unlock(&hctx->dispatch_wait_lock);
1881 		spin_unlock_irq(&wq->lock);
1882 		return false;
1883 	}
1884 
1885 	/*
1886 	 * We got a tag, remove ourselves from the wait queue to ensure
1887 	 * someone else gets the wakeup.
1888 	 */
1889 	list_del_init(&wait->entry);
1890 	atomic_dec(&sbq->ws_active);
1891 	spin_unlock(&hctx->dispatch_wait_lock);
1892 	spin_unlock_irq(&wq->lock);
1893 
1894 	return true;
1895 }
1896 
1897 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1898 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1899 /*
1900  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1901  * - EWMA is one simple way to compute running average value
1902  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1903  * - take 4 as factor for avoiding to get too small(0) result, and this
1904  *   factor doesn't matter because EWMA decreases exponentially
1905  */
1906 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1907 {
1908 	unsigned int ewma;
1909 
1910 	ewma = hctx->dispatch_busy;
1911 
1912 	if (!ewma && !busy)
1913 		return;
1914 
1915 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1916 	if (busy)
1917 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1918 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1919 
1920 	hctx->dispatch_busy = ewma;
1921 }
1922 
1923 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1924 
1925 static void blk_mq_handle_dev_resource(struct request *rq,
1926 				       struct list_head *list)
1927 {
1928 	list_add(&rq->queuelist, list);
1929 	__blk_mq_requeue_request(rq);
1930 }
1931 
1932 static void blk_mq_handle_zone_resource(struct request *rq,
1933 					struct list_head *zone_list)
1934 {
1935 	/*
1936 	 * If we end up here it is because we cannot dispatch a request to a
1937 	 * specific zone due to LLD level zone-write locking or other zone
1938 	 * related resource not being available. In this case, set the request
1939 	 * aside in zone_list for retrying it later.
1940 	 */
1941 	list_add(&rq->queuelist, zone_list);
1942 	__blk_mq_requeue_request(rq);
1943 }
1944 
1945 enum prep_dispatch {
1946 	PREP_DISPATCH_OK,
1947 	PREP_DISPATCH_NO_TAG,
1948 	PREP_DISPATCH_NO_BUDGET,
1949 };
1950 
1951 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1952 						  bool need_budget)
1953 {
1954 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1955 	int budget_token = -1;
1956 
1957 	if (need_budget) {
1958 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1959 		if (budget_token < 0) {
1960 			blk_mq_put_driver_tag(rq);
1961 			return PREP_DISPATCH_NO_BUDGET;
1962 		}
1963 		blk_mq_set_rq_budget_token(rq, budget_token);
1964 	}
1965 
1966 	if (!blk_mq_get_driver_tag(rq)) {
1967 		/*
1968 		 * The initial allocation attempt failed, so we need to
1969 		 * rerun the hardware queue when a tag is freed. The
1970 		 * waitqueue takes care of that. If the queue is run
1971 		 * before we add this entry back on the dispatch list,
1972 		 * we'll re-run it below.
1973 		 */
1974 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1975 			/*
1976 			 * All budgets not got from this function will be put
1977 			 * together during handling partial dispatch
1978 			 */
1979 			if (need_budget)
1980 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1981 			return PREP_DISPATCH_NO_TAG;
1982 		}
1983 	}
1984 
1985 	return PREP_DISPATCH_OK;
1986 }
1987 
1988 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1989 static void blk_mq_release_budgets(struct request_queue *q,
1990 		struct list_head *list)
1991 {
1992 	struct request *rq;
1993 
1994 	list_for_each_entry(rq, list, queuelist) {
1995 		int budget_token = blk_mq_get_rq_budget_token(rq);
1996 
1997 		if (budget_token >= 0)
1998 			blk_mq_put_dispatch_budget(q, budget_token);
1999 	}
2000 }
2001 
2002 /*
2003  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2004  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2005  * details)
2006  * Attention, we should explicitly call this in unusual cases:
2007  *  1) did not queue everything initially scheduled to queue
2008  *  2) the last attempt to queue a request failed
2009  */
2010 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2011 			      bool from_schedule)
2012 {
2013 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2014 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2015 		hctx->queue->mq_ops->commit_rqs(hctx);
2016 	}
2017 }
2018 
2019 /*
2020  * Returns true if we did some work AND can potentially do more.
2021  */
2022 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2023 			     unsigned int nr_budgets)
2024 {
2025 	enum prep_dispatch prep;
2026 	struct request_queue *q = hctx->queue;
2027 	struct request *rq;
2028 	int queued;
2029 	blk_status_t ret = BLK_STS_OK;
2030 	LIST_HEAD(zone_list);
2031 	bool needs_resource = false;
2032 
2033 	if (list_empty(list))
2034 		return false;
2035 
2036 	/*
2037 	 * Now process all the entries, sending them to the driver.
2038 	 */
2039 	queued = 0;
2040 	do {
2041 		struct blk_mq_queue_data bd;
2042 
2043 		rq = list_first_entry(list, struct request, queuelist);
2044 
2045 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2046 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2047 		if (prep != PREP_DISPATCH_OK)
2048 			break;
2049 
2050 		list_del_init(&rq->queuelist);
2051 
2052 		bd.rq = rq;
2053 		bd.last = list_empty(list);
2054 
2055 		/*
2056 		 * once the request is queued to lld, no need to cover the
2057 		 * budget any more
2058 		 */
2059 		if (nr_budgets)
2060 			nr_budgets--;
2061 		ret = q->mq_ops->queue_rq(hctx, &bd);
2062 		switch (ret) {
2063 		case BLK_STS_OK:
2064 			queued++;
2065 			break;
2066 		case BLK_STS_RESOURCE:
2067 			needs_resource = true;
2068 			fallthrough;
2069 		case BLK_STS_DEV_RESOURCE:
2070 			blk_mq_handle_dev_resource(rq, list);
2071 			goto out;
2072 		case BLK_STS_ZONE_RESOURCE:
2073 			/*
2074 			 * Move the request to zone_list and keep going through
2075 			 * the dispatch list to find more requests the drive can
2076 			 * accept.
2077 			 */
2078 			blk_mq_handle_zone_resource(rq, &zone_list);
2079 			needs_resource = true;
2080 			break;
2081 		default:
2082 			blk_mq_end_request(rq, ret);
2083 		}
2084 	} while (!list_empty(list));
2085 out:
2086 	if (!list_empty(&zone_list))
2087 		list_splice_tail_init(&zone_list, list);
2088 
2089 	/* If we didn't flush the entire list, we could have told the driver
2090 	 * there was more coming, but that turned out to be a lie.
2091 	 */
2092 	if (!list_empty(list) || ret != BLK_STS_OK)
2093 		blk_mq_commit_rqs(hctx, queued, false);
2094 
2095 	/*
2096 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2097 	 * that is where we will continue on next queue run.
2098 	 */
2099 	if (!list_empty(list)) {
2100 		bool needs_restart;
2101 		/* For non-shared tags, the RESTART check will suffice */
2102 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2103 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2104 			blk_mq_is_shared_tags(hctx->flags));
2105 
2106 		if (nr_budgets)
2107 			blk_mq_release_budgets(q, list);
2108 
2109 		spin_lock(&hctx->lock);
2110 		list_splice_tail_init(list, &hctx->dispatch);
2111 		spin_unlock(&hctx->lock);
2112 
2113 		/*
2114 		 * Order adding requests to hctx->dispatch and checking
2115 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2116 		 * in blk_mq_sched_restart(). Avoid restart code path to
2117 		 * miss the new added requests to hctx->dispatch, meantime
2118 		 * SCHED_RESTART is observed here.
2119 		 */
2120 		smp_mb();
2121 
2122 		/*
2123 		 * If SCHED_RESTART was set by the caller of this function and
2124 		 * it is no longer set that means that it was cleared by another
2125 		 * thread and hence that a queue rerun is needed.
2126 		 *
2127 		 * If 'no_tag' is set, that means that we failed getting
2128 		 * a driver tag with an I/O scheduler attached. If our dispatch
2129 		 * waitqueue is no longer active, ensure that we run the queue
2130 		 * AFTER adding our entries back to the list.
2131 		 *
2132 		 * If no I/O scheduler has been configured it is possible that
2133 		 * the hardware queue got stopped and restarted before requests
2134 		 * were pushed back onto the dispatch list. Rerun the queue to
2135 		 * avoid starvation. Notes:
2136 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2137 		 *   been stopped before rerunning a queue.
2138 		 * - Some but not all block drivers stop a queue before
2139 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2140 		 *   and dm-rq.
2141 		 *
2142 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2143 		 * bit is set, run queue after a delay to avoid IO stalls
2144 		 * that could otherwise occur if the queue is idle.  We'll do
2145 		 * similar if we couldn't get budget or couldn't lock a zone
2146 		 * and SCHED_RESTART is set.
2147 		 */
2148 		needs_restart = blk_mq_sched_needs_restart(hctx);
2149 		if (prep == PREP_DISPATCH_NO_BUDGET)
2150 			needs_resource = true;
2151 		if (!needs_restart ||
2152 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2153 			blk_mq_run_hw_queue(hctx, true);
2154 		else if (needs_resource)
2155 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2156 
2157 		blk_mq_update_dispatch_busy(hctx, true);
2158 		return false;
2159 	}
2160 
2161 	blk_mq_update_dispatch_busy(hctx, false);
2162 	return true;
2163 }
2164 
2165 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2166 {
2167 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2168 
2169 	if (cpu >= nr_cpu_ids)
2170 		cpu = cpumask_first(hctx->cpumask);
2171 	return cpu;
2172 }
2173 
2174 /*
2175  * It'd be great if the workqueue API had a way to pass
2176  * in a mask and had some smarts for more clever placement.
2177  * For now we just round-robin here, switching for every
2178  * BLK_MQ_CPU_WORK_BATCH queued items.
2179  */
2180 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2181 {
2182 	bool tried = false;
2183 	int next_cpu = hctx->next_cpu;
2184 
2185 	if (hctx->queue->nr_hw_queues == 1)
2186 		return WORK_CPU_UNBOUND;
2187 
2188 	if (--hctx->next_cpu_batch <= 0) {
2189 select_cpu:
2190 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2191 				cpu_online_mask);
2192 		if (next_cpu >= nr_cpu_ids)
2193 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2194 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2195 	}
2196 
2197 	/*
2198 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2199 	 * and it should only happen in the path of handling CPU DEAD.
2200 	 */
2201 	if (!cpu_online(next_cpu)) {
2202 		if (!tried) {
2203 			tried = true;
2204 			goto select_cpu;
2205 		}
2206 
2207 		/*
2208 		 * Make sure to re-select CPU next time once after CPUs
2209 		 * in hctx->cpumask become online again.
2210 		 */
2211 		hctx->next_cpu = next_cpu;
2212 		hctx->next_cpu_batch = 1;
2213 		return WORK_CPU_UNBOUND;
2214 	}
2215 
2216 	hctx->next_cpu = next_cpu;
2217 	return next_cpu;
2218 }
2219 
2220 /**
2221  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2222  * @hctx: Pointer to the hardware queue to run.
2223  * @msecs: Milliseconds of delay to wait before running the queue.
2224  *
2225  * Run a hardware queue asynchronously with a delay of @msecs.
2226  */
2227 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2228 {
2229 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2230 		return;
2231 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2232 				    msecs_to_jiffies(msecs));
2233 }
2234 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2235 
2236 /**
2237  * blk_mq_run_hw_queue - Start to run a hardware queue.
2238  * @hctx: Pointer to the hardware queue to run.
2239  * @async: If we want to run the queue asynchronously.
2240  *
2241  * Check if the request queue is not in a quiesced state and if there are
2242  * pending requests to be sent. If this is true, run the queue to send requests
2243  * to hardware.
2244  */
2245 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2246 {
2247 	bool need_run;
2248 
2249 	/*
2250 	 * We can't run the queue inline with interrupts disabled.
2251 	 */
2252 	WARN_ON_ONCE(!async && in_interrupt());
2253 
2254 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2255 
2256 	/*
2257 	 * When queue is quiesced, we may be switching io scheduler, or
2258 	 * updating nr_hw_queues, or other things, and we can't run queue
2259 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2260 	 *
2261 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2262 	 * quiesced.
2263 	 */
2264 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2265 		need_run = !blk_queue_quiesced(hctx->queue) &&
2266 		blk_mq_hctx_has_pending(hctx));
2267 
2268 	if (!need_run)
2269 		return;
2270 
2271 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2272 		blk_mq_delay_run_hw_queue(hctx, 0);
2273 		return;
2274 	}
2275 
2276 	blk_mq_run_dispatch_ops(hctx->queue,
2277 				blk_mq_sched_dispatch_requests(hctx));
2278 }
2279 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2280 
2281 /*
2282  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2283  * scheduler.
2284  */
2285 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2286 {
2287 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2288 	/*
2289 	 * If the IO scheduler does not respect hardware queues when
2290 	 * dispatching, we just don't bother with multiple HW queues and
2291 	 * dispatch from hctx for the current CPU since running multiple queues
2292 	 * just causes lock contention inside the scheduler and pointless cache
2293 	 * bouncing.
2294 	 */
2295 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2296 
2297 	if (!blk_mq_hctx_stopped(hctx))
2298 		return hctx;
2299 	return NULL;
2300 }
2301 
2302 /**
2303  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2304  * @q: Pointer to the request queue to run.
2305  * @async: If we want to run the queue asynchronously.
2306  */
2307 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2308 {
2309 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2310 	unsigned long i;
2311 
2312 	sq_hctx = NULL;
2313 	if (blk_queue_sq_sched(q))
2314 		sq_hctx = blk_mq_get_sq_hctx(q);
2315 	queue_for_each_hw_ctx(q, hctx, i) {
2316 		if (blk_mq_hctx_stopped(hctx))
2317 			continue;
2318 		/*
2319 		 * Dispatch from this hctx either if there's no hctx preferred
2320 		 * by IO scheduler or if it has requests that bypass the
2321 		 * scheduler.
2322 		 */
2323 		if (!sq_hctx || sq_hctx == hctx ||
2324 		    !list_empty_careful(&hctx->dispatch))
2325 			blk_mq_run_hw_queue(hctx, async);
2326 	}
2327 }
2328 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2329 
2330 /**
2331  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2332  * @q: Pointer to the request queue to run.
2333  * @msecs: Milliseconds of delay to wait before running the queues.
2334  */
2335 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2336 {
2337 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2338 	unsigned long i;
2339 
2340 	sq_hctx = NULL;
2341 	if (blk_queue_sq_sched(q))
2342 		sq_hctx = blk_mq_get_sq_hctx(q);
2343 	queue_for_each_hw_ctx(q, hctx, i) {
2344 		if (blk_mq_hctx_stopped(hctx))
2345 			continue;
2346 		/*
2347 		 * If there is already a run_work pending, leave the
2348 		 * pending delay untouched. Otherwise, a hctx can stall
2349 		 * if another hctx is re-delaying the other's work
2350 		 * before the work executes.
2351 		 */
2352 		if (delayed_work_pending(&hctx->run_work))
2353 			continue;
2354 		/*
2355 		 * Dispatch from this hctx either if there's no hctx preferred
2356 		 * by IO scheduler or if it has requests that bypass the
2357 		 * scheduler.
2358 		 */
2359 		if (!sq_hctx || sq_hctx == hctx ||
2360 		    !list_empty_careful(&hctx->dispatch))
2361 			blk_mq_delay_run_hw_queue(hctx, msecs);
2362 	}
2363 }
2364 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2365 
2366 /*
2367  * This function is often used for pausing .queue_rq() by driver when
2368  * there isn't enough resource or some conditions aren't satisfied, and
2369  * BLK_STS_RESOURCE is usually returned.
2370  *
2371  * We do not guarantee that dispatch can be drained or blocked
2372  * after blk_mq_stop_hw_queue() returns. Please use
2373  * blk_mq_quiesce_queue() for that requirement.
2374  */
2375 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2376 {
2377 	cancel_delayed_work(&hctx->run_work);
2378 
2379 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2380 }
2381 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2382 
2383 /*
2384  * This function is often used for pausing .queue_rq() by driver when
2385  * there isn't enough resource or some conditions aren't satisfied, and
2386  * BLK_STS_RESOURCE is usually returned.
2387  *
2388  * We do not guarantee that dispatch can be drained or blocked
2389  * after blk_mq_stop_hw_queues() returns. Please use
2390  * blk_mq_quiesce_queue() for that requirement.
2391  */
2392 void blk_mq_stop_hw_queues(struct request_queue *q)
2393 {
2394 	struct blk_mq_hw_ctx *hctx;
2395 	unsigned long i;
2396 
2397 	queue_for_each_hw_ctx(q, hctx, i)
2398 		blk_mq_stop_hw_queue(hctx);
2399 }
2400 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2401 
2402 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2403 {
2404 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2405 
2406 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2407 }
2408 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2409 
2410 void blk_mq_start_hw_queues(struct request_queue *q)
2411 {
2412 	struct blk_mq_hw_ctx *hctx;
2413 	unsigned long i;
2414 
2415 	queue_for_each_hw_ctx(q, hctx, i)
2416 		blk_mq_start_hw_queue(hctx);
2417 }
2418 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2419 
2420 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2421 {
2422 	if (!blk_mq_hctx_stopped(hctx))
2423 		return;
2424 
2425 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2426 	blk_mq_run_hw_queue(hctx, async);
2427 }
2428 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2429 
2430 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2431 {
2432 	struct blk_mq_hw_ctx *hctx;
2433 	unsigned long i;
2434 
2435 	queue_for_each_hw_ctx(q, hctx, i)
2436 		blk_mq_start_stopped_hw_queue(hctx, async ||
2437 					(hctx->flags & BLK_MQ_F_BLOCKING));
2438 }
2439 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2440 
2441 static void blk_mq_run_work_fn(struct work_struct *work)
2442 {
2443 	struct blk_mq_hw_ctx *hctx =
2444 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2445 
2446 	blk_mq_run_dispatch_ops(hctx->queue,
2447 				blk_mq_sched_dispatch_requests(hctx));
2448 }
2449 
2450 /**
2451  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2452  * @rq: Pointer to request to be inserted.
2453  * @flags: BLK_MQ_INSERT_*
2454  *
2455  * Should only be used carefully, when the caller knows we want to
2456  * bypass a potential IO scheduler on the target device.
2457  */
2458 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2459 {
2460 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2461 
2462 	spin_lock(&hctx->lock);
2463 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2464 		list_add(&rq->queuelist, &hctx->dispatch);
2465 	else
2466 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2467 	spin_unlock(&hctx->lock);
2468 }
2469 
2470 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2471 		struct blk_mq_ctx *ctx, struct list_head *list,
2472 		bool run_queue_async)
2473 {
2474 	struct request *rq;
2475 	enum hctx_type type = hctx->type;
2476 
2477 	/*
2478 	 * Try to issue requests directly if the hw queue isn't busy to save an
2479 	 * extra enqueue & dequeue to the sw queue.
2480 	 */
2481 	if (!hctx->dispatch_busy && !run_queue_async) {
2482 		blk_mq_run_dispatch_ops(hctx->queue,
2483 			blk_mq_try_issue_list_directly(hctx, list));
2484 		if (list_empty(list))
2485 			goto out;
2486 	}
2487 
2488 	/*
2489 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2490 	 * offline now
2491 	 */
2492 	list_for_each_entry(rq, list, queuelist) {
2493 		BUG_ON(rq->mq_ctx != ctx);
2494 		trace_block_rq_insert(rq);
2495 		if (rq->cmd_flags & REQ_NOWAIT)
2496 			run_queue_async = true;
2497 	}
2498 
2499 	spin_lock(&ctx->lock);
2500 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2501 	blk_mq_hctx_mark_pending(hctx, ctx);
2502 	spin_unlock(&ctx->lock);
2503 out:
2504 	blk_mq_run_hw_queue(hctx, run_queue_async);
2505 }
2506 
2507 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2508 {
2509 	struct request_queue *q = rq->q;
2510 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2511 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2512 
2513 	if (blk_rq_is_passthrough(rq)) {
2514 		/*
2515 		 * Passthrough request have to be added to hctx->dispatch
2516 		 * directly.  The device may be in a situation where it can't
2517 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2518 		 * them, which gets them added to hctx->dispatch.
2519 		 *
2520 		 * If a passthrough request is required to unblock the queues,
2521 		 * and it is added to the scheduler queue, there is no chance to
2522 		 * dispatch it given we prioritize requests in hctx->dispatch.
2523 		 */
2524 		blk_mq_request_bypass_insert(rq, flags);
2525 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2526 		/*
2527 		 * Firstly normal IO request is inserted to scheduler queue or
2528 		 * sw queue, meantime we add flush request to dispatch queue(
2529 		 * hctx->dispatch) directly and there is at most one in-flight
2530 		 * flush request for each hw queue, so it doesn't matter to add
2531 		 * flush request to tail or front of the dispatch queue.
2532 		 *
2533 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2534 		 * command, and queueing it will fail when there is any
2535 		 * in-flight normal IO request(NCQ command). When adding flush
2536 		 * rq to the front of hctx->dispatch, it is easier to introduce
2537 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2538 		 * compared with adding to the tail of dispatch queue, then
2539 		 * chance of flush merge is increased, and less flush requests
2540 		 * will be issued to controller. It is observed that ~10% time
2541 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2542 		 * drive when adding flush rq to the front of hctx->dispatch.
2543 		 *
2544 		 * Simply queue flush rq to the front of hctx->dispatch so that
2545 		 * intensive flush workloads can benefit in case of NCQ HW.
2546 		 */
2547 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2548 	} else if (q->elevator) {
2549 		LIST_HEAD(list);
2550 
2551 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2552 
2553 		list_add(&rq->queuelist, &list);
2554 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2555 	} else {
2556 		trace_block_rq_insert(rq);
2557 
2558 		spin_lock(&ctx->lock);
2559 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2560 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2561 		else
2562 			list_add_tail(&rq->queuelist,
2563 				      &ctx->rq_lists[hctx->type]);
2564 		blk_mq_hctx_mark_pending(hctx, ctx);
2565 		spin_unlock(&ctx->lock);
2566 	}
2567 }
2568 
2569 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2570 		unsigned int nr_segs)
2571 {
2572 	int err;
2573 
2574 	if (bio->bi_opf & REQ_RAHEAD)
2575 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2576 
2577 	rq->__sector = bio->bi_iter.bi_sector;
2578 	blk_rq_bio_prep(rq, bio, nr_segs);
2579 
2580 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2581 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2582 	WARN_ON_ONCE(err);
2583 
2584 	blk_account_io_start(rq);
2585 }
2586 
2587 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2588 					    struct request *rq, bool last)
2589 {
2590 	struct request_queue *q = rq->q;
2591 	struct blk_mq_queue_data bd = {
2592 		.rq = rq,
2593 		.last = last,
2594 	};
2595 	blk_status_t ret;
2596 
2597 	/*
2598 	 * For OK queue, we are done. For error, caller may kill it.
2599 	 * Any other error (busy), just add it to our list as we
2600 	 * previously would have done.
2601 	 */
2602 	ret = q->mq_ops->queue_rq(hctx, &bd);
2603 	switch (ret) {
2604 	case BLK_STS_OK:
2605 		blk_mq_update_dispatch_busy(hctx, false);
2606 		break;
2607 	case BLK_STS_RESOURCE:
2608 	case BLK_STS_DEV_RESOURCE:
2609 		blk_mq_update_dispatch_busy(hctx, true);
2610 		__blk_mq_requeue_request(rq);
2611 		break;
2612 	default:
2613 		blk_mq_update_dispatch_busy(hctx, false);
2614 		break;
2615 	}
2616 
2617 	return ret;
2618 }
2619 
2620 static bool blk_mq_get_budget_and_tag(struct request *rq)
2621 {
2622 	int budget_token;
2623 
2624 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2625 	if (budget_token < 0)
2626 		return false;
2627 	blk_mq_set_rq_budget_token(rq, budget_token);
2628 	if (!blk_mq_get_driver_tag(rq)) {
2629 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2630 		return false;
2631 	}
2632 	return true;
2633 }
2634 
2635 /**
2636  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2637  * @hctx: Pointer of the associated hardware queue.
2638  * @rq: Pointer to request to be sent.
2639  *
2640  * If the device has enough resources to accept a new request now, send the
2641  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2642  * we can try send it another time in the future. Requests inserted at this
2643  * queue have higher priority.
2644  */
2645 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2646 		struct request *rq)
2647 {
2648 	blk_status_t ret;
2649 
2650 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651 		blk_mq_insert_request(rq, 0);
2652 		return;
2653 	}
2654 
2655 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2656 		blk_mq_insert_request(rq, 0);
2657 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2658 		return;
2659 	}
2660 
2661 	ret = __blk_mq_issue_directly(hctx, rq, true);
2662 	switch (ret) {
2663 	case BLK_STS_OK:
2664 		break;
2665 	case BLK_STS_RESOURCE:
2666 	case BLK_STS_DEV_RESOURCE:
2667 		blk_mq_request_bypass_insert(rq, 0);
2668 		blk_mq_run_hw_queue(hctx, false);
2669 		break;
2670 	default:
2671 		blk_mq_end_request(rq, ret);
2672 		break;
2673 	}
2674 }
2675 
2676 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2677 {
2678 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2679 
2680 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2681 		blk_mq_insert_request(rq, 0);
2682 		return BLK_STS_OK;
2683 	}
2684 
2685 	if (!blk_mq_get_budget_and_tag(rq))
2686 		return BLK_STS_RESOURCE;
2687 	return __blk_mq_issue_directly(hctx, rq, last);
2688 }
2689 
2690 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2691 {
2692 	struct blk_mq_hw_ctx *hctx = NULL;
2693 	struct request *rq;
2694 	int queued = 0;
2695 	blk_status_t ret = BLK_STS_OK;
2696 
2697 	while ((rq = rq_list_pop(&plug->mq_list))) {
2698 		bool last = rq_list_empty(plug->mq_list);
2699 
2700 		if (hctx != rq->mq_hctx) {
2701 			if (hctx) {
2702 				blk_mq_commit_rqs(hctx, queued, false);
2703 				queued = 0;
2704 			}
2705 			hctx = rq->mq_hctx;
2706 		}
2707 
2708 		ret = blk_mq_request_issue_directly(rq, last);
2709 		switch (ret) {
2710 		case BLK_STS_OK:
2711 			queued++;
2712 			break;
2713 		case BLK_STS_RESOURCE:
2714 		case BLK_STS_DEV_RESOURCE:
2715 			blk_mq_request_bypass_insert(rq, 0);
2716 			blk_mq_run_hw_queue(hctx, false);
2717 			goto out;
2718 		default:
2719 			blk_mq_end_request(rq, ret);
2720 			break;
2721 		}
2722 	}
2723 
2724 out:
2725 	if (ret != BLK_STS_OK)
2726 		blk_mq_commit_rqs(hctx, queued, false);
2727 }
2728 
2729 static void __blk_mq_flush_plug_list(struct request_queue *q,
2730 				     struct blk_plug *plug)
2731 {
2732 	if (blk_queue_quiesced(q))
2733 		return;
2734 	q->mq_ops->queue_rqs(&plug->mq_list);
2735 }
2736 
2737 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2738 {
2739 	struct blk_mq_hw_ctx *this_hctx = NULL;
2740 	struct blk_mq_ctx *this_ctx = NULL;
2741 	struct request *requeue_list = NULL;
2742 	struct request **requeue_lastp = &requeue_list;
2743 	unsigned int depth = 0;
2744 	bool is_passthrough = false;
2745 	LIST_HEAD(list);
2746 
2747 	do {
2748 		struct request *rq = rq_list_pop(&plug->mq_list);
2749 
2750 		if (!this_hctx) {
2751 			this_hctx = rq->mq_hctx;
2752 			this_ctx = rq->mq_ctx;
2753 			is_passthrough = blk_rq_is_passthrough(rq);
2754 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2755 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2756 			rq_list_add_tail(&requeue_lastp, rq);
2757 			continue;
2758 		}
2759 		list_add(&rq->queuelist, &list);
2760 		depth++;
2761 	} while (!rq_list_empty(plug->mq_list));
2762 
2763 	plug->mq_list = requeue_list;
2764 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2765 
2766 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2767 	/* passthrough requests should never be issued to the I/O scheduler */
2768 	if (is_passthrough) {
2769 		spin_lock(&this_hctx->lock);
2770 		list_splice_tail_init(&list, &this_hctx->dispatch);
2771 		spin_unlock(&this_hctx->lock);
2772 		blk_mq_run_hw_queue(this_hctx, from_sched);
2773 	} else if (this_hctx->queue->elevator) {
2774 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2775 				&list, 0);
2776 		blk_mq_run_hw_queue(this_hctx, from_sched);
2777 	} else {
2778 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2779 	}
2780 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2781 }
2782 
2783 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2784 {
2785 	struct request *rq;
2786 
2787 	/*
2788 	 * We may have been called recursively midway through handling
2789 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2790 	 * To avoid mq_list changing under our feet, clear rq_count early and
2791 	 * bail out specifically if rq_count is 0 rather than checking
2792 	 * whether the mq_list is empty.
2793 	 */
2794 	if (plug->rq_count == 0)
2795 		return;
2796 	plug->rq_count = 0;
2797 
2798 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2799 		struct request_queue *q;
2800 
2801 		rq = rq_list_peek(&plug->mq_list);
2802 		q = rq->q;
2803 
2804 		/*
2805 		 * Peek first request and see if we have a ->queue_rqs() hook.
2806 		 * If we do, we can dispatch the whole plug list in one go. We
2807 		 * already know at this point that all requests belong to the
2808 		 * same queue, caller must ensure that's the case.
2809 		 *
2810 		 * Since we pass off the full list to the driver at this point,
2811 		 * we do not increment the active request count for the queue.
2812 		 * Bypass shared tags for now because of that.
2813 		 */
2814 		if (q->mq_ops->queue_rqs &&
2815 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2816 			blk_mq_run_dispatch_ops(q,
2817 				__blk_mq_flush_plug_list(q, plug));
2818 			if (rq_list_empty(plug->mq_list))
2819 				return;
2820 		}
2821 
2822 		blk_mq_run_dispatch_ops(q,
2823 				blk_mq_plug_issue_direct(plug));
2824 		if (rq_list_empty(plug->mq_list))
2825 			return;
2826 	}
2827 
2828 	do {
2829 		blk_mq_dispatch_plug_list(plug, from_schedule);
2830 	} while (!rq_list_empty(plug->mq_list));
2831 }
2832 
2833 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2834 		struct list_head *list)
2835 {
2836 	int queued = 0;
2837 	blk_status_t ret = BLK_STS_OK;
2838 
2839 	while (!list_empty(list)) {
2840 		struct request *rq = list_first_entry(list, struct request,
2841 				queuelist);
2842 
2843 		list_del_init(&rq->queuelist);
2844 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2845 		switch (ret) {
2846 		case BLK_STS_OK:
2847 			queued++;
2848 			break;
2849 		case BLK_STS_RESOURCE:
2850 		case BLK_STS_DEV_RESOURCE:
2851 			blk_mq_request_bypass_insert(rq, 0);
2852 			if (list_empty(list))
2853 				blk_mq_run_hw_queue(hctx, false);
2854 			goto out;
2855 		default:
2856 			blk_mq_end_request(rq, ret);
2857 			break;
2858 		}
2859 	}
2860 
2861 out:
2862 	if (ret != BLK_STS_OK)
2863 		blk_mq_commit_rqs(hctx, queued, false);
2864 }
2865 
2866 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2867 				     struct bio *bio, unsigned int nr_segs)
2868 {
2869 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2870 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2871 			return true;
2872 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2873 			return true;
2874 	}
2875 	return false;
2876 }
2877 
2878 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2879 					       struct blk_plug *plug,
2880 					       struct bio *bio,
2881 					       unsigned int nsegs)
2882 {
2883 	struct blk_mq_alloc_data data = {
2884 		.q		= q,
2885 		.nr_tags	= 1,
2886 		.cmd_flags	= bio->bi_opf,
2887 	};
2888 	struct request *rq;
2889 
2890 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2891 		return NULL;
2892 
2893 	rq_qos_throttle(q, bio);
2894 
2895 	if (plug) {
2896 		data.nr_tags = plug->nr_ios;
2897 		plug->nr_ios = 1;
2898 		data.cached_rq = &plug->cached_rq;
2899 	}
2900 
2901 	rq = __blk_mq_alloc_requests(&data);
2902 	if (rq)
2903 		return rq;
2904 	rq_qos_cleanup(q, bio);
2905 	if (bio->bi_opf & REQ_NOWAIT)
2906 		bio_wouldblock_error(bio);
2907 	return NULL;
2908 }
2909 
2910 /* return true if this @rq can be used for @bio */
2911 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2912 		struct bio *bio)
2913 {
2914 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2915 	enum hctx_type hctx_type = rq->mq_hctx->type;
2916 
2917 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2918 
2919 	if (type != hctx_type &&
2920 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2921 		return false;
2922 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2923 		return false;
2924 
2925 	/*
2926 	 * If any qos ->throttle() end up blocking, we will have flushed the
2927 	 * plug and hence killed the cached_rq list as well. Pop this entry
2928 	 * before we throttle.
2929 	 */
2930 	plug->cached_rq = rq_list_next(rq);
2931 	rq_qos_throttle(rq->q, bio);
2932 
2933 	blk_mq_rq_time_init(rq, 0);
2934 	rq->cmd_flags = bio->bi_opf;
2935 	INIT_LIST_HEAD(&rq->queuelist);
2936 	return true;
2937 }
2938 
2939 static void bio_set_ioprio(struct bio *bio)
2940 {
2941 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2942 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2943 		bio->bi_ioprio = get_current_ioprio();
2944 	blkcg_set_ioprio(bio);
2945 }
2946 
2947 /**
2948  * blk_mq_submit_bio - Create and send a request to block device.
2949  * @bio: Bio pointer.
2950  *
2951  * Builds up a request structure from @q and @bio and send to the device. The
2952  * request may not be queued directly to hardware if:
2953  * * This request can be merged with another one
2954  * * We want to place request at plug queue for possible future merging
2955  * * There is an IO scheduler active at this queue
2956  *
2957  * It will not queue the request if there is an error with the bio, or at the
2958  * request creation.
2959  */
2960 void blk_mq_submit_bio(struct bio *bio)
2961 {
2962 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2963 	struct blk_plug *plug = blk_mq_plug(bio);
2964 	const int is_sync = op_is_sync(bio->bi_opf);
2965 	struct blk_mq_hw_ctx *hctx;
2966 	struct request *rq = NULL;
2967 	unsigned int nr_segs = 1;
2968 	blk_status_t ret;
2969 
2970 	bio = blk_queue_bounce(bio, q);
2971 	if (bio_may_exceed_limits(bio, &q->limits)) {
2972 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2973 		if (!bio)
2974 			return;
2975 	}
2976 
2977 	bio_set_ioprio(bio);
2978 
2979 	if (plug) {
2980 		rq = rq_list_peek(&plug->cached_rq);
2981 		if (rq && rq->q != q)
2982 			rq = NULL;
2983 	}
2984 	if (rq) {
2985 		if (!bio_integrity_prep(bio))
2986 			return;
2987 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2988 			return;
2989 		if (blk_mq_can_use_cached_rq(rq, plug, bio))
2990 			goto done;
2991 		percpu_ref_get(&q->q_usage_counter);
2992 	} else {
2993 		if (unlikely(bio_queue_enter(bio)))
2994 			return;
2995 		if (!bio_integrity_prep(bio))
2996 			goto fail;
2997 	}
2998 
2999 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3000 	if (unlikely(!rq)) {
3001 fail:
3002 		blk_queue_exit(q);
3003 		return;
3004 	}
3005 
3006 done:
3007 	trace_block_getrq(bio);
3008 
3009 	rq_qos_track(q, rq, bio);
3010 
3011 	blk_mq_bio_to_request(rq, bio, nr_segs);
3012 
3013 	ret = blk_crypto_rq_get_keyslot(rq);
3014 	if (ret != BLK_STS_OK) {
3015 		bio->bi_status = ret;
3016 		bio_endio(bio);
3017 		blk_mq_free_request(rq);
3018 		return;
3019 	}
3020 
3021 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3022 		return;
3023 
3024 	if (plug) {
3025 		blk_add_rq_to_plug(plug, rq);
3026 		return;
3027 	}
3028 
3029 	hctx = rq->mq_hctx;
3030 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3031 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3032 		blk_mq_insert_request(rq, 0);
3033 		blk_mq_run_hw_queue(hctx, true);
3034 	} else {
3035 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3036 	}
3037 }
3038 
3039 #ifdef CONFIG_BLK_MQ_STACKING
3040 /**
3041  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3042  * @rq: the request being queued
3043  */
3044 blk_status_t blk_insert_cloned_request(struct request *rq)
3045 {
3046 	struct request_queue *q = rq->q;
3047 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3048 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3049 	blk_status_t ret;
3050 
3051 	if (blk_rq_sectors(rq) > max_sectors) {
3052 		/*
3053 		 * SCSI device does not have a good way to return if
3054 		 * Write Same/Zero is actually supported. If a device rejects
3055 		 * a non-read/write command (discard, write same,etc.) the
3056 		 * low-level device driver will set the relevant queue limit to
3057 		 * 0 to prevent blk-lib from issuing more of the offending
3058 		 * operations. Commands queued prior to the queue limit being
3059 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3060 		 * errors being propagated to upper layers.
3061 		 */
3062 		if (max_sectors == 0)
3063 			return BLK_STS_NOTSUPP;
3064 
3065 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3066 			__func__, blk_rq_sectors(rq), max_sectors);
3067 		return BLK_STS_IOERR;
3068 	}
3069 
3070 	/*
3071 	 * The queue settings related to segment counting may differ from the
3072 	 * original queue.
3073 	 */
3074 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3075 	if (rq->nr_phys_segments > max_segments) {
3076 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3077 			__func__, rq->nr_phys_segments, max_segments);
3078 		return BLK_STS_IOERR;
3079 	}
3080 
3081 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3082 		return BLK_STS_IOERR;
3083 
3084 	ret = blk_crypto_rq_get_keyslot(rq);
3085 	if (ret != BLK_STS_OK)
3086 		return ret;
3087 
3088 	blk_account_io_start(rq);
3089 
3090 	/*
3091 	 * Since we have a scheduler attached on the top device,
3092 	 * bypass a potential scheduler on the bottom device for
3093 	 * insert.
3094 	 */
3095 	blk_mq_run_dispatch_ops(q,
3096 			ret = blk_mq_request_issue_directly(rq, true));
3097 	if (ret)
3098 		blk_account_io_done(rq, ktime_get_ns());
3099 	return ret;
3100 }
3101 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3102 
3103 /**
3104  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3105  * @rq: the clone request to be cleaned up
3106  *
3107  * Description:
3108  *     Free all bios in @rq for a cloned request.
3109  */
3110 void blk_rq_unprep_clone(struct request *rq)
3111 {
3112 	struct bio *bio;
3113 
3114 	while ((bio = rq->bio) != NULL) {
3115 		rq->bio = bio->bi_next;
3116 
3117 		bio_put(bio);
3118 	}
3119 }
3120 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3121 
3122 /**
3123  * blk_rq_prep_clone - Helper function to setup clone request
3124  * @rq: the request to be setup
3125  * @rq_src: original request to be cloned
3126  * @bs: bio_set that bios for clone are allocated from
3127  * @gfp_mask: memory allocation mask for bio
3128  * @bio_ctr: setup function to be called for each clone bio.
3129  *           Returns %0 for success, non %0 for failure.
3130  * @data: private data to be passed to @bio_ctr
3131  *
3132  * Description:
3133  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3134  *     Also, pages which the original bios are pointing to are not copied
3135  *     and the cloned bios just point same pages.
3136  *     So cloned bios must be completed before original bios, which means
3137  *     the caller must complete @rq before @rq_src.
3138  */
3139 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3140 		      struct bio_set *bs, gfp_t gfp_mask,
3141 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3142 		      void *data)
3143 {
3144 	struct bio *bio, *bio_src;
3145 
3146 	if (!bs)
3147 		bs = &fs_bio_set;
3148 
3149 	__rq_for_each_bio(bio_src, rq_src) {
3150 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3151 				      bs);
3152 		if (!bio)
3153 			goto free_and_out;
3154 
3155 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3156 			goto free_and_out;
3157 
3158 		if (rq->bio) {
3159 			rq->biotail->bi_next = bio;
3160 			rq->biotail = bio;
3161 		} else {
3162 			rq->bio = rq->biotail = bio;
3163 		}
3164 		bio = NULL;
3165 	}
3166 
3167 	/* Copy attributes of the original request to the clone request. */
3168 	rq->__sector = blk_rq_pos(rq_src);
3169 	rq->__data_len = blk_rq_bytes(rq_src);
3170 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3171 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3172 		rq->special_vec = rq_src->special_vec;
3173 	}
3174 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3175 	rq->ioprio = rq_src->ioprio;
3176 
3177 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3178 		goto free_and_out;
3179 
3180 	return 0;
3181 
3182 free_and_out:
3183 	if (bio)
3184 		bio_put(bio);
3185 	blk_rq_unprep_clone(rq);
3186 
3187 	return -ENOMEM;
3188 }
3189 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3190 #endif /* CONFIG_BLK_MQ_STACKING */
3191 
3192 /*
3193  * Steal bios from a request and add them to a bio list.
3194  * The request must not have been partially completed before.
3195  */
3196 void blk_steal_bios(struct bio_list *list, struct request *rq)
3197 {
3198 	if (rq->bio) {
3199 		if (list->tail)
3200 			list->tail->bi_next = rq->bio;
3201 		else
3202 			list->head = rq->bio;
3203 		list->tail = rq->biotail;
3204 
3205 		rq->bio = NULL;
3206 		rq->biotail = NULL;
3207 	}
3208 
3209 	rq->__data_len = 0;
3210 }
3211 EXPORT_SYMBOL_GPL(blk_steal_bios);
3212 
3213 static size_t order_to_size(unsigned int order)
3214 {
3215 	return (size_t)PAGE_SIZE << order;
3216 }
3217 
3218 /* called before freeing request pool in @tags */
3219 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3220 				    struct blk_mq_tags *tags)
3221 {
3222 	struct page *page;
3223 	unsigned long flags;
3224 
3225 	/*
3226 	 * There is no need to clear mapping if driver tags is not initialized
3227 	 * or the mapping belongs to the driver tags.
3228 	 */
3229 	if (!drv_tags || drv_tags == tags)
3230 		return;
3231 
3232 	list_for_each_entry(page, &tags->page_list, lru) {
3233 		unsigned long start = (unsigned long)page_address(page);
3234 		unsigned long end = start + order_to_size(page->private);
3235 		int i;
3236 
3237 		for (i = 0; i < drv_tags->nr_tags; i++) {
3238 			struct request *rq = drv_tags->rqs[i];
3239 			unsigned long rq_addr = (unsigned long)rq;
3240 
3241 			if (rq_addr >= start && rq_addr < end) {
3242 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3243 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3244 			}
3245 		}
3246 	}
3247 
3248 	/*
3249 	 * Wait until all pending iteration is done.
3250 	 *
3251 	 * Request reference is cleared and it is guaranteed to be observed
3252 	 * after the ->lock is released.
3253 	 */
3254 	spin_lock_irqsave(&drv_tags->lock, flags);
3255 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3256 }
3257 
3258 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3259 		     unsigned int hctx_idx)
3260 {
3261 	struct blk_mq_tags *drv_tags;
3262 	struct page *page;
3263 
3264 	if (list_empty(&tags->page_list))
3265 		return;
3266 
3267 	if (blk_mq_is_shared_tags(set->flags))
3268 		drv_tags = set->shared_tags;
3269 	else
3270 		drv_tags = set->tags[hctx_idx];
3271 
3272 	if (tags->static_rqs && set->ops->exit_request) {
3273 		int i;
3274 
3275 		for (i = 0; i < tags->nr_tags; i++) {
3276 			struct request *rq = tags->static_rqs[i];
3277 
3278 			if (!rq)
3279 				continue;
3280 			set->ops->exit_request(set, rq, hctx_idx);
3281 			tags->static_rqs[i] = NULL;
3282 		}
3283 	}
3284 
3285 	blk_mq_clear_rq_mapping(drv_tags, tags);
3286 
3287 	while (!list_empty(&tags->page_list)) {
3288 		page = list_first_entry(&tags->page_list, struct page, lru);
3289 		list_del_init(&page->lru);
3290 		/*
3291 		 * Remove kmemleak object previously allocated in
3292 		 * blk_mq_alloc_rqs().
3293 		 */
3294 		kmemleak_free(page_address(page));
3295 		__free_pages(page, page->private);
3296 	}
3297 }
3298 
3299 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3300 {
3301 	kfree(tags->rqs);
3302 	tags->rqs = NULL;
3303 	kfree(tags->static_rqs);
3304 	tags->static_rqs = NULL;
3305 
3306 	blk_mq_free_tags(tags);
3307 }
3308 
3309 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3310 		unsigned int hctx_idx)
3311 {
3312 	int i;
3313 
3314 	for (i = 0; i < set->nr_maps; i++) {
3315 		unsigned int start = set->map[i].queue_offset;
3316 		unsigned int end = start + set->map[i].nr_queues;
3317 
3318 		if (hctx_idx >= start && hctx_idx < end)
3319 			break;
3320 	}
3321 
3322 	if (i >= set->nr_maps)
3323 		i = HCTX_TYPE_DEFAULT;
3324 
3325 	return i;
3326 }
3327 
3328 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3329 		unsigned int hctx_idx)
3330 {
3331 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3332 
3333 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3334 }
3335 
3336 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3337 					       unsigned int hctx_idx,
3338 					       unsigned int nr_tags,
3339 					       unsigned int reserved_tags)
3340 {
3341 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3342 	struct blk_mq_tags *tags;
3343 
3344 	if (node == NUMA_NO_NODE)
3345 		node = set->numa_node;
3346 
3347 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3348 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3349 	if (!tags)
3350 		return NULL;
3351 
3352 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3353 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3354 				 node);
3355 	if (!tags->rqs)
3356 		goto err_free_tags;
3357 
3358 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3359 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3360 					node);
3361 	if (!tags->static_rqs)
3362 		goto err_free_rqs;
3363 
3364 	return tags;
3365 
3366 err_free_rqs:
3367 	kfree(tags->rqs);
3368 err_free_tags:
3369 	blk_mq_free_tags(tags);
3370 	return NULL;
3371 }
3372 
3373 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3374 			       unsigned int hctx_idx, int node)
3375 {
3376 	int ret;
3377 
3378 	if (set->ops->init_request) {
3379 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3380 		if (ret)
3381 			return ret;
3382 	}
3383 
3384 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3385 	return 0;
3386 }
3387 
3388 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3389 			    struct blk_mq_tags *tags,
3390 			    unsigned int hctx_idx, unsigned int depth)
3391 {
3392 	unsigned int i, j, entries_per_page, max_order = 4;
3393 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3394 	size_t rq_size, left;
3395 
3396 	if (node == NUMA_NO_NODE)
3397 		node = set->numa_node;
3398 
3399 	INIT_LIST_HEAD(&tags->page_list);
3400 
3401 	/*
3402 	 * rq_size is the size of the request plus driver payload, rounded
3403 	 * to the cacheline size
3404 	 */
3405 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3406 				cache_line_size());
3407 	left = rq_size * depth;
3408 
3409 	for (i = 0; i < depth; ) {
3410 		int this_order = max_order;
3411 		struct page *page;
3412 		int to_do;
3413 		void *p;
3414 
3415 		while (this_order && left < order_to_size(this_order - 1))
3416 			this_order--;
3417 
3418 		do {
3419 			page = alloc_pages_node(node,
3420 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3421 				this_order);
3422 			if (page)
3423 				break;
3424 			if (!this_order--)
3425 				break;
3426 			if (order_to_size(this_order) < rq_size)
3427 				break;
3428 		} while (1);
3429 
3430 		if (!page)
3431 			goto fail;
3432 
3433 		page->private = this_order;
3434 		list_add_tail(&page->lru, &tags->page_list);
3435 
3436 		p = page_address(page);
3437 		/*
3438 		 * Allow kmemleak to scan these pages as they contain pointers
3439 		 * to additional allocations like via ops->init_request().
3440 		 */
3441 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3442 		entries_per_page = order_to_size(this_order) / rq_size;
3443 		to_do = min(entries_per_page, depth - i);
3444 		left -= to_do * rq_size;
3445 		for (j = 0; j < to_do; j++) {
3446 			struct request *rq = p;
3447 
3448 			tags->static_rqs[i] = rq;
3449 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3450 				tags->static_rqs[i] = NULL;
3451 				goto fail;
3452 			}
3453 
3454 			p += rq_size;
3455 			i++;
3456 		}
3457 	}
3458 	return 0;
3459 
3460 fail:
3461 	blk_mq_free_rqs(set, tags, hctx_idx);
3462 	return -ENOMEM;
3463 }
3464 
3465 struct rq_iter_data {
3466 	struct blk_mq_hw_ctx *hctx;
3467 	bool has_rq;
3468 };
3469 
3470 static bool blk_mq_has_request(struct request *rq, void *data)
3471 {
3472 	struct rq_iter_data *iter_data = data;
3473 
3474 	if (rq->mq_hctx != iter_data->hctx)
3475 		return true;
3476 	iter_data->has_rq = true;
3477 	return false;
3478 }
3479 
3480 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3481 {
3482 	struct blk_mq_tags *tags = hctx->sched_tags ?
3483 			hctx->sched_tags : hctx->tags;
3484 	struct rq_iter_data data = {
3485 		.hctx	= hctx,
3486 	};
3487 
3488 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3489 	return data.has_rq;
3490 }
3491 
3492 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3493 		struct blk_mq_hw_ctx *hctx)
3494 {
3495 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3496 		return false;
3497 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3498 		return false;
3499 	return true;
3500 }
3501 
3502 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3503 {
3504 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3505 			struct blk_mq_hw_ctx, cpuhp_online);
3506 
3507 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3508 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3509 		return 0;
3510 
3511 	/*
3512 	 * Prevent new request from being allocated on the current hctx.
3513 	 *
3514 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3515 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3516 	 * seen once we return from the tag allocator.
3517 	 */
3518 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3519 	smp_mb__after_atomic();
3520 
3521 	/*
3522 	 * Try to grab a reference to the queue and wait for any outstanding
3523 	 * requests.  If we could not grab a reference the queue has been
3524 	 * frozen and there are no requests.
3525 	 */
3526 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3527 		while (blk_mq_hctx_has_requests(hctx))
3528 			msleep(5);
3529 		percpu_ref_put(&hctx->queue->q_usage_counter);
3530 	}
3531 
3532 	return 0;
3533 }
3534 
3535 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3536 {
3537 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3538 			struct blk_mq_hw_ctx, cpuhp_online);
3539 
3540 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3541 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3542 	return 0;
3543 }
3544 
3545 /*
3546  * 'cpu' is going away. splice any existing rq_list entries from this
3547  * software queue to the hw queue dispatch list, and ensure that it
3548  * gets run.
3549  */
3550 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3551 {
3552 	struct blk_mq_hw_ctx *hctx;
3553 	struct blk_mq_ctx *ctx;
3554 	LIST_HEAD(tmp);
3555 	enum hctx_type type;
3556 
3557 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3558 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3559 		return 0;
3560 
3561 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3562 	type = hctx->type;
3563 
3564 	spin_lock(&ctx->lock);
3565 	if (!list_empty(&ctx->rq_lists[type])) {
3566 		list_splice_init(&ctx->rq_lists[type], &tmp);
3567 		blk_mq_hctx_clear_pending(hctx, ctx);
3568 	}
3569 	spin_unlock(&ctx->lock);
3570 
3571 	if (list_empty(&tmp))
3572 		return 0;
3573 
3574 	spin_lock(&hctx->lock);
3575 	list_splice_tail_init(&tmp, &hctx->dispatch);
3576 	spin_unlock(&hctx->lock);
3577 
3578 	blk_mq_run_hw_queue(hctx, true);
3579 	return 0;
3580 }
3581 
3582 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3583 {
3584 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3585 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3586 						    &hctx->cpuhp_online);
3587 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3588 					    &hctx->cpuhp_dead);
3589 }
3590 
3591 /*
3592  * Before freeing hw queue, clearing the flush request reference in
3593  * tags->rqs[] for avoiding potential UAF.
3594  */
3595 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3596 		unsigned int queue_depth, struct request *flush_rq)
3597 {
3598 	int i;
3599 	unsigned long flags;
3600 
3601 	/* The hw queue may not be mapped yet */
3602 	if (!tags)
3603 		return;
3604 
3605 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3606 
3607 	for (i = 0; i < queue_depth; i++)
3608 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3609 
3610 	/*
3611 	 * Wait until all pending iteration is done.
3612 	 *
3613 	 * Request reference is cleared and it is guaranteed to be observed
3614 	 * after the ->lock is released.
3615 	 */
3616 	spin_lock_irqsave(&tags->lock, flags);
3617 	spin_unlock_irqrestore(&tags->lock, flags);
3618 }
3619 
3620 /* hctx->ctxs will be freed in queue's release handler */
3621 static void blk_mq_exit_hctx(struct request_queue *q,
3622 		struct blk_mq_tag_set *set,
3623 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3624 {
3625 	struct request *flush_rq = hctx->fq->flush_rq;
3626 
3627 	if (blk_mq_hw_queue_mapped(hctx))
3628 		blk_mq_tag_idle(hctx);
3629 
3630 	if (blk_queue_init_done(q))
3631 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3632 				set->queue_depth, flush_rq);
3633 	if (set->ops->exit_request)
3634 		set->ops->exit_request(set, flush_rq, hctx_idx);
3635 
3636 	if (set->ops->exit_hctx)
3637 		set->ops->exit_hctx(hctx, hctx_idx);
3638 
3639 	blk_mq_remove_cpuhp(hctx);
3640 
3641 	xa_erase(&q->hctx_table, hctx_idx);
3642 
3643 	spin_lock(&q->unused_hctx_lock);
3644 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3645 	spin_unlock(&q->unused_hctx_lock);
3646 }
3647 
3648 static void blk_mq_exit_hw_queues(struct request_queue *q,
3649 		struct blk_mq_tag_set *set, int nr_queue)
3650 {
3651 	struct blk_mq_hw_ctx *hctx;
3652 	unsigned long i;
3653 
3654 	queue_for_each_hw_ctx(q, hctx, i) {
3655 		if (i == nr_queue)
3656 			break;
3657 		blk_mq_exit_hctx(q, set, hctx, i);
3658 	}
3659 }
3660 
3661 static int blk_mq_init_hctx(struct request_queue *q,
3662 		struct blk_mq_tag_set *set,
3663 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3664 {
3665 	hctx->queue_num = hctx_idx;
3666 
3667 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3668 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3669 				&hctx->cpuhp_online);
3670 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3671 
3672 	hctx->tags = set->tags[hctx_idx];
3673 
3674 	if (set->ops->init_hctx &&
3675 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3676 		goto unregister_cpu_notifier;
3677 
3678 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3679 				hctx->numa_node))
3680 		goto exit_hctx;
3681 
3682 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3683 		goto exit_flush_rq;
3684 
3685 	return 0;
3686 
3687  exit_flush_rq:
3688 	if (set->ops->exit_request)
3689 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3690  exit_hctx:
3691 	if (set->ops->exit_hctx)
3692 		set->ops->exit_hctx(hctx, hctx_idx);
3693  unregister_cpu_notifier:
3694 	blk_mq_remove_cpuhp(hctx);
3695 	return -1;
3696 }
3697 
3698 static struct blk_mq_hw_ctx *
3699 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3700 		int node)
3701 {
3702 	struct blk_mq_hw_ctx *hctx;
3703 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3704 
3705 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3706 	if (!hctx)
3707 		goto fail_alloc_hctx;
3708 
3709 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3710 		goto free_hctx;
3711 
3712 	atomic_set(&hctx->nr_active, 0);
3713 	if (node == NUMA_NO_NODE)
3714 		node = set->numa_node;
3715 	hctx->numa_node = node;
3716 
3717 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3718 	spin_lock_init(&hctx->lock);
3719 	INIT_LIST_HEAD(&hctx->dispatch);
3720 	hctx->queue = q;
3721 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3722 
3723 	INIT_LIST_HEAD(&hctx->hctx_list);
3724 
3725 	/*
3726 	 * Allocate space for all possible cpus to avoid allocation at
3727 	 * runtime
3728 	 */
3729 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3730 			gfp, node);
3731 	if (!hctx->ctxs)
3732 		goto free_cpumask;
3733 
3734 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3735 				gfp, node, false, false))
3736 		goto free_ctxs;
3737 	hctx->nr_ctx = 0;
3738 
3739 	spin_lock_init(&hctx->dispatch_wait_lock);
3740 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3741 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3742 
3743 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3744 	if (!hctx->fq)
3745 		goto free_bitmap;
3746 
3747 	blk_mq_hctx_kobj_init(hctx);
3748 
3749 	return hctx;
3750 
3751  free_bitmap:
3752 	sbitmap_free(&hctx->ctx_map);
3753  free_ctxs:
3754 	kfree(hctx->ctxs);
3755  free_cpumask:
3756 	free_cpumask_var(hctx->cpumask);
3757  free_hctx:
3758 	kfree(hctx);
3759  fail_alloc_hctx:
3760 	return NULL;
3761 }
3762 
3763 static void blk_mq_init_cpu_queues(struct request_queue *q,
3764 				   unsigned int nr_hw_queues)
3765 {
3766 	struct blk_mq_tag_set *set = q->tag_set;
3767 	unsigned int i, j;
3768 
3769 	for_each_possible_cpu(i) {
3770 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3771 		struct blk_mq_hw_ctx *hctx;
3772 		int k;
3773 
3774 		__ctx->cpu = i;
3775 		spin_lock_init(&__ctx->lock);
3776 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3777 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3778 
3779 		__ctx->queue = q;
3780 
3781 		/*
3782 		 * Set local node, IFF we have more than one hw queue. If
3783 		 * not, we remain on the home node of the device
3784 		 */
3785 		for (j = 0; j < set->nr_maps; j++) {
3786 			hctx = blk_mq_map_queue_type(q, j, i);
3787 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3788 				hctx->numa_node = cpu_to_node(i);
3789 		}
3790 	}
3791 }
3792 
3793 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3794 					     unsigned int hctx_idx,
3795 					     unsigned int depth)
3796 {
3797 	struct blk_mq_tags *tags;
3798 	int ret;
3799 
3800 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3801 	if (!tags)
3802 		return NULL;
3803 
3804 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3805 	if (ret) {
3806 		blk_mq_free_rq_map(tags);
3807 		return NULL;
3808 	}
3809 
3810 	return tags;
3811 }
3812 
3813 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3814 				       int hctx_idx)
3815 {
3816 	if (blk_mq_is_shared_tags(set->flags)) {
3817 		set->tags[hctx_idx] = set->shared_tags;
3818 
3819 		return true;
3820 	}
3821 
3822 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3823 						       set->queue_depth);
3824 
3825 	return set->tags[hctx_idx];
3826 }
3827 
3828 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3829 			     struct blk_mq_tags *tags,
3830 			     unsigned int hctx_idx)
3831 {
3832 	if (tags) {
3833 		blk_mq_free_rqs(set, tags, hctx_idx);
3834 		blk_mq_free_rq_map(tags);
3835 	}
3836 }
3837 
3838 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3839 				      unsigned int hctx_idx)
3840 {
3841 	if (!blk_mq_is_shared_tags(set->flags))
3842 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3843 
3844 	set->tags[hctx_idx] = NULL;
3845 }
3846 
3847 static void blk_mq_map_swqueue(struct request_queue *q)
3848 {
3849 	unsigned int j, hctx_idx;
3850 	unsigned long i;
3851 	struct blk_mq_hw_ctx *hctx;
3852 	struct blk_mq_ctx *ctx;
3853 	struct blk_mq_tag_set *set = q->tag_set;
3854 
3855 	queue_for_each_hw_ctx(q, hctx, i) {
3856 		cpumask_clear(hctx->cpumask);
3857 		hctx->nr_ctx = 0;
3858 		hctx->dispatch_from = NULL;
3859 	}
3860 
3861 	/*
3862 	 * Map software to hardware queues.
3863 	 *
3864 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3865 	 */
3866 	for_each_possible_cpu(i) {
3867 
3868 		ctx = per_cpu_ptr(q->queue_ctx, i);
3869 		for (j = 0; j < set->nr_maps; j++) {
3870 			if (!set->map[j].nr_queues) {
3871 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3872 						HCTX_TYPE_DEFAULT, i);
3873 				continue;
3874 			}
3875 			hctx_idx = set->map[j].mq_map[i];
3876 			/* unmapped hw queue can be remapped after CPU topo changed */
3877 			if (!set->tags[hctx_idx] &&
3878 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3879 				/*
3880 				 * If tags initialization fail for some hctx,
3881 				 * that hctx won't be brought online.  In this
3882 				 * case, remap the current ctx to hctx[0] which
3883 				 * is guaranteed to always have tags allocated
3884 				 */
3885 				set->map[j].mq_map[i] = 0;
3886 			}
3887 
3888 			hctx = blk_mq_map_queue_type(q, j, i);
3889 			ctx->hctxs[j] = hctx;
3890 			/*
3891 			 * If the CPU is already set in the mask, then we've
3892 			 * mapped this one already. This can happen if
3893 			 * devices share queues across queue maps.
3894 			 */
3895 			if (cpumask_test_cpu(i, hctx->cpumask))
3896 				continue;
3897 
3898 			cpumask_set_cpu(i, hctx->cpumask);
3899 			hctx->type = j;
3900 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3901 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3902 
3903 			/*
3904 			 * If the nr_ctx type overflows, we have exceeded the
3905 			 * amount of sw queues we can support.
3906 			 */
3907 			BUG_ON(!hctx->nr_ctx);
3908 		}
3909 
3910 		for (; j < HCTX_MAX_TYPES; j++)
3911 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3912 					HCTX_TYPE_DEFAULT, i);
3913 	}
3914 
3915 	queue_for_each_hw_ctx(q, hctx, i) {
3916 		/*
3917 		 * If no software queues are mapped to this hardware queue,
3918 		 * disable it and free the request entries.
3919 		 */
3920 		if (!hctx->nr_ctx) {
3921 			/* Never unmap queue 0.  We need it as a
3922 			 * fallback in case of a new remap fails
3923 			 * allocation
3924 			 */
3925 			if (i)
3926 				__blk_mq_free_map_and_rqs(set, i);
3927 
3928 			hctx->tags = NULL;
3929 			continue;
3930 		}
3931 
3932 		hctx->tags = set->tags[i];
3933 		WARN_ON(!hctx->tags);
3934 
3935 		/*
3936 		 * Set the map size to the number of mapped software queues.
3937 		 * This is more accurate and more efficient than looping
3938 		 * over all possibly mapped software queues.
3939 		 */
3940 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3941 
3942 		/*
3943 		 * Initialize batch roundrobin counts
3944 		 */
3945 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3946 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3947 	}
3948 }
3949 
3950 /*
3951  * Caller needs to ensure that we're either frozen/quiesced, or that
3952  * the queue isn't live yet.
3953  */
3954 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3955 {
3956 	struct blk_mq_hw_ctx *hctx;
3957 	unsigned long i;
3958 
3959 	queue_for_each_hw_ctx(q, hctx, i) {
3960 		if (shared) {
3961 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3962 		} else {
3963 			blk_mq_tag_idle(hctx);
3964 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3965 		}
3966 	}
3967 }
3968 
3969 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3970 					 bool shared)
3971 {
3972 	struct request_queue *q;
3973 
3974 	lockdep_assert_held(&set->tag_list_lock);
3975 
3976 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3977 		blk_mq_freeze_queue(q);
3978 		queue_set_hctx_shared(q, shared);
3979 		blk_mq_unfreeze_queue(q);
3980 	}
3981 }
3982 
3983 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3984 {
3985 	struct blk_mq_tag_set *set = q->tag_set;
3986 
3987 	mutex_lock(&set->tag_list_lock);
3988 	list_del(&q->tag_set_list);
3989 	if (list_is_singular(&set->tag_list)) {
3990 		/* just transitioned to unshared */
3991 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3992 		/* update existing queue */
3993 		blk_mq_update_tag_set_shared(set, false);
3994 	}
3995 	mutex_unlock(&set->tag_list_lock);
3996 	INIT_LIST_HEAD(&q->tag_set_list);
3997 }
3998 
3999 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4000 				     struct request_queue *q)
4001 {
4002 	mutex_lock(&set->tag_list_lock);
4003 
4004 	/*
4005 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4006 	 */
4007 	if (!list_empty(&set->tag_list) &&
4008 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4009 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4010 		/* update existing queue */
4011 		blk_mq_update_tag_set_shared(set, true);
4012 	}
4013 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4014 		queue_set_hctx_shared(q, true);
4015 	list_add_tail(&q->tag_set_list, &set->tag_list);
4016 
4017 	mutex_unlock(&set->tag_list_lock);
4018 }
4019 
4020 /* All allocations will be freed in release handler of q->mq_kobj */
4021 static int blk_mq_alloc_ctxs(struct request_queue *q)
4022 {
4023 	struct blk_mq_ctxs *ctxs;
4024 	int cpu;
4025 
4026 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4027 	if (!ctxs)
4028 		return -ENOMEM;
4029 
4030 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4031 	if (!ctxs->queue_ctx)
4032 		goto fail;
4033 
4034 	for_each_possible_cpu(cpu) {
4035 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4036 		ctx->ctxs = ctxs;
4037 	}
4038 
4039 	q->mq_kobj = &ctxs->kobj;
4040 	q->queue_ctx = ctxs->queue_ctx;
4041 
4042 	return 0;
4043  fail:
4044 	kfree(ctxs);
4045 	return -ENOMEM;
4046 }
4047 
4048 /*
4049  * It is the actual release handler for mq, but we do it from
4050  * request queue's release handler for avoiding use-after-free
4051  * and headache because q->mq_kobj shouldn't have been introduced,
4052  * but we can't group ctx/kctx kobj without it.
4053  */
4054 void blk_mq_release(struct request_queue *q)
4055 {
4056 	struct blk_mq_hw_ctx *hctx, *next;
4057 	unsigned long i;
4058 
4059 	queue_for_each_hw_ctx(q, hctx, i)
4060 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4061 
4062 	/* all hctx are in .unused_hctx_list now */
4063 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4064 		list_del_init(&hctx->hctx_list);
4065 		kobject_put(&hctx->kobj);
4066 	}
4067 
4068 	xa_destroy(&q->hctx_table);
4069 
4070 	/*
4071 	 * release .mq_kobj and sw queue's kobject now because
4072 	 * both share lifetime with request queue.
4073 	 */
4074 	blk_mq_sysfs_deinit(q);
4075 }
4076 
4077 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4078 		void *queuedata)
4079 {
4080 	struct request_queue *q;
4081 	int ret;
4082 
4083 	q = blk_alloc_queue(set->numa_node);
4084 	if (!q)
4085 		return ERR_PTR(-ENOMEM);
4086 	q->queuedata = queuedata;
4087 	ret = blk_mq_init_allocated_queue(set, q);
4088 	if (ret) {
4089 		blk_put_queue(q);
4090 		return ERR_PTR(ret);
4091 	}
4092 	return q;
4093 }
4094 
4095 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4096 {
4097 	return blk_mq_init_queue_data(set, NULL);
4098 }
4099 EXPORT_SYMBOL(blk_mq_init_queue);
4100 
4101 /**
4102  * blk_mq_destroy_queue - shutdown a request queue
4103  * @q: request queue to shutdown
4104  *
4105  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4106  * requests will be failed with -ENODEV. The caller is responsible for dropping
4107  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4108  *
4109  * Context: can sleep
4110  */
4111 void blk_mq_destroy_queue(struct request_queue *q)
4112 {
4113 	WARN_ON_ONCE(!queue_is_mq(q));
4114 	WARN_ON_ONCE(blk_queue_registered(q));
4115 
4116 	might_sleep();
4117 
4118 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4119 	blk_queue_start_drain(q);
4120 	blk_mq_freeze_queue_wait(q);
4121 
4122 	blk_sync_queue(q);
4123 	blk_mq_cancel_work_sync(q);
4124 	blk_mq_exit_queue(q);
4125 }
4126 EXPORT_SYMBOL(blk_mq_destroy_queue);
4127 
4128 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4129 		struct lock_class_key *lkclass)
4130 {
4131 	struct request_queue *q;
4132 	struct gendisk *disk;
4133 
4134 	q = blk_mq_init_queue_data(set, queuedata);
4135 	if (IS_ERR(q))
4136 		return ERR_CAST(q);
4137 
4138 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4139 	if (!disk) {
4140 		blk_mq_destroy_queue(q);
4141 		blk_put_queue(q);
4142 		return ERR_PTR(-ENOMEM);
4143 	}
4144 	set_bit(GD_OWNS_QUEUE, &disk->state);
4145 	return disk;
4146 }
4147 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4148 
4149 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4150 		struct lock_class_key *lkclass)
4151 {
4152 	struct gendisk *disk;
4153 
4154 	if (!blk_get_queue(q))
4155 		return NULL;
4156 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4157 	if (!disk)
4158 		blk_put_queue(q);
4159 	return disk;
4160 }
4161 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4162 
4163 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4164 		struct blk_mq_tag_set *set, struct request_queue *q,
4165 		int hctx_idx, int node)
4166 {
4167 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4168 
4169 	/* reuse dead hctx first */
4170 	spin_lock(&q->unused_hctx_lock);
4171 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4172 		if (tmp->numa_node == node) {
4173 			hctx = tmp;
4174 			break;
4175 		}
4176 	}
4177 	if (hctx)
4178 		list_del_init(&hctx->hctx_list);
4179 	spin_unlock(&q->unused_hctx_lock);
4180 
4181 	if (!hctx)
4182 		hctx = blk_mq_alloc_hctx(q, set, node);
4183 	if (!hctx)
4184 		goto fail;
4185 
4186 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4187 		goto free_hctx;
4188 
4189 	return hctx;
4190 
4191  free_hctx:
4192 	kobject_put(&hctx->kobj);
4193  fail:
4194 	return NULL;
4195 }
4196 
4197 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4198 						struct request_queue *q)
4199 {
4200 	struct blk_mq_hw_ctx *hctx;
4201 	unsigned long i, j;
4202 
4203 	/* protect against switching io scheduler  */
4204 	mutex_lock(&q->sysfs_lock);
4205 	for (i = 0; i < set->nr_hw_queues; i++) {
4206 		int old_node;
4207 		int node = blk_mq_get_hctx_node(set, i);
4208 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4209 
4210 		if (old_hctx) {
4211 			old_node = old_hctx->numa_node;
4212 			blk_mq_exit_hctx(q, set, old_hctx, i);
4213 		}
4214 
4215 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4216 			if (!old_hctx)
4217 				break;
4218 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4219 					node, old_node);
4220 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4221 			WARN_ON_ONCE(!hctx);
4222 		}
4223 	}
4224 	/*
4225 	 * Increasing nr_hw_queues fails. Free the newly allocated
4226 	 * hctxs and keep the previous q->nr_hw_queues.
4227 	 */
4228 	if (i != set->nr_hw_queues) {
4229 		j = q->nr_hw_queues;
4230 	} else {
4231 		j = i;
4232 		q->nr_hw_queues = set->nr_hw_queues;
4233 	}
4234 
4235 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4236 		blk_mq_exit_hctx(q, set, hctx, j);
4237 	mutex_unlock(&q->sysfs_lock);
4238 }
4239 
4240 static void blk_mq_update_poll_flag(struct request_queue *q)
4241 {
4242 	struct blk_mq_tag_set *set = q->tag_set;
4243 
4244 	if (set->nr_maps > HCTX_TYPE_POLL &&
4245 	    set->map[HCTX_TYPE_POLL].nr_queues)
4246 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4247 	else
4248 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4249 }
4250 
4251 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4252 		struct request_queue *q)
4253 {
4254 	/* mark the queue as mq asap */
4255 	q->mq_ops = set->ops;
4256 
4257 	if (blk_mq_alloc_ctxs(q))
4258 		goto err_exit;
4259 
4260 	/* init q->mq_kobj and sw queues' kobjects */
4261 	blk_mq_sysfs_init(q);
4262 
4263 	INIT_LIST_HEAD(&q->unused_hctx_list);
4264 	spin_lock_init(&q->unused_hctx_lock);
4265 
4266 	xa_init(&q->hctx_table);
4267 
4268 	blk_mq_realloc_hw_ctxs(set, q);
4269 	if (!q->nr_hw_queues)
4270 		goto err_hctxs;
4271 
4272 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4273 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4274 
4275 	q->tag_set = set;
4276 
4277 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4278 	blk_mq_update_poll_flag(q);
4279 
4280 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4281 	INIT_LIST_HEAD(&q->flush_list);
4282 	INIT_LIST_HEAD(&q->requeue_list);
4283 	spin_lock_init(&q->requeue_lock);
4284 
4285 	q->nr_requests = set->queue_depth;
4286 
4287 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4288 	blk_mq_add_queue_tag_set(set, q);
4289 	blk_mq_map_swqueue(q);
4290 	return 0;
4291 
4292 err_hctxs:
4293 	blk_mq_release(q);
4294 err_exit:
4295 	q->mq_ops = NULL;
4296 	return -ENOMEM;
4297 }
4298 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4299 
4300 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4301 void blk_mq_exit_queue(struct request_queue *q)
4302 {
4303 	struct blk_mq_tag_set *set = q->tag_set;
4304 
4305 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4306 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4307 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4308 	blk_mq_del_queue_tag_set(q);
4309 }
4310 
4311 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4312 {
4313 	int i;
4314 
4315 	if (blk_mq_is_shared_tags(set->flags)) {
4316 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4317 						BLK_MQ_NO_HCTX_IDX,
4318 						set->queue_depth);
4319 		if (!set->shared_tags)
4320 			return -ENOMEM;
4321 	}
4322 
4323 	for (i = 0; i < set->nr_hw_queues; i++) {
4324 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4325 			goto out_unwind;
4326 		cond_resched();
4327 	}
4328 
4329 	return 0;
4330 
4331 out_unwind:
4332 	while (--i >= 0)
4333 		__blk_mq_free_map_and_rqs(set, i);
4334 
4335 	if (blk_mq_is_shared_tags(set->flags)) {
4336 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4337 					BLK_MQ_NO_HCTX_IDX);
4338 	}
4339 
4340 	return -ENOMEM;
4341 }
4342 
4343 /*
4344  * Allocate the request maps associated with this tag_set. Note that this
4345  * may reduce the depth asked for, if memory is tight. set->queue_depth
4346  * will be updated to reflect the allocated depth.
4347  */
4348 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4349 {
4350 	unsigned int depth;
4351 	int err;
4352 
4353 	depth = set->queue_depth;
4354 	do {
4355 		err = __blk_mq_alloc_rq_maps(set);
4356 		if (!err)
4357 			break;
4358 
4359 		set->queue_depth >>= 1;
4360 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4361 			err = -ENOMEM;
4362 			break;
4363 		}
4364 	} while (set->queue_depth);
4365 
4366 	if (!set->queue_depth || err) {
4367 		pr_err("blk-mq: failed to allocate request map\n");
4368 		return -ENOMEM;
4369 	}
4370 
4371 	if (depth != set->queue_depth)
4372 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4373 						depth, set->queue_depth);
4374 
4375 	return 0;
4376 }
4377 
4378 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4379 {
4380 	/*
4381 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4382 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4383 	 * number of hardware queues.
4384 	 */
4385 	if (set->nr_maps == 1)
4386 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4387 
4388 	if (set->ops->map_queues && !is_kdump_kernel()) {
4389 		int i;
4390 
4391 		/*
4392 		 * transport .map_queues is usually done in the following
4393 		 * way:
4394 		 *
4395 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4396 		 * 	mask = get_cpu_mask(queue)
4397 		 * 	for_each_cpu(cpu, mask)
4398 		 * 		set->map[x].mq_map[cpu] = queue;
4399 		 * }
4400 		 *
4401 		 * When we need to remap, the table has to be cleared for
4402 		 * killing stale mapping since one CPU may not be mapped
4403 		 * to any hw queue.
4404 		 */
4405 		for (i = 0; i < set->nr_maps; i++)
4406 			blk_mq_clear_mq_map(&set->map[i]);
4407 
4408 		set->ops->map_queues(set);
4409 	} else {
4410 		BUG_ON(set->nr_maps > 1);
4411 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4412 	}
4413 }
4414 
4415 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4416 				       int new_nr_hw_queues)
4417 {
4418 	struct blk_mq_tags **new_tags;
4419 	int i;
4420 
4421 	if (set->nr_hw_queues >= new_nr_hw_queues)
4422 		goto done;
4423 
4424 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4425 				GFP_KERNEL, set->numa_node);
4426 	if (!new_tags)
4427 		return -ENOMEM;
4428 
4429 	if (set->tags)
4430 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4431 		       sizeof(*set->tags));
4432 	kfree(set->tags);
4433 	set->tags = new_tags;
4434 
4435 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4436 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4437 			while (--i >= set->nr_hw_queues)
4438 				__blk_mq_free_map_and_rqs(set, i);
4439 			return -ENOMEM;
4440 		}
4441 		cond_resched();
4442 	}
4443 
4444 done:
4445 	set->nr_hw_queues = new_nr_hw_queues;
4446 	return 0;
4447 }
4448 
4449 /*
4450  * Alloc a tag set to be associated with one or more request queues.
4451  * May fail with EINVAL for various error conditions. May adjust the
4452  * requested depth down, if it's too large. In that case, the set
4453  * value will be stored in set->queue_depth.
4454  */
4455 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4456 {
4457 	int i, ret;
4458 
4459 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4460 
4461 	if (!set->nr_hw_queues)
4462 		return -EINVAL;
4463 	if (!set->queue_depth)
4464 		return -EINVAL;
4465 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4466 		return -EINVAL;
4467 
4468 	if (!set->ops->queue_rq)
4469 		return -EINVAL;
4470 
4471 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4472 		return -EINVAL;
4473 
4474 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4475 		pr_info("blk-mq: reduced tag depth to %u\n",
4476 			BLK_MQ_MAX_DEPTH);
4477 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4478 	}
4479 
4480 	if (!set->nr_maps)
4481 		set->nr_maps = 1;
4482 	else if (set->nr_maps > HCTX_MAX_TYPES)
4483 		return -EINVAL;
4484 
4485 	/*
4486 	 * If a crashdump is active, then we are potentially in a very
4487 	 * memory constrained environment. Limit us to 1 queue and
4488 	 * 64 tags to prevent using too much memory.
4489 	 */
4490 	if (is_kdump_kernel()) {
4491 		set->nr_hw_queues = 1;
4492 		set->nr_maps = 1;
4493 		set->queue_depth = min(64U, set->queue_depth);
4494 	}
4495 	/*
4496 	 * There is no use for more h/w queues than cpus if we just have
4497 	 * a single map
4498 	 */
4499 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4500 		set->nr_hw_queues = nr_cpu_ids;
4501 
4502 	if (set->flags & BLK_MQ_F_BLOCKING) {
4503 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4504 		if (!set->srcu)
4505 			return -ENOMEM;
4506 		ret = init_srcu_struct(set->srcu);
4507 		if (ret)
4508 			goto out_free_srcu;
4509 	}
4510 
4511 	ret = -ENOMEM;
4512 	set->tags = kcalloc_node(set->nr_hw_queues,
4513 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4514 				 set->numa_node);
4515 	if (!set->tags)
4516 		goto out_cleanup_srcu;
4517 
4518 	for (i = 0; i < set->nr_maps; i++) {
4519 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4520 						  sizeof(set->map[i].mq_map[0]),
4521 						  GFP_KERNEL, set->numa_node);
4522 		if (!set->map[i].mq_map)
4523 			goto out_free_mq_map;
4524 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4525 	}
4526 
4527 	blk_mq_update_queue_map(set);
4528 
4529 	ret = blk_mq_alloc_set_map_and_rqs(set);
4530 	if (ret)
4531 		goto out_free_mq_map;
4532 
4533 	mutex_init(&set->tag_list_lock);
4534 	INIT_LIST_HEAD(&set->tag_list);
4535 
4536 	return 0;
4537 
4538 out_free_mq_map:
4539 	for (i = 0; i < set->nr_maps; i++) {
4540 		kfree(set->map[i].mq_map);
4541 		set->map[i].mq_map = NULL;
4542 	}
4543 	kfree(set->tags);
4544 	set->tags = NULL;
4545 out_cleanup_srcu:
4546 	if (set->flags & BLK_MQ_F_BLOCKING)
4547 		cleanup_srcu_struct(set->srcu);
4548 out_free_srcu:
4549 	if (set->flags & BLK_MQ_F_BLOCKING)
4550 		kfree(set->srcu);
4551 	return ret;
4552 }
4553 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4554 
4555 /* allocate and initialize a tagset for a simple single-queue device */
4556 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4557 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4558 		unsigned int set_flags)
4559 {
4560 	memset(set, 0, sizeof(*set));
4561 	set->ops = ops;
4562 	set->nr_hw_queues = 1;
4563 	set->nr_maps = 1;
4564 	set->queue_depth = queue_depth;
4565 	set->numa_node = NUMA_NO_NODE;
4566 	set->flags = set_flags;
4567 	return blk_mq_alloc_tag_set(set);
4568 }
4569 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4570 
4571 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4572 {
4573 	int i, j;
4574 
4575 	for (i = 0; i < set->nr_hw_queues; i++)
4576 		__blk_mq_free_map_and_rqs(set, i);
4577 
4578 	if (blk_mq_is_shared_tags(set->flags)) {
4579 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4580 					BLK_MQ_NO_HCTX_IDX);
4581 	}
4582 
4583 	for (j = 0; j < set->nr_maps; j++) {
4584 		kfree(set->map[j].mq_map);
4585 		set->map[j].mq_map = NULL;
4586 	}
4587 
4588 	kfree(set->tags);
4589 	set->tags = NULL;
4590 	if (set->flags & BLK_MQ_F_BLOCKING) {
4591 		cleanup_srcu_struct(set->srcu);
4592 		kfree(set->srcu);
4593 	}
4594 }
4595 EXPORT_SYMBOL(blk_mq_free_tag_set);
4596 
4597 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4598 {
4599 	struct blk_mq_tag_set *set = q->tag_set;
4600 	struct blk_mq_hw_ctx *hctx;
4601 	int ret;
4602 	unsigned long i;
4603 
4604 	if (!set)
4605 		return -EINVAL;
4606 
4607 	if (q->nr_requests == nr)
4608 		return 0;
4609 
4610 	blk_mq_freeze_queue(q);
4611 	blk_mq_quiesce_queue(q);
4612 
4613 	ret = 0;
4614 	queue_for_each_hw_ctx(q, hctx, i) {
4615 		if (!hctx->tags)
4616 			continue;
4617 		/*
4618 		 * If we're using an MQ scheduler, just update the scheduler
4619 		 * queue depth. This is similar to what the old code would do.
4620 		 */
4621 		if (hctx->sched_tags) {
4622 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4623 						      nr, true);
4624 		} else {
4625 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4626 						      false);
4627 		}
4628 		if (ret)
4629 			break;
4630 		if (q->elevator && q->elevator->type->ops.depth_updated)
4631 			q->elevator->type->ops.depth_updated(hctx);
4632 	}
4633 	if (!ret) {
4634 		q->nr_requests = nr;
4635 		if (blk_mq_is_shared_tags(set->flags)) {
4636 			if (q->elevator)
4637 				blk_mq_tag_update_sched_shared_tags(q);
4638 			else
4639 				blk_mq_tag_resize_shared_tags(set, nr);
4640 		}
4641 	}
4642 
4643 	blk_mq_unquiesce_queue(q);
4644 	blk_mq_unfreeze_queue(q);
4645 
4646 	return ret;
4647 }
4648 
4649 /*
4650  * request_queue and elevator_type pair.
4651  * It is just used by __blk_mq_update_nr_hw_queues to cache
4652  * the elevator_type associated with a request_queue.
4653  */
4654 struct blk_mq_qe_pair {
4655 	struct list_head node;
4656 	struct request_queue *q;
4657 	struct elevator_type *type;
4658 };
4659 
4660 /*
4661  * Cache the elevator_type in qe pair list and switch the
4662  * io scheduler to 'none'
4663  */
4664 static bool blk_mq_elv_switch_none(struct list_head *head,
4665 		struct request_queue *q)
4666 {
4667 	struct blk_mq_qe_pair *qe;
4668 
4669 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4670 	if (!qe)
4671 		return false;
4672 
4673 	/* q->elevator needs protection from ->sysfs_lock */
4674 	mutex_lock(&q->sysfs_lock);
4675 
4676 	/* the check has to be done with holding sysfs_lock */
4677 	if (!q->elevator) {
4678 		kfree(qe);
4679 		goto unlock;
4680 	}
4681 
4682 	INIT_LIST_HEAD(&qe->node);
4683 	qe->q = q;
4684 	qe->type = q->elevator->type;
4685 	/* keep a reference to the elevator module as we'll switch back */
4686 	__elevator_get(qe->type);
4687 	list_add(&qe->node, head);
4688 	elevator_disable(q);
4689 unlock:
4690 	mutex_unlock(&q->sysfs_lock);
4691 
4692 	return true;
4693 }
4694 
4695 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4696 						struct request_queue *q)
4697 {
4698 	struct blk_mq_qe_pair *qe;
4699 
4700 	list_for_each_entry(qe, head, node)
4701 		if (qe->q == q)
4702 			return qe;
4703 
4704 	return NULL;
4705 }
4706 
4707 static void blk_mq_elv_switch_back(struct list_head *head,
4708 				  struct request_queue *q)
4709 {
4710 	struct blk_mq_qe_pair *qe;
4711 	struct elevator_type *t;
4712 
4713 	qe = blk_lookup_qe_pair(head, q);
4714 	if (!qe)
4715 		return;
4716 	t = qe->type;
4717 	list_del(&qe->node);
4718 	kfree(qe);
4719 
4720 	mutex_lock(&q->sysfs_lock);
4721 	elevator_switch(q, t);
4722 	/* drop the reference acquired in blk_mq_elv_switch_none */
4723 	elevator_put(t);
4724 	mutex_unlock(&q->sysfs_lock);
4725 }
4726 
4727 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4728 							int nr_hw_queues)
4729 {
4730 	struct request_queue *q;
4731 	LIST_HEAD(head);
4732 	int prev_nr_hw_queues = set->nr_hw_queues;
4733 	int i;
4734 
4735 	lockdep_assert_held(&set->tag_list_lock);
4736 
4737 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4738 		nr_hw_queues = nr_cpu_ids;
4739 	if (nr_hw_queues < 1)
4740 		return;
4741 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4742 		return;
4743 
4744 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4745 		blk_mq_freeze_queue(q);
4746 	/*
4747 	 * Switch IO scheduler to 'none', cleaning up the data associated
4748 	 * with the previous scheduler. We will switch back once we are done
4749 	 * updating the new sw to hw queue mappings.
4750 	 */
4751 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4752 		if (!blk_mq_elv_switch_none(&head, q))
4753 			goto switch_back;
4754 
4755 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4756 		blk_mq_debugfs_unregister_hctxs(q);
4757 		blk_mq_sysfs_unregister_hctxs(q);
4758 	}
4759 
4760 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4761 		goto reregister;
4762 
4763 fallback:
4764 	blk_mq_update_queue_map(set);
4765 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4766 		blk_mq_realloc_hw_ctxs(set, q);
4767 		blk_mq_update_poll_flag(q);
4768 		if (q->nr_hw_queues != set->nr_hw_queues) {
4769 			int i = prev_nr_hw_queues;
4770 
4771 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4772 					nr_hw_queues, prev_nr_hw_queues);
4773 			for (; i < set->nr_hw_queues; i++)
4774 				__blk_mq_free_map_and_rqs(set, i);
4775 
4776 			set->nr_hw_queues = prev_nr_hw_queues;
4777 			goto fallback;
4778 		}
4779 		blk_mq_map_swqueue(q);
4780 	}
4781 
4782 reregister:
4783 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4784 		blk_mq_sysfs_register_hctxs(q);
4785 		blk_mq_debugfs_register_hctxs(q);
4786 	}
4787 
4788 switch_back:
4789 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4790 		blk_mq_elv_switch_back(&head, q);
4791 
4792 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4793 		blk_mq_unfreeze_queue(q);
4794 
4795 	/* Free the excess tags when nr_hw_queues shrink. */
4796 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4797 		__blk_mq_free_map_and_rqs(set, i);
4798 }
4799 
4800 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4801 {
4802 	mutex_lock(&set->tag_list_lock);
4803 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4804 	mutex_unlock(&set->tag_list_lock);
4805 }
4806 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4807 
4808 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4809 			 struct io_comp_batch *iob, unsigned int flags)
4810 {
4811 	long state = get_current_state();
4812 	int ret;
4813 
4814 	do {
4815 		ret = q->mq_ops->poll(hctx, iob);
4816 		if (ret > 0) {
4817 			__set_current_state(TASK_RUNNING);
4818 			return ret;
4819 		}
4820 
4821 		if (signal_pending_state(state, current))
4822 			__set_current_state(TASK_RUNNING);
4823 		if (task_is_running(current))
4824 			return 1;
4825 
4826 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4827 			break;
4828 		cpu_relax();
4829 	} while (!need_resched());
4830 
4831 	__set_current_state(TASK_RUNNING);
4832 	return 0;
4833 }
4834 
4835 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4836 		struct io_comp_batch *iob, unsigned int flags)
4837 {
4838 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4839 
4840 	return blk_hctx_poll(q, hctx, iob, flags);
4841 }
4842 
4843 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4844 		unsigned int poll_flags)
4845 {
4846 	struct request_queue *q = rq->q;
4847 	int ret;
4848 
4849 	if (!blk_rq_is_poll(rq))
4850 		return 0;
4851 	if (!percpu_ref_tryget(&q->q_usage_counter))
4852 		return 0;
4853 
4854 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4855 	blk_queue_exit(q);
4856 
4857 	return ret;
4858 }
4859 EXPORT_SYMBOL_GPL(blk_rq_poll);
4860 
4861 unsigned int blk_mq_rq_cpu(struct request *rq)
4862 {
4863 	return rq->mq_ctx->cpu;
4864 }
4865 EXPORT_SYMBOL(blk_mq_rq_cpu);
4866 
4867 void blk_mq_cancel_work_sync(struct request_queue *q)
4868 {
4869 	struct blk_mq_hw_ctx *hctx;
4870 	unsigned long i;
4871 
4872 	cancel_delayed_work_sync(&q->requeue_work);
4873 
4874 	queue_for_each_hw_ctx(q, hctx, i)
4875 		cancel_delayed_work_sync(&hctx->run_work);
4876 }
4877 
4878 static int __init blk_mq_init(void)
4879 {
4880 	int i;
4881 
4882 	for_each_possible_cpu(i)
4883 		init_llist_head(&per_cpu(blk_cpu_done, i));
4884 	for_each_possible_cpu(i)
4885 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4886 			 __blk_mq_complete_request_remote, NULL);
4887 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4888 
4889 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4890 				  "block/softirq:dead", NULL,
4891 				  blk_softirq_cpu_dead);
4892 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4893 				blk_mq_hctx_notify_dead);
4894 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4895 				blk_mq_hctx_notify_online,
4896 				blk_mq_hctx_notify_offline);
4897 	return 0;
4898 }
4899 subsys_initcall(blk_mq_init);
4900