1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_inflight(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->part && blk_do_io_stat(rq) && 97 (!mi->part->bd_partno || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 unsigned int blk_mq_in_flight(struct request_queue *q, 105 struct block_device *part) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 110 111 return mi.inflight[0] + mi.inflight[1]; 112 } 113 114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 115 unsigned int inflight[2]) 116 { 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 inflight[0] = mi.inflight[0]; 121 inflight[1] = mi.inflight[1]; 122 } 123 124 void blk_freeze_queue_start(struct request_queue *q) 125 { 126 mutex_lock(&q->mq_freeze_lock); 127 if (++q->mq_freeze_depth == 1) { 128 percpu_ref_kill(&q->q_usage_counter); 129 mutex_unlock(&q->mq_freeze_lock); 130 if (queue_is_mq(q)) 131 blk_mq_run_hw_queues(q, false); 132 } else { 133 mutex_unlock(&q->mq_freeze_lock); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 137 138 void blk_mq_freeze_queue_wait(struct request_queue *q) 139 { 140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 143 144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 145 unsigned long timeout) 146 { 147 return wait_event_timeout(q->mq_freeze_wq, 148 percpu_ref_is_zero(&q->q_usage_counter), 149 timeout); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 152 153 /* 154 * Guarantee no request is in use, so we can change any data structure of 155 * the queue afterward. 156 */ 157 void blk_freeze_queue(struct request_queue *q) 158 { 159 /* 160 * In the !blk_mq case we are only calling this to kill the 161 * q_usage_counter, otherwise this increases the freeze depth 162 * and waits for it to return to zero. For this reason there is 163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 164 * exported to drivers as the only user for unfreeze is blk_mq. 165 */ 166 blk_freeze_queue_start(q); 167 blk_mq_freeze_queue_wait(q); 168 } 169 170 void blk_mq_freeze_queue(struct request_queue *q) 171 { 172 /* 173 * ...just an alias to keep freeze and unfreeze actions balanced 174 * in the blk_mq_* namespace 175 */ 176 blk_freeze_queue(q); 177 } 178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 179 180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 181 { 182 mutex_lock(&q->mq_freeze_lock); 183 if (force_atomic) 184 q->q_usage_counter.data->force_atomic = true; 185 q->mq_freeze_depth--; 186 WARN_ON_ONCE(q->mq_freeze_depth < 0); 187 if (!q->mq_freeze_depth) { 188 percpu_ref_resurrect(&q->q_usage_counter); 189 wake_up_all(&q->mq_freeze_wq); 190 } 191 mutex_unlock(&q->mq_freeze_lock); 192 } 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 __blk_mq_unfreeze_queue(q, false); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&q->queue_lock, flags); 209 if (!q->quiesce_depth++) 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 spin_unlock_irqrestore(&q->queue_lock, flags); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 214 215 /** 216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 217 * @set: tag_set to wait on 218 * 219 * Note: it is driver's responsibility for making sure that quiesce has 220 * been started on or more of the request_queues of the tag_set. This 221 * function only waits for the quiesce on those request_queues that had 222 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 223 */ 224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 225 { 226 if (set->flags & BLK_MQ_F_BLOCKING) 227 synchronize_srcu(set->srcu); 228 else 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 232 233 /** 234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 235 * @q: request queue. 236 * 237 * Note: this function does not prevent that the struct request end_io() 238 * callback function is invoked. Once this function is returned, we make 239 * sure no dispatch can happen until the queue is unquiesced via 240 * blk_mq_unquiesce_queue(). 241 */ 242 void blk_mq_quiesce_queue(struct request_queue *q) 243 { 244 blk_mq_quiesce_queue_nowait(q); 245 /* nothing to wait for non-mq queues */ 246 if (queue_is_mq(q)) 247 blk_mq_wait_quiesce_done(q->tag_set); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 250 251 /* 252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 253 * @q: request queue. 254 * 255 * This function recovers queue into the state before quiescing 256 * which is done by blk_mq_quiesce_queue. 257 */ 258 void blk_mq_unquiesce_queue(struct request_queue *q) 259 { 260 unsigned long flags; 261 bool run_queue = false; 262 263 spin_lock_irqsave(&q->queue_lock, flags); 264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 265 ; 266 } else if (!--q->quiesce_depth) { 267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 268 run_queue = true; 269 } 270 spin_unlock_irqrestore(&q->queue_lock, flags); 271 272 /* dispatch requests which are inserted during quiescing */ 273 if (run_queue) 274 blk_mq_run_hw_queues(q, true); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 277 278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 279 { 280 struct request_queue *q; 281 282 mutex_lock(&set->tag_list_lock); 283 list_for_each_entry(q, &set->tag_list, tag_set_list) { 284 if (!blk_queue_skip_tagset_quiesce(q)) 285 blk_mq_quiesce_queue_nowait(q); 286 } 287 blk_mq_wait_quiesce_done(set); 288 mutex_unlock(&set->tag_list_lock); 289 } 290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 291 292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 293 { 294 struct request_queue *q; 295 296 mutex_lock(&set->tag_list_lock); 297 list_for_each_entry(q, &set->tag_list, tag_set_list) { 298 if (!blk_queue_skip_tagset_quiesce(q)) 299 blk_mq_unquiesce_queue(q); 300 } 301 mutex_unlock(&set->tag_list_lock); 302 } 303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 304 305 void blk_mq_wake_waiters(struct request_queue *q) 306 { 307 struct blk_mq_hw_ctx *hctx; 308 unsigned long i; 309 310 queue_for_each_hw_ctx(q, hctx, i) 311 if (blk_mq_hw_queue_mapped(hctx)) 312 blk_mq_tag_wakeup_all(hctx->tags, true); 313 } 314 315 void blk_rq_init(struct request_queue *q, struct request *rq) 316 { 317 memset(rq, 0, sizeof(*rq)); 318 319 INIT_LIST_HEAD(&rq->queuelist); 320 rq->q = q; 321 rq->__sector = (sector_t) -1; 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->tag = BLK_MQ_NO_TAG; 325 rq->internal_tag = BLK_MQ_NO_TAG; 326 rq->start_time_ns = ktime_get_ns(); 327 rq->part = NULL; 328 blk_crypto_rq_set_defaults(rq); 329 } 330 EXPORT_SYMBOL(blk_rq_init); 331 332 /* Set start and alloc time when the allocated request is actually used */ 333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 334 { 335 if (blk_mq_need_time_stamp(rq)) 336 rq->start_time_ns = ktime_get_ns(); 337 else 338 rq->start_time_ns = 0; 339 340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 341 if (blk_queue_rq_alloc_time(rq->q)) 342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 343 else 344 rq->alloc_time_ns = 0; 345 #endif 346 } 347 348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 349 struct blk_mq_tags *tags, unsigned int tag) 350 { 351 struct blk_mq_ctx *ctx = data->ctx; 352 struct blk_mq_hw_ctx *hctx = data->hctx; 353 struct request_queue *q = data->q; 354 struct request *rq = tags->static_rqs[tag]; 355 356 rq->q = q; 357 rq->mq_ctx = ctx; 358 rq->mq_hctx = hctx; 359 rq->cmd_flags = data->cmd_flags; 360 361 if (data->flags & BLK_MQ_REQ_PM) 362 data->rq_flags |= RQF_PM; 363 if (blk_queue_io_stat(q)) 364 data->rq_flags |= RQF_IO_STAT; 365 rq->rq_flags = data->rq_flags; 366 367 if (data->rq_flags & RQF_SCHED_TAGS) { 368 rq->tag = BLK_MQ_NO_TAG; 369 rq->internal_tag = tag; 370 } else { 371 rq->tag = tag; 372 rq->internal_tag = BLK_MQ_NO_TAG; 373 } 374 rq->timeout = 0; 375 376 rq->part = NULL; 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_USE_SCHED) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (e->type->ops.prepare_request) 399 e->type->ops.prepare_request(rq); 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 407 { 408 unsigned int tag, tag_offset; 409 struct blk_mq_tags *tags; 410 struct request *rq; 411 unsigned long tag_mask; 412 int i, nr = 0; 413 414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 415 if (unlikely(!tag_mask)) 416 return NULL; 417 418 tags = blk_mq_tags_from_data(data); 419 for (i = 0; tag_mask; i++) { 420 if (!(tag_mask & (1UL << i))) 421 continue; 422 tag = tag_offset + i; 423 prefetch(tags->static_rqs[tag]); 424 tag_mask &= ~(1UL << i); 425 rq = blk_mq_rq_ctx_init(data, tags, tag); 426 rq_list_add(data->cached_rq, rq); 427 nr++; 428 } 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 if (q->elevator) { 451 /* 452 * All requests use scheduler tags when an I/O scheduler is 453 * enabled for the queue. 454 */ 455 data->rq_flags |= RQF_SCHED_TAGS; 456 457 /* 458 * Flush/passthrough requests are special and go directly to the 459 * dispatch list. 460 */ 461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 462 !blk_op_is_passthrough(data->cmd_flags)) { 463 struct elevator_mq_ops *ops = &q->elevator->type->ops; 464 465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 466 467 data->rq_flags |= RQF_USE_SCHED; 468 if (ops->limit_depth) 469 ops->limit_depth(data->cmd_flags, data); 470 } 471 } 472 473 retry: 474 data->ctx = blk_mq_get_ctx(q); 475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 476 if (!(data->rq_flags & RQF_SCHED_TAGS)) 477 blk_mq_tag_busy(data->hctx); 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data); 487 if (rq) { 488 blk_mq_rq_time_init(rq, alloc_time_ns); 489 return rq; 490 } 491 data->nr_tags = 1; 492 } 493 494 /* 495 * Waiting allocations only fail because of an inactive hctx. In that 496 * case just retry the hctx assignment and tag allocation as CPU hotplug 497 * should have migrated us to an online CPU by now. 498 */ 499 tag = blk_mq_get_tag(data); 500 if (tag == BLK_MQ_NO_TAG) { 501 if (data->flags & BLK_MQ_REQ_NOWAIT) 502 return NULL; 503 /* 504 * Give up the CPU and sleep for a random short time to 505 * ensure that thread using a realtime scheduling class 506 * are migrated off the CPU, and thus off the hctx that 507 * is going away. 508 */ 509 msleep(3); 510 goto retry; 511 } 512 513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 514 blk_mq_rq_time_init(rq, alloc_time_ns); 515 return rq; 516 } 517 518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 519 struct blk_plug *plug, 520 blk_opf_t opf, 521 blk_mq_req_flags_t flags) 522 { 523 struct blk_mq_alloc_data data = { 524 .q = q, 525 .flags = flags, 526 .cmd_flags = opf, 527 .nr_tags = plug->nr_ios, 528 .cached_rq = &plug->cached_rq, 529 }; 530 struct request *rq; 531 532 if (blk_queue_enter(q, flags)) 533 return NULL; 534 535 plug->nr_ios = 1; 536 537 rq = __blk_mq_alloc_requests(&data); 538 if (unlikely(!rq)) 539 blk_queue_exit(q); 540 return rq; 541 } 542 543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 544 blk_opf_t opf, 545 blk_mq_req_flags_t flags) 546 { 547 struct blk_plug *plug = current->plug; 548 struct request *rq; 549 550 if (!plug) 551 return NULL; 552 553 if (rq_list_empty(plug->cached_rq)) { 554 if (plug->nr_ios == 1) 555 return NULL; 556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 557 if (!rq) 558 return NULL; 559 } else { 560 rq = rq_list_peek(&plug->cached_rq); 561 if (!rq || rq->q != q) 562 return NULL; 563 564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 565 return NULL; 566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 567 return NULL; 568 569 plug->cached_rq = rq_list_next(rq); 570 blk_mq_rq_time_init(rq, 0); 571 } 572 573 rq->cmd_flags = opf; 574 INIT_LIST_HEAD(&rq->queuelist); 575 return rq; 576 } 577 578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 579 blk_mq_req_flags_t flags) 580 { 581 struct request *rq; 582 583 rq = blk_mq_alloc_cached_request(q, opf, flags); 584 if (!rq) { 585 struct blk_mq_alloc_data data = { 586 .q = q, 587 .flags = flags, 588 .cmd_flags = opf, 589 .nr_tags = 1, 590 }; 591 int ret; 592 593 ret = blk_queue_enter(q, flags); 594 if (ret) 595 return ERR_PTR(ret); 596 597 rq = __blk_mq_alloc_requests(&data); 598 if (!rq) 599 goto out_queue_exit; 600 } 601 rq->__data_len = 0; 602 rq->__sector = (sector_t) -1; 603 rq->bio = rq->biotail = NULL; 604 return rq; 605 out_queue_exit: 606 blk_queue_exit(q); 607 return ERR_PTR(-EWOULDBLOCK); 608 } 609 EXPORT_SYMBOL(blk_mq_alloc_request); 610 611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 613 { 614 struct blk_mq_alloc_data data = { 615 .q = q, 616 .flags = flags, 617 .cmd_flags = opf, 618 .nr_tags = 1, 619 }; 620 u64 alloc_time_ns = 0; 621 struct request *rq; 622 unsigned int cpu; 623 unsigned int tag; 624 int ret; 625 626 /* alloc_time includes depth and tag waits */ 627 if (blk_queue_rq_alloc_time(q)) 628 alloc_time_ns = ktime_get_ns(); 629 630 /* 631 * If the tag allocator sleeps we could get an allocation for a 632 * different hardware context. No need to complicate the low level 633 * allocator for this for the rare use case of a command tied to 634 * a specific queue. 635 */ 636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 638 return ERR_PTR(-EINVAL); 639 640 if (hctx_idx >= q->nr_hw_queues) 641 return ERR_PTR(-EIO); 642 643 ret = blk_queue_enter(q, flags); 644 if (ret) 645 return ERR_PTR(ret); 646 647 /* 648 * Check if the hardware context is actually mapped to anything. 649 * If not tell the caller that it should skip this queue. 650 */ 651 ret = -EXDEV; 652 data.hctx = xa_load(&q->hctx_table, hctx_idx); 653 if (!blk_mq_hw_queue_mapped(data.hctx)) 654 goto out_queue_exit; 655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 656 if (cpu >= nr_cpu_ids) 657 goto out_queue_exit; 658 data.ctx = __blk_mq_get_ctx(q, cpu); 659 660 if (q->elevator) 661 data.rq_flags |= RQF_SCHED_TAGS; 662 else 663 blk_mq_tag_busy(data.hctx); 664 665 if (flags & BLK_MQ_REQ_RESERVED) 666 data.rq_flags |= RQF_RESV; 667 668 ret = -EWOULDBLOCK; 669 tag = blk_mq_get_tag(&data); 670 if (tag == BLK_MQ_NO_TAG) 671 goto out_queue_exit; 672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 673 blk_mq_rq_time_init(rq, alloc_time_ns); 674 rq->__data_len = 0; 675 rq->__sector = (sector_t) -1; 676 rq->bio = rq->biotail = NULL; 677 return rq; 678 679 out_queue_exit: 680 blk_queue_exit(q); 681 return ERR_PTR(ret); 682 } 683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 684 685 static void blk_mq_finish_request(struct request *rq) 686 { 687 struct request_queue *q = rq->q; 688 689 if (rq->rq_flags & RQF_USE_SCHED) { 690 q->elevator->type->ops.finish_request(rq); 691 /* 692 * For postflush request that may need to be 693 * completed twice, we should clear this flag 694 * to avoid double finish_request() on the rq. 695 */ 696 rq->rq_flags &= ~RQF_USE_SCHED; 697 } 698 } 699 700 static void __blk_mq_free_request(struct request *rq) 701 { 702 struct request_queue *q = rq->q; 703 struct blk_mq_ctx *ctx = rq->mq_ctx; 704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 705 const int sched_tag = rq->internal_tag; 706 707 blk_crypto_free_request(rq); 708 blk_pm_mark_last_busy(rq); 709 rq->mq_hctx = NULL; 710 711 if (rq->rq_flags & RQF_MQ_INFLIGHT) 712 __blk_mq_dec_active_requests(hctx); 713 714 if (rq->tag != BLK_MQ_NO_TAG) 715 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 716 if (sched_tag != BLK_MQ_NO_TAG) 717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 718 blk_mq_sched_restart(hctx); 719 blk_queue_exit(q); 720 } 721 722 void blk_mq_free_request(struct request *rq) 723 { 724 struct request_queue *q = rq->q; 725 726 blk_mq_finish_request(rq); 727 728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 729 laptop_io_completion(q->disk->bdi); 730 731 rq_qos_done(q, rq); 732 733 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 734 if (req_ref_put_and_test(rq)) 735 __blk_mq_free_request(rq); 736 } 737 EXPORT_SYMBOL_GPL(blk_mq_free_request); 738 739 void blk_mq_free_plug_rqs(struct blk_plug *plug) 740 { 741 struct request *rq; 742 743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 744 blk_mq_free_request(rq); 745 } 746 747 void blk_dump_rq_flags(struct request *rq, char *msg) 748 { 749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 750 rq->q->disk ? rq->q->disk->disk_name : "?", 751 (__force unsigned long long) rq->cmd_flags); 752 753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 754 (unsigned long long)blk_rq_pos(rq), 755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 756 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 757 rq->bio, rq->biotail, blk_rq_bytes(rq)); 758 } 759 EXPORT_SYMBOL(blk_dump_rq_flags); 760 761 static void req_bio_endio(struct request *rq, struct bio *bio, 762 unsigned int nbytes, blk_status_t error) 763 { 764 if (unlikely(error)) { 765 bio->bi_status = error; 766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 767 /* 768 * Partial zone append completions cannot be supported as the 769 * BIO fragments may end up not being written sequentially. 770 */ 771 if (bio->bi_iter.bi_size != nbytes) 772 bio->bi_status = BLK_STS_IOERR; 773 else 774 bio->bi_iter.bi_sector = rq->__sector; 775 } 776 777 bio_advance(bio, nbytes); 778 779 if (unlikely(rq->rq_flags & RQF_QUIET)) 780 bio_set_flag(bio, BIO_QUIET); 781 /* don't actually finish bio if it's part of flush sequence */ 782 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 783 bio_endio(bio); 784 } 785 786 static void blk_account_io_completion(struct request *req, unsigned int bytes) 787 { 788 if (req->part && blk_do_io_stat(req)) { 789 const int sgrp = op_stat_group(req_op(req)); 790 791 part_stat_lock(); 792 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 793 part_stat_unlock(); 794 } 795 } 796 797 static void blk_print_req_error(struct request *req, blk_status_t status) 798 { 799 printk_ratelimited(KERN_ERR 800 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 801 "phys_seg %u prio class %u\n", 802 blk_status_to_str(status), 803 req->q->disk ? req->q->disk->disk_name : "?", 804 blk_rq_pos(req), (__force u32)req_op(req), 805 blk_op_str(req_op(req)), 806 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 807 req->nr_phys_segments, 808 IOPRIO_PRIO_CLASS(req->ioprio)); 809 } 810 811 /* 812 * Fully end IO on a request. Does not support partial completions, or 813 * errors. 814 */ 815 static void blk_complete_request(struct request *req) 816 { 817 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 818 int total_bytes = blk_rq_bytes(req); 819 struct bio *bio = req->bio; 820 821 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 822 823 if (!bio) 824 return; 825 826 #ifdef CONFIG_BLK_DEV_INTEGRITY 827 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 828 req->q->integrity.profile->complete_fn(req, total_bytes); 829 #endif 830 831 /* 832 * Upper layers may call blk_crypto_evict_key() anytime after the last 833 * bio_endio(). Therefore, the keyslot must be released before that. 834 */ 835 blk_crypto_rq_put_keyslot(req); 836 837 blk_account_io_completion(req, total_bytes); 838 839 do { 840 struct bio *next = bio->bi_next; 841 842 /* Completion has already been traced */ 843 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 844 845 if (req_op(req) == REQ_OP_ZONE_APPEND) 846 bio->bi_iter.bi_sector = req->__sector; 847 848 if (!is_flush) 849 bio_endio(bio); 850 bio = next; 851 } while (bio); 852 853 /* 854 * Reset counters so that the request stacking driver 855 * can find how many bytes remain in the request 856 * later. 857 */ 858 if (!req->end_io) { 859 req->bio = NULL; 860 req->__data_len = 0; 861 } 862 } 863 864 /** 865 * blk_update_request - Complete multiple bytes without completing the request 866 * @req: the request being processed 867 * @error: block status code 868 * @nr_bytes: number of bytes to complete for @req 869 * 870 * Description: 871 * Ends I/O on a number of bytes attached to @req, but doesn't complete 872 * the request structure even if @req doesn't have leftover. 873 * If @req has leftover, sets it up for the next range of segments. 874 * 875 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 876 * %false return from this function. 877 * 878 * Note: 879 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 880 * except in the consistency check at the end of this function. 881 * 882 * Return: 883 * %false - this request doesn't have any more data 884 * %true - this request has more data 885 **/ 886 bool blk_update_request(struct request *req, blk_status_t error, 887 unsigned int nr_bytes) 888 { 889 int total_bytes; 890 891 trace_block_rq_complete(req, error, nr_bytes); 892 893 if (!req->bio) 894 return false; 895 896 #ifdef CONFIG_BLK_DEV_INTEGRITY 897 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 898 error == BLK_STS_OK) 899 req->q->integrity.profile->complete_fn(req, nr_bytes); 900 #endif 901 902 /* 903 * Upper layers may call blk_crypto_evict_key() anytime after the last 904 * bio_endio(). Therefore, the keyslot must be released before that. 905 */ 906 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 907 __blk_crypto_rq_put_keyslot(req); 908 909 if (unlikely(error && !blk_rq_is_passthrough(req) && 910 !(req->rq_flags & RQF_QUIET)) && 911 !test_bit(GD_DEAD, &req->q->disk->state)) { 912 blk_print_req_error(req, error); 913 trace_block_rq_error(req, error, nr_bytes); 914 } 915 916 blk_account_io_completion(req, nr_bytes); 917 918 total_bytes = 0; 919 while (req->bio) { 920 struct bio *bio = req->bio; 921 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 922 923 if (bio_bytes == bio->bi_iter.bi_size) 924 req->bio = bio->bi_next; 925 926 /* Completion has already been traced */ 927 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 928 req_bio_endio(req, bio, bio_bytes, error); 929 930 total_bytes += bio_bytes; 931 nr_bytes -= bio_bytes; 932 933 if (!nr_bytes) 934 break; 935 } 936 937 /* 938 * completely done 939 */ 940 if (!req->bio) { 941 /* 942 * Reset counters so that the request stacking driver 943 * can find how many bytes remain in the request 944 * later. 945 */ 946 req->__data_len = 0; 947 return false; 948 } 949 950 req->__data_len -= total_bytes; 951 952 /* update sector only for requests with clear definition of sector */ 953 if (!blk_rq_is_passthrough(req)) 954 req->__sector += total_bytes >> 9; 955 956 /* mixed attributes always follow the first bio */ 957 if (req->rq_flags & RQF_MIXED_MERGE) { 958 req->cmd_flags &= ~REQ_FAILFAST_MASK; 959 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 960 } 961 962 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 963 /* 964 * If total number of sectors is less than the first segment 965 * size, something has gone terribly wrong. 966 */ 967 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 968 blk_dump_rq_flags(req, "request botched"); 969 req->__data_len = blk_rq_cur_bytes(req); 970 } 971 972 /* recalculate the number of segments */ 973 req->nr_phys_segments = blk_recalc_rq_segments(req); 974 } 975 976 return true; 977 } 978 EXPORT_SYMBOL_GPL(blk_update_request); 979 980 static inline void blk_account_io_done(struct request *req, u64 now) 981 { 982 trace_block_io_done(req); 983 984 /* 985 * Account IO completion. flush_rq isn't accounted as a 986 * normal IO on queueing nor completion. Accounting the 987 * containing request is enough. 988 */ 989 if (blk_do_io_stat(req) && req->part && 990 !(req->rq_flags & RQF_FLUSH_SEQ)) { 991 const int sgrp = op_stat_group(req_op(req)); 992 993 part_stat_lock(); 994 update_io_ticks(req->part, jiffies, true); 995 part_stat_inc(req->part, ios[sgrp]); 996 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 997 part_stat_unlock(); 998 } 999 } 1000 1001 static inline void blk_account_io_start(struct request *req) 1002 { 1003 trace_block_io_start(req); 1004 1005 if (blk_do_io_stat(req)) { 1006 /* 1007 * All non-passthrough requests are created from a bio with one 1008 * exception: when a flush command that is part of a flush sequence 1009 * generated by the state machine in blk-flush.c is cloned onto the 1010 * lower device by dm-multipath we can get here without a bio. 1011 */ 1012 if (req->bio) 1013 req->part = req->bio->bi_bdev; 1014 else 1015 req->part = req->q->disk->part0; 1016 1017 part_stat_lock(); 1018 update_io_ticks(req->part, jiffies, false); 1019 part_stat_unlock(); 1020 } 1021 } 1022 1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1024 { 1025 if (rq->rq_flags & RQF_STATS) 1026 blk_stat_add(rq, now); 1027 1028 blk_mq_sched_completed_request(rq, now); 1029 blk_account_io_done(rq, now); 1030 } 1031 1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1033 { 1034 if (blk_mq_need_time_stamp(rq)) 1035 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1036 1037 blk_mq_finish_request(rq); 1038 1039 if (rq->end_io) { 1040 rq_qos_done(rq->q, rq); 1041 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1042 blk_mq_free_request(rq); 1043 } else { 1044 blk_mq_free_request(rq); 1045 } 1046 } 1047 EXPORT_SYMBOL(__blk_mq_end_request); 1048 1049 void blk_mq_end_request(struct request *rq, blk_status_t error) 1050 { 1051 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1052 BUG(); 1053 __blk_mq_end_request(rq, error); 1054 } 1055 EXPORT_SYMBOL(blk_mq_end_request); 1056 1057 #define TAG_COMP_BATCH 32 1058 1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1060 int *tag_array, int nr_tags) 1061 { 1062 struct request_queue *q = hctx->queue; 1063 1064 /* 1065 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1066 * update hctx->nr_active in batch 1067 */ 1068 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1069 __blk_mq_sub_active_requests(hctx, nr_tags); 1070 1071 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1072 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1073 } 1074 1075 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1076 { 1077 int tags[TAG_COMP_BATCH], nr_tags = 0; 1078 struct blk_mq_hw_ctx *cur_hctx = NULL; 1079 struct request *rq; 1080 u64 now = 0; 1081 1082 if (iob->need_ts) 1083 now = ktime_get_ns(); 1084 1085 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1086 prefetch(rq->bio); 1087 prefetch(rq->rq_next); 1088 1089 blk_complete_request(rq); 1090 if (iob->need_ts) 1091 __blk_mq_end_request_acct(rq, now); 1092 1093 blk_mq_finish_request(rq); 1094 1095 rq_qos_done(rq->q, rq); 1096 1097 /* 1098 * If end_io handler returns NONE, then it still has 1099 * ownership of the request. 1100 */ 1101 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1102 continue; 1103 1104 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1105 if (!req_ref_put_and_test(rq)) 1106 continue; 1107 1108 blk_crypto_free_request(rq); 1109 blk_pm_mark_last_busy(rq); 1110 1111 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1112 if (cur_hctx) 1113 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1114 nr_tags = 0; 1115 cur_hctx = rq->mq_hctx; 1116 } 1117 tags[nr_tags++] = rq->tag; 1118 } 1119 1120 if (nr_tags) 1121 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1122 } 1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1124 1125 static void blk_complete_reqs(struct llist_head *list) 1126 { 1127 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1128 struct request *rq, *next; 1129 1130 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1131 rq->q->mq_ops->complete(rq); 1132 } 1133 1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1135 { 1136 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1137 } 1138 1139 static int blk_softirq_cpu_dead(unsigned int cpu) 1140 { 1141 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1142 return 0; 1143 } 1144 1145 static void __blk_mq_complete_request_remote(void *data) 1146 { 1147 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1148 } 1149 1150 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1151 { 1152 int cpu = raw_smp_processor_id(); 1153 1154 if (!IS_ENABLED(CONFIG_SMP) || 1155 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1156 return false; 1157 /* 1158 * With force threaded interrupts enabled, raising softirq from an SMP 1159 * function call will always result in waking the ksoftirqd thread. 1160 * This is probably worse than completing the request on a different 1161 * cache domain. 1162 */ 1163 if (force_irqthreads()) 1164 return false; 1165 1166 /* same CPU or cache domain? Complete locally */ 1167 if (cpu == rq->mq_ctx->cpu || 1168 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1169 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1170 return false; 1171 1172 /* don't try to IPI to an offline CPU */ 1173 return cpu_online(rq->mq_ctx->cpu); 1174 } 1175 1176 static void blk_mq_complete_send_ipi(struct request *rq) 1177 { 1178 unsigned int cpu; 1179 1180 cpu = rq->mq_ctx->cpu; 1181 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1182 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1183 } 1184 1185 static void blk_mq_raise_softirq(struct request *rq) 1186 { 1187 struct llist_head *list; 1188 1189 preempt_disable(); 1190 list = this_cpu_ptr(&blk_cpu_done); 1191 if (llist_add(&rq->ipi_list, list)) 1192 raise_softirq(BLOCK_SOFTIRQ); 1193 preempt_enable(); 1194 } 1195 1196 bool blk_mq_complete_request_remote(struct request *rq) 1197 { 1198 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1199 1200 /* 1201 * For request which hctx has only one ctx mapping, 1202 * or a polled request, always complete locally, 1203 * it's pointless to redirect the completion. 1204 */ 1205 if ((rq->mq_hctx->nr_ctx == 1 && 1206 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1207 rq->cmd_flags & REQ_POLLED) 1208 return false; 1209 1210 if (blk_mq_complete_need_ipi(rq)) { 1211 blk_mq_complete_send_ipi(rq); 1212 return true; 1213 } 1214 1215 if (rq->q->nr_hw_queues == 1) { 1216 blk_mq_raise_softirq(rq); 1217 return true; 1218 } 1219 return false; 1220 } 1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1222 1223 /** 1224 * blk_mq_complete_request - end I/O on a request 1225 * @rq: the request being processed 1226 * 1227 * Description: 1228 * Complete a request by scheduling the ->complete_rq operation. 1229 **/ 1230 void blk_mq_complete_request(struct request *rq) 1231 { 1232 if (!blk_mq_complete_request_remote(rq)) 1233 rq->q->mq_ops->complete(rq); 1234 } 1235 EXPORT_SYMBOL(blk_mq_complete_request); 1236 1237 /** 1238 * blk_mq_start_request - Start processing a request 1239 * @rq: Pointer to request to be started 1240 * 1241 * Function used by device drivers to notify the block layer that a request 1242 * is going to be processed now, so blk layer can do proper initializations 1243 * such as starting the timeout timer. 1244 */ 1245 void blk_mq_start_request(struct request *rq) 1246 { 1247 struct request_queue *q = rq->q; 1248 1249 trace_block_rq_issue(rq); 1250 1251 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1252 rq->io_start_time_ns = ktime_get_ns(); 1253 rq->stats_sectors = blk_rq_sectors(rq); 1254 rq->rq_flags |= RQF_STATS; 1255 rq_qos_issue(q, rq); 1256 } 1257 1258 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1259 1260 blk_add_timer(rq); 1261 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1262 1263 #ifdef CONFIG_BLK_DEV_INTEGRITY 1264 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1265 q->integrity.profile->prepare_fn(rq); 1266 #endif 1267 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1268 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1269 } 1270 EXPORT_SYMBOL(blk_mq_start_request); 1271 1272 /* 1273 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1274 * queues. This is important for md arrays to benefit from merging 1275 * requests. 1276 */ 1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1278 { 1279 if (plug->multiple_queues) 1280 return BLK_MAX_REQUEST_COUNT * 2; 1281 return BLK_MAX_REQUEST_COUNT; 1282 } 1283 1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1285 { 1286 struct request *last = rq_list_peek(&plug->mq_list); 1287 1288 if (!plug->rq_count) { 1289 trace_block_plug(rq->q); 1290 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1291 (!blk_queue_nomerges(rq->q) && 1292 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1293 blk_mq_flush_plug_list(plug, false); 1294 last = NULL; 1295 trace_block_plug(rq->q); 1296 } 1297 1298 if (!plug->multiple_queues && last && last->q != rq->q) 1299 plug->multiple_queues = true; 1300 /* 1301 * Any request allocated from sched tags can't be issued to 1302 * ->queue_rqs() directly 1303 */ 1304 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1305 plug->has_elevator = true; 1306 rq->rq_next = NULL; 1307 rq_list_add(&plug->mq_list, rq); 1308 plug->rq_count++; 1309 } 1310 1311 /** 1312 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1313 * @rq: request to insert 1314 * @at_head: insert request at head or tail of queue 1315 * 1316 * Description: 1317 * Insert a fully prepared request at the back of the I/O scheduler queue 1318 * for execution. Don't wait for completion. 1319 * 1320 * Note: 1321 * This function will invoke @done directly if the queue is dead. 1322 */ 1323 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1324 { 1325 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1326 1327 WARN_ON(irqs_disabled()); 1328 WARN_ON(!blk_rq_is_passthrough(rq)); 1329 1330 blk_account_io_start(rq); 1331 1332 /* 1333 * As plugging can be enabled for passthrough requests on a zoned 1334 * device, directly accessing the plug instead of using blk_mq_plug() 1335 * should not have any consequences. 1336 */ 1337 if (current->plug && !at_head) { 1338 blk_add_rq_to_plug(current->plug, rq); 1339 return; 1340 } 1341 1342 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1343 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1344 } 1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1346 1347 struct blk_rq_wait { 1348 struct completion done; 1349 blk_status_t ret; 1350 }; 1351 1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1353 { 1354 struct blk_rq_wait *wait = rq->end_io_data; 1355 1356 wait->ret = ret; 1357 complete(&wait->done); 1358 return RQ_END_IO_NONE; 1359 } 1360 1361 bool blk_rq_is_poll(struct request *rq) 1362 { 1363 if (!rq->mq_hctx) 1364 return false; 1365 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1366 return false; 1367 return true; 1368 } 1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1370 1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1372 { 1373 do { 1374 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1375 cond_resched(); 1376 } while (!completion_done(wait)); 1377 } 1378 1379 /** 1380 * blk_execute_rq - insert a request into queue for execution 1381 * @rq: request to insert 1382 * @at_head: insert request at head or tail of queue 1383 * 1384 * Description: 1385 * Insert a fully prepared request at the back of the I/O scheduler queue 1386 * for execution and wait for completion. 1387 * Return: The blk_status_t result provided to blk_mq_end_request(). 1388 */ 1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1390 { 1391 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1392 struct blk_rq_wait wait = { 1393 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1394 }; 1395 1396 WARN_ON(irqs_disabled()); 1397 WARN_ON(!blk_rq_is_passthrough(rq)); 1398 1399 rq->end_io_data = &wait; 1400 rq->end_io = blk_end_sync_rq; 1401 1402 blk_account_io_start(rq); 1403 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1404 blk_mq_run_hw_queue(hctx, false); 1405 1406 if (blk_rq_is_poll(rq)) { 1407 blk_rq_poll_completion(rq, &wait.done); 1408 } else { 1409 /* 1410 * Prevent hang_check timer from firing at us during very long 1411 * I/O 1412 */ 1413 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1414 1415 if (hang_check) 1416 while (!wait_for_completion_io_timeout(&wait.done, 1417 hang_check * (HZ/2))) 1418 ; 1419 else 1420 wait_for_completion_io(&wait.done); 1421 } 1422 1423 return wait.ret; 1424 } 1425 EXPORT_SYMBOL(blk_execute_rq); 1426 1427 static void __blk_mq_requeue_request(struct request *rq) 1428 { 1429 struct request_queue *q = rq->q; 1430 1431 blk_mq_put_driver_tag(rq); 1432 1433 trace_block_rq_requeue(rq); 1434 rq_qos_requeue(q, rq); 1435 1436 if (blk_mq_request_started(rq)) { 1437 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1438 rq->rq_flags &= ~RQF_TIMED_OUT; 1439 } 1440 } 1441 1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1443 { 1444 struct request_queue *q = rq->q; 1445 unsigned long flags; 1446 1447 __blk_mq_requeue_request(rq); 1448 1449 /* this request will be re-inserted to io scheduler queue */ 1450 blk_mq_sched_requeue_request(rq); 1451 1452 spin_lock_irqsave(&q->requeue_lock, flags); 1453 list_add_tail(&rq->queuelist, &q->requeue_list); 1454 spin_unlock_irqrestore(&q->requeue_lock, flags); 1455 1456 if (kick_requeue_list) 1457 blk_mq_kick_requeue_list(q); 1458 } 1459 EXPORT_SYMBOL(blk_mq_requeue_request); 1460 1461 static void blk_mq_requeue_work(struct work_struct *work) 1462 { 1463 struct request_queue *q = 1464 container_of(work, struct request_queue, requeue_work.work); 1465 LIST_HEAD(rq_list); 1466 LIST_HEAD(flush_list); 1467 struct request *rq; 1468 1469 spin_lock_irq(&q->requeue_lock); 1470 list_splice_init(&q->requeue_list, &rq_list); 1471 list_splice_init(&q->flush_list, &flush_list); 1472 spin_unlock_irq(&q->requeue_lock); 1473 1474 while (!list_empty(&rq_list)) { 1475 rq = list_entry(rq_list.next, struct request, queuelist); 1476 /* 1477 * If RQF_DONTPREP ist set, the request has been started by the 1478 * driver already and might have driver-specific data allocated 1479 * already. Insert it into the hctx dispatch list to avoid 1480 * block layer merges for the request. 1481 */ 1482 if (rq->rq_flags & RQF_DONTPREP) { 1483 list_del_init(&rq->queuelist); 1484 blk_mq_request_bypass_insert(rq, 0); 1485 } else { 1486 list_del_init(&rq->queuelist); 1487 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1488 } 1489 } 1490 1491 while (!list_empty(&flush_list)) { 1492 rq = list_entry(flush_list.next, struct request, queuelist); 1493 list_del_init(&rq->queuelist); 1494 blk_mq_insert_request(rq, 0); 1495 } 1496 1497 blk_mq_run_hw_queues(q, false); 1498 } 1499 1500 void blk_mq_kick_requeue_list(struct request_queue *q) 1501 { 1502 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1503 } 1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1505 1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1507 unsigned long msecs) 1508 { 1509 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1510 msecs_to_jiffies(msecs)); 1511 } 1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1513 1514 static bool blk_is_flush_data_rq(struct request *rq) 1515 { 1516 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1517 } 1518 1519 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1520 { 1521 /* 1522 * If we find a request that isn't idle we know the queue is busy 1523 * as it's checked in the iter. 1524 * Return false to stop the iteration. 1525 * 1526 * In case of queue quiesce, if one flush data request is completed, 1527 * don't count it as inflight given the flush sequence is suspended, 1528 * and the original flush data request is invisible to driver, just 1529 * like other pending requests because of quiesce 1530 */ 1531 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1532 blk_is_flush_data_rq(rq) && 1533 blk_mq_request_completed(rq))) { 1534 bool *busy = priv; 1535 1536 *busy = true; 1537 return false; 1538 } 1539 1540 return true; 1541 } 1542 1543 bool blk_mq_queue_inflight(struct request_queue *q) 1544 { 1545 bool busy = false; 1546 1547 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1548 return busy; 1549 } 1550 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1551 1552 static void blk_mq_rq_timed_out(struct request *req) 1553 { 1554 req->rq_flags |= RQF_TIMED_OUT; 1555 if (req->q->mq_ops->timeout) { 1556 enum blk_eh_timer_return ret; 1557 1558 ret = req->q->mq_ops->timeout(req); 1559 if (ret == BLK_EH_DONE) 1560 return; 1561 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1562 } 1563 1564 blk_add_timer(req); 1565 } 1566 1567 struct blk_expired_data { 1568 bool has_timedout_rq; 1569 unsigned long next; 1570 unsigned long timeout_start; 1571 }; 1572 1573 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1574 { 1575 unsigned long deadline; 1576 1577 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1578 return false; 1579 if (rq->rq_flags & RQF_TIMED_OUT) 1580 return false; 1581 1582 deadline = READ_ONCE(rq->deadline); 1583 if (time_after_eq(expired->timeout_start, deadline)) 1584 return true; 1585 1586 if (expired->next == 0) 1587 expired->next = deadline; 1588 else if (time_after(expired->next, deadline)) 1589 expired->next = deadline; 1590 return false; 1591 } 1592 1593 void blk_mq_put_rq_ref(struct request *rq) 1594 { 1595 if (is_flush_rq(rq)) { 1596 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1597 blk_mq_free_request(rq); 1598 } else if (req_ref_put_and_test(rq)) { 1599 __blk_mq_free_request(rq); 1600 } 1601 } 1602 1603 static bool blk_mq_check_expired(struct request *rq, void *priv) 1604 { 1605 struct blk_expired_data *expired = priv; 1606 1607 /* 1608 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1609 * be reallocated underneath the timeout handler's processing, then 1610 * the expire check is reliable. If the request is not expired, then 1611 * it was completed and reallocated as a new request after returning 1612 * from blk_mq_check_expired(). 1613 */ 1614 if (blk_mq_req_expired(rq, expired)) { 1615 expired->has_timedout_rq = true; 1616 return false; 1617 } 1618 return true; 1619 } 1620 1621 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1622 { 1623 struct blk_expired_data *expired = priv; 1624 1625 if (blk_mq_req_expired(rq, expired)) 1626 blk_mq_rq_timed_out(rq); 1627 return true; 1628 } 1629 1630 static void blk_mq_timeout_work(struct work_struct *work) 1631 { 1632 struct request_queue *q = 1633 container_of(work, struct request_queue, timeout_work); 1634 struct blk_expired_data expired = { 1635 .timeout_start = jiffies, 1636 }; 1637 struct blk_mq_hw_ctx *hctx; 1638 unsigned long i; 1639 1640 /* A deadlock might occur if a request is stuck requiring a 1641 * timeout at the same time a queue freeze is waiting 1642 * completion, since the timeout code would not be able to 1643 * acquire the queue reference here. 1644 * 1645 * That's why we don't use blk_queue_enter here; instead, we use 1646 * percpu_ref_tryget directly, because we need to be able to 1647 * obtain a reference even in the short window between the queue 1648 * starting to freeze, by dropping the first reference in 1649 * blk_freeze_queue_start, and the moment the last request is 1650 * consumed, marked by the instant q_usage_counter reaches 1651 * zero. 1652 */ 1653 if (!percpu_ref_tryget(&q->q_usage_counter)) 1654 return; 1655 1656 /* check if there is any timed-out request */ 1657 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1658 if (expired.has_timedout_rq) { 1659 /* 1660 * Before walking tags, we must ensure any submit started 1661 * before the current time has finished. Since the submit 1662 * uses srcu or rcu, wait for a synchronization point to 1663 * ensure all running submits have finished 1664 */ 1665 blk_mq_wait_quiesce_done(q->tag_set); 1666 1667 expired.next = 0; 1668 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1669 } 1670 1671 if (expired.next != 0) { 1672 mod_timer(&q->timeout, expired.next); 1673 } else { 1674 /* 1675 * Request timeouts are handled as a forward rolling timer. If 1676 * we end up here it means that no requests are pending and 1677 * also that no request has been pending for a while. Mark 1678 * each hctx as idle. 1679 */ 1680 queue_for_each_hw_ctx(q, hctx, i) { 1681 /* the hctx may be unmapped, so check it here */ 1682 if (blk_mq_hw_queue_mapped(hctx)) 1683 blk_mq_tag_idle(hctx); 1684 } 1685 } 1686 blk_queue_exit(q); 1687 } 1688 1689 struct flush_busy_ctx_data { 1690 struct blk_mq_hw_ctx *hctx; 1691 struct list_head *list; 1692 }; 1693 1694 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1695 { 1696 struct flush_busy_ctx_data *flush_data = data; 1697 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1698 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1699 enum hctx_type type = hctx->type; 1700 1701 spin_lock(&ctx->lock); 1702 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1703 sbitmap_clear_bit(sb, bitnr); 1704 spin_unlock(&ctx->lock); 1705 return true; 1706 } 1707 1708 /* 1709 * Process software queues that have been marked busy, splicing them 1710 * to the for-dispatch 1711 */ 1712 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1713 { 1714 struct flush_busy_ctx_data data = { 1715 .hctx = hctx, 1716 .list = list, 1717 }; 1718 1719 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1720 } 1721 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1722 1723 struct dispatch_rq_data { 1724 struct blk_mq_hw_ctx *hctx; 1725 struct request *rq; 1726 }; 1727 1728 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1729 void *data) 1730 { 1731 struct dispatch_rq_data *dispatch_data = data; 1732 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1733 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1734 enum hctx_type type = hctx->type; 1735 1736 spin_lock(&ctx->lock); 1737 if (!list_empty(&ctx->rq_lists[type])) { 1738 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1739 list_del_init(&dispatch_data->rq->queuelist); 1740 if (list_empty(&ctx->rq_lists[type])) 1741 sbitmap_clear_bit(sb, bitnr); 1742 } 1743 spin_unlock(&ctx->lock); 1744 1745 return !dispatch_data->rq; 1746 } 1747 1748 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1749 struct blk_mq_ctx *start) 1750 { 1751 unsigned off = start ? start->index_hw[hctx->type] : 0; 1752 struct dispatch_rq_data data = { 1753 .hctx = hctx, 1754 .rq = NULL, 1755 }; 1756 1757 __sbitmap_for_each_set(&hctx->ctx_map, off, 1758 dispatch_rq_from_ctx, &data); 1759 1760 return data.rq; 1761 } 1762 1763 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1764 { 1765 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1766 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1767 int tag; 1768 1769 blk_mq_tag_busy(rq->mq_hctx); 1770 1771 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1772 bt = &rq->mq_hctx->tags->breserved_tags; 1773 tag_offset = 0; 1774 } else { 1775 if (!hctx_may_queue(rq->mq_hctx, bt)) 1776 return false; 1777 } 1778 1779 tag = __sbitmap_queue_get(bt); 1780 if (tag == BLK_MQ_NO_TAG) 1781 return false; 1782 1783 rq->tag = tag + tag_offset; 1784 return true; 1785 } 1786 1787 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1788 { 1789 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1790 return false; 1791 1792 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1793 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1794 rq->rq_flags |= RQF_MQ_INFLIGHT; 1795 __blk_mq_inc_active_requests(hctx); 1796 } 1797 hctx->tags->rqs[rq->tag] = rq; 1798 return true; 1799 } 1800 1801 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1802 int flags, void *key) 1803 { 1804 struct blk_mq_hw_ctx *hctx; 1805 1806 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1807 1808 spin_lock(&hctx->dispatch_wait_lock); 1809 if (!list_empty(&wait->entry)) { 1810 struct sbitmap_queue *sbq; 1811 1812 list_del_init(&wait->entry); 1813 sbq = &hctx->tags->bitmap_tags; 1814 atomic_dec(&sbq->ws_active); 1815 } 1816 spin_unlock(&hctx->dispatch_wait_lock); 1817 1818 blk_mq_run_hw_queue(hctx, true); 1819 return 1; 1820 } 1821 1822 /* 1823 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1824 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1825 * restart. For both cases, take care to check the condition again after 1826 * marking us as waiting. 1827 */ 1828 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1829 struct request *rq) 1830 { 1831 struct sbitmap_queue *sbq; 1832 struct wait_queue_head *wq; 1833 wait_queue_entry_t *wait; 1834 bool ret; 1835 1836 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1837 !(blk_mq_is_shared_tags(hctx->flags))) { 1838 blk_mq_sched_mark_restart_hctx(hctx); 1839 1840 /* 1841 * It's possible that a tag was freed in the window between the 1842 * allocation failure and adding the hardware queue to the wait 1843 * queue. 1844 * 1845 * Don't clear RESTART here, someone else could have set it. 1846 * At most this will cost an extra queue run. 1847 */ 1848 return blk_mq_get_driver_tag(rq); 1849 } 1850 1851 wait = &hctx->dispatch_wait; 1852 if (!list_empty_careful(&wait->entry)) 1853 return false; 1854 1855 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1856 sbq = &hctx->tags->breserved_tags; 1857 else 1858 sbq = &hctx->tags->bitmap_tags; 1859 wq = &bt_wait_ptr(sbq, hctx)->wait; 1860 1861 spin_lock_irq(&wq->lock); 1862 spin_lock(&hctx->dispatch_wait_lock); 1863 if (!list_empty(&wait->entry)) { 1864 spin_unlock(&hctx->dispatch_wait_lock); 1865 spin_unlock_irq(&wq->lock); 1866 return false; 1867 } 1868 1869 atomic_inc(&sbq->ws_active); 1870 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1871 __add_wait_queue(wq, wait); 1872 1873 /* 1874 * It's possible that a tag was freed in the window between the 1875 * allocation failure and adding the hardware queue to the wait 1876 * queue. 1877 */ 1878 ret = blk_mq_get_driver_tag(rq); 1879 if (!ret) { 1880 spin_unlock(&hctx->dispatch_wait_lock); 1881 spin_unlock_irq(&wq->lock); 1882 return false; 1883 } 1884 1885 /* 1886 * We got a tag, remove ourselves from the wait queue to ensure 1887 * someone else gets the wakeup. 1888 */ 1889 list_del_init(&wait->entry); 1890 atomic_dec(&sbq->ws_active); 1891 spin_unlock(&hctx->dispatch_wait_lock); 1892 spin_unlock_irq(&wq->lock); 1893 1894 return true; 1895 } 1896 1897 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1898 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1899 /* 1900 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1901 * - EWMA is one simple way to compute running average value 1902 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1903 * - take 4 as factor for avoiding to get too small(0) result, and this 1904 * factor doesn't matter because EWMA decreases exponentially 1905 */ 1906 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1907 { 1908 unsigned int ewma; 1909 1910 ewma = hctx->dispatch_busy; 1911 1912 if (!ewma && !busy) 1913 return; 1914 1915 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1916 if (busy) 1917 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1918 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1919 1920 hctx->dispatch_busy = ewma; 1921 } 1922 1923 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1924 1925 static void blk_mq_handle_dev_resource(struct request *rq, 1926 struct list_head *list) 1927 { 1928 list_add(&rq->queuelist, list); 1929 __blk_mq_requeue_request(rq); 1930 } 1931 1932 static void blk_mq_handle_zone_resource(struct request *rq, 1933 struct list_head *zone_list) 1934 { 1935 /* 1936 * If we end up here it is because we cannot dispatch a request to a 1937 * specific zone due to LLD level zone-write locking or other zone 1938 * related resource not being available. In this case, set the request 1939 * aside in zone_list for retrying it later. 1940 */ 1941 list_add(&rq->queuelist, zone_list); 1942 __blk_mq_requeue_request(rq); 1943 } 1944 1945 enum prep_dispatch { 1946 PREP_DISPATCH_OK, 1947 PREP_DISPATCH_NO_TAG, 1948 PREP_DISPATCH_NO_BUDGET, 1949 }; 1950 1951 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1952 bool need_budget) 1953 { 1954 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1955 int budget_token = -1; 1956 1957 if (need_budget) { 1958 budget_token = blk_mq_get_dispatch_budget(rq->q); 1959 if (budget_token < 0) { 1960 blk_mq_put_driver_tag(rq); 1961 return PREP_DISPATCH_NO_BUDGET; 1962 } 1963 blk_mq_set_rq_budget_token(rq, budget_token); 1964 } 1965 1966 if (!blk_mq_get_driver_tag(rq)) { 1967 /* 1968 * The initial allocation attempt failed, so we need to 1969 * rerun the hardware queue when a tag is freed. The 1970 * waitqueue takes care of that. If the queue is run 1971 * before we add this entry back on the dispatch list, 1972 * we'll re-run it below. 1973 */ 1974 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1975 /* 1976 * All budgets not got from this function will be put 1977 * together during handling partial dispatch 1978 */ 1979 if (need_budget) 1980 blk_mq_put_dispatch_budget(rq->q, budget_token); 1981 return PREP_DISPATCH_NO_TAG; 1982 } 1983 } 1984 1985 return PREP_DISPATCH_OK; 1986 } 1987 1988 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1989 static void blk_mq_release_budgets(struct request_queue *q, 1990 struct list_head *list) 1991 { 1992 struct request *rq; 1993 1994 list_for_each_entry(rq, list, queuelist) { 1995 int budget_token = blk_mq_get_rq_budget_token(rq); 1996 1997 if (budget_token >= 0) 1998 blk_mq_put_dispatch_budget(q, budget_token); 1999 } 2000 } 2001 2002 /* 2003 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2004 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2005 * details) 2006 * Attention, we should explicitly call this in unusual cases: 2007 * 1) did not queue everything initially scheduled to queue 2008 * 2) the last attempt to queue a request failed 2009 */ 2010 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2011 bool from_schedule) 2012 { 2013 if (hctx->queue->mq_ops->commit_rqs && queued) { 2014 trace_block_unplug(hctx->queue, queued, !from_schedule); 2015 hctx->queue->mq_ops->commit_rqs(hctx); 2016 } 2017 } 2018 2019 /* 2020 * Returns true if we did some work AND can potentially do more. 2021 */ 2022 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2023 unsigned int nr_budgets) 2024 { 2025 enum prep_dispatch prep; 2026 struct request_queue *q = hctx->queue; 2027 struct request *rq; 2028 int queued; 2029 blk_status_t ret = BLK_STS_OK; 2030 LIST_HEAD(zone_list); 2031 bool needs_resource = false; 2032 2033 if (list_empty(list)) 2034 return false; 2035 2036 /* 2037 * Now process all the entries, sending them to the driver. 2038 */ 2039 queued = 0; 2040 do { 2041 struct blk_mq_queue_data bd; 2042 2043 rq = list_first_entry(list, struct request, queuelist); 2044 2045 WARN_ON_ONCE(hctx != rq->mq_hctx); 2046 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2047 if (prep != PREP_DISPATCH_OK) 2048 break; 2049 2050 list_del_init(&rq->queuelist); 2051 2052 bd.rq = rq; 2053 bd.last = list_empty(list); 2054 2055 /* 2056 * once the request is queued to lld, no need to cover the 2057 * budget any more 2058 */ 2059 if (nr_budgets) 2060 nr_budgets--; 2061 ret = q->mq_ops->queue_rq(hctx, &bd); 2062 switch (ret) { 2063 case BLK_STS_OK: 2064 queued++; 2065 break; 2066 case BLK_STS_RESOURCE: 2067 needs_resource = true; 2068 fallthrough; 2069 case BLK_STS_DEV_RESOURCE: 2070 blk_mq_handle_dev_resource(rq, list); 2071 goto out; 2072 case BLK_STS_ZONE_RESOURCE: 2073 /* 2074 * Move the request to zone_list and keep going through 2075 * the dispatch list to find more requests the drive can 2076 * accept. 2077 */ 2078 blk_mq_handle_zone_resource(rq, &zone_list); 2079 needs_resource = true; 2080 break; 2081 default: 2082 blk_mq_end_request(rq, ret); 2083 } 2084 } while (!list_empty(list)); 2085 out: 2086 if (!list_empty(&zone_list)) 2087 list_splice_tail_init(&zone_list, list); 2088 2089 /* If we didn't flush the entire list, we could have told the driver 2090 * there was more coming, but that turned out to be a lie. 2091 */ 2092 if (!list_empty(list) || ret != BLK_STS_OK) 2093 blk_mq_commit_rqs(hctx, queued, false); 2094 2095 /* 2096 * Any items that need requeuing? Stuff them into hctx->dispatch, 2097 * that is where we will continue on next queue run. 2098 */ 2099 if (!list_empty(list)) { 2100 bool needs_restart; 2101 /* For non-shared tags, the RESTART check will suffice */ 2102 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2103 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2104 blk_mq_is_shared_tags(hctx->flags)); 2105 2106 if (nr_budgets) 2107 blk_mq_release_budgets(q, list); 2108 2109 spin_lock(&hctx->lock); 2110 list_splice_tail_init(list, &hctx->dispatch); 2111 spin_unlock(&hctx->lock); 2112 2113 /* 2114 * Order adding requests to hctx->dispatch and checking 2115 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2116 * in blk_mq_sched_restart(). Avoid restart code path to 2117 * miss the new added requests to hctx->dispatch, meantime 2118 * SCHED_RESTART is observed here. 2119 */ 2120 smp_mb(); 2121 2122 /* 2123 * If SCHED_RESTART was set by the caller of this function and 2124 * it is no longer set that means that it was cleared by another 2125 * thread and hence that a queue rerun is needed. 2126 * 2127 * If 'no_tag' is set, that means that we failed getting 2128 * a driver tag with an I/O scheduler attached. If our dispatch 2129 * waitqueue is no longer active, ensure that we run the queue 2130 * AFTER adding our entries back to the list. 2131 * 2132 * If no I/O scheduler has been configured it is possible that 2133 * the hardware queue got stopped and restarted before requests 2134 * were pushed back onto the dispatch list. Rerun the queue to 2135 * avoid starvation. Notes: 2136 * - blk_mq_run_hw_queue() checks whether or not a queue has 2137 * been stopped before rerunning a queue. 2138 * - Some but not all block drivers stop a queue before 2139 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2140 * and dm-rq. 2141 * 2142 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2143 * bit is set, run queue after a delay to avoid IO stalls 2144 * that could otherwise occur if the queue is idle. We'll do 2145 * similar if we couldn't get budget or couldn't lock a zone 2146 * and SCHED_RESTART is set. 2147 */ 2148 needs_restart = blk_mq_sched_needs_restart(hctx); 2149 if (prep == PREP_DISPATCH_NO_BUDGET) 2150 needs_resource = true; 2151 if (!needs_restart || 2152 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2153 blk_mq_run_hw_queue(hctx, true); 2154 else if (needs_resource) 2155 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2156 2157 blk_mq_update_dispatch_busy(hctx, true); 2158 return false; 2159 } 2160 2161 blk_mq_update_dispatch_busy(hctx, false); 2162 return true; 2163 } 2164 2165 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2166 { 2167 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2168 2169 if (cpu >= nr_cpu_ids) 2170 cpu = cpumask_first(hctx->cpumask); 2171 return cpu; 2172 } 2173 2174 /* 2175 * It'd be great if the workqueue API had a way to pass 2176 * in a mask and had some smarts for more clever placement. 2177 * For now we just round-robin here, switching for every 2178 * BLK_MQ_CPU_WORK_BATCH queued items. 2179 */ 2180 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2181 { 2182 bool tried = false; 2183 int next_cpu = hctx->next_cpu; 2184 2185 if (hctx->queue->nr_hw_queues == 1) 2186 return WORK_CPU_UNBOUND; 2187 2188 if (--hctx->next_cpu_batch <= 0) { 2189 select_cpu: 2190 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2191 cpu_online_mask); 2192 if (next_cpu >= nr_cpu_ids) 2193 next_cpu = blk_mq_first_mapped_cpu(hctx); 2194 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2195 } 2196 2197 /* 2198 * Do unbound schedule if we can't find a online CPU for this hctx, 2199 * and it should only happen in the path of handling CPU DEAD. 2200 */ 2201 if (!cpu_online(next_cpu)) { 2202 if (!tried) { 2203 tried = true; 2204 goto select_cpu; 2205 } 2206 2207 /* 2208 * Make sure to re-select CPU next time once after CPUs 2209 * in hctx->cpumask become online again. 2210 */ 2211 hctx->next_cpu = next_cpu; 2212 hctx->next_cpu_batch = 1; 2213 return WORK_CPU_UNBOUND; 2214 } 2215 2216 hctx->next_cpu = next_cpu; 2217 return next_cpu; 2218 } 2219 2220 /** 2221 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2222 * @hctx: Pointer to the hardware queue to run. 2223 * @msecs: Milliseconds of delay to wait before running the queue. 2224 * 2225 * Run a hardware queue asynchronously with a delay of @msecs. 2226 */ 2227 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2228 { 2229 if (unlikely(blk_mq_hctx_stopped(hctx))) 2230 return; 2231 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2232 msecs_to_jiffies(msecs)); 2233 } 2234 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2235 2236 /** 2237 * blk_mq_run_hw_queue - Start to run a hardware queue. 2238 * @hctx: Pointer to the hardware queue to run. 2239 * @async: If we want to run the queue asynchronously. 2240 * 2241 * Check if the request queue is not in a quiesced state and if there are 2242 * pending requests to be sent. If this is true, run the queue to send requests 2243 * to hardware. 2244 */ 2245 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2246 { 2247 bool need_run; 2248 2249 /* 2250 * We can't run the queue inline with interrupts disabled. 2251 */ 2252 WARN_ON_ONCE(!async && in_interrupt()); 2253 2254 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2255 2256 /* 2257 * When queue is quiesced, we may be switching io scheduler, or 2258 * updating nr_hw_queues, or other things, and we can't run queue 2259 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2260 * 2261 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2262 * quiesced. 2263 */ 2264 __blk_mq_run_dispatch_ops(hctx->queue, false, 2265 need_run = !blk_queue_quiesced(hctx->queue) && 2266 blk_mq_hctx_has_pending(hctx)); 2267 2268 if (!need_run) 2269 return; 2270 2271 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2272 blk_mq_delay_run_hw_queue(hctx, 0); 2273 return; 2274 } 2275 2276 blk_mq_run_dispatch_ops(hctx->queue, 2277 blk_mq_sched_dispatch_requests(hctx)); 2278 } 2279 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2280 2281 /* 2282 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2283 * scheduler. 2284 */ 2285 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2286 { 2287 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2288 /* 2289 * If the IO scheduler does not respect hardware queues when 2290 * dispatching, we just don't bother with multiple HW queues and 2291 * dispatch from hctx for the current CPU since running multiple queues 2292 * just causes lock contention inside the scheduler and pointless cache 2293 * bouncing. 2294 */ 2295 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2296 2297 if (!blk_mq_hctx_stopped(hctx)) 2298 return hctx; 2299 return NULL; 2300 } 2301 2302 /** 2303 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2304 * @q: Pointer to the request queue to run. 2305 * @async: If we want to run the queue asynchronously. 2306 */ 2307 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2308 { 2309 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2310 unsigned long i; 2311 2312 sq_hctx = NULL; 2313 if (blk_queue_sq_sched(q)) 2314 sq_hctx = blk_mq_get_sq_hctx(q); 2315 queue_for_each_hw_ctx(q, hctx, i) { 2316 if (blk_mq_hctx_stopped(hctx)) 2317 continue; 2318 /* 2319 * Dispatch from this hctx either if there's no hctx preferred 2320 * by IO scheduler or if it has requests that bypass the 2321 * scheduler. 2322 */ 2323 if (!sq_hctx || sq_hctx == hctx || 2324 !list_empty_careful(&hctx->dispatch)) 2325 blk_mq_run_hw_queue(hctx, async); 2326 } 2327 } 2328 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2329 2330 /** 2331 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2332 * @q: Pointer to the request queue to run. 2333 * @msecs: Milliseconds of delay to wait before running the queues. 2334 */ 2335 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2336 { 2337 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2338 unsigned long i; 2339 2340 sq_hctx = NULL; 2341 if (blk_queue_sq_sched(q)) 2342 sq_hctx = blk_mq_get_sq_hctx(q); 2343 queue_for_each_hw_ctx(q, hctx, i) { 2344 if (blk_mq_hctx_stopped(hctx)) 2345 continue; 2346 /* 2347 * If there is already a run_work pending, leave the 2348 * pending delay untouched. Otherwise, a hctx can stall 2349 * if another hctx is re-delaying the other's work 2350 * before the work executes. 2351 */ 2352 if (delayed_work_pending(&hctx->run_work)) 2353 continue; 2354 /* 2355 * Dispatch from this hctx either if there's no hctx preferred 2356 * by IO scheduler or if it has requests that bypass the 2357 * scheduler. 2358 */ 2359 if (!sq_hctx || sq_hctx == hctx || 2360 !list_empty_careful(&hctx->dispatch)) 2361 blk_mq_delay_run_hw_queue(hctx, msecs); 2362 } 2363 } 2364 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2365 2366 /* 2367 * This function is often used for pausing .queue_rq() by driver when 2368 * there isn't enough resource or some conditions aren't satisfied, and 2369 * BLK_STS_RESOURCE is usually returned. 2370 * 2371 * We do not guarantee that dispatch can be drained or blocked 2372 * after blk_mq_stop_hw_queue() returns. Please use 2373 * blk_mq_quiesce_queue() for that requirement. 2374 */ 2375 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2376 { 2377 cancel_delayed_work(&hctx->run_work); 2378 2379 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2380 } 2381 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2382 2383 /* 2384 * This function is often used for pausing .queue_rq() by driver when 2385 * there isn't enough resource or some conditions aren't satisfied, and 2386 * BLK_STS_RESOURCE is usually returned. 2387 * 2388 * We do not guarantee that dispatch can be drained or blocked 2389 * after blk_mq_stop_hw_queues() returns. Please use 2390 * blk_mq_quiesce_queue() for that requirement. 2391 */ 2392 void blk_mq_stop_hw_queues(struct request_queue *q) 2393 { 2394 struct blk_mq_hw_ctx *hctx; 2395 unsigned long i; 2396 2397 queue_for_each_hw_ctx(q, hctx, i) 2398 blk_mq_stop_hw_queue(hctx); 2399 } 2400 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2401 2402 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2403 { 2404 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2405 2406 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2407 } 2408 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2409 2410 void blk_mq_start_hw_queues(struct request_queue *q) 2411 { 2412 struct blk_mq_hw_ctx *hctx; 2413 unsigned long i; 2414 2415 queue_for_each_hw_ctx(q, hctx, i) 2416 blk_mq_start_hw_queue(hctx); 2417 } 2418 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2419 2420 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2421 { 2422 if (!blk_mq_hctx_stopped(hctx)) 2423 return; 2424 2425 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2426 blk_mq_run_hw_queue(hctx, async); 2427 } 2428 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2429 2430 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2431 { 2432 struct blk_mq_hw_ctx *hctx; 2433 unsigned long i; 2434 2435 queue_for_each_hw_ctx(q, hctx, i) 2436 blk_mq_start_stopped_hw_queue(hctx, async || 2437 (hctx->flags & BLK_MQ_F_BLOCKING)); 2438 } 2439 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2440 2441 static void blk_mq_run_work_fn(struct work_struct *work) 2442 { 2443 struct blk_mq_hw_ctx *hctx = 2444 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2445 2446 blk_mq_run_dispatch_ops(hctx->queue, 2447 blk_mq_sched_dispatch_requests(hctx)); 2448 } 2449 2450 /** 2451 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2452 * @rq: Pointer to request to be inserted. 2453 * @flags: BLK_MQ_INSERT_* 2454 * 2455 * Should only be used carefully, when the caller knows we want to 2456 * bypass a potential IO scheduler on the target device. 2457 */ 2458 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2459 { 2460 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2461 2462 spin_lock(&hctx->lock); 2463 if (flags & BLK_MQ_INSERT_AT_HEAD) 2464 list_add(&rq->queuelist, &hctx->dispatch); 2465 else 2466 list_add_tail(&rq->queuelist, &hctx->dispatch); 2467 spin_unlock(&hctx->lock); 2468 } 2469 2470 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2471 struct blk_mq_ctx *ctx, struct list_head *list, 2472 bool run_queue_async) 2473 { 2474 struct request *rq; 2475 enum hctx_type type = hctx->type; 2476 2477 /* 2478 * Try to issue requests directly if the hw queue isn't busy to save an 2479 * extra enqueue & dequeue to the sw queue. 2480 */ 2481 if (!hctx->dispatch_busy && !run_queue_async) { 2482 blk_mq_run_dispatch_ops(hctx->queue, 2483 blk_mq_try_issue_list_directly(hctx, list)); 2484 if (list_empty(list)) 2485 goto out; 2486 } 2487 2488 /* 2489 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2490 * offline now 2491 */ 2492 list_for_each_entry(rq, list, queuelist) { 2493 BUG_ON(rq->mq_ctx != ctx); 2494 trace_block_rq_insert(rq); 2495 if (rq->cmd_flags & REQ_NOWAIT) 2496 run_queue_async = true; 2497 } 2498 2499 spin_lock(&ctx->lock); 2500 list_splice_tail_init(list, &ctx->rq_lists[type]); 2501 blk_mq_hctx_mark_pending(hctx, ctx); 2502 spin_unlock(&ctx->lock); 2503 out: 2504 blk_mq_run_hw_queue(hctx, run_queue_async); 2505 } 2506 2507 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2508 { 2509 struct request_queue *q = rq->q; 2510 struct blk_mq_ctx *ctx = rq->mq_ctx; 2511 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2512 2513 if (blk_rq_is_passthrough(rq)) { 2514 /* 2515 * Passthrough request have to be added to hctx->dispatch 2516 * directly. The device may be in a situation where it can't 2517 * handle FS request, and always returns BLK_STS_RESOURCE for 2518 * them, which gets them added to hctx->dispatch. 2519 * 2520 * If a passthrough request is required to unblock the queues, 2521 * and it is added to the scheduler queue, there is no chance to 2522 * dispatch it given we prioritize requests in hctx->dispatch. 2523 */ 2524 blk_mq_request_bypass_insert(rq, flags); 2525 } else if (req_op(rq) == REQ_OP_FLUSH) { 2526 /* 2527 * Firstly normal IO request is inserted to scheduler queue or 2528 * sw queue, meantime we add flush request to dispatch queue( 2529 * hctx->dispatch) directly and there is at most one in-flight 2530 * flush request for each hw queue, so it doesn't matter to add 2531 * flush request to tail or front of the dispatch queue. 2532 * 2533 * Secondly in case of NCQ, flush request belongs to non-NCQ 2534 * command, and queueing it will fail when there is any 2535 * in-flight normal IO request(NCQ command). When adding flush 2536 * rq to the front of hctx->dispatch, it is easier to introduce 2537 * extra time to flush rq's latency because of S_SCHED_RESTART 2538 * compared with adding to the tail of dispatch queue, then 2539 * chance of flush merge is increased, and less flush requests 2540 * will be issued to controller. It is observed that ~10% time 2541 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2542 * drive when adding flush rq to the front of hctx->dispatch. 2543 * 2544 * Simply queue flush rq to the front of hctx->dispatch so that 2545 * intensive flush workloads can benefit in case of NCQ HW. 2546 */ 2547 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2548 } else if (q->elevator) { 2549 LIST_HEAD(list); 2550 2551 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2552 2553 list_add(&rq->queuelist, &list); 2554 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2555 } else { 2556 trace_block_rq_insert(rq); 2557 2558 spin_lock(&ctx->lock); 2559 if (flags & BLK_MQ_INSERT_AT_HEAD) 2560 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2561 else 2562 list_add_tail(&rq->queuelist, 2563 &ctx->rq_lists[hctx->type]); 2564 blk_mq_hctx_mark_pending(hctx, ctx); 2565 spin_unlock(&ctx->lock); 2566 } 2567 } 2568 2569 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2570 unsigned int nr_segs) 2571 { 2572 int err; 2573 2574 if (bio->bi_opf & REQ_RAHEAD) 2575 rq->cmd_flags |= REQ_FAILFAST_MASK; 2576 2577 rq->__sector = bio->bi_iter.bi_sector; 2578 blk_rq_bio_prep(rq, bio, nr_segs); 2579 2580 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2581 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2582 WARN_ON_ONCE(err); 2583 2584 blk_account_io_start(rq); 2585 } 2586 2587 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2588 struct request *rq, bool last) 2589 { 2590 struct request_queue *q = rq->q; 2591 struct blk_mq_queue_data bd = { 2592 .rq = rq, 2593 .last = last, 2594 }; 2595 blk_status_t ret; 2596 2597 /* 2598 * For OK queue, we are done. For error, caller may kill it. 2599 * Any other error (busy), just add it to our list as we 2600 * previously would have done. 2601 */ 2602 ret = q->mq_ops->queue_rq(hctx, &bd); 2603 switch (ret) { 2604 case BLK_STS_OK: 2605 blk_mq_update_dispatch_busy(hctx, false); 2606 break; 2607 case BLK_STS_RESOURCE: 2608 case BLK_STS_DEV_RESOURCE: 2609 blk_mq_update_dispatch_busy(hctx, true); 2610 __blk_mq_requeue_request(rq); 2611 break; 2612 default: 2613 blk_mq_update_dispatch_busy(hctx, false); 2614 break; 2615 } 2616 2617 return ret; 2618 } 2619 2620 static bool blk_mq_get_budget_and_tag(struct request *rq) 2621 { 2622 int budget_token; 2623 2624 budget_token = blk_mq_get_dispatch_budget(rq->q); 2625 if (budget_token < 0) 2626 return false; 2627 blk_mq_set_rq_budget_token(rq, budget_token); 2628 if (!blk_mq_get_driver_tag(rq)) { 2629 blk_mq_put_dispatch_budget(rq->q, budget_token); 2630 return false; 2631 } 2632 return true; 2633 } 2634 2635 /** 2636 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2637 * @hctx: Pointer of the associated hardware queue. 2638 * @rq: Pointer to request to be sent. 2639 * 2640 * If the device has enough resources to accept a new request now, send the 2641 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2642 * we can try send it another time in the future. Requests inserted at this 2643 * queue have higher priority. 2644 */ 2645 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2646 struct request *rq) 2647 { 2648 blk_status_t ret; 2649 2650 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2651 blk_mq_insert_request(rq, 0); 2652 return; 2653 } 2654 2655 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2656 blk_mq_insert_request(rq, 0); 2657 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2658 return; 2659 } 2660 2661 ret = __blk_mq_issue_directly(hctx, rq, true); 2662 switch (ret) { 2663 case BLK_STS_OK: 2664 break; 2665 case BLK_STS_RESOURCE: 2666 case BLK_STS_DEV_RESOURCE: 2667 blk_mq_request_bypass_insert(rq, 0); 2668 blk_mq_run_hw_queue(hctx, false); 2669 break; 2670 default: 2671 blk_mq_end_request(rq, ret); 2672 break; 2673 } 2674 } 2675 2676 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2677 { 2678 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2679 2680 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2681 blk_mq_insert_request(rq, 0); 2682 return BLK_STS_OK; 2683 } 2684 2685 if (!blk_mq_get_budget_and_tag(rq)) 2686 return BLK_STS_RESOURCE; 2687 return __blk_mq_issue_directly(hctx, rq, last); 2688 } 2689 2690 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2691 { 2692 struct blk_mq_hw_ctx *hctx = NULL; 2693 struct request *rq; 2694 int queued = 0; 2695 blk_status_t ret = BLK_STS_OK; 2696 2697 while ((rq = rq_list_pop(&plug->mq_list))) { 2698 bool last = rq_list_empty(plug->mq_list); 2699 2700 if (hctx != rq->mq_hctx) { 2701 if (hctx) { 2702 blk_mq_commit_rqs(hctx, queued, false); 2703 queued = 0; 2704 } 2705 hctx = rq->mq_hctx; 2706 } 2707 2708 ret = blk_mq_request_issue_directly(rq, last); 2709 switch (ret) { 2710 case BLK_STS_OK: 2711 queued++; 2712 break; 2713 case BLK_STS_RESOURCE: 2714 case BLK_STS_DEV_RESOURCE: 2715 blk_mq_request_bypass_insert(rq, 0); 2716 blk_mq_run_hw_queue(hctx, false); 2717 goto out; 2718 default: 2719 blk_mq_end_request(rq, ret); 2720 break; 2721 } 2722 } 2723 2724 out: 2725 if (ret != BLK_STS_OK) 2726 blk_mq_commit_rqs(hctx, queued, false); 2727 } 2728 2729 static void __blk_mq_flush_plug_list(struct request_queue *q, 2730 struct blk_plug *plug) 2731 { 2732 if (blk_queue_quiesced(q)) 2733 return; 2734 q->mq_ops->queue_rqs(&plug->mq_list); 2735 } 2736 2737 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2738 { 2739 struct blk_mq_hw_ctx *this_hctx = NULL; 2740 struct blk_mq_ctx *this_ctx = NULL; 2741 struct request *requeue_list = NULL; 2742 struct request **requeue_lastp = &requeue_list; 2743 unsigned int depth = 0; 2744 bool is_passthrough = false; 2745 LIST_HEAD(list); 2746 2747 do { 2748 struct request *rq = rq_list_pop(&plug->mq_list); 2749 2750 if (!this_hctx) { 2751 this_hctx = rq->mq_hctx; 2752 this_ctx = rq->mq_ctx; 2753 is_passthrough = blk_rq_is_passthrough(rq); 2754 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2755 is_passthrough != blk_rq_is_passthrough(rq)) { 2756 rq_list_add_tail(&requeue_lastp, rq); 2757 continue; 2758 } 2759 list_add(&rq->queuelist, &list); 2760 depth++; 2761 } while (!rq_list_empty(plug->mq_list)); 2762 2763 plug->mq_list = requeue_list; 2764 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2765 2766 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2767 /* passthrough requests should never be issued to the I/O scheduler */ 2768 if (is_passthrough) { 2769 spin_lock(&this_hctx->lock); 2770 list_splice_tail_init(&list, &this_hctx->dispatch); 2771 spin_unlock(&this_hctx->lock); 2772 blk_mq_run_hw_queue(this_hctx, from_sched); 2773 } else if (this_hctx->queue->elevator) { 2774 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2775 &list, 0); 2776 blk_mq_run_hw_queue(this_hctx, from_sched); 2777 } else { 2778 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2779 } 2780 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2781 } 2782 2783 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2784 { 2785 struct request *rq; 2786 2787 /* 2788 * We may have been called recursively midway through handling 2789 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2790 * To avoid mq_list changing under our feet, clear rq_count early and 2791 * bail out specifically if rq_count is 0 rather than checking 2792 * whether the mq_list is empty. 2793 */ 2794 if (plug->rq_count == 0) 2795 return; 2796 plug->rq_count = 0; 2797 2798 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2799 struct request_queue *q; 2800 2801 rq = rq_list_peek(&plug->mq_list); 2802 q = rq->q; 2803 2804 /* 2805 * Peek first request and see if we have a ->queue_rqs() hook. 2806 * If we do, we can dispatch the whole plug list in one go. We 2807 * already know at this point that all requests belong to the 2808 * same queue, caller must ensure that's the case. 2809 * 2810 * Since we pass off the full list to the driver at this point, 2811 * we do not increment the active request count for the queue. 2812 * Bypass shared tags for now because of that. 2813 */ 2814 if (q->mq_ops->queue_rqs && 2815 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2816 blk_mq_run_dispatch_ops(q, 2817 __blk_mq_flush_plug_list(q, plug)); 2818 if (rq_list_empty(plug->mq_list)) 2819 return; 2820 } 2821 2822 blk_mq_run_dispatch_ops(q, 2823 blk_mq_plug_issue_direct(plug)); 2824 if (rq_list_empty(plug->mq_list)) 2825 return; 2826 } 2827 2828 do { 2829 blk_mq_dispatch_plug_list(plug, from_schedule); 2830 } while (!rq_list_empty(plug->mq_list)); 2831 } 2832 2833 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2834 struct list_head *list) 2835 { 2836 int queued = 0; 2837 blk_status_t ret = BLK_STS_OK; 2838 2839 while (!list_empty(list)) { 2840 struct request *rq = list_first_entry(list, struct request, 2841 queuelist); 2842 2843 list_del_init(&rq->queuelist); 2844 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2845 switch (ret) { 2846 case BLK_STS_OK: 2847 queued++; 2848 break; 2849 case BLK_STS_RESOURCE: 2850 case BLK_STS_DEV_RESOURCE: 2851 blk_mq_request_bypass_insert(rq, 0); 2852 if (list_empty(list)) 2853 blk_mq_run_hw_queue(hctx, false); 2854 goto out; 2855 default: 2856 blk_mq_end_request(rq, ret); 2857 break; 2858 } 2859 } 2860 2861 out: 2862 if (ret != BLK_STS_OK) 2863 blk_mq_commit_rqs(hctx, queued, false); 2864 } 2865 2866 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2867 struct bio *bio, unsigned int nr_segs) 2868 { 2869 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2870 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2871 return true; 2872 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2873 return true; 2874 } 2875 return false; 2876 } 2877 2878 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2879 struct blk_plug *plug, 2880 struct bio *bio, 2881 unsigned int nsegs) 2882 { 2883 struct blk_mq_alloc_data data = { 2884 .q = q, 2885 .nr_tags = 1, 2886 .cmd_flags = bio->bi_opf, 2887 }; 2888 struct request *rq; 2889 2890 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2891 return NULL; 2892 2893 rq_qos_throttle(q, bio); 2894 2895 if (plug) { 2896 data.nr_tags = plug->nr_ios; 2897 plug->nr_ios = 1; 2898 data.cached_rq = &plug->cached_rq; 2899 } 2900 2901 rq = __blk_mq_alloc_requests(&data); 2902 if (rq) 2903 return rq; 2904 rq_qos_cleanup(q, bio); 2905 if (bio->bi_opf & REQ_NOWAIT) 2906 bio_wouldblock_error(bio); 2907 return NULL; 2908 } 2909 2910 /* return true if this @rq can be used for @bio */ 2911 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug, 2912 struct bio *bio) 2913 { 2914 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf); 2915 enum hctx_type hctx_type = rq->mq_hctx->type; 2916 2917 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2918 2919 if (type != hctx_type && 2920 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2921 return false; 2922 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2923 return false; 2924 2925 /* 2926 * If any qos ->throttle() end up blocking, we will have flushed the 2927 * plug and hence killed the cached_rq list as well. Pop this entry 2928 * before we throttle. 2929 */ 2930 plug->cached_rq = rq_list_next(rq); 2931 rq_qos_throttle(rq->q, bio); 2932 2933 blk_mq_rq_time_init(rq, 0); 2934 rq->cmd_flags = bio->bi_opf; 2935 INIT_LIST_HEAD(&rq->queuelist); 2936 return true; 2937 } 2938 2939 static void bio_set_ioprio(struct bio *bio) 2940 { 2941 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2942 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2943 bio->bi_ioprio = get_current_ioprio(); 2944 blkcg_set_ioprio(bio); 2945 } 2946 2947 /** 2948 * blk_mq_submit_bio - Create and send a request to block device. 2949 * @bio: Bio pointer. 2950 * 2951 * Builds up a request structure from @q and @bio and send to the device. The 2952 * request may not be queued directly to hardware if: 2953 * * This request can be merged with another one 2954 * * We want to place request at plug queue for possible future merging 2955 * * There is an IO scheduler active at this queue 2956 * 2957 * It will not queue the request if there is an error with the bio, or at the 2958 * request creation. 2959 */ 2960 void blk_mq_submit_bio(struct bio *bio) 2961 { 2962 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2963 struct blk_plug *plug = blk_mq_plug(bio); 2964 const int is_sync = op_is_sync(bio->bi_opf); 2965 struct blk_mq_hw_ctx *hctx; 2966 struct request *rq = NULL; 2967 unsigned int nr_segs = 1; 2968 blk_status_t ret; 2969 2970 bio = blk_queue_bounce(bio, q); 2971 if (bio_may_exceed_limits(bio, &q->limits)) { 2972 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2973 if (!bio) 2974 return; 2975 } 2976 2977 bio_set_ioprio(bio); 2978 2979 if (plug) { 2980 rq = rq_list_peek(&plug->cached_rq); 2981 if (rq && rq->q != q) 2982 rq = NULL; 2983 } 2984 if (rq) { 2985 if (!bio_integrity_prep(bio)) 2986 return; 2987 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2988 return; 2989 if (blk_mq_can_use_cached_rq(rq, plug, bio)) 2990 goto done; 2991 percpu_ref_get(&q->q_usage_counter); 2992 } else { 2993 if (unlikely(bio_queue_enter(bio))) 2994 return; 2995 if (!bio_integrity_prep(bio)) 2996 goto fail; 2997 } 2998 2999 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3000 if (unlikely(!rq)) { 3001 fail: 3002 blk_queue_exit(q); 3003 return; 3004 } 3005 3006 done: 3007 trace_block_getrq(bio); 3008 3009 rq_qos_track(q, rq, bio); 3010 3011 blk_mq_bio_to_request(rq, bio, nr_segs); 3012 3013 ret = blk_crypto_rq_get_keyslot(rq); 3014 if (ret != BLK_STS_OK) { 3015 bio->bi_status = ret; 3016 bio_endio(bio); 3017 blk_mq_free_request(rq); 3018 return; 3019 } 3020 3021 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3022 return; 3023 3024 if (plug) { 3025 blk_add_rq_to_plug(plug, rq); 3026 return; 3027 } 3028 3029 hctx = rq->mq_hctx; 3030 if ((rq->rq_flags & RQF_USE_SCHED) || 3031 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3032 blk_mq_insert_request(rq, 0); 3033 blk_mq_run_hw_queue(hctx, true); 3034 } else { 3035 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3036 } 3037 } 3038 3039 #ifdef CONFIG_BLK_MQ_STACKING 3040 /** 3041 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3042 * @rq: the request being queued 3043 */ 3044 blk_status_t blk_insert_cloned_request(struct request *rq) 3045 { 3046 struct request_queue *q = rq->q; 3047 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3048 unsigned int max_segments = blk_rq_get_max_segments(rq); 3049 blk_status_t ret; 3050 3051 if (blk_rq_sectors(rq) > max_sectors) { 3052 /* 3053 * SCSI device does not have a good way to return if 3054 * Write Same/Zero is actually supported. If a device rejects 3055 * a non-read/write command (discard, write same,etc.) the 3056 * low-level device driver will set the relevant queue limit to 3057 * 0 to prevent blk-lib from issuing more of the offending 3058 * operations. Commands queued prior to the queue limit being 3059 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3060 * errors being propagated to upper layers. 3061 */ 3062 if (max_sectors == 0) 3063 return BLK_STS_NOTSUPP; 3064 3065 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3066 __func__, blk_rq_sectors(rq), max_sectors); 3067 return BLK_STS_IOERR; 3068 } 3069 3070 /* 3071 * The queue settings related to segment counting may differ from the 3072 * original queue. 3073 */ 3074 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3075 if (rq->nr_phys_segments > max_segments) { 3076 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3077 __func__, rq->nr_phys_segments, max_segments); 3078 return BLK_STS_IOERR; 3079 } 3080 3081 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3082 return BLK_STS_IOERR; 3083 3084 ret = blk_crypto_rq_get_keyslot(rq); 3085 if (ret != BLK_STS_OK) 3086 return ret; 3087 3088 blk_account_io_start(rq); 3089 3090 /* 3091 * Since we have a scheduler attached on the top device, 3092 * bypass a potential scheduler on the bottom device for 3093 * insert. 3094 */ 3095 blk_mq_run_dispatch_ops(q, 3096 ret = blk_mq_request_issue_directly(rq, true)); 3097 if (ret) 3098 blk_account_io_done(rq, ktime_get_ns()); 3099 return ret; 3100 } 3101 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3102 3103 /** 3104 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3105 * @rq: the clone request to be cleaned up 3106 * 3107 * Description: 3108 * Free all bios in @rq for a cloned request. 3109 */ 3110 void blk_rq_unprep_clone(struct request *rq) 3111 { 3112 struct bio *bio; 3113 3114 while ((bio = rq->bio) != NULL) { 3115 rq->bio = bio->bi_next; 3116 3117 bio_put(bio); 3118 } 3119 } 3120 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3121 3122 /** 3123 * blk_rq_prep_clone - Helper function to setup clone request 3124 * @rq: the request to be setup 3125 * @rq_src: original request to be cloned 3126 * @bs: bio_set that bios for clone are allocated from 3127 * @gfp_mask: memory allocation mask for bio 3128 * @bio_ctr: setup function to be called for each clone bio. 3129 * Returns %0 for success, non %0 for failure. 3130 * @data: private data to be passed to @bio_ctr 3131 * 3132 * Description: 3133 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3134 * Also, pages which the original bios are pointing to are not copied 3135 * and the cloned bios just point same pages. 3136 * So cloned bios must be completed before original bios, which means 3137 * the caller must complete @rq before @rq_src. 3138 */ 3139 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3140 struct bio_set *bs, gfp_t gfp_mask, 3141 int (*bio_ctr)(struct bio *, struct bio *, void *), 3142 void *data) 3143 { 3144 struct bio *bio, *bio_src; 3145 3146 if (!bs) 3147 bs = &fs_bio_set; 3148 3149 __rq_for_each_bio(bio_src, rq_src) { 3150 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3151 bs); 3152 if (!bio) 3153 goto free_and_out; 3154 3155 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3156 goto free_and_out; 3157 3158 if (rq->bio) { 3159 rq->biotail->bi_next = bio; 3160 rq->biotail = bio; 3161 } else { 3162 rq->bio = rq->biotail = bio; 3163 } 3164 bio = NULL; 3165 } 3166 3167 /* Copy attributes of the original request to the clone request. */ 3168 rq->__sector = blk_rq_pos(rq_src); 3169 rq->__data_len = blk_rq_bytes(rq_src); 3170 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3171 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3172 rq->special_vec = rq_src->special_vec; 3173 } 3174 rq->nr_phys_segments = rq_src->nr_phys_segments; 3175 rq->ioprio = rq_src->ioprio; 3176 3177 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3178 goto free_and_out; 3179 3180 return 0; 3181 3182 free_and_out: 3183 if (bio) 3184 bio_put(bio); 3185 blk_rq_unprep_clone(rq); 3186 3187 return -ENOMEM; 3188 } 3189 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3190 #endif /* CONFIG_BLK_MQ_STACKING */ 3191 3192 /* 3193 * Steal bios from a request and add them to a bio list. 3194 * The request must not have been partially completed before. 3195 */ 3196 void blk_steal_bios(struct bio_list *list, struct request *rq) 3197 { 3198 if (rq->bio) { 3199 if (list->tail) 3200 list->tail->bi_next = rq->bio; 3201 else 3202 list->head = rq->bio; 3203 list->tail = rq->biotail; 3204 3205 rq->bio = NULL; 3206 rq->biotail = NULL; 3207 } 3208 3209 rq->__data_len = 0; 3210 } 3211 EXPORT_SYMBOL_GPL(blk_steal_bios); 3212 3213 static size_t order_to_size(unsigned int order) 3214 { 3215 return (size_t)PAGE_SIZE << order; 3216 } 3217 3218 /* called before freeing request pool in @tags */ 3219 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3220 struct blk_mq_tags *tags) 3221 { 3222 struct page *page; 3223 unsigned long flags; 3224 3225 /* 3226 * There is no need to clear mapping if driver tags is not initialized 3227 * or the mapping belongs to the driver tags. 3228 */ 3229 if (!drv_tags || drv_tags == tags) 3230 return; 3231 3232 list_for_each_entry(page, &tags->page_list, lru) { 3233 unsigned long start = (unsigned long)page_address(page); 3234 unsigned long end = start + order_to_size(page->private); 3235 int i; 3236 3237 for (i = 0; i < drv_tags->nr_tags; i++) { 3238 struct request *rq = drv_tags->rqs[i]; 3239 unsigned long rq_addr = (unsigned long)rq; 3240 3241 if (rq_addr >= start && rq_addr < end) { 3242 WARN_ON_ONCE(req_ref_read(rq) != 0); 3243 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3244 } 3245 } 3246 } 3247 3248 /* 3249 * Wait until all pending iteration is done. 3250 * 3251 * Request reference is cleared and it is guaranteed to be observed 3252 * after the ->lock is released. 3253 */ 3254 spin_lock_irqsave(&drv_tags->lock, flags); 3255 spin_unlock_irqrestore(&drv_tags->lock, flags); 3256 } 3257 3258 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3259 unsigned int hctx_idx) 3260 { 3261 struct blk_mq_tags *drv_tags; 3262 struct page *page; 3263 3264 if (list_empty(&tags->page_list)) 3265 return; 3266 3267 if (blk_mq_is_shared_tags(set->flags)) 3268 drv_tags = set->shared_tags; 3269 else 3270 drv_tags = set->tags[hctx_idx]; 3271 3272 if (tags->static_rqs && set->ops->exit_request) { 3273 int i; 3274 3275 for (i = 0; i < tags->nr_tags; i++) { 3276 struct request *rq = tags->static_rqs[i]; 3277 3278 if (!rq) 3279 continue; 3280 set->ops->exit_request(set, rq, hctx_idx); 3281 tags->static_rqs[i] = NULL; 3282 } 3283 } 3284 3285 blk_mq_clear_rq_mapping(drv_tags, tags); 3286 3287 while (!list_empty(&tags->page_list)) { 3288 page = list_first_entry(&tags->page_list, struct page, lru); 3289 list_del_init(&page->lru); 3290 /* 3291 * Remove kmemleak object previously allocated in 3292 * blk_mq_alloc_rqs(). 3293 */ 3294 kmemleak_free(page_address(page)); 3295 __free_pages(page, page->private); 3296 } 3297 } 3298 3299 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3300 { 3301 kfree(tags->rqs); 3302 tags->rqs = NULL; 3303 kfree(tags->static_rqs); 3304 tags->static_rqs = NULL; 3305 3306 blk_mq_free_tags(tags); 3307 } 3308 3309 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3310 unsigned int hctx_idx) 3311 { 3312 int i; 3313 3314 for (i = 0; i < set->nr_maps; i++) { 3315 unsigned int start = set->map[i].queue_offset; 3316 unsigned int end = start + set->map[i].nr_queues; 3317 3318 if (hctx_idx >= start && hctx_idx < end) 3319 break; 3320 } 3321 3322 if (i >= set->nr_maps) 3323 i = HCTX_TYPE_DEFAULT; 3324 3325 return i; 3326 } 3327 3328 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3329 unsigned int hctx_idx) 3330 { 3331 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3332 3333 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3334 } 3335 3336 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3337 unsigned int hctx_idx, 3338 unsigned int nr_tags, 3339 unsigned int reserved_tags) 3340 { 3341 int node = blk_mq_get_hctx_node(set, hctx_idx); 3342 struct blk_mq_tags *tags; 3343 3344 if (node == NUMA_NO_NODE) 3345 node = set->numa_node; 3346 3347 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3348 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3349 if (!tags) 3350 return NULL; 3351 3352 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3353 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3354 node); 3355 if (!tags->rqs) 3356 goto err_free_tags; 3357 3358 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3359 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3360 node); 3361 if (!tags->static_rqs) 3362 goto err_free_rqs; 3363 3364 return tags; 3365 3366 err_free_rqs: 3367 kfree(tags->rqs); 3368 err_free_tags: 3369 blk_mq_free_tags(tags); 3370 return NULL; 3371 } 3372 3373 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3374 unsigned int hctx_idx, int node) 3375 { 3376 int ret; 3377 3378 if (set->ops->init_request) { 3379 ret = set->ops->init_request(set, rq, hctx_idx, node); 3380 if (ret) 3381 return ret; 3382 } 3383 3384 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3385 return 0; 3386 } 3387 3388 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3389 struct blk_mq_tags *tags, 3390 unsigned int hctx_idx, unsigned int depth) 3391 { 3392 unsigned int i, j, entries_per_page, max_order = 4; 3393 int node = blk_mq_get_hctx_node(set, hctx_idx); 3394 size_t rq_size, left; 3395 3396 if (node == NUMA_NO_NODE) 3397 node = set->numa_node; 3398 3399 INIT_LIST_HEAD(&tags->page_list); 3400 3401 /* 3402 * rq_size is the size of the request plus driver payload, rounded 3403 * to the cacheline size 3404 */ 3405 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3406 cache_line_size()); 3407 left = rq_size * depth; 3408 3409 for (i = 0; i < depth; ) { 3410 int this_order = max_order; 3411 struct page *page; 3412 int to_do; 3413 void *p; 3414 3415 while (this_order && left < order_to_size(this_order - 1)) 3416 this_order--; 3417 3418 do { 3419 page = alloc_pages_node(node, 3420 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3421 this_order); 3422 if (page) 3423 break; 3424 if (!this_order--) 3425 break; 3426 if (order_to_size(this_order) < rq_size) 3427 break; 3428 } while (1); 3429 3430 if (!page) 3431 goto fail; 3432 3433 page->private = this_order; 3434 list_add_tail(&page->lru, &tags->page_list); 3435 3436 p = page_address(page); 3437 /* 3438 * Allow kmemleak to scan these pages as they contain pointers 3439 * to additional allocations like via ops->init_request(). 3440 */ 3441 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3442 entries_per_page = order_to_size(this_order) / rq_size; 3443 to_do = min(entries_per_page, depth - i); 3444 left -= to_do * rq_size; 3445 for (j = 0; j < to_do; j++) { 3446 struct request *rq = p; 3447 3448 tags->static_rqs[i] = rq; 3449 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3450 tags->static_rqs[i] = NULL; 3451 goto fail; 3452 } 3453 3454 p += rq_size; 3455 i++; 3456 } 3457 } 3458 return 0; 3459 3460 fail: 3461 blk_mq_free_rqs(set, tags, hctx_idx); 3462 return -ENOMEM; 3463 } 3464 3465 struct rq_iter_data { 3466 struct blk_mq_hw_ctx *hctx; 3467 bool has_rq; 3468 }; 3469 3470 static bool blk_mq_has_request(struct request *rq, void *data) 3471 { 3472 struct rq_iter_data *iter_data = data; 3473 3474 if (rq->mq_hctx != iter_data->hctx) 3475 return true; 3476 iter_data->has_rq = true; 3477 return false; 3478 } 3479 3480 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3481 { 3482 struct blk_mq_tags *tags = hctx->sched_tags ? 3483 hctx->sched_tags : hctx->tags; 3484 struct rq_iter_data data = { 3485 .hctx = hctx, 3486 }; 3487 3488 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3489 return data.has_rq; 3490 } 3491 3492 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3493 struct blk_mq_hw_ctx *hctx) 3494 { 3495 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3496 return false; 3497 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3498 return false; 3499 return true; 3500 } 3501 3502 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3503 { 3504 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3505 struct blk_mq_hw_ctx, cpuhp_online); 3506 3507 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3508 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3509 return 0; 3510 3511 /* 3512 * Prevent new request from being allocated on the current hctx. 3513 * 3514 * The smp_mb__after_atomic() Pairs with the implied barrier in 3515 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3516 * seen once we return from the tag allocator. 3517 */ 3518 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3519 smp_mb__after_atomic(); 3520 3521 /* 3522 * Try to grab a reference to the queue and wait for any outstanding 3523 * requests. If we could not grab a reference the queue has been 3524 * frozen and there are no requests. 3525 */ 3526 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3527 while (blk_mq_hctx_has_requests(hctx)) 3528 msleep(5); 3529 percpu_ref_put(&hctx->queue->q_usage_counter); 3530 } 3531 3532 return 0; 3533 } 3534 3535 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3536 { 3537 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3538 struct blk_mq_hw_ctx, cpuhp_online); 3539 3540 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3541 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3542 return 0; 3543 } 3544 3545 /* 3546 * 'cpu' is going away. splice any existing rq_list entries from this 3547 * software queue to the hw queue dispatch list, and ensure that it 3548 * gets run. 3549 */ 3550 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3551 { 3552 struct blk_mq_hw_ctx *hctx; 3553 struct blk_mq_ctx *ctx; 3554 LIST_HEAD(tmp); 3555 enum hctx_type type; 3556 3557 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3558 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3559 return 0; 3560 3561 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3562 type = hctx->type; 3563 3564 spin_lock(&ctx->lock); 3565 if (!list_empty(&ctx->rq_lists[type])) { 3566 list_splice_init(&ctx->rq_lists[type], &tmp); 3567 blk_mq_hctx_clear_pending(hctx, ctx); 3568 } 3569 spin_unlock(&ctx->lock); 3570 3571 if (list_empty(&tmp)) 3572 return 0; 3573 3574 spin_lock(&hctx->lock); 3575 list_splice_tail_init(&tmp, &hctx->dispatch); 3576 spin_unlock(&hctx->lock); 3577 3578 blk_mq_run_hw_queue(hctx, true); 3579 return 0; 3580 } 3581 3582 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3583 { 3584 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3585 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3586 &hctx->cpuhp_online); 3587 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3588 &hctx->cpuhp_dead); 3589 } 3590 3591 /* 3592 * Before freeing hw queue, clearing the flush request reference in 3593 * tags->rqs[] for avoiding potential UAF. 3594 */ 3595 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3596 unsigned int queue_depth, struct request *flush_rq) 3597 { 3598 int i; 3599 unsigned long flags; 3600 3601 /* The hw queue may not be mapped yet */ 3602 if (!tags) 3603 return; 3604 3605 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3606 3607 for (i = 0; i < queue_depth; i++) 3608 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3609 3610 /* 3611 * Wait until all pending iteration is done. 3612 * 3613 * Request reference is cleared and it is guaranteed to be observed 3614 * after the ->lock is released. 3615 */ 3616 spin_lock_irqsave(&tags->lock, flags); 3617 spin_unlock_irqrestore(&tags->lock, flags); 3618 } 3619 3620 /* hctx->ctxs will be freed in queue's release handler */ 3621 static void blk_mq_exit_hctx(struct request_queue *q, 3622 struct blk_mq_tag_set *set, 3623 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3624 { 3625 struct request *flush_rq = hctx->fq->flush_rq; 3626 3627 if (blk_mq_hw_queue_mapped(hctx)) 3628 blk_mq_tag_idle(hctx); 3629 3630 if (blk_queue_init_done(q)) 3631 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3632 set->queue_depth, flush_rq); 3633 if (set->ops->exit_request) 3634 set->ops->exit_request(set, flush_rq, hctx_idx); 3635 3636 if (set->ops->exit_hctx) 3637 set->ops->exit_hctx(hctx, hctx_idx); 3638 3639 blk_mq_remove_cpuhp(hctx); 3640 3641 xa_erase(&q->hctx_table, hctx_idx); 3642 3643 spin_lock(&q->unused_hctx_lock); 3644 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3645 spin_unlock(&q->unused_hctx_lock); 3646 } 3647 3648 static void blk_mq_exit_hw_queues(struct request_queue *q, 3649 struct blk_mq_tag_set *set, int nr_queue) 3650 { 3651 struct blk_mq_hw_ctx *hctx; 3652 unsigned long i; 3653 3654 queue_for_each_hw_ctx(q, hctx, i) { 3655 if (i == nr_queue) 3656 break; 3657 blk_mq_exit_hctx(q, set, hctx, i); 3658 } 3659 } 3660 3661 static int blk_mq_init_hctx(struct request_queue *q, 3662 struct blk_mq_tag_set *set, 3663 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3664 { 3665 hctx->queue_num = hctx_idx; 3666 3667 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3668 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3669 &hctx->cpuhp_online); 3670 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3671 3672 hctx->tags = set->tags[hctx_idx]; 3673 3674 if (set->ops->init_hctx && 3675 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3676 goto unregister_cpu_notifier; 3677 3678 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3679 hctx->numa_node)) 3680 goto exit_hctx; 3681 3682 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3683 goto exit_flush_rq; 3684 3685 return 0; 3686 3687 exit_flush_rq: 3688 if (set->ops->exit_request) 3689 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3690 exit_hctx: 3691 if (set->ops->exit_hctx) 3692 set->ops->exit_hctx(hctx, hctx_idx); 3693 unregister_cpu_notifier: 3694 blk_mq_remove_cpuhp(hctx); 3695 return -1; 3696 } 3697 3698 static struct blk_mq_hw_ctx * 3699 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3700 int node) 3701 { 3702 struct blk_mq_hw_ctx *hctx; 3703 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3704 3705 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3706 if (!hctx) 3707 goto fail_alloc_hctx; 3708 3709 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3710 goto free_hctx; 3711 3712 atomic_set(&hctx->nr_active, 0); 3713 if (node == NUMA_NO_NODE) 3714 node = set->numa_node; 3715 hctx->numa_node = node; 3716 3717 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3718 spin_lock_init(&hctx->lock); 3719 INIT_LIST_HEAD(&hctx->dispatch); 3720 hctx->queue = q; 3721 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3722 3723 INIT_LIST_HEAD(&hctx->hctx_list); 3724 3725 /* 3726 * Allocate space for all possible cpus to avoid allocation at 3727 * runtime 3728 */ 3729 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3730 gfp, node); 3731 if (!hctx->ctxs) 3732 goto free_cpumask; 3733 3734 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3735 gfp, node, false, false)) 3736 goto free_ctxs; 3737 hctx->nr_ctx = 0; 3738 3739 spin_lock_init(&hctx->dispatch_wait_lock); 3740 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3741 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3742 3743 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3744 if (!hctx->fq) 3745 goto free_bitmap; 3746 3747 blk_mq_hctx_kobj_init(hctx); 3748 3749 return hctx; 3750 3751 free_bitmap: 3752 sbitmap_free(&hctx->ctx_map); 3753 free_ctxs: 3754 kfree(hctx->ctxs); 3755 free_cpumask: 3756 free_cpumask_var(hctx->cpumask); 3757 free_hctx: 3758 kfree(hctx); 3759 fail_alloc_hctx: 3760 return NULL; 3761 } 3762 3763 static void blk_mq_init_cpu_queues(struct request_queue *q, 3764 unsigned int nr_hw_queues) 3765 { 3766 struct blk_mq_tag_set *set = q->tag_set; 3767 unsigned int i, j; 3768 3769 for_each_possible_cpu(i) { 3770 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3771 struct blk_mq_hw_ctx *hctx; 3772 int k; 3773 3774 __ctx->cpu = i; 3775 spin_lock_init(&__ctx->lock); 3776 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3777 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3778 3779 __ctx->queue = q; 3780 3781 /* 3782 * Set local node, IFF we have more than one hw queue. If 3783 * not, we remain on the home node of the device 3784 */ 3785 for (j = 0; j < set->nr_maps; j++) { 3786 hctx = blk_mq_map_queue_type(q, j, i); 3787 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3788 hctx->numa_node = cpu_to_node(i); 3789 } 3790 } 3791 } 3792 3793 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3794 unsigned int hctx_idx, 3795 unsigned int depth) 3796 { 3797 struct blk_mq_tags *tags; 3798 int ret; 3799 3800 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3801 if (!tags) 3802 return NULL; 3803 3804 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3805 if (ret) { 3806 blk_mq_free_rq_map(tags); 3807 return NULL; 3808 } 3809 3810 return tags; 3811 } 3812 3813 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3814 int hctx_idx) 3815 { 3816 if (blk_mq_is_shared_tags(set->flags)) { 3817 set->tags[hctx_idx] = set->shared_tags; 3818 3819 return true; 3820 } 3821 3822 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3823 set->queue_depth); 3824 3825 return set->tags[hctx_idx]; 3826 } 3827 3828 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3829 struct blk_mq_tags *tags, 3830 unsigned int hctx_idx) 3831 { 3832 if (tags) { 3833 blk_mq_free_rqs(set, tags, hctx_idx); 3834 blk_mq_free_rq_map(tags); 3835 } 3836 } 3837 3838 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3839 unsigned int hctx_idx) 3840 { 3841 if (!blk_mq_is_shared_tags(set->flags)) 3842 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3843 3844 set->tags[hctx_idx] = NULL; 3845 } 3846 3847 static void blk_mq_map_swqueue(struct request_queue *q) 3848 { 3849 unsigned int j, hctx_idx; 3850 unsigned long i; 3851 struct blk_mq_hw_ctx *hctx; 3852 struct blk_mq_ctx *ctx; 3853 struct blk_mq_tag_set *set = q->tag_set; 3854 3855 queue_for_each_hw_ctx(q, hctx, i) { 3856 cpumask_clear(hctx->cpumask); 3857 hctx->nr_ctx = 0; 3858 hctx->dispatch_from = NULL; 3859 } 3860 3861 /* 3862 * Map software to hardware queues. 3863 * 3864 * If the cpu isn't present, the cpu is mapped to first hctx. 3865 */ 3866 for_each_possible_cpu(i) { 3867 3868 ctx = per_cpu_ptr(q->queue_ctx, i); 3869 for (j = 0; j < set->nr_maps; j++) { 3870 if (!set->map[j].nr_queues) { 3871 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3872 HCTX_TYPE_DEFAULT, i); 3873 continue; 3874 } 3875 hctx_idx = set->map[j].mq_map[i]; 3876 /* unmapped hw queue can be remapped after CPU topo changed */ 3877 if (!set->tags[hctx_idx] && 3878 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3879 /* 3880 * If tags initialization fail for some hctx, 3881 * that hctx won't be brought online. In this 3882 * case, remap the current ctx to hctx[0] which 3883 * is guaranteed to always have tags allocated 3884 */ 3885 set->map[j].mq_map[i] = 0; 3886 } 3887 3888 hctx = blk_mq_map_queue_type(q, j, i); 3889 ctx->hctxs[j] = hctx; 3890 /* 3891 * If the CPU is already set in the mask, then we've 3892 * mapped this one already. This can happen if 3893 * devices share queues across queue maps. 3894 */ 3895 if (cpumask_test_cpu(i, hctx->cpumask)) 3896 continue; 3897 3898 cpumask_set_cpu(i, hctx->cpumask); 3899 hctx->type = j; 3900 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3901 hctx->ctxs[hctx->nr_ctx++] = ctx; 3902 3903 /* 3904 * If the nr_ctx type overflows, we have exceeded the 3905 * amount of sw queues we can support. 3906 */ 3907 BUG_ON(!hctx->nr_ctx); 3908 } 3909 3910 for (; j < HCTX_MAX_TYPES; j++) 3911 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3912 HCTX_TYPE_DEFAULT, i); 3913 } 3914 3915 queue_for_each_hw_ctx(q, hctx, i) { 3916 /* 3917 * If no software queues are mapped to this hardware queue, 3918 * disable it and free the request entries. 3919 */ 3920 if (!hctx->nr_ctx) { 3921 /* Never unmap queue 0. We need it as a 3922 * fallback in case of a new remap fails 3923 * allocation 3924 */ 3925 if (i) 3926 __blk_mq_free_map_and_rqs(set, i); 3927 3928 hctx->tags = NULL; 3929 continue; 3930 } 3931 3932 hctx->tags = set->tags[i]; 3933 WARN_ON(!hctx->tags); 3934 3935 /* 3936 * Set the map size to the number of mapped software queues. 3937 * This is more accurate and more efficient than looping 3938 * over all possibly mapped software queues. 3939 */ 3940 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3941 3942 /* 3943 * Initialize batch roundrobin counts 3944 */ 3945 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3946 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3947 } 3948 } 3949 3950 /* 3951 * Caller needs to ensure that we're either frozen/quiesced, or that 3952 * the queue isn't live yet. 3953 */ 3954 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3955 { 3956 struct blk_mq_hw_ctx *hctx; 3957 unsigned long i; 3958 3959 queue_for_each_hw_ctx(q, hctx, i) { 3960 if (shared) { 3961 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3962 } else { 3963 blk_mq_tag_idle(hctx); 3964 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3965 } 3966 } 3967 } 3968 3969 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3970 bool shared) 3971 { 3972 struct request_queue *q; 3973 3974 lockdep_assert_held(&set->tag_list_lock); 3975 3976 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3977 blk_mq_freeze_queue(q); 3978 queue_set_hctx_shared(q, shared); 3979 blk_mq_unfreeze_queue(q); 3980 } 3981 } 3982 3983 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3984 { 3985 struct blk_mq_tag_set *set = q->tag_set; 3986 3987 mutex_lock(&set->tag_list_lock); 3988 list_del(&q->tag_set_list); 3989 if (list_is_singular(&set->tag_list)) { 3990 /* just transitioned to unshared */ 3991 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3992 /* update existing queue */ 3993 blk_mq_update_tag_set_shared(set, false); 3994 } 3995 mutex_unlock(&set->tag_list_lock); 3996 INIT_LIST_HEAD(&q->tag_set_list); 3997 } 3998 3999 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4000 struct request_queue *q) 4001 { 4002 mutex_lock(&set->tag_list_lock); 4003 4004 /* 4005 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4006 */ 4007 if (!list_empty(&set->tag_list) && 4008 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4009 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4010 /* update existing queue */ 4011 blk_mq_update_tag_set_shared(set, true); 4012 } 4013 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4014 queue_set_hctx_shared(q, true); 4015 list_add_tail(&q->tag_set_list, &set->tag_list); 4016 4017 mutex_unlock(&set->tag_list_lock); 4018 } 4019 4020 /* All allocations will be freed in release handler of q->mq_kobj */ 4021 static int blk_mq_alloc_ctxs(struct request_queue *q) 4022 { 4023 struct blk_mq_ctxs *ctxs; 4024 int cpu; 4025 4026 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4027 if (!ctxs) 4028 return -ENOMEM; 4029 4030 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4031 if (!ctxs->queue_ctx) 4032 goto fail; 4033 4034 for_each_possible_cpu(cpu) { 4035 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4036 ctx->ctxs = ctxs; 4037 } 4038 4039 q->mq_kobj = &ctxs->kobj; 4040 q->queue_ctx = ctxs->queue_ctx; 4041 4042 return 0; 4043 fail: 4044 kfree(ctxs); 4045 return -ENOMEM; 4046 } 4047 4048 /* 4049 * It is the actual release handler for mq, but we do it from 4050 * request queue's release handler for avoiding use-after-free 4051 * and headache because q->mq_kobj shouldn't have been introduced, 4052 * but we can't group ctx/kctx kobj without it. 4053 */ 4054 void blk_mq_release(struct request_queue *q) 4055 { 4056 struct blk_mq_hw_ctx *hctx, *next; 4057 unsigned long i; 4058 4059 queue_for_each_hw_ctx(q, hctx, i) 4060 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4061 4062 /* all hctx are in .unused_hctx_list now */ 4063 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4064 list_del_init(&hctx->hctx_list); 4065 kobject_put(&hctx->kobj); 4066 } 4067 4068 xa_destroy(&q->hctx_table); 4069 4070 /* 4071 * release .mq_kobj and sw queue's kobject now because 4072 * both share lifetime with request queue. 4073 */ 4074 blk_mq_sysfs_deinit(q); 4075 } 4076 4077 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4078 void *queuedata) 4079 { 4080 struct request_queue *q; 4081 int ret; 4082 4083 q = blk_alloc_queue(set->numa_node); 4084 if (!q) 4085 return ERR_PTR(-ENOMEM); 4086 q->queuedata = queuedata; 4087 ret = blk_mq_init_allocated_queue(set, q); 4088 if (ret) { 4089 blk_put_queue(q); 4090 return ERR_PTR(ret); 4091 } 4092 return q; 4093 } 4094 4095 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4096 { 4097 return blk_mq_init_queue_data(set, NULL); 4098 } 4099 EXPORT_SYMBOL(blk_mq_init_queue); 4100 4101 /** 4102 * blk_mq_destroy_queue - shutdown a request queue 4103 * @q: request queue to shutdown 4104 * 4105 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4106 * requests will be failed with -ENODEV. The caller is responsible for dropping 4107 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4108 * 4109 * Context: can sleep 4110 */ 4111 void blk_mq_destroy_queue(struct request_queue *q) 4112 { 4113 WARN_ON_ONCE(!queue_is_mq(q)); 4114 WARN_ON_ONCE(blk_queue_registered(q)); 4115 4116 might_sleep(); 4117 4118 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4119 blk_queue_start_drain(q); 4120 blk_mq_freeze_queue_wait(q); 4121 4122 blk_sync_queue(q); 4123 blk_mq_cancel_work_sync(q); 4124 blk_mq_exit_queue(q); 4125 } 4126 EXPORT_SYMBOL(blk_mq_destroy_queue); 4127 4128 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4129 struct lock_class_key *lkclass) 4130 { 4131 struct request_queue *q; 4132 struct gendisk *disk; 4133 4134 q = blk_mq_init_queue_data(set, queuedata); 4135 if (IS_ERR(q)) 4136 return ERR_CAST(q); 4137 4138 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4139 if (!disk) { 4140 blk_mq_destroy_queue(q); 4141 blk_put_queue(q); 4142 return ERR_PTR(-ENOMEM); 4143 } 4144 set_bit(GD_OWNS_QUEUE, &disk->state); 4145 return disk; 4146 } 4147 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4148 4149 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4150 struct lock_class_key *lkclass) 4151 { 4152 struct gendisk *disk; 4153 4154 if (!blk_get_queue(q)) 4155 return NULL; 4156 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4157 if (!disk) 4158 blk_put_queue(q); 4159 return disk; 4160 } 4161 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4162 4163 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4164 struct blk_mq_tag_set *set, struct request_queue *q, 4165 int hctx_idx, int node) 4166 { 4167 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4168 4169 /* reuse dead hctx first */ 4170 spin_lock(&q->unused_hctx_lock); 4171 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4172 if (tmp->numa_node == node) { 4173 hctx = tmp; 4174 break; 4175 } 4176 } 4177 if (hctx) 4178 list_del_init(&hctx->hctx_list); 4179 spin_unlock(&q->unused_hctx_lock); 4180 4181 if (!hctx) 4182 hctx = blk_mq_alloc_hctx(q, set, node); 4183 if (!hctx) 4184 goto fail; 4185 4186 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4187 goto free_hctx; 4188 4189 return hctx; 4190 4191 free_hctx: 4192 kobject_put(&hctx->kobj); 4193 fail: 4194 return NULL; 4195 } 4196 4197 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4198 struct request_queue *q) 4199 { 4200 struct blk_mq_hw_ctx *hctx; 4201 unsigned long i, j; 4202 4203 /* protect against switching io scheduler */ 4204 mutex_lock(&q->sysfs_lock); 4205 for (i = 0; i < set->nr_hw_queues; i++) { 4206 int old_node; 4207 int node = blk_mq_get_hctx_node(set, i); 4208 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4209 4210 if (old_hctx) { 4211 old_node = old_hctx->numa_node; 4212 blk_mq_exit_hctx(q, set, old_hctx, i); 4213 } 4214 4215 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4216 if (!old_hctx) 4217 break; 4218 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4219 node, old_node); 4220 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4221 WARN_ON_ONCE(!hctx); 4222 } 4223 } 4224 /* 4225 * Increasing nr_hw_queues fails. Free the newly allocated 4226 * hctxs and keep the previous q->nr_hw_queues. 4227 */ 4228 if (i != set->nr_hw_queues) { 4229 j = q->nr_hw_queues; 4230 } else { 4231 j = i; 4232 q->nr_hw_queues = set->nr_hw_queues; 4233 } 4234 4235 xa_for_each_start(&q->hctx_table, j, hctx, j) 4236 blk_mq_exit_hctx(q, set, hctx, j); 4237 mutex_unlock(&q->sysfs_lock); 4238 } 4239 4240 static void blk_mq_update_poll_flag(struct request_queue *q) 4241 { 4242 struct blk_mq_tag_set *set = q->tag_set; 4243 4244 if (set->nr_maps > HCTX_TYPE_POLL && 4245 set->map[HCTX_TYPE_POLL].nr_queues) 4246 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4247 else 4248 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4249 } 4250 4251 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4252 struct request_queue *q) 4253 { 4254 /* mark the queue as mq asap */ 4255 q->mq_ops = set->ops; 4256 4257 if (blk_mq_alloc_ctxs(q)) 4258 goto err_exit; 4259 4260 /* init q->mq_kobj and sw queues' kobjects */ 4261 blk_mq_sysfs_init(q); 4262 4263 INIT_LIST_HEAD(&q->unused_hctx_list); 4264 spin_lock_init(&q->unused_hctx_lock); 4265 4266 xa_init(&q->hctx_table); 4267 4268 blk_mq_realloc_hw_ctxs(set, q); 4269 if (!q->nr_hw_queues) 4270 goto err_hctxs; 4271 4272 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4273 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4274 4275 q->tag_set = set; 4276 4277 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4278 blk_mq_update_poll_flag(q); 4279 4280 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4281 INIT_LIST_HEAD(&q->flush_list); 4282 INIT_LIST_HEAD(&q->requeue_list); 4283 spin_lock_init(&q->requeue_lock); 4284 4285 q->nr_requests = set->queue_depth; 4286 4287 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4288 blk_mq_add_queue_tag_set(set, q); 4289 blk_mq_map_swqueue(q); 4290 return 0; 4291 4292 err_hctxs: 4293 blk_mq_release(q); 4294 err_exit: 4295 q->mq_ops = NULL; 4296 return -ENOMEM; 4297 } 4298 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4299 4300 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4301 void blk_mq_exit_queue(struct request_queue *q) 4302 { 4303 struct blk_mq_tag_set *set = q->tag_set; 4304 4305 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4306 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4307 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4308 blk_mq_del_queue_tag_set(q); 4309 } 4310 4311 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4312 { 4313 int i; 4314 4315 if (blk_mq_is_shared_tags(set->flags)) { 4316 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4317 BLK_MQ_NO_HCTX_IDX, 4318 set->queue_depth); 4319 if (!set->shared_tags) 4320 return -ENOMEM; 4321 } 4322 4323 for (i = 0; i < set->nr_hw_queues; i++) { 4324 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4325 goto out_unwind; 4326 cond_resched(); 4327 } 4328 4329 return 0; 4330 4331 out_unwind: 4332 while (--i >= 0) 4333 __blk_mq_free_map_and_rqs(set, i); 4334 4335 if (blk_mq_is_shared_tags(set->flags)) { 4336 blk_mq_free_map_and_rqs(set, set->shared_tags, 4337 BLK_MQ_NO_HCTX_IDX); 4338 } 4339 4340 return -ENOMEM; 4341 } 4342 4343 /* 4344 * Allocate the request maps associated with this tag_set. Note that this 4345 * may reduce the depth asked for, if memory is tight. set->queue_depth 4346 * will be updated to reflect the allocated depth. 4347 */ 4348 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4349 { 4350 unsigned int depth; 4351 int err; 4352 4353 depth = set->queue_depth; 4354 do { 4355 err = __blk_mq_alloc_rq_maps(set); 4356 if (!err) 4357 break; 4358 4359 set->queue_depth >>= 1; 4360 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4361 err = -ENOMEM; 4362 break; 4363 } 4364 } while (set->queue_depth); 4365 4366 if (!set->queue_depth || err) { 4367 pr_err("blk-mq: failed to allocate request map\n"); 4368 return -ENOMEM; 4369 } 4370 4371 if (depth != set->queue_depth) 4372 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4373 depth, set->queue_depth); 4374 4375 return 0; 4376 } 4377 4378 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4379 { 4380 /* 4381 * blk_mq_map_queues() and multiple .map_queues() implementations 4382 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4383 * number of hardware queues. 4384 */ 4385 if (set->nr_maps == 1) 4386 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4387 4388 if (set->ops->map_queues && !is_kdump_kernel()) { 4389 int i; 4390 4391 /* 4392 * transport .map_queues is usually done in the following 4393 * way: 4394 * 4395 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4396 * mask = get_cpu_mask(queue) 4397 * for_each_cpu(cpu, mask) 4398 * set->map[x].mq_map[cpu] = queue; 4399 * } 4400 * 4401 * When we need to remap, the table has to be cleared for 4402 * killing stale mapping since one CPU may not be mapped 4403 * to any hw queue. 4404 */ 4405 for (i = 0; i < set->nr_maps; i++) 4406 blk_mq_clear_mq_map(&set->map[i]); 4407 4408 set->ops->map_queues(set); 4409 } else { 4410 BUG_ON(set->nr_maps > 1); 4411 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4412 } 4413 } 4414 4415 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4416 int new_nr_hw_queues) 4417 { 4418 struct blk_mq_tags **new_tags; 4419 int i; 4420 4421 if (set->nr_hw_queues >= new_nr_hw_queues) 4422 goto done; 4423 4424 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4425 GFP_KERNEL, set->numa_node); 4426 if (!new_tags) 4427 return -ENOMEM; 4428 4429 if (set->tags) 4430 memcpy(new_tags, set->tags, set->nr_hw_queues * 4431 sizeof(*set->tags)); 4432 kfree(set->tags); 4433 set->tags = new_tags; 4434 4435 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4436 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4437 while (--i >= set->nr_hw_queues) 4438 __blk_mq_free_map_and_rqs(set, i); 4439 return -ENOMEM; 4440 } 4441 cond_resched(); 4442 } 4443 4444 done: 4445 set->nr_hw_queues = new_nr_hw_queues; 4446 return 0; 4447 } 4448 4449 /* 4450 * Alloc a tag set to be associated with one or more request queues. 4451 * May fail with EINVAL for various error conditions. May adjust the 4452 * requested depth down, if it's too large. In that case, the set 4453 * value will be stored in set->queue_depth. 4454 */ 4455 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4456 { 4457 int i, ret; 4458 4459 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4460 4461 if (!set->nr_hw_queues) 4462 return -EINVAL; 4463 if (!set->queue_depth) 4464 return -EINVAL; 4465 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4466 return -EINVAL; 4467 4468 if (!set->ops->queue_rq) 4469 return -EINVAL; 4470 4471 if (!set->ops->get_budget ^ !set->ops->put_budget) 4472 return -EINVAL; 4473 4474 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4475 pr_info("blk-mq: reduced tag depth to %u\n", 4476 BLK_MQ_MAX_DEPTH); 4477 set->queue_depth = BLK_MQ_MAX_DEPTH; 4478 } 4479 4480 if (!set->nr_maps) 4481 set->nr_maps = 1; 4482 else if (set->nr_maps > HCTX_MAX_TYPES) 4483 return -EINVAL; 4484 4485 /* 4486 * If a crashdump is active, then we are potentially in a very 4487 * memory constrained environment. Limit us to 1 queue and 4488 * 64 tags to prevent using too much memory. 4489 */ 4490 if (is_kdump_kernel()) { 4491 set->nr_hw_queues = 1; 4492 set->nr_maps = 1; 4493 set->queue_depth = min(64U, set->queue_depth); 4494 } 4495 /* 4496 * There is no use for more h/w queues than cpus if we just have 4497 * a single map 4498 */ 4499 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4500 set->nr_hw_queues = nr_cpu_ids; 4501 4502 if (set->flags & BLK_MQ_F_BLOCKING) { 4503 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4504 if (!set->srcu) 4505 return -ENOMEM; 4506 ret = init_srcu_struct(set->srcu); 4507 if (ret) 4508 goto out_free_srcu; 4509 } 4510 4511 ret = -ENOMEM; 4512 set->tags = kcalloc_node(set->nr_hw_queues, 4513 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4514 set->numa_node); 4515 if (!set->tags) 4516 goto out_cleanup_srcu; 4517 4518 for (i = 0; i < set->nr_maps; i++) { 4519 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4520 sizeof(set->map[i].mq_map[0]), 4521 GFP_KERNEL, set->numa_node); 4522 if (!set->map[i].mq_map) 4523 goto out_free_mq_map; 4524 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4525 } 4526 4527 blk_mq_update_queue_map(set); 4528 4529 ret = blk_mq_alloc_set_map_and_rqs(set); 4530 if (ret) 4531 goto out_free_mq_map; 4532 4533 mutex_init(&set->tag_list_lock); 4534 INIT_LIST_HEAD(&set->tag_list); 4535 4536 return 0; 4537 4538 out_free_mq_map: 4539 for (i = 0; i < set->nr_maps; i++) { 4540 kfree(set->map[i].mq_map); 4541 set->map[i].mq_map = NULL; 4542 } 4543 kfree(set->tags); 4544 set->tags = NULL; 4545 out_cleanup_srcu: 4546 if (set->flags & BLK_MQ_F_BLOCKING) 4547 cleanup_srcu_struct(set->srcu); 4548 out_free_srcu: 4549 if (set->flags & BLK_MQ_F_BLOCKING) 4550 kfree(set->srcu); 4551 return ret; 4552 } 4553 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4554 4555 /* allocate and initialize a tagset for a simple single-queue device */ 4556 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4557 const struct blk_mq_ops *ops, unsigned int queue_depth, 4558 unsigned int set_flags) 4559 { 4560 memset(set, 0, sizeof(*set)); 4561 set->ops = ops; 4562 set->nr_hw_queues = 1; 4563 set->nr_maps = 1; 4564 set->queue_depth = queue_depth; 4565 set->numa_node = NUMA_NO_NODE; 4566 set->flags = set_flags; 4567 return blk_mq_alloc_tag_set(set); 4568 } 4569 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4570 4571 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4572 { 4573 int i, j; 4574 4575 for (i = 0; i < set->nr_hw_queues; i++) 4576 __blk_mq_free_map_and_rqs(set, i); 4577 4578 if (blk_mq_is_shared_tags(set->flags)) { 4579 blk_mq_free_map_and_rqs(set, set->shared_tags, 4580 BLK_MQ_NO_HCTX_IDX); 4581 } 4582 4583 for (j = 0; j < set->nr_maps; j++) { 4584 kfree(set->map[j].mq_map); 4585 set->map[j].mq_map = NULL; 4586 } 4587 4588 kfree(set->tags); 4589 set->tags = NULL; 4590 if (set->flags & BLK_MQ_F_BLOCKING) { 4591 cleanup_srcu_struct(set->srcu); 4592 kfree(set->srcu); 4593 } 4594 } 4595 EXPORT_SYMBOL(blk_mq_free_tag_set); 4596 4597 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4598 { 4599 struct blk_mq_tag_set *set = q->tag_set; 4600 struct blk_mq_hw_ctx *hctx; 4601 int ret; 4602 unsigned long i; 4603 4604 if (!set) 4605 return -EINVAL; 4606 4607 if (q->nr_requests == nr) 4608 return 0; 4609 4610 blk_mq_freeze_queue(q); 4611 blk_mq_quiesce_queue(q); 4612 4613 ret = 0; 4614 queue_for_each_hw_ctx(q, hctx, i) { 4615 if (!hctx->tags) 4616 continue; 4617 /* 4618 * If we're using an MQ scheduler, just update the scheduler 4619 * queue depth. This is similar to what the old code would do. 4620 */ 4621 if (hctx->sched_tags) { 4622 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4623 nr, true); 4624 } else { 4625 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4626 false); 4627 } 4628 if (ret) 4629 break; 4630 if (q->elevator && q->elevator->type->ops.depth_updated) 4631 q->elevator->type->ops.depth_updated(hctx); 4632 } 4633 if (!ret) { 4634 q->nr_requests = nr; 4635 if (blk_mq_is_shared_tags(set->flags)) { 4636 if (q->elevator) 4637 blk_mq_tag_update_sched_shared_tags(q); 4638 else 4639 blk_mq_tag_resize_shared_tags(set, nr); 4640 } 4641 } 4642 4643 blk_mq_unquiesce_queue(q); 4644 blk_mq_unfreeze_queue(q); 4645 4646 return ret; 4647 } 4648 4649 /* 4650 * request_queue and elevator_type pair. 4651 * It is just used by __blk_mq_update_nr_hw_queues to cache 4652 * the elevator_type associated with a request_queue. 4653 */ 4654 struct blk_mq_qe_pair { 4655 struct list_head node; 4656 struct request_queue *q; 4657 struct elevator_type *type; 4658 }; 4659 4660 /* 4661 * Cache the elevator_type in qe pair list and switch the 4662 * io scheduler to 'none' 4663 */ 4664 static bool blk_mq_elv_switch_none(struct list_head *head, 4665 struct request_queue *q) 4666 { 4667 struct blk_mq_qe_pair *qe; 4668 4669 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4670 if (!qe) 4671 return false; 4672 4673 /* q->elevator needs protection from ->sysfs_lock */ 4674 mutex_lock(&q->sysfs_lock); 4675 4676 /* the check has to be done with holding sysfs_lock */ 4677 if (!q->elevator) { 4678 kfree(qe); 4679 goto unlock; 4680 } 4681 4682 INIT_LIST_HEAD(&qe->node); 4683 qe->q = q; 4684 qe->type = q->elevator->type; 4685 /* keep a reference to the elevator module as we'll switch back */ 4686 __elevator_get(qe->type); 4687 list_add(&qe->node, head); 4688 elevator_disable(q); 4689 unlock: 4690 mutex_unlock(&q->sysfs_lock); 4691 4692 return true; 4693 } 4694 4695 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4696 struct request_queue *q) 4697 { 4698 struct blk_mq_qe_pair *qe; 4699 4700 list_for_each_entry(qe, head, node) 4701 if (qe->q == q) 4702 return qe; 4703 4704 return NULL; 4705 } 4706 4707 static void blk_mq_elv_switch_back(struct list_head *head, 4708 struct request_queue *q) 4709 { 4710 struct blk_mq_qe_pair *qe; 4711 struct elevator_type *t; 4712 4713 qe = blk_lookup_qe_pair(head, q); 4714 if (!qe) 4715 return; 4716 t = qe->type; 4717 list_del(&qe->node); 4718 kfree(qe); 4719 4720 mutex_lock(&q->sysfs_lock); 4721 elevator_switch(q, t); 4722 /* drop the reference acquired in blk_mq_elv_switch_none */ 4723 elevator_put(t); 4724 mutex_unlock(&q->sysfs_lock); 4725 } 4726 4727 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4728 int nr_hw_queues) 4729 { 4730 struct request_queue *q; 4731 LIST_HEAD(head); 4732 int prev_nr_hw_queues = set->nr_hw_queues; 4733 int i; 4734 4735 lockdep_assert_held(&set->tag_list_lock); 4736 4737 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4738 nr_hw_queues = nr_cpu_ids; 4739 if (nr_hw_queues < 1) 4740 return; 4741 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4742 return; 4743 4744 list_for_each_entry(q, &set->tag_list, tag_set_list) 4745 blk_mq_freeze_queue(q); 4746 /* 4747 * Switch IO scheduler to 'none', cleaning up the data associated 4748 * with the previous scheduler. We will switch back once we are done 4749 * updating the new sw to hw queue mappings. 4750 */ 4751 list_for_each_entry(q, &set->tag_list, tag_set_list) 4752 if (!blk_mq_elv_switch_none(&head, q)) 4753 goto switch_back; 4754 4755 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4756 blk_mq_debugfs_unregister_hctxs(q); 4757 blk_mq_sysfs_unregister_hctxs(q); 4758 } 4759 4760 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4761 goto reregister; 4762 4763 fallback: 4764 blk_mq_update_queue_map(set); 4765 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4766 blk_mq_realloc_hw_ctxs(set, q); 4767 blk_mq_update_poll_flag(q); 4768 if (q->nr_hw_queues != set->nr_hw_queues) { 4769 int i = prev_nr_hw_queues; 4770 4771 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4772 nr_hw_queues, prev_nr_hw_queues); 4773 for (; i < set->nr_hw_queues; i++) 4774 __blk_mq_free_map_and_rqs(set, i); 4775 4776 set->nr_hw_queues = prev_nr_hw_queues; 4777 goto fallback; 4778 } 4779 blk_mq_map_swqueue(q); 4780 } 4781 4782 reregister: 4783 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4784 blk_mq_sysfs_register_hctxs(q); 4785 blk_mq_debugfs_register_hctxs(q); 4786 } 4787 4788 switch_back: 4789 list_for_each_entry(q, &set->tag_list, tag_set_list) 4790 blk_mq_elv_switch_back(&head, q); 4791 4792 list_for_each_entry(q, &set->tag_list, tag_set_list) 4793 blk_mq_unfreeze_queue(q); 4794 4795 /* Free the excess tags when nr_hw_queues shrink. */ 4796 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4797 __blk_mq_free_map_and_rqs(set, i); 4798 } 4799 4800 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4801 { 4802 mutex_lock(&set->tag_list_lock); 4803 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4804 mutex_unlock(&set->tag_list_lock); 4805 } 4806 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4807 4808 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4809 struct io_comp_batch *iob, unsigned int flags) 4810 { 4811 long state = get_current_state(); 4812 int ret; 4813 4814 do { 4815 ret = q->mq_ops->poll(hctx, iob); 4816 if (ret > 0) { 4817 __set_current_state(TASK_RUNNING); 4818 return ret; 4819 } 4820 4821 if (signal_pending_state(state, current)) 4822 __set_current_state(TASK_RUNNING); 4823 if (task_is_running(current)) 4824 return 1; 4825 4826 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4827 break; 4828 cpu_relax(); 4829 } while (!need_resched()); 4830 4831 __set_current_state(TASK_RUNNING); 4832 return 0; 4833 } 4834 4835 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4836 struct io_comp_batch *iob, unsigned int flags) 4837 { 4838 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4839 4840 return blk_hctx_poll(q, hctx, iob, flags); 4841 } 4842 4843 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4844 unsigned int poll_flags) 4845 { 4846 struct request_queue *q = rq->q; 4847 int ret; 4848 4849 if (!blk_rq_is_poll(rq)) 4850 return 0; 4851 if (!percpu_ref_tryget(&q->q_usage_counter)) 4852 return 0; 4853 4854 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4855 blk_queue_exit(q); 4856 4857 return ret; 4858 } 4859 EXPORT_SYMBOL_GPL(blk_rq_poll); 4860 4861 unsigned int blk_mq_rq_cpu(struct request *rq) 4862 { 4863 return rq->mq_ctx->cpu; 4864 } 4865 EXPORT_SYMBOL(blk_mq_rq_cpu); 4866 4867 void blk_mq_cancel_work_sync(struct request_queue *q) 4868 { 4869 struct blk_mq_hw_ctx *hctx; 4870 unsigned long i; 4871 4872 cancel_delayed_work_sync(&q->requeue_work); 4873 4874 queue_for_each_hw_ctx(q, hctx, i) 4875 cancel_delayed_work_sync(&hctx->run_work); 4876 } 4877 4878 static int __init blk_mq_init(void) 4879 { 4880 int i; 4881 4882 for_each_possible_cpu(i) 4883 init_llist_head(&per_cpu(blk_cpu_done, i)); 4884 for_each_possible_cpu(i) 4885 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4886 __blk_mq_complete_request_remote, NULL); 4887 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4888 4889 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4890 "block/softirq:dead", NULL, 4891 blk_softirq_cpu_dead); 4892 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4893 blk_mq_hctx_notify_dead); 4894 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4895 blk_mq_hctx_notify_online, 4896 blk_mq_hctx_notify_offline); 4897 return 0; 4898 } 4899 subsys_initcall(blk_mq_init); 4900