1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @q: request queue. 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started. 261 */ 262 void blk_mq_wait_quiesce_done(struct request_queue *q) 263 { 264 if (blk_queue_has_srcu(q)) 265 synchronize_srcu(q->srcu); 266 else 267 synchronize_rcu(); 268 } 269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 270 271 /** 272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 273 * @q: request queue. 274 * 275 * Note: this function does not prevent that the struct request end_io() 276 * callback function is invoked. Once this function is returned, we make 277 * sure no dispatch can happen until the queue is unquiesced via 278 * blk_mq_unquiesce_queue(). 279 */ 280 void blk_mq_quiesce_queue(struct request_queue *q) 281 { 282 blk_mq_quiesce_queue_nowait(q); 283 blk_mq_wait_quiesce_done(q); 284 } 285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 286 287 /* 288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 289 * @q: request queue. 290 * 291 * This function recovers queue into the state before quiescing 292 * which is done by blk_mq_quiesce_queue. 293 */ 294 void blk_mq_unquiesce_queue(struct request_queue *q) 295 { 296 unsigned long flags; 297 bool run_queue = false; 298 299 spin_lock_irqsave(&q->queue_lock, flags); 300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 301 ; 302 } else if (!--q->quiesce_depth) { 303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 304 run_queue = true; 305 } 306 spin_unlock_irqrestore(&q->queue_lock, flags); 307 308 /* dispatch requests which are inserted during quiescing */ 309 if (run_queue) 310 blk_mq_run_hw_queues(q, true); 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 313 314 void blk_mq_wake_waiters(struct request_queue *q) 315 { 316 struct blk_mq_hw_ctx *hctx; 317 unsigned long i; 318 319 queue_for_each_hw_ctx(q, hctx, i) 320 if (blk_mq_hw_queue_mapped(hctx)) 321 blk_mq_tag_wakeup_all(hctx->tags, true); 322 } 323 324 void blk_rq_init(struct request_queue *q, struct request *rq) 325 { 326 memset(rq, 0, sizeof(*rq)); 327 328 INIT_LIST_HEAD(&rq->queuelist); 329 rq->q = q; 330 rq->__sector = (sector_t) -1; 331 INIT_HLIST_NODE(&rq->hash); 332 RB_CLEAR_NODE(&rq->rb_node); 333 rq->tag = BLK_MQ_NO_TAG; 334 rq->internal_tag = BLK_MQ_NO_TAG; 335 rq->start_time_ns = ktime_get_ns(); 336 rq->part = NULL; 337 blk_crypto_rq_set_defaults(rq); 338 } 339 EXPORT_SYMBOL(blk_rq_init); 340 341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 343 { 344 struct blk_mq_ctx *ctx = data->ctx; 345 struct blk_mq_hw_ctx *hctx = data->hctx; 346 struct request_queue *q = data->q; 347 struct request *rq = tags->static_rqs[tag]; 348 349 rq->q = q; 350 rq->mq_ctx = ctx; 351 rq->mq_hctx = hctx; 352 rq->cmd_flags = data->cmd_flags; 353 354 if (data->flags & BLK_MQ_REQ_PM) 355 data->rq_flags |= RQF_PM; 356 if (blk_queue_io_stat(q)) 357 data->rq_flags |= RQF_IO_STAT; 358 rq->rq_flags = data->rq_flags; 359 360 if (!(data->rq_flags & RQF_ELV)) { 361 rq->tag = tag; 362 rq->internal_tag = BLK_MQ_NO_TAG; 363 } else { 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = tag; 366 } 367 rq->timeout = 0; 368 369 if (blk_mq_need_time_stamp(rq)) 370 rq->start_time_ns = ktime_get_ns(); 371 else 372 rq->start_time_ns = 0; 373 rq->part = NULL; 374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 375 rq->alloc_time_ns = alloc_time_ns; 376 #endif 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_ELV) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (!op_is_flush(data->cmd_flags) && 399 e->type->ops.prepare_request) { 400 e->type->ops.prepare_request(rq); 401 rq->rq_flags |= RQF_ELVPRIV; 402 } 403 } 404 405 return rq; 406 } 407 408 static inline struct request * 409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 410 u64 alloc_time_ns) 411 { 412 unsigned int tag, tag_offset; 413 struct blk_mq_tags *tags; 414 struct request *rq; 415 unsigned long tag_mask; 416 int i, nr = 0; 417 418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 419 if (unlikely(!tag_mask)) 420 return NULL; 421 422 tags = blk_mq_tags_from_data(data); 423 for (i = 0; tag_mask; i++) { 424 if (!(tag_mask & (1UL << i))) 425 continue; 426 tag = tag_offset + i; 427 prefetch(tags->static_rqs[tag]); 428 tag_mask &= ~(1UL << i); 429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 430 rq_list_add(data->cached_rq, rq); 431 nr++; 432 } 433 /* caller already holds a reference, add for remainder */ 434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 435 data->nr_tags -= nr; 436 437 return rq_list_pop(data->cached_rq); 438 } 439 440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 441 { 442 struct request_queue *q = data->q; 443 u64 alloc_time_ns = 0; 444 struct request *rq; 445 unsigned int tag; 446 447 /* alloc_time includes depth and tag waits */ 448 if (blk_queue_rq_alloc_time(q)) 449 alloc_time_ns = ktime_get_ns(); 450 451 if (data->cmd_flags & REQ_NOWAIT) 452 data->flags |= BLK_MQ_REQ_NOWAIT; 453 454 if (q->elevator) { 455 struct elevator_queue *e = q->elevator; 456 457 data->rq_flags |= RQF_ELV; 458 459 /* 460 * Flush/passthrough requests are special and go directly to the 461 * dispatch list. Don't include reserved tags in the 462 * limiting, as it isn't useful. 463 */ 464 if (!op_is_flush(data->cmd_flags) && 465 !blk_op_is_passthrough(data->cmd_flags) && 466 e->type->ops.limit_depth && 467 !(data->flags & BLK_MQ_REQ_RESERVED)) 468 e->type->ops.limit_depth(data->cmd_flags, data); 469 } 470 471 retry: 472 data->ctx = blk_mq_get_ctx(q); 473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 474 if (!(data->rq_flags & RQF_ELV)) 475 blk_mq_tag_busy(data->hctx); 476 477 if (data->flags & BLK_MQ_REQ_RESERVED) 478 data->rq_flags |= RQF_RESV; 479 480 /* 481 * Try batched alloc if we want more than 1 tag. 482 */ 483 if (data->nr_tags > 1) { 484 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 485 if (rq) 486 return rq; 487 data->nr_tags = 1; 488 } 489 490 /* 491 * Waiting allocations only fail because of an inactive hctx. In that 492 * case just retry the hctx assignment and tag allocation as CPU hotplug 493 * should have migrated us to an online CPU by now. 494 */ 495 tag = blk_mq_get_tag(data); 496 if (tag == BLK_MQ_NO_TAG) { 497 if (data->flags & BLK_MQ_REQ_NOWAIT) 498 return NULL; 499 /* 500 * Give up the CPU and sleep for a random short time to 501 * ensure that thread using a realtime scheduling class 502 * are migrated off the CPU, and thus off the hctx that 503 * is going away. 504 */ 505 msleep(3); 506 goto retry; 507 } 508 509 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 510 alloc_time_ns); 511 } 512 513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 514 blk_mq_req_flags_t flags) 515 { 516 struct blk_mq_alloc_data data = { 517 .q = q, 518 .flags = flags, 519 .cmd_flags = opf, 520 .nr_tags = 1, 521 }; 522 struct request *rq; 523 int ret; 524 525 ret = blk_queue_enter(q, flags); 526 if (ret) 527 return ERR_PTR(ret); 528 529 rq = __blk_mq_alloc_requests(&data); 530 if (!rq) 531 goto out_queue_exit; 532 rq->__data_len = 0; 533 rq->__sector = (sector_t) -1; 534 rq->bio = rq->biotail = NULL; 535 return rq; 536 out_queue_exit: 537 blk_queue_exit(q); 538 return ERR_PTR(-EWOULDBLOCK); 539 } 540 EXPORT_SYMBOL(blk_mq_alloc_request); 541 542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 543 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 544 { 545 struct blk_mq_alloc_data data = { 546 .q = q, 547 .flags = flags, 548 .cmd_flags = opf, 549 .nr_tags = 1, 550 }; 551 u64 alloc_time_ns = 0; 552 unsigned int cpu; 553 unsigned int tag; 554 int ret; 555 556 /* alloc_time includes depth and tag waits */ 557 if (blk_queue_rq_alloc_time(q)) 558 alloc_time_ns = ktime_get_ns(); 559 560 /* 561 * If the tag allocator sleeps we could get an allocation for a 562 * different hardware context. No need to complicate the low level 563 * allocator for this for the rare use case of a command tied to 564 * a specific queue. 565 */ 566 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 567 return ERR_PTR(-EINVAL); 568 569 if (hctx_idx >= q->nr_hw_queues) 570 return ERR_PTR(-EIO); 571 572 ret = blk_queue_enter(q, flags); 573 if (ret) 574 return ERR_PTR(ret); 575 576 /* 577 * Check if the hardware context is actually mapped to anything. 578 * If not tell the caller that it should skip this queue. 579 */ 580 ret = -EXDEV; 581 data.hctx = xa_load(&q->hctx_table, hctx_idx); 582 if (!blk_mq_hw_queue_mapped(data.hctx)) 583 goto out_queue_exit; 584 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 585 if (cpu >= nr_cpu_ids) 586 goto out_queue_exit; 587 data.ctx = __blk_mq_get_ctx(q, cpu); 588 589 if (!q->elevator) 590 blk_mq_tag_busy(data.hctx); 591 else 592 data.rq_flags |= RQF_ELV; 593 594 if (flags & BLK_MQ_REQ_RESERVED) 595 data.rq_flags |= RQF_RESV; 596 597 ret = -EWOULDBLOCK; 598 tag = blk_mq_get_tag(&data); 599 if (tag == BLK_MQ_NO_TAG) 600 goto out_queue_exit; 601 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 602 alloc_time_ns); 603 604 out_queue_exit: 605 blk_queue_exit(q); 606 return ERR_PTR(ret); 607 } 608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 609 610 static void __blk_mq_free_request(struct request *rq) 611 { 612 struct request_queue *q = rq->q; 613 struct blk_mq_ctx *ctx = rq->mq_ctx; 614 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 615 const int sched_tag = rq->internal_tag; 616 617 blk_crypto_free_request(rq); 618 blk_pm_mark_last_busy(rq); 619 rq->mq_hctx = NULL; 620 if (rq->tag != BLK_MQ_NO_TAG) 621 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 622 if (sched_tag != BLK_MQ_NO_TAG) 623 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 624 blk_mq_sched_restart(hctx); 625 blk_queue_exit(q); 626 } 627 628 void blk_mq_free_request(struct request *rq) 629 { 630 struct request_queue *q = rq->q; 631 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 632 633 if ((rq->rq_flags & RQF_ELVPRIV) && 634 q->elevator->type->ops.finish_request) 635 q->elevator->type->ops.finish_request(rq); 636 637 if (rq->rq_flags & RQF_MQ_INFLIGHT) 638 __blk_mq_dec_active_requests(hctx); 639 640 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 641 laptop_io_completion(q->disk->bdi); 642 643 rq_qos_done(q, rq); 644 645 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 646 if (req_ref_put_and_test(rq)) 647 __blk_mq_free_request(rq); 648 } 649 EXPORT_SYMBOL_GPL(blk_mq_free_request); 650 651 void blk_mq_free_plug_rqs(struct blk_plug *plug) 652 { 653 struct request *rq; 654 655 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 656 blk_mq_free_request(rq); 657 } 658 659 void blk_dump_rq_flags(struct request *rq, char *msg) 660 { 661 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 662 rq->q->disk ? rq->q->disk->disk_name : "?", 663 (__force unsigned long long) rq->cmd_flags); 664 665 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 666 (unsigned long long)blk_rq_pos(rq), 667 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 668 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 669 rq->bio, rq->biotail, blk_rq_bytes(rq)); 670 } 671 EXPORT_SYMBOL(blk_dump_rq_flags); 672 673 static void req_bio_endio(struct request *rq, struct bio *bio, 674 unsigned int nbytes, blk_status_t error) 675 { 676 if (unlikely(error)) { 677 bio->bi_status = error; 678 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 679 /* 680 * Partial zone append completions cannot be supported as the 681 * BIO fragments may end up not being written sequentially. 682 */ 683 if (bio->bi_iter.bi_size != nbytes) 684 bio->bi_status = BLK_STS_IOERR; 685 else 686 bio->bi_iter.bi_sector = rq->__sector; 687 } 688 689 bio_advance(bio, nbytes); 690 691 if (unlikely(rq->rq_flags & RQF_QUIET)) 692 bio_set_flag(bio, BIO_QUIET); 693 /* don't actually finish bio if it's part of flush sequence */ 694 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 695 bio_endio(bio); 696 } 697 698 static void blk_account_io_completion(struct request *req, unsigned int bytes) 699 { 700 if (req->part && blk_do_io_stat(req)) { 701 const int sgrp = op_stat_group(req_op(req)); 702 703 part_stat_lock(); 704 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 705 part_stat_unlock(); 706 } 707 } 708 709 static void blk_print_req_error(struct request *req, blk_status_t status) 710 { 711 printk_ratelimited(KERN_ERR 712 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 713 "phys_seg %u prio class %u\n", 714 blk_status_to_str(status), 715 req->q->disk ? req->q->disk->disk_name : "?", 716 blk_rq_pos(req), (__force u32)req_op(req), 717 blk_op_str(req_op(req)), 718 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 719 req->nr_phys_segments, 720 IOPRIO_PRIO_CLASS(req->ioprio)); 721 } 722 723 /* 724 * Fully end IO on a request. Does not support partial completions, or 725 * errors. 726 */ 727 static void blk_complete_request(struct request *req) 728 { 729 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 730 int total_bytes = blk_rq_bytes(req); 731 struct bio *bio = req->bio; 732 733 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 734 735 if (!bio) 736 return; 737 738 #ifdef CONFIG_BLK_DEV_INTEGRITY 739 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 740 req->q->integrity.profile->complete_fn(req, total_bytes); 741 #endif 742 743 blk_account_io_completion(req, total_bytes); 744 745 do { 746 struct bio *next = bio->bi_next; 747 748 /* Completion has already been traced */ 749 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 750 751 if (req_op(req) == REQ_OP_ZONE_APPEND) 752 bio->bi_iter.bi_sector = req->__sector; 753 754 if (!is_flush) 755 bio_endio(bio); 756 bio = next; 757 } while (bio); 758 759 /* 760 * Reset counters so that the request stacking driver 761 * can find how many bytes remain in the request 762 * later. 763 */ 764 req->bio = NULL; 765 req->__data_len = 0; 766 } 767 768 /** 769 * blk_update_request - Complete multiple bytes without completing the request 770 * @req: the request being processed 771 * @error: block status code 772 * @nr_bytes: number of bytes to complete for @req 773 * 774 * Description: 775 * Ends I/O on a number of bytes attached to @req, but doesn't complete 776 * the request structure even if @req doesn't have leftover. 777 * If @req has leftover, sets it up for the next range of segments. 778 * 779 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 780 * %false return from this function. 781 * 782 * Note: 783 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 784 * except in the consistency check at the end of this function. 785 * 786 * Return: 787 * %false - this request doesn't have any more data 788 * %true - this request has more data 789 **/ 790 bool blk_update_request(struct request *req, blk_status_t error, 791 unsigned int nr_bytes) 792 { 793 int total_bytes; 794 795 trace_block_rq_complete(req, error, nr_bytes); 796 797 if (!req->bio) 798 return false; 799 800 #ifdef CONFIG_BLK_DEV_INTEGRITY 801 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 802 error == BLK_STS_OK) 803 req->q->integrity.profile->complete_fn(req, nr_bytes); 804 #endif 805 806 if (unlikely(error && !blk_rq_is_passthrough(req) && 807 !(req->rq_flags & RQF_QUIET)) && 808 !test_bit(GD_DEAD, &req->q->disk->state)) { 809 blk_print_req_error(req, error); 810 trace_block_rq_error(req, error, nr_bytes); 811 } 812 813 blk_account_io_completion(req, nr_bytes); 814 815 total_bytes = 0; 816 while (req->bio) { 817 struct bio *bio = req->bio; 818 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 819 820 if (bio_bytes == bio->bi_iter.bi_size) 821 req->bio = bio->bi_next; 822 823 /* Completion has already been traced */ 824 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 825 req_bio_endio(req, bio, bio_bytes, error); 826 827 total_bytes += bio_bytes; 828 nr_bytes -= bio_bytes; 829 830 if (!nr_bytes) 831 break; 832 } 833 834 /* 835 * completely done 836 */ 837 if (!req->bio) { 838 /* 839 * Reset counters so that the request stacking driver 840 * can find how many bytes remain in the request 841 * later. 842 */ 843 req->__data_len = 0; 844 return false; 845 } 846 847 req->__data_len -= total_bytes; 848 849 /* update sector only for requests with clear definition of sector */ 850 if (!blk_rq_is_passthrough(req)) 851 req->__sector += total_bytes >> 9; 852 853 /* mixed attributes always follow the first bio */ 854 if (req->rq_flags & RQF_MIXED_MERGE) { 855 req->cmd_flags &= ~REQ_FAILFAST_MASK; 856 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 857 } 858 859 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 860 /* 861 * If total number of sectors is less than the first segment 862 * size, something has gone terribly wrong. 863 */ 864 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 865 blk_dump_rq_flags(req, "request botched"); 866 req->__data_len = blk_rq_cur_bytes(req); 867 } 868 869 /* recalculate the number of segments */ 870 req->nr_phys_segments = blk_recalc_rq_segments(req); 871 } 872 873 return true; 874 } 875 EXPORT_SYMBOL_GPL(blk_update_request); 876 877 static void __blk_account_io_done(struct request *req, u64 now) 878 { 879 const int sgrp = op_stat_group(req_op(req)); 880 881 part_stat_lock(); 882 update_io_ticks(req->part, jiffies, true); 883 part_stat_inc(req->part, ios[sgrp]); 884 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 885 part_stat_unlock(); 886 } 887 888 static inline void blk_account_io_done(struct request *req, u64 now) 889 { 890 /* 891 * Account IO completion. flush_rq isn't accounted as a 892 * normal IO on queueing nor completion. Accounting the 893 * containing request is enough. 894 */ 895 if (blk_do_io_stat(req) && req->part && 896 !(req->rq_flags & RQF_FLUSH_SEQ)) 897 __blk_account_io_done(req, now); 898 } 899 900 static void __blk_account_io_start(struct request *rq) 901 { 902 /* 903 * All non-passthrough requests are created from a bio with one 904 * exception: when a flush command that is part of a flush sequence 905 * generated by the state machine in blk-flush.c is cloned onto the 906 * lower device by dm-multipath we can get here without a bio. 907 */ 908 if (rq->bio) 909 rq->part = rq->bio->bi_bdev; 910 else 911 rq->part = rq->q->disk->part0; 912 913 part_stat_lock(); 914 update_io_ticks(rq->part, jiffies, false); 915 part_stat_unlock(); 916 } 917 918 static inline void blk_account_io_start(struct request *req) 919 { 920 if (blk_do_io_stat(req)) 921 __blk_account_io_start(req); 922 } 923 924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 925 { 926 if (rq->rq_flags & RQF_STATS) { 927 blk_mq_poll_stats_start(rq->q); 928 blk_stat_add(rq, now); 929 } 930 931 blk_mq_sched_completed_request(rq, now); 932 blk_account_io_done(rq, now); 933 } 934 935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 936 { 937 if (blk_mq_need_time_stamp(rq)) 938 __blk_mq_end_request_acct(rq, ktime_get_ns()); 939 940 if (rq->end_io) { 941 rq_qos_done(rq->q, rq); 942 rq->end_io(rq, error); 943 } else { 944 blk_mq_free_request(rq); 945 } 946 } 947 EXPORT_SYMBOL(__blk_mq_end_request); 948 949 void blk_mq_end_request(struct request *rq, blk_status_t error) 950 { 951 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 952 BUG(); 953 __blk_mq_end_request(rq, error); 954 } 955 EXPORT_SYMBOL(blk_mq_end_request); 956 957 #define TAG_COMP_BATCH 32 958 959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 960 int *tag_array, int nr_tags) 961 { 962 struct request_queue *q = hctx->queue; 963 964 /* 965 * All requests should have been marked as RQF_MQ_INFLIGHT, so 966 * update hctx->nr_active in batch 967 */ 968 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 969 __blk_mq_sub_active_requests(hctx, nr_tags); 970 971 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 972 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 973 } 974 975 void blk_mq_end_request_batch(struct io_comp_batch *iob) 976 { 977 int tags[TAG_COMP_BATCH], nr_tags = 0; 978 struct blk_mq_hw_ctx *cur_hctx = NULL; 979 struct request *rq; 980 u64 now = 0; 981 982 if (iob->need_ts) 983 now = ktime_get_ns(); 984 985 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 986 prefetch(rq->bio); 987 prefetch(rq->rq_next); 988 989 blk_complete_request(rq); 990 if (iob->need_ts) 991 __blk_mq_end_request_acct(rq, now); 992 993 rq_qos_done(rq->q, rq); 994 995 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 996 if (!req_ref_put_and_test(rq)) 997 continue; 998 999 blk_crypto_free_request(rq); 1000 blk_pm_mark_last_busy(rq); 1001 1002 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1003 if (cur_hctx) 1004 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1005 nr_tags = 0; 1006 cur_hctx = rq->mq_hctx; 1007 } 1008 tags[nr_tags++] = rq->tag; 1009 } 1010 1011 if (nr_tags) 1012 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1013 } 1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1015 1016 static void blk_complete_reqs(struct llist_head *list) 1017 { 1018 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1019 struct request *rq, *next; 1020 1021 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1022 rq->q->mq_ops->complete(rq); 1023 } 1024 1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1026 { 1027 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1028 } 1029 1030 static int blk_softirq_cpu_dead(unsigned int cpu) 1031 { 1032 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1033 return 0; 1034 } 1035 1036 static void __blk_mq_complete_request_remote(void *data) 1037 { 1038 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1039 } 1040 1041 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1042 { 1043 int cpu = raw_smp_processor_id(); 1044 1045 if (!IS_ENABLED(CONFIG_SMP) || 1046 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1047 return false; 1048 /* 1049 * With force threaded interrupts enabled, raising softirq from an SMP 1050 * function call will always result in waking the ksoftirqd thread. 1051 * This is probably worse than completing the request on a different 1052 * cache domain. 1053 */ 1054 if (force_irqthreads()) 1055 return false; 1056 1057 /* same CPU or cache domain? Complete locally */ 1058 if (cpu == rq->mq_ctx->cpu || 1059 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1060 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1061 return false; 1062 1063 /* don't try to IPI to an offline CPU */ 1064 return cpu_online(rq->mq_ctx->cpu); 1065 } 1066 1067 static void blk_mq_complete_send_ipi(struct request *rq) 1068 { 1069 struct llist_head *list; 1070 unsigned int cpu; 1071 1072 cpu = rq->mq_ctx->cpu; 1073 list = &per_cpu(blk_cpu_done, cpu); 1074 if (llist_add(&rq->ipi_list, list)) { 1075 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1076 smp_call_function_single_async(cpu, &rq->csd); 1077 } 1078 } 1079 1080 static void blk_mq_raise_softirq(struct request *rq) 1081 { 1082 struct llist_head *list; 1083 1084 preempt_disable(); 1085 list = this_cpu_ptr(&blk_cpu_done); 1086 if (llist_add(&rq->ipi_list, list)) 1087 raise_softirq(BLOCK_SOFTIRQ); 1088 preempt_enable(); 1089 } 1090 1091 bool blk_mq_complete_request_remote(struct request *rq) 1092 { 1093 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1094 1095 /* 1096 * For a polled request, always complete locally, it's pointless 1097 * to redirect the completion. 1098 */ 1099 if (rq->cmd_flags & REQ_POLLED) 1100 return false; 1101 1102 if (blk_mq_complete_need_ipi(rq)) { 1103 blk_mq_complete_send_ipi(rq); 1104 return true; 1105 } 1106 1107 if (rq->q->nr_hw_queues == 1) { 1108 blk_mq_raise_softirq(rq); 1109 return true; 1110 } 1111 return false; 1112 } 1113 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1114 1115 /** 1116 * blk_mq_complete_request - end I/O on a request 1117 * @rq: the request being processed 1118 * 1119 * Description: 1120 * Complete a request by scheduling the ->complete_rq operation. 1121 **/ 1122 void blk_mq_complete_request(struct request *rq) 1123 { 1124 if (!blk_mq_complete_request_remote(rq)) 1125 rq->q->mq_ops->complete(rq); 1126 } 1127 EXPORT_SYMBOL(blk_mq_complete_request); 1128 1129 /** 1130 * blk_mq_start_request - Start processing a request 1131 * @rq: Pointer to request to be started 1132 * 1133 * Function used by device drivers to notify the block layer that a request 1134 * is going to be processed now, so blk layer can do proper initializations 1135 * such as starting the timeout timer. 1136 */ 1137 void blk_mq_start_request(struct request *rq) 1138 { 1139 struct request_queue *q = rq->q; 1140 1141 trace_block_rq_issue(rq); 1142 1143 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1144 rq->io_start_time_ns = ktime_get_ns(); 1145 rq->stats_sectors = blk_rq_sectors(rq); 1146 rq->rq_flags |= RQF_STATS; 1147 rq_qos_issue(q, rq); 1148 } 1149 1150 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1151 1152 blk_add_timer(rq); 1153 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1154 1155 #ifdef CONFIG_BLK_DEV_INTEGRITY 1156 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1157 q->integrity.profile->prepare_fn(rq); 1158 #endif 1159 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1160 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1161 } 1162 EXPORT_SYMBOL(blk_mq_start_request); 1163 1164 /* 1165 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1166 * queues. This is important for md arrays to benefit from merging 1167 * requests. 1168 */ 1169 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1170 { 1171 if (plug->multiple_queues) 1172 return BLK_MAX_REQUEST_COUNT * 2; 1173 return BLK_MAX_REQUEST_COUNT; 1174 } 1175 1176 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1177 { 1178 struct request *last = rq_list_peek(&plug->mq_list); 1179 1180 if (!plug->rq_count) { 1181 trace_block_plug(rq->q); 1182 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1183 (!blk_queue_nomerges(rq->q) && 1184 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1185 blk_mq_flush_plug_list(plug, false); 1186 trace_block_plug(rq->q); 1187 } 1188 1189 if (!plug->multiple_queues && last && last->q != rq->q) 1190 plug->multiple_queues = true; 1191 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1192 plug->has_elevator = true; 1193 rq->rq_next = NULL; 1194 rq_list_add(&plug->mq_list, rq); 1195 plug->rq_count++; 1196 } 1197 1198 /** 1199 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1200 * @rq: request to insert 1201 * @at_head: insert request at head or tail of queue 1202 * 1203 * Description: 1204 * Insert a fully prepared request at the back of the I/O scheduler queue 1205 * for execution. Don't wait for completion. 1206 * 1207 * Note: 1208 * This function will invoke @done directly if the queue is dead. 1209 */ 1210 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1211 { 1212 WARN_ON(irqs_disabled()); 1213 WARN_ON(!blk_rq_is_passthrough(rq)); 1214 1215 blk_account_io_start(rq); 1216 if (current->plug) 1217 blk_add_rq_to_plug(current->plug, rq); 1218 else 1219 blk_mq_sched_insert_request(rq, at_head, true, false); 1220 } 1221 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1222 1223 struct blk_rq_wait { 1224 struct completion done; 1225 blk_status_t ret; 1226 }; 1227 1228 static void blk_end_sync_rq(struct request *rq, blk_status_t ret) 1229 { 1230 struct blk_rq_wait *wait = rq->end_io_data; 1231 1232 wait->ret = ret; 1233 complete(&wait->done); 1234 } 1235 1236 static bool blk_rq_is_poll(struct request *rq) 1237 { 1238 if (!rq->mq_hctx) 1239 return false; 1240 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1241 return false; 1242 if (WARN_ON_ONCE(!rq->bio)) 1243 return false; 1244 return true; 1245 } 1246 1247 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1248 { 1249 do { 1250 bio_poll(rq->bio, NULL, 0); 1251 cond_resched(); 1252 } while (!completion_done(wait)); 1253 } 1254 1255 /** 1256 * blk_execute_rq - insert a request into queue for execution 1257 * @rq: request to insert 1258 * @at_head: insert request at head or tail of queue 1259 * 1260 * Description: 1261 * Insert a fully prepared request at the back of the I/O scheduler queue 1262 * for execution and wait for completion. 1263 * Return: The blk_status_t result provided to blk_mq_end_request(). 1264 */ 1265 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1266 { 1267 struct blk_rq_wait wait = { 1268 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1269 }; 1270 1271 WARN_ON(irqs_disabled()); 1272 WARN_ON(!blk_rq_is_passthrough(rq)); 1273 1274 rq->end_io_data = &wait; 1275 rq->end_io = blk_end_sync_rq; 1276 1277 blk_account_io_start(rq); 1278 blk_mq_sched_insert_request(rq, at_head, true, false); 1279 1280 if (blk_rq_is_poll(rq)) { 1281 blk_rq_poll_completion(rq, &wait.done); 1282 } else { 1283 /* 1284 * Prevent hang_check timer from firing at us during very long 1285 * I/O 1286 */ 1287 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1288 1289 if (hang_check) 1290 while (!wait_for_completion_io_timeout(&wait.done, 1291 hang_check * (HZ/2))) 1292 ; 1293 else 1294 wait_for_completion_io(&wait.done); 1295 } 1296 1297 return wait.ret; 1298 } 1299 EXPORT_SYMBOL(blk_execute_rq); 1300 1301 static void __blk_mq_requeue_request(struct request *rq) 1302 { 1303 struct request_queue *q = rq->q; 1304 1305 blk_mq_put_driver_tag(rq); 1306 1307 trace_block_rq_requeue(rq); 1308 rq_qos_requeue(q, rq); 1309 1310 if (blk_mq_request_started(rq)) { 1311 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1312 rq->rq_flags &= ~RQF_TIMED_OUT; 1313 } 1314 } 1315 1316 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1317 { 1318 __blk_mq_requeue_request(rq); 1319 1320 /* this request will be re-inserted to io scheduler queue */ 1321 blk_mq_sched_requeue_request(rq); 1322 1323 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1324 } 1325 EXPORT_SYMBOL(blk_mq_requeue_request); 1326 1327 static void blk_mq_requeue_work(struct work_struct *work) 1328 { 1329 struct request_queue *q = 1330 container_of(work, struct request_queue, requeue_work.work); 1331 LIST_HEAD(rq_list); 1332 struct request *rq, *next; 1333 1334 spin_lock_irq(&q->requeue_lock); 1335 list_splice_init(&q->requeue_list, &rq_list); 1336 spin_unlock_irq(&q->requeue_lock); 1337 1338 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1339 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1340 continue; 1341 1342 rq->rq_flags &= ~RQF_SOFTBARRIER; 1343 list_del_init(&rq->queuelist); 1344 /* 1345 * If RQF_DONTPREP, rq has contained some driver specific 1346 * data, so insert it to hctx dispatch list to avoid any 1347 * merge. 1348 */ 1349 if (rq->rq_flags & RQF_DONTPREP) 1350 blk_mq_request_bypass_insert(rq, false, false); 1351 else 1352 blk_mq_sched_insert_request(rq, true, false, false); 1353 } 1354 1355 while (!list_empty(&rq_list)) { 1356 rq = list_entry(rq_list.next, struct request, queuelist); 1357 list_del_init(&rq->queuelist); 1358 blk_mq_sched_insert_request(rq, false, false, false); 1359 } 1360 1361 blk_mq_run_hw_queues(q, false); 1362 } 1363 1364 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1365 bool kick_requeue_list) 1366 { 1367 struct request_queue *q = rq->q; 1368 unsigned long flags; 1369 1370 /* 1371 * We abuse this flag that is otherwise used by the I/O scheduler to 1372 * request head insertion from the workqueue. 1373 */ 1374 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1375 1376 spin_lock_irqsave(&q->requeue_lock, flags); 1377 if (at_head) { 1378 rq->rq_flags |= RQF_SOFTBARRIER; 1379 list_add(&rq->queuelist, &q->requeue_list); 1380 } else { 1381 list_add_tail(&rq->queuelist, &q->requeue_list); 1382 } 1383 spin_unlock_irqrestore(&q->requeue_lock, flags); 1384 1385 if (kick_requeue_list) 1386 blk_mq_kick_requeue_list(q); 1387 } 1388 1389 void blk_mq_kick_requeue_list(struct request_queue *q) 1390 { 1391 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1392 } 1393 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1394 1395 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1396 unsigned long msecs) 1397 { 1398 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1399 msecs_to_jiffies(msecs)); 1400 } 1401 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1402 1403 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1404 { 1405 /* 1406 * If we find a request that isn't idle we know the queue is busy 1407 * as it's checked in the iter. 1408 * Return false to stop the iteration. 1409 */ 1410 if (blk_mq_request_started(rq)) { 1411 bool *busy = priv; 1412 1413 *busy = true; 1414 return false; 1415 } 1416 1417 return true; 1418 } 1419 1420 bool blk_mq_queue_inflight(struct request_queue *q) 1421 { 1422 bool busy = false; 1423 1424 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1425 return busy; 1426 } 1427 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1428 1429 static void blk_mq_rq_timed_out(struct request *req) 1430 { 1431 req->rq_flags |= RQF_TIMED_OUT; 1432 if (req->q->mq_ops->timeout) { 1433 enum blk_eh_timer_return ret; 1434 1435 ret = req->q->mq_ops->timeout(req); 1436 if (ret == BLK_EH_DONE) 1437 return; 1438 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1439 } 1440 1441 blk_add_timer(req); 1442 } 1443 1444 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1445 { 1446 unsigned long deadline; 1447 1448 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1449 return false; 1450 if (rq->rq_flags & RQF_TIMED_OUT) 1451 return false; 1452 1453 deadline = READ_ONCE(rq->deadline); 1454 if (time_after_eq(jiffies, deadline)) 1455 return true; 1456 1457 if (*next == 0) 1458 *next = deadline; 1459 else if (time_after(*next, deadline)) 1460 *next = deadline; 1461 return false; 1462 } 1463 1464 void blk_mq_put_rq_ref(struct request *rq) 1465 { 1466 if (is_flush_rq(rq)) 1467 rq->end_io(rq, 0); 1468 else if (req_ref_put_and_test(rq)) 1469 __blk_mq_free_request(rq); 1470 } 1471 1472 static bool blk_mq_check_expired(struct request *rq, void *priv) 1473 { 1474 unsigned long *next = priv; 1475 1476 /* 1477 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1478 * be reallocated underneath the timeout handler's processing, then 1479 * the expire check is reliable. If the request is not expired, then 1480 * it was completed and reallocated as a new request after returning 1481 * from blk_mq_check_expired(). 1482 */ 1483 if (blk_mq_req_expired(rq, next)) 1484 blk_mq_rq_timed_out(rq); 1485 return true; 1486 } 1487 1488 static void blk_mq_timeout_work(struct work_struct *work) 1489 { 1490 struct request_queue *q = 1491 container_of(work, struct request_queue, timeout_work); 1492 unsigned long next = 0; 1493 struct blk_mq_hw_ctx *hctx; 1494 unsigned long i; 1495 1496 /* A deadlock might occur if a request is stuck requiring a 1497 * timeout at the same time a queue freeze is waiting 1498 * completion, since the timeout code would not be able to 1499 * acquire the queue reference here. 1500 * 1501 * That's why we don't use blk_queue_enter here; instead, we use 1502 * percpu_ref_tryget directly, because we need to be able to 1503 * obtain a reference even in the short window between the queue 1504 * starting to freeze, by dropping the first reference in 1505 * blk_freeze_queue_start, and the moment the last request is 1506 * consumed, marked by the instant q_usage_counter reaches 1507 * zero. 1508 */ 1509 if (!percpu_ref_tryget(&q->q_usage_counter)) 1510 return; 1511 1512 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1513 1514 if (next != 0) { 1515 mod_timer(&q->timeout, next); 1516 } else { 1517 /* 1518 * Request timeouts are handled as a forward rolling timer. If 1519 * we end up here it means that no requests are pending and 1520 * also that no request has been pending for a while. Mark 1521 * each hctx as idle. 1522 */ 1523 queue_for_each_hw_ctx(q, hctx, i) { 1524 /* the hctx may be unmapped, so check it here */ 1525 if (blk_mq_hw_queue_mapped(hctx)) 1526 blk_mq_tag_idle(hctx); 1527 } 1528 } 1529 blk_queue_exit(q); 1530 } 1531 1532 struct flush_busy_ctx_data { 1533 struct blk_mq_hw_ctx *hctx; 1534 struct list_head *list; 1535 }; 1536 1537 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1538 { 1539 struct flush_busy_ctx_data *flush_data = data; 1540 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1541 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1542 enum hctx_type type = hctx->type; 1543 1544 spin_lock(&ctx->lock); 1545 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1546 sbitmap_clear_bit(sb, bitnr); 1547 spin_unlock(&ctx->lock); 1548 return true; 1549 } 1550 1551 /* 1552 * Process software queues that have been marked busy, splicing them 1553 * to the for-dispatch 1554 */ 1555 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1556 { 1557 struct flush_busy_ctx_data data = { 1558 .hctx = hctx, 1559 .list = list, 1560 }; 1561 1562 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1563 } 1564 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1565 1566 struct dispatch_rq_data { 1567 struct blk_mq_hw_ctx *hctx; 1568 struct request *rq; 1569 }; 1570 1571 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1572 void *data) 1573 { 1574 struct dispatch_rq_data *dispatch_data = data; 1575 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1576 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1577 enum hctx_type type = hctx->type; 1578 1579 spin_lock(&ctx->lock); 1580 if (!list_empty(&ctx->rq_lists[type])) { 1581 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1582 list_del_init(&dispatch_data->rq->queuelist); 1583 if (list_empty(&ctx->rq_lists[type])) 1584 sbitmap_clear_bit(sb, bitnr); 1585 } 1586 spin_unlock(&ctx->lock); 1587 1588 return !dispatch_data->rq; 1589 } 1590 1591 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1592 struct blk_mq_ctx *start) 1593 { 1594 unsigned off = start ? start->index_hw[hctx->type] : 0; 1595 struct dispatch_rq_data data = { 1596 .hctx = hctx, 1597 .rq = NULL, 1598 }; 1599 1600 __sbitmap_for_each_set(&hctx->ctx_map, off, 1601 dispatch_rq_from_ctx, &data); 1602 1603 return data.rq; 1604 } 1605 1606 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1607 { 1608 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1609 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1610 int tag; 1611 1612 blk_mq_tag_busy(rq->mq_hctx); 1613 1614 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1615 bt = &rq->mq_hctx->tags->breserved_tags; 1616 tag_offset = 0; 1617 } else { 1618 if (!hctx_may_queue(rq->mq_hctx, bt)) 1619 return false; 1620 } 1621 1622 tag = __sbitmap_queue_get(bt); 1623 if (tag == BLK_MQ_NO_TAG) 1624 return false; 1625 1626 rq->tag = tag + tag_offset; 1627 return true; 1628 } 1629 1630 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1631 { 1632 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1633 return false; 1634 1635 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1636 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1637 rq->rq_flags |= RQF_MQ_INFLIGHT; 1638 __blk_mq_inc_active_requests(hctx); 1639 } 1640 hctx->tags->rqs[rq->tag] = rq; 1641 return true; 1642 } 1643 1644 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1645 int flags, void *key) 1646 { 1647 struct blk_mq_hw_ctx *hctx; 1648 1649 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1650 1651 spin_lock(&hctx->dispatch_wait_lock); 1652 if (!list_empty(&wait->entry)) { 1653 struct sbitmap_queue *sbq; 1654 1655 list_del_init(&wait->entry); 1656 sbq = &hctx->tags->bitmap_tags; 1657 atomic_dec(&sbq->ws_active); 1658 } 1659 spin_unlock(&hctx->dispatch_wait_lock); 1660 1661 blk_mq_run_hw_queue(hctx, true); 1662 return 1; 1663 } 1664 1665 /* 1666 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1667 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1668 * restart. For both cases, take care to check the condition again after 1669 * marking us as waiting. 1670 */ 1671 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1672 struct request *rq) 1673 { 1674 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1675 struct wait_queue_head *wq; 1676 wait_queue_entry_t *wait; 1677 bool ret; 1678 1679 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1680 blk_mq_sched_mark_restart_hctx(hctx); 1681 1682 /* 1683 * It's possible that a tag was freed in the window between the 1684 * allocation failure and adding the hardware queue to the wait 1685 * queue. 1686 * 1687 * Don't clear RESTART here, someone else could have set it. 1688 * At most this will cost an extra queue run. 1689 */ 1690 return blk_mq_get_driver_tag(rq); 1691 } 1692 1693 wait = &hctx->dispatch_wait; 1694 if (!list_empty_careful(&wait->entry)) 1695 return false; 1696 1697 wq = &bt_wait_ptr(sbq, hctx)->wait; 1698 1699 spin_lock_irq(&wq->lock); 1700 spin_lock(&hctx->dispatch_wait_lock); 1701 if (!list_empty(&wait->entry)) { 1702 spin_unlock(&hctx->dispatch_wait_lock); 1703 spin_unlock_irq(&wq->lock); 1704 return false; 1705 } 1706 1707 atomic_inc(&sbq->ws_active); 1708 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1709 __add_wait_queue(wq, wait); 1710 1711 /* 1712 * It's possible that a tag was freed in the window between the 1713 * allocation failure and adding the hardware queue to the wait 1714 * queue. 1715 */ 1716 ret = blk_mq_get_driver_tag(rq); 1717 if (!ret) { 1718 spin_unlock(&hctx->dispatch_wait_lock); 1719 spin_unlock_irq(&wq->lock); 1720 return false; 1721 } 1722 1723 /* 1724 * We got a tag, remove ourselves from the wait queue to ensure 1725 * someone else gets the wakeup. 1726 */ 1727 list_del_init(&wait->entry); 1728 atomic_dec(&sbq->ws_active); 1729 spin_unlock(&hctx->dispatch_wait_lock); 1730 spin_unlock_irq(&wq->lock); 1731 1732 return true; 1733 } 1734 1735 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1736 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1737 /* 1738 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1739 * - EWMA is one simple way to compute running average value 1740 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1741 * - take 4 as factor for avoiding to get too small(0) result, and this 1742 * factor doesn't matter because EWMA decreases exponentially 1743 */ 1744 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1745 { 1746 unsigned int ewma; 1747 1748 ewma = hctx->dispatch_busy; 1749 1750 if (!ewma && !busy) 1751 return; 1752 1753 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1754 if (busy) 1755 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1756 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1757 1758 hctx->dispatch_busy = ewma; 1759 } 1760 1761 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1762 1763 static void blk_mq_handle_dev_resource(struct request *rq, 1764 struct list_head *list) 1765 { 1766 struct request *next = 1767 list_first_entry_or_null(list, struct request, queuelist); 1768 1769 /* 1770 * If an I/O scheduler has been configured and we got a driver tag for 1771 * the next request already, free it. 1772 */ 1773 if (next) 1774 blk_mq_put_driver_tag(next); 1775 1776 list_add(&rq->queuelist, list); 1777 __blk_mq_requeue_request(rq); 1778 } 1779 1780 static void blk_mq_handle_zone_resource(struct request *rq, 1781 struct list_head *zone_list) 1782 { 1783 /* 1784 * If we end up here it is because we cannot dispatch a request to a 1785 * specific zone due to LLD level zone-write locking or other zone 1786 * related resource not being available. In this case, set the request 1787 * aside in zone_list for retrying it later. 1788 */ 1789 list_add(&rq->queuelist, zone_list); 1790 __blk_mq_requeue_request(rq); 1791 } 1792 1793 enum prep_dispatch { 1794 PREP_DISPATCH_OK, 1795 PREP_DISPATCH_NO_TAG, 1796 PREP_DISPATCH_NO_BUDGET, 1797 }; 1798 1799 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1800 bool need_budget) 1801 { 1802 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1803 int budget_token = -1; 1804 1805 if (need_budget) { 1806 budget_token = blk_mq_get_dispatch_budget(rq->q); 1807 if (budget_token < 0) { 1808 blk_mq_put_driver_tag(rq); 1809 return PREP_DISPATCH_NO_BUDGET; 1810 } 1811 blk_mq_set_rq_budget_token(rq, budget_token); 1812 } 1813 1814 if (!blk_mq_get_driver_tag(rq)) { 1815 /* 1816 * The initial allocation attempt failed, so we need to 1817 * rerun the hardware queue when a tag is freed. The 1818 * waitqueue takes care of that. If the queue is run 1819 * before we add this entry back on the dispatch list, 1820 * we'll re-run it below. 1821 */ 1822 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1823 /* 1824 * All budgets not got from this function will be put 1825 * together during handling partial dispatch 1826 */ 1827 if (need_budget) 1828 blk_mq_put_dispatch_budget(rq->q, budget_token); 1829 return PREP_DISPATCH_NO_TAG; 1830 } 1831 } 1832 1833 return PREP_DISPATCH_OK; 1834 } 1835 1836 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1837 static void blk_mq_release_budgets(struct request_queue *q, 1838 struct list_head *list) 1839 { 1840 struct request *rq; 1841 1842 list_for_each_entry(rq, list, queuelist) { 1843 int budget_token = blk_mq_get_rq_budget_token(rq); 1844 1845 if (budget_token >= 0) 1846 blk_mq_put_dispatch_budget(q, budget_token); 1847 } 1848 } 1849 1850 /* 1851 * Returns true if we did some work AND can potentially do more. 1852 */ 1853 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1854 unsigned int nr_budgets) 1855 { 1856 enum prep_dispatch prep; 1857 struct request_queue *q = hctx->queue; 1858 struct request *rq, *nxt; 1859 int errors, queued; 1860 blk_status_t ret = BLK_STS_OK; 1861 LIST_HEAD(zone_list); 1862 bool needs_resource = false; 1863 1864 if (list_empty(list)) 1865 return false; 1866 1867 /* 1868 * Now process all the entries, sending them to the driver. 1869 */ 1870 errors = queued = 0; 1871 do { 1872 struct blk_mq_queue_data bd; 1873 1874 rq = list_first_entry(list, struct request, queuelist); 1875 1876 WARN_ON_ONCE(hctx != rq->mq_hctx); 1877 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1878 if (prep != PREP_DISPATCH_OK) 1879 break; 1880 1881 list_del_init(&rq->queuelist); 1882 1883 bd.rq = rq; 1884 1885 /* 1886 * Flag last if we have no more requests, or if we have more 1887 * but can't assign a driver tag to it. 1888 */ 1889 if (list_empty(list)) 1890 bd.last = true; 1891 else { 1892 nxt = list_first_entry(list, struct request, queuelist); 1893 bd.last = !blk_mq_get_driver_tag(nxt); 1894 } 1895 1896 /* 1897 * once the request is queued to lld, no need to cover the 1898 * budget any more 1899 */ 1900 if (nr_budgets) 1901 nr_budgets--; 1902 ret = q->mq_ops->queue_rq(hctx, &bd); 1903 switch (ret) { 1904 case BLK_STS_OK: 1905 queued++; 1906 break; 1907 case BLK_STS_RESOURCE: 1908 needs_resource = true; 1909 fallthrough; 1910 case BLK_STS_DEV_RESOURCE: 1911 blk_mq_handle_dev_resource(rq, list); 1912 goto out; 1913 case BLK_STS_ZONE_RESOURCE: 1914 /* 1915 * Move the request to zone_list and keep going through 1916 * the dispatch list to find more requests the drive can 1917 * accept. 1918 */ 1919 blk_mq_handle_zone_resource(rq, &zone_list); 1920 needs_resource = true; 1921 break; 1922 default: 1923 errors++; 1924 blk_mq_end_request(rq, ret); 1925 } 1926 } while (!list_empty(list)); 1927 out: 1928 if (!list_empty(&zone_list)) 1929 list_splice_tail_init(&zone_list, list); 1930 1931 /* If we didn't flush the entire list, we could have told the driver 1932 * there was more coming, but that turned out to be a lie. 1933 */ 1934 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1935 q->mq_ops->commit_rqs(hctx); 1936 /* 1937 * Any items that need requeuing? Stuff them into hctx->dispatch, 1938 * that is where we will continue on next queue run. 1939 */ 1940 if (!list_empty(list)) { 1941 bool needs_restart; 1942 /* For non-shared tags, the RESTART check will suffice */ 1943 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1944 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1945 1946 if (nr_budgets) 1947 blk_mq_release_budgets(q, list); 1948 1949 spin_lock(&hctx->lock); 1950 list_splice_tail_init(list, &hctx->dispatch); 1951 spin_unlock(&hctx->lock); 1952 1953 /* 1954 * Order adding requests to hctx->dispatch and checking 1955 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1956 * in blk_mq_sched_restart(). Avoid restart code path to 1957 * miss the new added requests to hctx->dispatch, meantime 1958 * SCHED_RESTART is observed here. 1959 */ 1960 smp_mb(); 1961 1962 /* 1963 * If SCHED_RESTART was set by the caller of this function and 1964 * it is no longer set that means that it was cleared by another 1965 * thread and hence that a queue rerun is needed. 1966 * 1967 * If 'no_tag' is set, that means that we failed getting 1968 * a driver tag with an I/O scheduler attached. If our dispatch 1969 * waitqueue is no longer active, ensure that we run the queue 1970 * AFTER adding our entries back to the list. 1971 * 1972 * If no I/O scheduler has been configured it is possible that 1973 * the hardware queue got stopped and restarted before requests 1974 * were pushed back onto the dispatch list. Rerun the queue to 1975 * avoid starvation. Notes: 1976 * - blk_mq_run_hw_queue() checks whether or not a queue has 1977 * been stopped before rerunning a queue. 1978 * - Some but not all block drivers stop a queue before 1979 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1980 * and dm-rq. 1981 * 1982 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1983 * bit is set, run queue after a delay to avoid IO stalls 1984 * that could otherwise occur if the queue is idle. We'll do 1985 * similar if we couldn't get budget or couldn't lock a zone 1986 * and SCHED_RESTART is set. 1987 */ 1988 needs_restart = blk_mq_sched_needs_restart(hctx); 1989 if (prep == PREP_DISPATCH_NO_BUDGET) 1990 needs_resource = true; 1991 if (!needs_restart || 1992 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1993 blk_mq_run_hw_queue(hctx, true); 1994 else if (needs_restart && needs_resource) 1995 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1996 1997 blk_mq_update_dispatch_busy(hctx, true); 1998 return false; 1999 } else 2000 blk_mq_update_dispatch_busy(hctx, false); 2001 2002 return (queued + errors) != 0; 2003 } 2004 2005 /** 2006 * __blk_mq_run_hw_queue - Run a hardware queue. 2007 * @hctx: Pointer to the hardware queue to run. 2008 * 2009 * Send pending requests to the hardware. 2010 */ 2011 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2012 { 2013 /* 2014 * We can't run the queue inline with ints disabled. Ensure that 2015 * we catch bad users of this early. 2016 */ 2017 WARN_ON_ONCE(in_interrupt()); 2018 2019 blk_mq_run_dispatch_ops(hctx->queue, 2020 blk_mq_sched_dispatch_requests(hctx)); 2021 } 2022 2023 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2024 { 2025 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2026 2027 if (cpu >= nr_cpu_ids) 2028 cpu = cpumask_first(hctx->cpumask); 2029 return cpu; 2030 } 2031 2032 /* 2033 * It'd be great if the workqueue API had a way to pass 2034 * in a mask and had some smarts for more clever placement. 2035 * For now we just round-robin here, switching for every 2036 * BLK_MQ_CPU_WORK_BATCH queued items. 2037 */ 2038 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2039 { 2040 bool tried = false; 2041 int next_cpu = hctx->next_cpu; 2042 2043 if (hctx->queue->nr_hw_queues == 1) 2044 return WORK_CPU_UNBOUND; 2045 2046 if (--hctx->next_cpu_batch <= 0) { 2047 select_cpu: 2048 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2049 cpu_online_mask); 2050 if (next_cpu >= nr_cpu_ids) 2051 next_cpu = blk_mq_first_mapped_cpu(hctx); 2052 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2053 } 2054 2055 /* 2056 * Do unbound schedule if we can't find a online CPU for this hctx, 2057 * and it should only happen in the path of handling CPU DEAD. 2058 */ 2059 if (!cpu_online(next_cpu)) { 2060 if (!tried) { 2061 tried = true; 2062 goto select_cpu; 2063 } 2064 2065 /* 2066 * Make sure to re-select CPU next time once after CPUs 2067 * in hctx->cpumask become online again. 2068 */ 2069 hctx->next_cpu = next_cpu; 2070 hctx->next_cpu_batch = 1; 2071 return WORK_CPU_UNBOUND; 2072 } 2073 2074 hctx->next_cpu = next_cpu; 2075 return next_cpu; 2076 } 2077 2078 /** 2079 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2080 * @hctx: Pointer to the hardware queue to run. 2081 * @async: If we want to run the queue asynchronously. 2082 * @msecs: Milliseconds of delay to wait before running the queue. 2083 * 2084 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2085 * with a delay of @msecs. 2086 */ 2087 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2088 unsigned long msecs) 2089 { 2090 if (unlikely(blk_mq_hctx_stopped(hctx))) 2091 return; 2092 2093 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2094 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2095 __blk_mq_run_hw_queue(hctx); 2096 return; 2097 } 2098 } 2099 2100 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2101 msecs_to_jiffies(msecs)); 2102 } 2103 2104 /** 2105 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2106 * @hctx: Pointer to the hardware queue to run. 2107 * @msecs: Milliseconds of delay to wait before running the queue. 2108 * 2109 * Run a hardware queue asynchronously with a delay of @msecs. 2110 */ 2111 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2112 { 2113 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2114 } 2115 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2116 2117 /** 2118 * blk_mq_run_hw_queue - Start to run a hardware queue. 2119 * @hctx: Pointer to the hardware queue to run. 2120 * @async: If we want to run the queue asynchronously. 2121 * 2122 * Check if the request queue is not in a quiesced state and if there are 2123 * pending requests to be sent. If this is true, run the queue to send requests 2124 * to hardware. 2125 */ 2126 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2127 { 2128 bool need_run; 2129 2130 /* 2131 * When queue is quiesced, we may be switching io scheduler, or 2132 * updating nr_hw_queues, or other things, and we can't run queue 2133 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2134 * 2135 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2136 * quiesced. 2137 */ 2138 __blk_mq_run_dispatch_ops(hctx->queue, false, 2139 need_run = !blk_queue_quiesced(hctx->queue) && 2140 blk_mq_hctx_has_pending(hctx)); 2141 2142 if (need_run) 2143 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2144 } 2145 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2146 2147 /* 2148 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2149 * scheduler. 2150 */ 2151 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2152 { 2153 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2154 /* 2155 * If the IO scheduler does not respect hardware queues when 2156 * dispatching, we just don't bother with multiple HW queues and 2157 * dispatch from hctx for the current CPU since running multiple queues 2158 * just causes lock contention inside the scheduler and pointless cache 2159 * bouncing. 2160 */ 2161 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2162 2163 if (!blk_mq_hctx_stopped(hctx)) 2164 return hctx; 2165 return NULL; 2166 } 2167 2168 /** 2169 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2170 * @q: Pointer to the request queue to run. 2171 * @async: If we want to run the queue asynchronously. 2172 */ 2173 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2174 { 2175 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2176 unsigned long i; 2177 2178 sq_hctx = NULL; 2179 if (blk_queue_sq_sched(q)) 2180 sq_hctx = blk_mq_get_sq_hctx(q); 2181 queue_for_each_hw_ctx(q, hctx, i) { 2182 if (blk_mq_hctx_stopped(hctx)) 2183 continue; 2184 /* 2185 * Dispatch from this hctx either if there's no hctx preferred 2186 * by IO scheduler or if it has requests that bypass the 2187 * scheduler. 2188 */ 2189 if (!sq_hctx || sq_hctx == hctx || 2190 !list_empty_careful(&hctx->dispatch)) 2191 blk_mq_run_hw_queue(hctx, async); 2192 } 2193 } 2194 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2195 2196 /** 2197 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2198 * @q: Pointer to the request queue to run. 2199 * @msecs: Milliseconds of delay to wait before running the queues. 2200 */ 2201 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2202 { 2203 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2204 unsigned long i; 2205 2206 sq_hctx = NULL; 2207 if (blk_queue_sq_sched(q)) 2208 sq_hctx = blk_mq_get_sq_hctx(q); 2209 queue_for_each_hw_ctx(q, hctx, i) { 2210 if (blk_mq_hctx_stopped(hctx)) 2211 continue; 2212 /* 2213 * If there is already a run_work pending, leave the 2214 * pending delay untouched. Otherwise, a hctx can stall 2215 * if another hctx is re-delaying the other's work 2216 * before the work executes. 2217 */ 2218 if (delayed_work_pending(&hctx->run_work)) 2219 continue; 2220 /* 2221 * Dispatch from this hctx either if there's no hctx preferred 2222 * by IO scheduler or if it has requests that bypass the 2223 * scheduler. 2224 */ 2225 if (!sq_hctx || sq_hctx == hctx || 2226 !list_empty_careful(&hctx->dispatch)) 2227 blk_mq_delay_run_hw_queue(hctx, msecs); 2228 } 2229 } 2230 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2231 2232 /* 2233 * This function is often used for pausing .queue_rq() by driver when 2234 * there isn't enough resource or some conditions aren't satisfied, and 2235 * BLK_STS_RESOURCE is usually returned. 2236 * 2237 * We do not guarantee that dispatch can be drained or blocked 2238 * after blk_mq_stop_hw_queue() returns. Please use 2239 * blk_mq_quiesce_queue() for that requirement. 2240 */ 2241 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2242 { 2243 cancel_delayed_work(&hctx->run_work); 2244 2245 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2246 } 2247 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2248 2249 /* 2250 * This function is often used for pausing .queue_rq() by driver when 2251 * there isn't enough resource or some conditions aren't satisfied, and 2252 * BLK_STS_RESOURCE is usually returned. 2253 * 2254 * We do not guarantee that dispatch can be drained or blocked 2255 * after blk_mq_stop_hw_queues() returns. Please use 2256 * blk_mq_quiesce_queue() for that requirement. 2257 */ 2258 void blk_mq_stop_hw_queues(struct request_queue *q) 2259 { 2260 struct blk_mq_hw_ctx *hctx; 2261 unsigned long i; 2262 2263 queue_for_each_hw_ctx(q, hctx, i) 2264 blk_mq_stop_hw_queue(hctx); 2265 } 2266 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2267 2268 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2269 { 2270 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2271 2272 blk_mq_run_hw_queue(hctx, false); 2273 } 2274 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2275 2276 void blk_mq_start_hw_queues(struct request_queue *q) 2277 { 2278 struct blk_mq_hw_ctx *hctx; 2279 unsigned long i; 2280 2281 queue_for_each_hw_ctx(q, hctx, i) 2282 blk_mq_start_hw_queue(hctx); 2283 } 2284 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2285 2286 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2287 { 2288 if (!blk_mq_hctx_stopped(hctx)) 2289 return; 2290 2291 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2292 blk_mq_run_hw_queue(hctx, async); 2293 } 2294 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2295 2296 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2297 { 2298 struct blk_mq_hw_ctx *hctx; 2299 unsigned long i; 2300 2301 queue_for_each_hw_ctx(q, hctx, i) 2302 blk_mq_start_stopped_hw_queue(hctx, async); 2303 } 2304 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2305 2306 static void blk_mq_run_work_fn(struct work_struct *work) 2307 { 2308 struct blk_mq_hw_ctx *hctx; 2309 2310 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2311 2312 /* 2313 * If we are stopped, don't run the queue. 2314 */ 2315 if (blk_mq_hctx_stopped(hctx)) 2316 return; 2317 2318 __blk_mq_run_hw_queue(hctx); 2319 } 2320 2321 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2322 struct request *rq, 2323 bool at_head) 2324 { 2325 struct blk_mq_ctx *ctx = rq->mq_ctx; 2326 enum hctx_type type = hctx->type; 2327 2328 lockdep_assert_held(&ctx->lock); 2329 2330 trace_block_rq_insert(rq); 2331 2332 if (at_head) 2333 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2334 else 2335 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2336 } 2337 2338 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2339 bool at_head) 2340 { 2341 struct blk_mq_ctx *ctx = rq->mq_ctx; 2342 2343 lockdep_assert_held(&ctx->lock); 2344 2345 __blk_mq_insert_req_list(hctx, rq, at_head); 2346 blk_mq_hctx_mark_pending(hctx, ctx); 2347 } 2348 2349 /** 2350 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2351 * @rq: Pointer to request to be inserted. 2352 * @at_head: true if the request should be inserted at the head of the list. 2353 * @run_queue: If we should run the hardware queue after inserting the request. 2354 * 2355 * Should only be used carefully, when the caller knows we want to 2356 * bypass a potential IO scheduler on the target device. 2357 */ 2358 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2359 bool run_queue) 2360 { 2361 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2362 2363 spin_lock(&hctx->lock); 2364 if (at_head) 2365 list_add(&rq->queuelist, &hctx->dispatch); 2366 else 2367 list_add_tail(&rq->queuelist, &hctx->dispatch); 2368 spin_unlock(&hctx->lock); 2369 2370 if (run_queue) 2371 blk_mq_run_hw_queue(hctx, false); 2372 } 2373 2374 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2375 struct list_head *list) 2376 2377 { 2378 struct request *rq; 2379 enum hctx_type type = hctx->type; 2380 2381 /* 2382 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2383 * offline now 2384 */ 2385 list_for_each_entry(rq, list, queuelist) { 2386 BUG_ON(rq->mq_ctx != ctx); 2387 trace_block_rq_insert(rq); 2388 } 2389 2390 spin_lock(&ctx->lock); 2391 list_splice_tail_init(list, &ctx->rq_lists[type]); 2392 blk_mq_hctx_mark_pending(hctx, ctx); 2393 spin_unlock(&ctx->lock); 2394 } 2395 2396 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2397 bool from_schedule) 2398 { 2399 if (hctx->queue->mq_ops->commit_rqs) { 2400 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2401 hctx->queue->mq_ops->commit_rqs(hctx); 2402 } 2403 *queued = 0; 2404 } 2405 2406 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2407 unsigned int nr_segs) 2408 { 2409 int err; 2410 2411 if (bio->bi_opf & REQ_RAHEAD) 2412 rq->cmd_flags |= REQ_FAILFAST_MASK; 2413 2414 rq->__sector = bio->bi_iter.bi_sector; 2415 blk_rq_bio_prep(rq, bio, nr_segs); 2416 2417 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2418 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2419 WARN_ON_ONCE(err); 2420 2421 blk_account_io_start(rq); 2422 } 2423 2424 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2425 struct request *rq, bool last) 2426 { 2427 struct request_queue *q = rq->q; 2428 struct blk_mq_queue_data bd = { 2429 .rq = rq, 2430 .last = last, 2431 }; 2432 blk_status_t ret; 2433 2434 /* 2435 * For OK queue, we are done. For error, caller may kill it. 2436 * Any other error (busy), just add it to our list as we 2437 * previously would have done. 2438 */ 2439 ret = q->mq_ops->queue_rq(hctx, &bd); 2440 switch (ret) { 2441 case BLK_STS_OK: 2442 blk_mq_update_dispatch_busy(hctx, false); 2443 break; 2444 case BLK_STS_RESOURCE: 2445 case BLK_STS_DEV_RESOURCE: 2446 blk_mq_update_dispatch_busy(hctx, true); 2447 __blk_mq_requeue_request(rq); 2448 break; 2449 default: 2450 blk_mq_update_dispatch_busy(hctx, false); 2451 break; 2452 } 2453 2454 return ret; 2455 } 2456 2457 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2458 struct request *rq, 2459 bool bypass_insert, bool last) 2460 { 2461 struct request_queue *q = rq->q; 2462 bool run_queue = true; 2463 int budget_token; 2464 2465 /* 2466 * RCU or SRCU read lock is needed before checking quiesced flag. 2467 * 2468 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2469 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2470 * and avoid driver to try to dispatch again. 2471 */ 2472 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2473 run_queue = false; 2474 bypass_insert = false; 2475 goto insert; 2476 } 2477 2478 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2479 goto insert; 2480 2481 budget_token = blk_mq_get_dispatch_budget(q); 2482 if (budget_token < 0) 2483 goto insert; 2484 2485 blk_mq_set_rq_budget_token(rq, budget_token); 2486 2487 if (!blk_mq_get_driver_tag(rq)) { 2488 blk_mq_put_dispatch_budget(q, budget_token); 2489 goto insert; 2490 } 2491 2492 return __blk_mq_issue_directly(hctx, rq, last); 2493 insert: 2494 if (bypass_insert) 2495 return BLK_STS_RESOURCE; 2496 2497 blk_mq_sched_insert_request(rq, false, run_queue, false); 2498 2499 return BLK_STS_OK; 2500 } 2501 2502 /** 2503 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2504 * @hctx: Pointer of the associated hardware queue. 2505 * @rq: Pointer to request to be sent. 2506 * 2507 * If the device has enough resources to accept a new request now, send the 2508 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2509 * we can try send it another time in the future. Requests inserted at this 2510 * queue have higher priority. 2511 */ 2512 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2513 struct request *rq) 2514 { 2515 blk_status_t ret = 2516 __blk_mq_try_issue_directly(hctx, rq, false, true); 2517 2518 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2519 blk_mq_request_bypass_insert(rq, false, true); 2520 else if (ret != BLK_STS_OK) 2521 blk_mq_end_request(rq, ret); 2522 } 2523 2524 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2525 { 2526 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2527 } 2528 2529 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2530 { 2531 struct blk_mq_hw_ctx *hctx = NULL; 2532 struct request *rq; 2533 int queued = 0; 2534 int errors = 0; 2535 2536 while ((rq = rq_list_pop(&plug->mq_list))) { 2537 bool last = rq_list_empty(plug->mq_list); 2538 blk_status_t ret; 2539 2540 if (hctx != rq->mq_hctx) { 2541 if (hctx) 2542 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2543 hctx = rq->mq_hctx; 2544 } 2545 2546 ret = blk_mq_request_issue_directly(rq, last); 2547 switch (ret) { 2548 case BLK_STS_OK: 2549 queued++; 2550 break; 2551 case BLK_STS_RESOURCE: 2552 case BLK_STS_DEV_RESOURCE: 2553 blk_mq_request_bypass_insert(rq, false, true); 2554 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2555 return; 2556 default: 2557 blk_mq_end_request(rq, ret); 2558 errors++; 2559 break; 2560 } 2561 } 2562 2563 /* 2564 * If we didn't flush the entire list, we could have told the driver 2565 * there was more coming, but that turned out to be a lie. 2566 */ 2567 if (errors) 2568 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2569 } 2570 2571 static void __blk_mq_flush_plug_list(struct request_queue *q, 2572 struct blk_plug *plug) 2573 { 2574 if (blk_queue_quiesced(q)) 2575 return; 2576 q->mq_ops->queue_rqs(&plug->mq_list); 2577 } 2578 2579 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2580 { 2581 struct blk_mq_hw_ctx *this_hctx = NULL; 2582 struct blk_mq_ctx *this_ctx = NULL; 2583 struct request *requeue_list = NULL; 2584 unsigned int depth = 0; 2585 LIST_HEAD(list); 2586 2587 do { 2588 struct request *rq = rq_list_pop(&plug->mq_list); 2589 2590 if (!this_hctx) { 2591 this_hctx = rq->mq_hctx; 2592 this_ctx = rq->mq_ctx; 2593 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2594 rq_list_add(&requeue_list, rq); 2595 continue; 2596 } 2597 list_add_tail(&rq->queuelist, &list); 2598 depth++; 2599 } while (!rq_list_empty(plug->mq_list)); 2600 2601 plug->mq_list = requeue_list; 2602 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2603 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2604 } 2605 2606 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2607 { 2608 struct request *rq; 2609 2610 if (rq_list_empty(plug->mq_list)) 2611 return; 2612 plug->rq_count = 0; 2613 2614 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2615 struct request_queue *q; 2616 2617 rq = rq_list_peek(&plug->mq_list); 2618 q = rq->q; 2619 2620 /* 2621 * Peek first request and see if we have a ->queue_rqs() hook. 2622 * If we do, we can dispatch the whole plug list in one go. We 2623 * already know at this point that all requests belong to the 2624 * same queue, caller must ensure that's the case. 2625 * 2626 * Since we pass off the full list to the driver at this point, 2627 * we do not increment the active request count for the queue. 2628 * Bypass shared tags for now because of that. 2629 */ 2630 if (q->mq_ops->queue_rqs && 2631 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2632 blk_mq_run_dispatch_ops(q, 2633 __blk_mq_flush_plug_list(q, plug)); 2634 if (rq_list_empty(plug->mq_list)) 2635 return; 2636 } 2637 2638 blk_mq_run_dispatch_ops(q, 2639 blk_mq_plug_issue_direct(plug, false)); 2640 if (rq_list_empty(plug->mq_list)) 2641 return; 2642 } 2643 2644 do { 2645 blk_mq_dispatch_plug_list(plug, from_schedule); 2646 } while (!rq_list_empty(plug->mq_list)); 2647 } 2648 2649 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2650 struct list_head *list) 2651 { 2652 int queued = 0; 2653 int errors = 0; 2654 2655 while (!list_empty(list)) { 2656 blk_status_t ret; 2657 struct request *rq = list_first_entry(list, struct request, 2658 queuelist); 2659 2660 list_del_init(&rq->queuelist); 2661 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2662 if (ret != BLK_STS_OK) { 2663 if (ret == BLK_STS_RESOURCE || 2664 ret == BLK_STS_DEV_RESOURCE) { 2665 blk_mq_request_bypass_insert(rq, false, 2666 list_empty(list)); 2667 break; 2668 } 2669 blk_mq_end_request(rq, ret); 2670 errors++; 2671 } else 2672 queued++; 2673 } 2674 2675 /* 2676 * If we didn't flush the entire list, we could have told 2677 * the driver there was more coming, but that turned out to 2678 * be a lie. 2679 */ 2680 if ((!list_empty(list) || errors) && 2681 hctx->queue->mq_ops->commit_rqs && queued) 2682 hctx->queue->mq_ops->commit_rqs(hctx); 2683 } 2684 2685 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2686 struct bio *bio, unsigned int nr_segs) 2687 { 2688 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2689 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2690 return true; 2691 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2692 return true; 2693 } 2694 return false; 2695 } 2696 2697 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2698 struct blk_plug *plug, 2699 struct bio *bio, 2700 unsigned int nsegs) 2701 { 2702 struct blk_mq_alloc_data data = { 2703 .q = q, 2704 .nr_tags = 1, 2705 .cmd_flags = bio->bi_opf, 2706 }; 2707 struct request *rq; 2708 2709 if (unlikely(bio_queue_enter(bio))) 2710 return NULL; 2711 2712 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2713 goto queue_exit; 2714 2715 rq_qos_throttle(q, bio); 2716 2717 if (plug) { 2718 data.nr_tags = plug->nr_ios; 2719 plug->nr_ios = 1; 2720 data.cached_rq = &plug->cached_rq; 2721 } 2722 2723 rq = __blk_mq_alloc_requests(&data); 2724 if (rq) 2725 return rq; 2726 rq_qos_cleanup(q, bio); 2727 if (bio->bi_opf & REQ_NOWAIT) 2728 bio_wouldblock_error(bio); 2729 queue_exit: 2730 blk_queue_exit(q); 2731 return NULL; 2732 } 2733 2734 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2735 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2736 { 2737 struct request *rq; 2738 2739 if (!plug) 2740 return NULL; 2741 rq = rq_list_peek(&plug->cached_rq); 2742 if (!rq || rq->q != q) 2743 return NULL; 2744 2745 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2746 *bio = NULL; 2747 return NULL; 2748 } 2749 2750 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) 2751 return NULL; 2752 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2753 return NULL; 2754 2755 /* 2756 * If any qos ->throttle() end up blocking, we will have flushed the 2757 * plug and hence killed the cached_rq list as well. Pop this entry 2758 * before we throttle. 2759 */ 2760 plug->cached_rq = rq_list_next(rq); 2761 rq_qos_throttle(q, *bio); 2762 2763 rq->cmd_flags = (*bio)->bi_opf; 2764 INIT_LIST_HEAD(&rq->queuelist); 2765 return rq; 2766 } 2767 2768 static void bio_set_ioprio(struct bio *bio) 2769 { 2770 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2771 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2772 bio->bi_ioprio = get_current_ioprio(); 2773 blkcg_set_ioprio(bio); 2774 } 2775 2776 /** 2777 * blk_mq_submit_bio - Create and send a request to block device. 2778 * @bio: Bio pointer. 2779 * 2780 * Builds up a request structure from @q and @bio and send to the device. The 2781 * request may not be queued directly to hardware if: 2782 * * This request can be merged with another one 2783 * * We want to place request at plug queue for possible future merging 2784 * * There is an IO scheduler active at this queue 2785 * 2786 * It will not queue the request if there is an error with the bio, or at the 2787 * request creation. 2788 */ 2789 void blk_mq_submit_bio(struct bio *bio) 2790 { 2791 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2792 struct blk_plug *plug = blk_mq_plug(bio); 2793 const int is_sync = op_is_sync(bio->bi_opf); 2794 struct request *rq; 2795 unsigned int nr_segs = 1; 2796 blk_status_t ret; 2797 2798 bio = blk_queue_bounce(bio, q); 2799 if (bio_may_exceed_limits(bio, &q->limits)) 2800 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2801 2802 if (!bio_integrity_prep(bio)) 2803 return; 2804 2805 bio_set_ioprio(bio); 2806 2807 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2808 if (!rq) { 2809 if (!bio) 2810 return; 2811 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2812 if (unlikely(!rq)) 2813 return; 2814 } 2815 2816 trace_block_getrq(bio); 2817 2818 rq_qos_track(q, rq, bio); 2819 2820 blk_mq_bio_to_request(rq, bio, nr_segs); 2821 2822 ret = blk_crypto_init_request(rq); 2823 if (ret != BLK_STS_OK) { 2824 bio->bi_status = ret; 2825 bio_endio(bio); 2826 blk_mq_free_request(rq); 2827 return; 2828 } 2829 2830 if (op_is_flush(bio->bi_opf)) { 2831 blk_insert_flush(rq); 2832 return; 2833 } 2834 2835 if (plug) 2836 blk_add_rq_to_plug(plug, rq); 2837 else if ((rq->rq_flags & RQF_ELV) || 2838 (rq->mq_hctx->dispatch_busy && 2839 (q->nr_hw_queues == 1 || !is_sync))) 2840 blk_mq_sched_insert_request(rq, false, true, true); 2841 else 2842 blk_mq_run_dispatch_ops(rq->q, 2843 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2844 } 2845 2846 #ifdef CONFIG_BLK_MQ_STACKING 2847 /** 2848 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2849 * @rq: the request being queued 2850 */ 2851 blk_status_t blk_insert_cloned_request(struct request *rq) 2852 { 2853 struct request_queue *q = rq->q; 2854 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 2855 blk_status_t ret; 2856 2857 if (blk_rq_sectors(rq) > max_sectors) { 2858 /* 2859 * SCSI device does not have a good way to return if 2860 * Write Same/Zero is actually supported. If a device rejects 2861 * a non-read/write command (discard, write same,etc.) the 2862 * low-level device driver will set the relevant queue limit to 2863 * 0 to prevent blk-lib from issuing more of the offending 2864 * operations. Commands queued prior to the queue limit being 2865 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 2866 * errors being propagated to upper layers. 2867 */ 2868 if (max_sectors == 0) 2869 return BLK_STS_NOTSUPP; 2870 2871 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 2872 __func__, blk_rq_sectors(rq), max_sectors); 2873 return BLK_STS_IOERR; 2874 } 2875 2876 /* 2877 * The queue settings related to segment counting may differ from the 2878 * original queue. 2879 */ 2880 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 2881 if (rq->nr_phys_segments > queue_max_segments(q)) { 2882 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 2883 __func__, rq->nr_phys_segments, queue_max_segments(q)); 2884 return BLK_STS_IOERR; 2885 } 2886 2887 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 2888 return BLK_STS_IOERR; 2889 2890 if (blk_crypto_insert_cloned_request(rq)) 2891 return BLK_STS_IOERR; 2892 2893 blk_account_io_start(rq); 2894 2895 /* 2896 * Since we have a scheduler attached on the top device, 2897 * bypass a potential scheduler on the bottom device for 2898 * insert. 2899 */ 2900 blk_mq_run_dispatch_ops(q, 2901 ret = blk_mq_request_issue_directly(rq, true)); 2902 if (ret) 2903 blk_account_io_done(rq, ktime_get_ns()); 2904 return ret; 2905 } 2906 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2907 2908 /** 2909 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2910 * @rq: the clone request to be cleaned up 2911 * 2912 * Description: 2913 * Free all bios in @rq for a cloned request. 2914 */ 2915 void blk_rq_unprep_clone(struct request *rq) 2916 { 2917 struct bio *bio; 2918 2919 while ((bio = rq->bio) != NULL) { 2920 rq->bio = bio->bi_next; 2921 2922 bio_put(bio); 2923 } 2924 } 2925 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2926 2927 /** 2928 * blk_rq_prep_clone - Helper function to setup clone request 2929 * @rq: the request to be setup 2930 * @rq_src: original request to be cloned 2931 * @bs: bio_set that bios for clone are allocated from 2932 * @gfp_mask: memory allocation mask for bio 2933 * @bio_ctr: setup function to be called for each clone bio. 2934 * Returns %0 for success, non %0 for failure. 2935 * @data: private data to be passed to @bio_ctr 2936 * 2937 * Description: 2938 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2939 * Also, pages which the original bios are pointing to are not copied 2940 * and the cloned bios just point same pages. 2941 * So cloned bios must be completed before original bios, which means 2942 * the caller must complete @rq before @rq_src. 2943 */ 2944 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2945 struct bio_set *bs, gfp_t gfp_mask, 2946 int (*bio_ctr)(struct bio *, struct bio *, void *), 2947 void *data) 2948 { 2949 struct bio *bio, *bio_src; 2950 2951 if (!bs) 2952 bs = &fs_bio_set; 2953 2954 __rq_for_each_bio(bio_src, rq_src) { 2955 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 2956 bs); 2957 if (!bio) 2958 goto free_and_out; 2959 2960 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2961 goto free_and_out; 2962 2963 if (rq->bio) { 2964 rq->biotail->bi_next = bio; 2965 rq->biotail = bio; 2966 } else { 2967 rq->bio = rq->biotail = bio; 2968 } 2969 bio = NULL; 2970 } 2971 2972 /* Copy attributes of the original request to the clone request. */ 2973 rq->__sector = blk_rq_pos(rq_src); 2974 rq->__data_len = blk_rq_bytes(rq_src); 2975 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 2976 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 2977 rq->special_vec = rq_src->special_vec; 2978 } 2979 rq->nr_phys_segments = rq_src->nr_phys_segments; 2980 rq->ioprio = rq_src->ioprio; 2981 2982 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 2983 goto free_and_out; 2984 2985 return 0; 2986 2987 free_and_out: 2988 if (bio) 2989 bio_put(bio); 2990 blk_rq_unprep_clone(rq); 2991 2992 return -ENOMEM; 2993 } 2994 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2995 #endif /* CONFIG_BLK_MQ_STACKING */ 2996 2997 /* 2998 * Steal bios from a request and add them to a bio list. 2999 * The request must not have been partially completed before. 3000 */ 3001 void blk_steal_bios(struct bio_list *list, struct request *rq) 3002 { 3003 if (rq->bio) { 3004 if (list->tail) 3005 list->tail->bi_next = rq->bio; 3006 else 3007 list->head = rq->bio; 3008 list->tail = rq->biotail; 3009 3010 rq->bio = NULL; 3011 rq->biotail = NULL; 3012 } 3013 3014 rq->__data_len = 0; 3015 } 3016 EXPORT_SYMBOL_GPL(blk_steal_bios); 3017 3018 static size_t order_to_size(unsigned int order) 3019 { 3020 return (size_t)PAGE_SIZE << order; 3021 } 3022 3023 /* called before freeing request pool in @tags */ 3024 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3025 struct blk_mq_tags *tags) 3026 { 3027 struct page *page; 3028 unsigned long flags; 3029 3030 /* There is no need to clear a driver tags own mapping */ 3031 if (drv_tags == tags) 3032 return; 3033 3034 list_for_each_entry(page, &tags->page_list, lru) { 3035 unsigned long start = (unsigned long)page_address(page); 3036 unsigned long end = start + order_to_size(page->private); 3037 int i; 3038 3039 for (i = 0; i < drv_tags->nr_tags; i++) { 3040 struct request *rq = drv_tags->rqs[i]; 3041 unsigned long rq_addr = (unsigned long)rq; 3042 3043 if (rq_addr >= start && rq_addr < end) { 3044 WARN_ON_ONCE(req_ref_read(rq) != 0); 3045 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3046 } 3047 } 3048 } 3049 3050 /* 3051 * Wait until all pending iteration is done. 3052 * 3053 * Request reference is cleared and it is guaranteed to be observed 3054 * after the ->lock is released. 3055 */ 3056 spin_lock_irqsave(&drv_tags->lock, flags); 3057 spin_unlock_irqrestore(&drv_tags->lock, flags); 3058 } 3059 3060 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3061 unsigned int hctx_idx) 3062 { 3063 struct blk_mq_tags *drv_tags; 3064 struct page *page; 3065 3066 if (list_empty(&tags->page_list)) 3067 return; 3068 3069 if (blk_mq_is_shared_tags(set->flags)) 3070 drv_tags = set->shared_tags; 3071 else 3072 drv_tags = set->tags[hctx_idx]; 3073 3074 if (tags->static_rqs && set->ops->exit_request) { 3075 int i; 3076 3077 for (i = 0; i < tags->nr_tags; i++) { 3078 struct request *rq = tags->static_rqs[i]; 3079 3080 if (!rq) 3081 continue; 3082 set->ops->exit_request(set, rq, hctx_idx); 3083 tags->static_rqs[i] = NULL; 3084 } 3085 } 3086 3087 blk_mq_clear_rq_mapping(drv_tags, tags); 3088 3089 while (!list_empty(&tags->page_list)) { 3090 page = list_first_entry(&tags->page_list, struct page, lru); 3091 list_del_init(&page->lru); 3092 /* 3093 * Remove kmemleak object previously allocated in 3094 * blk_mq_alloc_rqs(). 3095 */ 3096 kmemleak_free(page_address(page)); 3097 __free_pages(page, page->private); 3098 } 3099 } 3100 3101 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3102 { 3103 kfree(tags->rqs); 3104 tags->rqs = NULL; 3105 kfree(tags->static_rqs); 3106 tags->static_rqs = NULL; 3107 3108 blk_mq_free_tags(tags); 3109 } 3110 3111 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3112 unsigned int hctx_idx) 3113 { 3114 int i; 3115 3116 for (i = 0; i < set->nr_maps; i++) { 3117 unsigned int start = set->map[i].queue_offset; 3118 unsigned int end = start + set->map[i].nr_queues; 3119 3120 if (hctx_idx >= start && hctx_idx < end) 3121 break; 3122 } 3123 3124 if (i >= set->nr_maps) 3125 i = HCTX_TYPE_DEFAULT; 3126 3127 return i; 3128 } 3129 3130 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3131 unsigned int hctx_idx) 3132 { 3133 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3134 3135 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3136 } 3137 3138 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3139 unsigned int hctx_idx, 3140 unsigned int nr_tags, 3141 unsigned int reserved_tags) 3142 { 3143 int node = blk_mq_get_hctx_node(set, hctx_idx); 3144 struct blk_mq_tags *tags; 3145 3146 if (node == NUMA_NO_NODE) 3147 node = set->numa_node; 3148 3149 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3150 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3151 if (!tags) 3152 return NULL; 3153 3154 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3155 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3156 node); 3157 if (!tags->rqs) { 3158 blk_mq_free_tags(tags); 3159 return NULL; 3160 } 3161 3162 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3163 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3164 node); 3165 if (!tags->static_rqs) { 3166 kfree(tags->rqs); 3167 blk_mq_free_tags(tags); 3168 return NULL; 3169 } 3170 3171 return tags; 3172 } 3173 3174 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3175 unsigned int hctx_idx, int node) 3176 { 3177 int ret; 3178 3179 if (set->ops->init_request) { 3180 ret = set->ops->init_request(set, rq, hctx_idx, node); 3181 if (ret) 3182 return ret; 3183 } 3184 3185 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3186 return 0; 3187 } 3188 3189 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3190 struct blk_mq_tags *tags, 3191 unsigned int hctx_idx, unsigned int depth) 3192 { 3193 unsigned int i, j, entries_per_page, max_order = 4; 3194 int node = blk_mq_get_hctx_node(set, hctx_idx); 3195 size_t rq_size, left; 3196 3197 if (node == NUMA_NO_NODE) 3198 node = set->numa_node; 3199 3200 INIT_LIST_HEAD(&tags->page_list); 3201 3202 /* 3203 * rq_size is the size of the request plus driver payload, rounded 3204 * to the cacheline size 3205 */ 3206 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3207 cache_line_size()); 3208 left = rq_size * depth; 3209 3210 for (i = 0; i < depth; ) { 3211 int this_order = max_order; 3212 struct page *page; 3213 int to_do; 3214 void *p; 3215 3216 while (this_order && left < order_to_size(this_order - 1)) 3217 this_order--; 3218 3219 do { 3220 page = alloc_pages_node(node, 3221 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3222 this_order); 3223 if (page) 3224 break; 3225 if (!this_order--) 3226 break; 3227 if (order_to_size(this_order) < rq_size) 3228 break; 3229 } while (1); 3230 3231 if (!page) 3232 goto fail; 3233 3234 page->private = this_order; 3235 list_add_tail(&page->lru, &tags->page_list); 3236 3237 p = page_address(page); 3238 /* 3239 * Allow kmemleak to scan these pages as they contain pointers 3240 * to additional allocations like via ops->init_request(). 3241 */ 3242 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3243 entries_per_page = order_to_size(this_order) / rq_size; 3244 to_do = min(entries_per_page, depth - i); 3245 left -= to_do * rq_size; 3246 for (j = 0; j < to_do; j++) { 3247 struct request *rq = p; 3248 3249 tags->static_rqs[i] = rq; 3250 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3251 tags->static_rqs[i] = NULL; 3252 goto fail; 3253 } 3254 3255 p += rq_size; 3256 i++; 3257 } 3258 } 3259 return 0; 3260 3261 fail: 3262 blk_mq_free_rqs(set, tags, hctx_idx); 3263 return -ENOMEM; 3264 } 3265 3266 struct rq_iter_data { 3267 struct blk_mq_hw_ctx *hctx; 3268 bool has_rq; 3269 }; 3270 3271 static bool blk_mq_has_request(struct request *rq, void *data) 3272 { 3273 struct rq_iter_data *iter_data = data; 3274 3275 if (rq->mq_hctx != iter_data->hctx) 3276 return true; 3277 iter_data->has_rq = true; 3278 return false; 3279 } 3280 3281 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3282 { 3283 struct blk_mq_tags *tags = hctx->sched_tags ? 3284 hctx->sched_tags : hctx->tags; 3285 struct rq_iter_data data = { 3286 .hctx = hctx, 3287 }; 3288 3289 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3290 return data.has_rq; 3291 } 3292 3293 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3294 struct blk_mq_hw_ctx *hctx) 3295 { 3296 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3297 return false; 3298 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3299 return false; 3300 return true; 3301 } 3302 3303 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3304 { 3305 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3306 struct blk_mq_hw_ctx, cpuhp_online); 3307 3308 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3309 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3310 return 0; 3311 3312 /* 3313 * Prevent new request from being allocated on the current hctx. 3314 * 3315 * The smp_mb__after_atomic() Pairs with the implied barrier in 3316 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3317 * seen once we return from the tag allocator. 3318 */ 3319 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3320 smp_mb__after_atomic(); 3321 3322 /* 3323 * Try to grab a reference to the queue and wait for any outstanding 3324 * requests. If we could not grab a reference the queue has been 3325 * frozen and there are no requests. 3326 */ 3327 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3328 while (blk_mq_hctx_has_requests(hctx)) 3329 msleep(5); 3330 percpu_ref_put(&hctx->queue->q_usage_counter); 3331 } 3332 3333 return 0; 3334 } 3335 3336 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3337 { 3338 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3339 struct blk_mq_hw_ctx, cpuhp_online); 3340 3341 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3342 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3343 return 0; 3344 } 3345 3346 /* 3347 * 'cpu' is going away. splice any existing rq_list entries from this 3348 * software queue to the hw queue dispatch list, and ensure that it 3349 * gets run. 3350 */ 3351 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3352 { 3353 struct blk_mq_hw_ctx *hctx; 3354 struct blk_mq_ctx *ctx; 3355 LIST_HEAD(tmp); 3356 enum hctx_type type; 3357 3358 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3359 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3360 return 0; 3361 3362 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3363 type = hctx->type; 3364 3365 spin_lock(&ctx->lock); 3366 if (!list_empty(&ctx->rq_lists[type])) { 3367 list_splice_init(&ctx->rq_lists[type], &tmp); 3368 blk_mq_hctx_clear_pending(hctx, ctx); 3369 } 3370 spin_unlock(&ctx->lock); 3371 3372 if (list_empty(&tmp)) 3373 return 0; 3374 3375 spin_lock(&hctx->lock); 3376 list_splice_tail_init(&tmp, &hctx->dispatch); 3377 spin_unlock(&hctx->lock); 3378 3379 blk_mq_run_hw_queue(hctx, true); 3380 return 0; 3381 } 3382 3383 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3384 { 3385 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3386 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3387 &hctx->cpuhp_online); 3388 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3389 &hctx->cpuhp_dead); 3390 } 3391 3392 /* 3393 * Before freeing hw queue, clearing the flush request reference in 3394 * tags->rqs[] for avoiding potential UAF. 3395 */ 3396 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3397 unsigned int queue_depth, struct request *flush_rq) 3398 { 3399 int i; 3400 unsigned long flags; 3401 3402 /* The hw queue may not be mapped yet */ 3403 if (!tags) 3404 return; 3405 3406 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3407 3408 for (i = 0; i < queue_depth; i++) 3409 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3410 3411 /* 3412 * Wait until all pending iteration is done. 3413 * 3414 * Request reference is cleared and it is guaranteed to be observed 3415 * after the ->lock is released. 3416 */ 3417 spin_lock_irqsave(&tags->lock, flags); 3418 spin_unlock_irqrestore(&tags->lock, flags); 3419 } 3420 3421 /* hctx->ctxs will be freed in queue's release handler */ 3422 static void blk_mq_exit_hctx(struct request_queue *q, 3423 struct blk_mq_tag_set *set, 3424 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3425 { 3426 struct request *flush_rq = hctx->fq->flush_rq; 3427 3428 if (blk_mq_hw_queue_mapped(hctx)) 3429 blk_mq_tag_idle(hctx); 3430 3431 if (blk_queue_init_done(q)) 3432 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3433 set->queue_depth, flush_rq); 3434 if (set->ops->exit_request) 3435 set->ops->exit_request(set, flush_rq, hctx_idx); 3436 3437 if (set->ops->exit_hctx) 3438 set->ops->exit_hctx(hctx, hctx_idx); 3439 3440 blk_mq_remove_cpuhp(hctx); 3441 3442 xa_erase(&q->hctx_table, hctx_idx); 3443 3444 spin_lock(&q->unused_hctx_lock); 3445 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3446 spin_unlock(&q->unused_hctx_lock); 3447 } 3448 3449 static void blk_mq_exit_hw_queues(struct request_queue *q, 3450 struct blk_mq_tag_set *set, int nr_queue) 3451 { 3452 struct blk_mq_hw_ctx *hctx; 3453 unsigned long i; 3454 3455 queue_for_each_hw_ctx(q, hctx, i) { 3456 if (i == nr_queue) 3457 break; 3458 blk_mq_exit_hctx(q, set, hctx, i); 3459 } 3460 } 3461 3462 static int blk_mq_init_hctx(struct request_queue *q, 3463 struct blk_mq_tag_set *set, 3464 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3465 { 3466 hctx->queue_num = hctx_idx; 3467 3468 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3469 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3470 &hctx->cpuhp_online); 3471 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3472 3473 hctx->tags = set->tags[hctx_idx]; 3474 3475 if (set->ops->init_hctx && 3476 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3477 goto unregister_cpu_notifier; 3478 3479 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3480 hctx->numa_node)) 3481 goto exit_hctx; 3482 3483 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3484 goto exit_flush_rq; 3485 3486 return 0; 3487 3488 exit_flush_rq: 3489 if (set->ops->exit_request) 3490 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3491 exit_hctx: 3492 if (set->ops->exit_hctx) 3493 set->ops->exit_hctx(hctx, hctx_idx); 3494 unregister_cpu_notifier: 3495 blk_mq_remove_cpuhp(hctx); 3496 return -1; 3497 } 3498 3499 static struct blk_mq_hw_ctx * 3500 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3501 int node) 3502 { 3503 struct blk_mq_hw_ctx *hctx; 3504 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3505 3506 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3507 if (!hctx) 3508 goto fail_alloc_hctx; 3509 3510 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3511 goto free_hctx; 3512 3513 atomic_set(&hctx->nr_active, 0); 3514 if (node == NUMA_NO_NODE) 3515 node = set->numa_node; 3516 hctx->numa_node = node; 3517 3518 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3519 spin_lock_init(&hctx->lock); 3520 INIT_LIST_HEAD(&hctx->dispatch); 3521 hctx->queue = q; 3522 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3523 3524 INIT_LIST_HEAD(&hctx->hctx_list); 3525 3526 /* 3527 * Allocate space for all possible cpus to avoid allocation at 3528 * runtime 3529 */ 3530 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3531 gfp, node); 3532 if (!hctx->ctxs) 3533 goto free_cpumask; 3534 3535 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3536 gfp, node, false, false)) 3537 goto free_ctxs; 3538 hctx->nr_ctx = 0; 3539 3540 spin_lock_init(&hctx->dispatch_wait_lock); 3541 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3542 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3543 3544 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3545 if (!hctx->fq) 3546 goto free_bitmap; 3547 3548 blk_mq_hctx_kobj_init(hctx); 3549 3550 return hctx; 3551 3552 free_bitmap: 3553 sbitmap_free(&hctx->ctx_map); 3554 free_ctxs: 3555 kfree(hctx->ctxs); 3556 free_cpumask: 3557 free_cpumask_var(hctx->cpumask); 3558 free_hctx: 3559 kfree(hctx); 3560 fail_alloc_hctx: 3561 return NULL; 3562 } 3563 3564 static void blk_mq_init_cpu_queues(struct request_queue *q, 3565 unsigned int nr_hw_queues) 3566 { 3567 struct blk_mq_tag_set *set = q->tag_set; 3568 unsigned int i, j; 3569 3570 for_each_possible_cpu(i) { 3571 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3572 struct blk_mq_hw_ctx *hctx; 3573 int k; 3574 3575 __ctx->cpu = i; 3576 spin_lock_init(&__ctx->lock); 3577 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3578 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3579 3580 __ctx->queue = q; 3581 3582 /* 3583 * Set local node, IFF we have more than one hw queue. If 3584 * not, we remain on the home node of the device 3585 */ 3586 for (j = 0; j < set->nr_maps; j++) { 3587 hctx = blk_mq_map_queue_type(q, j, i); 3588 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3589 hctx->numa_node = cpu_to_node(i); 3590 } 3591 } 3592 } 3593 3594 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3595 unsigned int hctx_idx, 3596 unsigned int depth) 3597 { 3598 struct blk_mq_tags *tags; 3599 int ret; 3600 3601 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3602 if (!tags) 3603 return NULL; 3604 3605 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3606 if (ret) { 3607 blk_mq_free_rq_map(tags); 3608 return NULL; 3609 } 3610 3611 return tags; 3612 } 3613 3614 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3615 int hctx_idx) 3616 { 3617 if (blk_mq_is_shared_tags(set->flags)) { 3618 set->tags[hctx_idx] = set->shared_tags; 3619 3620 return true; 3621 } 3622 3623 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3624 set->queue_depth); 3625 3626 return set->tags[hctx_idx]; 3627 } 3628 3629 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3630 struct blk_mq_tags *tags, 3631 unsigned int hctx_idx) 3632 { 3633 if (tags) { 3634 blk_mq_free_rqs(set, tags, hctx_idx); 3635 blk_mq_free_rq_map(tags); 3636 } 3637 } 3638 3639 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3640 unsigned int hctx_idx) 3641 { 3642 if (!blk_mq_is_shared_tags(set->flags)) 3643 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3644 3645 set->tags[hctx_idx] = NULL; 3646 } 3647 3648 static void blk_mq_map_swqueue(struct request_queue *q) 3649 { 3650 unsigned int j, hctx_idx; 3651 unsigned long i; 3652 struct blk_mq_hw_ctx *hctx; 3653 struct blk_mq_ctx *ctx; 3654 struct blk_mq_tag_set *set = q->tag_set; 3655 3656 queue_for_each_hw_ctx(q, hctx, i) { 3657 cpumask_clear(hctx->cpumask); 3658 hctx->nr_ctx = 0; 3659 hctx->dispatch_from = NULL; 3660 } 3661 3662 /* 3663 * Map software to hardware queues. 3664 * 3665 * If the cpu isn't present, the cpu is mapped to first hctx. 3666 */ 3667 for_each_possible_cpu(i) { 3668 3669 ctx = per_cpu_ptr(q->queue_ctx, i); 3670 for (j = 0; j < set->nr_maps; j++) { 3671 if (!set->map[j].nr_queues) { 3672 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3673 HCTX_TYPE_DEFAULT, i); 3674 continue; 3675 } 3676 hctx_idx = set->map[j].mq_map[i]; 3677 /* unmapped hw queue can be remapped after CPU topo changed */ 3678 if (!set->tags[hctx_idx] && 3679 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3680 /* 3681 * If tags initialization fail for some hctx, 3682 * that hctx won't be brought online. In this 3683 * case, remap the current ctx to hctx[0] which 3684 * is guaranteed to always have tags allocated 3685 */ 3686 set->map[j].mq_map[i] = 0; 3687 } 3688 3689 hctx = blk_mq_map_queue_type(q, j, i); 3690 ctx->hctxs[j] = hctx; 3691 /* 3692 * If the CPU is already set in the mask, then we've 3693 * mapped this one already. This can happen if 3694 * devices share queues across queue maps. 3695 */ 3696 if (cpumask_test_cpu(i, hctx->cpumask)) 3697 continue; 3698 3699 cpumask_set_cpu(i, hctx->cpumask); 3700 hctx->type = j; 3701 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3702 hctx->ctxs[hctx->nr_ctx++] = ctx; 3703 3704 /* 3705 * If the nr_ctx type overflows, we have exceeded the 3706 * amount of sw queues we can support. 3707 */ 3708 BUG_ON(!hctx->nr_ctx); 3709 } 3710 3711 for (; j < HCTX_MAX_TYPES; j++) 3712 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3713 HCTX_TYPE_DEFAULT, i); 3714 } 3715 3716 queue_for_each_hw_ctx(q, hctx, i) { 3717 /* 3718 * If no software queues are mapped to this hardware queue, 3719 * disable it and free the request entries. 3720 */ 3721 if (!hctx->nr_ctx) { 3722 /* Never unmap queue 0. We need it as a 3723 * fallback in case of a new remap fails 3724 * allocation 3725 */ 3726 if (i) 3727 __blk_mq_free_map_and_rqs(set, i); 3728 3729 hctx->tags = NULL; 3730 continue; 3731 } 3732 3733 hctx->tags = set->tags[i]; 3734 WARN_ON(!hctx->tags); 3735 3736 /* 3737 * Set the map size to the number of mapped software queues. 3738 * This is more accurate and more efficient than looping 3739 * over all possibly mapped software queues. 3740 */ 3741 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3742 3743 /* 3744 * Initialize batch roundrobin counts 3745 */ 3746 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3747 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3748 } 3749 } 3750 3751 /* 3752 * Caller needs to ensure that we're either frozen/quiesced, or that 3753 * the queue isn't live yet. 3754 */ 3755 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3756 { 3757 struct blk_mq_hw_ctx *hctx; 3758 unsigned long i; 3759 3760 queue_for_each_hw_ctx(q, hctx, i) { 3761 if (shared) { 3762 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3763 } else { 3764 blk_mq_tag_idle(hctx); 3765 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3766 } 3767 } 3768 } 3769 3770 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3771 bool shared) 3772 { 3773 struct request_queue *q; 3774 3775 lockdep_assert_held(&set->tag_list_lock); 3776 3777 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3778 blk_mq_freeze_queue(q); 3779 queue_set_hctx_shared(q, shared); 3780 blk_mq_unfreeze_queue(q); 3781 } 3782 } 3783 3784 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3785 { 3786 struct blk_mq_tag_set *set = q->tag_set; 3787 3788 mutex_lock(&set->tag_list_lock); 3789 list_del(&q->tag_set_list); 3790 if (list_is_singular(&set->tag_list)) { 3791 /* just transitioned to unshared */ 3792 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3793 /* update existing queue */ 3794 blk_mq_update_tag_set_shared(set, false); 3795 } 3796 mutex_unlock(&set->tag_list_lock); 3797 INIT_LIST_HEAD(&q->tag_set_list); 3798 } 3799 3800 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3801 struct request_queue *q) 3802 { 3803 mutex_lock(&set->tag_list_lock); 3804 3805 /* 3806 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3807 */ 3808 if (!list_empty(&set->tag_list) && 3809 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3810 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3811 /* update existing queue */ 3812 blk_mq_update_tag_set_shared(set, true); 3813 } 3814 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3815 queue_set_hctx_shared(q, true); 3816 list_add_tail(&q->tag_set_list, &set->tag_list); 3817 3818 mutex_unlock(&set->tag_list_lock); 3819 } 3820 3821 /* All allocations will be freed in release handler of q->mq_kobj */ 3822 static int blk_mq_alloc_ctxs(struct request_queue *q) 3823 { 3824 struct blk_mq_ctxs *ctxs; 3825 int cpu; 3826 3827 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3828 if (!ctxs) 3829 return -ENOMEM; 3830 3831 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3832 if (!ctxs->queue_ctx) 3833 goto fail; 3834 3835 for_each_possible_cpu(cpu) { 3836 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3837 ctx->ctxs = ctxs; 3838 } 3839 3840 q->mq_kobj = &ctxs->kobj; 3841 q->queue_ctx = ctxs->queue_ctx; 3842 3843 return 0; 3844 fail: 3845 kfree(ctxs); 3846 return -ENOMEM; 3847 } 3848 3849 /* 3850 * It is the actual release handler for mq, but we do it from 3851 * request queue's release handler for avoiding use-after-free 3852 * and headache because q->mq_kobj shouldn't have been introduced, 3853 * but we can't group ctx/kctx kobj without it. 3854 */ 3855 void blk_mq_release(struct request_queue *q) 3856 { 3857 struct blk_mq_hw_ctx *hctx, *next; 3858 unsigned long i; 3859 3860 queue_for_each_hw_ctx(q, hctx, i) 3861 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3862 3863 /* all hctx are in .unused_hctx_list now */ 3864 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3865 list_del_init(&hctx->hctx_list); 3866 kobject_put(&hctx->kobj); 3867 } 3868 3869 xa_destroy(&q->hctx_table); 3870 3871 /* 3872 * release .mq_kobj and sw queue's kobject now because 3873 * both share lifetime with request queue. 3874 */ 3875 blk_mq_sysfs_deinit(q); 3876 } 3877 3878 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3879 void *queuedata) 3880 { 3881 struct request_queue *q; 3882 int ret; 3883 3884 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); 3885 if (!q) 3886 return ERR_PTR(-ENOMEM); 3887 q->queuedata = queuedata; 3888 ret = blk_mq_init_allocated_queue(set, q); 3889 if (ret) { 3890 blk_put_queue(q); 3891 return ERR_PTR(ret); 3892 } 3893 return q; 3894 } 3895 3896 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3897 { 3898 return blk_mq_init_queue_data(set, NULL); 3899 } 3900 EXPORT_SYMBOL(blk_mq_init_queue); 3901 3902 /** 3903 * blk_mq_destroy_queue - shutdown a request queue 3904 * @q: request queue to shutdown 3905 * 3906 * This shuts down a request queue allocated by blk_mq_init_queue() and drops 3907 * the initial reference. All future requests will failed with -ENODEV. 3908 * 3909 * Context: can sleep 3910 */ 3911 void blk_mq_destroy_queue(struct request_queue *q) 3912 { 3913 WARN_ON_ONCE(!queue_is_mq(q)); 3914 WARN_ON_ONCE(blk_queue_registered(q)); 3915 3916 might_sleep(); 3917 3918 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 3919 blk_queue_start_drain(q); 3920 blk_freeze_queue(q); 3921 3922 blk_sync_queue(q); 3923 blk_mq_cancel_work_sync(q); 3924 blk_mq_exit_queue(q); 3925 3926 /* @q is and will stay empty, shutdown and put */ 3927 blk_put_queue(q); 3928 } 3929 EXPORT_SYMBOL(blk_mq_destroy_queue); 3930 3931 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3932 struct lock_class_key *lkclass) 3933 { 3934 struct request_queue *q; 3935 struct gendisk *disk; 3936 3937 q = blk_mq_init_queue_data(set, queuedata); 3938 if (IS_ERR(q)) 3939 return ERR_CAST(q); 3940 3941 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3942 if (!disk) { 3943 blk_mq_destroy_queue(q); 3944 return ERR_PTR(-ENOMEM); 3945 } 3946 set_bit(GD_OWNS_QUEUE, &disk->state); 3947 return disk; 3948 } 3949 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3950 3951 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 3952 struct lock_class_key *lkclass) 3953 { 3954 if (!blk_get_queue(q)) 3955 return NULL; 3956 return __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 3957 } 3958 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 3959 3960 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3961 struct blk_mq_tag_set *set, struct request_queue *q, 3962 int hctx_idx, int node) 3963 { 3964 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3965 3966 /* reuse dead hctx first */ 3967 spin_lock(&q->unused_hctx_lock); 3968 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3969 if (tmp->numa_node == node) { 3970 hctx = tmp; 3971 break; 3972 } 3973 } 3974 if (hctx) 3975 list_del_init(&hctx->hctx_list); 3976 spin_unlock(&q->unused_hctx_lock); 3977 3978 if (!hctx) 3979 hctx = blk_mq_alloc_hctx(q, set, node); 3980 if (!hctx) 3981 goto fail; 3982 3983 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3984 goto free_hctx; 3985 3986 return hctx; 3987 3988 free_hctx: 3989 kobject_put(&hctx->kobj); 3990 fail: 3991 return NULL; 3992 } 3993 3994 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3995 struct request_queue *q) 3996 { 3997 struct blk_mq_hw_ctx *hctx; 3998 unsigned long i, j; 3999 4000 /* protect against switching io scheduler */ 4001 mutex_lock(&q->sysfs_lock); 4002 for (i = 0; i < set->nr_hw_queues; i++) { 4003 int old_node; 4004 int node = blk_mq_get_hctx_node(set, i); 4005 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4006 4007 if (old_hctx) { 4008 old_node = old_hctx->numa_node; 4009 blk_mq_exit_hctx(q, set, old_hctx, i); 4010 } 4011 4012 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4013 if (!old_hctx) 4014 break; 4015 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4016 node, old_node); 4017 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4018 WARN_ON_ONCE(!hctx); 4019 } 4020 } 4021 /* 4022 * Increasing nr_hw_queues fails. Free the newly allocated 4023 * hctxs and keep the previous q->nr_hw_queues. 4024 */ 4025 if (i != set->nr_hw_queues) { 4026 j = q->nr_hw_queues; 4027 } else { 4028 j = i; 4029 q->nr_hw_queues = set->nr_hw_queues; 4030 } 4031 4032 xa_for_each_start(&q->hctx_table, j, hctx, j) 4033 blk_mq_exit_hctx(q, set, hctx, j); 4034 mutex_unlock(&q->sysfs_lock); 4035 } 4036 4037 static void blk_mq_update_poll_flag(struct request_queue *q) 4038 { 4039 struct blk_mq_tag_set *set = q->tag_set; 4040 4041 if (set->nr_maps > HCTX_TYPE_POLL && 4042 set->map[HCTX_TYPE_POLL].nr_queues) 4043 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4044 else 4045 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4046 } 4047 4048 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4049 struct request_queue *q) 4050 { 4051 WARN_ON_ONCE(blk_queue_has_srcu(q) != 4052 !!(set->flags & BLK_MQ_F_BLOCKING)); 4053 4054 /* mark the queue as mq asap */ 4055 q->mq_ops = set->ops; 4056 4057 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4058 blk_mq_poll_stats_bkt, 4059 BLK_MQ_POLL_STATS_BKTS, q); 4060 if (!q->poll_cb) 4061 goto err_exit; 4062 4063 if (blk_mq_alloc_ctxs(q)) 4064 goto err_poll; 4065 4066 /* init q->mq_kobj and sw queues' kobjects */ 4067 blk_mq_sysfs_init(q); 4068 4069 INIT_LIST_HEAD(&q->unused_hctx_list); 4070 spin_lock_init(&q->unused_hctx_lock); 4071 4072 xa_init(&q->hctx_table); 4073 4074 blk_mq_realloc_hw_ctxs(set, q); 4075 if (!q->nr_hw_queues) 4076 goto err_hctxs; 4077 4078 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4079 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4080 4081 q->tag_set = set; 4082 4083 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4084 blk_mq_update_poll_flag(q); 4085 4086 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4087 INIT_LIST_HEAD(&q->requeue_list); 4088 spin_lock_init(&q->requeue_lock); 4089 4090 q->nr_requests = set->queue_depth; 4091 4092 /* 4093 * Default to classic polling 4094 */ 4095 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4096 4097 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4098 blk_mq_add_queue_tag_set(set, q); 4099 blk_mq_map_swqueue(q); 4100 return 0; 4101 4102 err_hctxs: 4103 xa_destroy(&q->hctx_table); 4104 q->nr_hw_queues = 0; 4105 blk_mq_sysfs_deinit(q); 4106 err_poll: 4107 blk_stat_free_callback(q->poll_cb); 4108 q->poll_cb = NULL; 4109 err_exit: 4110 q->mq_ops = NULL; 4111 return -ENOMEM; 4112 } 4113 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4114 4115 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4116 void blk_mq_exit_queue(struct request_queue *q) 4117 { 4118 struct blk_mq_tag_set *set = q->tag_set; 4119 4120 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4121 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4122 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4123 blk_mq_del_queue_tag_set(q); 4124 } 4125 4126 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4127 { 4128 int i; 4129 4130 if (blk_mq_is_shared_tags(set->flags)) { 4131 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4132 BLK_MQ_NO_HCTX_IDX, 4133 set->queue_depth); 4134 if (!set->shared_tags) 4135 return -ENOMEM; 4136 } 4137 4138 for (i = 0; i < set->nr_hw_queues; i++) { 4139 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4140 goto out_unwind; 4141 cond_resched(); 4142 } 4143 4144 return 0; 4145 4146 out_unwind: 4147 while (--i >= 0) 4148 __blk_mq_free_map_and_rqs(set, i); 4149 4150 if (blk_mq_is_shared_tags(set->flags)) { 4151 blk_mq_free_map_and_rqs(set, set->shared_tags, 4152 BLK_MQ_NO_HCTX_IDX); 4153 } 4154 4155 return -ENOMEM; 4156 } 4157 4158 /* 4159 * Allocate the request maps associated with this tag_set. Note that this 4160 * may reduce the depth asked for, if memory is tight. set->queue_depth 4161 * will be updated to reflect the allocated depth. 4162 */ 4163 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4164 { 4165 unsigned int depth; 4166 int err; 4167 4168 depth = set->queue_depth; 4169 do { 4170 err = __blk_mq_alloc_rq_maps(set); 4171 if (!err) 4172 break; 4173 4174 set->queue_depth >>= 1; 4175 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4176 err = -ENOMEM; 4177 break; 4178 } 4179 } while (set->queue_depth); 4180 4181 if (!set->queue_depth || err) { 4182 pr_err("blk-mq: failed to allocate request map\n"); 4183 return -ENOMEM; 4184 } 4185 4186 if (depth != set->queue_depth) 4187 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4188 depth, set->queue_depth); 4189 4190 return 0; 4191 } 4192 4193 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4194 { 4195 /* 4196 * blk_mq_map_queues() and multiple .map_queues() implementations 4197 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4198 * number of hardware queues. 4199 */ 4200 if (set->nr_maps == 1) 4201 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4202 4203 if (set->ops->map_queues && !is_kdump_kernel()) { 4204 int i; 4205 4206 /* 4207 * transport .map_queues is usually done in the following 4208 * way: 4209 * 4210 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4211 * mask = get_cpu_mask(queue) 4212 * for_each_cpu(cpu, mask) 4213 * set->map[x].mq_map[cpu] = queue; 4214 * } 4215 * 4216 * When we need to remap, the table has to be cleared for 4217 * killing stale mapping since one CPU may not be mapped 4218 * to any hw queue. 4219 */ 4220 for (i = 0; i < set->nr_maps; i++) 4221 blk_mq_clear_mq_map(&set->map[i]); 4222 4223 return set->ops->map_queues(set); 4224 } else { 4225 BUG_ON(set->nr_maps > 1); 4226 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4227 } 4228 } 4229 4230 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4231 int cur_nr_hw_queues, int new_nr_hw_queues) 4232 { 4233 struct blk_mq_tags **new_tags; 4234 4235 if (cur_nr_hw_queues >= new_nr_hw_queues) 4236 return 0; 4237 4238 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4239 GFP_KERNEL, set->numa_node); 4240 if (!new_tags) 4241 return -ENOMEM; 4242 4243 if (set->tags) 4244 memcpy(new_tags, set->tags, cur_nr_hw_queues * 4245 sizeof(*set->tags)); 4246 kfree(set->tags); 4247 set->tags = new_tags; 4248 set->nr_hw_queues = new_nr_hw_queues; 4249 4250 return 0; 4251 } 4252 4253 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 4254 int new_nr_hw_queues) 4255 { 4256 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 4257 } 4258 4259 /* 4260 * Alloc a tag set to be associated with one or more request queues. 4261 * May fail with EINVAL for various error conditions. May adjust the 4262 * requested depth down, if it's too large. In that case, the set 4263 * value will be stored in set->queue_depth. 4264 */ 4265 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4266 { 4267 int i, ret; 4268 4269 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4270 4271 if (!set->nr_hw_queues) 4272 return -EINVAL; 4273 if (!set->queue_depth) 4274 return -EINVAL; 4275 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4276 return -EINVAL; 4277 4278 if (!set->ops->queue_rq) 4279 return -EINVAL; 4280 4281 if (!set->ops->get_budget ^ !set->ops->put_budget) 4282 return -EINVAL; 4283 4284 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4285 pr_info("blk-mq: reduced tag depth to %u\n", 4286 BLK_MQ_MAX_DEPTH); 4287 set->queue_depth = BLK_MQ_MAX_DEPTH; 4288 } 4289 4290 if (!set->nr_maps) 4291 set->nr_maps = 1; 4292 else if (set->nr_maps > HCTX_MAX_TYPES) 4293 return -EINVAL; 4294 4295 /* 4296 * If a crashdump is active, then we are potentially in a very 4297 * memory constrained environment. Limit us to 1 queue and 4298 * 64 tags to prevent using too much memory. 4299 */ 4300 if (is_kdump_kernel()) { 4301 set->nr_hw_queues = 1; 4302 set->nr_maps = 1; 4303 set->queue_depth = min(64U, set->queue_depth); 4304 } 4305 /* 4306 * There is no use for more h/w queues than cpus if we just have 4307 * a single map 4308 */ 4309 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4310 set->nr_hw_queues = nr_cpu_ids; 4311 4312 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 4313 return -ENOMEM; 4314 4315 ret = -ENOMEM; 4316 for (i = 0; i < set->nr_maps; i++) { 4317 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4318 sizeof(set->map[i].mq_map[0]), 4319 GFP_KERNEL, set->numa_node); 4320 if (!set->map[i].mq_map) 4321 goto out_free_mq_map; 4322 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4323 } 4324 4325 ret = blk_mq_update_queue_map(set); 4326 if (ret) 4327 goto out_free_mq_map; 4328 4329 ret = blk_mq_alloc_set_map_and_rqs(set); 4330 if (ret) 4331 goto out_free_mq_map; 4332 4333 mutex_init(&set->tag_list_lock); 4334 INIT_LIST_HEAD(&set->tag_list); 4335 4336 return 0; 4337 4338 out_free_mq_map: 4339 for (i = 0; i < set->nr_maps; i++) { 4340 kfree(set->map[i].mq_map); 4341 set->map[i].mq_map = NULL; 4342 } 4343 kfree(set->tags); 4344 set->tags = NULL; 4345 return ret; 4346 } 4347 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4348 4349 /* allocate and initialize a tagset for a simple single-queue device */ 4350 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4351 const struct blk_mq_ops *ops, unsigned int queue_depth, 4352 unsigned int set_flags) 4353 { 4354 memset(set, 0, sizeof(*set)); 4355 set->ops = ops; 4356 set->nr_hw_queues = 1; 4357 set->nr_maps = 1; 4358 set->queue_depth = queue_depth; 4359 set->numa_node = NUMA_NO_NODE; 4360 set->flags = set_flags; 4361 return blk_mq_alloc_tag_set(set); 4362 } 4363 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4364 4365 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4366 { 4367 int i, j; 4368 4369 for (i = 0; i < set->nr_hw_queues; i++) 4370 __blk_mq_free_map_and_rqs(set, i); 4371 4372 if (blk_mq_is_shared_tags(set->flags)) { 4373 blk_mq_free_map_and_rqs(set, set->shared_tags, 4374 BLK_MQ_NO_HCTX_IDX); 4375 } 4376 4377 for (j = 0; j < set->nr_maps; j++) { 4378 kfree(set->map[j].mq_map); 4379 set->map[j].mq_map = NULL; 4380 } 4381 4382 kfree(set->tags); 4383 set->tags = NULL; 4384 } 4385 EXPORT_SYMBOL(blk_mq_free_tag_set); 4386 4387 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4388 { 4389 struct blk_mq_tag_set *set = q->tag_set; 4390 struct blk_mq_hw_ctx *hctx; 4391 int ret; 4392 unsigned long i; 4393 4394 if (!set) 4395 return -EINVAL; 4396 4397 if (q->nr_requests == nr) 4398 return 0; 4399 4400 blk_mq_freeze_queue(q); 4401 blk_mq_quiesce_queue(q); 4402 4403 ret = 0; 4404 queue_for_each_hw_ctx(q, hctx, i) { 4405 if (!hctx->tags) 4406 continue; 4407 /* 4408 * If we're using an MQ scheduler, just update the scheduler 4409 * queue depth. This is similar to what the old code would do. 4410 */ 4411 if (hctx->sched_tags) { 4412 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4413 nr, true); 4414 } else { 4415 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4416 false); 4417 } 4418 if (ret) 4419 break; 4420 if (q->elevator && q->elevator->type->ops.depth_updated) 4421 q->elevator->type->ops.depth_updated(hctx); 4422 } 4423 if (!ret) { 4424 q->nr_requests = nr; 4425 if (blk_mq_is_shared_tags(set->flags)) { 4426 if (q->elevator) 4427 blk_mq_tag_update_sched_shared_tags(q); 4428 else 4429 blk_mq_tag_resize_shared_tags(set, nr); 4430 } 4431 } 4432 4433 blk_mq_unquiesce_queue(q); 4434 blk_mq_unfreeze_queue(q); 4435 4436 return ret; 4437 } 4438 4439 /* 4440 * request_queue and elevator_type pair. 4441 * It is just used by __blk_mq_update_nr_hw_queues to cache 4442 * the elevator_type associated with a request_queue. 4443 */ 4444 struct blk_mq_qe_pair { 4445 struct list_head node; 4446 struct request_queue *q; 4447 struct elevator_type *type; 4448 }; 4449 4450 /* 4451 * Cache the elevator_type in qe pair list and switch the 4452 * io scheduler to 'none' 4453 */ 4454 static bool blk_mq_elv_switch_none(struct list_head *head, 4455 struct request_queue *q) 4456 { 4457 struct blk_mq_qe_pair *qe; 4458 4459 if (!q->elevator) 4460 return true; 4461 4462 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4463 if (!qe) 4464 return false; 4465 4466 /* q->elevator needs protection from ->sysfs_lock */ 4467 mutex_lock(&q->sysfs_lock); 4468 4469 INIT_LIST_HEAD(&qe->node); 4470 qe->q = q; 4471 qe->type = q->elevator->type; 4472 list_add(&qe->node, head); 4473 4474 /* 4475 * After elevator_switch_mq, the previous elevator_queue will be 4476 * released by elevator_release. The reference of the io scheduler 4477 * module get by elevator_get will also be put. So we need to get 4478 * a reference of the io scheduler module here to prevent it to be 4479 * removed. 4480 */ 4481 __module_get(qe->type->elevator_owner); 4482 elevator_switch_mq(q, NULL); 4483 mutex_unlock(&q->sysfs_lock); 4484 4485 return true; 4486 } 4487 4488 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4489 struct request_queue *q) 4490 { 4491 struct blk_mq_qe_pair *qe; 4492 4493 list_for_each_entry(qe, head, node) 4494 if (qe->q == q) 4495 return qe; 4496 4497 return NULL; 4498 } 4499 4500 static void blk_mq_elv_switch_back(struct list_head *head, 4501 struct request_queue *q) 4502 { 4503 struct blk_mq_qe_pair *qe; 4504 struct elevator_type *t; 4505 4506 qe = blk_lookup_qe_pair(head, q); 4507 if (!qe) 4508 return; 4509 t = qe->type; 4510 list_del(&qe->node); 4511 kfree(qe); 4512 4513 mutex_lock(&q->sysfs_lock); 4514 elevator_switch_mq(q, t); 4515 mutex_unlock(&q->sysfs_lock); 4516 } 4517 4518 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4519 int nr_hw_queues) 4520 { 4521 struct request_queue *q; 4522 LIST_HEAD(head); 4523 int prev_nr_hw_queues; 4524 4525 lockdep_assert_held(&set->tag_list_lock); 4526 4527 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4528 nr_hw_queues = nr_cpu_ids; 4529 if (nr_hw_queues < 1) 4530 return; 4531 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4532 return; 4533 4534 list_for_each_entry(q, &set->tag_list, tag_set_list) 4535 blk_mq_freeze_queue(q); 4536 /* 4537 * Switch IO scheduler to 'none', cleaning up the data associated 4538 * with the previous scheduler. We will switch back once we are done 4539 * updating the new sw to hw queue mappings. 4540 */ 4541 list_for_each_entry(q, &set->tag_list, tag_set_list) 4542 if (!blk_mq_elv_switch_none(&head, q)) 4543 goto switch_back; 4544 4545 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4546 blk_mq_debugfs_unregister_hctxs(q); 4547 blk_mq_sysfs_unregister_hctxs(q); 4548 } 4549 4550 prev_nr_hw_queues = set->nr_hw_queues; 4551 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4552 0) 4553 goto reregister; 4554 4555 set->nr_hw_queues = nr_hw_queues; 4556 fallback: 4557 blk_mq_update_queue_map(set); 4558 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4559 blk_mq_realloc_hw_ctxs(set, q); 4560 blk_mq_update_poll_flag(q); 4561 if (q->nr_hw_queues != set->nr_hw_queues) { 4562 int i = prev_nr_hw_queues; 4563 4564 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4565 nr_hw_queues, prev_nr_hw_queues); 4566 for (; i < set->nr_hw_queues; i++) 4567 __blk_mq_free_map_and_rqs(set, i); 4568 4569 set->nr_hw_queues = prev_nr_hw_queues; 4570 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4571 goto fallback; 4572 } 4573 blk_mq_map_swqueue(q); 4574 } 4575 4576 reregister: 4577 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4578 blk_mq_sysfs_register_hctxs(q); 4579 blk_mq_debugfs_register_hctxs(q); 4580 } 4581 4582 switch_back: 4583 list_for_each_entry(q, &set->tag_list, tag_set_list) 4584 blk_mq_elv_switch_back(&head, q); 4585 4586 list_for_each_entry(q, &set->tag_list, tag_set_list) 4587 blk_mq_unfreeze_queue(q); 4588 } 4589 4590 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4591 { 4592 mutex_lock(&set->tag_list_lock); 4593 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4594 mutex_unlock(&set->tag_list_lock); 4595 } 4596 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4597 4598 /* Enable polling stats and return whether they were already enabled. */ 4599 static bool blk_poll_stats_enable(struct request_queue *q) 4600 { 4601 if (q->poll_stat) 4602 return true; 4603 4604 return blk_stats_alloc_enable(q); 4605 } 4606 4607 static void blk_mq_poll_stats_start(struct request_queue *q) 4608 { 4609 /* 4610 * We don't arm the callback if polling stats are not enabled or the 4611 * callback is already active. 4612 */ 4613 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4614 return; 4615 4616 blk_stat_activate_msecs(q->poll_cb, 100); 4617 } 4618 4619 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4620 { 4621 struct request_queue *q = cb->data; 4622 int bucket; 4623 4624 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4625 if (cb->stat[bucket].nr_samples) 4626 q->poll_stat[bucket] = cb->stat[bucket]; 4627 } 4628 } 4629 4630 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4631 struct request *rq) 4632 { 4633 unsigned long ret = 0; 4634 int bucket; 4635 4636 /* 4637 * If stats collection isn't on, don't sleep but turn it on for 4638 * future users 4639 */ 4640 if (!blk_poll_stats_enable(q)) 4641 return 0; 4642 4643 /* 4644 * As an optimistic guess, use half of the mean service time 4645 * for this type of request. We can (and should) make this smarter. 4646 * For instance, if the completion latencies are tight, we can 4647 * get closer than just half the mean. This is especially 4648 * important on devices where the completion latencies are longer 4649 * than ~10 usec. We do use the stats for the relevant IO size 4650 * if available which does lead to better estimates. 4651 */ 4652 bucket = blk_mq_poll_stats_bkt(rq); 4653 if (bucket < 0) 4654 return ret; 4655 4656 if (q->poll_stat[bucket].nr_samples) 4657 ret = (q->poll_stat[bucket].mean + 1) / 2; 4658 4659 return ret; 4660 } 4661 4662 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4663 { 4664 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4665 struct request *rq = blk_qc_to_rq(hctx, qc); 4666 struct hrtimer_sleeper hs; 4667 enum hrtimer_mode mode; 4668 unsigned int nsecs; 4669 ktime_t kt; 4670 4671 /* 4672 * If a request has completed on queue that uses an I/O scheduler, we 4673 * won't get back a request from blk_qc_to_rq. 4674 */ 4675 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4676 return false; 4677 4678 /* 4679 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4680 * 4681 * 0: use half of prev avg 4682 * >0: use this specific value 4683 */ 4684 if (q->poll_nsec > 0) 4685 nsecs = q->poll_nsec; 4686 else 4687 nsecs = blk_mq_poll_nsecs(q, rq); 4688 4689 if (!nsecs) 4690 return false; 4691 4692 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4693 4694 /* 4695 * This will be replaced with the stats tracking code, using 4696 * 'avg_completion_time / 2' as the pre-sleep target. 4697 */ 4698 kt = nsecs; 4699 4700 mode = HRTIMER_MODE_REL; 4701 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4702 hrtimer_set_expires(&hs.timer, kt); 4703 4704 do { 4705 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4706 break; 4707 set_current_state(TASK_UNINTERRUPTIBLE); 4708 hrtimer_sleeper_start_expires(&hs, mode); 4709 if (hs.task) 4710 io_schedule(); 4711 hrtimer_cancel(&hs.timer); 4712 mode = HRTIMER_MODE_ABS; 4713 } while (hs.task && !signal_pending(current)); 4714 4715 __set_current_state(TASK_RUNNING); 4716 destroy_hrtimer_on_stack(&hs.timer); 4717 4718 /* 4719 * If we sleep, have the caller restart the poll loop to reset the 4720 * state. Like for the other success return cases, the caller is 4721 * responsible for checking if the IO completed. If the IO isn't 4722 * complete, we'll get called again and will go straight to the busy 4723 * poll loop. 4724 */ 4725 return true; 4726 } 4727 4728 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4729 struct io_comp_batch *iob, unsigned int flags) 4730 { 4731 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4732 long state = get_current_state(); 4733 int ret; 4734 4735 do { 4736 ret = q->mq_ops->poll(hctx, iob); 4737 if (ret > 0) { 4738 __set_current_state(TASK_RUNNING); 4739 return ret; 4740 } 4741 4742 if (signal_pending_state(state, current)) 4743 __set_current_state(TASK_RUNNING); 4744 if (task_is_running(current)) 4745 return 1; 4746 4747 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4748 break; 4749 cpu_relax(); 4750 } while (!need_resched()); 4751 4752 __set_current_state(TASK_RUNNING); 4753 return 0; 4754 } 4755 4756 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4757 unsigned int flags) 4758 { 4759 if (!(flags & BLK_POLL_NOSLEEP) && 4760 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4761 if (blk_mq_poll_hybrid(q, cookie)) 4762 return 1; 4763 } 4764 return blk_mq_poll_classic(q, cookie, iob, flags); 4765 } 4766 4767 unsigned int blk_mq_rq_cpu(struct request *rq) 4768 { 4769 return rq->mq_ctx->cpu; 4770 } 4771 EXPORT_SYMBOL(blk_mq_rq_cpu); 4772 4773 void blk_mq_cancel_work_sync(struct request_queue *q) 4774 { 4775 if (queue_is_mq(q)) { 4776 struct blk_mq_hw_ctx *hctx; 4777 unsigned long i; 4778 4779 cancel_delayed_work_sync(&q->requeue_work); 4780 4781 queue_for_each_hw_ctx(q, hctx, i) 4782 cancel_delayed_work_sync(&hctx->run_work); 4783 } 4784 } 4785 4786 static int __init blk_mq_init(void) 4787 { 4788 int i; 4789 4790 for_each_possible_cpu(i) 4791 init_llist_head(&per_cpu(blk_cpu_done, i)); 4792 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4793 4794 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4795 "block/softirq:dead", NULL, 4796 blk_softirq_cpu_dead); 4797 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4798 blk_mq_hctx_notify_dead); 4799 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4800 blk_mq_hctx_notify_online, 4801 blk_mq_hctx_notify_offline); 4802 return 0; 4803 } 4804 subsys_initcall(blk_mq_init); 4805