1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include <linux/t10-pi.h> 34 #include "blk.h" 35 #include "blk-mq.h" 36 #include "blk-mq-debugfs.h" 37 #include "blk-mq-tag.h" 38 #include "blk-pm.h" 39 #include "blk-stat.h" 40 #include "blk-mq-sched.h" 41 #include "blk-rq-qos.h" 42 43 static void blk_mq_poll_stats_start(struct request_queue *q); 44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 45 46 static int blk_mq_poll_stats_bkt(const struct request *rq) 47 { 48 int ddir, sectors, bucket; 49 50 ddir = rq_data_dir(rq); 51 sectors = blk_rq_stats_sectors(rq); 52 53 bucket = ddir + 2 * ilog2(sectors); 54 55 if (bucket < 0) 56 return -1; 57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 59 60 return bucket; 61 } 62 63 /* 64 * Check if any of the ctx, dispatch list or elevator 65 * have pending work in this hardware queue. 66 */ 67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 68 { 69 return !list_empty_careful(&hctx->dispatch) || 70 sbitmap_any_bit_set(&hctx->ctx_map) || 71 blk_mq_sched_has_work(hctx); 72 } 73 74 /* 75 * Mark this ctx as having pending work in this hardware queue 76 */ 77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 78 struct blk_mq_ctx *ctx) 79 { 80 const int bit = ctx->index_hw[hctx->type]; 81 82 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 83 sbitmap_set_bit(&hctx->ctx_map, bit); 84 } 85 86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 87 struct blk_mq_ctx *ctx) 88 { 89 const int bit = ctx->index_hw[hctx->type]; 90 91 sbitmap_clear_bit(&hctx->ctx_map, bit); 92 } 93 94 struct mq_inflight { 95 struct hd_struct *part; 96 unsigned int *inflight; 97 }; 98 99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 100 struct request *rq, void *priv, 101 bool reserved) 102 { 103 struct mq_inflight *mi = priv; 104 105 /* 106 * index[0] counts the specific partition that was asked for. 107 */ 108 if (rq->part == mi->part) 109 mi->inflight[0]++; 110 111 return true; 112 } 113 114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 115 { 116 unsigned inflight[2]; 117 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 118 119 inflight[0] = inflight[1] = 0; 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 121 122 return inflight[0]; 123 } 124 125 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 126 struct request *rq, void *priv, 127 bool reserved) 128 { 129 struct mq_inflight *mi = priv; 130 131 if (rq->part == mi->part) 132 mi->inflight[rq_data_dir(rq)]++; 133 134 return true; 135 } 136 137 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 138 unsigned int inflight[2]) 139 { 140 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 141 142 inflight[0] = inflight[1] = 0; 143 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 144 } 145 146 void blk_freeze_queue_start(struct request_queue *q) 147 { 148 mutex_lock(&q->mq_freeze_lock); 149 if (++q->mq_freeze_depth == 1) { 150 percpu_ref_kill(&q->q_usage_counter); 151 mutex_unlock(&q->mq_freeze_lock); 152 if (queue_is_mq(q)) 153 blk_mq_run_hw_queues(q, false); 154 } else { 155 mutex_unlock(&q->mq_freeze_lock); 156 } 157 } 158 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 159 160 void blk_mq_freeze_queue_wait(struct request_queue *q) 161 { 162 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 163 } 164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 165 166 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 167 unsigned long timeout) 168 { 169 return wait_event_timeout(q->mq_freeze_wq, 170 percpu_ref_is_zero(&q->q_usage_counter), 171 timeout); 172 } 173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 174 175 /* 176 * Guarantee no request is in use, so we can change any data structure of 177 * the queue afterward. 178 */ 179 void blk_freeze_queue(struct request_queue *q) 180 { 181 /* 182 * In the !blk_mq case we are only calling this to kill the 183 * q_usage_counter, otherwise this increases the freeze depth 184 * and waits for it to return to zero. For this reason there is 185 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 186 * exported to drivers as the only user for unfreeze is blk_mq. 187 */ 188 blk_freeze_queue_start(q); 189 blk_mq_freeze_queue_wait(q); 190 } 191 192 void blk_mq_freeze_queue(struct request_queue *q) 193 { 194 /* 195 * ...just an alias to keep freeze and unfreeze actions balanced 196 * in the blk_mq_* namespace 197 */ 198 blk_freeze_queue(q); 199 } 200 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 201 202 void blk_mq_unfreeze_queue(struct request_queue *q) 203 { 204 mutex_lock(&q->mq_freeze_lock); 205 q->mq_freeze_depth--; 206 WARN_ON_ONCE(q->mq_freeze_depth < 0); 207 if (!q->mq_freeze_depth) { 208 percpu_ref_resurrect(&q->q_usage_counter); 209 wake_up_all(&q->mq_freeze_wq); 210 } 211 mutex_unlock(&q->mq_freeze_lock); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 214 215 /* 216 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 217 * mpt3sas driver such that this function can be removed. 218 */ 219 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 220 { 221 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 222 } 223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 224 225 /** 226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 227 * @q: request queue. 228 * 229 * Note: this function does not prevent that the struct request end_io() 230 * callback function is invoked. Once this function is returned, we make 231 * sure no dispatch can happen until the queue is unquiesced via 232 * blk_mq_unquiesce_queue(). 233 */ 234 void blk_mq_quiesce_queue(struct request_queue *q) 235 { 236 struct blk_mq_hw_ctx *hctx; 237 unsigned int i; 238 bool rcu = false; 239 240 blk_mq_quiesce_queue_nowait(q); 241 242 queue_for_each_hw_ctx(q, hctx, i) { 243 if (hctx->flags & BLK_MQ_F_BLOCKING) 244 synchronize_srcu(hctx->srcu); 245 else 246 rcu = true; 247 } 248 if (rcu) 249 synchronize_rcu(); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 252 253 /* 254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 255 * @q: request queue. 256 * 257 * This function recovers queue into the state before quiescing 258 * which is done by blk_mq_quiesce_queue. 259 */ 260 void blk_mq_unquiesce_queue(struct request_queue *q) 261 { 262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 263 264 /* dispatch requests which are inserted during quiescing */ 265 blk_mq_run_hw_queues(q, true); 266 } 267 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 268 269 void blk_mq_wake_waiters(struct request_queue *q) 270 { 271 struct blk_mq_hw_ctx *hctx; 272 unsigned int i; 273 274 queue_for_each_hw_ctx(q, hctx, i) 275 if (blk_mq_hw_queue_mapped(hctx)) 276 blk_mq_tag_wakeup_all(hctx->tags, true); 277 } 278 279 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 280 { 281 return blk_mq_has_free_tags(hctx->tags); 282 } 283 EXPORT_SYMBOL(blk_mq_can_queue); 284 285 /* 286 * Only need start/end time stamping if we have iostat or 287 * blk stats enabled, or using an IO scheduler. 288 */ 289 static inline bool blk_mq_need_time_stamp(struct request *rq) 290 { 291 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 292 } 293 294 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 295 unsigned int tag, unsigned int op, u64 alloc_time_ns) 296 { 297 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 298 struct request *rq = tags->static_rqs[tag]; 299 req_flags_t rq_flags = 0; 300 301 if (data->flags & BLK_MQ_REQ_INTERNAL) { 302 rq->tag = -1; 303 rq->internal_tag = tag; 304 } else { 305 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 306 rq_flags = RQF_MQ_INFLIGHT; 307 atomic_inc(&data->hctx->nr_active); 308 } 309 rq->tag = tag; 310 rq->internal_tag = -1; 311 data->hctx->tags->rqs[rq->tag] = rq; 312 } 313 314 /* csd/requeue_work/fifo_time is initialized before use */ 315 rq->q = data->q; 316 rq->mq_ctx = data->ctx; 317 rq->mq_hctx = data->hctx; 318 rq->rq_flags = rq_flags; 319 rq->cmd_flags = op; 320 if (data->flags & BLK_MQ_REQ_PREEMPT) 321 rq->rq_flags |= RQF_PREEMPT; 322 if (blk_queue_io_stat(data->q)) 323 rq->rq_flags |= RQF_IO_STAT; 324 INIT_LIST_HEAD(&rq->queuelist); 325 INIT_HLIST_NODE(&rq->hash); 326 RB_CLEAR_NODE(&rq->rb_node); 327 rq->rq_disk = NULL; 328 rq->part = NULL; 329 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 330 rq->alloc_time_ns = alloc_time_ns; 331 #endif 332 if (blk_mq_need_time_stamp(rq)) 333 rq->start_time_ns = ktime_get_ns(); 334 else 335 rq->start_time_ns = 0; 336 rq->io_start_time_ns = 0; 337 rq->stats_sectors = 0; 338 rq->nr_phys_segments = 0; 339 #if defined(CONFIG_BLK_DEV_INTEGRITY) 340 rq->nr_integrity_segments = 0; 341 #endif 342 /* tag was already set */ 343 rq->extra_len = 0; 344 WRITE_ONCE(rq->deadline, 0); 345 346 rq->timeout = 0; 347 348 rq->end_io = NULL; 349 rq->end_io_data = NULL; 350 351 data->ctx->rq_dispatched[op_is_sync(op)]++; 352 refcount_set(&rq->ref, 1); 353 return rq; 354 } 355 356 static struct request *blk_mq_get_request(struct request_queue *q, 357 struct bio *bio, 358 struct blk_mq_alloc_data *data) 359 { 360 struct elevator_queue *e = q->elevator; 361 struct request *rq; 362 unsigned int tag; 363 bool clear_ctx_on_error = false; 364 u64 alloc_time_ns = 0; 365 366 blk_queue_enter_live(q); 367 368 /* alloc_time includes depth and tag waits */ 369 if (blk_queue_rq_alloc_time(q)) 370 alloc_time_ns = ktime_get_ns(); 371 372 data->q = q; 373 if (likely(!data->ctx)) { 374 data->ctx = blk_mq_get_ctx(q); 375 clear_ctx_on_error = true; 376 } 377 if (likely(!data->hctx)) 378 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 379 data->ctx); 380 if (data->cmd_flags & REQ_NOWAIT) 381 data->flags |= BLK_MQ_REQ_NOWAIT; 382 383 if (e) { 384 data->flags |= BLK_MQ_REQ_INTERNAL; 385 386 /* 387 * Flush requests are special and go directly to the 388 * dispatch list. Don't include reserved tags in the 389 * limiting, as it isn't useful. 390 */ 391 if (!op_is_flush(data->cmd_flags) && 392 e->type->ops.limit_depth && 393 !(data->flags & BLK_MQ_REQ_RESERVED)) 394 e->type->ops.limit_depth(data->cmd_flags, data); 395 } else { 396 blk_mq_tag_busy(data->hctx); 397 } 398 399 tag = blk_mq_get_tag(data); 400 if (tag == BLK_MQ_TAG_FAIL) { 401 if (clear_ctx_on_error) 402 data->ctx = NULL; 403 blk_queue_exit(q); 404 return NULL; 405 } 406 407 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns); 408 if (!op_is_flush(data->cmd_flags)) { 409 rq->elv.icq = NULL; 410 if (e && e->type->ops.prepare_request) { 411 if (e->type->icq_cache) 412 blk_mq_sched_assign_ioc(rq); 413 414 e->type->ops.prepare_request(rq, bio); 415 rq->rq_flags |= RQF_ELVPRIV; 416 } 417 } 418 data->hctx->queued++; 419 return rq; 420 } 421 422 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 423 blk_mq_req_flags_t flags) 424 { 425 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 426 struct request *rq; 427 int ret; 428 429 ret = blk_queue_enter(q, flags); 430 if (ret) 431 return ERR_PTR(ret); 432 433 rq = blk_mq_get_request(q, NULL, &alloc_data); 434 blk_queue_exit(q); 435 436 if (!rq) 437 return ERR_PTR(-EWOULDBLOCK); 438 439 rq->__data_len = 0; 440 rq->__sector = (sector_t) -1; 441 rq->bio = rq->biotail = NULL; 442 return rq; 443 } 444 EXPORT_SYMBOL(blk_mq_alloc_request); 445 446 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 447 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 448 { 449 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 450 struct request *rq; 451 unsigned int cpu; 452 int ret; 453 454 /* 455 * If the tag allocator sleeps we could get an allocation for a 456 * different hardware context. No need to complicate the low level 457 * allocator for this for the rare use case of a command tied to 458 * a specific queue. 459 */ 460 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 461 return ERR_PTR(-EINVAL); 462 463 if (hctx_idx >= q->nr_hw_queues) 464 return ERR_PTR(-EIO); 465 466 ret = blk_queue_enter(q, flags); 467 if (ret) 468 return ERR_PTR(ret); 469 470 /* 471 * Check if the hardware context is actually mapped to anything. 472 * If not tell the caller that it should skip this queue. 473 */ 474 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 475 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 476 blk_queue_exit(q); 477 return ERR_PTR(-EXDEV); 478 } 479 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 480 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 481 482 rq = blk_mq_get_request(q, NULL, &alloc_data); 483 blk_queue_exit(q); 484 485 if (!rq) 486 return ERR_PTR(-EWOULDBLOCK); 487 488 return rq; 489 } 490 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 491 492 static void __blk_mq_free_request(struct request *rq) 493 { 494 struct request_queue *q = rq->q; 495 struct blk_mq_ctx *ctx = rq->mq_ctx; 496 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 497 const int sched_tag = rq->internal_tag; 498 499 blk_pm_mark_last_busy(rq); 500 rq->mq_hctx = NULL; 501 if (rq->tag != -1) 502 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 503 if (sched_tag != -1) 504 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 505 blk_mq_sched_restart(hctx); 506 blk_queue_exit(q); 507 } 508 509 void blk_mq_free_request(struct request *rq) 510 { 511 struct request_queue *q = rq->q; 512 struct elevator_queue *e = q->elevator; 513 struct blk_mq_ctx *ctx = rq->mq_ctx; 514 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 515 516 if (rq->rq_flags & RQF_ELVPRIV) { 517 if (e && e->type->ops.finish_request) 518 e->type->ops.finish_request(rq); 519 if (rq->elv.icq) { 520 put_io_context(rq->elv.icq->ioc); 521 rq->elv.icq = NULL; 522 } 523 } 524 525 ctx->rq_completed[rq_is_sync(rq)]++; 526 if (rq->rq_flags & RQF_MQ_INFLIGHT) 527 atomic_dec(&hctx->nr_active); 528 529 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 530 laptop_io_completion(q->backing_dev_info); 531 532 rq_qos_done(q, rq); 533 534 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 535 if (refcount_dec_and_test(&rq->ref)) 536 __blk_mq_free_request(rq); 537 } 538 EXPORT_SYMBOL_GPL(blk_mq_free_request); 539 540 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 541 { 542 u64 now = 0; 543 544 if (blk_mq_need_time_stamp(rq)) 545 now = ktime_get_ns(); 546 547 if (rq->rq_flags & RQF_STATS) { 548 blk_mq_poll_stats_start(rq->q); 549 blk_stat_add(rq, now); 550 } 551 552 if (rq->internal_tag != -1) 553 blk_mq_sched_completed_request(rq, now); 554 555 blk_account_io_done(rq, now); 556 557 if (rq->end_io) { 558 rq_qos_done(rq->q, rq); 559 rq->end_io(rq, error); 560 } else { 561 blk_mq_free_request(rq); 562 } 563 } 564 EXPORT_SYMBOL(__blk_mq_end_request); 565 566 void blk_mq_end_request(struct request *rq, blk_status_t error) 567 { 568 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 569 BUG(); 570 __blk_mq_end_request(rq, error); 571 } 572 EXPORT_SYMBOL(blk_mq_end_request); 573 574 static void __blk_mq_complete_request_remote(void *data) 575 { 576 struct request *rq = data; 577 struct request_queue *q = rq->q; 578 579 q->mq_ops->complete(rq); 580 } 581 582 static void __blk_mq_complete_request(struct request *rq) 583 { 584 struct blk_mq_ctx *ctx = rq->mq_ctx; 585 struct request_queue *q = rq->q; 586 bool shared = false; 587 int cpu; 588 589 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 590 /* 591 * Most of single queue controllers, there is only one irq vector 592 * for handling IO completion, and the only irq's affinity is set 593 * as all possible CPUs. On most of ARCHs, this affinity means the 594 * irq is handled on one specific CPU. 595 * 596 * So complete IO reqeust in softirq context in case of single queue 597 * for not degrading IO performance by irqsoff latency. 598 */ 599 if (q->nr_hw_queues == 1) { 600 __blk_complete_request(rq); 601 return; 602 } 603 604 /* 605 * For a polled request, always complete locallly, it's pointless 606 * to redirect the completion. 607 */ 608 if ((rq->cmd_flags & REQ_HIPRI) || 609 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 610 q->mq_ops->complete(rq); 611 return; 612 } 613 614 cpu = get_cpu(); 615 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 616 shared = cpus_share_cache(cpu, ctx->cpu); 617 618 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 619 rq->csd.func = __blk_mq_complete_request_remote; 620 rq->csd.info = rq; 621 rq->csd.flags = 0; 622 smp_call_function_single_async(ctx->cpu, &rq->csd); 623 } else { 624 q->mq_ops->complete(rq); 625 } 626 put_cpu(); 627 } 628 629 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 630 __releases(hctx->srcu) 631 { 632 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 633 rcu_read_unlock(); 634 else 635 srcu_read_unlock(hctx->srcu, srcu_idx); 636 } 637 638 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 639 __acquires(hctx->srcu) 640 { 641 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 642 /* shut up gcc false positive */ 643 *srcu_idx = 0; 644 rcu_read_lock(); 645 } else 646 *srcu_idx = srcu_read_lock(hctx->srcu); 647 } 648 649 /** 650 * blk_mq_complete_request - end I/O on a request 651 * @rq: the request being processed 652 * 653 * Description: 654 * Ends all I/O on a request. It does not handle partial completions. 655 * The actual completion happens out-of-order, through a IPI handler. 656 **/ 657 bool blk_mq_complete_request(struct request *rq) 658 { 659 if (unlikely(blk_should_fake_timeout(rq->q))) 660 return false; 661 __blk_mq_complete_request(rq); 662 return true; 663 } 664 EXPORT_SYMBOL(blk_mq_complete_request); 665 666 int blk_mq_request_started(struct request *rq) 667 { 668 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 669 } 670 EXPORT_SYMBOL_GPL(blk_mq_request_started); 671 672 int blk_mq_request_completed(struct request *rq) 673 { 674 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; 675 } 676 EXPORT_SYMBOL_GPL(blk_mq_request_completed); 677 678 void blk_mq_start_request(struct request *rq) 679 { 680 struct request_queue *q = rq->q; 681 682 trace_block_rq_issue(q, rq); 683 684 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 685 rq->io_start_time_ns = ktime_get_ns(); 686 rq->stats_sectors = blk_rq_sectors(rq); 687 rq->rq_flags |= RQF_STATS; 688 rq_qos_issue(q, rq); 689 } 690 691 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 692 693 blk_add_timer(rq); 694 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 695 696 if (q->dma_drain_size && blk_rq_bytes(rq)) { 697 /* 698 * Make sure space for the drain appears. We know we can do 699 * this because max_hw_segments has been adjusted to be one 700 * fewer than the device can handle. 701 */ 702 rq->nr_phys_segments++; 703 } 704 705 #ifdef CONFIG_BLK_DEV_INTEGRITY 706 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 707 q->integrity.profile->prepare_fn(rq); 708 #endif 709 } 710 EXPORT_SYMBOL(blk_mq_start_request); 711 712 static void __blk_mq_requeue_request(struct request *rq) 713 { 714 struct request_queue *q = rq->q; 715 716 blk_mq_put_driver_tag(rq); 717 718 trace_block_rq_requeue(q, rq); 719 rq_qos_requeue(q, rq); 720 721 if (blk_mq_request_started(rq)) { 722 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 723 rq->rq_flags &= ~RQF_TIMED_OUT; 724 if (q->dma_drain_size && blk_rq_bytes(rq)) 725 rq->nr_phys_segments--; 726 } 727 } 728 729 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 730 { 731 __blk_mq_requeue_request(rq); 732 733 /* this request will be re-inserted to io scheduler queue */ 734 blk_mq_sched_requeue_request(rq); 735 736 BUG_ON(!list_empty(&rq->queuelist)); 737 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 738 } 739 EXPORT_SYMBOL(blk_mq_requeue_request); 740 741 static void blk_mq_requeue_work(struct work_struct *work) 742 { 743 struct request_queue *q = 744 container_of(work, struct request_queue, requeue_work.work); 745 LIST_HEAD(rq_list); 746 struct request *rq, *next; 747 748 spin_lock_irq(&q->requeue_lock); 749 list_splice_init(&q->requeue_list, &rq_list); 750 spin_unlock_irq(&q->requeue_lock); 751 752 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 753 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 754 continue; 755 756 rq->rq_flags &= ~RQF_SOFTBARRIER; 757 list_del_init(&rq->queuelist); 758 /* 759 * If RQF_DONTPREP, rq has contained some driver specific 760 * data, so insert it to hctx dispatch list to avoid any 761 * merge. 762 */ 763 if (rq->rq_flags & RQF_DONTPREP) 764 blk_mq_request_bypass_insert(rq, false); 765 else 766 blk_mq_sched_insert_request(rq, true, false, false); 767 } 768 769 while (!list_empty(&rq_list)) { 770 rq = list_entry(rq_list.next, struct request, queuelist); 771 list_del_init(&rq->queuelist); 772 blk_mq_sched_insert_request(rq, false, false, false); 773 } 774 775 blk_mq_run_hw_queues(q, false); 776 } 777 778 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 779 bool kick_requeue_list) 780 { 781 struct request_queue *q = rq->q; 782 unsigned long flags; 783 784 /* 785 * We abuse this flag that is otherwise used by the I/O scheduler to 786 * request head insertion from the workqueue. 787 */ 788 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 789 790 spin_lock_irqsave(&q->requeue_lock, flags); 791 if (at_head) { 792 rq->rq_flags |= RQF_SOFTBARRIER; 793 list_add(&rq->queuelist, &q->requeue_list); 794 } else { 795 list_add_tail(&rq->queuelist, &q->requeue_list); 796 } 797 spin_unlock_irqrestore(&q->requeue_lock, flags); 798 799 if (kick_requeue_list) 800 blk_mq_kick_requeue_list(q); 801 } 802 803 void blk_mq_kick_requeue_list(struct request_queue *q) 804 { 805 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 806 } 807 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 808 809 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 810 unsigned long msecs) 811 { 812 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 813 msecs_to_jiffies(msecs)); 814 } 815 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 816 817 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 818 { 819 if (tag < tags->nr_tags) { 820 prefetch(tags->rqs[tag]); 821 return tags->rqs[tag]; 822 } 823 824 return NULL; 825 } 826 EXPORT_SYMBOL(blk_mq_tag_to_rq); 827 828 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 829 void *priv, bool reserved) 830 { 831 /* 832 * If we find a request that is inflight and the queue matches, 833 * we know the queue is busy. Return false to stop the iteration. 834 */ 835 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 836 bool *busy = priv; 837 838 *busy = true; 839 return false; 840 } 841 842 return true; 843 } 844 845 bool blk_mq_queue_inflight(struct request_queue *q) 846 { 847 bool busy = false; 848 849 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 850 return busy; 851 } 852 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 853 854 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 855 { 856 req->rq_flags |= RQF_TIMED_OUT; 857 if (req->q->mq_ops->timeout) { 858 enum blk_eh_timer_return ret; 859 860 ret = req->q->mq_ops->timeout(req, reserved); 861 if (ret == BLK_EH_DONE) 862 return; 863 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 864 } 865 866 blk_add_timer(req); 867 } 868 869 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 870 { 871 unsigned long deadline; 872 873 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 874 return false; 875 if (rq->rq_flags & RQF_TIMED_OUT) 876 return false; 877 878 deadline = READ_ONCE(rq->deadline); 879 if (time_after_eq(jiffies, deadline)) 880 return true; 881 882 if (*next == 0) 883 *next = deadline; 884 else if (time_after(*next, deadline)) 885 *next = deadline; 886 return false; 887 } 888 889 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 890 struct request *rq, void *priv, bool reserved) 891 { 892 unsigned long *next = priv; 893 894 /* 895 * Just do a quick check if it is expired before locking the request in 896 * so we're not unnecessarilly synchronizing across CPUs. 897 */ 898 if (!blk_mq_req_expired(rq, next)) 899 return true; 900 901 /* 902 * We have reason to believe the request may be expired. Take a 903 * reference on the request to lock this request lifetime into its 904 * currently allocated context to prevent it from being reallocated in 905 * the event the completion by-passes this timeout handler. 906 * 907 * If the reference was already released, then the driver beat the 908 * timeout handler to posting a natural completion. 909 */ 910 if (!refcount_inc_not_zero(&rq->ref)) 911 return true; 912 913 /* 914 * The request is now locked and cannot be reallocated underneath the 915 * timeout handler's processing. Re-verify this exact request is truly 916 * expired; if it is not expired, then the request was completed and 917 * reallocated as a new request. 918 */ 919 if (blk_mq_req_expired(rq, next)) 920 blk_mq_rq_timed_out(rq, reserved); 921 922 if (is_flush_rq(rq, hctx)) 923 rq->end_io(rq, 0); 924 else if (refcount_dec_and_test(&rq->ref)) 925 __blk_mq_free_request(rq); 926 927 return true; 928 } 929 930 static void blk_mq_timeout_work(struct work_struct *work) 931 { 932 struct request_queue *q = 933 container_of(work, struct request_queue, timeout_work); 934 unsigned long next = 0; 935 struct blk_mq_hw_ctx *hctx; 936 int i; 937 938 /* A deadlock might occur if a request is stuck requiring a 939 * timeout at the same time a queue freeze is waiting 940 * completion, since the timeout code would not be able to 941 * acquire the queue reference here. 942 * 943 * That's why we don't use blk_queue_enter here; instead, we use 944 * percpu_ref_tryget directly, because we need to be able to 945 * obtain a reference even in the short window between the queue 946 * starting to freeze, by dropping the first reference in 947 * blk_freeze_queue_start, and the moment the last request is 948 * consumed, marked by the instant q_usage_counter reaches 949 * zero. 950 */ 951 if (!percpu_ref_tryget(&q->q_usage_counter)) 952 return; 953 954 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 955 956 if (next != 0) { 957 mod_timer(&q->timeout, next); 958 } else { 959 /* 960 * Request timeouts are handled as a forward rolling timer. If 961 * we end up here it means that no requests are pending and 962 * also that no request has been pending for a while. Mark 963 * each hctx as idle. 964 */ 965 queue_for_each_hw_ctx(q, hctx, i) { 966 /* the hctx may be unmapped, so check it here */ 967 if (blk_mq_hw_queue_mapped(hctx)) 968 blk_mq_tag_idle(hctx); 969 } 970 } 971 blk_queue_exit(q); 972 } 973 974 struct flush_busy_ctx_data { 975 struct blk_mq_hw_ctx *hctx; 976 struct list_head *list; 977 }; 978 979 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 980 { 981 struct flush_busy_ctx_data *flush_data = data; 982 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 983 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 984 enum hctx_type type = hctx->type; 985 986 spin_lock(&ctx->lock); 987 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 988 sbitmap_clear_bit(sb, bitnr); 989 spin_unlock(&ctx->lock); 990 return true; 991 } 992 993 /* 994 * Process software queues that have been marked busy, splicing them 995 * to the for-dispatch 996 */ 997 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 998 { 999 struct flush_busy_ctx_data data = { 1000 .hctx = hctx, 1001 .list = list, 1002 }; 1003 1004 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1005 } 1006 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1007 1008 struct dispatch_rq_data { 1009 struct blk_mq_hw_ctx *hctx; 1010 struct request *rq; 1011 }; 1012 1013 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1014 void *data) 1015 { 1016 struct dispatch_rq_data *dispatch_data = data; 1017 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1018 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1019 enum hctx_type type = hctx->type; 1020 1021 spin_lock(&ctx->lock); 1022 if (!list_empty(&ctx->rq_lists[type])) { 1023 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1024 list_del_init(&dispatch_data->rq->queuelist); 1025 if (list_empty(&ctx->rq_lists[type])) 1026 sbitmap_clear_bit(sb, bitnr); 1027 } 1028 spin_unlock(&ctx->lock); 1029 1030 return !dispatch_data->rq; 1031 } 1032 1033 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1034 struct blk_mq_ctx *start) 1035 { 1036 unsigned off = start ? start->index_hw[hctx->type] : 0; 1037 struct dispatch_rq_data data = { 1038 .hctx = hctx, 1039 .rq = NULL, 1040 }; 1041 1042 __sbitmap_for_each_set(&hctx->ctx_map, off, 1043 dispatch_rq_from_ctx, &data); 1044 1045 return data.rq; 1046 } 1047 1048 static inline unsigned int queued_to_index(unsigned int queued) 1049 { 1050 if (!queued) 1051 return 0; 1052 1053 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1054 } 1055 1056 bool blk_mq_get_driver_tag(struct request *rq) 1057 { 1058 struct blk_mq_alloc_data data = { 1059 .q = rq->q, 1060 .hctx = rq->mq_hctx, 1061 .flags = BLK_MQ_REQ_NOWAIT, 1062 .cmd_flags = rq->cmd_flags, 1063 }; 1064 bool shared; 1065 1066 if (rq->tag != -1) 1067 goto done; 1068 1069 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1070 data.flags |= BLK_MQ_REQ_RESERVED; 1071 1072 shared = blk_mq_tag_busy(data.hctx); 1073 rq->tag = blk_mq_get_tag(&data); 1074 if (rq->tag >= 0) { 1075 if (shared) { 1076 rq->rq_flags |= RQF_MQ_INFLIGHT; 1077 atomic_inc(&data.hctx->nr_active); 1078 } 1079 data.hctx->tags->rqs[rq->tag] = rq; 1080 } 1081 1082 done: 1083 return rq->tag != -1; 1084 } 1085 1086 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1087 int flags, void *key) 1088 { 1089 struct blk_mq_hw_ctx *hctx; 1090 1091 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1092 1093 spin_lock(&hctx->dispatch_wait_lock); 1094 if (!list_empty(&wait->entry)) { 1095 struct sbitmap_queue *sbq; 1096 1097 list_del_init(&wait->entry); 1098 sbq = &hctx->tags->bitmap_tags; 1099 atomic_dec(&sbq->ws_active); 1100 } 1101 spin_unlock(&hctx->dispatch_wait_lock); 1102 1103 blk_mq_run_hw_queue(hctx, true); 1104 return 1; 1105 } 1106 1107 /* 1108 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1109 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1110 * restart. For both cases, take care to check the condition again after 1111 * marking us as waiting. 1112 */ 1113 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1114 struct request *rq) 1115 { 1116 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1117 struct wait_queue_head *wq; 1118 wait_queue_entry_t *wait; 1119 bool ret; 1120 1121 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1122 blk_mq_sched_mark_restart_hctx(hctx); 1123 1124 /* 1125 * It's possible that a tag was freed in the window between the 1126 * allocation failure and adding the hardware queue to the wait 1127 * queue. 1128 * 1129 * Don't clear RESTART here, someone else could have set it. 1130 * At most this will cost an extra queue run. 1131 */ 1132 return blk_mq_get_driver_tag(rq); 1133 } 1134 1135 wait = &hctx->dispatch_wait; 1136 if (!list_empty_careful(&wait->entry)) 1137 return false; 1138 1139 wq = &bt_wait_ptr(sbq, hctx)->wait; 1140 1141 spin_lock_irq(&wq->lock); 1142 spin_lock(&hctx->dispatch_wait_lock); 1143 if (!list_empty(&wait->entry)) { 1144 spin_unlock(&hctx->dispatch_wait_lock); 1145 spin_unlock_irq(&wq->lock); 1146 return false; 1147 } 1148 1149 atomic_inc(&sbq->ws_active); 1150 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1151 __add_wait_queue(wq, wait); 1152 1153 /* 1154 * It's possible that a tag was freed in the window between the 1155 * allocation failure and adding the hardware queue to the wait 1156 * queue. 1157 */ 1158 ret = blk_mq_get_driver_tag(rq); 1159 if (!ret) { 1160 spin_unlock(&hctx->dispatch_wait_lock); 1161 spin_unlock_irq(&wq->lock); 1162 return false; 1163 } 1164 1165 /* 1166 * We got a tag, remove ourselves from the wait queue to ensure 1167 * someone else gets the wakeup. 1168 */ 1169 list_del_init(&wait->entry); 1170 atomic_dec(&sbq->ws_active); 1171 spin_unlock(&hctx->dispatch_wait_lock); 1172 spin_unlock_irq(&wq->lock); 1173 1174 return true; 1175 } 1176 1177 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1178 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1179 /* 1180 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1181 * - EWMA is one simple way to compute running average value 1182 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1183 * - take 4 as factor for avoiding to get too small(0) result, and this 1184 * factor doesn't matter because EWMA decreases exponentially 1185 */ 1186 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1187 { 1188 unsigned int ewma; 1189 1190 if (hctx->queue->elevator) 1191 return; 1192 1193 ewma = hctx->dispatch_busy; 1194 1195 if (!ewma && !busy) 1196 return; 1197 1198 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1199 if (busy) 1200 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1201 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1202 1203 hctx->dispatch_busy = ewma; 1204 } 1205 1206 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1207 1208 /* 1209 * Returns true if we did some work AND can potentially do more. 1210 */ 1211 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1212 bool got_budget) 1213 { 1214 struct blk_mq_hw_ctx *hctx; 1215 struct request *rq, *nxt; 1216 bool no_tag = false; 1217 int errors, queued; 1218 blk_status_t ret = BLK_STS_OK; 1219 1220 if (list_empty(list)) 1221 return false; 1222 1223 WARN_ON(!list_is_singular(list) && got_budget); 1224 1225 /* 1226 * Now process all the entries, sending them to the driver. 1227 */ 1228 errors = queued = 0; 1229 do { 1230 struct blk_mq_queue_data bd; 1231 1232 rq = list_first_entry(list, struct request, queuelist); 1233 1234 hctx = rq->mq_hctx; 1235 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1236 break; 1237 1238 if (!blk_mq_get_driver_tag(rq)) { 1239 /* 1240 * The initial allocation attempt failed, so we need to 1241 * rerun the hardware queue when a tag is freed. The 1242 * waitqueue takes care of that. If the queue is run 1243 * before we add this entry back on the dispatch list, 1244 * we'll re-run it below. 1245 */ 1246 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1247 blk_mq_put_dispatch_budget(hctx); 1248 /* 1249 * For non-shared tags, the RESTART check 1250 * will suffice. 1251 */ 1252 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1253 no_tag = true; 1254 break; 1255 } 1256 } 1257 1258 list_del_init(&rq->queuelist); 1259 1260 bd.rq = rq; 1261 1262 /* 1263 * Flag last if we have no more requests, or if we have more 1264 * but can't assign a driver tag to it. 1265 */ 1266 if (list_empty(list)) 1267 bd.last = true; 1268 else { 1269 nxt = list_first_entry(list, struct request, queuelist); 1270 bd.last = !blk_mq_get_driver_tag(nxt); 1271 } 1272 1273 ret = q->mq_ops->queue_rq(hctx, &bd); 1274 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1275 /* 1276 * If an I/O scheduler has been configured and we got a 1277 * driver tag for the next request already, free it 1278 * again. 1279 */ 1280 if (!list_empty(list)) { 1281 nxt = list_first_entry(list, struct request, queuelist); 1282 blk_mq_put_driver_tag(nxt); 1283 } 1284 list_add(&rq->queuelist, list); 1285 __blk_mq_requeue_request(rq); 1286 break; 1287 } 1288 1289 if (unlikely(ret != BLK_STS_OK)) { 1290 errors++; 1291 blk_mq_end_request(rq, BLK_STS_IOERR); 1292 continue; 1293 } 1294 1295 queued++; 1296 } while (!list_empty(list)); 1297 1298 hctx->dispatched[queued_to_index(queued)]++; 1299 1300 /* 1301 * Any items that need requeuing? Stuff them into hctx->dispatch, 1302 * that is where we will continue on next queue run. 1303 */ 1304 if (!list_empty(list)) { 1305 bool needs_restart; 1306 1307 /* 1308 * If we didn't flush the entire list, we could have told 1309 * the driver there was more coming, but that turned out to 1310 * be a lie. 1311 */ 1312 if (q->mq_ops->commit_rqs) 1313 q->mq_ops->commit_rqs(hctx); 1314 1315 spin_lock(&hctx->lock); 1316 list_splice_init(list, &hctx->dispatch); 1317 spin_unlock(&hctx->lock); 1318 1319 /* 1320 * If SCHED_RESTART was set by the caller of this function and 1321 * it is no longer set that means that it was cleared by another 1322 * thread and hence that a queue rerun is needed. 1323 * 1324 * If 'no_tag' is set, that means that we failed getting 1325 * a driver tag with an I/O scheduler attached. If our dispatch 1326 * waitqueue is no longer active, ensure that we run the queue 1327 * AFTER adding our entries back to the list. 1328 * 1329 * If no I/O scheduler has been configured it is possible that 1330 * the hardware queue got stopped and restarted before requests 1331 * were pushed back onto the dispatch list. Rerun the queue to 1332 * avoid starvation. Notes: 1333 * - blk_mq_run_hw_queue() checks whether or not a queue has 1334 * been stopped before rerunning a queue. 1335 * - Some but not all block drivers stop a queue before 1336 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1337 * and dm-rq. 1338 * 1339 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1340 * bit is set, run queue after a delay to avoid IO stalls 1341 * that could otherwise occur if the queue is idle. 1342 */ 1343 needs_restart = blk_mq_sched_needs_restart(hctx); 1344 if (!needs_restart || 1345 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1346 blk_mq_run_hw_queue(hctx, true); 1347 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1348 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1349 1350 blk_mq_update_dispatch_busy(hctx, true); 1351 return false; 1352 } else 1353 blk_mq_update_dispatch_busy(hctx, false); 1354 1355 /* 1356 * If the host/device is unable to accept more work, inform the 1357 * caller of that. 1358 */ 1359 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1360 return false; 1361 1362 return (queued + errors) != 0; 1363 } 1364 1365 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1366 { 1367 int srcu_idx; 1368 1369 /* 1370 * We should be running this queue from one of the CPUs that 1371 * are mapped to it. 1372 * 1373 * There are at least two related races now between setting 1374 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1375 * __blk_mq_run_hw_queue(): 1376 * 1377 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1378 * but later it becomes online, then this warning is harmless 1379 * at all 1380 * 1381 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1382 * but later it becomes offline, then the warning can't be 1383 * triggered, and we depend on blk-mq timeout handler to 1384 * handle dispatched requests to this hctx 1385 */ 1386 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1387 cpu_online(hctx->next_cpu)) { 1388 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1389 raw_smp_processor_id(), 1390 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1391 dump_stack(); 1392 } 1393 1394 /* 1395 * We can't run the queue inline with ints disabled. Ensure that 1396 * we catch bad users of this early. 1397 */ 1398 WARN_ON_ONCE(in_interrupt()); 1399 1400 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1401 1402 hctx_lock(hctx, &srcu_idx); 1403 blk_mq_sched_dispatch_requests(hctx); 1404 hctx_unlock(hctx, srcu_idx); 1405 } 1406 1407 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1408 { 1409 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1410 1411 if (cpu >= nr_cpu_ids) 1412 cpu = cpumask_first(hctx->cpumask); 1413 return cpu; 1414 } 1415 1416 /* 1417 * It'd be great if the workqueue API had a way to pass 1418 * in a mask and had some smarts for more clever placement. 1419 * For now we just round-robin here, switching for every 1420 * BLK_MQ_CPU_WORK_BATCH queued items. 1421 */ 1422 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1423 { 1424 bool tried = false; 1425 int next_cpu = hctx->next_cpu; 1426 1427 if (hctx->queue->nr_hw_queues == 1) 1428 return WORK_CPU_UNBOUND; 1429 1430 if (--hctx->next_cpu_batch <= 0) { 1431 select_cpu: 1432 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1433 cpu_online_mask); 1434 if (next_cpu >= nr_cpu_ids) 1435 next_cpu = blk_mq_first_mapped_cpu(hctx); 1436 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1437 } 1438 1439 /* 1440 * Do unbound schedule if we can't find a online CPU for this hctx, 1441 * and it should only happen in the path of handling CPU DEAD. 1442 */ 1443 if (!cpu_online(next_cpu)) { 1444 if (!tried) { 1445 tried = true; 1446 goto select_cpu; 1447 } 1448 1449 /* 1450 * Make sure to re-select CPU next time once after CPUs 1451 * in hctx->cpumask become online again. 1452 */ 1453 hctx->next_cpu = next_cpu; 1454 hctx->next_cpu_batch = 1; 1455 return WORK_CPU_UNBOUND; 1456 } 1457 1458 hctx->next_cpu = next_cpu; 1459 return next_cpu; 1460 } 1461 1462 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1463 unsigned long msecs) 1464 { 1465 if (unlikely(blk_mq_hctx_stopped(hctx))) 1466 return; 1467 1468 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1469 int cpu = get_cpu(); 1470 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1471 __blk_mq_run_hw_queue(hctx); 1472 put_cpu(); 1473 return; 1474 } 1475 1476 put_cpu(); 1477 } 1478 1479 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1480 msecs_to_jiffies(msecs)); 1481 } 1482 1483 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1484 { 1485 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1486 } 1487 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1488 1489 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1490 { 1491 int srcu_idx; 1492 bool need_run; 1493 1494 /* 1495 * When queue is quiesced, we may be switching io scheduler, or 1496 * updating nr_hw_queues, or other things, and we can't run queue 1497 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1498 * 1499 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1500 * quiesced. 1501 */ 1502 hctx_lock(hctx, &srcu_idx); 1503 need_run = !blk_queue_quiesced(hctx->queue) && 1504 blk_mq_hctx_has_pending(hctx); 1505 hctx_unlock(hctx, srcu_idx); 1506 1507 if (need_run) { 1508 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1509 return true; 1510 } 1511 1512 return false; 1513 } 1514 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1515 1516 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1517 { 1518 struct blk_mq_hw_ctx *hctx; 1519 int i; 1520 1521 queue_for_each_hw_ctx(q, hctx, i) { 1522 if (blk_mq_hctx_stopped(hctx)) 1523 continue; 1524 1525 blk_mq_run_hw_queue(hctx, async); 1526 } 1527 } 1528 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1529 1530 /** 1531 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1532 * @q: request queue. 1533 * 1534 * The caller is responsible for serializing this function against 1535 * blk_mq_{start,stop}_hw_queue(). 1536 */ 1537 bool blk_mq_queue_stopped(struct request_queue *q) 1538 { 1539 struct blk_mq_hw_ctx *hctx; 1540 int i; 1541 1542 queue_for_each_hw_ctx(q, hctx, i) 1543 if (blk_mq_hctx_stopped(hctx)) 1544 return true; 1545 1546 return false; 1547 } 1548 EXPORT_SYMBOL(blk_mq_queue_stopped); 1549 1550 /* 1551 * This function is often used for pausing .queue_rq() by driver when 1552 * there isn't enough resource or some conditions aren't satisfied, and 1553 * BLK_STS_RESOURCE is usually returned. 1554 * 1555 * We do not guarantee that dispatch can be drained or blocked 1556 * after blk_mq_stop_hw_queue() returns. Please use 1557 * blk_mq_quiesce_queue() for that requirement. 1558 */ 1559 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1560 { 1561 cancel_delayed_work(&hctx->run_work); 1562 1563 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1564 } 1565 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1566 1567 /* 1568 * This function is often used for pausing .queue_rq() by driver when 1569 * there isn't enough resource or some conditions aren't satisfied, and 1570 * BLK_STS_RESOURCE is usually returned. 1571 * 1572 * We do not guarantee that dispatch can be drained or blocked 1573 * after blk_mq_stop_hw_queues() returns. Please use 1574 * blk_mq_quiesce_queue() for that requirement. 1575 */ 1576 void blk_mq_stop_hw_queues(struct request_queue *q) 1577 { 1578 struct blk_mq_hw_ctx *hctx; 1579 int i; 1580 1581 queue_for_each_hw_ctx(q, hctx, i) 1582 blk_mq_stop_hw_queue(hctx); 1583 } 1584 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1585 1586 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1587 { 1588 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1589 1590 blk_mq_run_hw_queue(hctx, false); 1591 } 1592 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1593 1594 void blk_mq_start_hw_queues(struct request_queue *q) 1595 { 1596 struct blk_mq_hw_ctx *hctx; 1597 int i; 1598 1599 queue_for_each_hw_ctx(q, hctx, i) 1600 blk_mq_start_hw_queue(hctx); 1601 } 1602 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1603 1604 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1605 { 1606 if (!blk_mq_hctx_stopped(hctx)) 1607 return; 1608 1609 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1610 blk_mq_run_hw_queue(hctx, async); 1611 } 1612 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1613 1614 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1615 { 1616 struct blk_mq_hw_ctx *hctx; 1617 int i; 1618 1619 queue_for_each_hw_ctx(q, hctx, i) 1620 blk_mq_start_stopped_hw_queue(hctx, async); 1621 } 1622 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1623 1624 static void blk_mq_run_work_fn(struct work_struct *work) 1625 { 1626 struct blk_mq_hw_ctx *hctx; 1627 1628 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1629 1630 /* 1631 * If we are stopped, don't run the queue. 1632 */ 1633 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1634 return; 1635 1636 __blk_mq_run_hw_queue(hctx); 1637 } 1638 1639 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1640 struct request *rq, 1641 bool at_head) 1642 { 1643 struct blk_mq_ctx *ctx = rq->mq_ctx; 1644 enum hctx_type type = hctx->type; 1645 1646 lockdep_assert_held(&ctx->lock); 1647 1648 trace_block_rq_insert(hctx->queue, rq); 1649 1650 if (at_head) 1651 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1652 else 1653 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1654 } 1655 1656 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1657 bool at_head) 1658 { 1659 struct blk_mq_ctx *ctx = rq->mq_ctx; 1660 1661 lockdep_assert_held(&ctx->lock); 1662 1663 __blk_mq_insert_req_list(hctx, rq, at_head); 1664 blk_mq_hctx_mark_pending(hctx, ctx); 1665 } 1666 1667 /* 1668 * Should only be used carefully, when the caller knows we want to 1669 * bypass a potential IO scheduler on the target device. 1670 */ 1671 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1672 { 1673 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1674 1675 spin_lock(&hctx->lock); 1676 list_add_tail(&rq->queuelist, &hctx->dispatch); 1677 spin_unlock(&hctx->lock); 1678 1679 if (run_queue) 1680 blk_mq_run_hw_queue(hctx, false); 1681 } 1682 1683 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1684 struct list_head *list) 1685 1686 { 1687 struct request *rq; 1688 enum hctx_type type = hctx->type; 1689 1690 /* 1691 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1692 * offline now 1693 */ 1694 list_for_each_entry(rq, list, queuelist) { 1695 BUG_ON(rq->mq_ctx != ctx); 1696 trace_block_rq_insert(hctx->queue, rq); 1697 } 1698 1699 spin_lock(&ctx->lock); 1700 list_splice_tail_init(list, &ctx->rq_lists[type]); 1701 blk_mq_hctx_mark_pending(hctx, ctx); 1702 spin_unlock(&ctx->lock); 1703 } 1704 1705 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1706 { 1707 struct request *rqa = container_of(a, struct request, queuelist); 1708 struct request *rqb = container_of(b, struct request, queuelist); 1709 1710 if (rqa->mq_ctx < rqb->mq_ctx) 1711 return -1; 1712 else if (rqa->mq_ctx > rqb->mq_ctx) 1713 return 1; 1714 else if (rqa->mq_hctx < rqb->mq_hctx) 1715 return -1; 1716 else if (rqa->mq_hctx > rqb->mq_hctx) 1717 return 1; 1718 1719 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1720 } 1721 1722 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1723 { 1724 struct blk_mq_hw_ctx *this_hctx; 1725 struct blk_mq_ctx *this_ctx; 1726 struct request_queue *this_q; 1727 struct request *rq; 1728 LIST_HEAD(list); 1729 LIST_HEAD(rq_list); 1730 unsigned int depth; 1731 1732 list_splice_init(&plug->mq_list, &list); 1733 1734 if (plug->rq_count > 2 && plug->multiple_queues) 1735 list_sort(NULL, &list, plug_rq_cmp); 1736 1737 plug->rq_count = 0; 1738 1739 this_q = NULL; 1740 this_hctx = NULL; 1741 this_ctx = NULL; 1742 depth = 0; 1743 1744 while (!list_empty(&list)) { 1745 rq = list_entry_rq(list.next); 1746 list_del_init(&rq->queuelist); 1747 BUG_ON(!rq->q); 1748 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1749 if (this_hctx) { 1750 trace_block_unplug(this_q, depth, !from_schedule); 1751 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1752 &rq_list, 1753 from_schedule); 1754 } 1755 1756 this_q = rq->q; 1757 this_ctx = rq->mq_ctx; 1758 this_hctx = rq->mq_hctx; 1759 depth = 0; 1760 } 1761 1762 depth++; 1763 list_add_tail(&rq->queuelist, &rq_list); 1764 } 1765 1766 /* 1767 * If 'this_hctx' is set, we know we have entries to complete 1768 * on 'rq_list'. Do those. 1769 */ 1770 if (this_hctx) { 1771 trace_block_unplug(this_q, depth, !from_schedule); 1772 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1773 from_schedule); 1774 } 1775 } 1776 1777 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1778 unsigned int nr_segs) 1779 { 1780 if (bio->bi_opf & REQ_RAHEAD) 1781 rq->cmd_flags |= REQ_FAILFAST_MASK; 1782 1783 rq->__sector = bio->bi_iter.bi_sector; 1784 rq->write_hint = bio->bi_write_hint; 1785 blk_rq_bio_prep(rq, bio, nr_segs); 1786 1787 blk_account_io_start(rq, true); 1788 } 1789 1790 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1791 struct request *rq, 1792 blk_qc_t *cookie, bool last) 1793 { 1794 struct request_queue *q = rq->q; 1795 struct blk_mq_queue_data bd = { 1796 .rq = rq, 1797 .last = last, 1798 }; 1799 blk_qc_t new_cookie; 1800 blk_status_t ret; 1801 1802 new_cookie = request_to_qc_t(hctx, rq); 1803 1804 /* 1805 * For OK queue, we are done. For error, caller may kill it. 1806 * Any other error (busy), just add it to our list as we 1807 * previously would have done. 1808 */ 1809 ret = q->mq_ops->queue_rq(hctx, &bd); 1810 switch (ret) { 1811 case BLK_STS_OK: 1812 blk_mq_update_dispatch_busy(hctx, false); 1813 *cookie = new_cookie; 1814 break; 1815 case BLK_STS_RESOURCE: 1816 case BLK_STS_DEV_RESOURCE: 1817 blk_mq_update_dispatch_busy(hctx, true); 1818 __blk_mq_requeue_request(rq); 1819 break; 1820 default: 1821 blk_mq_update_dispatch_busy(hctx, false); 1822 *cookie = BLK_QC_T_NONE; 1823 break; 1824 } 1825 1826 return ret; 1827 } 1828 1829 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1830 struct request *rq, 1831 blk_qc_t *cookie, 1832 bool bypass_insert, bool last) 1833 { 1834 struct request_queue *q = rq->q; 1835 bool run_queue = true; 1836 1837 /* 1838 * RCU or SRCU read lock is needed before checking quiesced flag. 1839 * 1840 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1841 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1842 * and avoid driver to try to dispatch again. 1843 */ 1844 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1845 run_queue = false; 1846 bypass_insert = false; 1847 goto insert; 1848 } 1849 1850 if (q->elevator && !bypass_insert) 1851 goto insert; 1852 1853 if (!blk_mq_get_dispatch_budget(hctx)) 1854 goto insert; 1855 1856 if (!blk_mq_get_driver_tag(rq)) { 1857 blk_mq_put_dispatch_budget(hctx); 1858 goto insert; 1859 } 1860 1861 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1862 insert: 1863 if (bypass_insert) 1864 return BLK_STS_RESOURCE; 1865 1866 blk_mq_request_bypass_insert(rq, run_queue); 1867 return BLK_STS_OK; 1868 } 1869 1870 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1871 struct request *rq, blk_qc_t *cookie) 1872 { 1873 blk_status_t ret; 1874 int srcu_idx; 1875 1876 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1877 1878 hctx_lock(hctx, &srcu_idx); 1879 1880 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1881 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1882 blk_mq_request_bypass_insert(rq, true); 1883 else if (ret != BLK_STS_OK) 1884 blk_mq_end_request(rq, ret); 1885 1886 hctx_unlock(hctx, srcu_idx); 1887 } 1888 1889 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1890 { 1891 blk_status_t ret; 1892 int srcu_idx; 1893 blk_qc_t unused_cookie; 1894 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1895 1896 hctx_lock(hctx, &srcu_idx); 1897 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1898 hctx_unlock(hctx, srcu_idx); 1899 1900 return ret; 1901 } 1902 1903 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1904 struct list_head *list) 1905 { 1906 while (!list_empty(list)) { 1907 blk_status_t ret; 1908 struct request *rq = list_first_entry(list, struct request, 1909 queuelist); 1910 1911 list_del_init(&rq->queuelist); 1912 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1913 if (ret != BLK_STS_OK) { 1914 if (ret == BLK_STS_RESOURCE || 1915 ret == BLK_STS_DEV_RESOURCE) { 1916 blk_mq_request_bypass_insert(rq, 1917 list_empty(list)); 1918 break; 1919 } 1920 blk_mq_end_request(rq, ret); 1921 } 1922 } 1923 1924 /* 1925 * If we didn't flush the entire list, we could have told 1926 * the driver there was more coming, but that turned out to 1927 * be a lie. 1928 */ 1929 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) 1930 hctx->queue->mq_ops->commit_rqs(hctx); 1931 } 1932 1933 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1934 { 1935 list_add_tail(&rq->queuelist, &plug->mq_list); 1936 plug->rq_count++; 1937 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1938 struct request *tmp; 1939 1940 tmp = list_first_entry(&plug->mq_list, struct request, 1941 queuelist); 1942 if (tmp->q != rq->q) 1943 plug->multiple_queues = true; 1944 } 1945 } 1946 1947 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1948 { 1949 const int is_sync = op_is_sync(bio->bi_opf); 1950 const int is_flush_fua = op_is_flush(bio->bi_opf); 1951 struct blk_mq_alloc_data data = { .flags = 0}; 1952 struct request *rq; 1953 struct blk_plug *plug; 1954 struct request *same_queue_rq = NULL; 1955 unsigned int nr_segs; 1956 blk_qc_t cookie; 1957 1958 blk_queue_bounce(q, &bio); 1959 __blk_queue_split(q, &bio, &nr_segs); 1960 1961 if (!bio_integrity_prep(bio)) 1962 return BLK_QC_T_NONE; 1963 1964 if (!is_flush_fua && !blk_queue_nomerges(q) && 1965 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 1966 return BLK_QC_T_NONE; 1967 1968 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 1969 return BLK_QC_T_NONE; 1970 1971 rq_qos_throttle(q, bio); 1972 1973 data.cmd_flags = bio->bi_opf; 1974 rq = blk_mq_get_request(q, bio, &data); 1975 if (unlikely(!rq)) { 1976 rq_qos_cleanup(q, bio); 1977 if (bio->bi_opf & REQ_NOWAIT) 1978 bio_wouldblock_error(bio); 1979 return BLK_QC_T_NONE; 1980 } 1981 1982 trace_block_getrq(q, bio, bio->bi_opf); 1983 1984 rq_qos_track(q, rq, bio); 1985 1986 cookie = request_to_qc_t(data.hctx, rq); 1987 1988 blk_mq_bio_to_request(rq, bio, nr_segs); 1989 1990 plug = blk_mq_plug(q, bio); 1991 if (unlikely(is_flush_fua)) { 1992 /* bypass scheduler for flush rq */ 1993 blk_insert_flush(rq); 1994 blk_mq_run_hw_queue(data.hctx, true); 1995 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1996 /* 1997 * Use plugging if we have a ->commit_rqs() hook as well, as 1998 * we know the driver uses bd->last in a smart fashion. 1999 */ 2000 unsigned int request_count = plug->rq_count; 2001 struct request *last = NULL; 2002 2003 if (!request_count) 2004 trace_block_plug(q); 2005 else 2006 last = list_entry_rq(plug->mq_list.prev); 2007 2008 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2009 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2010 blk_flush_plug_list(plug, false); 2011 trace_block_plug(q); 2012 } 2013 2014 blk_add_rq_to_plug(plug, rq); 2015 } else if (plug && !blk_queue_nomerges(q)) { 2016 /* 2017 * We do limited plugging. If the bio can be merged, do that. 2018 * Otherwise the existing request in the plug list will be 2019 * issued. So the plug list will have one request at most 2020 * The plug list might get flushed before this. If that happens, 2021 * the plug list is empty, and same_queue_rq is invalid. 2022 */ 2023 if (list_empty(&plug->mq_list)) 2024 same_queue_rq = NULL; 2025 if (same_queue_rq) { 2026 list_del_init(&same_queue_rq->queuelist); 2027 plug->rq_count--; 2028 } 2029 blk_add_rq_to_plug(plug, rq); 2030 trace_block_plug(q); 2031 2032 if (same_queue_rq) { 2033 data.hctx = same_queue_rq->mq_hctx; 2034 trace_block_unplug(q, 1, true); 2035 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2036 &cookie); 2037 } 2038 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2039 !data.hctx->dispatch_busy)) { 2040 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2041 } else { 2042 blk_mq_sched_insert_request(rq, false, true, true); 2043 } 2044 2045 return cookie; 2046 } 2047 2048 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2049 unsigned int hctx_idx) 2050 { 2051 struct page *page; 2052 2053 if (tags->rqs && set->ops->exit_request) { 2054 int i; 2055 2056 for (i = 0; i < tags->nr_tags; i++) { 2057 struct request *rq = tags->static_rqs[i]; 2058 2059 if (!rq) 2060 continue; 2061 set->ops->exit_request(set, rq, hctx_idx); 2062 tags->static_rqs[i] = NULL; 2063 } 2064 } 2065 2066 while (!list_empty(&tags->page_list)) { 2067 page = list_first_entry(&tags->page_list, struct page, lru); 2068 list_del_init(&page->lru); 2069 /* 2070 * Remove kmemleak object previously allocated in 2071 * blk_mq_alloc_rqs(). 2072 */ 2073 kmemleak_free(page_address(page)); 2074 __free_pages(page, page->private); 2075 } 2076 } 2077 2078 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2079 { 2080 kfree(tags->rqs); 2081 tags->rqs = NULL; 2082 kfree(tags->static_rqs); 2083 tags->static_rqs = NULL; 2084 2085 blk_mq_free_tags(tags); 2086 } 2087 2088 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2089 unsigned int hctx_idx, 2090 unsigned int nr_tags, 2091 unsigned int reserved_tags) 2092 { 2093 struct blk_mq_tags *tags; 2094 int node; 2095 2096 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2097 if (node == NUMA_NO_NODE) 2098 node = set->numa_node; 2099 2100 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2101 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2102 if (!tags) 2103 return NULL; 2104 2105 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2106 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2107 node); 2108 if (!tags->rqs) { 2109 blk_mq_free_tags(tags); 2110 return NULL; 2111 } 2112 2113 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2114 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2115 node); 2116 if (!tags->static_rqs) { 2117 kfree(tags->rqs); 2118 blk_mq_free_tags(tags); 2119 return NULL; 2120 } 2121 2122 return tags; 2123 } 2124 2125 static size_t order_to_size(unsigned int order) 2126 { 2127 return (size_t)PAGE_SIZE << order; 2128 } 2129 2130 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2131 unsigned int hctx_idx, int node) 2132 { 2133 int ret; 2134 2135 if (set->ops->init_request) { 2136 ret = set->ops->init_request(set, rq, hctx_idx, node); 2137 if (ret) 2138 return ret; 2139 } 2140 2141 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2142 return 0; 2143 } 2144 2145 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2146 unsigned int hctx_idx, unsigned int depth) 2147 { 2148 unsigned int i, j, entries_per_page, max_order = 4; 2149 size_t rq_size, left; 2150 int node; 2151 2152 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2153 if (node == NUMA_NO_NODE) 2154 node = set->numa_node; 2155 2156 INIT_LIST_HEAD(&tags->page_list); 2157 2158 /* 2159 * rq_size is the size of the request plus driver payload, rounded 2160 * to the cacheline size 2161 */ 2162 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2163 cache_line_size()); 2164 left = rq_size * depth; 2165 2166 for (i = 0; i < depth; ) { 2167 int this_order = max_order; 2168 struct page *page; 2169 int to_do; 2170 void *p; 2171 2172 while (this_order && left < order_to_size(this_order - 1)) 2173 this_order--; 2174 2175 do { 2176 page = alloc_pages_node(node, 2177 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2178 this_order); 2179 if (page) 2180 break; 2181 if (!this_order--) 2182 break; 2183 if (order_to_size(this_order) < rq_size) 2184 break; 2185 } while (1); 2186 2187 if (!page) 2188 goto fail; 2189 2190 page->private = this_order; 2191 list_add_tail(&page->lru, &tags->page_list); 2192 2193 p = page_address(page); 2194 /* 2195 * Allow kmemleak to scan these pages as they contain pointers 2196 * to additional allocations like via ops->init_request(). 2197 */ 2198 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2199 entries_per_page = order_to_size(this_order) / rq_size; 2200 to_do = min(entries_per_page, depth - i); 2201 left -= to_do * rq_size; 2202 for (j = 0; j < to_do; j++) { 2203 struct request *rq = p; 2204 2205 tags->static_rqs[i] = rq; 2206 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2207 tags->static_rqs[i] = NULL; 2208 goto fail; 2209 } 2210 2211 p += rq_size; 2212 i++; 2213 } 2214 } 2215 return 0; 2216 2217 fail: 2218 blk_mq_free_rqs(set, tags, hctx_idx); 2219 return -ENOMEM; 2220 } 2221 2222 /* 2223 * 'cpu' is going away. splice any existing rq_list entries from this 2224 * software queue to the hw queue dispatch list, and ensure that it 2225 * gets run. 2226 */ 2227 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2228 { 2229 struct blk_mq_hw_ctx *hctx; 2230 struct blk_mq_ctx *ctx; 2231 LIST_HEAD(tmp); 2232 enum hctx_type type; 2233 2234 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2235 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2236 type = hctx->type; 2237 2238 spin_lock(&ctx->lock); 2239 if (!list_empty(&ctx->rq_lists[type])) { 2240 list_splice_init(&ctx->rq_lists[type], &tmp); 2241 blk_mq_hctx_clear_pending(hctx, ctx); 2242 } 2243 spin_unlock(&ctx->lock); 2244 2245 if (list_empty(&tmp)) 2246 return 0; 2247 2248 spin_lock(&hctx->lock); 2249 list_splice_tail_init(&tmp, &hctx->dispatch); 2250 spin_unlock(&hctx->lock); 2251 2252 blk_mq_run_hw_queue(hctx, true); 2253 return 0; 2254 } 2255 2256 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2257 { 2258 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2259 &hctx->cpuhp_dead); 2260 } 2261 2262 /* hctx->ctxs will be freed in queue's release handler */ 2263 static void blk_mq_exit_hctx(struct request_queue *q, 2264 struct blk_mq_tag_set *set, 2265 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2266 { 2267 if (blk_mq_hw_queue_mapped(hctx)) 2268 blk_mq_tag_idle(hctx); 2269 2270 if (set->ops->exit_request) 2271 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2272 2273 if (set->ops->exit_hctx) 2274 set->ops->exit_hctx(hctx, hctx_idx); 2275 2276 blk_mq_remove_cpuhp(hctx); 2277 2278 spin_lock(&q->unused_hctx_lock); 2279 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2280 spin_unlock(&q->unused_hctx_lock); 2281 } 2282 2283 static void blk_mq_exit_hw_queues(struct request_queue *q, 2284 struct blk_mq_tag_set *set, int nr_queue) 2285 { 2286 struct blk_mq_hw_ctx *hctx; 2287 unsigned int i; 2288 2289 queue_for_each_hw_ctx(q, hctx, i) { 2290 if (i == nr_queue) 2291 break; 2292 blk_mq_debugfs_unregister_hctx(hctx); 2293 blk_mq_exit_hctx(q, set, hctx, i); 2294 } 2295 } 2296 2297 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2298 { 2299 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2300 2301 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2302 __alignof__(struct blk_mq_hw_ctx)) != 2303 sizeof(struct blk_mq_hw_ctx)); 2304 2305 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2306 hw_ctx_size += sizeof(struct srcu_struct); 2307 2308 return hw_ctx_size; 2309 } 2310 2311 static int blk_mq_init_hctx(struct request_queue *q, 2312 struct blk_mq_tag_set *set, 2313 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2314 { 2315 hctx->queue_num = hctx_idx; 2316 2317 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2318 2319 hctx->tags = set->tags[hctx_idx]; 2320 2321 if (set->ops->init_hctx && 2322 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2323 goto unregister_cpu_notifier; 2324 2325 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2326 hctx->numa_node)) 2327 goto exit_hctx; 2328 return 0; 2329 2330 exit_hctx: 2331 if (set->ops->exit_hctx) 2332 set->ops->exit_hctx(hctx, hctx_idx); 2333 unregister_cpu_notifier: 2334 blk_mq_remove_cpuhp(hctx); 2335 return -1; 2336 } 2337 2338 static struct blk_mq_hw_ctx * 2339 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2340 int node) 2341 { 2342 struct blk_mq_hw_ctx *hctx; 2343 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2344 2345 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2346 if (!hctx) 2347 goto fail_alloc_hctx; 2348 2349 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2350 goto free_hctx; 2351 2352 atomic_set(&hctx->nr_active, 0); 2353 if (node == NUMA_NO_NODE) 2354 node = set->numa_node; 2355 hctx->numa_node = node; 2356 2357 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2358 spin_lock_init(&hctx->lock); 2359 INIT_LIST_HEAD(&hctx->dispatch); 2360 hctx->queue = q; 2361 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2362 2363 INIT_LIST_HEAD(&hctx->hctx_list); 2364 2365 /* 2366 * Allocate space for all possible cpus to avoid allocation at 2367 * runtime 2368 */ 2369 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2370 gfp, node); 2371 if (!hctx->ctxs) 2372 goto free_cpumask; 2373 2374 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2375 gfp, node)) 2376 goto free_ctxs; 2377 hctx->nr_ctx = 0; 2378 2379 spin_lock_init(&hctx->dispatch_wait_lock); 2380 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2381 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2382 2383 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2384 gfp); 2385 if (!hctx->fq) 2386 goto free_bitmap; 2387 2388 if (hctx->flags & BLK_MQ_F_BLOCKING) 2389 init_srcu_struct(hctx->srcu); 2390 blk_mq_hctx_kobj_init(hctx); 2391 2392 return hctx; 2393 2394 free_bitmap: 2395 sbitmap_free(&hctx->ctx_map); 2396 free_ctxs: 2397 kfree(hctx->ctxs); 2398 free_cpumask: 2399 free_cpumask_var(hctx->cpumask); 2400 free_hctx: 2401 kfree(hctx); 2402 fail_alloc_hctx: 2403 return NULL; 2404 } 2405 2406 static void blk_mq_init_cpu_queues(struct request_queue *q, 2407 unsigned int nr_hw_queues) 2408 { 2409 struct blk_mq_tag_set *set = q->tag_set; 2410 unsigned int i, j; 2411 2412 for_each_possible_cpu(i) { 2413 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2414 struct blk_mq_hw_ctx *hctx; 2415 int k; 2416 2417 __ctx->cpu = i; 2418 spin_lock_init(&__ctx->lock); 2419 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2420 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2421 2422 __ctx->queue = q; 2423 2424 /* 2425 * Set local node, IFF we have more than one hw queue. If 2426 * not, we remain on the home node of the device 2427 */ 2428 for (j = 0; j < set->nr_maps; j++) { 2429 hctx = blk_mq_map_queue_type(q, j, i); 2430 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2431 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2432 } 2433 } 2434 } 2435 2436 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2437 { 2438 int ret = 0; 2439 2440 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2441 set->queue_depth, set->reserved_tags); 2442 if (!set->tags[hctx_idx]) 2443 return false; 2444 2445 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2446 set->queue_depth); 2447 if (!ret) 2448 return true; 2449 2450 blk_mq_free_rq_map(set->tags[hctx_idx]); 2451 set->tags[hctx_idx] = NULL; 2452 return false; 2453 } 2454 2455 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2456 unsigned int hctx_idx) 2457 { 2458 if (set->tags && set->tags[hctx_idx]) { 2459 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2460 blk_mq_free_rq_map(set->tags[hctx_idx]); 2461 set->tags[hctx_idx] = NULL; 2462 } 2463 } 2464 2465 static void blk_mq_map_swqueue(struct request_queue *q) 2466 { 2467 unsigned int i, j, hctx_idx; 2468 struct blk_mq_hw_ctx *hctx; 2469 struct blk_mq_ctx *ctx; 2470 struct blk_mq_tag_set *set = q->tag_set; 2471 2472 queue_for_each_hw_ctx(q, hctx, i) { 2473 cpumask_clear(hctx->cpumask); 2474 hctx->nr_ctx = 0; 2475 hctx->dispatch_from = NULL; 2476 } 2477 2478 /* 2479 * Map software to hardware queues. 2480 * 2481 * If the cpu isn't present, the cpu is mapped to first hctx. 2482 */ 2483 for_each_possible_cpu(i) { 2484 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2485 /* unmapped hw queue can be remapped after CPU topo changed */ 2486 if (!set->tags[hctx_idx] && 2487 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2488 /* 2489 * If tags initialization fail for some hctx, 2490 * that hctx won't be brought online. In this 2491 * case, remap the current ctx to hctx[0] which 2492 * is guaranteed to always have tags allocated 2493 */ 2494 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2495 } 2496 2497 ctx = per_cpu_ptr(q->queue_ctx, i); 2498 for (j = 0; j < set->nr_maps; j++) { 2499 if (!set->map[j].nr_queues) { 2500 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2501 HCTX_TYPE_DEFAULT, i); 2502 continue; 2503 } 2504 2505 hctx = blk_mq_map_queue_type(q, j, i); 2506 ctx->hctxs[j] = hctx; 2507 /* 2508 * If the CPU is already set in the mask, then we've 2509 * mapped this one already. This can happen if 2510 * devices share queues across queue maps. 2511 */ 2512 if (cpumask_test_cpu(i, hctx->cpumask)) 2513 continue; 2514 2515 cpumask_set_cpu(i, hctx->cpumask); 2516 hctx->type = j; 2517 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2518 hctx->ctxs[hctx->nr_ctx++] = ctx; 2519 2520 /* 2521 * If the nr_ctx type overflows, we have exceeded the 2522 * amount of sw queues we can support. 2523 */ 2524 BUG_ON(!hctx->nr_ctx); 2525 } 2526 2527 for (; j < HCTX_MAX_TYPES; j++) 2528 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2529 HCTX_TYPE_DEFAULT, i); 2530 } 2531 2532 queue_for_each_hw_ctx(q, hctx, i) { 2533 /* 2534 * If no software queues are mapped to this hardware queue, 2535 * disable it and free the request entries. 2536 */ 2537 if (!hctx->nr_ctx) { 2538 /* Never unmap queue 0. We need it as a 2539 * fallback in case of a new remap fails 2540 * allocation 2541 */ 2542 if (i && set->tags[i]) 2543 blk_mq_free_map_and_requests(set, i); 2544 2545 hctx->tags = NULL; 2546 continue; 2547 } 2548 2549 hctx->tags = set->tags[i]; 2550 WARN_ON(!hctx->tags); 2551 2552 /* 2553 * Set the map size to the number of mapped software queues. 2554 * This is more accurate and more efficient than looping 2555 * over all possibly mapped software queues. 2556 */ 2557 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2558 2559 /* 2560 * Initialize batch roundrobin counts 2561 */ 2562 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2563 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2564 } 2565 } 2566 2567 /* 2568 * Caller needs to ensure that we're either frozen/quiesced, or that 2569 * the queue isn't live yet. 2570 */ 2571 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2572 { 2573 struct blk_mq_hw_ctx *hctx; 2574 int i; 2575 2576 queue_for_each_hw_ctx(q, hctx, i) { 2577 if (shared) 2578 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2579 else 2580 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2581 } 2582 } 2583 2584 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2585 bool shared) 2586 { 2587 struct request_queue *q; 2588 2589 lockdep_assert_held(&set->tag_list_lock); 2590 2591 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2592 blk_mq_freeze_queue(q); 2593 queue_set_hctx_shared(q, shared); 2594 blk_mq_unfreeze_queue(q); 2595 } 2596 } 2597 2598 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2599 { 2600 struct blk_mq_tag_set *set = q->tag_set; 2601 2602 mutex_lock(&set->tag_list_lock); 2603 list_del_rcu(&q->tag_set_list); 2604 if (list_is_singular(&set->tag_list)) { 2605 /* just transitioned to unshared */ 2606 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2607 /* update existing queue */ 2608 blk_mq_update_tag_set_depth(set, false); 2609 } 2610 mutex_unlock(&set->tag_list_lock); 2611 INIT_LIST_HEAD(&q->tag_set_list); 2612 } 2613 2614 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2615 struct request_queue *q) 2616 { 2617 mutex_lock(&set->tag_list_lock); 2618 2619 /* 2620 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2621 */ 2622 if (!list_empty(&set->tag_list) && 2623 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2624 set->flags |= BLK_MQ_F_TAG_SHARED; 2625 /* update existing queue */ 2626 blk_mq_update_tag_set_depth(set, true); 2627 } 2628 if (set->flags & BLK_MQ_F_TAG_SHARED) 2629 queue_set_hctx_shared(q, true); 2630 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2631 2632 mutex_unlock(&set->tag_list_lock); 2633 } 2634 2635 /* All allocations will be freed in release handler of q->mq_kobj */ 2636 static int blk_mq_alloc_ctxs(struct request_queue *q) 2637 { 2638 struct blk_mq_ctxs *ctxs; 2639 int cpu; 2640 2641 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2642 if (!ctxs) 2643 return -ENOMEM; 2644 2645 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2646 if (!ctxs->queue_ctx) 2647 goto fail; 2648 2649 for_each_possible_cpu(cpu) { 2650 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2651 ctx->ctxs = ctxs; 2652 } 2653 2654 q->mq_kobj = &ctxs->kobj; 2655 q->queue_ctx = ctxs->queue_ctx; 2656 2657 return 0; 2658 fail: 2659 kfree(ctxs); 2660 return -ENOMEM; 2661 } 2662 2663 /* 2664 * It is the actual release handler for mq, but we do it from 2665 * request queue's release handler for avoiding use-after-free 2666 * and headache because q->mq_kobj shouldn't have been introduced, 2667 * but we can't group ctx/kctx kobj without it. 2668 */ 2669 void blk_mq_release(struct request_queue *q) 2670 { 2671 struct blk_mq_hw_ctx *hctx, *next; 2672 int i; 2673 2674 queue_for_each_hw_ctx(q, hctx, i) 2675 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2676 2677 /* all hctx are in .unused_hctx_list now */ 2678 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2679 list_del_init(&hctx->hctx_list); 2680 kobject_put(&hctx->kobj); 2681 } 2682 2683 kfree(q->queue_hw_ctx); 2684 2685 /* 2686 * release .mq_kobj and sw queue's kobject now because 2687 * both share lifetime with request queue. 2688 */ 2689 blk_mq_sysfs_deinit(q); 2690 } 2691 2692 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2693 { 2694 struct request_queue *uninit_q, *q; 2695 2696 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2697 if (!uninit_q) 2698 return ERR_PTR(-ENOMEM); 2699 2700 /* 2701 * Initialize the queue without an elevator. device_add_disk() will do 2702 * the initialization. 2703 */ 2704 q = blk_mq_init_allocated_queue(set, uninit_q, false); 2705 if (IS_ERR(q)) 2706 blk_cleanup_queue(uninit_q); 2707 2708 return q; 2709 } 2710 EXPORT_SYMBOL(blk_mq_init_queue); 2711 2712 /* 2713 * Helper for setting up a queue with mq ops, given queue depth, and 2714 * the passed in mq ops flags. 2715 */ 2716 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2717 const struct blk_mq_ops *ops, 2718 unsigned int queue_depth, 2719 unsigned int set_flags) 2720 { 2721 struct request_queue *q; 2722 int ret; 2723 2724 memset(set, 0, sizeof(*set)); 2725 set->ops = ops; 2726 set->nr_hw_queues = 1; 2727 set->nr_maps = 1; 2728 set->queue_depth = queue_depth; 2729 set->numa_node = NUMA_NO_NODE; 2730 set->flags = set_flags; 2731 2732 ret = blk_mq_alloc_tag_set(set); 2733 if (ret) 2734 return ERR_PTR(ret); 2735 2736 q = blk_mq_init_queue(set); 2737 if (IS_ERR(q)) { 2738 blk_mq_free_tag_set(set); 2739 return q; 2740 } 2741 2742 return q; 2743 } 2744 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2745 2746 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2747 struct blk_mq_tag_set *set, struct request_queue *q, 2748 int hctx_idx, int node) 2749 { 2750 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2751 2752 /* reuse dead hctx first */ 2753 spin_lock(&q->unused_hctx_lock); 2754 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2755 if (tmp->numa_node == node) { 2756 hctx = tmp; 2757 break; 2758 } 2759 } 2760 if (hctx) 2761 list_del_init(&hctx->hctx_list); 2762 spin_unlock(&q->unused_hctx_lock); 2763 2764 if (!hctx) 2765 hctx = blk_mq_alloc_hctx(q, set, node); 2766 if (!hctx) 2767 goto fail; 2768 2769 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2770 goto free_hctx; 2771 2772 return hctx; 2773 2774 free_hctx: 2775 kobject_put(&hctx->kobj); 2776 fail: 2777 return NULL; 2778 } 2779 2780 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2781 struct request_queue *q) 2782 { 2783 int i, j, end; 2784 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2785 2786 /* protect against switching io scheduler */ 2787 mutex_lock(&q->sysfs_lock); 2788 for (i = 0; i < set->nr_hw_queues; i++) { 2789 int node; 2790 struct blk_mq_hw_ctx *hctx; 2791 2792 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2793 /* 2794 * If the hw queue has been mapped to another numa node, 2795 * we need to realloc the hctx. If allocation fails, fallback 2796 * to use the previous one. 2797 */ 2798 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2799 continue; 2800 2801 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2802 if (hctx) { 2803 if (hctxs[i]) 2804 blk_mq_exit_hctx(q, set, hctxs[i], i); 2805 hctxs[i] = hctx; 2806 } else { 2807 if (hctxs[i]) 2808 pr_warn("Allocate new hctx on node %d fails,\ 2809 fallback to previous one on node %d\n", 2810 node, hctxs[i]->numa_node); 2811 else 2812 break; 2813 } 2814 } 2815 /* 2816 * Increasing nr_hw_queues fails. Free the newly allocated 2817 * hctxs and keep the previous q->nr_hw_queues. 2818 */ 2819 if (i != set->nr_hw_queues) { 2820 j = q->nr_hw_queues; 2821 end = i; 2822 } else { 2823 j = i; 2824 end = q->nr_hw_queues; 2825 q->nr_hw_queues = set->nr_hw_queues; 2826 } 2827 2828 for (; j < end; j++) { 2829 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2830 2831 if (hctx) { 2832 if (hctx->tags) 2833 blk_mq_free_map_and_requests(set, j); 2834 blk_mq_exit_hctx(q, set, hctx, j); 2835 hctxs[j] = NULL; 2836 } 2837 } 2838 mutex_unlock(&q->sysfs_lock); 2839 } 2840 2841 /* 2842 * Maximum number of hardware queues we support. For single sets, we'll never 2843 * have more than the CPUs (software queues). For multiple sets, the tag_set 2844 * user may have set ->nr_hw_queues larger. 2845 */ 2846 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2847 { 2848 if (set->nr_maps == 1) 2849 return nr_cpu_ids; 2850 2851 return max(set->nr_hw_queues, nr_cpu_ids); 2852 } 2853 2854 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2855 struct request_queue *q, 2856 bool elevator_init) 2857 { 2858 /* mark the queue as mq asap */ 2859 q->mq_ops = set->ops; 2860 2861 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2862 blk_mq_poll_stats_bkt, 2863 BLK_MQ_POLL_STATS_BKTS, q); 2864 if (!q->poll_cb) 2865 goto err_exit; 2866 2867 if (blk_mq_alloc_ctxs(q)) 2868 goto err_poll; 2869 2870 /* init q->mq_kobj and sw queues' kobjects */ 2871 blk_mq_sysfs_init(q); 2872 2873 q->nr_queues = nr_hw_queues(set); 2874 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2875 GFP_KERNEL, set->numa_node); 2876 if (!q->queue_hw_ctx) 2877 goto err_sys_init; 2878 2879 INIT_LIST_HEAD(&q->unused_hctx_list); 2880 spin_lock_init(&q->unused_hctx_lock); 2881 2882 blk_mq_realloc_hw_ctxs(set, q); 2883 if (!q->nr_hw_queues) 2884 goto err_hctxs; 2885 2886 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2887 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2888 2889 q->tag_set = set; 2890 2891 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2892 if (set->nr_maps > HCTX_TYPE_POLL && 2893 set->map[HCTX_TYPE_POLL].nr_queues) 2894 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2895 2896 q->sg_reserved_size = INT_MAX; 2897 2898 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2899 INIT_LIST_HEAD(&q->requeue_list); 2900 spin_lock_init(&q->requeue_lock); 2901 2902 blk_queue_make_request(q, blk_mq_make_request); 2903 2904 /* 2905 * Do this after blk_queue_make_request() overrides it... 2906 */ 2907 q->nr_requests = set->queue_depth; 2908 2909 /* 2910 * Default to classic polling 2911 */ 2912 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2913 2914 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2915 blk_mq_add_queue_tag_set(set, q); 2916 blk_mq_map_swqueue(q); 2917 2918 if (elevator_init) 2919 elevator_init_mq(q); 2920 2921 return q; 2922 2923 err_hctxs: 2924 kfree(q->queue_hw_ctx); 2925 q->nr_hw_queues = 0; 2926 err_sys_init: 2927 blk_mq_sysfs_deinit(q); 2928 err_poll: 2929 blk_stat_free_callback(q->poll_cb); 2930 q->poll_cb = NULL; 2931 err_exit: 2932 q->mq_ops = NULL; 2933 return ERR_PTR(-ENOMEM); 2934 } 2935 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2936 2937 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2938 void blk_mq_exit_queue(struct request_queue *q) 2939 { 2940 struct blk_mq_tag_set *set = q->tag_set; 2941 2942 blk_mq_del_queue_tag_set(q); 2943 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2944 } 2945 2946 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2947 { 2948 int i; 2949 2950 for (i = 0; i < set->nr_hw_queues; i++) 2951 if (!__blk_mq_alloc_rq_map(set, i)) 2952 goto out_unwind; 2953 2954 return 0; 2955 2956 out_unwind: 2957 while (--i >= 0) 2958 blk_mq_free_rq_map(set->tags[i]); 2959 2960 return -ENOMEM; 2961 } 2962 2963 /* 2964 * Allocate the request maps associated with this tag_set. Note that this 2965 * may reduce the depth asked for, if memory is tight. set->queue_depth 2966 * will be updated to reflect the allocated depth. 2967 */ 2968 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2969 { 2970 unsigned int depth; 2971 int err; 2972 2973 depth = set->queue_depth; 2974 do { 2975 err = __blk_mq_alloc_rq_maps(set); 2976 if (!err) 2977 break; 2978 2979 set->queue_depth >>= 1; 2980 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2981 err = -ENOMEM; 2982 break; 2983 } 2984 } while (set->queue_depth); 2985 2986 if (!set->queue_depth || err) { 2987 pr_err("blk-mq: failed to allocate request map\n"); 2988 return -ENOMEM; 2989 } 2990 2991 if (depth != set->queue_depth) 2992 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2993 depth, set->queue_depth); 2994 2995 return 0; 2996 } 2997 2998 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2999 { 3000 if (set->ops->map_queues && !is_kdump_kernel()) { 3001 int i; 3002 3003 /* 3004 * transport .map_queues is usually done in the following 3005 * way: 3006 * 3007 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3008 * mask = get_cpu_mask(queue) 3009 * for_each_cpu(cpu, mask) 3010 * set->map[x].mq_map[cpu] = queue; 3011 * } 3012 * 3013 * When we need to remap, the table has to be cleared for 3014 * killing stale mapping since one CPU may not be mapped 3015 * to any hw queue. 3016 */ 3017 for (i = 0; i < set->nr_maps; i++) 3018 blk_mq_clear_mq_map(&set->map[i]); 3019 3020 return set->ops->map_queues(set); 3021 } else { 3022 BUG_ON(set->nr_maps > 1); 3023 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3024 } 3025 } 3026 3027 /* 3028 * Alloc a tag set to be associated with one or more request queues. 3029 * May fail with EINVAL for various error conditions. May adjust the 3030 * requested depth down, if it's too large. In that case, the set 3031 * value will be stored in set->queue_depth. 3032 */ 3033 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3034 { 3035 int i, ret; 3036 3037 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3038 3039 if (!set->nr_hw_queues) 3040 return -EINVAL; 3041 if (!set->queue_depth) 3042 return -EINVAL; 3043 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3044 return -EINVAL; 3045 3046 if (!set->ops->queue_rq) 3047 return -EINVAL; 3048 3049 if (!set->ops->get_budget ^ !set->ops->put_budget) 3050 return -EINVAL; 3051 3052 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3053 pr_info("blk-mq: reduced tag depth to %u\n", 3054 BLK_MQ_MAX_DEPTH); 3055 set->queue_depth = BLK_MQ_MAX_DEPTH; 3056 } 3057 3058 if (!set->nr_maps) 3059 set->nr_maps = 1; 3060 else if (set->nr_maps > HCTX_MAX_TYPES) 3061 return -EINVAL; 3062 3063 /* 3064 * If a crashdump is active, then we are potentially in a very 3065 * memory constrained environment. Limit us to 1 queue and 3066 * 64 tags to prevent using too much memory. 3067 */ 3068 if (is_kdump_kernel()) { 3069 set->nr_hw_queues = 1; 3070 set->nr_maps = 1; 3071 set->queue_depth = min(64U, set->queue_depth); 3072 } 3073 /* 3074 * There is no use for more h/w queues than cpus if we just have 3075 * a single map 3076 */ 3077 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3078 set->nr_hw_queues = nr_cpu_ids; 3079 3080 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3081 GFP_KERNEL, set->numa_node); 3082 if (!set->tags) 3083 return -ENOMEM; 3084 3085 ret = -ENOMEM; 3086 for (i = 0; i < set->nr_maps; i++) { 3087 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3088 sizeof(set->map[i].mq_map[0]), 3089 GFP_KERNEL, set->numa_node); 3090 if (!set->map[i].mq_map) 3091 goto out_free_mq_map; 3092 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3093 } 3094 3095 ret = blk_mq_update_queue_map(set); 3096 if (ret) 3097 goto out_free_mq_map; 3098 3099 ret = blk_mq_alloc_rq_maps(set); 3100 if (ret) 3101 goto out_free_mq_map; 3102 3103 mutex_init(&set->tag_list_lock); 3104 INIT_LIST_HEAD(&set->tag_list); 3105 3106 return 0; 3107 3108 out_free_mq_map: 3109 for (i = 0; i < set->nr_maps; i++) { 3110 kfree(set->map[i].mq_map); 3111 set->map[i].mq_map = NULL; 3112 } 3113 kfree(set->tags); 3114 set->tags = NULL; 3115 return ret; 3116 } 3117 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3118 3119 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3120 { 3121 int i, j; 3122 3123 for (i = 0; i < nr_hw_queues(set); i++) 3124 blk_mq_free_map_and_requests(set, i); 3125 3126 for (j = 0; j < set->nr_maps; j++) { 3127 kfree(set->map[j].mq_map); 3128 set->map[j].mq_map = NULL; 3129 } 3130 3131 kfree(set->tags); 3132 set->tags = NULL; 3133 } 3134 EXPORT_SYMBOL(blk_mq_free_tag_set); 3135 3136 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3137 { 3138 struct blk_mq_tag_set *set = q->tag_set; 3139 struct blk_mq_hw_ctx *hctx; 3140 int i, ret; 3141 3142 if (!set) 3143 return -EINVAL; 3144 3145 if (q->nr_requests == nr) 3146 return 0; 3147 3148 blk_mq_freeze_queue(q); 3149 blk_mq_quiesce_queue(q); 3150 3151 ret = 0; 3152 queue_for_each_hw_ctx(q, hctx, i) { 3153 if (!hctx->tags) 3154 continue; 3155 /* 3156 * If we're using an MQ scheduler, just update the scheduler 3157 * queue depth. This is similar to what the old code would do. 3158 */ 3159 if (!hctx->sched_tags) { 3160 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3161 false); 3162 } else { 3163 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3164 nr, true); 3165 } 3166 if (ret) 3167 break; 3168 if (q->elevator && q->elevator->type->ops.depth_updated) 3169 q->elevator->type->ops.depth_updated(hctx); 3170 } 3171 3172 if (!ret) 3173 q->nr_requests = nr; 3174 3175 blk_mq_unquiesce_queue(q); 3176 blk_mq_unfreeze_queue(q); 3177 3178 return ret; 3179 } 3180 3181 /* 3182 * request_queue and elevator_type pair. 3183 * It is just used by __blk_mq_update_nr_hw_queues to cache 3184 * the elevator_type associated with a request_queue. 3185 */ 3186 struct blk_mq_qe_pair { 3187 struct list_head node; 3188 struct request_queue *q; 3189 struct elevator_type *type; 3190 }; 3191 3192 /* 3193 * Cache the elevator_type in qe pair list and switch the 3194 * io scheduler to 'none' 3195 */ 3196 static bool blk_mq_elv_switch_none(struct list_head *head, 3197 struct request_queue *q) 3198 { 3199 struct blk_mq_qe_pair *qe; 3200 3201 if (!q->elevator) 3202 return true; 3203 3204 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3205 if (!qe) 3206 return false; 3207 3208 INIT_LIST_HEAD(&qe->node); 3209 qe->q = q; 3210 qe->type = q->elevator->type; 3211 list_add(&qe->node, head); 3212 3213 mutex_lock(&q->sysfs_lock); 3214 /* 3215 * After elevator_switch_mq, the previous elevator_queue will be 3216 * released by elevator_release. The reference of the io scheduler 3217 * module get by elevator_get will also be put. So we need to get 3218 * a reference of the io scheduler module here to prevent it to be 3219 * removed. 3220 */ 3221 __module_get(qe->type->elevator_owner); 3222 elevator_switch_mq(q, NULL); 3223 mutex_unlock(&q->sysfs_lock); 3224 3225 return true; 3226 } 3227 3228 static void blk_mq_elv_switch_back(struct list_head *head, 3229 struct request_queue *q) 3230 { 3231 struct blk_mq_qe_pair *qe; 3232 struct elevator_type *t = NULL; 3233 3234 list_for_each_entry(qe, head, node) 3235 if (qe->q == q) { 3236 t = qe->type; 3237 break; 3238 } 3239 3240 if (!t) 3241 return; 3242 3243 list_del(&qe->node); 3244 kfree(qe); 3245 3246 mutex_lock(&q->sysfs_lock); 3247 elevator_switch_mq(q, t); 3248 mutex_unlock(&q->sysfs_lock); 3249 } 3250 3251 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3252 int nr_hw_queues) 3253 { 3254 struct request_queue *q; 3255 LIST_HEAD(head); 3256 int prev_nr_hw_queues; 3257 3258 lockdep_assert_held(&set->tag_list_lock); 3259 3260 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3261 nr_hw_queues = nr_cpu_ids; 3262 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3263 return; 3264 3265 list_for_each_entry(q, &set->tag_list, tag_set_list) 3266 blk_mq_freeze_queue(q); 3267 /* 3268 * Sync with blk_mq_queue_tag_busy_iter. 3269 */ 3270 synchronize_rcu(); 3271 /* 3272 * Switch IO scheduler to 'none', cleaning up the data associated 3273 * with the previous scheduler. We will switch back once we are done 3274 * updating the new sw to hw queue mappings. 3275 */ 3276 list_for_each_entry(q, &set->tag_list, tag_set_list) 3277 if (!blk_mq_elv_switch_none(&head, q)) 3278 goto switch_back; 3279 3280 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3281 blk_mq_debugfs_unregister_hctxs(q); 3282 blk_mq_sysfs_unregister(q); 3283 } 3284 3285 prev_nr_hw_queues = set->nr_hw_queues; 3286 set->nr_hw_queues = nr_hw_queues; 3287 blk_mq_update_queue_map(set); 3288 fallback: 3289 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3290 blk_mq_realloc_hw_ctxs(set, q); 3291 if (q->nr_hw_queues != set->nr_hw_queues) { 3292 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3293 nr_hw_queues, prev_nr_hw_queues); 3294 set->nr_hw_queues = prev_nr_hw_queues; 3295 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3296 goto fallback; 3297 } 3298 blk_mq_map_swqueue(q); 3299 } 3300 3301 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3302 blk_mq_sysfs_register(q); 3303 blk_mq_debugfs_register_hctxs(q); 3304 } 3305 3306 switch_back: 3307 list_for_each_entry(q, &set->tag_list, tag_set_list) 3308 blk_mq_elv_switch_back(&head, q); 3309 3310 list_for_each_entry(q, &set->tag_list, tag_set_list) 3311 blk_mq_unfreeze_queue(q); 3312 } 3313 3314 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3315 { 3316 mutex_lock(&set->tag_list_lock); 3317 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3318 mutex_unlock(&set->tag_list_lock); 3319 } 3320 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3321 3322 /* Enable polling stats and return whether they were already enabled. */ 3323 static bool blk_poll_stats_enable(struct request_queue *q) 3324 { 3325 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3326 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3327 return true; 3328 blk_stat_add_callback(q, q->poll_cb); 3329 return false; 3330 } 3331 3332 static void blk_mq_poll_stats_start(struct request_queue *q) 3333 { 3334 /* 3335 * We don't arm the callback if polling stats are not enabled or the 3336 * callback is already active. 3337 */ 3338 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3339 blk_stat_is_active(q->poll_cb)) 3340 return; 3341 3342 blk_stat_activate_msecs(q->poll_cb, 100); 3343 } 3344 3345 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3346 { 3347 struct request_queue *q = cb->data; 3348 int bucket; 3349 3350 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3351 if (cb->stat[bucket].nr_samples) 3352 q->poll_stat[bucket] = cb->stat[bucket]; 3353 } 3354 } 3355 3356 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3357 struct blk_mq_hw_ctx *hctx, 3358 struct request *rq) 3359 { 3360 unsigned long ret = 0; 3361 int bucket; 3362 3363 /* 3364 * If stats collection isn't on, don't sleep but turn it on for 3365 * future users 3366 */ 3367 if (!blk_poll_stats_enable(q)) 3368 return 0; 3369 3370 /* 3371 * As an optimistic guess, use half of the mean service time 3372 * for this type of request. We can (and should) make this smarter. 3373 * For instance, if the completion latencies are tight, we can 3374 * get closer than just half the mean. This is especially 3375 * important on devices where the completion latencies are longer 3376 * than ~10 usec. We do use the stats for the relevant IO size 3377 * if available which does lead to better estimates. 3378 */ 3379 bucket = blk_mq_poll_stats_bkt(rq); 3380 if (bucket < 0) 3381 return ret; 3382 3383 if (q->poll_stat[bucket].nr_samples) 3384 ret = (q->poll_stat[bucket].mean + 1) / 2; 3385 3386 return ret; 3387 } 3388 3389 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3390 struct blk_mq_hw_ctx *hctx, 3391 struct request *rq) 3392 { 3393 struct hrtimer_sleeper hs; 3394 enum hrtimer_mode mode; 3395 unsigned int nsecs; 3396 ktime_t kt; 3397 3398 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3399 return false; 3400 3401 /* 3402 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3403 * 3404 * 0: use half of prev avg 3405 * >0: use this specific value 3406 */ 3407 if (q->poll_nsec > 0) 3408 nsecs = q->poll_nsec; 3409 else 3410 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3411 3412 if (!nsecs) 3413 return false; 3414 3415 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3416 3417 /* 3418 * This will be replaced with the stats tracking code, using 3419 * 'avg_completion_time / 2' as the pre-sleep target. 3420 */ 3421 kt = nsecs; 3422 3423 mode = HRTIMER_MODE_REL; 3424 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3425 hrtimer_set_expires(&hs.timer, kt); 3426 3427 do { 3428 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3429 break; 3430 set_current_state(TASK_UNINTERRUPTIBLE); 3431 hrtimer_sleeper_start_expires(&hs, mode); 3432 if (hs.task) 3433 io_schedule(); 3434 hrtimer_cancel(&hs.timer); 3435 mode = HRTIMER_MODE_ABS; 3436 } while (hs.task && !signal_pending(current)); 3437 3438 __set_current_state(TASK_RUNNING); 3439 destroy_hrtimer_on_stack(&hs.timer); 3440 return true; 3441 } 3442 3443 static bool blk_mq_poll_hybrid(struct request_queue *q, 3444 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3445 { 3446 struct request *rq; 3447 3448 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3449 return false; 3450 3451 if (!blk_qc_t_is_internal(cookie)) 3452 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3453 else { 3454 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3455 /* 3456 * With scheduling, if the request has completed, we'll 3457 * get a NULL return here, as we clear the sched tag when 3458 * that happens. The request still remains valid, like always, 3459 * so we should be safe with just the NULL check. 3460 */ 3461 if (!rq) 3462 return false; 3463 } 3464 3465 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3466 } 3467 3468 /** 3469 * blk_poll - poll for IO completions 3470 * @q: the queue 3471 * @cookie: cookie passed back at IO submission time 3472 * @spin: whether to spin for completions 3473 * 3474 * Description: 3475 * Poll for completions on the passed in queue. Returns number of 3476 * completed entries found. If @spin is true, then blk_poll will continue 3477 * looping until at least one completion is found, unless the task is 3478 * otherwise marked running (or we need to reschedule). 3479 */ 3480 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3481 { 3482 struct blk_mq_hw_ctx *hctx; 3483 long state; 3484 3485 if (!blk_qc_t_valid(cookie) || 3486 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3487 return 0; 3488 3489 if (current->plug) 3490 blk_flush_plug_list(current->plug, false); 3491 3492 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3493 3494 /* 3495 * If we sleep, have the caller restart the poll loop to reset 3496 * the state. Like for the other success return cases, the 3497 * caller is responsible for checking if the IO completed. If 3498 * the IO isn't complete, we'll get called again and will go 3499 * straight to the busy poll loop. 3500 */ 3501 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3502 return 1; 3503 3504 hctx->poll_considered++; 3505 3506 state = current->state; 3507 do { 3508 int ret; 3509 3510 hctx->poll_invoked++; 3511 3512 ret = q->mq_ops->poll(hctx); 3513 if (ret > 0) { 3514 hctx->poll_success++; 3515 __set_current_state(TASK_RUNNING); 3516 return ret; 3517 } 3518 3519 if (signal_pending_state(state, current)) 3520 __set_current_state(TASK_RUNNING); 3521 3522 if (current->state == TASK_RUNNING) 3523 return 1; 3524 if (ret < 0 || !spin) 3525 break; 3526 cpu_relax(); 3527 } while (!need_resched()); 3528 3529 __set_current_state(TASK_RUNNING); 3530 return 0; 3531 } 3532 EXPORT_SYMBOL_GPL(blk_poll); 3533 3534 unsigned int blk_mq_rq_cpu(struct request *rq) 3535 { 3536 return rq->mq_ctx->cpu; 3537 } 3538 EXPORT_SYMBOL(blk_mq_rq_cpu); 3539 3540 static int __init blk_mq_init(void) 3541 { 3542 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3543 blk_mq_hctx_notify_dead); 3544 return 0; 3545 } 3546 subsys_initcall(blk_mq_init); 3547