1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 46 static void blk_mq_poll_stats_start(struct request_queue *q); 47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49 static int blk_mq_poll_stats_bkt(const struct request *rq) 50 { 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64 } 65 66 /* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71 { 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75 } 76 77 /* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87 } 88 89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91 { 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95 } 96 97 struct mq_inflight { 98 struct block_device *part; 99 unsigned int inflight[2]; 100 }; 101 102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105 { 106 struct mq_inflight *mi = priv; 107 108 if ((!mi->part->bd_partno || rq->part == mi->part) && 109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 110 mi->inflight[rq_data_dir(rq)]++; 111 112 return true; 113 } 114 115 unsigned int blk_mq_in_flight(struct request_queue *q, 116 struct block_device *part) 117 { 118 struct mq_inflight mi = { .part = part }; 119 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 121 122 return mi.inflight[0] + mi.inflight[1]; 123 } 124 125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 126 unsigned int inflight[2]) 127 { 128 struct mq_inflight mi = { .part = part }; 129 130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 131 inflight[0] = mi.inflight[0]; 132 inflight[1] = mi.inflight[1]; 133 } 134 135 void blk_freeze_queue_start(struct request_queue *q) 136 { 137 mutex_lock(&q->mq_freeze_lock); 138 if (++q->mq_freeze_depth == 1) { 139 percpu_ref_kill(&q->q_usage_counter); 140 mutex_unlock(&q->mq_freeze_lock); 141 if (queue_is_mq(q)) 142 blk_mq_run_hw_queues(q, false); 143 } else { 144 mutex_unlock(&q->mq_freeze_lock); 145 } 146 } 147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 148 149 void blk_mq_freeze_queue_wait(struct request_queue *q) 150 { 151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 154 155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 156 unsigned long timeout) 157 { 158 return wait_event_timeout(q->mq_freeze_wq, 159 percpu_ref_is_zero(&q->q_usage_counter), 160 timeout); 161 } 162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 163 164 /* 165 * Guarantee no request is in use, so we can change any data structure of 166 * the queue afterward. 167 */ 168 void blk_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * In the !blk_mq case we are only calling this to kill the 172 * q_usage_counter, otherwise this increases the freeze depth 173 * and waits for it to return to zero. For this reason there is 174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 175 * exported to drivers as the only user for unfreeze is blk_mq. 176 */ 177 blk_freeze_queue_start(q); 178 blk_mq_freeze_queue_wait(q); 179 } 180 181 void blk_mq_freeze_queue(struct request_queue *q) 182 { 183 /* 184 * ...just an alias to keep freeze and unfreeze actions balanced 185 * in the blk_mq_* namespace 186 */ 187 blk_freeze_queue(q); 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 190 191 void blk_mq_unfreeze_queue(struct request_queue *q) 192 { 193 mutex_lock(&q->mq_freeze_lock); 194 q->mq_freeze_depth--; 195 WARN_ON_ONCE(q->mq_freeze_depth < 0); 196 if (!q->mq_freeze_depth) { 197 percpu_ref_resurrect(&q->q_usage_counter); 198 wake_up_all(&q->mq_freeze_wq); 199 } 200 mutex_unlock(&q->mq_freeze_lock); 201 } 202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 203 204 /* 205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 206 * mpt3sas driver such that this function can be removed. 207 */ 208 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 209 { 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 216 * @q: request queue. 217 * 218 * Note: this function does not prevent that the struct request end_io() 219 * callback function is invoked. Once this function is returned, we make 220 * sure no dispatch can happen until the queue is unquiesced via 221 * blk_mq_unquiesce_queue(). 222 */ 223 void blk_mq_quiesce_queue(struct request_queue *q) 224 { 225 struct blk_mq_hw_ctx *hctx; 226 unsigned int i; 227 bool rcu = false; 228 229 blk_mq_quiesce_queue_nowait(q); 230 231 queue_for_each_hw_ctx(q, hctx, i) { 232 if (hctx->flags & BLK_MQ_F_BLOCKING) 233 synchronize_srcu(hctx->srcu); 234 else 235 rcu = true; 236 } 237 if (rcu) 238 synchronize_rcu(); 239 } 240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 241 242 /* 243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 244 * @q: request queue. 245 * 246 * This function recovers queue into the state before quiescing 247 * which is done by blk_mq_quiesce_queue. 248 */ 249 void blk_mq_unquiesce_queue(struct request_queue *q) 250 { 251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 252 253 /* dispatch requests which are inserted during quiescing */ 254 blk_mq_run_hw_queues(q, true); 255 } 256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 257 258 void blk_mq_wake_waiters(struct request_queue *q) 259 { 260 struct blk_mq_hw_ctx *hctx; 261 unsigned int i; 262 263 queue_for_each_hw_ctx(q, hctx, i) 264 if (blk_mq_hw_queue_mapped(hctx)) 265 blk_mq_tag_wakeup_all(hctx->tags, true); 266 } 267 268 /* 269 * Only need start/end time stamping if we have iostat or 270 * blk stats enabled, or using an IO scheduler. 271 */ 272 static inline bool blk_mq_need_time_stamp(struct request *rq) 273 { 274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 275 } 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, u64 alloc_time_ns) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 283 if (data->q->elevator) { 284 rq->tag = BLK_MQ_NO_TAG; 285 rq->internal_tag = tag; 286 } else { 287 rq->tag = tag; 288 rq->internal_tag = BLK_MQ_NO_TAG; 289 } 290 291 /* csd/requeue_work/fifo_time is initialized before use */ 292 rq->q = data->q; 293 rq->mq_ctx = data->ctx; 294 rq->mq_hctx = data->hctx; 295 rq->rq_flags = 0; 296 rq->cmd_flags = data->cmd_flags; 297 if (data->flags & BLK_MQ_REQ_PM) 298 rq->rq_flags |= RQF_PM; 299 if (blk_queue_io_stat(data->q)) 300 rq->rq_flags |= RQF_IO_STAT; 301 INIT_LIST_HEAD(&rq->queuelist); 302 INIT_HLIST_NODE(&rq->hash); 303 RB_CLEAR_NODE(&rq->rb_node); 304 rq->rq_disk = NULL; 305 rq->part = NULL; 306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 307 rq->alloc_time_ns = alloc_time_ns; 308 #endif 309 if (blk_mq_need_time_stamp(rq)) 310 rq->start_time_ns = ktime_get_ns(); 311 else 312 rq->start_time_ns = 0; 313 rq->io_start_time_ns = 0; 314 rq->stats_sectors = 0; 315 rq->nr_phys_segments = 0; 316 #if defined(CONFIG_BLK_DEV_INTEGRITY) 317 rq->nr_integrity_segments = 0; 318 #endif 319 blk_crypto_rq_set_defaults(rq); 320 /* tag was already set */ 321 WRITE_ONCE(rq->deadline, 0); 322 323 rq->timeout = 0; 324 325 rq->end_io = NULL; 326 rq->end_io_data = NULL; 327 328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 329 refcount_set(&rq->ref, 1); 330 331 if (!op_is_flush(data->cmd_flags)) { 332 struct elevator_queue *e = data->q->elevator; 333 334 rq->elv.icq = NULL; 335 if (e && e->type->ops.prepare_request) { 336 if (e->type->icq_cache) 337 blk_mq_sched_assign_ioc(rq); 338 339 e->type->ops.prepare_request(rq); 340 rq->rq_flags |= RQF_ELVPRIV; 341 } 342 } 343 344 data->hctx->queued++; 345 return rq; 346 } 347 348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 349 { 350 struct request_queue *q = data->q; 351 struct elevator_queue *e = q->elevator; 352 u64 alloc_time_ns = 0; 353 unsigned int tag; 354 355 /* alloc_time includes depth and tag waits */ 356 if (blk_queue_rq_alloc_time(q)) 357 alloc_time_ns = ktime_get_ns(); 358 359 if (data->cmd_flags & REQ_NOWAIT) 360 data->flags |= BLK_MQ_REQ_NOWAIT; 361 362 if (e) { 363 /* 364 * Flush/passthrough requests are special and go directly to the 365 * dispatch list. Don't include reserved tags in the 366 * limiting, as it isn't useful. 367 */ 368 if (!op_is_flush(data->cmd_flags) && 369 !blk_op_is_passthrough(data->cmd_flags) && 370 e->type->ops.limit_depth && 371 !(data->flags & BLK_MQ_REQ_RESERVED)) 372 e->type->ops.limit_depth(data->cmd_flags, data); 373 } 374 375 retry: 376 data->ctx = blk_mq_get_ctx(q); 377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 378 if (!e) 379 blk_mq_tag_busy(data->hctx); 380 381 /* 382 * Waiting allocations only fail because of an inactive hctx. In that 383 * case just retry the hctx assignment and tag allocation as CPU hotplug 384 * should have migrated us to an online CPU by now. 385 */ 386 tag = blk_mq_get_tag(data); 387 if (tag == BLK_MQ_NO_TAG) { 388 if (data->flags & BLK_MQ_REQ_NOWAIT) 389 return NULL; 390 391 /* 392 * Give up the CPU and sleep for a random short time to ensure 393 * that thread using a realtime scheduling class are migrated 394 * off the CPU, and thus off the hctx that is going away. 395 */ 396 msleep(3); 397 goto retry; 398 } 399 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 400 } 401 402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 403 blk_mq_req_flags_t flags) 404 { 405 struct blk_mq_alloc_data data = { 406 .q = q, 407 .flags = flags, 408 .cmd_flags = op, 409 }; 410 struct request *rq; 411 int ret; 412 413 ret = blk_queue_enter(q, flags); 414 if (ret) 415 return ERR_PTR(ret); 416 417 rq = __blk_mq_alloc_request(&data); 418 if (!rq) 419 goto out_queue_exit; 420 rq->__data_len = 0; 421 rq->__sector = (sector_t) -1; 422 rq->bio = rq->biotail = NULL; 423 return rq; 424 out_queue_exit: 425 blk_queue_exit(q); 426 return ERR_PTR(-EWOULDBLOCK); 427 } 428 EXPORT_SYMBOL(blk_mq_alloc_request); 429 430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 431 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 432 { 433 struct blk_mq_alloc_data data = { 434 .q = q, 435 .flags = flags, 436 .cmd_flags = op, 437 }; 438 u64 alloc_time_ns = 0; 439 unsigned int cpu; 440 unsigned int tag; 441 int ret; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 /* 448 * If the tag allocator sleeps we could get an allocation for a 449 * different hardware context. No need to complicate the low level 450 * allocator for this for the rare use case of a command tied to 451 * a specific queue. 452 */ 453 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 454 return ERR_PTR(-EINVAL); 455 456 if (hctx_idx >= q->nr_hw_queues) 457 return ERR_PTR(-EIO); 458 459 ret = blk_queue_enter(q, flags); 460 if (ret) 461 return ERR_PTR(ret); 462 463 /* 464 * Check if the hardware context is actually mapped to anything. 465 * If not tell the caller that it should skip this queue. 466 */ 467 ret = -EXDEV; 468 data.hctx = q->queue_hw_ctx[hctx_idx]; 469 if (!blk_mq_hw_queue_mapped(data.hctx)) 470 goto out_queue_exit; 471 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 472 data.ctx = __blk_mq_get_ctx(q, cpu); 473 474 if (!q->elevator) 475 blk_mq_tag_busy(data.hctx); 476 477 ret = -EWOULDBLOCK; 478 tag = blk_mq_get_tag(&data); 479 if (tag == BLK_MQ_NO_TAG) 480 goto out_queue_exit; 481 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 482 483 out_queue_exit: 484 blk_queue_exit(q); 485 return ERR_PTR(ret); 486 } 487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 488 489 static void __blk_mq_free_request(struct request *rq) 490 { 491 struct request_queue *q = rq->q; 492 struct blk_mq_ctx *ctx = rq->mq_ctx; 493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 494 const int sched_tag = rq->internal_tag; 495 496 blk_crypto_free_request(rq); 497 blk_pm_mark_last_busy(rq); 498 rq->mq_hctx = NULL; 499 if (rq->tag != BLK_MQ_NO_TAG) 500 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 501 if (sched_tag != BLK_MQ_NO_TAG) 502 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 503 blk_mq_sched_restart(hctx); 504 blk_queue_exit(q); 505 } 506 507 void blk_mq_free_request(struct request *rq) 508 { 509 struct request_queue *q = rq->q; 510 struct elevator_queue *e = q->elevator; 511 struct blk_mq_ctx *ctx = rq->mq_ctx; 512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 513 514 if (rq->rq_flags & RQF_ELVPRIV) { 515 if (e && e->type->ops.finish_request) 516 e->type->ops.finish_request(rq); 517 if (rq->elv.icq) { 518 put_io_context(rq->elv.icq->ioc); 519 rq->elv.icq = NULL; 520 } 521 } 522 523 ctx->rq_completed[rq_is_sync(rq)]++; 524 if (rq->rq_flags & RQF_MQ_INFLIGHT) 525 __blk_mq_dec_active_requests(hctx); 526 527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 528 laptop_io_completion(q->backing_dev_info); 529 530 rq_qos_done(q, rq); 531 532 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 533 if (refcount_dec_and_test(&rq->ref)) 534 __blk_mq_free_request(rq); 535 } 536 EXPORT_SYMBOL_GPL(blk_mq_free_request); 537 538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 539 { 540 u64 now = 0; 541 542 if (blk_mq_need_time_stamp(rq)) 543 now = ktime_get_ns(); 544 545 if (rq->rq_flags & RQF_STATS) { 546 blk_mq_poll_stats_start(rq->q); 547 blk_stat_add(rq, now); 548 } 549 550 blk_mq_sched_completed_request(rq, now); 551 552 blk_account_io_done(rq, now); 553 554 if (rq->end_io) { 555 rq_qos_done(rq->q, rq); 556 rq->end_io(rq, error); 557 } else { 558 blk_mq_free_request(rq); 559 } 560 } 561 EXPORT_SYMBOL(__blk_mq_end_request); 562 563 void blk_mq_end_request(struct request *rq, blk_status_t error) 564 { 565 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 566 BUG(); 567 __blk_mq_end_request(rq, error); 568 } 569 EXPORT_SYMBOL(blk_mq_end_request); 570 571 static void blk_complete_reqs(struct llist_head *list) 572 { 573 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 574 struct request *rq, *next; 575 576 llist_for_each_entry_safe(rq, next, entry, ipi_list) 577 rq->q->mq_ops->complete(rq); 578 } 579 580 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 581 { 582 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 583 } 584 585 static int blk_softirq_cpu_dead(unsigned int cpu) 586 { 587 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 588 return 0; 589 } 590 591 static void __blk_mq_complete_request_remote(void *data) 592 { 593 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 594 } 595 596 static inline bool blk_mq_complete_need_ipi(struct request *rq) 597 { 598 int cpu = raw_smp_processor_id(); 599 600 if (!IS_ENABLED(CONFIG_SMP) || 601 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 602 return false; 603 /* 604 * With force threaded interrupts enabled, raising softirq from an SMP 605 * function call will always result in waking the ksoftirqd thread. 606 * This is probably worse than completing the request on a different 607 * cache domain. 608 */ 609 if (force_irqthreads) 610 return false; 611 612 /* same CPU or cache domain? Complete locally */ 613 if (cpu == rq->mq_ctx->cpu || 614 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 615 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 616 return false; 617 618 /* don't try to IPI to an offline CPU */ 619 return cpu_online(rq->mq_ctx->cpu); 620 } 621 622 static void blk_mq_complete_send_ipi(struct request *rq) 623 { 624 struct llist_head *list; 625 unsigned int cpu; 626 627 cpu = rq->mq_ctx->cpu; 628 list = &per_cpu(blk_cpu_done, cpu); 629 if (llist_add(&rq->ipi_list, list)) { 630 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 631 smp_call_function_single_async(cpu, &rq->csd); 632 } 633 } 634 635 static void blk_mq_raise_softirq(struct request *rq) 636 { 637 struct llist_head *list; 638 639 preempt_disable(); 640 list = this_cpu_ptr(&blk_cpu_done); 641 if (llist_add(&rq->ipi_list, list)) 642 raise_softirq(BLOCK_SOFTIRQ); 643 preempt_enable(); 644 } 645 646 bool blk_mq_complete_request_remote(struct request *rq) 647 { 648 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 649 650 /* 651 * For a polled request, always complete locallly, it's pointless 652 * to redirect the completion. 653 */ 654 if (rq->cmd_flags & REQ_HIPRI) 655 return false; 656 657 if (blk_mq_complete_need_ipi(rq)) { 658 blk_mq_complete_send_ipi(rq); 659 return true; 660 } 661 662 if (rq->q->nr_hw_queues == 1) { 663 blk_mq_raise_softirq(rq); 664 return true; 665 } 666 return false; 667 } 668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 669 670 /** 671 * blk_mq_complete_request - end I/O on a request 672 * @rq: the request being processed 673 * 674 * Description: 675 * Complete a request by scheduling the ->complete_rq operation. 676 **/ 677 void blk_mq_complete_request(struct request *rq) 678 { 679 if (!blk_mq_complete_request_remote(rq)) 680 rq->q->mq_ops->complete(rq); 681 } 682 EXPORT_SYMBOL(blk_mq_complete_request); 683 684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 685 __releases(hctx->srcu) 686 { 687 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 688 rcu_read_unlock(); 689 else 690 srcu_read_unlock(hctx->srcu, srcu_idx); 691 } 692 693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 694 __acquires(hctx->srcu) 695 { 696 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 697 /* shut up gcc false positive */ 698 *srcu_idx = 0; 699 rcu_read_lock(); 700 } else 701 *srcu_idx = srcu_read_lock(hctx->srcu); 702 } 703 704 /** 705 * blk_mq_start_request - Start processing a request 706 * @rq: Pointer to request to be started 707 * 708 * Function used by device drivers to notify the block layer that a request 709 * is going to be processed now, so blk layer can do proper initializations 710 * such as starting the timeout timer. 711 */ 712 void blk_mq_start_request(struct request *rq) 713 { 714 struct request_queue *q = rq->q; 715 716 trace_block_rq_issue(rq); 717 718 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 719 rq->io_start_time_ns = ktime_get_ns(); 720 rq->stats_sectors = blk_rq_sectors(rq); 721 rq->rq_flags |= RQF_STATS; 722 rq_qos_issue(q, rq); 723 } 724 725 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 726 727 blk_add_timer(rq); 728 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 729 730 #ifdef CONFIG_BLK_DEV_INTEGRITY 731 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 732 q->integrity.profile->prepare_fn(rq); 733 #endif 734 } 735 EXPORT_SYMBOL(blk_mq_start_request); 736 737 static void __blk_mq_requeue_request(struct request *rq) 738 { 739 struct request_queue *q = rq->q; 740 741 blk_mq_put_driver_tag(rq); 742 743 trace_block_rq_requeue(rq); 744 rq_qos_requeue(q, rq); 745 746 if (blk_mq_request_started(rq)) { 747 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 748 rq->rq_flags &= ~RQF_TIMED_OUT; 749 } 750 } 751 752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 753 { 754 __blk_mq_requeue_request(rq); 755 756 /* this request will be re-inserted to io scheduler queue */ 757 blk_mq_sched_requeue_request(rq); 758 759 BUG_ON(!list_empty(&rq->queuelist)); 760 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 761 } 762 EXPORT_SYMBOL(blk_mq_requeue_request); 763 764 static void blk_mq_requeue_work(struct work_struct *work) 765 { 766 struct request_queue *q = 767 container_of(work, struct request_queue, requeue_work.work); 768 LIST_HEAD(rq_list); 769 struct request *rq, *next; 770 771 spin_lock_irq(&q->requeue_lock); 772 list_splice_init(&q->requeue_list, &rq_list); 773 spin_unlock_irq(&q->requeue_lock); 774 775 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 776 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 777 continue; 778 779 rq->rq_flags &= ~RQF_SOFTBARRIER; 780 list_del_init(&rq->queuelist); 781 /* 782 * If RQF_DONTPREP, rq has contained some driver specific 783 * data, so insert it to hctx dispatch list to avoid any 784 * merge. 785 */ 786 if (rq->rq_flags & RQF_DONTPREP) 787 blk_mq_request_bypass_insert(rq, false, false); 788 else 789 blk_mq_sched_insert_request(rq, true, false, false); 790 } 791 792 while (!list_empty(&rq_list)) { 793 rq = list_entry(rq_list.next, struct request, queuelist); 794 list_del_init(&rq->queuelist); 795 blk_mq_sched_insert_request(rq, false, false, false); 796 } 797 798 blk_mq_run_hw_queues(q, false); 799 } 800 801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 802 bool kick_requeue_list) 803 { 804 struct request_queue *q = rq->q; 805 unsigned long flags; 806 807 /* 808 * We abuse this flag that is otherwise used by the I/O scheduler to 809 * request head insertion from the workqueue. 810 */ 811 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 812 813 spin_lock_irqsave(&q->requeue_lock, flags); 814 if (at_head) { 815 rq->rq_flags |= RQF_SOFTBARRIER; 816 list_add(&rq->queuelist, &q->requeue_list); 817 } else { 818 list_add_tail(&rq->queuelist, &q->requeue_list); 819 } 820 spin_unlock_irqrestore(&q->requeue_lock, flags); 821 822 if (kick_requeue_list) 823 blk_mq_kick_requeue_list(q); 824 } 825 826 void blk_mq_kick_requeue_list(struct request_queue *q) 827 { 828 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 829 } 830 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 831 832 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 833 unsigned long msecs) 834 { 835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 836 msecs_to_jiffies(msecs)); 837 } 838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 839 840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 841 { 842 if (tag < tags->nr_tags) { 843 prefetch(tags->rqs[tag]); 844 return tags->rqs[tag]; 845 } 846 847 return NULL; 848 } 849 EXPORT_SYMBOL(blk_mq_tag_to_rq); 850 851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 852 void *priv, bool reserved) 853 { 854 /* 855 * If we find a request that isn't idle and the queue matches, 856 * we know the queue is busy. Return false to stop the iteration. 857 */ 858 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 859 bool *busy = priv; 860 861 *busy = true; 862 return false; 863 } 864 865 return true; 866 } 867 868 bool blk_mq_queue_inflight(struct request_queue *q) 869 { 870 bool busy = false; 871 872 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 873 return busy; 874 } 875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 876 877 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 878 { 879 req->rq_flags |= RQF_TIMED_OUT; 880 if (req->q->mq_ops->timeout) { 881 enum blk_eh_timer_return ret; 882 883 ret = req->q->mq_ops->timeout(req, reserved); 884 if (ret == BLK_EH_DONE) 885 return; 886 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 887 } 888 889 blk_add_timer(req); 890 } 891 892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 893 { 894 unsigned long deadline; 895 896 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 897 return false; 898 if (rq->rq_flags & RQF_TIMED_OUT) 899 return false; 900 901 deadline = READ_ONCE(rq->deadline); 902 if (time_after_eq(jiffies, deadline)) 903 return true; 904 905 if (*next == 0) 906 *next = deadline; 907 else if (time_after(*next, deadline)) 908 *next = deadline; 909 return false; 910 } 911 912 void blk_mq_put_rq_ref(struct request *rq) 913 { 914 if (is_flush_rq(rq, rq->mq_hctx)) 915 rq->end_io(rq, 0); 916 else if (refcount_dec_and_test(&rq->ref)) 917 __blk_mq_free_request(rq); 918 } 919 920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 921 struct request *rq, void *priv, bool reserved) 922 { 923 unsigned long *next = priv; 924 925 /* 926 * Just do a quick check if it is expired before locking the request in 927 * so we're not unnecessarilly synchronizing across CPUs. 928 */ 929 if (!blk_mq_req_expired(rq, next)) 930 return true; 931 932 /* 933 * We have reason to believe the request may be expired. Take a 934 * reference on the request to lock this request lifetime into its 935 * currently allocated context to prevent it from being reallocated in 936 * the event the completion by-passes this timeout handler. 937 * 938 * If the reference was already released, then the driver beat the 939 * timeout handler to posting a natural completion. 940 */ 941 if (!refcount_inc_not_zero(&rq->ref)) 942 return true; 943 944 /* 945 * The request is now locked and cannot be reallocated underneath the 946 * timeout handler's processing. Re-verify this exact request is truly 947 * expired; if it is not expired, then the request was completed and 948 * reallocated as a new request. 949 */ 950 if (blk_mq_req_expired(rq, next)) 951 blk_mq_rq_timed_out(rq, reserved); 952 953 blk_mq_put_rq_ref(rq); 954 return true; 955 } 956 957 static void blk_mq_timeout_work(struct work_struct *work) 958 { 959 struct request_queue *q = 960 container_of(work, struct request_queue, timeout_work); 961 unsigned long next = 0; 962 struct blk_mq_hw_ctx *hctx; 963 int i; 964 965 /* A deadlock might occur if a request is stuck requiring a 966 * timeout at the same time a queue freeze is waiting 967 * completion, since the timeout code would not be able to 968 * acquire the queue reference here. 969 * 970 * That's why we don't use blk_queue_enter here; instead, we use 971 * percpu_ref_tryget directly, because we need to be able to 972 * obtain a reference even in the short window between the queue 973 * starting to freeze, by dropping the first reference in 974 * blk_freeze_queue_start, and the moment the last request is 975 * consumed, marked by the instant q_usage_counter reaches 976 * zero. 977 */ 978 if (!percpu_ref_tryget(&q->q_usage_counter)) 979 return; 980 981 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 982 983 if (next != 0) { 984 mod_timer(&q->timeout, next); 985 } else { 986 /* 987 * Request timeouts are handled as a forward rolling timer. If 988 * we end up here it means that no requests are pending and 989 * also that no request has been pending for a while. Mark 990 * each hctx as idle. 991 */ 992 queue_for_each_hw_ctx(q, hctx, i) { 993 /* the hctx may be unmapped, so check it here */ 994 if (blk_mq_hw_queue_mapped(hctx)) 995 blk_mq_tag_idle(hctx); 996 } 997 } 998 blk_queue_exit(q); 999 } 1000 1001 struct flush_busy_ctx_data { 1002 struct blk_mq_hw_ctx *hctx; 1003 struct list_head *list; 1004 }; 1005 1006 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1007 { 1008 struct flush_busy_ctx_data *flush_data = data; 1009 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1010 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1011 enum hctx_type type = hctx->type; 1012 1013 spin_lock(&ctx->lock); 1014 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1015 sbitmap_clear_bit(sb, bitnr); 1016 spin_unlock(&ctx->lock); 1017 return true; 1018 } 1019 1020 /* 1021 * Process software queues that have been marked busy, splicing them 1022 * to the for-dispatch 1023 */ 1024 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1025 { 1026 struct flush_busy_ctx_data data = { 1027 .hctx = hctx, 1028 .list = list, 1029 }; 1030 1031 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1032 } 1033 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1034 1035 struct dispatch_rq_data { 1036 struct blk_mq_hw_ctx *hctx; 1037 struct request *rq; 1038 }; 1039 1040 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1041 void *data) 1042 { 1043 struct dispatch_rq_data *dispatch_data = data; 1044 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1045 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1046 enum hctx_type type = hctx->type; 1047 1048 spin_lock(&ctx->lock); 1049 if (!list_empty(&ctx->rq_lists[type])) { 1050 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1051 list_del_init(&dispatch_data->rq->queuelist); 1052 if (list_empty(&ctx->rq_lists[type])) 1053 sbitmap_clear_bit(sb, bitnr); 1054 } 1055 spin_unlock(&ctx->lock); 1056 1057 return !dispatch_data->rq; 1058 } 1059 1060 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1061 struct blk_mq_ctx *start) 1062 { 1063 unsigned off = start ? start->index_hw[hctx->type] : 0; 1064 struct dispatch_rq_data data = { 1065 .hctx = hctx, 1066 .rq = NULL, 1067 }; 1068 1069 __sbitmap_for_each_set(&hctx->ctx_map, off, 1070 dispatch_rq_from_ctx, &data); 1071 1072 return data.rq; 1073 } 1074 1075 static inline unsigned int queued_to_index(unsigned int queued) 1076 { 1077 if (!queued) 1078 return 0; 1079 1080 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1081 } 1082 1083 static bool __blk_mq_get_driver_tag(struct request *rq) 1084 { 1085 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1086 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1087 int tag; 1088 1089 blk_mq_tag_busy(rq->mq_hctx); 1090 1091 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1092 bt = rq->mq_hctx->tags->breserved_tags; 1093 tag_offset = 0; 1094 } else { 1095 if (!hctx_may_queue(rq->mq_hctx, bt)) 1096 return false; 1097 } 1098 1099 tag = __sbitmap_queue_get(bt); 1100 if (tag == BLK_MQ_NO_TAG) 1101 return false; 1102 1103 rq->tag = tag + tag_offset; 1104 return true; 1105 } 1106 1107 bool blk_mq_get_driver_tag(struct request *rq) 1108 { 1109 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1110 1111 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1112 return false; 1113 1114 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1115 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1116 rq->rq_flags |= RQF_MQ_INFLIGHT; 1117 __blk_mq_inc_active_requests(hctx); 1118 } 1119 hctx->tags->rqs[rq->tag] = rq; 1120 return true; 1121 } 1122 1123 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1124 int flags, void *key) 1125 { 1126 struct blk_mq_hw_ctx *hctx; 1127 1128 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1129 1130 spin_lock(&hctx->dispatch_wait_lock); 1131 if (!list_empty(&wait->entry)) { 1132 struct sbitmap_queue *sbq; 1133 1134 list_del_init(&wait->entry); 1135 sbq = hctx->tags->bitmap_tags; 1136 atomic_dec(&sbq->ws_active); 1137 } 1138 spin_unlock(&hctx->dispatch_wait_lock); 1139 1140 blk_mq_run_hw_queue(hctx, true); 1141 return 1; 1142 } 1143 1144 /* 1145 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1146 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1147 * restart. For both cases, take care to check the condition again after 1148 * marking us as waiting. 1149 */ 1150 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1151 struct request *rq) 1152 { 1153 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1154 struct wait_queue_head *wq; 1155 wait_queue_entry_t *wait; 1156 bool ret; 1157 1158 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1159 blk_mq_sched_mark_restart_hctx(hctx); 1160 1161 /* 1162 * It's possible that a tag was freed in the window between the 1163 * allocation failure and adding the hardware queue to the wait 1164 * queue. 1165 * 1166 * Don't clear RESTART here, someone else could have set it. 1167 * At most this will cost an extra queue run. 1168 */ 1169 return blk_mq_get_driver_tag(rq); 1170 } 1171 1172 wait = &hctx->dispatch_wait; 1173 if (!list_empty_careful(&wait->entry)) 1174 return false; 1175 1176 wq = &bt_wait_ptr(sbq, hctx)->wait; 1177 1178 spin_lock_irq(&wq->lock); 1179 spin_lock(&hctx->dispatch_wait_lock); 1180 if (!list_empty(&wait->entry)) { 1181 spin_unlock(&hctx->dispatch_wait_lock); 1182 spin_unlock_irq(&wq->lock); 1183 return false; 1184 } 1185 1186 atomic_inc(&sbq->ws_active); 1187 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1188 __add_wait_queue(wq, wait); 1189 1190 /* 1191 * It's possible that a tag was freed in the window between the 1192 * allocation failure and adding the hardware queue to the wait 1193 * queue. 1194 */ 1195 ret = blk_mq_get_driver_tag(rq); 1196 if (!ret) { 1197 spin_unlock(&hctx->dispatch_wait_lock); 1198 spin_unlock_irq(&wq->lock); 1199 return false; 1200 } 1201 1202 /* 1203 * We got a tag, remove ourselves from the wait queue to ensure 1204 * someone else gets the wakeup. 1205 */ 1206 list_del_init(&wait->entry); 1207 atomic_dec(&sbq->ws_active); 1208 spin_unlock(&hctx->dispatch_wait_lock); 1209 spin_unlock_irq(&wq->lock); 1210 1211 return true; 1212 } 1213 1214 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1215 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1216 /* 1217 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1218 * - EWMA is one simple way to compute running average value 1219 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1220 * - take 4 as factor for avoiding to get too small(0) result, and this 1221 * factor doesn't matter because EWMA decreases exponentially 1222 */ 1223 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1224 { 1225 unsigned int ewma; 1226 1227 ewma = hctx->dispatch_busy; 1228 1229 if (!ewma && !busy) 1230 return; 1231 1232 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1233 if (busy) 1234 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1235 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1236 1237 hctx->dispatch_busy = ewma; 1238 } 1239 1240 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1241 1242 static void blk_mq_handle_dev_resource(struct request *rq, 1243 struct list_head *list) 1244 { 1245 struct request *next = 1246 list_first_entry_or_null(list, struct request, queuelist); 1247 1248 /* 1249 * If an I/O scheduler has been configured and we got a driver tag for 1250 * the next request already, free it. 1251 */ 1252 if (next) 1253 blk_mq_put_driver_tag(next); 1254 1255 list_add(&rq->queuelist, list); 1256 __blk_mq_requeue_request(rq); 1257 } 1258 1259 static void blk_mq_handle_zone_resource(struct request *rq, 1260 struct list_head *zone_list) 1261 { 1262 /* 1263 * If we end up here it is because we cannot dispatch a request to a 1264 * specific zone due to LLD level zone-write locking or other zone 1265 * related resource not being available. In this case, set the request 1266 * aside in zone_list for retrying it later. 1267 */ 1268 list_add(&rq->queuelist, zone_list); 1269 __blk_mq_requeue_request(rq); 1270 } 1271 1272 enum prep_dispatch { 1273 PREP_DISPATCH_OK, 1274 PREP_DISPATCH_NO_TAG, 1275 PREP_DISPATCH_NO_BUDGET, 1276 }; 1277 1278 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1279 bool need_budget) 1280 { 1281 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1282 int budget_token = -1; 1283 1284 if (need_budget) { 1285 budget_token = blk_mq_get_dispatch_budget(rq->q); 1286 if (budget_token < 0) { 1287 blk_mq_put_driver_tag(rq); 1288 return PREP_DISPATCH_NO_BUDGET; 1289 } 1290 blk_mq_set_rq_budget_token(rq, budget_token); 1291 } 1292 1293 if (!blk_mq_get_driver_tag(rq)) { 1294 /* 1295 * The initial allocation attempt failed, so we need to 1296 * rerun the hardware queue when a tag is freed. The 1297 * waitqueue takes care of that. If the queue is run 1298 * before we add this entry back on the dispatch list, 1299 * we'll re-run it below. 1300 */ 1301 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1302 /* 1303 * All budgets not got from this function will be put 1304 * together during handling partial dispatch 1305 */ 1306 if (need_budget) 1307 blk_mq_put_dispatch_budget(rq->q, budget_token); 1308 return PREP_DISPATCH_NO_TAG; 1309 } 1310 } 1311 1312 return PREP_DISPATCH_OK; 1313 } 1314 1315 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1316 static void blk_mq_release_budgets(struct request_queue *q, 1317 struct list_head *list) 1318 { 1319 struct request *rq; 1320 1321 list_for_each_entry(rq, list, queuelist) { 1322 int budget_token = blk_mq_get_rq_budget_token(rq); 1323 1324 if (budget_token >= 0) 1325 blk_mq_put_dispatch_budget(q, budget_token); 1326 } 1327 } 1328 1329 /* 1330 * Returns true if we did some work AND can potentially do more. 1331 */ 1332 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1333 unsigned int nr_budgets) 1334 { 1335 enum prep_dispatch prep; 1336 struct request_queue *q = hctx->queue; 1337 struct request *rq, *nxt; 1338 int errors, queued; 1339 blk_status_t ret = BLK_STS_OK; 1340 LIST_HEAD(zone_list); 1341 1342 if (list_empty(list)) 1343 return false; 1344 1345 /* 1346 * Now process all the entries, sending them to the driver. 1347 */ 1348 errors = queued = 0; 1349 do { 1350 struct blk_mq_queue_data bd; 1351 1352 rq = list_first_entry(list, struct request, queuelist); 1353 1354 WARN_ON_ONCE(hctx != rq->mq_hctx); 1355 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1356 if (prep != PREP_DISPATCH_OK) 1357 break; 1358 1359 list_del_init(&rq->queuelist); 1360 1361 bd.rq = rq; 1362 1363 /* 1364 * Flag last if we have no more requests, or if we have more 1365 * but can't assign a driver tag to it. 1366 */ 1367 if (list_empty(list)) 1368 bd.last = true; 1369 else { 1370 nxt = list_first_entry(list, struct request, queuelist); 1371 bd.last = !blk_mq_get_driver_tag(nxt); 1372 } 1373 1374 /* 1375 * once the request is queued to lld, no need to cover the 1376 * budget any more 1377 */ 1378 if (nr_budgets) 1379 nr_budgets--; 1380 ret = q->mq_ops->queue_rq(hctx, &bd); 1381 switch (ret) { 1382 case BLK_STS_OK: 1383 queued++; 1384 break; 1385 case BLK_STS_RESOURCE: 1386 case BLK_STS_DEV_RESOURCE: 1387 blk_mq_handle_dev_resource(rq, list); 1388 goto out; 1389 case BLK_STS_ZONE_RESOURCE: 1390 /* 1391 * Move the request to zone_list and keep going through 1392 * the dispatch list to find more requests the drive can 1393 * accept. 1394 */ 1395 blk_mq_handle_zone_resource(rq, &zone_list); 1396 break; 1397 default: 1398 errors++; 1399 blk_mq_end_request(rq, ret); 1400 } 1401 } while (!list_empty(list)); 1402 out: 1403 if (!list_empty(&zone_list)) 1404 list_splice_tail_init(&zone_list, list); 1405 1406 hctx->dispatched[queued_to_index(queued)]++; 1407 1408 /* If we didn't flush the entire list, we could have told the driver 1409 * there was more coming, but that turned out to be a lie. 1410 */ 1411 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1412 q->mq_ops->commit_rqs(hctx); 1413 /* 1414 * Any items that need requeuing? Stuff them into hctx->dispatch, 1415 * that is where we will continue on next queue run. 1416 */ 1417 if (!list_empty(list)) { 1418 bool needs_restart; 1419 /* For non-shared tags, the RESTART check will suffice */ 1420 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1421 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1422 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET; 1423 1424 if (nr_budgets) 1425 blk_mq_release_budgets(q, list); 1426 1427 spin_lock(&hctx->lock); 1428 list_splice_tail_init(list, &hctx->dispatch); 1429 spin_unlock(&hctx->lock); 1430 1431 /* 1432 * Order adding requests to hctx->dispatch and checking 1433 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1434 * in blk_mq_sched_restart(). Avoid restart code path to 1435 * miss the new added requests to hctx->dispatch, meantime 1436 * SCHED_RESTART is observed here. 1437 */ 1438 smp_mb(); 1439 1440 /* 1441 * If SCHED_RESTART was set by the caller of this function and 1442 * it is no longer set that means that it was cleared by another 1443 * thread and hence that a queue rerun is needed. 1444 * 1445 * If 'no_tag' is set, that means that we failed getting 1446 * a driver tag with an I/O scheduler attached. If our dispatch 1447 * waitqueue is no longer active, ensure that we run the queue 1448 * AFTER adding our entries back to the list. 1449 * 1450 * If no I/O scheduler has been configured it is possible that 1451 * the hardware queue got stopped and restarted before requests 1452 * were pushed back onto the dispatch list. Rerun the queue to 1453 * avoid starvation. Notes: 1454 * - blk_mq_run_hw_queue() checks whether or not a queue has 1455 * been stopped before rerunning a queue. 1456 * - Some but not all block drivers stop a queue before 1457 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1458 * and dm-rq. 1459 * 1460 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1461 * bit is set, run queue after a delay to avoid IO stalls 1462 * that could otherwise occur if the queue is idle. We'll do 1463 * similar if we couldn't get budget and SCHED_RESTART is set. 1464 */ 1465 needs_restart = blk_mq_sched_needs_restart(hctx); 1466 if (!needs_restart || 1467 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1468 blk_mq_run_hw_queue(hctx, true); 1469 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1470 no_budget_avail)) 1471 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1472 1473 blk_mq_update_dispatch_busy(hctx, true); 1474 return false; 1475 } else 1476 blk_mq_update_dispatch_busy(hctx, false); 1477 1478 return (queued + errors) != 0; 1479 } 1480 1481 /** 1482 * __blk_mq_run_hw_queue - Run a hardware queue. 1483 * @hctx: Pointer to the hardware queue to run. 1484 * 1485 * Send pending requests to the hardware. 1486 */ 1487 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1488 { 1489 int srcu_idx; 1490 1491 /* 1492 * We can't run the queue inline with ints disabled. Ensure that 1493 * we catch bad users of this early. 1494 */ 1495 WARN_ON_ONCE(in_interrupt()); 1496 1497 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1498 1499 hctx_lock(hctx, &srcu_idx); 1500 blk_mq_sched_dispatch_requests(hctx); 1501 hctx_unlock(hctx, srcu_idx); 1502 } 1503 1504 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1505 { 1506 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1507 1508 if (cpu >= nr_cpu_ids) 1509 cpu = cpumask_first(hctx->cpumask); 1510 return cpu; 1511 } 1512 1513 /* 1514 * It'd be great if the workqueue API had a way to pass 1515 * in a mask and had some smarts for more clever placement. 1516 * For now we just round-robin here, switching for every 1517 * BLK_MQ_CPU_WORK_BATCH queued items. 1518 */ 1519 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1520 { 1521 bool tried = false; 1522 int next_cpu = hctx->next_cpu; 1523 1524 if (hctx->queue->nr_hw_queues == 1) 1525 return WORK_CPU_UNBOUND; 1526 1527 if (--hctx->next_cpu_batch <= 0) { 1528 select_cpu: 1529 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1530 cpu_online_mask); 1531 if (next_cpu >= nr_cpu_ids) 1532 next_cpu = blk_mq_first_mapped_cpu(hctx); 1533 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1534 } 1535 1536 /* 1537 * Do unbound schedule if we can't find a online CPU for this hctx, 1538 * and it should only happen in the path of handling CPU DEAD. 1539 */ 1540 if (!cpu_online(next_cpu)) { 1541 if (!tried) { 1542 tried = true; 1543 goto select_cpu; 1544 } 1545 1546 /* 1547 * Make sure to re-select CPU next time once after CPUs 1548 * in hctx->cpumask become online again. 1549 */ 1550 hctx->next_cpu = next_cpu; 1551 hctx->next_cpu_batch = 1; 1552 return WORK_CPU_UNBOUND; 1553 } 1554 1555 hctx->next_cpu = next_cpu; 1556 return next_cpu; 1557 } 1558 1559 /** 1560 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1561 * @hctx: Pointer to the hardware queue to run. 1562 * @async: If we want to run the queue asynchronously. 1563 * @msecs: Milliseconds of delay to wait before running the queue. 1564 * 1565 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1566 * with a delay of @msecs. 1567 */ 1568 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1569 unsigned long msecs) 1570 { 1571 if (unlikely(blk_mq_hctx_stopped(hctx))) 1572 return; 1573 1574 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1575 int cpu = get_cpu(); 1576 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1577 __blk_mq_run_hw_queue(hctx); 1578 put_cpu(); 1579 return; 1580 } 1581 1582 put_cpu(); 1583 } 1584 1585 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1586 msecs_to_jiffies(msecs)); 1587 } 1588 1589 /** 1590 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1591 * @hctx: Pointer to the hardware queue to run. 1592 * @msecs: Milliseconds of delay to wait before running the queue. 1593 * 1594 * Run a hardware queue asynchronously with a delay of @msecs. 1595 */ 1596 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1597 { 1598 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1599 } 1600 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1601 1602 /** 1603 * blk_mq_run_hw_queue - Start to run a hardware queue. 1604 * @hctx: Pointer to the hardware queue to run. 1605 * @async: If we want to run the queue asynchronously. 1606 * 1607 * Check if the request queue is not in a quiesced state and if there are 1608 * pending requests to be sent. If this is true, run the queue to send requests 1609 * to hardware. 1610 */ 1611 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1612 { 1613 int srcu_idx; 1614 bool need_run; 1615 1616 /* 1617 * When queue is quiesced, we may be switching io scheduler, or 1618 * updating nr_hw_queues, or other things, and we can't run queue 1619 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1620 * 1621 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1622 * quiesced. 1623 */ 1624 hctx_lock(hctx, &srcu_idx); 1625 need_run = !blk_queue_quiesced(hctx->queue) && 1626 blk_mq_hctx_has_pending(hctx); 1627 hctx_unlock(hctx, srcu_idx); 1628 1629 if (need_run) 1630 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1631 } 1632 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1633 1634 /* 1635 * Is the request queue handled by an IO scheduler that does not respect 1636 * hardware queues when dispatching? 1637 */ 1638 static bool blk_mq_has_sqsched(struct request_queue *q) 1639 { 1640 struct elevator_queue *e = q->elevator; 1641 1642 if (e && e->type->ops.dispatch_request && 1643 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 1644 return true; 1645 return false; 1646 } 1647 1648 /* 1649 * Return prefered queue to dispatch from (if any) for non-mq aware IO 1650 * scheduler. 1651 */ 1652 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 1653 { 1654 struct blk_mq_hw_ctx *hctx; 1655 1656 /* 1657 * If the IO scheduler does not respect hardware queues when 1658 * dispatching, we just don't bother with multiple HW queues and 1659 * dispatch from hctx for the current CPU since running multiple queues 1660 * just causes lock contention inside the scheduler and pointless cache 1661 * bouncing. 1662 */ 1663 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 1664 raw_smp_processor_id()); 1665 if (!blk_mq_hctx_stopped(hctx)) 1666 return hctx; 1667 return NULL; 1668 } 1669 1670 /** 1671 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1672 * @q: Pointer to the request queue to run. 1673 * @async: If we want to run the queue asynchronously. 1674 */ 1675 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1676 { 1677 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1678 int i; 1679 1680 sq_hctx = NULL; 1681 if (blk_mq_has_sqsched(q)) 1682 sq_hctx = blk_mq_get_sq_hctx(q); 1683 queue_for_each_hw_ctx(q, hctx, i) { 1684 if (blk_mq_hctx_stopped(hctx)) 1685 continue; 1686 /* 1687 * Dispatch from this hctx either if there's no hctx preferred 1688 * by IO scheduler or if it has requests that bypass the 1689 * scheduler. 1690 */ 1691 if (!sq_hctx || sq_hctx == hctx || 1692 !list_empty_careful(&hctx->dispatch)) 1693 blk_mq_run_hw_queue(hctx, async); 1694 } 1695 } 1696 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1697 1698 /** 1699 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1700 * @q: Pointer to the request queue to run. 1701 * @msecs: Milliseconds of delay to wait before running the queues. 1702 */ 1703 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1704 { 1705 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1706 int i; 1707 1708 sq_hctx = NULL; 1709 if (blk_mq_has_sqsched(q)) 1710 sq_hctx = blk_mq_get_sq_hctx(q); 1711 queue_for_each_hw_ctx(q, hctx, i) { 1712 if (blk_mq_hctx_stopped(hctx)) 1713 continue; 1714 /* 1715 * Dispatch from this hctx either if there's no hctx preferred 1716 * by IO scheduler or if it has requests that bypass the 1717 * scheduler. 1718 */ 1719 if (!sq_hctx || sq_hctx == hctx || 1720 !list_empty_careful(&hctx->dispatch)) 1721 blk_mq_delay_run_hw_queue(hctx, msecs); 1722 } 1723 } 1724 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1725 1726 /** 1727 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1728 * @q: request queue. 1729 * 1730 * The caller is responsible for serializing this function against 1731 * blk_mq_{start,stop}_hw_queue(). 1732 */ 1733 bool blk_mq_queue_stopped(struct request_queue *q) 1734 { 1735 struct blk_mq_hw_ctx *hctx; 1736 int i; 1737 1738 queue_for_each_hw_ctx(q, hctx, i) 1739 if (blk_mq_hctx_stopped(hctx)) 1740 return true; 1741 1742 return false; 1743 } 1744 EXPORT_SYMBOL(blk_mq_queue_stopped); 1745 1746 /* 1747 * This function is often used for pausing .queue_rq() by driver when 1748 * there isn't enough resource or some conditions aren't satisfied, and 1749 * BLK_STS_RESOURCE is usually returned. 1750 * 1751 * We do not guarantee that dispatch can be drained or blocked 1752 * after blk_mq_stop_hw_queue() returns. Please use 1753 * blk_mq_quiesce_queue() for that requirement. 1754 */ 1755 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1756 { 1757 cancel_delayed_work(&hctx->run_work); 1758 1759 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1760 } 1761 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1762 1763 /* 1764 * This function is often used for pausing .queue_rq() by driver when 1765 * there isn't enough resource or some conditions aren't satisfied, and 1766 * BLK_STS_RESOURCE is usually returned. 1767 * 1768 * We do not guarantee that dispatch can be drained or blocked 1769 * after blk_mq_stop_hw_queues() returns. Please use 1770 * blk_mq_quiesce_queue() for that requirement. 1771 */ 1772 void blk_mq_stop_hw_queues(struct request_queue *q) 1773 { 1774 struct blk_mq_hw_ctx *hctx; 1775 int i; 1776 1777 queue_for_each_hw_ctx(q, hctx, i) 1778 blk_mq_stop_hw_queue(hctx); 1779 } 1780 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1781 1782 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1783 { 1784 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1785 1786 blk_mq_run_hw_queue(hctx, false); 1787 } 1788 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1789 1790 void blk_mq_start_hw_queues(struct request_queue *q) 1791 { 1792 struct blk_mq_hw_ctx *hctx; 1793 int i; 1794 1795 queue_for_each_hw_ctx(q, hctx, i) 1796 blk_mq_start_hw_queue(hctx); 1797 } 1798 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1799 1800 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1801 { 1802 if (!blk_mq_hctx_stopped(hctx)) 1803 return; 1804 1805 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1806 blk_mq_run_hw_queue(hctx, async); 1807 } 1808 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1809 1810 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1811 { 1812 struct blk_mq_hw_ctx *hctx; 1813 int i; 1814 1815 queue_for_each_hw_ctx(q, hctx, i) 1816 blk_mq_start_stopped_hw_queue(hctx, async); 1817 } 1818 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1819 1820 static void blk_mq_run_work_fn(struct work_struct *work) 1821 { 1822 struct blk_mq_hw_ctx *hctx; 1823 1824 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1825 1826 /* 1827 * If we are stopped, don't run the queue. 1828 */ 1829 if (blk_mq_hctx_stopped(hctx)) 1830 return; 1831 1832 __blk_mq_run_hw_queue(hctx); 1833 } 1834 1835 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1836 struct request *rq, 1837 bool at_head) 1838 { 1839 struct blk_mq_ctx *ctx = rq->mq_ctx; 1840 enum hctx_type type = hctx->type; 1841 1842 lockdep_assert_held(&ctx->lock); 1843 1844 trace_block_rq_insert(rq); 1845 1846 if (at_head) 1847 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1848 else 1849 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1850 } 1851 1852 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1853 bool at_head) 1854 { 1855 struct blk_mq_ctx *ctx = rq->mq_ctx; 1856 1857 lockdep_assert_held(&ctx->lock); 1858 1859 __blk_mq_insert_req_list(hctx, rq, at_head); 1860 blk_mq_hctx_mark_pending(hctx, ctx); 1861 } 1862 1863 /** 1864 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1865 * @rq: Pointer to request to be inserted. 1866 * @at_head: true if the request should be inserted at the head of the list. 1867 * @run_queue: If we should run the hardware queue after inserting the request. 1868 * 1869 * Should only be used carefully, when the caller knows we want to 1870 * bypass a potential IO scheduler on the target device. 1871 */ 1872 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1873 bool run_queue) 1874 { 1875 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1876 1877 spin_lock(&hctx->lock); 1878 if (at_head) 1879 list_add(&rq->queuelist, &hctx->dispatch); 1880 else 1881 list_add_tail(&rq->queuelist, &hctx->dispatch); 1882 spin_unlock(&hctx->lock); 1883 1884 if (run_queue) 1885 blk_mq_run_hw_queue(hctx, false); 1886 } 1887 1888 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1889 struct list_head *list) 1890 1891 { 1892 struct request *rq; 1893 enum hctx_type type = hctx->type; 1894 1895 /* 1896 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1897 * offline now 1898 */ 1899 list_for_each_entry(rq, list, queuelist) { 1900 BUG_ON(rq->mq_ctx != ctx); 1901 trace_block_rq_insert(rq); 1902 } 1903 1904 spin_lock(&ctx->lock); 1905 list_splice_tail_init(list, &ctx->rq_lists[type]); 1906 blk_mq_hctx_mark_pending(hctx, ctx); 1907 spin_unlock(&ctx->lock); 1908 } 1909 1910 static int plug_rq_cmp(void *priv, const struct list_head *a, 1911 const struct list_head *b) 1912 { 1913 struct request *rqa = container_of(a, struct request, queuelist); 1914 struct request *rqb = container_of(b, struct request, queuelist); 1915 1916 if (rqa->mq_ctx != rqb->mq_ctx) 1917 return rqa->mq_ctx > rqb->mq_ctx; 1918 if (rqa->mq_hctx != rqb->mq_hctx) 1919 return rqa->mq_hctx > rqb->mq_hctx; 1920 1921 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1922 } 1923 1924 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1925 { 1926 LIST_HEAD(list); 1927 1928 if (list_empty(&plug->mq_list)) 1929 return; 1930 list_splice_init(&plug->mq_list, &list); 1931 1932 if (plug->rq_count > 2 && plug->multiple_queues) 1933 list_sort(NULL, &list, plug_rq_cmp); 1934 1935 plug->rq_count = 0; 1936 1937 do { 1938 struct list_head rq_list; 1939 struct request *rq, *head_rq = list_entry_rq(list.next); 1940 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1941 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1942 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1943 unsigned int depth = 1; 1944 1945 list_for_each_continue(pos, &list) { 1946 rq = list_entry_rq(pos); 1947 BUG_ON(!rq->q); 1948 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1949 break; 1950 depth++; 1951 } 1952 1953 list_cut_before(&rq_list, &list, pos); 1954 trace_block_unplug(head_rq->q, depth, !from_schedule); 1955 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1956 from_schedule); 1957 } while(!list_empty(&list)); 1958 } 1959 1960 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1961 unsigned int nr_segs) 1962 { 1963 int err; 1964 1965 if (bio->bi_opf & REQ_RAHEAD) 1966 rq->cmd_flags |= REQ_FAILFAST_MASK; 1967 1968 rq->__sector = bio->bi_iter.bi_sector; 1969 rq->write_hint = bio->bi_write_hint; 1970 blk_rq_bio_prep(rq, bio, nr_segs); 1971 1972 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1973 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1974 WARN_ON_ONCE(err); 1975 1976 blk_account_io_start(rq); 1977 } 1978 1979 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1980 struct request *rq, 1981 blk_qc_t *cookie, bool last) 1982 { 1983 struct request_queue *q = rq->q; 1984 struct blk_mq_queue_data bd = { 1985 .rq = rq, 1986 .last = last, 1987 }; 1988 blk_qc_t new_cookie; 1989 blk_status_t ret; 1990 1991 new_cookie = request_to_qc_t(hctx, rq); 1992 1993 /* 1994 * For OK queue, we are done. For error, caller may kill it. 1995 * Any other error (busy), just add it to our list as we 1996 * previously would have done. 1997 */ 1998 ret = q->mq_ops->queue_rq(hctx, &bd); 1999 switch (ret) { 2000 case BLK_STS_OK: 2001 blk_mq_update_dispatch_busy(hctx, false); 2002 *cookie = new_cookie; 2003 break; 2004 case BLK_STS_RESOURCE: 2005 case BLK_STS_DEV_RESOURCE: 2006 blk_mq_update_dispatch_busy(hctx, true); 2007 __blk_mq_requeue_request(rq); 2008 break; 2009 default: 2010 blk_mq_update_dispatch_busy(hctx, false); 2011 *cookie = BLK_QC_T_NONE; 2012 break; 2013 } 2014 2015 return ret; 2016 } 2017 2018 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2019 struct request *rq, 2020 blk_qc_t *cookie, 2021 bool bypass_insert, bool last) 2022 { 2023 struct request_queue *q = rq->q; 2024 bool run_queue = true; 2025 int budget_token; 2026 2027 /* 2028 * RCU or SRCU read lock is needed before checking quiesced flag. 2029 * 2030 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2031 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2032 * and avoid driver to try to dispatch again. 2033 */ 2034 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2035 run_queue = false; 2036 bypass_insert = false; 2037 goto insert; 2038 } 2039 2040 if (q->elevator && !bypass_insert) 2041 goto insert; 2042 2043 budget_token = blk_mq_get_dispatch_budget(q); 2044 if (budget_token < 0) 2045 goto insert; 2046 2047 blk_mq_set_rq_budget_token(rq, budget_token); 2048 2049 if (!blk_mq_get_driver_tag(rq)) { 2050 blk_mq_put_dispatch_budget(q, budget_token); 2051 goto insert; 2052 } 2053 2054 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2055 insert: 2056 if (bypass_insert) 2057 return BLK_STS_RESOURCE; 2058 2059 blk_mq_sched_insert_request(rq, false, run_queue, false); 2060 2061 return BLK_STS_OK; 2062 } 2063 2064 /** 2065 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2066 * @hctx: Pointer of the associated hardware queue. 2067 * @rq: Pointer to request to be sent. 2068 * @cookie: Request queue cookie. 2069 * 2070 * If the device has enough resources to accept a new request now, send the 2071 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2072 * we can try send it another time in the future. Requests inserted at this 2073 * queue have higher priority. 2074 */ 2075 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2076 struct request *rq, blk_qc_t *cookie) 2077 { 2078 blk_status_t ret; 2079 int srcu_idx; 2080 2081 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2082 2083 hctx_lock(hctx, &srcu_idx); 2084 2085 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2086 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2087 blk_mq_request_bypass_insert(rq, false, true); 2088 else if (ret != BLK_STS_OK) 2089 blk_mq_end_request(rq, ret); 2090 2091 hctx_unlock(hctx, srcu_idx); 2092 } 2093 2094 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2095 { 2096 blk_status_t ret; 2097 int srcu_idx; 2098 blk_qc_t unused_cookie; 2099 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2100 2101 hctx_lock(hctx, &srcu_idx); 2102 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2103 hctx_unlock(hctx, srcu_idx); 2104 2105 return ret; 2106 } 2107 2108 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2109 struct list_head *list) 2110 { 2111 int queued = 0; 2112 int errors = 0; 2113 2114 while (!list_empty(list)) { 2115 blk_status_t ret; 2116 struct request *rq = list_first_entry(list, struct request, 2117 queuelist); 2118 2119 list_del_init(&rq->queuelist); 2120 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2121 if (ret != BLK_STS_OK) { 2122 if (ret == BLK_STS_RESOURCE || 2123 ret == BLK_STS_DEV_RESOURCE) { 2124 blk_mq_request_bypass_insert(rq, false, 2125 list_empty(list)); 2126 break; 2127 } 2128 blk_mq_end_request(rq, ret); 2129 errors++; 2130 } else 2131 queued++; 2132 } 2133 2134 /* 2135 * If we didn't flush the entire list, we could have told 2136 * the driver there was more coming, but that turned out to 2137 * be a lie. 2138 */ 2139 if ((!list_empty(list) || errors) && 2140 hctx->queue->mq_ops->commit_rqs && queued) 2141 hctx->queue->mq_ops->commit_rqs(hctx); 2142 } 2143 2144 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2145 { 2146 list_add_tail(&rq->queuelist, &plug->mq_list); 2147 plug->rq_count++; 2148 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2149 struct request *tmp; 2150 2151 tmp = list_first_entry(&plug->mq_list, struct request, 2152 queuelist); 2153 if (tmp->q != rq->q) 2154 plug->multiple_queues = true; 2155 } 2156 } 2157 2158 /** 2159 * blk_mq_submit_bio - Create and send a request to block device. 2160 * @bio: Bio pointer. 2161 * 2162 * Builds up a request structure from @q and @bio and send to the device. The 2163 * request may not be queued directly to hardware if: 2164 * * This request can be merged with another one 2165 * * We want to place request at plug queue for possible future merging 2166 * * There is an IO scheduler active at this queue 2167 * 2168 * It will not queue the request if there is an error with the bio, or at the 2169 * request creation. 2170 * 2171 * Returns: Request queue cookie. 2172 */ 2173 blk_qc_t blk_mq_submit_bio(struct bio *bio) 2174 { 2175 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 2176 const int is_sync = op_is_sync(bio->bi_opf); 2177 const int is_flush_fua = op_is_flush(bio->bi_opf); 2178 struct blk_mq_alloc_data data = { 2179 .q = q, 2180 }; 2181 struct request *rq; 2182 struct blk_plug *plug; 2183 struct request *same_queue_rq = NULL; 2184 unsigned int nr_segs; 2185 blk_qc_t cookie; 2186 blk_status_t ret; 2187 bool hipri; 2188 2189 blk_queue_bounce(q, &bio); 2190 __blk_queue_split(&bio, &nr_segs); 2191 2192 if (!bio_integrity_prep(bio)) 2193 goto queue_exit; 2194 2195 if (!is_flush_fua && !blk_queue_nomerges(q) && 2196 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2197 goto queue_exit; 2198 2199 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2200 goto queue_exit; 2201 2202 rq_qos_throttle(q, bio); 2203 2204 hipri = bio->bi_opf & REQ_HIPRI; 2205 2206 data.cmd_flags = bio->bi_opf; 2207 rq = __blk_mq_alloc_request(&data); 2208 if (unlikely(!rq)) { 2209 rq_qos_cleanup(q, bio); 2210 if (bio->bi_opf & REQ_NOWAIT) 2211 bio_wouldblock_error(bio); 2212 goto queue_exit; 2213 } 2214 2215 trace_block_getrq(bio); 2216 2217 rq_qos_track(q, rq, bio); 2218 2219 cookie = request_to_qc_t(data.hctx, rq); 2220 2221 blk_mq_bio_to_request(rq, bio, nr_segs); 2222 2223 ret = blk_crypto_init_request(rq); 2224 if (ret != BLK_STS_OK) { 2225 bio->bi_status = ret; 2226 bio_endio(bio); 2227 blk_mq_free_request(rq); 2228 return BLK_QC_T_NONE; 2229 } 2230 2231 plug = blk_mq_plug(q, bio); 2232 if (unlikely(is_flush_fua)) { 2233 /* Bypass scheduler for flush requests */ 2234 blk_insert_flush(rq); 2235 blk_mq_run_hw_queue(data.hctx, true); 2236 } else if (plug && (q->nr_hw_queues == 1 || 2237 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) || 2238 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) { 2239 /* 2240 * Use plugging if we have a ->commit_rqs() hook as well, as 2241 * we know the driver uses bd->last in a smart fashion. 2242 * 2243 * Use normal plugging if this disk is slow HDD, as sequential 2244 * IO may benefit a lot from plug merging. 2245 */ 2246 unsigned int request_count = plug->rq_count; 2247 struct request *last = NULL; 2248 2249 if (!request_count) 2250 trace_block_plug(q); 2251 else 2252 last = list_entry_rq(plug->mq_list.prev); 2253 2254 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2255 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2256 blk_flush_plug_list(plug, false); 2257 trace_block_plug(q); 2258 } 2259 2260 blk_add_rq_to_plug(plug, rq); 2261 } else if (q->elevator) { 2262 /* Insert the request at the IO scheduler queue */ 2263 blk_mq_sched_insert_request(rq, false, true, true); 2264 } else if (plug && !blk_queue_nomerges(q)) { 2265 /* 2266 * We do limited plugging. If the bio can be merged, do that. 2267 * Otherwise the existing request in the plug list will be 2268 * issued. So the plug list will have one request at most 2269 * The plug list might get flushed before this. If that happens, 2270 * the plug list is empty, and same_queue_rq is invalid. 2271 */ 2272 if (list_empty(&plug->mq_list)) 2273 same_queue_rq = NULL; 2274 if (same_queue_rq) { 2275 list_del_init(&same_queue_rq->queuelist); 2276 plug->rq_count--; 2277 } 2278 blk_add_rq_to_plug(plug, rq); 2279 trace_block_plug(q); 2280 2281 if (same_queue_rq) { 2282 data.hctx = same_queue_rq->mq_hctx; 2283 trace_block_unplug(q, 1, true); 2284 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2285 &cookie); 2286 } 2287 } else if ((q->nr_hw_queues > 1 && is_sync) || 2288 !data.hctx->dispatch_busy) { 2289 /* 2290 * There is no scheduler and we can try to send directly 2291 * to the hardware. 2292 */ 2293 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2294 } else { 2295 /* Default case. */ 2296 blk_mq_sched_insert_request(rq, false, true, true); 2297 } 2298 2299 if (!hipri) 2300 return BLK_QC_T_NONE; 2301 return cookie; 2302 queue_exit: 2303 blk_queue_exit(q); 2304 return BLK_QC_T_NONE; 2305 } 2306 2307 static size_t order_to_size(unsigned int order) 2308 { 2309 return (size_t)PAGE_SIZE << order; 2310 } 2311 2312 /* called before freeing request pool in @tags */ 2313 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set, 2314 struct blk_mq_tags *tags, unsigned int hctx_idx) 2315 { 2316 struct blk_mq_tags *drv_tags = set->tags[hctx_idx]; 2317 struct page *page; 2318 unsigned long flags; 2319 2320 list_for_each_entry(page, &tags->page_list, lru) { 2321 unsigned long start = (unsigned long)page_address(page); 2322 unsigned long end = start + order_to_size(page->private); 2323 int i; 2324 2325 for (i = 0; i < set->queue_depth; i++) { 2326 struct request *rq = drv_tags->rqs[i]; 2327 unsigned long rq_addr = (unsigned long)rq; 2328 2329 if (rq_addr >= start && rq_addr < end) { 2330 WARN_ON_ONCE(refcount_read(&rq->ref) != 0); 2331 cmpxchg(&drv_tags->rqs[i], rq, NULL); 2332 } 2333 } 2334 } 2335 2336 /* 2337 * Wait until all pending iteration is done. 2338 * 2339 * Request reference is cleared and it is guaranteed to be observed 2340 * after the ->lock is released. 2341 */ 2342 spin_lock_irqsave(&drv_tags->lock, flags); 2343 spin_unlock_irqrestore(&drv_tags->lock, flags); 2344 } 2345 2346 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2347 unsigned int hctx_idx) 2348 { 2349 struct page *page; 2350 2351 if (tags->rqs && set->ops->exit_request) { 2352 int i; 2353 2354 for (i = 0; i < tags->nr_tags; i++) { 2355 struct request *rq = tags->static_rqs[i]; 2356 2357 if (!rq) 2358 continue; 2359 set->ops->exit_request(set, rq, hctx_idx); 2360 tags->static_rqs[i] = NULL; 2361 } 2362 } 2363 2364 blk_mq_clear_rq_mapping(set, tags, hctx_idx); 2365 2366 while (!list_empty(&tags->page_list)) { 2367 page = list_first_entry(&tags->page_list, struct page, lru); 2368 list_del_init(&page->lru); 2369 /* 2370 * Remove kmemleak object previously allocated in 2371 * blk_mq_alloc_rqs(). 2372 */ 2373 kmemleak_free(page_address(page)); 2374 __free_pages(page, page->private); 2375 } 2376 } 2377 2378 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2379 { 2380 kfree(tags->rqs); 2381 tags->rqs = NULL; 2382 kfree(tags->static_rqs); 2383 tags->static_rqs = NULL; 2384 2385 blk_mq_free_tags(tags, flags); 2386 } 2387 2388 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2389 unsigned int hctx_idx, 2390 unsigned int nr_tags, 2391 unsigned int reserved_tags, 2392 unsigned int flags) 2393 { 2394 struct blk_mq_tags *tags; 2395 int node; 2396 2397 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2398 if (node == NUMA_NO_NODE) 2399 node = set->numa_node; 2400 2401 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2402 if (!tags) 2403 return NULL; 2404 2405 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2406 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2407 node); 2408 if (!tags->rqs) { 2409 blk_mq_free_tags(tags, flags); 2410 return NULL; 2411 } 2412 2413 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2414 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2415 node); 2416 if (!tags->static_rqs) { 2417 kfree(tags->rqs); 2418 blk_mq_free_tags(tags, flags); 2419 return NULL; 2420 } 2421 2422 return tags; 2423 } 2424 2425 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2426 unsigned int hctx_idx, int node) 2427 { 2428 int ret; 2429 2430 if (set->ops->init_request) { 2431 ret = set->ops->init_request(set, rq, hctx_idx, node); 2432 if (ret) 2433 return ret; 2434 } 2435 2436 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2437 return 0; 2438 } 2439 2440 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2441 unsigned int hctx_idx, unsigned int depth) 2442 { 2443 unsigned int i, j, entries_per_page, max_order = 4; 2444 size_t rq_size, left; 2445 int node; 2446 2447 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2448 if (node == NUMA_NO_NODE) 2449 node = set->numa_node; 2450 2451 INIT_LIST_HEAD(&tags->page_list); 2452 2453 /* 2454 * rq_size is the size of the request plus driver payload, rounded 2455 * to the cacheline size 2456 */ 2457 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2458 cache_line_size()); 2459 left = rq_size * depth; 2460 2461 for (i = 0; i < depth; ) { 2462 int this_order = max_order; 2463 struct page *page; 2464 int to_do; 2465 void *p; 2466 2467 while (this_order && left < order_to_size(this_order - 1)) 2468 this_order--; 2469 2470 do { 2471 page = alloc_pages_node(node, 2472 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2473 this_order); 2474 if (page) 2475 break; 2476 if (!this_order--) 2477 break; 2478 if (order_to_size(this_order) < rq_size) 2479 break; 2480 } while (1); 2481 2482 if (!page) 2483 goto fail; 2484 2485 page->private = this_order; 2486 list_add_tail(&page->lru, &tags->page_list); 2487 2488 p = page_address(page); 2489 /* 2490 * Allow kmemleak to scan these pages as they contain pointers 2491 * to additional allocations like via ops->init_request(). 2492 */ 2493 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2494 entries_per_page = order_to_size(this_order) / rq_size; 2495 to_do = min(entries_per_page, depth - i); 2496 left -= to_do * rq_size; 2497 for (j = 0; j < to_do; j++) { 2498 struct request *rq = p; 2499 2500 tags->static_rqs[i] = rq; 2501 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2502 tags->static_rqs[i] = NULL; 2503 goto fail; 2504 } 2505 2506 p += rq_size; 2507 i++; 2508 } 2509 } 2510 return 0; 2511 2512 fail: 2513 blk_mq_free_rqs(set, tags, hctx_idx); 2514 return -ENOMEM; 2515 } 2516 2517 struct rq_iter_data { 2518 struct blk_mq_hw_ctx *hctx; 2519 bool has_rq; 2520 }; 2521 2522 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2523 { 2524 struct rq_iter_data *iter_data = data; 2525 2526 if (rq->mq_hctx != iter_data->hctx) 2527 return true; 2528 iter_data->has_rq = true; 2529 return false; 2530 } 2531 2532 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2533 { 2534 struct blk_mq_tags *tags = hctx->sched_tags ? 2535 hctx->sched_tags : hctx->tags; 2536 struct rq_iter_data data = { 2537 .hctx = hctx, 2538 }; 2539 2540 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2541 return data.has_rq; 2542 } 2543 2544 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2545 struct blk_mq_hw_ctx *hctx) 2546 { 2547 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2548 return false; 2549 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2550 return false; 2551 return true; 2552 } 2553 2554 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2555 { 2556 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2557 struct blk_mq_hw_ctx, cpuhp_online); 2558 2559 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2560 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2561 return 0; 2562 2563 /* 2564 * Prevent new request from being allocated on the current hctx. 2565 * 2566 * The smp_mb__after_atomic() Pairs with the implied barrier in 2567 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2568 * seen once we return from the tag allocator. 2569 */ 2570 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2571 smp_mb__after_atomic(); 2572 2573 /* 2574 * Try to grab a reference to the queue and wait for any outstanding 2575 * requests. If we could not grab a reference the queue has been 2576 * frozen and there are no requests. 2577 */ 2578 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2579 while (blk_mq_hctx_has_requests(hctx)) 2580 msleep(5); 2581 percpu_ref_put(&hctx->queue->q_usage_counter); 2582 } 2583 2584 return 0; 2585 } 2586 2587 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2588 { 2589 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2590 struct blk_mq_hw_ctx, cpuhp_online); 2591 2592 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2593 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2594 return 0; 2595 } 2596 2597 /* 2598 * 'cpu' is going away. splice any existing rq_list entries from this 2599 * software queue to the hw queue dispatch list, and ensure that it 2600 * gets run. 2601 */ 2602 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2603 { 2604 struct blk_mq_hw_ctx *hctx; 2605 struct blk_mq_ctx *ctx; 2606 LIST_HEAD(tmp); 2607 enum hctx_type type; 2608 2609 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2610 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2611 return 0; 2612 2613 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2614 type = hctx->type; 2615 2616 spin_lock(&ctx->lock); 2617 if (!list_empty(&ctx->rq_lists[type])) { 2618 list_splice_init(&ctx->rq_lists[type], &tmp); 2619 blk_mq_hctx_clear_pending(hctx, ctx); 2620 } 2621 spin_unlock(&ctx->lock); 2622 2623 if (list_empty(&tmp)) 2624 return 0; 2625 2626 spin_lock(&hctx->lock); 2627 list_splice_tail_init(&tmp, &hctx->dispatch); 2628 spin_unlock(&hctx->lock); 2629 2630 blk_mq_run_hw_queue(hctx, true); 2631 return 0; 2632 } 2633 2634 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2635 { 2636 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2637 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2638 &hctx->cpuhp_online); 2639 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2640 &hctx->cpuhp_dead); 2641 } 2642 2643 /* 2644 * Before freeing hw queue, clearing the flush request reference in 2645 * tags->rqs[] for avoiding potential UAF. 2646 */ 2647 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 2648 unsigned int queue_depth, struct request *flush_rq) 2649 { 2650 int i; 2651 unsigned long flags; 2652 2653 /* The hw queue may not be mapped yet */ 2654 if (!tags) 2655 return; 2656 2657 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0); 2658 2659 for (i = 0; i < queue_depth; i++) 2660 cmpxchg(&tags->rqs[i], flush_rq, NULL); 2661 2662 /* 2663 * Wait until all pending iteration is done. 2664 * 2665 * Request reference is cleared and it is guaranteed to be observed 2666 * after the ->lock is released. 2667 */ 2668 spin_lock_irqsave(&tags->lock, flags); 2669 spin_unlock_irqrestore(&tags->lock, flags); 2670 } 2671 2672 /* hctx->ctxs will be freed in queue's release handler */ 2673 static void blk_mq_exit_hctx(struct request_queue *q, 2674 struct blk_mq_tag_set *set, 2675 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2676 { 2677 struct request *flush_rq = hctx->fq->flush_rq; 2678 2679 if (blk_mq_hw_queue_mapped(hctx)) 2680 blk_mq_tag_idle(hctx); 2681 2682 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 2683 set->queue_depth, flush_rq); 2684 if (set->ops->exit_request) 2685 set->ops->exit_request(set, flush_rq, hctx_idx); 2686 2687 if (set->ops->exit_hctx) 2688 set->ops->exit_hctx(hctx, hctx_idx); 2689 2690 blk_mq_remove_cpuhp(hctx); 2691 2692 spin_lock(&q->unused_hctx_lock); 2693 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2694 spin_unlock(&q->unused_hctx_lock); 2695 } 2696 2697 static void blk_mq_exit_hw_queues(struct request_queue *q, 2698 struct blk_mq_tag_set *set, int nr_queue) 2699 { 2700 struct blk_mq_hw_ctx *hctx; 2701 unsigned int i; 2702 2703 queue_for_each_hw_ctx(q, hctx, i) { 2704 if (i == nr_queue) 2705 break; 2706 blk_mq_debugfs_unregister_hctx(hctx); 2707 blk_mq_exit_hctx(q, set, hctx, i); 2708 } 2709 } 2710 2711 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2712 { 2713 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2714 2715 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2716 __alignof__(struct blk_mq_hw_ctx)) != 2717 sizeof(struct blk_mq_hw_ctx)); 2718 2719 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2720 hw_ctx_size += sizeof(struct srcu_struct); 2721 2722 return hw_ctx_size; 2723 } 2724 2725 static int blk_mq_init_hctx(struct request_queue *q, 2726 struct blk_mq_tag_set *set, 2727 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2728 { 2729 hctx->queue_num = hctx_idx; 2730 2731 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2732 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2733 &hctx->cpuhp_online); 2734 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2735 2736 hctx->tags = set->tags[hctx_idx]; 2737 2738 if (set->ops->init_hctx && 2739 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2740 goto unregister_cpu_notifier; 2741 2742 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2743 hctx->numa_node)) 2744 goto exit_hctx; 2745 return 0; 2746 2747 exit_hctx: 2748 if (set->ops->exit_hctx) 2749 set->ops->exit_hctx(hctx, hctx_idx); 2750 unregister_cpu_notifier: 2751 blk_mq_remove_cpuhp(hctx); 2752 return -1; 2753 } 2754 2755 static struct blk_mq_hw_ctx * 2756 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2757 int node) 2758 { 2759 struct blk_mq_hw_ctx *hctx; 2760 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2761 2762 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2763 if (!hctx) 2764 goto fail_alloc_hctx; 2765 2766 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2767 goto free_hctx; 2768 2769 atomic_set(&hctx->nr_active, 0); 2770 if (node == NUMA_NO_NODE) 2771 node = set->numa_node; 2772 hctx->numa_node = node; 2773 2774 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2775 spin_lock_init(&hctx->lock); 2776 INIT_LIST_HEAD(&hctx->dispatch); 2777 hctx->queue = q; 2778 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2779 2780 INIT_LIST_HEAD(&hctx->hctx_list); 2781 2782 /* 2783 * Allocate space for all possible cpus to avoid allocation at 2784 * runtime 2785 */ 2786 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2787 gfp, node); 2788 if (!hctx->ctxs) 2789 goto free_cpumask; 2790 2791 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2792 gfp, node, false, false)) 2793 goto free_ctxs; 2794 hctx->nr_ctx = 0; 2795 2796 spin_lock_init(&hctx->dispatch_wait_lock); 2797 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2798 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2799 2800 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2801 if (!hctx->fq) 2802 goto free_bitmap; 2803 2804 if (hctx->flags & BLK_MQ_F_BLOCKING) 2805 init_srcu_struct(hctx->srcu); 2806 blk_mq_hctx_kobj_init(hctx); 2807 2808 return hctx; 2809 2810 free_bitmap: 2811 sbitmap_free(&hctx->ctx_map); 2812 free_ctxs: 2813 kfree(hctx->ctxs); 2814 free_cpumask: 2815 free_cpumask_var(hctx->cpumask); 2816 free_hctx: 2817 kfree(hctx); 2818 fail_alloc_hctx: 2819 return NULL; 2820 } 2821 2822 static void blk_mq_init_cpu_queues(struct request_queue *q, 2823 unsigned int nr_hw_queues) 2824 { 2825 struct blk_mq_tag_set *set = q->tag_set; 2826 unsigned int i, j; 2827 2828 for_each_possible_cpu(i) { 2829 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2830 struct blk_mq_hw_ctx *hctx; 2831 int k; 2832 2833 __ctx->cpu = i; 2834 spin_lock_init(&__ctx->lock); 2835 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2836 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2837 2838 __ctx->queue = q; 2839 2840 /* 2841 * Set local node, IFF we have more than one hw queue. If 2842 * not, we remain on the home node of the device 2843 */ 2844 for (j = 0; j < set->nr_maps; j++) { 2845 hctx = blk_mq_map_queue_type(q, j, i); 2846 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2847 hctx->numa_node = cpu_to_node(i); 2848 } 2849 } 2850 } 2851 2852 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2853 int hctx_idx) 2854 { 2855 unsigned int flags = set->flags; 2856 int ret = 0; 2857 2858 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2859 set->queue_depth, set->reserved_tags, flags); 2860 if (!set->tags[hctx_idx]) 2861 return false; 2862 2863 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2864 set->queue_depth); 2865 if (!ret) 2866 return true; 2867 2868 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2869 set->tags[hctx_idx] = NULL; 2870 return false; 2871 } 2872 2873 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2874 unsigned int hctx_idx) 2875 { 2876 unsigned int flags = set->flags; 2877 2878 if (set->tags && set->tags[hctx_idx]) { 2879 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2880 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2881 set->tags[hctx_idx] = NULL; 2882 } 2883 } 2884 2885 static void blk_mq_map_swqueue(struct request_queue *q) 2886 { 2887 unsigned int i, j, hctx_idx; 2888 struct blk_mq_hw_ctx *hctx; 2889 struct blk_mq_ctx *ctx; 2890 struct blk_mq_tag_set *set = q->tag_set; 2891 2892 queue_for_each_hw_ctx(q, hctx, i) { 2893 cpumask_clear(hctx->cpumask); 2894 hctx->nr_ctx = 0; 2895 hctx->dispatch_from = NULL; 2896 } 2897 2898 /* 2899 * Map software to hardware queues. 2900 * 2901 * If the cpu isn't present, the cpu is mapped to first hctx. 2902 */ 2903 for_each_possible_cpu(i) { 2904 2905 ctx = per_cpu_ptr(q->queue_ctx, i); 2906 for (j = 0; j < set->nr_maps; j++) { 2907 if (!set->map[j].nr_queues) { 2908 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2909 HCTX_TYPE_DEFAULT, i); 2910 continue; 2911 } 2912 hctx_idx = set->map[j].mq_map[i]; 2913 /* unmapped hw queue can be remapped after CPU topo changed */ 2914 if (!set->tags[hctx_idx] && 2915 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2916 /* 2917 * If tags initialization fail for some hctx, 2918 * that hctx won't be brought online. In this 2919 * case, remap the current ctx to hctx[0] which 2920 * is guaranteed to always have tags allocated 2921 */ 2922 set->map[j].mq_map[i] = 0; 2923 } 2924 2925 hctx = blk_mq_map_queue_type(q, j, i); 2926 ctx->hctxs[j] = hctx; 2927 /* 2928 * If the CPU is already set in the mask, then we've 2929 * mapped this one already. This can happen if 2930 * devices share queues across queue maps. 2931 */ 2932 if (cpumask_test_cpu(i, hctx->cpumask)) 2933 continue; 2934 2935 cpumask_set_cpu(i, hctx->cpumask); 2936 hctx->type = j; 2937 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2938 hctx->ctxs[hctx->nr_ctx++] = ctx; 2939 2940 /* 2941 * If the nr_ctx type overflows, we have exceeded the 2942 * amount of sw queues we can support. 2943 */ 2944 BUG_ON(!hctx->nr_ctx); 2945 } 2946 2947 for (; j < HCTX_MAX_TYPES; j++) 2948 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2949 HCTX_TYPE_DEFAULT, i); 2950 } 2951 2952 queue_for_each_hw_ctx(q, hctx, i) { 2953 /* 2954 * If no software queues are mapped to this hardware queue, 2955 * disable it and free the request entries. 2956 */ 2957 if (!hctx->nr_ctx) { 2958 /* Never unmap queue 0. We need it as a 2959 * fallback in case of a new remap fails 2960 * allocation 2961 */ 2962 if (i && set->tags[i]) 2963 blk_mq_free_map_and_requests(set, i); 2964 2965 hctx->tags = NULL; 2966 continue; 2967 } 2968 2969 hctx->tags = set->tags[i]; 2970 WARN_ON(!hctx->tags); 2971 2972 /* 2973 * Set the map size to the number of mapped software queues. 2974 * This is more accurate and more efficient than looping 2975 * over all possibly mapped software queues. 2976 */ 2977 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2978 2979 /* 2980 * Initialize batch roundrobin counts 2981 */ 2982 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2983 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2984 } 2985 } 2986 2987 /* 2988 * Caller needs to ensure that we're either frozen/quiesced, or that 2989 * the queue isn't live yet. 2990 */ 2991 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2992 { 2993 struct blk_mq_hw_ctx *hctx; 2994 int i; 2995 2996 queue_for_each_hw_ctx(q, hctx, i) { 2997 if (shared) 2998 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2999 else 3000 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3001 } 3002 } 3003 3004 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3005 bool shared) 3006 { 3007 struct request_queue *q; 3008 3009 lockdep_assert_held(&set->tag_list_lock); 3010 3011 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3012 blk_mq_freeze_queue(q); 3013 queue_set_hctx_shared(q, shared); 3014 blk_mq_unfreeze_queue(q); 3015 } 3016 } 3017 3018 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3019 { 3020 struct blk_mq_tag_set *set = q->tag_set; 3021 3022 mutex_lock(&set->tag_list_lock); 3023 list_del(&q->tag_set_list); 3024 if (list_is_singular(&set->tag_list)) { 3025 /* just transitioned to unshared */ 3026 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3027 /* update existing queue */ 3028 blk_mq_update_tag_set_shared(set, false); 3029 } 3030 mutex_unlock(&set->tag_list_lock); 3031 INIT_LIST_HEAD(&q->tag_set_list); 3032 } 3033 3034 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3035 struct request_queue *q) 3036 { 3037 mutex_lock(&set->tag_list_lock); 3038 3039 /* 3040 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3041 */ 3042 if (!list_empty(&set->tag_list) && 3043 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3044 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3045 /* update existing queue */ 3046 blk_mq_update_tag_set_shared(set, true); 3047 } 3048 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3049 queue_set_hctx_shared(q, true); 3050 list_add_tail(&q->tag_set_list, &set->tag_list); 3051 3052 mutex_unlock(&set->tag_list_lock); 3053 } 3054 3055 /* All allocations will be freed in release handler of q->mq_kobj */ 3056 static int blk_mq_alloc_ctxs(struct request_queue *q) 3057 { 3058 struct blk_mq_ctxs *ctxs; 3059 int cpu; 3060 3061 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3062 if (!ctxs) 3063 return -ENOMEM; 3064 3065 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3066 if (!ctxs->queue_ctx) 3067 goto fail; 3068 3069 for_each_possible_cpu(cpu) { 3070 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3071 ctx->ctxs = ctxs; 3072 } 3073 3074 q->mq_kobj = &ctxs->kobj; 3075 q->queue_ctx = ctxs->queue_ctx; 3076 3077 return 0; 3078 fail: 3079 kfree(ctxs); 3080 return -ENOMEM; 3081 } 3082 3083 /* 3084 * It is the actual release handler for mq, but we do it from 3085 * request queue's release handler for avoiding use-after-free 3086 * and headache because q->mq_kobj shouldn't have been introduced, 3087 * but we can't group ctx/kctx kobj without it. 3088 */ 3089 void blk_mq_release(struct request_queue *q) 3090 { 3091 struct blk_mq_hw_ctx *hctx, *next; 3092 int i; 3093 3094 queue_for_each_hw_ctx(q, hctx, i) 3095 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3096 3097 /* all hctx are in .unused_hctx_list now */ 3098 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3099 list_del_init(&hctx->hctx_list); 3100 kobject_put(&hctx->kobj); 3101 } 3102 3103 kfree(q->queue_hw_ctx); 3104 3105 /* 3106 * release .mq_kobj and sw queue's kobject now because 3107 * both share lifetime with request queue. 3108 */ 3109 blk_mq_sysfs_deinit(q); 3110 } 3111 3112 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3113 void *queuedata) 3114 { 3115 struct request_queue *q; 3116 int ret; 3117 3118 q = blk_alloc_queue(set->numa_node); 3119 if (!q) 3120 return ERR_PTR(-ENOMEM); 3121 q->queuedata = queuedata; 3122 ret = blk_mq_init_allocated_queue(set, q); 3123 if (ret) { 3124 blk_cleanup_queue(q); 3125 return ERR_PTR(ret); 3126 } 3127 return q; 3128 } 3129 3130 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3131 { 3132 return blk_mq_init_queue_data(set, NULL); 3133 } 3134 EXPORT_SYMBOL(blk_mq_init_queue); 3135 3136 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata) 3137 { 3138 struct request_queue *q; 3139 struct gendisk *disk; 3140 3141 q = blk_mq_init_queue_data(set, queuedata); 3142 if (IS_ERR(q)) 3143 return ERR_CAST(q); 3144 3145 disk = __alloc_disk_node(0, set->numa_node); 3146 if (!disk) { 3147 blk_cleanup_queue(q); 3148 return ERR_PTR(-ENOMEM); 3149 } 3150 disk->queue = q; 3151 return disk; 3152 } 3153 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3154 3155 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3156 struct blk_mq_tag_set *set, struct request_queue *q, 3157 int hctx_idx, int node) 3158 { 3159 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3160 3161 /* reuse dead hctx first */ 3162 spin_lock(&q->unused_hctx_lock); 3163 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3164 if (tmp->numa_node == node) { 3165 hctx = tmp; 3166 break; 3167 } 3168 } 3169 if (hctx) 3170 list_del_init(&hctx->hctx_list); 3171 spin_unlock(&q->unused_hctx_lock); 3172 3173 if (!hctx) 3174 hctx = blk_mq_alloc_hctx(q, set, node); 3175 if (!hctx) 3176 goto fail; 3177 3178 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3179 goto free_hctx; 3180 3181 return hctx; 3182 3183 free_hctx: 3184 kobject_put(&hctx->kobj); 3185 fail: 3186 return NULL; 3187 } 3188 3189 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3190 struct request_queue *q) 3191 { 3192 int i, j, end; 3193 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3194 3195 if (q->nr_hw_queues < set->nr_hw_queues) { 3196 struct blk_mq_hw_ctx **new_hctxs; 3197 3198 new_hctxs = kcalloc_node(set->nr_hw_queues, 3199 sizeof(*new_hctxs), GFP_KERNEL, 3200 set->numa_node); 3201 if (!new_hctxs) 3202 return; 3203 if (hctxs) 3204 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3205 sizeof(*hctxs)); 3206 q->queue_hw_ctx = new_hctxs; 3207 kfree(hctxs); 3208 hctxs = new_hctxs; 3209 } 3210 3211 /* protect against switching io scheduler */ 3212 mutex_lock(&q->sysfs_lock); 3213 for (i = 0; i < set->nr_hw_queues; i++) { 3214 int node; 3215 struct blk_mq_hw_ctx *hctx; 3216 3217 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3218 /* 3219 * If the hw queue has been mapped to another numa node, 3220 * we need to realloc the hctx. If allocation fails, fallback 3221 * to use the previous one. 3222 */ 3223 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3224 continue; 3225 3226 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3227 if (hctx) { 3228 if (hctxs[i]) 3229 blk_mq_exit_hctx(q, set, hctxs[i], i); 3230 hctxs[i] = hctx; 3231 } else { 3232 if (hctxs[i]) 3233 pr_warn("Allocate new hctx on node %d fails,\ 3234 fallback to previous one on node %d\n", 3235 node, hctxs[i]->numa_node); 3236 else 3237 break; 3238 } 3239 } 3240 /* 3241 * Increasing nr_hw_queues fails. Free the newly allocated 3242 * hctxs and keep the previous q->nr_hw_queues. 3243 */ 3244 if (i != set->nr_hw_queues) { 3245 j = q->nr_hw_queues; 3246 end = i; 3247 } else { 3248 j = i; 3249 end = q->nr_hw_queues; 3250 q->nr_hw_queues = set->nr_hw_queues; 3251 } 3252 3253 for (; j < end; j++) { 3254 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3255 3256 if (hctx) { 3257 if (hctx->tags) 3258 blk_mq_free_map_and_requests(set, j); 3259 blk_mq_exit_hctx(q, set, hctx, j); 3260 hctxs[j] = NULL; 3261 } 3262 } 3263 mutex_unlock(&q->sysfs_lock); 3264 } 3265 3266 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3267 struct request_queue *q) 3268 { 3269 /* mark the queue as mq asap */ 3270 q->mq_ops = set->ops; 3271 3272 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3273 blk_mq_poll_stats_bkt, 3274 BLK_MQ_POLL_STATS_BKTS, q); 3275 if (!q->poll_cb) 3276 goto err_exit; 3277 3278 if (blk_mq_alloc_ctxs(q)) 3279 goto err_poll; 3280 3281 /* init q->mq_kobj and sw queues' kobjects */ 3282 blk_mq_sysfs_init(q); 3283 3284 INIT_LIST_HEAD(&q->unused_hctx_list); 3285 spin_lock_init(&q->unused_hctx_lock); 3286 3287 blk_mq_realloc_hw_ctxs(set, q); 3288 if (!q->nr_hw_queues) 3289 goto err_hctxs; 3290 3291 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3292 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3293 3294 q->tag_set = set; 3295 3296 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3297 if (set->nr_maps > HCTX_TYPE_POLL && 3298 set->map[HCTX_TYPE_POLL].nr_queues) 3299 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3300 3301 q->sg_reserved_size = INT_MAX; 3302 3303 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3304 INIT_LIST_HEAD(&q->requeue_list); 3305 spin_lock_init(&q->requeue_lock); 3306 3307 q->nr_requests = set->queue_depth; 3308 3309 /* 3310 * Default to classic polling 3311 */ 3312 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3313 3314 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3315 blk_mq_add_queue_tag_set(set, q); 3316 blk_mq_map_swqueue(q); 3317 return 0; 3318 3319 err_hctxs: 3320 kfree(q->queue_hw_ctx); 3321 q->nr_hw_queues = 0; 3322 blk_mq_sysfs_deinit(q); 3323 err_poll: 3324 blk_stat_free_callback(q->poll_cb); 3325 q->poll_cb = NULL; 3326 err_exit: 3327 q->mq_ops = NULL; 3328 return -ENOMEM; 3329 } 3330 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3331 3332 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3333 void blk_mq_exit_queue(struct request_queue *q) 3334 { 3335 struct blk_mq_tag_set *set = q->tag_set; 3336 3337 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 3338 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3339 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 3340 blk_mq_del_queue_tag_set(q); 3341 } 3342 3343 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3344 { 3345 int i; 3346 3347 for (i = 0; i < set->nr_hw_queues; i++) { 3348 if (!__blk_mq_alloc_map_and_request(set, i)) 3349 goto out_unwind; 3350 cond_resched(); 3351 } 3352 3353 return 0; 3354 3355 out_unwind: 3356 while (--i >= 0) 3357 blk_mq_free_map_and_requests(set, i); 3358 3359 return -ENOMEM; 3360 } 3361 3362 /* 3363 * Allocate the request maps associated with this tag_set. Note that this 3364 * may reduce the depth asked for, if memory is tight. set->queue_depth 3365 * will be updated to reflect the allocated depth. 3366 */ 3367 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3368 { 3369 unsigned int depth; 3370 int err; 3371 3372 depth = set->queue_depth; 3373 do { 3374 err = __blk_mq_alloc_rq_maps(set); 3375 if (!err) 3376 break; 3377 3378 set->queue_depth >>= 1; 3379 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3380 err = -ENOMEM; 3381 break; 3382 } 3383 } while (set->queue_depth); 3384 3385 if (!set->queue_depth || err) { 3386 pr_err("blk-mq: failed to allocate request map\n"); 3387 return -ENOMEM; 3388 } 3389 3390 if (depth != set->queue_depth) 3391 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3392 depth, set->queue_depth); 3393 3394 return 0; 3395 } 3396 3397 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3398 { 3399 /* 3400 * blk_mq_map_queues() and multiple .map_queues() implementations 3401 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3402 * number of hardware queues. 3403 */ 3404 if (set->nr_maps == 1) 3405 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3406 3407 if (set->ops->map_queues && !is_kdump_kernel()) { 3408 int i; 3409 3410 /* 3411 * transport .map_queues is usually done in the following 3412 * way: 3413 * 3414 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3415 * mask = get_cpu_mask(queue) 3416 * for_each_cpu(cpu, mask) 3417 * set->map[x].mq_map[cpu] = queue; 3418 * } 3419 * 3420 * When we need to remap, the table has to be cleared for 3421 * killing stale mapping since one CPU may not be mapped 3422 * to any hw queue. 3423 */ 3424 for (i = 0; i < set->nr_maps; i++) 3425 blk_mq_clear_mq_map(&set->map[i]); 3426 3427 return set->ops->map_queues(set); 3428 } else { 3429 BUG_ON(set->nr_maps > 1); 3430 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3431 } 3432 } 3433 3434 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3435 int cur_nr_hw_queues, int new_nr_hw_queues) 3436 { 3437 struct blk_mq_tags **new_tags; 3438 3439 if (cur_nr_hw_queues >= new_nr_hw_queues) 3440 return 0; 3441 3442 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3443 GFP_KERNEL, set->numa_node); 3444 if (!new_tags) 3445 return -ENOMEM; 3446 3447 if (set->tags) 3448 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3449 sizeof(*set->tags)); 3450 kfree(set->tags); 3451 set->tags = new_tags; 3452 set->nr_hw_queues = new_nr_hw_queues; 3453 3454 return 0; 3455 } 3456 3457 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 3458 int new_nr_hw_queues) 3459 { 3460 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 3461 } 3462 3463 /* 3464 * Alloc a tag set to be associated with one or more request queues. 3465 * May fail with EINVAL for various error conditions. May adjust the 3466 * requested depth down, if it's too large. In that case, the set 3467 * value will be stored in set->queue_depth. 3468 */ 3469 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3470 { 3471 int i, ret; 3472 3473 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3474 3475 if (!set->nr_hw_queues) 3476 return -EINVAL; 3477 if (!set->queue_depth) 3478 return -EINVAL; 3479 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3480 return -EINVAL; 3481 3482 if (!set->ops->queue_rq) 3483 return -EINVAL; 3484 3485 if (!set->ops->get_budget ^ !set->ops->put_budget) 3486 return -EINVAL; 3487 3488 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3489 pr_info("blk-mq: reduced tag depth to %u\n", 3490 BLK_MQ_MAX_DEPTH); 3491 set->queue_depth = BLK_MQ_MAX_DEPTH; 3492 } 3493 3494 if (!set->nr_maps) 3495 set->nr_maps = 1; 3496 else if (set->nr_maps > HCTX_MAX_TYPES) 3497 return -EINVAL; 3498 3499 /* 3500 * If a crashdump is active, then we are potentially in a very 3501 * memory constrained environment. Limit us to 1 queue and 3502 * 64 tags to prevent using too much memory. 3503 */ 3504 if (is_kdump_kernel()) { 3505 set->nr_hw_queues = 1; 3506 set->nr_maps = 1; 3507 set->queue_depth = min(64U, set->queue_depth); 3508 } 3509 /* 3510 * There is no use for more h/w queues than cpus if we just have 3511 * a single map 3512 */ 3513 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3514 set->nr_hw_queues = nr_cpu_ids; 3515 3516 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 3517 return -ENOMEM; 3518 3519 ret = -ENOMEM; 3520 for (i = 0; i < set->nr_maps; i++) { 3521 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3522 sizeof(set->map[i].mq_map[0]), 3523 GFP_KERNEL, set->numa_node); 3524 if (!set->map[i].mq_map) 3525 goto out_free_mq_map; 3526 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3527 } 3528 3529 ret = blk_mq_update_queue_map(set); 3530 if (ret) 3531 goto out_free_mq_map; 3532 3533 ret = blk_mq_alloc_map_and_requests(set); 3534 if (ret) 3535 goto out_free_mq_map; 3536 3537 if (blk_mq_is_sbitmap_shared(set->flags)) { 3538 atomic_set(&set->active_queues_shared_sbitmap, 0); 3539 3540 if (blk_mq_init_shared_sbitmap(set)) { 3541 ret = -ENOMEM; 3542 goto out_free_mq_rq_maps; 3543 } 3544 } 3545 3546 mutex_init(&set->tag_list_lock); 3547 INIT_LIST_HEAD(&set->tag_list); 3548 3549 return 0; 3550 3551 out_free_mq_rq_maps: 3552 for (i = 0; i < set->nr_hw_queues; i++) 3553 blk_mq_free_map_and_requests(set, i); 3554 out_free_mq_map: 3555 for (i = 0; i < set->nr_maps; i++) { 3556 kfree(set->map[i].mq_map); 3557 set->map[i].mq_map = NULL; 3558 } 3559 kfree(set->tags); 3560 set->tags = NULL; 3561 return ret; 3562 } 3563 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3564 3565 /* allocate and initialize a tagset for a simple single-queue device */ 3566 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 3567 const struct blk_mq_ops *ops, unsigned int queue_depth, 3568 unsigned int set_flags) 3569 { 3570 memset(set, 0, sizeof(*set)); 3571 set->ops = ops; 3572 set->nr_hw_queues = 1; 3573 set->nr_maps = 1; 3574 set->queue_depth = queue_depth; 3575 set->numa_node = NUMA_NO_NODE; 3576 set->flags = set_flags; 3577 return blk_mq_alloc_tag_set(set); 3578 } 3579 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 3580 3581 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3582 { 3583 int i, j; 3584 3585 for (i = 0; i < set->nr_hw_queues; i++) 3586 blk_mq_free_map_and_requests(set, i); 3587 3588 if (blk_mq_is_sbitmap_shared(set->flags)) 3589 blk_mq_exit_shared_sbitmap(set); 3590 3591 for (j = 0; j < set->nr_maps; j++) { 3592 kfree(set->map[j].mq_map); 3593 set->map[j].mq_map = NULL; 3594 } 3595 3596 kfree(set->tags); 3597 set->tags = NULL; 3598 } 3599 EXPORT_SYMBOL(blk_mq_free_tag_set); 3600 3601 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3602 { 3603 struct blk_mq_tag_set *set = q->tag_set; 3604 struct blk_mq_hw_ctx *hctx; 3605 int i, ret; 3606 3607 if (!set) 3608 return -EINVAL; 3609 3610 if (q->nr_requests == nr) 3611 return 0; 3612 3613 blk_mq_freeze_queue(q); 3614 blk_mq_quiesce_queue(q); 3615 3616 ret = 0; 3617 queue_for_each_hw_ctx(q, hctx, i) { 3618 if (!hctx->tags) 3619 continue; 3620 /* 3621 * If we're using an MQ scheduler, just update the scheduler 3622 * queue depth. This is similar to what the old code would do. 3623 */ 3624 if (!hctx->sched_tags) { 3625 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3626 false); 3627 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3628 blk_mq_tag_resize_shared_sbitmap(set, nr); 3629 } else { 3630 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3631 nr, true); 3632 if (blk_mq_is_sbitmap_shared(set->flags)) { 3633 hctx->sched_tags->bitmap_tags = 3634 &q->sched_bitmap_tags; 3635 hctx->sched_tags->breserved_tags = 3636 &q->sched_breserved_tags; 3637 } 3638 } 3639 if (ret) 3640 break; 3641 if (q->elevator && q->elevator->type->ops.depth_updated) 3642 q->elevator->type->ops.depth_updated(hctx); 3643 } 3644 if (!ret) { 3645 q->nr_requests = nr; 3646 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags)) 3647 sbitmap_queue_resize(&q->sched_bitmap_tags, 3648 nr - set->reserved_tags); 3649 } 3650 3651 blk_mq_unquiesce_queue(q); 3652 blk_mq_unfreeze_queue(q); 3653 3654 return ret; 3655 } 3656 3657 /* 3658 * request_queue and elevator_type pair. 3659 * It is just used by __blk_mq_update_nr_hw_queues to cache 3660 * the elevator_type associated with a request_queue. 3661 */ 3662 struct blk_mq_qe_pair { 3663 struct list_head node; 3664 struct request_queue *q; 3665 struct elevator_type *type; 3666 }; 3667 3668 /* 3669 * Cache the elevator_type in qe pair list and switch the 3670 * io scheduler to 'none' 3671 */ 3672 static bool blk_mq_elv_switch_none(struct list_head *head, 3673 struct request_queue *q) 3674 { 3675 struct blk_mq_qe_pair *qe; 3676 3677 if (!q->elevator) 3678 return true; 3679 3680 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3681 if (!qe) 3682 return false; 3683 3684 INIT_LIST_HEAD(&qe->node); 3685 qe->q = q; 3686 qe->type = q->elevator->type; 3687 list_add(&qe->node, head); 3688 3689 mutex_lock(&q->sysfs_lock); 3690 /* 3691 * After elevator_switch_mq, the previous elevator_queue will be 3692 * released by elevator_release. The reference of the io scheduler 3693 * module get by elevator_get will also be put. So we need to get 3694 * a reference of the io scheduler module here to prevent it to be 3695 * removed. 3696 */ 3697 __module_get(qe->type->elevator_owner); 3698 elevator_switch_mq(q, NULL); 3699 mutex_unlock(&q->sysfs_lock); 3700 3701 return true; 3702 } 3703 3704 static void blk_mq_elv_switch_back(struct list_head *head, 3705 struct request_queue *q) 3706 { 3707 struct blk_mq_qe_pair *qe; 3708 struct elevator_type *t = NULL; 3709 3710 list_for_each_entry(qe, head, node) 3711 if (qe->q == q) { 3712 t = qe->type; 3713 break; 3714 } 3715 3716 if (!t) 3717 return; 3718 3719 list_del(&qe->node); 3720 kfree(qe); 3721 3722 mutex_lock(&q->sysfs_lock); 3723 elevator_switch_mq(q, t); 3724 mutex_unlock(&q->sysfs_lock); 3725 } 3726 3727 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3728 int nr_hw_queues) 3729 { 3730 struct request_queue *q; 3731 LIST_HEAD(head); 3732 int prev_nr_hw_queues; 3733 3734 lockdep_assert_held(&set->tag_list_lock); 3735 3736 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3737 nr_hw_queues = nr_cpu_ids; 3738 if (nr_hw_queues < 1) 3739 return; 3740 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3741 return; 3742 3743 list_for_each_entry(q, &set->tag_list, tag_set_list) 3744 blk_mq_freeze_queue(q); 3745 /* 3746 * Switch IO scheduler to 'none', cleaning up the data associated 3747 * with the previous scheduler. We will switch back once we are done 3748 * updating the new sw to hw queue mappings. 3749 */ 3750 list_for_each_entry(q, &set->tag_list, tag_set_list) 3751 if (!blk_mq_elv_switch_none(&head, q)) 3752 goto switch_back; 3753 3754 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3755 blk_mq_debugfs_unregister_hctxs(q); 3756 blk_mq_sysfs_unregister(q); 3757 } 3758 3759 prev_nr_hw_queues = set->nr_hw_queues; 3760 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3761 0) 3762 goto reregister; 3763 3764 set->nr_hw_queues = nr_hw_queues; 3765 fallback: 3766 blk_mq_update_queue_map(set); 3767 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3768 blk_mq_realloc_hw_ctxs(set, q); 3769 if (q->nr_hw_queues != set->nr_hw_queues) { 3770 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3771 nr_hw_queues, prev_nr_hw_queues); 3772 set->nr_hw_queues = prev_nr_hw_queues; 3773 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3774 goto fallback; 3775 } 3776 blk_mq_map_swqueue(q); 3777 } 3778 3779 reregister: 3780 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3781 blk_mq_sysfs_register(q); 3782 blk_mq_debugfs_register_hctxs(q); 3783 } 3784 3785 switch_back: 3786 list_for_each_entry(q, &set->tag_list, tag_set_list) 3787 blk_mq_elv_switch_back(&head, q); 3788 3789 list_for_each_entry(q, &set->tag_list, tag_set_list) 3790 blk_mq_unfreeze_queue(q); 3791 } 3792 3793 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3794 { 3795 mutex_lock(&set->tag_list_lock); 3796 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3797 mutex_unlock(&set->tag_list_lock); 3798 } 3799 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3800 3801 /* Enable polling stats and return whether they were already enabled. */ 3802 static bool blk_poll_stats_enable(struct request_queue *q) 3803 { 3804 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3805 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3806 return true; 3807 blk_stat_add_callback(q, q->poll_cb); 3808 return false; 3809 } 3810 3811 static void blk_mq_poll_stats_start(struct request_queue *q) 3812 { 3813 /* 3814 * We don't arm the callback if polling stats are not enabled or the 3815 * callback is already active. 3816 */ 3817 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3818 blk_stat_is_active(q->poll_cb)) 3819 return; 3820 3821 blk_stat_activate_msecs(q->poll_cb, 100); 3822 } 3823 3824 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3825 { 3826 struct request_queue *q = cb->data; 3827 int bucket; 3828 3829 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3830 if (cb->stat[bucket].nr_samples) 3831 q->poll_stat[bucket] = cb->stat[bucket]; 3832 } 3833 } 3834 3835 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3836 struct request *rq) 3837 { 3838 unsigned long ret = 0; 3839 int bucket; 3840 3841 /* 3842 * If stats collection isn't on, don't sleep but turn it on for 3843 * future users 3844 */ 3845 if (!blk_poll_stats_enable(q)) 3846 return 0; 3847 3848 /* 3849 * As an optimistic guess, use half of the mean service time 3850 * for this type of request. We can (and should) make this smarter. 3851 * For instance, if the completion latencies are tight, we can 3852 * get closer than just half the mean. This is especially 3853 * important on devices where the completion latencies are longer 3854 * than ~10 usec. We do use the stats for the relevant IO size 3855 * if available which does lead to better estimates. 3856 */ 3857 bucket = blk_mq_poll_stats_bkt(rq); 3858 if (bucket < 0) 3859 return ret; 3860 3861 if (q->poll_stat[bucket].nr_samples) 3862 ret = (q->poll_stat[bucket].mean + 1) / 2; 3863 3864 return ret; 3865 } 3866 3867 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3868 struct request *rq) 3869 { 3870 struct hrtimer_sleeper hs; 3871 enum hrtimer_mode mode; 3872 unsigned int nsecs; 3873 ktime_t kt; 3874 3875 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3876 return false; 3877 3878 /* 3879 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3880 * 3881 * 0: use half of prev avg 3882 * >0: use this specific value 3883 */ 3884 if (q->poll_nsec > 0) 3885 nsecs = q->poll_nsec; 3886 else 3887 nsecs = blk_mq_poll_nsecs(q, rq); 3888 3889 if (!nsecs) 3890 return false; 3891 3892 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3893 3894 /* 3895 * This will be replaced with the stats tracking code, using 3896 * 'avg_completion_time / 2' as the pre-sleep target. 3897 */ 3898 kt = nsecs; 3899 3900 mode = HRTIMER_MODE_REL; 3901 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3902 hrtimer_set_expires(&hs.timer, kt); 3903 3904 do { 3905 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3906 break; 3907 set_current_state(TASK_UNINTERRUPTIBLE); 3908 hrtimer_sleeper_start_expires(&hs, mode); 3909 if (hs.task) 3910 io_schedule(); 3911 hrtimer_cancel(&hs.timer); 3912 mode = HRTIMER_MODE_ABS; 3913 } while (hs.task && !signal_pending(current)); 3914 3915 __set_current_state(TASK_RUNNING); 3916 destroy_hrtimer_on_stack(&hs.timer); 3917 return true; 3918 } 3919 3920 static bool blk_mq_poll_hybrid(struct request_queue *q, 3921 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3922 { 3923 struct request *rq; 3924 3925 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3926 return false; 3927 3928 if (!blk_qc_t_is_internal(cookie)) 3929 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3930 else { 3931 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3932 /* 3933 * With scheduling, if the request has completed, we'll 3934 * get a NULL return here, as we clear the sched tag when 3935 * that happens. The request still remains valid, like always, 3936 * so we should be safe with just the NULL check. 3937 */ 3938 if (!rq) 3939 return false; 3940 } 3941 3942 return blk_mq_poll_hybrid_sleep(q, rq); 3943 } 3944 3945 /** 3946 * blk_poll - poll for IO completions 3947 * @q: the queue 3948 * @cookie: cookie passed back at IO submission time 3949 * @spin: whether to spin for completions 3950 * 3951 * Description: 3952 * Poll for completions on the passed in queue. Returns number of 3953 * completed entries found. If @spin is true, then blk_poll will continue 3954 * looping until at least one completion is found, unless the task is 3955 * otherwise marked running (or we need to reschedule). 3956 */ 3957 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3958 { 3959 struct blk_mq_hw_ctx *hctx; 3960 unsigned int state; 3961 3962 if (!blk_qc_t_valid(cookie) || 3963 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3964 return 0; 3965 3966 if (current->plug) 3967 blk_flush_plug_list(current->plug, false); 3968 3969 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3970 3971 /* 3972 * If we sleep, have the caller restart the poll loop to reset 3973 * the state. Like for the other success return cases, the 3974 * caller is responsible for checking if the IO completed. If 3975 * the IO isn't complete, we'll get called again and will go 3976 * straight to the busy poll loop. If specified not to spin, 3977 * we also should not sleep. 3978 */ 3979 if (spin && blk_mq_poll_hybrid(q, hctx, cookie)) 3980 return 1; 3981 3982 hctx->poll_considered++; 3983 3984 state = get_current_state(); 3985 do { 3986 int ret; 3987 3988 hctx->poll_invoked++; 3989 3990 ret = q->mq_ops->poll(hctx); 3991 if (ret > 0) { 3992 hctx->poll_success++; 3993 __set_current_state(TASK_RUNNING); 3994 return ret; 3995 } 3996 3997 if (signal_pending_state(state, current)) 3998 __set_current_state(TASK_RUNNING); 3999 4000 if (task_is_running(current)) 4001 return 1; 4002 if (ret < 0 || !spin) 4003 break; 4004 cpu_relax(); 4005 } while (!need_resched()); 4006 4007 __set_current_state(TASK_RUNNING); 4008 return 0; 4009 } 4010 EXPORT_SYMBOL_GPL(blk_poll); 4011 4012 unsigned int blk_mq_rq_cpu(struct request *rq) 4013 { 4014 return rq->mq_ctx->cpu; 4015 } 4016 EXPORT_SYMBOL(blk_mq_rq_cpu); 4017 4018 static int __init blk_mq_init(void) 4019 { 4020 int i; 4021 4022 for_each_possible_cpu(i) 4023 init_llist_head(&per_cpu(blk_cpu_done, i)); 4024 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4025 4026 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4027 "block/softirq:dead", NULL, 4028 blk_softirq_cpu_dead); 4029 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4030 blk_mq_hctx_notify_dead); 4031 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4032 blk_mq_hctx_notify_online, 4033 blk_mq_hctx_notify_offline); 4034 return 0; 4035 } 4036 subsys_initcall(blk_mq_init); 4037