1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 79 } 80 81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 82 struct blk_mq_ctx *ctx) 83 { 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 85 } 86 87 struct mq_inflight { 88 struct hd_struct *part; 89 unsigned int *inflight; 90 }; 91 92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 93 struct request *rq, void *priv, 94 bool reserved) 95 { 96 struct mq_inflight *mi = priv; 97 98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) { 99 /* 100 * index[0] counts the specific partition that was asked 101 * for. index[1] counts the ones that are active on the 102 * whole device, so increment that if mi->part is indeed 103 * a partition, and not a whole device. 104 */ 105 if (rq->part == mi->part) 106 mi->inflight[0]++; 107 if (mi->part->partno) 108 mi->inflight[1]++; 109 } 110 } 111 112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 113 unsigned int inflight[2]) 114 { 115 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 116 117 inflight[0] = inflight[1] = 0; 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 } 120 121 void blk_freeze_queue_start(struct request_queue *q) 122 { 123 int freeze_depth; 124 125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 126 if (freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 if (q->mq_ops) 129 blk_mq_run_hw_queues(q, false); 130 } 131 } 132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 133 134 void blk_mq_freeze_queue_wait(struct request_queue *q) 135 { 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 137 } 138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 139 140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 141 unsigned long timeout) 142 { 143 return wait_event_timeout(q->mq_freeze_wq, 144 percpu_ref_is_zero(&q->q_usage_counter), 145 timeout); 146 } 147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 148 149 /* 150 * Guarantee no request is in use, so we can change any data structure of 151 * the queue afterward. 152 */ 153 void blk_freeze_queue(struct request_queue *q) 154 { 155 /* 156 * In the !blk_mq case we are only calling this to kill the 157 * q_usage_counter, otherwise this increases the freeze depth 158 * and waits for it to return to zero. For this reason there is 159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 160 * exported to drivers as the only user for unfreeze is blk_mq. 161 */ 162 blk_freeze_queue_start(q); 163 if (!q->mq_ops) 164 blk_drain_queue(q); 165 blk_mq_freeze_queue_wait(q); 166 } 167 168 void blk_mq_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * ...just an alias to keep freeze and unfreeze actions balanced 172 * in the blk_mq_* namespace 173 */ 174 blk_freeze_queue(q); 175 } 176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 177 178 void blk_mq_unfreeze_queue(struct request_queue *q) 179 { 180 int freeze_depth; 181 182 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 183 WARN_ON_ONCE(freeze_depth < 0); 184 if (!freeze_depth) { 185 percpu_ref_reinit(&q->q_usage_counter); 186 wake_up_all(&q->mq_freeze_wq); 187 } 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 190 191 /* 192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 193 * mpt3sas driver such that this function can be removed. 194 */ 195 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 196 { 197 unsigned long flags; 198 199 spin_lock_irqsave(q->queue_lock, flags); 200 queue_flag_set(QUEUE_FLAG_QUIESCED, q); 201 spin_unlock_irqrestore(q->queue_lock, flags); 202 } 203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 204 205 /** 206 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 207 * @q: request queue. 208 * 209 * Note: this function does not prevent that the struct request end_io() 210 * callback function is invoked. Once this function is returned, we make 211 * sure no dispatch can happen until the queue is unquiesced via 212 * blk_mq_unquiesce_queue(). 213 */ 214 void blk_mq_quiesce_queue(struct request_queue *q) 215 { 216 struct blk_mq_hw_ctx *hctx; 217 unsigned int i; 218 bool rcu = false; 219 220 blk_mq_quiesce_queue_nowait(q); 221 222 queue_for_each_hw_ctx(q, hctx, i) { 223 if (hctx->flags & BLK_MQ_F_BLOCKING) 224 synchronize_srcu(hctx->srcu); 225 else 226 rcu = true; 227 } 228 if (rcu) 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 232 233 /* 234 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 235 * @q: request queue. 236 * 237 * This function recovers queue into the state before quiescing 238 * which is done by blk_mq_quiesce_queue. 239 */ 240 void blk_mq_unquiesce_queue(struct request_queue *q) 241 { 242 unsigned long flags; 243 244 spin_lock_irqsave(q->queue_lock, flags); 245 queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 246 spin_unlock_irqrestore(q->queue_lock, flags); 247 248 /* dispatch requests which are inserted during quiescing */ 249 blk_mq_run_hw_queues(q, true); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 252 253 void blk_mq_wake_waiters(struct request_queue *q) 254 { 255 struct blk_mq_hw_ctx *hctx; 256 unsigned int i; 257 258 queue_for_each_hw_ctx(q, hctx, i) 259 if (blk_mq_hw_queue_mapped(hctx)) 260 blk_mq_tag_wakeup_all(hctx->tags, true); 261 } 262 263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 264 { 265 return blk_mq_has_free_tags(hctx->tags); 266 } 267 EXPORT_SYMBOL(blk_mq_can_queue); 268 269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 270 unsigned int tag, unsigned int op) 271 { 272 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 273 struct request *rq = tags->static_rqs[tag]; 274 req_flags_t rq_flags = 0; 275 276 if (data->flags & BLK_MQ_REQ_INTERNAL) { 277 rq->tag = -1; 278 rq->internal_tag = tag; 279 } else { 280 if (blk_mq_tag_busy(data->hctx)) { 281 rq_flags = RQF_MQ_INFLIGHT; 282 atomic_inc(&data->hctx->nr_active); 283 } 284 rq->tag = tag; 285 rq->internal_tag = -1; 286 data->hctx->tags->rqs[rq->tag] = rq; 287 } 288 289 /* csd/requeue_work/fifo_time is initialized before use */ 290 rq->q = data->q; 291 rq->mq_ctx = data->ctx; 292 rq->rq_flags = rq_flags; 293 rq->cpu = -1; 294 rq->cmd_flags = op; 295 if (data->flags & BLK_MQ_REQ_PREEMPT) 296 rq->rq_flags |= RQF_PREEMPT; 297 if (blk_queue_io_stat(data->q)) 298 rq->rq_flags |= RQF_IO_STAT; 299 INIT_LIST_HEAD(&rq->queuelist); 300 INIT_HLIST_NODE(&rq->hash); 301 RB_CLEAR_NODE(&rq->rb_node); 302 rq->rq_disk = NULL; 303 rq->part = NULL; 304 rq->start_time = jiffies; 305 rq->nr_phys_segments = 0; 306 #if defined(CONFIG_BLK_DEV_INTEGRITY) 307 rq->nr_integrity_segments = 0; 308 #endif 309 rq->special = NULL; 310 /* tag was already set */ 311 rq->extra_len = 0; 312 rq->__deadline = 0; 313 314 INIT_LIST_HEAD(&rq->timeout_list); 315 rq->timeout = 0; 316 317 rq->end_io = NULL; 318 rq->end_io_data = NULL; 319 rq->next_rq = NULL; 320 321 #ifdef CONFIG_BLK_CGROUP 322 rq->rl = NULL; 323 set_start_time_ns(rq); 324 rq->io_start_time_ns = 0; 325 #endif 326 327 data->ctx->rq_dispatched[op_is_sync(op)]++; 328 return rq; 329 } 330 331 static struct request *blk_mq_get_request(struct request_queue *q, 332 struct bio *bio, unsigned int op, 333 struct blk_mq_alloc_data *data) 334 { 335 struct elevator_queue *e = q->elevator; 336 struct request *rq; 337 unsigned int tag; 338 bool put_ctx_on_error = false; 339 340 blk_queue_enter_live(q); 341 data->q = q; 342 if (likely(!data->ctx)) { 343 data->ctx = blk_mq_get_ctx(q); 344 put_ctx_on_error = true; 345 } 346 if (likely(!data->hctx)) 347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 348 if (op & REQ_NOWAIT) 349 data->flags |= BLK_MQ_REQ_NOWAIT; 350 351 if (e) { 352 data->flags |= BLK_MQ_REQ_INTERNAL; 353 354 /* 355 * Flush requests are special and go directly to the 356 * dispatch list. 357 */ 358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth) 359 e->type->ops.mq.limit_depth(op, data); 360 } 361 362 tag = blk_mq_get_tag(data); 363 if (tag == BLK_MQ_TAG_FAIL) { 364 if (put_ctx_on_error) { 365 blk_mq_put_ctx(data->ctx); 366 data->ctx = NULL; 367 } 368 blk_queue_exit(q); 369 return NULL; 370 } 371 372 rq = blk_mq_rq_ctx_init(data, tag, op); 373 if (!op_is_flush(op)) { 374 rq->elv.icq = NULL; 375 if (e && e->type->ops.mq.prepare_request) { 376 if (e->type->icq_cache && rq_ioc(bio)) 377 blk_mq_sched_assign_ioc(rq, bio); 378 379 e->type->ops.mq.prepare_request(rq, bio); 380 rq->rq_flags |= RQF_ELVPRIV; 381 } 382 } 383 data->hctx->queued++; 384 return rq; 385 } 386 387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 388 blk_mq_req_flags_t flags) 389 { 390 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 391 struct request *rq; 392 int ret; 393 394 ret = blk_queue_enter(q, flags); 395 if (ret) 396 return ERR_PTR(ret); 397 398 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 399 blk_queue_exit(q); 400 401 if (!rq) 402 return ERR_PTR(-EWOULDBLOCK); 403 404 blk_mq_put_ctx(alloc_data.ctx); 405 406 rq->__data_len = 0; 407 rq->__sector = (sector_t) -1; 408 rq->bio = rq->biotail = NULL; 409 return rq; 410 } 411 EXPORT_SYMBOL(blk_mq_alloc_request); 412 413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 415 { 416 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 417 struct request *rq; 418 unsigned int cpu; 419 int ret; 420 421 /* 422 * If the tag allocator sleeps we could get an allocation for a 423 * different hardware context. No need to complicate the low level 424 * allocator for this for the rare use case of a command tied to 425 * a specific queue. 426 */ 427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 428 return ERR_PTR(-EINVAL); 429 430 if (hctx_idx >= q->nr_hw_queues) 431 return ERR_PTR(-EIO); 432 433 ret = blk_queue_enter(q, flags); 434 if (ret) 435 return ERR_PTR(ret); 436 437 /* 438 * Check if the hardware context is actually mapped to anything. 439 * If not tell the caller that it should skip this queue. 440 */ 441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 443 blk_queue_exit(q); 444 return ERR_PTR(-EXDEV); 445 } 446 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 448 449 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 450 blk_queue_exit(q); 451 452 if (!rq) 453 return ERR_PTR(-EWOULDBLOCK); 454 455 return rq; 456 } 457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 458 459 void blk_mq_free_request(struct request *rq) 460 { 461 struct request_queue *q = rq->q; 462 struct elevator_queue *e = q->elevator; 463 struct blk_mq_ctx *ctx = rq->mq_ctx; 464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 465 const int sched_tag = rq->internal_tag; 466 467 if (rq->rq_flags & RQF_ELVPRIV) { 468 if (e && e->type->ops.mq.finish_request) 469 e->type->ops.mq.finish_request(rq); 470 if (rq->elv.icq) { 471 put_io_context(rq->elv.icq->ioc); 472 rq->elv.icq = NULL; 473 } 474 } 475 476 ctx->rq_completed[rq_is_sync(rq)]++; 477 if (rq->rq_flags & RQF_MQ_INFLIGHT) 478 atomic_dec(&hctx->nr_active); 479 480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 481 laptop_io_completion(q->backing_dev_info); 482 483 wbt_done(q->rq_wb, &rq->issue_stat); 484 485 if (blk_rq_rl(rq)) 486 blk_put_rl(blk_rq_rl(rq)); 487 488 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 489 if (rq->tag != -1) 490 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 491 if (sched_tag != -1) 492 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 493 blk_mq_sched_restart(hctx); 494 blk_queue_exit(q); 495 } 496 EXPORT_SYMBOL_GPL(blk_mq_free_request); 497 498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 499 { 500 blk_account_io_done(rq); 501 502 if (rq->end_io) { 503 wbt_done(rq->q->rq_wb, &rq->issue_stat); 504 rq->end_io(rq, error); 505 } else { 506 if (unlikely(blk_bidi_rq(rq))) 507 blk_mq_free_request(rq->next_rq); 508 blk_mq_free_request(rq); 509 } 510 } 511 EXPORT_SYMBOL(__blk_mq_end_request); 512 513 void blk_mq_end_request(struct request *rq, blk_status_t error) 514 { 515 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 516 BUG(); 517 __blk_mq_end_request(rq, error); 518 } 519 EXPORT_SYMBOL(blk_mq_end_request); 520 521 static void __blk_mq_complete_request_remote(void *data) 522 { 523 struct request *rq = data; 524 525 rq->q->softirq_done_fn(rq); 526 } 527 528 static void __blk_mq_complete_request(struct request *rq) 529 { 530 struct blk_mq_ctx *ctx = rq->mq_ctx; 531 bool shared = false; 532 int cpu; 533 534 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT); 535 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE); 536 537 if (rq->internal_tag != -1) 538 blk_mq_sched_completed_request(rq); 539 if (rq->rq_flags & RQF_STATS) { 540 blk_mq_poll_stats_start(rq->q); 541 blk_stat_add(rq); 542 } 543 544 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 545 rq->q->softirq_done_fn(rq); 546 return; 547 } 548 549 cpu = get_cpu(); 550 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 551 shared = cpus_share_cache(cpu, ctx->cpu); 552 553 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 554 rq->csd.func = __blk_mq_complete_request_remote; 555 rq->csd.info = rq; 556 rq->csd.flags = 0; 557 smp_call_function_single_async(ctx->cpu, &rq->csd); 558 } else { 559 rq->q->softirq_done_fn(rq); 560 } 561 put_cpu(); 562 } 563 564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 565 __releases(hctx->srcu) 566 { 567 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 568 rcu_read_unlock(); 569 else 570 srcu_read_unlock(hctx->srcu, srcu_idx); 571 } 572 573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 574 __acquires(hctx->srcu) 575 { 576 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 577 /* shut up gcc false positive */ 578 *srcu_idx = 0; 579 rcu_read_lock(); 580 } else 581 *srcu_idx = srcu_read_lock(hctx->srcu); 582 } 583 584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate) 585 { 586 unsigned long flags; 587 588 /* 589 * blk_mq_rq_aborted_gstate() is used from the completion path and 590 * can thus be called from irq context. u64_stats_fetch in the 591 * middle of update on the same CPU leads to lockup. Disable irq 592 * while updating. 593 */ 594 local_irq_save(flags); 595 u64_stats_update_begin(&rq->aborted_gstate_sync); 596 rq->aborted_gstate = gstate; 597 u64_stats_update_end(&rq->aborted_gstate_sync); 598 local_irq_restore(flags); 599 } 600 601 static u64 blk_mq_rq_aborted_gstate(struct request *rq) 602 { 603 unsigned int start; 604 u64 aborted_gstate; 605 606 do { 607 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync); 608 aborted_gstate = rq->aborted_gstate; 609 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start)); 610 611 return aborted_gstate; 612 } 613 614 /** 615 * blk_mq_complete_request - end I/O on a request 616 * @rq: the request being processed 617 * 618 * Description: 619 * Ends all I/O on a request. It does not handle partial completions. 620 * The actual completion happens out-of-order, through a IPI handler. 621 **/ 622 void blk_mq_complete_request(struct request *rq) 623 { 624 struct request_queue *q = rq->q; 625 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 626 int srcu_idx; 627 628 if (unlikely(blk_should_fake_timeout(q))) 629 return; 630 631 /* 632 * If @rq->aborted_gstate equals the current instance, timeout is 633 * claiming @rq and we lost. This is synchronized through 634 * hctx_lock(). See blk_mq_timeout_work() for details. 635 * 636 * Completion path never blocks and we can directly use RCU here 637 * instead of hctx_lock() which can be either RCU or SRCU. 638 * However, that would complicate paths which want to synchronize 639 * against us. Let stay in sync with the issue path so that 640 * hctx_lock() covers both issue and completion paths. 641 */ 642 hctx_lock(hctx, &srcu_idx); 643 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate) 644 __blk_mq_complete_request(rq); 645 hctx_unlock(hctx, srcu_idx); 646 } 647 EXPORT_SYMBOL(blk_mq_complete_request); 648 649 int blk_mq_request_started(struct request *rq) 650 { 651 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 652 } 653 EXPORT_SYMBOL_GPL(blk_mq_request_started); 654 655 void blk_mq_start_request(struct request *rq) 656 { 657 struct request_queue *q = rq->q; 658 659 blk_mq_sched_started_request(rq); 660 661 trace_block_rq_issue(q, rq); 662 663 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 664 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq)); 665 rq->rq_flags |= RQF_STATS; 666 wbt_issue(q->rq_wb, &rq->issue_stat); 667 } 668 669 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 670 671 /* 672 * Mark @rq in-flight which also advances the generation number, 673 * and register for timeout. Protect with a seqcount to allow the 674 * timeout path to read both @rq->gstate and @rq->deadline 675 * coherently. 676 * 677 * This is the only place where a request is marked in-flight. If 678 * the timeout path reads an in-flight @rq->gstate, the 679 * @rq->deadline it reads together under @rq->gstate_seq is 680 * guaranteed to be the matching one. 681 */ 682 preempt_disable(); 683 write_seqcount_begin(&rq->gstate_seq); 684 685 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT); 686 blk_add_timer(rq); 687 688 write_seqcount_end(&rq->gstate_seq); 689 preempt_enable(); 690 691 if (q->dma_drain_size && blk_rq_bytes(rq)) { 692 /* 693 * Make sure space for the drain appears. We know we can do 694 * this because max_hw_segments has been adjusted to be one 695 * fewer than the device can handle. 696 */ 697 rq->nr_phys_segments++; 698 } 699 } 700 EXPORT_SYMBOL(blk_mq_start_request); 701 702 /* 703 * When we reach here because queue is busy, it's safe to change the state 704 * to IDLE without checking @rq->aborted_gstate because we should still be 705 * holding the RCU read lock and thus protected against timeout. 706 */ 707 static void __blk_mq_requeue_request(struct request *rq) 708 { 709 struct request_queue *q = rq->q; 710 711 blk_mq_put_driver_tag(rq); 712 713 trace_block_rq_requeue(q, rq); 714 wbt_requeue(q->rq_wb, &rq->issue_stat); 715 716 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) { 717 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 718 if (q->dma_drain_size && blk_rq_bytes(rq)) 719 rq->nr_phys_segments--; 720 } 721 } 722 723 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 724 { 725 __blk_mq_requeue_request(rq); 726 727 /* this request will be re-inserted to io scheduler queue */ 728 blk_mq_sched_requeue_request(rq); 729 730 BUG_ON(blk_queued_rq(rq)); 731 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 732 } 733 EXPORT_SYMBOL(blk_mq_requeue_request); 734 735 static void blk_mq_requeue_work(struct work_struct *work) 736 { 737 struct request_queue *q = 738 container_of(work, struct request_queue, requeue_work.work); 739 LIST_HEAD(rq_list); 740 struct request *rq, *next; 741 742 spin_lock_irq(&q->requeue_lock); 743 list_splice_init(&q->requeue_list, &rq_list); 744 spin_unlock_irq(&q->requeue_lock); 745 746 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 747 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 748 continue; 749 750 rq->rq_flags &= ~RQF_SOFTBARRIER; 751 list_del_init(&rq->queuelist); 752 blk_mq_sched_insert_request(rq, true, false, false); 753 } 754 755 while (!list_empty(&rq_list)) { 756 rq = list_entry(rq_list.next, struct request, queuelist); 757 list_del_init(&rq->queuelist); 758 blk_mq_sched_insert_request(rq, false, false, false); 759 } 760 761 blk_mq_run_hw_queues(q, false); 762 } 763 764 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 765 bool kick_requeue_list) 766 { 767 struct request_queue *q = rq->q; 768 unsigned long flags; 769 770 /* 771 * We abuse this flag that is otherwise used by the I/O scheduler to 772 * request head insertion from the workqueue. 773 */ 774 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 775 776 spin_lock_irqsave(&q->requeue_lock, flags); 777 if (at_head) { 778 rq->rq_flags |= RQF_SOFTBARRIER; 779 list_add(&rq->queuelist, &q->requeue_list); 780 } else { 781 list_add_tail(&rq->queuelist, &q->requeue_list); 782 } 783 spin_unlock_irqrestore(&q->requeue_lock, flags); 784 785 if (kick_requeue_list) 786 blk_mq_kick_requeue_list(q); 787 } 788 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 789 790 void blk_mq_kick_requeue_list(struct request_queue *q) 791 { 792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 793 } 794 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 795 796 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 797 unsigned long msecs) 798 { 799 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 800 msecs_to_jiffies(msecs)); 801 } 802 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 803 804 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 805 { 806 if (tag < tags->nr_tags) { 807 prefetch(tags->rqs[tag]); 808 return tags->rqs[tag]; 809 } 810 811 return NULL; 812 } 813 EXPORT_SYMBOL(blk_mq_tag_to_rq); 814 815 struct blk_mq_timeout_data { 816 unsigned long next; 817 unsigned int next_set; 818 unsigned int nr_expired; 819 }; 820 821 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 822 { 823 const struct blk_mq_ops *ops = req->q->mq_ops; 824 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 825 826 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED; 827 828 if (ops->timeout) 829 ret = ops->timeout(req, reserved); 830 831 switch (ret) { 832 case BLK_EH_HANDLED: 833 __blk_mq_complete_request(req); 834 break; 835 case BLK_EH_RESET_TIMER: 836 /* 837 * As nothing prevents from completion happening while 838 * ->aborted_gstate is set, this may lead to ignored 839 * completions and further spurious timeouts. 840 */ 841 blk_mq_rq_update_aborted_gstate(req, 0); 842 blk_add_timer(req); 843 break; 844 case BLK_EH_NOT_HANDLED: 845 break; 846 default: 847 printk(KERN_ERR "block: bad eh return: %d\n", ret); 848 break; 849 } 850 } 851 852 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 853 struct request *rq, void *priv, bool reserved) 854 { 855 struct blk_mq_timeout_data *data = priv; 856 unsigned long gstate, deadline; 857 int start; 858 859 might_sleep(); 860 861 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) 862 return; 863 864 /* read coherent snapshots of @rq->state_gen and @rq->deadline */ 865 while (true) { 866 start = read_seqcount_begin(&rq->gstate_seq); 867 gstate = READ_ONCE(rq->gstate); 868 deadline = blk_rq_deadline(rq); 869 if (!read_seqcount_retry(&rq->gstate_seq, start)) 870 break; 871 cond_resched(); 872 } 873 874 /* if in-flight && overdue, mark for abortion */ 875 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT && 876 time_after_eq(jiffies, deadline)) { 877 blk_mq_rq_update_aborted_gstate(rq, gstate); 878 data->nr_expired++; 879 hctx->nr_expired++; 880 } else if (!data->next_set || time_after(data->next, deadline)) { 881 data->next = deadline; 882 data->next_set = 1; 883 } 884 } 885 886 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx, 887 struct request *rq, void *priv, bool reserved) 888 { 889 /* 890 * We marked @rq->aborted_gstate and waited for RCU. If there were 891 * completions that we lost to, they would have finished and 892 * updated @rq->gstate by now; otherwise, the completion path is 893 * now guaranteed to see @rq->aborted_gstate and yield. If 894 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours. 895 */ 896 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) && 897 READ_ONCE(rq->gstate) == rq->aborted_gstate) 898 blk_mq_rq_timed_out(rq, reserved); 899 } 900 901 static void blk_mq_timeout_work(struct work_struct *work) 902 { 903 struct request_queue *q = 904 container_of(work, struct request_queue, timeout_work); 905 struct blk_mq_timeout_data data = { 906 .next = 0, 907 .next_set = 0, 908 .nr_expired = 0, 909 }; 910 struct blk_mq_hw_ctx *hctx; 911 int i; 912 913 /* A deadlock might occur if a request is stuck requiring a 914 * timeout at the same time a queue freeze is waiting 915 * completion, since the timeout code would not be able to 916 * acquire the queue reference here. 917 * 918 * That's why we don't use blk_queue_enter here; instead, we use 919 * percpu_ref_tryget directly, because we need to be able to 920 * obtain a reference even in the short window between the queue 921 * starting to freeze, by dropping the first reference in 922 * blk_freeze_queue_start, and the moment the last request is 923 * consumed, marked by the instant q_usage_counter reaches 924 * zero. 925 */ 926 if (!percpu_ref_tryget(&q->q_usage_counter)) 927 return; 928 929 /* scan for the expired ones and set their ->aborted_gstate */ 930 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 931 932 if (data.nr_expired) { 933 bool has_rcu = false; 934 935 /* 936 * Wait till everyone sees ->aborted_gstate. The 937 * sequential waits for SRCUs aren't ideal. If this ever 938 * becomes a problem, we can add per-hw_ctx rcu_head and 939 * wait in parallel. 940 */ 941 queue_for_each_hw_ctx(q, hctx, i) { 942 if (!hctx->nr_expired) 943 continue; 944 945 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 946 has_rcu = true; 947 else 948 synchronize_srcu(hctx->srcu); 949 950 hctx->nr_expired = 0; 951 } 952 if (has_rcu) 953 synchronize_rcu(); 954 955 /* terminate the ones we won */ 956 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL); 957 } 958 959 if (data.next_set) { 960 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 961 mod_timer(&q->timeout, data.next); 962 } else { 963 /* 964 * Request timeouts are handled as a forward rolling timer. If 965 * we end up here it means that no requests are pending and 966 * also that no request has been pending for a while. Mark 967 * each hctx as idle. 968 */ 969 queue_for_each_hw_ctx(q, hctx, i) { 970 /* the hctx may be unmapped, so check it here */ 971 if (blk_mq_hw_queue_mapped(hctx)) 972 blk_mq_tag_idle(hctx); 973 } 974 } 975 blk_queue_exit(q); 976 } 977 978 struct flush_busy_ctx_data { 979 struct blk_mq_hw_ctx *hctx; 980 struct list_head *list; 981 }; 982 983 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 984 { 985 struct flush_busy_ctx_data *flush_data = data; 986 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 987 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 988 989 sbitmap_clear_bit(sb, bitnr); 990 spin_lock(&ctx->lock); 991 list_splice_tail_init(&ctx->rq_list, flush_data->list); 992 spin_unlock(&ctx->lock); 993 return true; 994 } 995 996 /* 997 * Process software queues that have been marked busy, splicing them 998 * to the for-dispatch 999 */ 1000 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1001 { 1002 struct flush_busy_ctx_data data = { 1003 .hctx = hctx, 1004 .list = list, 1005 }; 1006 1007 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1008 } 1009 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1010 1011 struct dispatch_rq_data { 1012 struct blk_mq_hw_ctx *hctx; 1013 struct request *rq; 1014 }; 1015 1016 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1017 void *data) 1018 { 1019 struct dispatch_rq_data *dispatch_data = data; 1020 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1021 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1022 1023 spin_lock(&ctx->lock); 1024 if (unlikely(!list_empty(&ctx->rq_list))) { 1025 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 1026 list_del_init(&dispatch_data->rq->queuelist); 1027 if (list_empty(&ctx->rq_list)) 1028 sbitmap_clear_bit(sb, bitnr); 1029 } 1030 spin_unlock(&ctx->lock); 1031 1032 return !dispatch_data->rq; 1033 } 1034 1035 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1036 struct blk_mq_ctx *start) 1037 { 1038 unsigned off = start ? start->index_hw : 0; 1039 struct dispatch_rq_data data = { 1040 .hctx = hctx, 1041 .rq = NULL, 1042 }; 1043 1044 __sbitmap_for_each_set(&hctx->ctx_map, off, 1045 dispatch_rq_from_ctx, &data); 1046 1047 return data.rq; 1048 } 1049 1050 static inline unsigned int queued_to_index(unsigned int queued) 1051 { 1052 if (!queued) 1053 return 0; 1054 1055 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1056 } 1057 1058 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 1059 bool wait) 1060 { 1061 struct blk_mq_alloc_data data = { 1062 .q = rq->q, 1063 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 1064 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 1065 }; 1066 1067 might_sleep_if(wait); 1068 1069 if (rq->tag != -1) 1070 goto done; 1071 1072 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1073 data.flags |= BLK_MQ_REQ_RESERVED; 1074 1075 rq->tag = blk_mq_get_tag(&data); 1076 if (rq->tag >= 0) { 1077 if (blk_mq_tag_busy(data.hctx)) { 1078 rq->rq_flags |= RQF_MQ_INFLIGHT; 1079 atomic_inc(&data.hctx->nr_active); 1080 } 1081 data.hctx->tags->rqs[rq->tag] = rq; 1082 } 1083 1084 done: 1085 if (hctx) 1086 *hctx = data.hctx; 1087 return rq->tag != -1; 1088 } 1089 1090 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1091 int flags, void *key) 1092 { 1093 struct blk_mq_hw_ctx *hctx; 1094 1095 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1096 1097 list_del_init(&wait->entry); 1098 blk_mq_run_hw_queue(hctx, true); 1099 return 1; 1100 } 1101 1102 /* 1103 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1104 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1105 * restart. For both cases, take care to check the condition again after 1106 * marking us as waiting. 1107 */ 1108 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx, 1109 struct request *rq) 1110 { 1111 struct blk_mq_hw_ctx *this_hctx = *hctx; 1112 struct sbq_wait_state *ws; 1113 wait_queue_entry_t *wait; 1114 bool ret; 1115 1116 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1117 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state)) 1118 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state); 1119 1120 /* 1121 * It's possible that a tag was freed in the window between the 1122 * allocation failure and adding the hardware queue to the wait 1123 * queue. 1124 * 1125 * Don't clear RESTART here, someone else could have set it. 1126 * At most this will cost an extra queue run. 1127 */ 1128 return blk_mq_get_driver_tag(rq, hctx, false); 1129 } 1130 1131 wait = &this_hctx->dispatch_wait; 1132 if (!list_empty_careful(&wait->entry)) 1133 return false; 1134 1135 spin_lock(&this_hctx->lock); 1136 if (!list_empty(&wait->entry)) { 1137 spin_unlock(&this_hctx->lock); 1138 return false; 1139 } 1140 1141 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx); 1142 add_wait_queue(&ws->wait, wait); 1143 1144 /* 1145 * It's possible that a tag was freed in the window between the 1146 * allocation failure and adding the hardware queue to the wait 1147 * queue. 1148 */ 1149 ret = blk_mq_get_driver_tag(rq, hctx, false); 1150 if (!ret) { 1151 spin_unlock(&this_hctx->lock); 1152 return false; 1153 } 1154 1155 /* 1156 * We got a tag, remove ourselves from the wait queue to ensure 1157 * someone else gets the wakeup. 1158 */ 1159 spin_lock_irq(&ws->wait.lock); 1160 list_del_init(&wait->entry); 1161 spin_unlock_irq(&ws->wait.lock); 1162 spin_unlock(&this_hctx->lock); 1163 1164 return true; 1165 } 1166 1167 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1168 1169 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1170 bool got_budget) 1171 { 1172 struct blk_mq_hw_ctx *hctx; 1173 struct request *rq, *nxt; 1174 bool no_tag = false; 1175 int errors, queued; 1176 blk_status_t ret = BLK_STS_OK; 1177 1178 if (list_empty(list)) 1179 return false; 1180 1181 WARN_ON(!list_is_singular(list) && got_budget); 1182 1183 /* 1184 * Now process all the entries, sending them to the driver. 1185 */ 1186 errors = queued = 0; 1187 do { 1188 struct blk_mq_queue_data bd; 1189 1190 rq = list_first_entry(list, struct request, queuelist); 1191 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 1192 /* 1193 * The initial allocation attempt failed, so we need to 1194 * rerun the hardware queue when a tag is freed. The 1195 * waitqueue takes care of that. If the queue is run 1196 * before we add this entry back on the dispatch list, 1197 * we'll re-run it below. 1198 */ 1199 if (!blk_mq_mark_tag_wait(&hctx, rq)) { 1200 if (got_budget) 1201 blk_mq_put_dispatch_budget(hctx); 1202 /* 1203 * For non-shared tags, the RESTART check 1204 * will suffice. 1205 */ 1206 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1207 no_tag = true; 1208 break; 1209 } 1210 } 1211 1212 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) { 1213 blk_mq_put_driver_tag(rq); 1214 break; 1215 } 1216 1217 list_del_init(&rq->queuelist); 1218 1219 bd.rq = rq; 1220 1221 /* 1222 * Flag last if we have no more requests, or if we have more 1223 * but can't assign a driver tag to it. 1224 */ 1225 if (list_empty(list)) 1226 bd.last = true; 1227 else { 1228 nxt = list_first_entry(list, struct request, queuelist); 1229 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1230 } 1231 1232 ret = q->mq_ops->queue_rq(hctx, &bd); 1233 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1234 /* 1235 * If an I/O scheduler has been configured and we got a 1236 * driver tag for the next request already, free it 1237 * again. 1238 */ 1239 if (!list_empty(list)) { 1240 nxt = list_first_entry(list, struct request, queuelist); 1241 blk_mq_put_driver_tag(nxt); 1242 } 1243 list_add(&rq->queuelist, list); 1244 __blk_mq_requeue_request(rq); 1245 break; 1246 } 1247 1248 if (unlikely(ret != BLK_STS_OK)) { 1249 errors++; 1250 blk_mq_end_request(rq, BLK_STS_IOERR); 1251 continue; 1252 } 1253 1254 queued++; 1255 } while (!list_empty(list)); 1256 1257 hctx->dispatched[queued_to_index(queued)]++; 1258 1259 /* 1260 * Any items that need requeuing? Stuff them into hctx->dispatch, 1261 * that is where we will continue on next queue run. 1262 */ 1263 if (!list_empty(list)) { 1264 bool needs_restart; 1265 1266 spin_lock(&hctx->lock); 1267 list_splice_init(list, &hctx->dispatch); 1268 spin_unlock(&hctx->lock); 1269 1270 /* 1271 * If SCHED_RESTART was set by the caller of this function and 1272 * it is no longer set that means that it was cleared by another 1273 * thread and hence that a queue rerun is needed. 1274 * 1275 * If 'no_tag' is set, that means that we failed getting 1276 * a driver tag with an I/O scheduler attached. If our dispatch 1277 * waitqueue is no longer active, ensure that we run the queue 1278 * AFTER adding our entries back to the list. 1279 * 1280 * If no I/O scheduler has been configured it is possible that 1281 * the hardware queue got stopped and restarted before requests 1282 * were pushed back onto the dispatch list. Rerun the queue to 1283 * avoid starvation. Notes: 1284 * - blk_mq_run_hw_queue() checks whether or not a queue has 1285 * been stopped before rerunning a queue. 1286 * - Some but not all block drivers stop a queue before 1287 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1288 * and dm-rq. 1289 * 1290 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1291 * bit is set, run queue after a delay to avoid IO stalls 1292 * that could otherwise occur if the queue is idle. 1293 */ 1294 needs_restart = blk_mq_sched_needs_restart(hctx); 1295 if (!needs_restart || 1296 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1297 blk_mq_run_hw_queue(hctx, true); 1298 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1299 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1300 } 1301 1302 return (queued + errors) != 0; 1303 } 1304 1305 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1306 { 1307 int srcu_idx; 1308 1309 /* 1310 * We should be running this queue from one of the CPUs that 1311 * are mapped to it. 1312 * 1313 * There are at least two related races now between setting 1314 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1315 * __blk_mq_run_hw_queue(): 1316 * 1317 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1318 * but later it becomes online, then this warning is harmless 1319 * at all 1320 * 1321 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1322 * but later it becomes offline, then the warning can't be 1323 * triggered, and we depend on blk-mq timeout handler to 1324 * handle dispatched requests to this hctx 1325 */ 1326 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1327 cpu_online(hctx->next_cpu)) { 1328 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1329 raw_smp_processor_id(), 1330 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1331 dump_stack(); 1332 } 1333 1334 /* 1335 * We can't run the queue inline with ints disabled. Ensure that 1336 * we catch bad users of this early. 1337 */ 1338 WARN_ON_ONCE(in_interrupt()); 1339 1340 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1341 1342 hctx_lock(hctx, &srcu_idx); 1343 blk_mq_sched_dispatch_requests(hctx); 1344 hctx_unlock(hctx, srcu_idx); 1345 } 1346 1347 /* 1348 * It'd be great if the workqueue API had a way to pass 1349 * in a mask and had some smarts for more clever placement. 1350 * For now we just round-robin here, switching for every 1351 * BLK_MQ_CPU_WORK_BATCH queued items. 1352 */ 1353 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1354 { 1355 bool tried = false; 1356 1357 if (hctx->queue->nr_hw_queues == 1) 1358 return WORK_CPU_UNBOUND; 1359 1360 if (--hctx->next_cpu_batch <= 0) { 1361 int next_cpu; 1362 select_cpu: 1363 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask, 1364 cpu_online_mask); 1365 if (next_cpu >= nr_cpu_ids) 1366 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask); 1367 1368 /* 1369 * No online CPU is found, so have to make sure hctx->next_cpu 1370 * is set correctly for not breaking workqueue. 1371 */ 1372 if (next_cpu >= nr_cpu_ids) 1373 hctx->next_cpu = cpumask_first(hctx->cpumask); 1374 else 1375 hctx->next_cpu = next_cpu; 1376 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1377 } 1378 1379 /* 1380 * Do unbound schedule if we can't find a online CPU for this hctx, 1381 * and it should only happen in the path of handling CPU DEAD. 1382 */ 1383 if (!cpu_online(hctx->next_cpu)) { 1384 if (!tried) { 1385 tried = true; 1386 goto select_cpu; 1387 } 1388 1389 /* 1390 * Make sure to re-select CPU next time once after CPUs 1391 * in hctx->cpumask become online again. 1392 */ 1393 hctx->next_cpu_batch = 1; 1394 return WORK_CPU_UNBOUND; 1395 } 1396 return hctx->next_cpu; 1397 } 1398 1399 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1400 unsigned long msecs) 1401 { 1402 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1403 return; 1404 1405 if (unlikely(blk_mq_hctx_stopped(hctx))) 1406 return; 1407 1408 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1409 int cpu = get_cpu(); 1410 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1411 __blk_mq_run_hw_queue(hctx); 1412 put_cpu(); 1413 return; 1414 } 1415 1416 put_cpu(); 1417 } 1418 1419 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1420 msecs_to_jiffies(msecs)); 1421 } 1422 1423 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1424 { 1425 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1426 } 1427 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1428 1429 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1430 { 1431 int srcu_idx; 1432 bool need_run; 1433 1434 /* 1435 * When queue is quiesced, we may be switching io scheduler, or 1436 * updating nr_hw_queues, or other things, and we can't run queue 1437 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1438 * 1439 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1440 * quiesced. 1441 */ 1442 hctx_lock(hctx, &srcu_idx); 1443 need_run = !blk_queue_quiesced(hctx->queue) && 1444 blk_mq_hctx_has_pending(hctx); 1445 hctx_unlock(hctx, srcu_idx); 1446 1447 if (need_run) { 1448 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1449 return true; 1450 } 1451 1452 return false; 1453 } 1454 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1455 1456 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1457 { 1458 struct blk_mq_hw_ctx *hctx; 1459 int i; 1460 1461 queue_for_each_hw_ctx(q, hctx, i) { 1462 if (blk_mq_hctx_stopped(hctx)) 1463 continue; 1464 1465 blk_mq_run_hw_queue(hctx, async); 1466 } 1467 } 1468 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1469 1470 /** 1471 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1472 * @q: request queue. 1473 * 1474 * The caller is responsible for serializing this function against 1475 * blk_mq_{start,stop}_hw_queue(). 1476 */ 1477 bool blk_mq_queue_stopped(struct request_queue *q) 1478 { 1479 struct blk_mq_hw_ctx *hctx; 1480 int i; 1481 1482 queue_for_each_hw_ctx(q, hctx, i) 1483 if (blk_mq_hctx_stopped(hctx)) 1484 return true; 1485 1486 return false; 1487 } 1488 EXPORT_SYMBOL(blk_mq_queue_stopped); 1489 1490 /* 1491 * This function is often used for pausing .queue_rq() by driver when 1492 * there isn't enough resource or some conditions aren't satisfied, and 1493 * BLK_STS_RESOURCE is usually returned. 1494 * 1495 * We do not guarantee that dispatch can be drained or blocked 1496 * after blk_mq_stop_hw_queue() returns. Please use 1497 * blk_mq_quiesce_queue() for that requirement. 1498 */ 1499 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1500 { 1501 cancel_delayed_work(&hctx->run_work); 1502 1503 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1504 } 1505 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1506 1507 /* 1508 * This function is often used for pausing .queue_rq() by driver when 1509 * there isn't enough resource or some conditions aren't satisfied, and 1510 * BLK_STS_RESOURCE is usually returned. 1511 * 1512 * We do not guarantee that dispatch can be drained or blocked 1513 * after blk_mq_stop_hw_queues() returns. Please use 1514 * blk_mq_quiesce_queue() for that requirement. 1515 */ 1516 void blk_mq_stop_hw_queues(struct request_queue *q) 1517 { 1518 struct blk_mq_hw_ctx *hctx; 1519 int i; 1520 1521 queue_for_each_hw_ctx(q, hctx, i) 1522 blk_mq_stop_hw_queue(hctx); 1523 } 1524 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1525 1526 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1527 { 1528 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1529 1530 blk_mq_run_hw_queue(hctx, false); 1531 } 1532 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1533 1534 void blk_mq_start_hw_queues(struct request_queue *q) 1535 { 1536 struct blk_mq_hw_ctx *hctx; 1537 int i; 1538 1539 queue_for_each_hw_ctx(q, hctx, i) 1540 blk_mq_start_hw_queue(hctx); 1541 } 1542 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1543 1544 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1545 { 1546 if (!blk_mq_hctx_stopped(hctx)) 1547 return; 1548 1549 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1550 blk_mq_run_hw_queue(hctx, async); 1551 } 1552 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1553 1554 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1555 { 1556 struct blk_mq_hw_ctx *hctx; 1557 int i; 1558 1559 queue_for_each_hw_ctx(q, hctx, i) 1560 blk_mq_start_stopped_hw_queue(hctx, async); 1561 } 1562 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1563 1564 static void blk_mq_run_work_fn(struct work_struct *work) 1565 { 1566 struct blk_mq_hw_ctx *hctx; 1567 1568 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1569 1570 /* 1571 * If we are stopped, don't run the queue. The exception is if 1572 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear 1573 * the STOPPED bit and run it. 1574 */ 1575 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) { 1576 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state)) 1577 return; 1578 1579 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1580 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1581 } 1582 1583 __blk_mq_run_hw_queue(hctx); 1584 } 1585 1586 1587 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1588 { 1589 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1590 return; 1591 1592 /* 1593 * Stop the hw queue, then modify currently delayed work. 1594 * This should prevent us from running the queue prematurely. 1595 * Mark the queue as auto-clearing STOPPED when it runs. 1596 */ 1597 blk_mq_stop_hw_queue(hctx); 1598 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1599 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1600 &hctx->run_work, 1601 msecs_to_jiffies(msecs)); 1602 } 1603 EXPORT_SYMBOL(blk_mq_delay_queue); 1604 1605 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1606 struct request *rq, 1607 bool at_head) 1608 { 1609 struct blk_mq_ctx *ctx = rq->mq_ctx; 1610 1611 lockdep_assert_held(&ctx->lock); 1612 1613 trace_block_rq_insert(hctx->queue, rq); 1614 1615 if (at_head) 1616 list_add(&rq->queuelist, &ctx->rq_list); 1617 else 1618 list_add_tail(&rq->queuelist, &ctx->rq_list); 1619 } 1620 1621 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1622 bool at_head) 1623 { 1624 struct blk_mq_ctx *ctx = rq->mq_ctx; 1625 1626 lockdep_assert_held(&ctx->lock); 1627 1628 __blk_mq_insert_req_list(hctx, rq, at_head); 1629 blk_mq_hctx_mark_pending(hctx, ctx); 1630 } 1631 1632 /* 1633 * Should only be used carefully, when the caller knows we want to 1634 * bypass a potential IO scheduler on the target device. 1635 */ 1636 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1637 { 1638 struct blk_mq_ctx *ctx = rq->mq_ctx; 1639 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1640 1641 spin_lock(&hctx->lock); 1642 list_add_tail(&rq->queuelist, &hctx->dispatch); 1643 spin_unlock(&hctx->lock); 1644 1645 if (run_queue) 1646 blk_mq_run_hw_queue(hctx, false); 1647 } 1648 1649 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1650 struct list_head *list) 1651 1652 { 1653 /* 1654 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1655 * offline now 1656 */ 1657 spin_lock(&ctx->lock); 1658 while (!list_empty(list)) { 1659 struct request *rq; 1660 1661 rq = list_first_entry(list, struct request, queuelist); 1662 BUG_ON(rq->mq_ctx != ctx); 1663 list_del_init(&rq->queuelist); 1664 __blk_mq_insert_req_list(hctx, rq, false); 1665 } 1666 blk_mq_hctx_mark_pending(hctx, ctx); 1667 spin_unlock(&ctx->lock); 1668 } 1669 1670 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1671 { 1672 struct request *rqa = container_of(a, struct request, queuelist); 1673 struct request *rqb = container_of(b, struct request, queuelist); 1674 1675 return !(rqa->mq_ctx < rqb->mq_ctx || 1676 (rqa->mq_ctx == rqb->mq_ctx && 1677 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1678 } 1679 1680 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1681 { 1682 struct blk_mq_ctx *this_ctx; 1683 struct request_queue *this_q; 1684 struct request *rq; 1685 LIST_HEAD(list); 1686 LIST_HEAD(ctx_list); 1687 unsigned int depth; 1688 1689 list_splice_init(&plug->mq_list, &list); 1690 1691 list_sort(NULL, &list, plug_ctx_cmp); 1692 1693 this_q = NULL; 1694 this_ctx = NULL; 1695 depth = 0; 1696 1697 while (!list_empty(&list)) { 1698 rq = list_entry_rq(list.next); 1699 list_del_init(&rq->queuelist); 1700 BUG_ON(!rq->q); 1701 if (rq->mq_ctx != this_ctx) { 1702 if (this_ctx) { 1703 trace_block_unplug(this_q, depth, from_schedule); 1704 blk_mq_sched_insert_requests(this_q, this_ctx, 1705 &ctx_list, 1706 from_schedule); 1707 } 1708 1709 this_ctx = rq->mq_ctx; 1710 this_q = rq->q; 1711 depth = 0; 1712 } 1713 1714 depth++; 1715 list_add_tail(&rq->queuelist, &ctx_list); 1716 } 1717 1718 /* 1719 * If 'this_ctx' is set, we know we have entries to complete 1720 * on 'ctx_list'. Do those. 1721 */ 1722 if (this_ctx) { 1723 trace_block_unplug(this_q, depth, from_schedule); 1724 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1725 from_schedule); 1726 } 1727 } 1728 1729 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1730 { 1731 blk_init_request_from_bio(rq, bio); 1732 1733 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1734 1735 blk_account_io_start(rq, true); 1736 } 1737 1738 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx, 1739 struct blk_mq_ctx *ctx, 1740 struct request *rq) 1741 { 1742 spin_lock(&ctx->lock); 1743 __blk_mq_insert_request(hctx, rq, false); 1744 spin_unlock(&ctx->lock); 1745 } 1746 1747 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1748 { 1749 if (rq->tag != -1) 1750 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1751 1752 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1753 } 1754 1755 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1756 struct request *rq, 1757 blk_qc_t *cookie) 1758 { 1759 struct request_queue *q = rq->q; 1760 struct blk_mq_queue_data bd = { 1761 .rq = rq, 1762 .last = true, 1763 }; 1764 blk_qc_t new_cookie; 1765 blk_status_t ret; 1766 1767 new_cookie = request_to_qc_t(hctx, rq); 1768 1769 /* 1770 * For OK queue, we are done. For error, caller may kill it. 1771 * Any other error (busy), just add it to our list as we 1772 * previously would have done. 1773 */ 1774 ret = q->mq_ops->queue_rq(hctx, &bd); 1775 switch (ret) { 1776 case BLK_STS_OK: 1777 *cookie = new_cookie; 1778 break; 1779 case BLK_STS_RESOURCE: 1780 case BLK_STS_DEV_RESOURCE: 1781 __blk_mq_requeue_request(rq); 1782 break; 1783 default: 1784 *cookie = BLK_QC_T_NONE; 1785 break; 1786 } 1787 1788 return ret; 1789 } 1790 1791 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1792 struct request *rq, 1793 blk_qc_t *cookie, 1794 bool bypass_insert) 1795 { 1796 struct request_queue *q = rq->q; 1797 bool run_queue = true; 1798 1799 /* 1800 * RCU or SRCU read lock is needed before checking quiesced flag. 1801 * 1802 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1803 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1804 * and avoid driver to try to dispatch again. 1805 */ 1806 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1807 run_queue = false; 1808 bypass_insert = false; 1809 goto insert; 1810 } 1811 1812 if (q->elevator && !bypass_insert) 1813 goto insert; 1814 1815 if (!blk_mq_get_driver_tag(rq, NULL, false)) 1816 goto insert; 1817 1818 if (!blk_mq_get_dispatch_budget(hctx)) { 1819 blk_mq_put_driver_tag(rq); 1820 goto insert; 1821 } 1822 1823 return __blk_mq_issue_directly(hctx, rq, cookie); 1824 insert: 1825 if (bypass_insert) 1826 return BLK_STS_RESOURCE; 1827 1828 blk_mq_sched_insert_request(rq, false, run_queue, false); 1829 return BLK_STS_OK; 1830 } 1831 1832 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1833 struct request *rq, blk_qc_t *cookie) 1834 { 1835 blk_status_t ret; 1836 int srcu_idx; 1837 1838 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1839 1840 hctx_lock(hctx, &srcu_idx); 1841 1842 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1843 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1844 blk_mq_sched_insert_request(rq, false, true, false); 1845 else if (ret != BLK_STS_OK) 1846 blk_mq_end_request(rq, ret); 1847 1848 hctx_unlock(hctx, srcu_idx); 1849 } 1850 1851 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1852 { 1853 blk_status_t ret; 1854 int srcu_idx; 1855 blk_qc_t unused_cookie; 1856 struct blk_mq_ctx *ctx = rq->mq_ctx; 1857 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1858 1859 hctx_lock(hctx, &srcu_idx); 1860 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1861 hctx_unlock(hctx, srcu_idx); 1862 1863 return ret; 1864 } 1865 1866 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1867 { 1868 const int is_sync = op_is_sync(bio->bi_opf); 1869 const int is_flush_fua = op_is_flush(bio->bi_opf); 1870 struct blk_mq_alloc_data data = { .flags = 0 }; 1871 struct request *rq; 1872 unsigned int request_count = 0; 1873 struct blk_plug *plug; 1874 struct request *same_queue_rq = NULL; 1875 blk_qc_t cookie; 1876 unsigned int wb_acct; 1877 1878 blk_queue_bounce(q, &bio); 1879 1880 blk_queue_split(q, &bio); 1881 1882 if (!bio_integrity_prep(bio)) 1883 return BLK_QC_T_NONE; 1884 1885 if (!is_flush_fua && !blk_queue_nomerges(q) && 1886 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1887 return BLK_QC_T_NONE; 1888 1889 if (blk_mq_sched_bio_merge(q, bio)) 1890 return BLK_QC_T_NONE; 1891 1892 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1893 1894 trace_block_getrq(q, bio, bio->bi_opf); 1895 1896 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1897 if (unlikely(!rq)) { 1898 __wbt_done(q->rq_wb, wb_acct); 1899 if (bio->bi_opf & REQ_NOWAIT) 1900 bio_wouldblock_error(bio); 1901 return BLK_QC_T_NONE; 1902 } 1903 1904 wbt_track(&rq->issue_stat, wb_acct); 1905 1906 cookie = request_to_qc_t(data.hctx, rq); 1907 1908 plug = current->plug; 1909 if (unlikely(is_flush_fua)) { 1910 blk_mq_put_ctx(data.ctx); 1911 blk_mq_bio_to_request(rq, bio); 1912 1913 /* bypass scheduler for flush rq */ 1914 blk_insert_flush(rq); 1915 blk_mq_run_hw_queue(data.hctx, true); 1916 } else if (plug && q->nr_hw_queues == 1) { 1917 struct request *last = NULL; 1918 1919 blk_mq_put_ctx(data.ctx); 1920 blk_mq_bio_to_request(rq, bio); 1921 1922 /* 1923 * @request_count may become stale because of schedule 1924 * out, so check the list again. 1925 */ 1926 if (list_empty(&plug->mq_list)) 1927 request_count = 0; 1928 else if (blk_queue_nomerges(q)) 1929 request_count = blk_plug_queued_count(q); 1930 1931 if (!request_count) 1932 trace_block_plug(q); 1933 else 1934 last = list_entry_rq(plug->mq_list.prev); 1935 1936 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1937 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1938 blk_flush_plug_list(plug, false); 1939 trace_block_plug(q); 1940 } 1941 1942 list_add_tail(&rq->queuelist, &plug->mq_list); 1943 } else if (plug && !blk_queue_nomerges(q)) { 1944 blk_mq_bio_to_request(rq, bio); 1945 1946 /* 1947 * We do limited plugging. If the bio can be merged, do that. 1948 * Otherwise the existing request in the plug list will be 1949 * issued. So the plug list will have one request at most 1950 * The plug list might get flushed before this. If that happens, 1951 * the plug list is empty, and same_queue_rq is invalid. 1952 */ 1953 if (list_empty(&plug->mq_list)) 1954 same_queue_rq = NULL; 1955 if (same_queue_rq) 1956 list_del_init(&same_queue_rq->queuelist); 1957 list_add_tail(&rq->queuelist, &plug->mq_list); 1958 1959 blk_mq_put_ctx(data.ctx); 1960 1961 if (same_queue_rq) { 1962 data.hctx = blk_mq_map_queue(q, 1963 same_queue_rq->mq_ctx->cpu); 1964 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1965 &cookie); 1966 } 1967 } else if (q->nr_hw_queues > 1 && is_sync) { 1968 blk_mq_put_ctx(data.ctx); 1969 blk_mq_bio_to_request(rq, bio); 1970 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1971 } else if (q->elevator) { 1972 blk_mq_put_ctx(data.ctx); 1973 blk_mq_bio_to_request(rq, bio); 1974 blk_mq_sched_insert_request(rq, false, true, true); 1975 } else { 1976 blk_mq_put_ctx(data.ctx); 1977 blk_mq_bio_to_request(rq, bio); 1978 blk_mq_queue_io(data.hctx, data.ctx, rq); 1979 blk_mq_run_hw_queue(data.hctx, true); 1980 } 1981 1982 return cookie; 1983 } 1984 1985 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1986 unsigned int hctx_idx) 1987 { 1988 struct page *page; 1989 1990 if (tags->rqs && set->ops->exit_request) { 1991 int i; 1992 1993 for (i = 0; i < tags->nr_tags; i++) { 1994 struct request *rq = tags->static_rqs[i]; 1995 1996 if (!rq) 1997 continue; 1998 set->ops->exit_request(set, rq, hctx_idx); 1999 tags->static_rqs[i] = NULL; 2000 } 2001 } 2002 2003 while (!list_empty(&tags->page_list)) { 2004 page = list_first_entry(&tags->page_list, struct page, lru); 2005 list_del_init(&page->lru); 2006 /* 2007 * Remove kmemleak object previously allocated in 2008 * blk_mq_init_rq_map(). 2009 */ 2010 kmemleak_free(page_address(page)); 2011 __free_pages(page, page->private); 2012 } 2013 } 2014 2015 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2016 { 2017 kfree(tags->rqs); 2018 tags->rqs = NULL; 2019 kfree(tags->static_rqs); 2020 tags->static_rqs = NULL; 2021 2022 blk_mq_free_tags(tags); 2023 } 2024 2025 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2026 unsigned int hctx_idx, 2027 unsigned int nr_tags, 2028 unsigned int reserved_tags) 2029 { 2030 struct blk_mq_tags *tags; 2031 int node; 2032 2033 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2034 if (node == NUMA_NO_NODE) 2035 node = set->numa_node; 2036 2037 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2038 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2039 if (!tags) 2040 return NULL; 2041 2042 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2043 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2044 node); 2045 if (!tags->rqs) { 2046 blk_mq_free_tags(tags); 2047 return NULL; 2048 } 2049 2050 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2051 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2052 node); 2053 if (!tags->static_rqs) { 2054 kfree(tags->rqs); 2055 blk_mq_free_tags(tags); 2056 return NULL; 2057 } 2058 2059 return tags; 2060 } 2061 2062 static size_t order_to_size(unsigned int order) 2063 { 2064 return (size_t)PAGE_SIZE << order; 2065 } 2066 2067 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2068 unsigned int hctx_idx, int node) 2069 { 2070 int ret; 2071 2072 if (set->ops->init_request) { 2073 ret = set->ops->init_request(set, rq, hctx_idx, node); 2074 if (ret) 2075 return ret; 2076 } 2077 2078 seqcount_init(&rq->gstate_seq); 2079 u64_stats_init(&rq->aborted_gstate_sync); 2080 return 0; 2081 } 2082 2083 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2084 unsigned int hctx_idx, unsigned int depth) 2085 { 2086 unsigned int i, j, entries_per_page, max_order = 4; 2087 size_t rq_size, left; 2088 int node; 2089 2090 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2091 if (node == NUMA_NO_NODE) 2092 node = set->numa_node; 2093 2094 INIT_LIST_HEAD(&tags->page_list); 2095 2096 /* 2097 * rq_size is the size of the request plus driver payload, rounded 2098 * to the cacheline size 2099 */ 2100 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2101 cache_line_size()); 2102 left = rq_size * depth; 2103 2104 for (i = 0; i < depth; ) { 2105 int this_order = max_order; 2106 struct page *page; 2107 int to_do; 2108 void *p; 2109 2110 while (this_order && left < order_to_size(this_order - 1)) 2111 this_order--; 2112 2113 do { 2114 page = alloc_pages_node(node, 2115 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2116 this_order); 2117 if (page) 2118 break; 2119 if (!this_order--) 2120 break; 2121 if (order_to_size(this_order) < rq_size) 2122 break; 2123 } while (1); 2124 2125 if (!page) 2126 goto fail; 2127 2128 page->private = this_order; 2129 list_add_tail(&page->lru, &tags->page_list); 2130 2131 p = page_address(page); 2132 /* 2133 * Allow kmemleak to scan these pages as they contain pointers 2134 * to additional allocations like via ops->init_request(). 2135 */ 2136 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2137 entries_per_page = order_to_size(this_order) / rq_size; 2138 to_do = min(entries_per_page, depth - i); 2139 left -= to_do * rq_size; 2140 for (j = 0; j < to_do; j++) { 2141 struct request *rq = p; 2142 2143 tags->static_rqs[i] = rq; 2144 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2145 tags->static_rqs[i] = NULL; 2146 goto fail; 2147 } 2148 2149 p += rq_size; 2150 i++; 2151 } 2152 } 2153 return 0; 2154 2155 fail: 2156 blk_mq_free_rqs(set, tags, hctx_idx); 2157 return -ENOMEM; 2158 } 2159 2160 /* 2161 * 'cpu' is going away. splice any existing rq_list entries from this 2162 * software queue to the hw queue dispatch list, and ensure that it 2163 * gets run. 2164 */ 2165 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2166 { 2167 struct blk_mq_hw_ctx *hctx; 2168 struct blk_mq_ctx *ctx; 2169 LIST_HEAD(tmp); 2170 2171 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2172 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2173 2174 spin_lock(&ctx->lock); 2175 if (!list_empty(&ctx->rq_list)) { 2176 list_splice_init(&ctx->rq_list, &tmp); 2177 blk_mq_hctx_clear_pending(hctx, ctx); 2178 } 2179 spin_unlock(&ctx->lock); 2180 2181 if (list_empty(&tmp)) 2182 return 0; 2183 2184 spin_lock(&hctx->lock); 2185 list_splice_tail_init(&tmp, &hctx->dispatch); 2186 spin_unlock(&hctx->lock); 2187 2188 blk_mq_run_hw_queue(hctx, true); 2189 return 0; 2190 } 2191 2192 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2193 { 2194 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2195 &hctx->cpuhp_dead); 2196 } 2197 2198 /* hctx->ctxs will be freed in queue's release handler */ 2199 static void blk_mq_exit_hctx(struct request_queue *q, 2200 struct blk_mq_tag_set *set, 2201 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2202 { 2203 blk_mq_debugfs_unregister_hctx(hctx); 2204 2205 if (blk_mq_hw_queue_mapped(hctx)) 2206 blk_mq_tag_idle(hctx); 2207 2208 if (set->ops->exit_request) 2209 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2210 2211 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2212 2213 if (set->ops->exit_hctx) 2214 set->ops->exit_hctx(hctx, hctx_idx); 2215 2216 if (hctx->flags & BLK_MQ_F_BLOCKING) 2217 cleanup_srcu_struct(hctx->srcu); 2218 2219 blk_mq_remove_cpuhp(hctx); 2220 blk_free_flush_queue(hctx->fq); 2221 sbitmap_free(&hctx->ctx_map); 2222 } 2223 2224 static void blk_mq_exit_hw_queues(struct request_queue *q, 2225 struct blk_mq_tag_set *set, int nr_queue) 2226 { 2227 struct blk_mq_hw_ctx *hctx; 2228 unsigned int i; 2229 2230 queue_for_each_hw_ctx(q, hctx, i) { 2231 if (i == nr_queue) 2232 break; 2233 blk_mq_exit_hctx(q, set, hctx, i); 2234 } 2235 } 2236 2237 static int blk_mq_init_hctx(struct request_queue *q, 2238 struct blk_mq_tag_set *set, 2239 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2240 { 2241 int node; 2242 2243 node = hctx->numa_node; 2244 if (node == NUMA_NO_NODE) 2245 node = hctx->numa_node = set->numa_node; 2246 2247 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2248 spin_lock_init(&hctx->lock); 2249 INIT_LIST_HEAD(&hctx->dispatch); 2250 hctx->queue = q; 2251 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2252 2253 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2254 2255 hctx->tags = set->tags[hctx_idx]; 2256 2257 /* 2258 * Allocate space for all possible cpus to avoid allocation at 2259 * runtime 2260 */ 2261 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2262 GFP_KERNEL, node); 2263 if (!hctx->ctxs) 2264 goto unregister_cpu_notifier; 2265 2266 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2267 node)) 2268 goto free_ctxs; 2269 2270 hctx->nr_ctx = 0; 2271 2272 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2273 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2274 2275 if (set->ops->init_hctx && 2276 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2277 goto free_bitmap; 2278 2279 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 2280 goto exit_hctx; 2281 2282 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2283 if (!hctx->fq) 2284 goto sched_exit_hctx; 2285 2286 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2287 goto free_fq; 2288 2289 if (hctx->flags & BLK_MQ_F_BLOCKING) 2290 init_srcu_struct(hctx->srcu); 2291 2292 blk_mq_debugfs_register_hctx(q, hctx); 2293 2294 return 0; 2295 2296 free_fq: 2297 kfree(hctx->fq); 2298 sched_exit_hctx: 2299 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2300 exit_hctx: 2301 if (set->ops->exit_hctx) 2302 set->ops->exit_hctx(hctx, hctx_idx); 2303 free_bitmap: 2304 sbitmap_free(&hctx->ctx_map); 2305 free_ctxs: 2306 kfree(hctx->ctxs); 2307 unregister_cpu_notifier: 2308 blk_mq_remove_cpuhp(hctx); 2309 return -1; 2310 } 2311 2312 static void blk_mq_init_cpu_queues(struct request_queue *q, 2313 unsigned int nr_hw_queues) 2314 { 2315 unsigned int i; 2316 2317 for_each_possible_cpu(i) { 2318 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2319 struct blk_mq_hw_ctx *hctx; 2320 2321 __ctx->cpu = i; 2322 spin_lock_init(&__ctx->lock); 2323 INIT_LIST_HEAD(&__ctx->rq_list); 2324 __ctx->queue = q; 2325 2326 /* 2327 * Set local node, IFF we have more than one hw queue. If 2328 * not, we remain on the home node of the device 2329 */ 2330 hctx = blk_mq_map_queue(q, i); 2331 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2332 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2333 } 2334 } 2335 2336 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2337 { 2338 int ret = 0; 2339 2340 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2341 set->queue_depth, set->reserved_tags); 2342 if (!set->tags[hctx_idx]) 2343 return false; 2344 2345 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2346 set->queue_depth); 2347 if (!ret) 2348 return true; 2349 2350 blk_mq_free_rq_map(set->tags[hctx_idx]); 2351 set->tags[hctx_idx] = NULL; 2352 return false; 2353 } 2354 2355 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2356 unsigned int hctx_idx) 2357 { 2358 if (set->tags[hctx_idx]) { 2359 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2360 blk_mq_free_rq_map(set->tags[hctx_idx]); 2361 set->tags[hctx_idx] = NULL; 2362 } 2363 } 2364 2365 static void blk_mq_map_swqueue(struct request_queue *q) 2366 { 2367 unsigned int i, hctx_idx; 2368 struct blk_mq_hw_ctx *hctx; 2369 struct blk_mq_ctx *ctx; 2370 struct blk_mq_tag_set *set = q->tag_set; 2371 2372 /* 2373 * Avoid others reading imcomplete hctx->cpumask through sysfs 2374 */ 2375 mutex_lock(&q->sysfs_lock); 2376 2377 queue_for_each_hw_ctx(q, hctx, i) { 2378 cpumask_clear(hctx->cpumask); 2379 hctx->nr_ctx = 0; 2380 } 2381 2382 /* 2383 * Map software to hardware queues. 2384 * 2385 * If the cpu isn't present, the cpu is mapped to first hctx. 2386 */ 2387 for_each_possible_cpu(i) { 2388 hctx_idx = q->mq_map[i]; 2389 /* unmapped hw queue can be remapped after CPU topo changed */ 2390 if (!set->tags[hctx_idx] && 2391 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2392 /* 2393 * If tags initialization fail for some hctx, 2394 * that hctx won't be brought online. In this 2395 * case, remap the current ctx to hctx[0] which 2396 * is guaranteed to always have tags allocated 2397 */ 2398 q->mq_map[i] = 0; 2399 } 2400 2401 ctx = per_cpu_ptr(q->queue_ctx, i); 2402 hctx = blk_mq_map_queue(q, i); 2403 2404 cpumask_set_cpu(i, hctx->cpumask); 2405 ctx->index_hw = hctx->nr_ctx; 2406 hctx->ctxs[hctx->nr_ctx++] = ctx; 2407 } 2408 2409 mutex_unlock(&q->sysfs_lock); 2410 2411 queue_for_each_hw_ctx(q, hctx, i) { 2412 /* 2413 * If no software queues are mapped to this hardware queue, 2414 * disable it and free the request entries. 2415 */ 2416 if (!hctx->nr_ctx) { 2417 /* Never unmap queue 0. We need it as a 2418 * fallback in case of a new remap fails 2419 * allocation 2420 */ 2421 if (i && set->tags[i]) 2422 blk_mq_free_map_and_requests(set, i); 2423 2424 hctx->tags = NULL; 2425 continue; 2426 } 2427 2428 hctx->tags = set->tags[i]; 2429 WARN_ON(!hctx->tags); 2430 2431 /* 2432 * Set the map size to the number of mapped software queues. 2433 * This is more accurate and more efficient than looping 2434 * over all possibly mapped software queues. 2435 */ 2436 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2437 2438 /* 2439 * Initialize batch roundrobin counts 2440 */ 2441 hctx->next_cpu = cpumask_first_and(hctx->cpumask, 2442 cpu_online_mask); 2443 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2444 } 2445 } 2446 2447 /* 2448 * Caller needs to ensure that we're either frozen/quiesced, or that 2449 * the queue isn't live yet. 2450 */ 2451 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2452 { 2453 struct blk_mq_hw_ctx *hctx; 2454 int i; 2455 2456 queue_for_each_hw_ctx(q, hctx, i) { 2457 if (shared) { 2458 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2459 atomic_inc(&q->shared_hctx_restart); 2460 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2461 } else { 2462 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2463 atomic_dec(&q->shared_hctx_restart); 2464 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2465 } 2466 } 2467 } 2468 2469 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2470 bool shared) 2471 { 2472 struct request_queue *q; 2473 2474 lockdep_assert_held(&set->tag_list_lock); 2475 2476 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2477 blk_mq_freeze_queue(q); 2478 queue_set_hctx_shared(q, shared); 2479 blk_mq_unfreeze_queue(q); 2480 } 2481 } 2482 2483 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2484 { 2485 struct blk_mq_tag_set *set = q->tag_set; 2486 2487 mutex_lock(&set->tag_list_lock); 2488 list_del_rcu(&q->tag_set_list); 2489 INIT_LIST_HEAD(&q->tag_set_list); 2490 if (list_is_singular(&set->tag_list)) { 2491 /* just transitioned to unshared */ 2492 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2493 /* update existing queue */ 2494 blk_mq_update_tag_set_depth(set, false); 2495 } 2496 mutex_unlock(&set->tag_list_lock); 2497 2498 synchronize_rcu(); 2499 } 2500 2501 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2502 struct request_queue *q) 2503 { 2504 q->tag_set = set; 2505 2506 mutex_lock(&set->tag_list_lock); 2507 2508 /* 2509 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2510 */ 2511 if (!list_empty(&set->tag_list) && 2512 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2513 set->flags |= BLK_MQ_F_TAG_SHARED; 2514 /* update existing queue */ 2515 blk_mq_update_tag_set_depth(set, true); 2516 } 2517 if (set->flags & BLK_MQ_F_TAG_SHARED) 2518 queue_set_hctx_shared(q, true); 2519 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2520 2521 mutex_unlock(&set->tag_list_lock); 2522 } 2523 2524 /* 2525 * It is the actual release handler for mq, but we do it from 2526 * request queue's release handler for avoiding use-after-free 2527 * and headache because q->mq_kobj shouldn't have been introduced, 2528 * but we can't group ctx/kctx kobj without it. 2529 */ 2530 void blk_mq_release(struct request_queue *q) 2531 { 2532 struct blk_mq_hw_ctx *hctx; 2533 unsigned int i; 2534 2535 /* hctx kobj stays in hctx */ 2536 queue_for_each_hw_ctx(q, hctx, i) { 2537 if (!hctx) 2538 continue; 2539 kobject_put(&hctx->kobj); 2540 } 2541 2542 q->mq_map = NULL; 2543 2544 kfree(q->queue_hw_ctx); 2545 2546 /* 2547 * release .mq_kobj and sw queue's kobject now because 2548 * both share lifetime with request queue. 2549 */ 2550 blk_mq_sysfs_deinit(q); 2551 2552 free_percpu(q->queue_ctx); 2553 } 2554 2555 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2556 { 2557 struct request_queue *uninit_q, *q; 2558 2559 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2560 if (!uninit_q) 2561 return ERR_PTR(-ENOMEM); 2562 2563 q = blk_mq_init_allocated_queue(set, uninit_q); 2564 if (IS_ERR(q)) 2565 blk_cleanup_queue(uninit_q); 2566 2567 return q; 2568 } 2569 EXPORT_SYMBOL(blk_mq_init_queue); 2570 2571 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2572 { 2573 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2574 2575 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2576 __alignof__(struct blk_mq_hw_ctx)) != 2577 sizeof(struct blk_mq_hw_ctx)); 2578 2579 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2580 hw_ctx_size += sizeof(struct srcu_struct); 2581 2582 return hw_ctx_size; 2583 } 2584 2585 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2586 struct request_queue *q) 2587 { 2588 int i, j; 2589 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2590 2591 blk_mq_sysfs_unregister(q); 2592 2593 /* protect against switching io scheduler */ 2594 mutex_lock(&q->sysfs_lock); 2595 for (i = 0; i < set->nr_hw_queues; i++) { 2596 int node; 2597 2598 if (hctxs[i]) 2599 continue; 2600 2601 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2602 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2603 GFP_KERNEL, node); 2604 if (!hctxs[i]) 2605 break; 2606 2607 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2608 node)) { 2609 kfree(hctxs[i]); 2610 hctxs[i] = NULL; 2611 break; 2612 } 2613 2614 atomic_set(&hctxs[i]->nr_active, 0); 2615 hctxs[i]->numa_node = node; 2616 hctxs[i]->queue_num = i; 2617 2618 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2619 free_cpumask_var(hctxs[i]->cpumask); 2620 kfree(hctxs[i]); 2621 hctxs[i] = NULL; 2622 break; 2623 } 2624 blk_mq_hctx_kobj_init(hctxs[i]); 2625 } 2626 for (j = i; j < q->nr_hw_queues; j++) { 2627 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2628 2629 if (hctx) { 2630 if (hctx->tags) 2631 blk_mq_free_map_and_requests(set, j); 2632 blk_mq_exit_hctx(q, set, hctx, j); 2633 kobject_put(&hctx->kobj); 2634 hctxs[j] = NULL; 2635 2636 } 2637 } 2638 q->nr_hw_queues = i; 2639 mutex_unlock(&q->sysfs_lock); 2640 blk_mq_sysfs_register(q); 2641 } 2642 2643 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2644 struct request_queue *q) 2645 { 2646 /* mark the queue as mq asap */ 2647 q->mq_ops = set->ops; 2648 2649 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2650 blk_mq_poll_stats_bkt, 2651 BLK_MQ_POLL_STATS_BKTS, q); 2652 if (!q->poll_cb) 2653 goto err_exit; 2654 2655 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2656 if (!q->queue_ctx) 2657 goto err_exit; 2658 2659 /* init q->mq_kobj and sw queues' kobjects */ 2660 blk_mq_sysfs_init(q); 2661 2662 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2663 GFP_KERNEL, set->numa_node); 2664 if (!q->queue_hw_ctx) 2665 goto err_percpu; 2666 2667 q->mq_map = set->mq_map; 2668 2669 blk_mq_realloc_hw_ctxs(set, q); 2670 if (!q->nr_hw_queues) 2671 goto err_hctxs; 2672 2673 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2674 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2675 2676 q->nr_queues = nr_cpu_ids; 2677 2678 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2679 2680 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2681 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2682 2683 q->sg_reserved_size = INT_MAX; 2684 2685 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2686 INIT_LIST_HEAD(&q->requeue_list); 2687 spin_lock_init(&q->requeue_lock); 2688 2689 blk_queue_make_request(q, blk_mq_make_request); 2690 if (q->mq_ops->poll) 2691 q->poll_fn = blk_mq_poll; 2692 2693 /* 2694 * Do this after blk_queue_make_request() overrides it... 2695 */ 2696 q->nr_requests = set->queue_depth; 2697 2698 /* 2699 * Default to classic polling 2700 */ 2701 q->poll_nsec = -1; 2702 2703 if (set->ops->complete) 2704 blk_queue_softirq_done(q, set->ops->complete); 2705 2706 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2707 blk_mq_add_queue_tag_set(set, q); 2708 blk_mq_map_swqueue(q); 2709 2710 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2711 int ret; 2712 2713 ret = blk_mq_sched_init(q); 2714 if (ret) 2715 return ERR_PTR(ret); 2716 } 2717 2718 return q; 2719 2720 err_hctxs: 2721 kfree(q->queue_hw_ctx); 2722 err_percpu: 2723 free_percpu(q->queue_ctx); 2724 err_exit: 2725 q->mq_ops = NULL; 2726 return ERR_PTR(-ENOMEM); 2727 } 2728 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2729 2730 void blk_mq_free_queue(struct request_queue *q) 2731 { 2732 struct blk_mq_tag_set *set = q->tag_set; 2733 2734 blk_mq_del_queue_tag_set(q); 2735 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2736 } 2737 2738 /* Basically redo blk_mq_init_queue with queue frozen */ 2739 static void blk_mq_queue_reinit(struct request_queue *q) 2740 { 2741 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2742 2743 blk_mq_debugfs_unregister_hctxs(q); 2744 blk_mq_sysfs_unregister(q); 2745 2746 /* 2747 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2748 * we should change hctx numa_node according to the new topology (this 2749 * involves freeing and re-allocating memory, worth doing?) 2750 */ 2751 blk_mq_map_swqueue(q); 2752 2753 blk_mq_sysfs_register(q); 2754 blk_mq_debugfs_register_hctxs(q); 2755 } 2756 2757 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2758 { 2759 int i; 2760 2761 for (i = 0; i < set->nr_hw_queues; i++) 2762 if (!__blk_mq_alloc_rq_map(set, i)) 2763 goto out_unwind; 2764 2765 return 0; 2766 2767 out_unwind: 2768 while (--i >= 0) 2769 blk_mq_free_rq_map(set->tags[i]); 2770 2771 return -ENOMEM; 2772 } 2773 2774 /* 2775 * Allocate the request maps associated with this tag_set. Note that this 2776 * may reduce the depth asked for, if memory is tight. set->queue_depth 2777 * will be updated to reflect the allocated depth. 2778 */ 2779 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2780 { 2781 unsigned int depth; 2782 int err; 2783 2784 depth = set->queue_depth; 2785 do { 2786 err = __blk_mq_alloc_rq_maps(set); 2787 if (!err) 2788 break; 2789 2790 set->queue_depth >>= 1; 2791 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2792 err = -ENOMEM; 2793 break; 2794 } 2795 } while (set->queue_depth); 2796 2797 if (!set->queue_depth || err) { 2798 pr_err("blk-mq: failed to allocate request map\n"); 2799 return -ENOMEM; 2800 } 2801 2802 if (depth != set->queue_depth) 2803 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2804 depth, set->queue_depth); 2805 2806 return 0; 2807 } 2808 2809 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2810 { 2811 if (set->ops->map_queues) { 2812 int cpu; 2813 /* 2814 * transport .map_queues is usually done in the following 2815 * way: 2816 * 2817 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2818 * mask = get_cpu_mask(queue) 2819 * for_each_cpu(cpu, mask) 2820 * set->mq_map[cpu] = queue; 2821 * } 2822 * 2823 * When we need to remap, the table has to be cleared for 2824 * killing stale mapping since one CPU may not be mapped 2825 * to any hw queue. 2826 */ 2827 for_each_possible_cpu(cpu) 2828 set->mq_map[cpu] = 0; 2829 2830 return set->ops->map_queues(set); 2831 } else 2832 return blk_mq_map_queues(set); 2833 } 2834 2835 /* 2836 * Alloc a tag set to be associated with one or more request queues. 2837 * May fail with EINVAL for various error conditions. May adjust the 2838 * requested depth down, if if it too large. In that case, the set 2839 * value will be stored in set->queue_depth. 2840 */ 2841 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2842 { 2843 int ret; 2844 2845 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2846 2847 if (!set->nr_hw_queues) 2848 return -EINVAL; 2849 if (!set->queue_depth) 2850 return -EINVAL; 2851 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2852 return -EINVAL; 2853 2854 if (!set->ops->queue_rq) 2855 return -EINVAL; 2856 2857 if (!set->ops->get_budget ^ !set->ops->put_budget) 2858 return -EINVAL; 2859 2860 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2861 pr_info("blk-mq: reduced tag depth to %u\n", 2862 BLK_MQ_MAX_DEPTH); 2863 set->queue_depth = BLK_MQ_MAX_DEPTH; 2864 } 2865 2866 /* 2867 * If a crashdump is active, then we are potentially in a very 2868 * memory constrained environment. Limit us to 1 queue and 2869 * 64 tags to prevent using too much memory. 2870 */ 2871 if (is_kdump_kernel()) { 2872 set->nr_hw_queues = 1; 2873 set->queue_depth = min(64U, set->queue_depth); 2874 } 2875 /* 2876 * There is no use for more h/w queues than cpus. 2877 */ 2878 if (set->nr_hw_queues > nr_cpu_ids) 2879 set->nr_hw_queues = nr_cpu_ids; 2880 2881 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2882 GFP_KERNEL, set->numa_node); 2883 if (!set->tags) 2884 return -ENOMEM; 2885 2886 ret = -ENOMEM; 2887 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2888 GFP_KERNEL, set->numa_node); 2889 if (!set->mq_map) 2890 goto out_free_tags; 2891 2892 ret = blk_mq_update_queue_map(set); 2893 if (ret) 2894 goto out_free_mq_map; 2895 2896 ret = blk_mq_alloc_rq_maps(set); 2897 if (ret) 2898 goto out_free_mq_map; 2899 2900 mutex_init(&set->tag_list_lock); 2901 INIT_LIST_HEAD(&set->tag_list); 2902 2903 return 0; 2904 2905 out_free_mq_map: 2906 kfree(set->mq_map); 2907 set->mq_map = NULL; 2908 out_free_tags: 2909 kfree(set->tags); 2910 set->tags = NULL; 2911 return ret; 2912 } 2913 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2914 2915 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2916 { 2917 int i; 2918 2919 for (i = 0; i < nr_cpu_ids; i++) 2920 blk_mq_free_map_and_requests(set, i); 2921 2922 kfree(set->mq_map); 2923 set->mq_map = NULL; 2924 2925 kfree(set->tags); 2926 set->tags = NULL; 2927 } 2928 EXPORT_SYMBOL(blk_mq_free_tag_set); 2929 2930 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2931 { 2932 struct blk_mq_tag_set *set = q->tag_set; 2933 struct blk_mq_hw_ctx *hctx; 2934 int i, ret; 2935 2936 if (!set) 2937 return -EINVAL; 2938 2939 blk_mq_freeze_queue(q); 2940 blk_mq_quiesce_queue(q); 2941 2942 ret = 0; 2943 queue_for_each_hw_ctx(q, hctx, i) { 2944 if (!hctx->tags) 2945 continue; 2946 /* 2947 * If we're using an MQ scheduler, just update the scheduler 2948 * queue depth. This is similar to what the old code would do. 2949 */ 2950 if (!hctx->sched_tags) { 2951 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2952 false); 2953 } else { 2954 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2955 nr, true); 2956 } 2957 if (ret) 2958 break; 2959 } 2960 2961 if (!ret) 2962 q->nr_requests = nr; 2963 2964 blk_mq_unquiesce_queue(q); 2965 blk_mq_unfreeze_queue(q); 2966 2967 return ret; 2968 } 2969 2970 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2971 int nr_hw_queues) 2972 { 2973 struct request_queue *q; 2974 2975 lockdep_assert_held(&set->tag_list_lock); 2976 2977 if (nr_hw_queues > nr_cpu_ids) 2978 nr_hw_queues = nr_cpu_ids; 2979 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2980 return; 2981 2982 list_for_each_entry(q, &set->tag_list, tag_set_list) 2983 blk_mq_freeze_queue(q); 2984 2985 set->nr_hw_queues = nr_hw_queues; 2986 blk_mq_update_queue_map(set); 2987 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2988 blk_mq_realloc_hw_ctxs(set, q); 2989 blk_mq_queue_reinit(q); 2990 } 2991 2992 list_for_each_entry(q, &set->tag_list, tag_set_list) 2993 blk_mq_unfreeze_queue(q); 2994 } 2995 2996 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2997 { 2998 mutex_lock(&set->tag_list_lock); 2999 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3000 mutex_unlock(&set->tag_list_lock); 3001 } 3002 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3003 3004 /* Enable polling stats and return whether they were already enabled. */ 3005 static bool blk_poll_stats_enable(struct request_queue *q) 3006 { 3007 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3008 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags)) 3009 return true; 3010 blk_stat_add_callback(q, q->poll_cb); 3011 return false; 3012 } 3013 3014 static void blk_mq_poll_stats_start(struct request_queue *q) 3015 { 3016 /* 3017 * We don't arm the callback if polling stats are not enabled or the 3018 * callback is already active. 3019 */ 3020 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3021 blk_stat_is_active(q->poll_cb)) 3022 return; 3023 3024 blk_stat_activate_msecs(q->poll_cb, 100); 3025 } 3026 3027 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3028 { 3029 struct request_queue *q = cb->data; 3030 int bucket; 3031 3032 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3033 if (cb->stat[bucket].nr_samples) 3034 q->poll_stat[bucket] = cb->stat[bucket]; 3035 } 3036 } 3037 3038 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3039 struct blk_mq_hw_ctx *hctx, 3040 struct request *rq) 3041 { 3042 unsigned long ret = 0; 3043 int bucket; 3044 3045 /* 3046 * If stats collection isn't on, don't sleep but turn it on for 3047 * future users 3048 */ 3049 if (!blk_poll_stats_enable(q)) 3050 return 0; 3051 3052 /* 3053 * As an optimistic guess, use half of the mean service time 3054 * for this type of request. We can (and should) make this smarter. 3055 * For instance, if the completion latencies are tight, we can 3056 * get closer than just half the mean. This is especially 3057 * important on devices where the completion latencies are longer 3058 * than ~10 usec. We do use the stats for the relevant IO size 3059 * if available which does lead to better estimates. 3060 */ 3061 bucket = blk_mq_poll_stats_bkt(rq); 3062 if (bucket < 0) 3063 return ret; 3064 3065 if (q->poll_stat[bucket].nr_samples) 3066 ret = (q->poll_stat[bucket].mean + 1) / 2; 3067 3068 return ret; 3069 } 3070 3071 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3072 struct blk_mq_hw_ctx *hctx, 3073 struct request *rq) 3074 { 3075 struct hrtimer_sleeper hs; 3076 enum hrtimer_mode mode; 3077 unsigned int nsecs; 3078 ktime_t kt; 3079 3080 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3081 return false; 3082 3083 /* 3084 * poll_nsec can be: 3085 * 3086 * -1: don't ever hybrid sleep 3087 * 0: use half of prev avg 3088 * >0: use this specific value 3089 */ 3090 if (q->poll_nsec == -1) 3091 return false; 3092 else if (q->poll_nsec > 0) 3093 nsecs = q->poll_nsec; 3094 else 3095 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3096 3097 if (!nsecs) 3098 return false; 3099 3100 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3101 3102 /* 3103 * This will be replaced with the stats tracking code, using 3104 * 'avg_completion_time / 2' as the pre-sleep target. 3105 */ 3106 kt = nsecs; 3107 3108 mode = HRTIMER_MODE_REL; 3109 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3110 hrtimer_set_expires(&hs.timer, kt); 3111 3112 hrtimer_init_sleeper(&hs, current); 3113 do { 3114 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3115 break; 3116 set_current_state(TASK_UNINTERRUPTIBLE); 3117 hrtimer_start_expires(&hs.timer, mode); 3118 if (hs.task) 3119 io_schedule(); 3120 hrtimer_cancel(&hs.timer); 3121 mode = HRTIMER_MODE_ABS; 3122 } while (hs.task && !signal_pending(current)); 3123 3124 __set_current_state(TASK_RUNNING); 3125 destroy_hrtimer_on_stack(&hs.timer); 3126 return true; 3127 } 3128 3129 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 3130 { 3131 struct request_queue *q = hctx->queue; 3132 long state; 3133 3134 /* 3135 * If we sleep, have the caller restart the poll loop to reset 3136 * the state. Like for the other success return cases, the 3137 * caller is responsible for checking if the IO completed. If 3138 * the IO isn't complete, we'll get called again and will go 3139 * straight to the busy poll loop. 3140 */ 3141 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3142 return true; 3143 3144 hctx->poll_considered++; 3145 3146 state = current->state; 3147 while (!need_resched()) { 3148 int ret; 3149 3150 hctx->poll_invoked++; 3151 3152 ret = q->mq_ops->poll(hctx, rq->tag); 3153 if (ret > 0) { 3154 hctx->poll_success++; 3155 set_current_state(TASK_RUNNING); 3156 return true; 3157 } 3158 3159 if (signal_pending_state(state, current)) 3160 set_current_state(TASK_RUNNING); 3161 3162 if (current->state == TASK_RUNNING) 3163 return true; 3164 if (ret < 0) 3165 break; 3166 cpu_relax(); 3167 } 3168 3169 __set_current_state(TASK_RUNNING); 3170 return false; 3171 } 3172 3173 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3174 { 3175 struct blk_mq_hw_ctx *hctx; 3176 struct request *rq; 3177 3178 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3179 return false; 3180 3181 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3182 if (!blk_qc_t_is_internal(cookie)) 3183 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3184 else { 3185 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3186 /* 3187 * With scheduling, if the request has completed, we'll 3188 * get a NULL return here, as we clear the sched tag when 3189 * that happens. The request still remains valid, like always, 3190 * so we should be safe with just the NULL check. 3191 */ 3192 if (!rq) 3193 return false; 3194 } 3195 3196 return __blk_mq_poll(hctx, rq); 3197 } 3198 3199 static int __init blk_mq_init(void) 3200 { 3201 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3202 blk_mq_hctx_notify_dead); 3203 return 0; 3204 } 3205 subsys_initcall(blk_mq_init); 3206