xref: /openbmc/linux/block/blk-mq.c (revision e0f6d1a5)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99 		/*
100 		 * index[0] counts the specific partition that was asked
101 		 * for. index[1] counts the ones that are active on the
102 		 * whole device, so increment that if mi->part is indeed
103 		 * a partition, and not a whole device.
104 		 */
105 		if (rq->part == mi->part)
106 			mi->inflight[0]++;
107 		if (mi->part->partno)
108 			mi->inflight[1]++;
109 	}
110 }
111 
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 		      unsigned int inflight[2])
114 {
115 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
116 
117 	inflight[0] = inflight[1] = 0;
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120 
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 	int freeze_depth;
124 
125 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 	if (freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		if (q->mq_ops)
129 			blk_mq_run_hw_queues(q, false);
130 	}
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133 
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139 
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 				     unsigned long timeout)
142 {
143 	return wait_event_timeout(q->mq_freeze_wq,
144 					percpu_ref_is_zero(&q->q_usage_counter),
145 					timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148 
149 /*
150  * Guarantee no request is in use, so we can change any data structure of
151  * the queue afterward.
152  */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 	/*
156 	 * In the !blk_mq case we are only calling this to kill the
157 	 * q_usage_counter, otherwise this increases the freeze depth
158 	 * and waits for it to return to zero.  For this reason there is
159 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 	 * exported to drivers as the only user for unfreeze is blk_mq.
161 	 */
162 	blk_freeze_queue_start(q);
163 	if (!q->mq_ops)
164 		blk_drain_queue(q);
165 	blk_mq_freeze_queue_wait(q);
166 }
167 
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * ...just an alias to keep freeze and unfreeze actions balanced
172 	 * in the blk_mq_* namespace
173 	 */
174 	blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177 
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180 	int freeze_depth;
181 
182 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183 	WARN_ON_ONCE(freeze_depth < 0);
184 	if (!freeze_depth) {
185 		percpu_ref_reinit(&q->q_usage_counter);
186 		wake_up_all(&q->mq_freeze_wq);
187 	}
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190 
191 /*
192  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193  * mpt3sas driver such that this function can be removed.
194  */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
200 
201 /**
202  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
203  * @q: request queue.
204  *
205  * Note: this function does not prevent that the struct request end_io()
206  * callback function is invoked. Once this function is returned, we make
207  * sure no dispatch can happen until the queue is unquiesced via
208  * blk_mq_unquiesce_queue().
209  */
210 void blk_mq_quiesce_queue(struct request_queue *q)
211 {
212 	struct blk_mq_hw_ctx *hctx;
213 	unsigned int i;
214 	bool rcu = false;
215 
216 	blk_mq_quiesce_queue_nowait(q);
217 
218 	queue_for_each_hw_ctx(q, hctx, i) {
219 		if (hctx->flags & BLK_MQ_F_BLOCKING)
220 			synchronize_srcu(hctx->srcu);
221 		else
222 			rcu = true;
223 	}
224 	if (rcu)
225 		synchronize_rcu();
226 }
227 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
228 
229 /*
230  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
231  * @q: request queue.
232  *
233  * This function recovers queue into the state before quiescing
234  * which is done by blk_mq_quiesce_queue.
235  */
236 void blk_mq_unquiesce_queue(struct request_queue *q)
237 {
238 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
239 
240 	/* dispatch requests which are inserted during quiescing */
241 	blk_mq_run_hw_queues(q, true);
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
244 
245 void blk_mq_wake_waiters(struct request_queue *q)
246 {
247 	struct blk_mq_hw_ctx *hctx;
248 	unsigned int i;
249 
250 	queue_for_each_hw_ctx(q, hctx, i)
251 		if (blk_mq_hw_queue_mapped(hctx))
252 			blk_mq_tag_wakeup_all(hctx->tags, true);
253 }
254 
255 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
256 {
257 	return blk_mq_has_free_tags(hctx->tags);
258 }
259 EXPORT_SYMBOL(blk_mq_can_queue);
260 
261 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
262 		unsigned int tag, unsigned int op)
263 {
264 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
265 	struct request *rq = tags->static_rqs[tag];
266 	req_flags_t rq_flags = 0;
267 
268 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
269 		rq->tag = -1;
270 		rq->internal_tag = tag;
271 	} else {
272 		if (blk_mq_tag_busy(data->hctx)) {
273 			rq_flags = RQF_MQ_INFLIGHT;
274 			atomic_inc(&data->hctx->nr_active);
275 		}
276 		rq->tag = tag;
277 		rq->internal_tag = -1;
278 		data->hctx->tags->rqs[rq->tag] = rq;
279 	}
280 
281 	/* csd/requeue_work/fifo_time is initialized before use */
282 	rq->q = data->q;
283 	rq->mq_ctx = data->ctx;
284 	rq->rq_flags = rq_flags;
285 	rq->cpu = -1;
286 	rq->cmd_flags = op;
287 	if (data->flags & BLK_MQ_REQ_PREEMPT)
288 		rq->rq_flags |= RQF_PREEMPT;
289 	if (blk_queue_io_stat(data->q))
290 		rq->rq_flags |= RQF_IO_STAT;
291 	INIT_LIST_HEAD(&rq->queuelist);
292 	INIT_HLIST_NODE(&rq->hash);
293 	RB_CLEAR_NODE(&rq->rb_node);
294 	rq->rq_disk = NULL;
295 	rq->part = NULL;
296 	rq->start_time = jiffies;
297 	rq->nr_phys_segments = 0;
298 #if defined(CONFIG_BLK_DEV_INTEGRITY)
299 	rq->nr_integrity_segments = 0;
300 #endif
301 	rq->special = NULL;
302 	/* tag was already set */
303 	rq->extra_len = 0;
304 	rq->__deadline = 0;
305 
306 	INIT_LIST_HEAD(&rq->timeout_list);
307 	rq->timeout = 0;
308 
309 	rq->end_io = NULL;
310 	rq->end_io_data = NULL;
311 	rq->next_rq = NULL;
312 
313 #ifdef CONFIG_BLK_CGROUP
314 	rq->rl = NULL;
315 	set_start_time_ns(rq);
316 	rq->io_start_time_ns = 0;
317 #endif
318 
319 	data->ctx->rq_dispatched[op_is_sync(op)]++;
320 	return rq;
321 }
322 
323 static struct request *blk_mq_get_request(struct request_queue *q,
324 		struct bio *bio, unsigned int op,
325 		struct blk_mq_alloc_data *data)
326 {
327 	struct elevator_queue *e = q->elevator;
328 	struct request *rq;
329 	unsigned int tag;
330 	bool put_ctx_on_error = false;
331 
332 	blk_queue_enter_live(q);
333 	data->q = q;
334 	if (likely(!data->ctx)) {
335 		data->ctx = blk_mq_get_ctx(q);
336 		put_ctx_on_error = true;
337 	}
338 	if (likely(!data->hctx))
339 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
340 	if (op & REQ_NOWAIT)
341 		data->flags |= BLK_MQ_REQ_NOWAIT;
342 
343 	if (e) {
344 		data->flags |= BLK_MQ_REQ_INTERNAL;
345 
346 		/*
347 		 * Flush requests are special and go directly to the
348 		 * dispatch list.
349 		 */
350 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
351 			e->type->ops.mq.limit_depth(op, data);
352 	}
353 
354 	tag = blk_mq_get_tag(data);
355 	if (tag == BLK_MQ_TAG_FAIL) {
356 		if (put_ctx_on_error) {
357 			blk_mq_put_ctx(data->ctx);
358 			data->ctx = NULL;
359 		}
360 		blk_queue_exit(q);
361 		return NULL;
362 	}
363 
364 	rq = blk_mq_rq_ctx_init(data, tag, op);
365 	if (!op_is_flush(op)) {
366 		rq->elv.icq = NULL;
367 		if (e && e->type->ops.mq.prepare_request) {
368 			if (e->type->icq_cache && rq_ioc(bio))
369 				blk_mq_sched_assign_ioc(rq, bio);
370 
371 			e->type->ops.mq.prepare_request(rq, bio);
372 			rq->rq_flags |= RQF_ELVPRIV;
373 		}
374 	}
375 	data->hctx->queued++;
376 	return rq;
377 }
378 
379 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
380 		blk_mq_req_flags_t flags)
381 {
382 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
383 	struct request *rq;
384 	int ret;
385 
386 	ret = blk_queue_enter(q, flags);
387 	if (ret)
388 		return ERR_PTR(ret);
389 
390 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
391 	blk_queue_exit(q);
392 
393 	if (!rq)
394 		return ERR_PTR(-EWOULDBLOCK);
395 
396 	blk_mq_put_ctx(alloc_data.ctx);
397 
398 	rq->__data_len = 0;
399 	rq->__sector = (sector_t) -1;
400 	rq->bio = rq->biotail = NULL;
401 	return rq;
402 }
403 EXPORT_SYMBOL(blk_mq_alloc_request);
404 
405 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
406 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
407 {
408 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
409 	struct request *rq;
410 	unsigned int cpu;
411 	int ret;
412 
413 	/*
414 	 * If the tag allocator sleeps we could get an allocation for a
415 	 * different hardware context.  No need to complicate the low level
416 	 * allocator for this for the rare use case of a command tied to
417 	 * a specific queue.
418 	 */
419 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
420 		return ERR_PTR(-EINVAL);
421 
422 	if (hctx_idx >= q->nr_hw_queues)
423 		return ERR_PTR(-EIO);
424 
425 	ret = blk_queue_enter(q, flags);
426 	if (ret)
427 		return ERR_PTR(ret);
428 
429 	/*
430 	 * Check if the hardware context is actually mapped to anything.
431 	 * If not tell the caller that it should skip this queue.
432 	 */
433 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
434 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
435 		blk_queue_exit(q);
436 		return ERR_PTR(-EXDEV);
437 	}
438 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
439 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
440 
441 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
442 	blk_queue_exit(q);
443 
444 	if (!rq)
445 		return ERR_PTR(-EWOULDBLOCK);
446 
447 	return rq;
448 }
449 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
450 
451 void blk_mq_free_request(struct request *rq)
452 {
453 	struct request_queue *q = rq->q;
454 	struct elevator_queue *e = q->elevator;
455 	struct blk_mq_ctx *ctx = rq->mq_ctx;
456 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
457 	const int sched_tag = rq->internal_tag;
458 
459 	if (rq->rq_flags & RQF_ELVPRIV) {
460 		if (e && e->type->ops.mq.finish_request)
461 			e->type->ops.mq.finish_request(rq);
462 		if (rq->elv.icq) {
463 			put_io_context(rq->elv.icq->ioc);
464 			rq->elv.icq = NULL;
465 		}
466 	}
467 
468 	ctx->rq_completed[rq_is_sync(rq)]++;
469 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
470 		atomic_dec(&hctx->nr_active);
471 
472 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
473 		laptop_io_completion(q->backing_dev_info);
474 
475 	wbt_done(q->rq_wb, &rq->issue_stat);
476 
477 	if (blk_rq_rl(rq))
478 		blk_put_rl(blk_rq_rl(rq));
479 
480 	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
481 	if (rq->tag != -1)
482 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
483 	if (sched_tag != -1)
484 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
485 	blk_mq_sched_restart(hctx);
486 	blk_queue_exit(q);
487 }
488 EXPORT_SYMBOL_GPL(blk_mq_free_request);
489 
490 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
491 {
492 	blk_account_io_done(rq);
493 
494 	if (rq->end_io) {
495 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
496 		rq->end_io(rq, error);
497 	} else {
498 		if (unlikely(blk_bidi_rq(rq)))
499 			blk_mq_free_request(rq->next_rq);
500 		blk_mq_free_request(rq);
501 	}
502 }
503 EXPORT_SYMBOL(__blk_mq_end_request);
504 
505 void blk_mq_end_request(struct request *rq, blk_status_t error)
506 {
507 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
508 		BUG();
509 	__blk_mq_end_request(rq, error);
510 }
511 EXPORT_SYMBOL(blk_mq_end_request);
512 
513 static void __blk_mq_complete_request_remote(void *data)
514 {
515 	struct request *rq = data;
516 
517 	rq->q->softirq_done_fn(rq);
518 }
519 
520 static void __blk_mq_complete_request(struct request *rq)
521 {
522 	struct blk_mq_ctx *ctx = rq->mq_ctx;
523 	bool shared = false;
524 	int cpu;
525 
526 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
527 	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
528 
529 	if (rq->internal_tag != -1)
530 		blk_mq_sched_completed_request(rq);
531 	if (rq->rq_flags & RQF_STATS) {
532 		blk_mq_poll_stats_start(rq->q);
533 		blk_stat_add(rq);
534 	}
535 
536 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
537 		rq->q->softirq_done_fn(rq);
538 		return;
539 	}
540 
541 	cpu = get_cpu();
542 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
543 		shared = cpus_share_cache(cpu, ctx->cpu);
544 
545 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
546 		rq->csd.func = __blk_mq_complete_request_remote;
547 		rq->csd.info = rq;
548 		rq->csd.flags = 0;
549 		smp_call_function_single_async(ctx->cpu, &rq->csd);
550 	} else {
551 		rq->q->softirq_done_fn(rq);
552 	}
553 	put_cpu();
554 }
555 
556 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
557 	__releases(hctx->srcu)
558 {
559 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
560 		rcu_read_unlock();
561 	else
562 		srcu_read_unlock(hctx->srcu, srcu_idx);
563 }
564 
565 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
566 	__acquires(hctx->srcu)
567 {
568 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
569 		/* shut up gcc false positive */
570 		*srcu_idx = 0;
571 		rcu_read_lock();
572 	} else
573 		*srcu_idx = srcu_read_lock(hctx->srcu);
574 }
575 
576 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
577 {
578 	unsigned long flags;
579 
580 	/*
581 	 * blk_mq_rq_aborted_gstate() is used from the completion path and
582 	 * can thus be called from irq context.  u64_stats_fetch in the
583 	 * middle of update on the same CPU leads to lockup.  Disable irq
584 	 * while updating.
585 	 */
586 	local_irq_save(flags);
587 	u64_stats_update_begin(&rq->aborted_gstate_sync);
588 	rq->aborted_gstate = gstate;
589 	u64_stats_update_end(&rq->aborted_gstate_sync);
590 	local_irq_restore(flags);
591 }
592 
593 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
594 {
595 	unsigned int start;
596 	u64 aborted_gstate;
597 
598 	do {
599 		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
600 		aborted_gstate = rq->aborted_gstate;
601 	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
602 
603 	return aborted_gstate;
604 }
605 
606 /**
607  * blk_mq_complete_request - end I/O on a request
608  * @rq:		the request being processed
609  *
610  * Description:
611  *	Ends all I/O on a request. It does not handle partial completions.
612  *	The actual completion happens out-of-order, through a IPI handler.
613  **/
614 void blk_mq_complete_request(struct request *rq)
615 {
616 	struct request_queue *q = rq->q;
617 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
618 	int srcu_idx;
619 
620 	if (unlikely(blk_should_fake_timeout(q)))
621 		return;
622 
623 	/*
624 	 * If @rq->aborted_gstate equals the current instance, timeout is
625 	 * claiming @rq and we lost.  This is synchronized through
626 	 * hctx_lock().  See blk_mq_timeout_work() for details.
627 	 *
628 	 * Completion path never blocks and we can directly use RCU here
629 	 * instead of hctx_lock() which can be either RCU or SRCU.
630 	 * However, that would complicate paths which want to synchronize
631 	 * against us.  Let stay in sync with the issue path so that
632 	 * hctx_lock() covers both issue and completion paths.
633 	 */
634 	hctx_lock(hctx, &srcu_idx);
635 	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
636 		__blk_mq_complete_request(rq);
637 	hctx_unlock(hctx, srcu_idx);
638 }
639 EXPORT_SYMBOL(blk_mq_complete_request);
640 
641 int blk_mq_request_started(struct request *rq)
642 {
643 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 }
645 EXPORT_SYMBOL_GPL(blk_mq_request_started);
646 
647 void blk_mq_start_request(struct request *rq)
648 {
649 	struct request_queue *q = rq->q;
650 
651 	blk_mq_sched_started_request(rq);
652 
653 	trace_block_rq_issue(q, rq);
654 
655 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
657 		rq->rq_flags |= RQF_STATS;
658 		wbt_issue(q->rq_wb, &rq->issue_stat);
659 	}
660 
661 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
662 
663 	/*
664 	 * Mark @rq in-flight which also advances the generation number,
665 	 * and register for timeout.  Protect with a seqcount to allow the
666 	 * timeout path to read both @rq->gstate and @rq->deadline
667 	 * coherently.
668 	 *
669 	 * This is the only place where a request is marked in-flight.  If
670 	 * the timeout path reads an in-flight @rq->gstate, the
671 	 * @rq->deadline it reads together under @rq->gstate_seq is
672 	 * guaranteed to be the matching one.
673 	 */
674 	preempt_disable();
675 	write_seqcount_begin(&rq->gstate_seq);
676 
677 	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
678 	blk_add_timer(rq);
679 
680 	write_seqcount_end(&rq->gstate_seq);
681 	preempt_enable();
682 
683 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
684 		/*
685 		 * Make sure space for the drain appears.  We know we can do
686 		 * this because max_hw_segments has been adjusted to be one
687 		 * fewer than the device can handle.
688 		 */
689 		rq->nr_phys_segments++;
690 	}
691 }
692 EXPORT_SYMBOL(blk_mq_start_request);
693 
694 /*
695  * When we reach here because queue is busy, it's safe to change the state
696  * to IDLE without checking @rq->aborted_gstate because we should still be
697  * holding the RCU read lock and thus protected against timeout.
698  */
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 	struct request_queue *q = rq->q;
702 
703 	blk_mq_put_driver_tag(rq);
704 
705 	trace_block_rq_requeue(q, rq);
706 	wbt_requeue(q->rq_wb, &rq->issue_stat);
707 
708 	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
709 		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
710 		if (q->dma_drain_size && blk_rq_bytes(rq))
711 			rq->nr_phys_segments--;
712 	}
713 }
714 
715 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
716 {
717 	__blk_mq_requeue_request(rq);
718 
719 	/* this request will be re-inserted to io scheduler queue */
720 	blk_mq_sched_requeue_request(rq);
721 
722 	BUG_ON(blk_queued_rq(rq));
723 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 }
725 EXPORT_SYMBOL(blk_mq_requeue_request);
726 
727 static void blk_mq_requeue_work(struct work_struct *work)
728 {
729 	struct request_queue *q =
730 		container_of(work, struct request_queue, requeue_work.work);
731 	LIST_HEAD(rq_list);
732 	struct request *rq, *next;
733 
734 	spin_lock_irq(&q->requeue_lock);
735 	list_splice_init(&q->requeue_list, &rq_list);
736 	spin_unlock_irq(&q->requeue_lock);
737 
738 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
740 			continue;
741 
742 		rq->rq_flags &= ~RQF_SOFTBARRIER;
743 		list_del_init(&rq->queuelist);
744 		blk_mq_sched_insert_request(rq, true, false, false);
745 	}
746 
747 	while (!list_empty(&rq_list)) {
748 		rq = list_entry(rq_list.next, struct request, queuelist);
749 		list_del_init(&rq->queuelist);
750 		blk_mq_sched_insert_request(rq, false, false, false);
751 	}
752 
753 	blk_mq_run_hw_queues(q, false);
754 }
755 
756 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
757 				bool kick_requeue_list)
758 {
759 	struct request_queue *q = rq->q;
760 	unsigned long flags;
761 
762 	/*
763 	 * We abuse this flag that is otherwise used by the I/O scheduler to
764 	 * request head insertion from the workqueue.
765 	 */
766 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767 
768 	spin_lock_irqsave(&q->requeue_lock, flags);
769 	if (at_head) {
770 		rq->rq_flags |= RQF_SOFTBARRIER;
771 		list_add(&rq->queuelist, &q->requeue_list);
772 	} else {
773 		list_add_tail(&rq->queuelist, &q->requeue_list);
774 	}
775 	spin_unlock_irqrestore(&q->requeue_lock, flags);
776 
777 	if (kick_requeue_list)
778 		blk_mq_kick_requeue_list(q);
779 }
780 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
781 
782 void blk_mq_kick_requeue_list(struct request_queue *q)
783 {
784 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
785 }
786 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
787 
788 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
789 				    unsigned long msecs)
790 {
791 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
792 				    msecs_to_jiffies(msecs));
793 }
794 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
795 
796 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
797 {
798 	if (tag < tags->nr_tags) {
799 		prefetch(tags->rqs[tag]);
800 		return tags->rqs[tag];
801 	}
802 
803 	return NULL;
804 }
805 EXPORT_SYMBOL(blk_mq_tag_to_rq);
806 
807 struct blk_mq_timeout_data {
808 	unsigned long next;
809 	unsigned int next_set;
810 	unsigned int nr_expired;
811 };
812 
813 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814 {
815 	const struct blk_mq_ops *ops = req->q->mq_ops;
816 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817 
818 	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819 
820 	if (ops->timeout)
821 		ret = ops->timeout(req, reserved);
822 
823 	switch (ret) {
824 	case BLK_EH_HANDLED:
825 		__blk_mq_complete_request(req);
826 		break;
827 	case BLK_EH_RESET_TIMER:
828 		/*
829 		 * As nothing prevents from completion happening while
830 		 * ->aborted_gstate is set, this may lead to ignored
831 		 * completions and further spurious timeouts.
832 		 */
833 		blk_mq_rq_update_aborted_gstate(req, 0);
834 		blk_add_timer(req);
835 		break;
836 	case BLK_EH_NOT_HANDLED:
837 		break;
838 	default:
839 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
840 		break;
841 	}
842 }
843 
844 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
845 		struct request *rq, void *priv, bool reserved)
846 {
847 	struct blk_mq_timeout_data *data = priv;
848 	unsigned long gstate, deadline;
849 	int start;
850 
851 	might_sleep();
852 
853 	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854 		return;
855 
856 	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
857 	while (true) {
858 		start = read_seqcount_begin(&rq->gstate_seq);
859 		gstate = READ_ONCE(rq->gstate);
860 		deadline = blk_rq_deadline(rq);
861 		if (!read_seqcount_retry(&rq->gstate_seq, start))
862 			break;
863 		cond_resched();
864 	}
865 
866 	/* if in-flight && overdue, mark for abortion */
867 	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
868 	    time_after_eq(jiffies, deadline)) {
869 		blk_mq_rq_update_aborted_gstate(rq, gstate);
870 		data->nr_expired++;
871 		hctx->nr_expired++;
872 	} else if (!data->next_set || time_after(data->next, deadline)) {
873 		data->next = deadline;
874 		data->next_set = 1;
875 	}
876 }
877 
878 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
879 		struct request *rq, void *priv, bool reserved)
880 {
881 	/*
882 	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
883 	 * completions that we lost to, they would have finished and
884 	 * updated @rq->gstate by now; otherwise, the completion path is
885 	 * now guaranteed to see @rq->aborted_gstate and yield.  If
886 	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
887 	 */
888 	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
889 	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
890 		blk_mq_rq_timed_out(rq, reserved);
891 }
892 
893 static void blk_mq_timeout_work(struct work_struct *work)
894 {
895 	struct request_queue *q =
896 		container_of(work, struct request_queue, timeout_work);
897 	struct blk_mq_timeout_data data = {
898 		.next		= 0,
899 		.next_set	= 0,
900 		.nr_expired	= 0,
901 	};
902 	struct blk_mq_hw_ctx *hctx;
903 	int i;
904 
905 	/* A deadlock might occur if a request is stuck requiring a
906 	 * timeout at the same time a queue freeze is waiting
907 	 * completion, since the timeout code would not be able to
908 	 * acquire the queue reference here.
909 	 *
910 	 * That's why we don't use blk_queue_enter here; instead, we use
911 	 * percpu_ref_tryget directly, because we need to be able to
912 	 * obtain a reference even in the short window between the queue
913 	 * starting to freeze, by dropping the first reference in
914 	 * blk_freeze_queue_start, and the moment the last request is
915 	 * consumed, marked by the instant q_usage_counter reaches
916 	 * zero.
917 	 */
918 	if (!percpu_ref_tryget(&q->q_usage_counter))
919 		return;
920 
921 	/* scan for the expired ones and set their ->aborted_gstate */
922 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923 
924 	if (data.nr_expired) {
925 		bool has_rcu = false;
926 
927 		/*
928 		 * Wait till everyone sees ->aborted_gstate.  The
929 		 * sequential waits for SRCUs aren't ideal.  If this ever
930 		 * becomes a problem, we can add per-hw_ctx rcu_head and
931 		 * wait in parallel.
932 		 */
933 		queue_for_each_hw_ctx(q, hctx, i) {
934 			if (!hctx->nr_expired)
935 				continue;
936 
937 			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
938 				has_rcu = true;
939 			else
940 				synchronize_srcu(hctx->srcu);
941 
942 			hctx->nr_expired = 0;
943 		}
944 		if (has_rcu)
945 			synchronize_rcu();
946 
947 		/* terminate the ones we won */
948 		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
949 	}
950 
951 	if (data.next_set) {
952 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
953 		mod_timer(&q->timeout, data.next);
954 	} else {
955 		/*
956 		 * Request timeouts are handled as a forward rolling timer. If
957 		 * we end up here it means that no requests are pending and
958 		 * also that no request has been pending for a while. Mark
959 		 * each hctx as idle.
960 		 */
961 		queue_for_each_hw_ctx(q, hctx, i) {
962 			/* the hctx may be unmapped, so check it here */
963 			if (blk_mq_hw_queue_mapped(hctx))
964 				blk_mq_tag_idle(hctx);
965 		}
966 	}
967 	blk_queue_exit(q);
968 }
969 
970 struct flush_busy_ctx_data {
971 	struct blk_mq_hw_ctx *hctx;
972 	struct list_head *list;
973 };
974 
975 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
976 {
977 	struct flush_busy_ctx_data *flush_data = data;
978 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
979 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
980 
981 	spin_lock(&ctx->lock);
982 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
983 	sbitmap_clear_bit(sb, bitnr);
984 	spin_unlock(&ctx->lock);
985 	return true;
986 }
987 
988 /*
989  * Process software queues that have been marked busy, splicing them
990  * to the for-dispatch
991  */
992 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
993 {
994 	struct flush_busy_ctx_data data = {
995 		.hctx = hctx,
996 		.list = list,
997 	};
998 
999 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1000 }
1001 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1002 
1003 struct dispatch_rq_data {
1004 	struct blk_mq_hw_ctx *hctx;
1005 	struct request *rq;
1006 };
1007 
1008 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1009 		void *data)
1010 {
1011 	struct dispatch_rq_data *dispatch_data = data;
1012 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1013 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1014 
1015 	spin_lock(&ctx->lock);
1016 	if (unlikely(!list_empty(&ctx->rq_list))) {
1017 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1018 		list_del_init(&dispatch_data->rq->queuelist);
1019 		if (list_empty(&ctx->rq_list))
1020 			sbitmap_clear_bit(sb, bitnr);
1021 	}
1022 	spin_unlock(&ctx->lock);
1023 
1024 	return !dispatch_data->rq;
1025 }
1026 
1027 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1028 					struct blk_mq_ctx *start)
1029 {
1030 	unsigned off = start ? start->index_hw : 0;
1031 	struct dispatch_rq_data data = {
1032 		.hctx = hctx,
1033 		.rq   = NULL,
1034 	};
1035 
1036 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1037 			       dispatch_rq_from_ctx, &data);
1038 
1039 	return data.rq;
1040 }
1041 
1042 static inline unsigned int queued_to_index(unsigned int queued)
1043 {
1044 	if (!queued)
1045 		return 0;
1046 
1047 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1048 }
1049 
1050 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1051 			   bool wait)
1052 {
1053 	struct blk_mq_alloc_data data = {
1054 		.q = rq->q,
1055 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1056 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1057 	};
1058 
1059 	might_sleep_if(wait);
1060 
1061 	if (rq->tag != -1)
1062 		goto done;
1063 
1064 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1065 		data.flags |= BLK_MQ_REQ_RESERVED;
1066 
1067 	rq->tag = blk_mq_get_tag(&data);
1068 	if (rq->tag >= 0) {
1069 		if (blk_mq_tag_busy(data.hctx)) {
1070 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1071 			atomic_inc(&data.hctx->nr_active);
1072 		}
1073 		data.hctx->tags->rqs[rq->tag] = rq;
1074 	}
1075 
1076 done:
1077 	if (hctx)
1078 		*hctx = data.hctx;
1079 	return rq->tag != -1;
1080 }
1081 
1082 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1083 				int flags, void *key)
1084 {
1085 	struct blk_mq_hw_ctx *hctx;
1086 
1087 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1088 
1089 	list_del_init(&wait->entry);
1090 	blk_mq_run_hw_queue(hctx, true);
1091 	return 1;
1092 }
1093 
1094 /*
1095  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1096  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1097  * restart. For both cases, take care to check the condition again after
1098  * marking us as waiting.
1099  */
1100 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1101 				 struct request *rq)
1102 {
1103 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1104 	struct sbq_wait_state *ws;
1105 	wait_queue_entry_t *wait;
1106 	bool ret;
1107 
1108 	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1109 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1110 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1111 
1112 		/*
1113 		 * It's possible that a tag was freed in the window between the
1114 		 * allocation failure and adding the hardware queue to the wait
1115 		 * queue.
1116 		 *
1117 		 * Don't clear RESTART here, someone else could have set it.
1118 		 * At most this will cost an extra queue run.
1119 		 */
1120 		return blk_mq_get_driver_tag(rq, hctx, false);
1121 	}
1122 
1123 	wait = &this_hctx->dispatch_wait;
1124 	if (!list_empty_careful(&wait->entry))
1125 		return false;
1126 
1127 	spin_lock(&this_hctx->lock);
1128 	if (!list_empty(&wait->entry)) {
1129 		spin_unlock(&this_hctx->lock);
1130 		return false;
1131 	}
1132 
1133 	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1134 	add_wait_queue(&ws->wait, wait);
1135 
1136 	/*
1137 	 * It's possible that a tag was freed in the window between the
1138 	 * allocation failure and adding the hardware queue to the wait
1139 	 * queue.
1140 	 */
1141 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1142 	if (!ret) {
1143 		spin_unlock(&this_hctx->lock);
1144 		return false;
1145 	}
1146 
1147 	/*
1148 	 * We got a tag, remove ourselves from the wait queue to ensure
1149 	 * someone else gets the wakeup.
1150 	 */
1151 	spin_lock_irq(&ws->wait.lock);
1152 	list_del_init(&wait->entry);
1153 	spin_unlock_irq(&ws->wait.lock);
1154 	spin_unlock(&this_hctx->lock);
1155 
1156 	return true;
1157 }
1158 
1159 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1160 
1161 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1162 			     bool got_budget)
1163 {
1164 	struct blk_mq_hw_ctx *hctx;
1165 	struct request *rq, *nxt;
1166 	bool no_tag = false;
1167 	int errors, queued;
1168 	blk_status_t ret = BLK_STS_OK;
1169 
1170 	if (list_empty(list))
1171 		return false;
1172 
1173 	WARN_ON(!list_is_singular(list) && got_budget);
1174 
1175 	/*
1176 	 * Now process all the entries, sending them to the driver.
1177 	 */
1178 	errors = queued = 0;
1179 	do {
1180 		struct blk_mq_queue_data bd;
1181 
1182 		rq = list_first_entry(list, struct request, queuelist);
1183 
1184 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1185 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1186 			break;
1187 
1188 		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1189 			/*
1190 			 * The initial allocation attempt failed, so we need to
1191 			 * rerun the hardware queue when a tag is freed. The
1192 			 * waitqueue takes care of that. If the queue is run
1193 			 * before we add this entry back on the dispatch list,
1194 			 * we'll re-run it below.
1195 			 */
1196 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1197 				blk_mq_put_dispatch_budget(hctx);
1198 				/*
1199 				 * For non-shared tags, the RESTART check
1200 				 * will suffice.
1201 				 */
1202 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1203 					no_tag = true;
1204 				break;
1205 			}
1206 		}
1207 
1208 		list_del_init(&rq->queuelist);
1209 
1210 		bd.rq = rq;
1211 
1212 		/*
1213 		 * Flag last if we have no more requests, or if we have more
1214 		 * but can't assign a driver tag to it.
1215 		 */
1216 		if (list_empty(list))
1217 			bd.last = true;
1218 		else {
1219 			nxt = list_first_entry(list, struct request, queuelist);
1220 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1221 		}
1222 
1223 		ret = q->mq_ops->queue_rq(hctx, &bd);
1224 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1225 			/*
1226 			 * If an I/O scheduler has been configured and we got a
1227 			 * driver tag for the next request already, free it
1228 			 * again.
1229 			 */
1230 			if (!list_empty(list)) {
1231 				nxt = list_first_entry(list, struct request, queuelist);
1232 				blk_mq_put_driver_tag(nxt);
1233 			}
1234 			list_add(&rq->queuelist, list);
1235 			__blk_mq_requeue_request(rq);
1236 			break;
1237 		}
1238 
1239 		if (unlikely(ret != BLK_STS_OK)) {
1240 			errors++;
1241 			blk_mq_end_request(rq, BLK_STS_IOERR);
1242 			continue;
1243 		}
1244 
1245 		queued++;
1246 	} while (!list_empty(list));
1247 
1248 	hctx->dispatched[queued_to_index(queued)]++;
1249 
1250 	/*
1251 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1252 	 * that is where we will continue on next queue run.
1253 	 */
1254 	if (!list_empty(list)) {
1255 		bool needs_restart;
1256 
1257 		spin_lock(&hctx->lock);
1258 		list_splice_init(list, &hctx->dispatch);
1259 		spin_unlock(&hctx->lock);
1260 
1261 		/*
1262 		 * If SCHED_RESTART was set by the caller of this function and
1263 		 * it is no longer set that means that it was cleared by another
1264 		 * thread and hence that a queue rerun is needed.
1265 		 *
1266 		 * If 'no_tag' is set, that means that we failed getting
1267 		 * a driver tag with an I/O scheduler attached. If our dispatch
1268 		 * waitqueue is no longer active, ensure that we run the queue
1269 		 * AFTER adding our entries back to the list.
1270 		 *
1271 		 * If no I/O scheduler has been configured it is possible that
1272 		 * the hardware queue got stopped and restarted before requests
1273 		 * were pushed back onto the dispatch list. Rerun the queue to
1274 		 * avoid starvation. Notes:
1275 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1276 		 *   been stopped before rerunning a queue.
1277 		 * - Some but not all block drivers stop a queue before
1278 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1279 		 *   and dm-rq.
1280 		 *
1281 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1282 		 * bit is set, run queue after a delay to avoid IO stalls
1283 		 * that could otherwise occur if the queue is idle.
1284 		 */
1285 		needs_restart = blk_mq_sched_needs_restart(hctx);
1286 		if (!needs_restart ||
1287 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1288 			blk_mq_run_hw_queue(hctx, true);
1289 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1290 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1291 	}
1292 
1293 	return (queued + errors) != 0;
1294 }
1295 
1296 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1297 {
1298 	int srcu_idx;
1299 
1300 	/*
1301 	 * We should be running this queue from one of the CPUs that
1302 	 * are mapped to it.
1303 	 *
1304 	 * There are at least two related races now between setting
1305 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1306 	 * __blk_mq_run_hw_queue():
1307 	 *
1308 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1309 	 *   but later it becomes online, then this warning is harmless
1310 	 *   at all
1311 	 *
1312 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1313 	 *   but later it becomes offline, then the warning can't be
1314 	 *   triggered, and we depend on blk-mq timeout handler to
1315 	 *   handle dispatched requests to this hctx
1316 	 */
1317 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1318 		cpu_online(hctx->next_cpu)) {
1319 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1320 			raw_smp_processor_id(),
1321 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1322 		dump_stack();
1323 	}
1324 
1325 	/*
1326 	 * We can't run the queue inline with ints disabled. Ensure that
1327 	 * we catch bad users of this early.
1328 	 */
1329 	WARN_ON_ONCE(in_interrupt());
1330 
1331 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1332 
1333 	hctx_lock(hctx, &srcu_idx);
1334 	blk_mq_sched_dispatch_requests(hctx);
1335 	hctx_unlock(hctx, srcu_idx);
1336 }
1337 
1338 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1339 {
1340 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1341 
1342 	if (cpu >= nr_cpu_ids)
1343 		cpu = cpumask_first(hctx->cpumask);
1344 	return cpu;
1345 }
1346 
1347 /*
1348  * It'd be great if the workqueue API had a way to pass
1349  * in a mask and had some smarts for more clever placement.
1350  * For now we just round-robin here, switching for every
1351  * BLK_MQ_CPU_WORK_BATCH queued items.
1352  */
1353 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1354 {
1355 	bool tried = false;
1356 	int next_cpu = hctx->next_cpu;
1357 
1358 	if (hctx->queue->nr_hw_queues == 1)
1359 		return WORK_CPU_UNBOUND;
1360 
1361 	if (--hctx->next_cpu_batch <= 0) {
1362 select_cpu:
1363 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1364 				cpu_online_mask);
1365 		if (next_cpu >= nr_cpu_ids)
1366 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1367 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1368 	}
1369 
1370 	/*
1371 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1372 	 * and it should only happen in the path of handling CPU DEAD.
1373 	 */
1374 	if (!cpu_online(next_cpu)) {
1375 		if (!tried) {
1376 			tried = true;
1377 			goto select_cpu;
1378 		}
1379 
1380 		/*
1381 		 * Make sure to re-select CPU next time once after CPUs
1382 		 * in hctx->cpumask become online again.
1383 		 */
1384 		hctx->next_cpu = next_cpu;
1385 		hctx->next_cpu_batch = 1;
1386 		return WORK_CPU_UNBOUND;
1387 	}
1388 
1389 	hctx->next_cpu = next_cpu;
1390 	return next_cpu;
1391 }
1392 
1393 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1394 					unsigned long msecs)
1395 {
1396 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1397 		return;
1398 
1399 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1400 		int cpu = get_cpu();
1401 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1402 			__blk_mq_run_hw_queue(hctx);
1403 			put_cpu();
1404 			return;
1405 		}
1406 
1407 		put_cpu();
1408 	}
1409 
1410 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1411 				    msecs_to_jiffies(msecs));
1412 }
1413 
1414 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1415 {
1416 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1417 }
1418 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1419 
1420 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1421 {
1422 	int srcu_idx;
1423 	bool need_run;
1424 
1425 	/*
1426 	 * When queue is quiesced, we may be switching io scheduler, or
1427 	 * updating nr_hw_queues, or other things, and we can't run queue
1428 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1429 	 *
1430 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1431 	 * quiesced.
1432 	 */
1433 	hctx_lock(hctx, &srcu_idx);
1434 	need_run = !blk_queue_quiesced(hctx->queue) &&
1435 		blk_mq_hctx_has_pending(hctx);
1436 	hctx_unlock(hctx, srcu_idx);
1437 
1438 	if (need_run) {
1439 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1440 		return true;
1441 	}
1442 
1443 	return false;
1444 }
1445 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1446 
1447 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1448 {
1449 	struct blk_mq_hw_ctx *hctx;
1450 	int i;
1451 
1452 	queue_for_each_hw_ctx(q, hctx, i) {
1453 		if (blk_mq_hctx_stopped(hctx))
1454 			continue;
1455 
1456 		blk_mq_run_hw_queue(hctx, async);
1457 	}
1458 }
1459 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1460 
1461 /**
1462  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1463  * @q: request queue.
1464  *
1465  * The caller is responsible for serializing this function against
1466  * blk_mq_{start,stop}_hw_queue().
1467  */
1468 bool blk_mq_queue_stopped(struct request_queue *q)
1469 {
1470 	struct blk_mq_hw_ctx *hctx;
1471 	int i;
1472 
1473 	queue_for_each_hw_ctx(q, hctx, i)
1474 		if (blk_mq_hctx_stopped(hctx))
1475 			return true;
1476 
1477 	return false;
1478 }
1479 EXPORT_SYMBOL(blk_mq_queue_stopped);
1480 
1481 /*
1482  * This function is often used for pausing .queue_rq() by driver when
1483  * there isn't enough resource or some conditions aren't satisfied, and
1484  * BLK_STS_RESOURCE is usually returned.
1485  *
1486  * We do not guarantee that dispatch can be drained or blocked
1487  * after blk_mq_stop_hw_queue() returns. Please use
1488  * blk_mq_quiesce_queue() for that requirement.
1489  */
1490 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1491 {
1492 	cancel_delayed_work(&hctx->run_work);
1493 
1494 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1495 }
1496 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1497 
1498 /*
1499  * This function is often used for pausing .queue_rq() by driver when
1500  * there isn't enough resource or some conditions aren't satisfied, and
1501  * BLK_STS_RESOURCE is usually returned.
1502  *
1503  * We do not guarantee that dispatch can be drained or blocked
1504  * after blk_mq_stop_hw_queues() returns. Please use
1505  * blk_mq_quiesce_queue() for that requirement.
1506  */
1507 void blk_mq_stop_hw_queues(struct request_queue *q)
1508 {
1509 	struct blk_mq_hw_ctx *hctx;
1510 	int i;
1511 
1512 	queue_for_each_hw_ctx(q, hctx, i)
1513 		blk_mq_stop_hw_queue(hctx);
1514 }
1515 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1516 
1517 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1518 {
1519 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1520 
1521 	blk_mq_run_hw_queue(hctx, false);
1522 }
1523 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1524 
1525 void blk_mq_start_hw_queues(struct request_queue *q)
1526 {
1527 	struct blk_mq_hw_ctx *hctx;
1528 	int i;
1529 
1530 	queue_for_each_hw_ctx(q, hctx, i)
1531 		blk_mq_start_hw_queue(hctx);
1532 }
1533 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1534 
1535 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1536 {
1537 	if (!blk_mq_hctx_stopped(hctx))
1538 		return;
1539 
1540 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1541 	blk_mq_run_hw_queue(hctx, async);
1542 }
1543 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1544 
1545 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1546 {
1547 	struct blk_mq_hw_ctx *hctx;
1548 	int i;
1549 
1550 	queue_for_each_hw_ctx(q, hctx, i)
1551 		blk_mq_start_stopped_hw_queue(hctx, async);
1552 }
1553 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1554 
1555 static void blk_mq_run_work_fn(struct work_struct *work)
1556 {
1557 	struct blk_mq_hw_ctx *hctx;
1558 
1559 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1560 
1561 	/*
1562 	 * If we are stopped, don't run the queue.
1563 	 */
1564 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1565 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1566 
1567 	__blk_mq_run_hw_queue(hctx);
1568 }
1569 
1570 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1571 					    struct request *rq,
1572 					    bool at_head)
1573 {
1574 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1575 
1576 	lockdep_assert_held(&ctx->lock);
1577 
1578 	trace_block_rq_insert(hctx->queue, rq);
1579 
1580 	if (at_head)
1581 		list_add(&rq->queuelist, &ctx->rq_list);
1582 	else
1583 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1584 }
1585 
1586 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1587 			     bool at_head)
1588 {
1589 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1590 
1591 	lockdep_assert_held(&ctx->lock);
1592 
1593 	__blk_mq_insert_req_list(hctx, rq, at_head);
1594 	blk_mq_hctx_mark_pending(hctx, ctx);
1595 }
1596 
1597 /*
1598  * Should only be used carefully, when the caller knows we want to
1599  * bypass a potential IO scheduler on the target device.
1600  */
1601 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1602 {
1603 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1604 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1605 
1606 	spin_lock(&hctx->lock);
1607 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1608 	spin_unlock(&hctx->lock);
1609 
1610 	if (run_queue)
1611 		blk_mq_run_hw_queue(hctx, false);
1612 }
1613 
1614 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1615 			    struct list_head *list)
1616 
1617 {
1618 	/*
1619 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1620 	 * offline now
1621 	 */
1622 	spin_lock(&ctx->lock);
1623 	while (!list_empty(list)) {
1624 		struct request *rq;
1625 
1626 		rq = list_first_entry(list, struct request, queuelist);
1627 		BUG_ON(rq->mq_ctx != ctx);
1628 		list_del_init(&rq->queuelist);
1629 		__blk_mq_insert_req_list(hctx, rq, false);
1630 	}
1631 	blk_mq_hctx_mark_pending(hctx, ctx);
1632 	spin_unlock(&ctx->lock);
1633 }
1634 
1635 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1636 {
1637 	struct request *rqa = container_of(a, struct request, queuelist);
1638 	struct request *rqb = container_of(b, struct request, queuelist);
1639 
1640 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1641 		 (rqa->mq_ctx == rqb->mq_ctx &&
1642 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1643 }
1644 
1645 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1646 {
1647 	struct blk_mq_ctx *this_ctx;
1648 	struct request_queue *this_q;
1649 	struct request *rq;
1650 	LIST_HEAD(list);
1651 	LIST_HEAD(ctx_list);
1652 	unsigned int depth;
1653 
1654 	list_splice_init(&plug->mq_list, &list);
1655 
1656 	list_sort(NULL, &list, plug_ctx_cmp);
1657 
1658 	this_q = NULL;
1659 	this_ctx = NULL;
1660 	depth = 0;
1661 
1662 	while (!list_empty(&list)) {
1663 		rq = list_entry_rq(list.next);
1664 		list_del_init(&rq->queuelist);
1665 		BUG_ON(!rq->q);
1666 		if (rq->mq_ctx != this_ctx) {
1667 			if (this_ctx) {
1668 				trace_block_unplug(this_q, depth, from_schedule);
1669 				blk_mq_sched_insert_requests(this_q, this_ctx,
1670 								&ctx_list,
1671 								from_schedule);
1672 			}
1673 
1674 			this_ctx = rq->mq_ctx;
1675 			this_q = rq->q;
1676 			depth = 0;
1677 		}
1678 
1679 		depth++;
1680 		list_add_tail(&rq->queuelist, &ctx_list);
1681 	}
1682 
1683 	/*
1684 	 * If 'this_ctx' is set, we know we have entries to complete
1685 	 * on 'ctx_list'. Do those.
1686 	 */
1687 	if (this_ctx) {
1688 		trace_block_unplug(this_q, depth, from_schedule);
1689 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1690 						from_schedule);
1691 	}
1692 }
1693 
1694 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1695 {
1696 	blk_init_request_from_bio(rq, bio);
1697 
1698 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1699 
1700 	blk_account_io_start(rq, true);
1701 }
1702 
1703 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1704 				   struct blk_mq_ctx *ctx,
1705 				   struct request *rq)
1706 {
1707 	spin_lock(&ctx->lock);
1708 	__blk_mq_insert_request(hctx, rq, false);
1709 	spin_unlock(&ctx->lock);
1710 }
1711 
1712 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1713 {
1714 	if (rq->tag != -1)
1715 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1716 
1717 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1718 }
1719 
1720 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1721 					    struct request *rq,
1722 					    blk_qc_t *cookie)
1723 {
1724 	struct request_queue *q = rq->q;
1725 	struct blk_mq_queue_data bd = {
1726 		.rq = rq,
1727 		.last = true,
1728 	};
1729 	blk_qc_t new_cookie;
1730 	blk_status_t ret;
1731 
1732 	new_cookie = request_to_qc_t(hctx, rq);
1733 
1734 	/*
1735 	 * For OK queue, we are done. For error, caller may kill it.
1736 	 * Any other error (busy), just add it to our list as we
1737 	 * previously would have done.
1738 	 */
1739 	ret = q->mq_ops->queue_rq(hctx, &bd);
1740 	switch (ret) {
1741 	case BLK_STS_OK:
1742 		*cookie = new_cookie;
1743 		break;
1744 	case BLK_STS_RESOURCE:
1745 	case BLK_STS_DEV_RESOURCE:
1746 		__blk_mq_requeue_request(rq);
1747 		break;
1748 	default:
1749 		*cookie = BLK_QC_T_NONE;
1750 		break;
1751 	}
1752 
1753 	return ret;
1754 }
1755 
1756 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1757 						struct request *rq,
1758 						blk_qc_t *cookie,
1759 						bool bypass_insert)
1760 {
1761 	struct request_queue *q = rq->q;
1762 	bool run_queue = true;
1763 
1764 	/*
1765 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1766 	 *
1767 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1768 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1769 	 * and avoid driver to try to dispatch again.
1770 	 */
1771 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1772 		run_queue = false;
1773 		bypass_insert = false;
1774 		goto insert;
1775 	}
1776 
1777 	if (q->elevator && !bypass_insert)
1778 		goto insert;
1779 
1780 	if (!blk_mq_get_dispatch_budget(hctx))
1781 		goto insert;
1782 
1783 	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1784 		blk_mq_put_dispatch_budget(hctx);
1785 		goto insert;
1786 	}
1787 
1788 	return __blk_mq_issue_directly(hctx, rq, cookie);
1789 insert:
1790 	if (bypass_insert)
1791 		return BLK_STS_RESOURCE;
1792 
1793 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1794 	return BLK_STS_OK;
1795 }
1796 
1797 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1798 		struct request *rq, blk_qc_t *cookie)
1799 {
1800 	blk_status_t ret;
1801 	int srcu_idx;
1802 
1803 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1804 
1805 	hctx_lock(hctx, &srcu_idx);
1806 
1807 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1808 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1809 		blk_mq_sched_insert_request(rq, false, true, false);
1810 	else if (ret != BLK_STS_OK)
1811 		blk_mq_end_request(rq, ret);
1812 
1813 	hctx_unlock(hctx, srcu_idx);
1814 }
1815 
1816 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1817 {
1818 	blk_status_t ret;
1819 	int srcu_idx;
1820 	blk_qc_t unused_cookie;
1821 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1822 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1823 
1824 	hctx_lock(hctx, &srcu_idx);
1825 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1826 	hctx_unlock(hctx, srcu_idx);
1827 
1828 	return ret;
1829 }
1830 
1831 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1832 {
1833 	const int is_sync = op_is_sync(bio->bi_opf);
1834 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1835 	struct blk_mq_alloc_data data = { .flags = 0 };
1836 	struct request *rq;
1837 	unsigned int request_count = 0;
1838 	struct blk_plug *plug;
1839 	struct request *same_queue_rq = NULL;
1840 	blk_qc_t cookie;
1841 	unsigned int wb_acct;
1842 
1843 	blk_queue_bounce(q, &bio);
1844 
1845 	blk_queue_split(q, &bio);
1846 
1847 	if (!bio_integrity_prep(bio))
1848 		return BLK_QC_T_NONE;
1849 
1850 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1851 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1852 		return BLK_QC_T_NONE;
1853 
1854 	if (blk_mq_sched_bio_merge(q, bio))
1855 		return BLK_QC_T_NONE;
1856 
1857 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1858 
1859 	trace_block_getrq(q, bio, bio->bi_opf);
1860 
1861 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1862 	if (unlikely(!rq)) {
1863 		__wbt_done(q->rq_wb, wb_acct);
1864 		if (bio->bi_opf & REQ_NOWAIT)
1865 			bio_wouldblock_error(bio);
1866 		return BLK_QC_T_NONE;
1867 	}
1868 
1869 	wbt_track(&rq->issue_stat, wb_acct);
1870 
1871 	cookie = request_to_qc_t(data.hctx, rq);
1872 
1873 	plug = current->plug;
1874 	if (unlikely(is_flush_fua)) {
1875 		blk_mq_put_ctx(data.ctx);
1876 		blk_mq_bio_to_request(rq, bio);
1877 
1878 		/* bypass scheduler for flush rq */
1879 		blk_insert_flush(rq);
1880 		blk_mq_run_hw_queue(data.hctx, true);
1881 	} else if (plug && q->nr_hw_queues == 1) {
1882 		struct request *last = NULL;
1883 
1884 		blk_mq_put_ctx(data.ctx);
1885 		blk_mq_bio_to_request(rq, bio);
1886 
1887 		/*
1888 		 * @request_count may become stale because of schedule
1889 		 * out, so check the list again.
1890 		 */
1891 		if (list_empty(&plug->mq_list))
1892 			request_count = 0;
1893 		else if (blk_queue_nomerges(q))
1894 			request_count = blk_plug_queued_count(q);
1895 
1896 		if (!request_count)
1897 			trace_block_plug(q);
1898 		else
1899 			last = list_entry_rq(plug->mq_list.prev);
1900 
1901 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1902 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1903 			blk_flush_plug_list(plug, false);
1904 			trace_block_plug(q);
1905 		}
1906 
1907 		list_add_tail(&rq->queuelist, &plug->mq_list);
1908 	} else if (plug && !blk_queue_nomerges(q)) {
1909 		blk_mq_bio_to_request(rq, bio);
1910 
1911 		/*
1912 		 * We do limited plugging. If the bio can be merged, do that.
1913 		 * Otherwise the existing request in the plug list will be
1914 		 * issued. So the plug list will have one request at most
1915 		 * The plug list might get flushed before this. If that happens,
1916 		 * the plug list is empty, and same_queue_rq is invalid.
1917 		 */
1918 		if (list_empty(&plug->mq_list))
1919 			same_queue_rq = NULL;
1920 		if (same_queue_rq)
1921 			list_del_init(&same_queue_rq->queuelist);
1922 		list_add_tail(&rq->queuelist, &plug->mq_list);
1923 
1924 		blk_mq_put_ctx(data.ctx);
1925 
1926 		if (same_queue_rq) {
1927 			data.hctx = blk_mq_map_queue(q,
1928 					same_queue_rq->mq_ctx->cpu);
1929 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1930 					&cookie);
1931 		}
1932 	} else if (q->nr_hw_queues > 1 && is_sync) {
1933 		blk_mq_put_ctx(data.ctx);
1934 		blk_mq_bio_to_request(rq, bio);
1935 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1936 	} else if (q->elevator) {
1937 		blk_mq_put_ctx(data.ctx);
1938 		blk_mq_bio_to_request(rq, bio);
1939 		blk_mq_sched_insert_request(rq, false, true, true);
1940 	} else {
1941 		blk_mq_put_ctx(data.ctx);
1942 		blk_mq_bio_to_request(rq, bio);
1943 		blk_mq_queue_io(data.hctx, data.ctx, rq);
1944 		blk_mq_run_hw_queue(data.hctx, true);
1945 	}
1946 
1947 	return cookie;
1948 }
1949 
1950 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1951 		     unsigned int hctx_idx)
1952 {
1953 	struct page *page;
1954 
1955 	if (tags->rqs && set->ops->exit_request) {
1956 		int i;
1957 
1958 		for (i = 0; i < tags->nr_tags; i++) {
1959 			struct request *rq = tags->static_rqs[i];
1960 
1961 			if (!rq)
1962 				continue;
1963 			set->ops->exit_request(set, rq, hctx_idx);
1964 			tags->static_rqs[i] = NULL;
1965 		}
1966 	}
1967 
1968 	while (!list_empty(&tags->page_list)) {
1969 		page = list_first_entry(&tags->page_list, struct page, lru);
1970 		list_del_init(&page->lru);
1971 		/*
1972 		 * Remove kmemleak object previously allocated in
1973 		 * blk_mq_init_rq_map().
1974 		 */
1975 		kmemleak_free(page_address(page));
1976 		__free_pages(page, page->private);
1977 	}
1978 }
1979 
1980 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1981 {
1982 	kfree(tags->rqs);
1983 	tags->rqs = NULL;
1984 	kfree(tags->static_rqs);
1985 	tags->static_rqs = NULL;
1986 
1987 	blk_mq_free_tags(tags);
1988 }
1989 
1990 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1991 					unsigned int hctx_idx,
1992 					unsigned int nr_tags,
1993 					unsigned int reserved_tags)
1994 {
1995 	struct blk_mq_tags *tags;
1996 	int node;
1997 
1998 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1999 	if (node == NUMA_NO_NODE)
2000 		node = set->numa_node;
2001 
2002 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2003 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2004 	if (!tags)
2005 		return NULL;
2006 
2007 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2008 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2009 				 node);
2010 	if (!tags->rqs) {
2011 		blk_mq_free_tags(tags);
2012 		return NULL;
2013 	}
2014 
2015 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2016 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2017 				 node);
2018 	if (!tags->static_rqs) {
2019 		kfree(tags->rqs);
2020 		blk_mq_free_tags(tags);
2021 		return NULL;
2022 	}
2023 
2024 	return tags;
2025 }
2026 
2027 static size_t order_to_size(unsigned int order)
2028 {
2029 	return (size_t)PAGE_SIZE << order;
2030 }
2031 
2032 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2033 			       unsigned int hctx_idx, int node)
2034 {
2035 	int ret;
2036 
2037 	if (set->ops->init_request) {
2038 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2039 		if (ret)
2040 			return ret;
2041 	}
2042 
2043 	seqcount_init(&rq->gstate_seq);
2044 	u64_stats_init(&rq->aborted_gstate_sync);
2045 	/*
2046 	 * start gstate with gen 1 instead of 0, otherwise it will be equal
2047 	 * to aborted_gstate, and be identified timed out by
2048 	 * blk_mq_terminate_expired.
2049 	 */
2050 	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2051 
2052 	return 0;
2053 }
2054 
2055 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2056 		     unsigned int hctx_idx, unsigned int depth)
2057 {
2058 	unsigned int i, j, entries_per_page, max_order = 4;
2059 	size_t rq_size, left;
2060 	int node;
2061 
2062 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2063 	if (node == NUMA_NO_NODE)
2064 		node = set->numa_node;
2065 
2066 	INIT_LIST_HEAD(&tags->page_list);
2067 
2068 	/*
2069 	 * rq_size is the size of the request plus driver payload, rounded
2070 	 * to the cacheline size
2071 	 */
2072 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2073 				cache_line_size());
2074 	left = rq_size * depth;
2075 
2076 	for (i = 0; i < depth; ) {
2077 		int this_order = max_order;
2078 		struct page *page;
2079 		int to_do;
2080 		void *p;
2081 
2082 		while (this_order && left < order_to_size(this_order - 1))
2083 			this_order--;
2084 
2085 		do {
2086 			page = alloc_pages_node(node,
2087 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2088 				this_order);
2089 			if (page)
2090 				break;
2091 			if (!this_order--)
2092 				break;
2093 			if (order_to_size(this_order) < rq_size)
2094 				break;
2095 		} while (1);
2096 
2097 		if (!page)
2098 			goto fail;
2099 
2100 		page->private = this_order;
2101 		list_add_tail(&page->lru, &tags->page_list);
2102 
2103 		p = page_address(page);
2104 		/*
2105 		 * Allow kmemleak to scan these pages as they contain pointers
2106 		 * to additional allocations like via ops->init_request().
2107 		 */
2108 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2109 		entries_per_page = order_to_size(this_order) / rq_size;
2110 		to_do = min(entries_per_page, depth - i);
2111 		left -= to_do * rq_size;
2112 		for (j = 0; j < to_do; j++) {
2113 			struct request *rq = p;
2114 
2115 			tags->static_rqs[i] = rq;
2116 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2117 				tags->static_rqs[i] = NULL;
2118 				goto fail;
2119 			}
2120 
2121 			p += rq_size;
2122 			i++;
2123 		}
2124 	}
2125 	return 0;
2126 
2127 fail:
2128 	blk_mq_free_rqs(set, tags, hctx_idx);
2129 	return -ENOMEM;
2130 }
2131 
2132 /*
2133  * 'cpu' is going away. splice any existing rq_list entries from this
2134  * software queue to the hw queue dispatch list, and ensure that it
2135  * gets run.
2136  */
2137 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2138 {
2139 	struct blk_mq_hw_ctx *hctx;
2140 	struct blk_mq_ctx *ctx;
2141 	LIST_HEAD(tmp);
2142 
2143 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2144 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2145 
2146 	spin_lock(&ctx->lock);
2147 	if (!list_empty(&ctx->rq_list)) {
2148 		list_splice_init(&ctx->rq_list, &tmp);
2149 		blk_mq_hctx_clear_pending(hctx, ctx);
2150 	}
2151 	spin_unlock(&ctx->lock);
2152 
2153 	if (list_empty(&tmp))
2154 		return 0;
2155 
2156 	spin_lock(&hctx->lock);
2157 	list_splice_tail_init(&tmp, &hctx->dispatch);
2158 	spin_unlock(&hctx->lock);
2159 
2160 	blk_mq_run_hw_queue(hctx, true);
2161 	return 0;
2162 }
2163 
2164 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2165 {
2166 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2167 					    &hctx->cpuhp_dead);
2168 }
2169 
2170 /* hctx->ctxs will be freed in queue's release handler */
2171 static void blk_mq_exit_hctx(struct request_queue *q,
2172 		struct blk_mq_tag_set *set,
2173 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2174 {
2175 	blk_mq_debugfs_unregister_hctx(hctx);
2176 
2177 	if (blk_mq_hw_queue_mapped(hctx))
2178 		blk_mq_tag_idle(hctx);
2179 
2180 	if (set->ops->exit_request)
2181 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2182 
2183 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2184 
2185 	if (set->ops->exit_hctx)
2186 		set->ops->exit_hctx(hctx, hctx_idx);
2187 
2188 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2189 		cleanup_srcu_struct(hctx->srcu);
2190 
2191 	blk_mq_remove_cpuhp(hctx);
2192 	blk_free_flush_queue(hctx->fq);
2193 	sbitmap_free(&hctx->ctx_map);
2194 }
2195 
2196 static void blk_mq_exit_hw_queues(struct request_queue *q,
2197 		struct blk_mq_tag_set *set, int nr_queue)
2198 {
2199 	struct blk_mq_hw_ctx *hctx;
2200 	unsigned int i;
2201 
2202 	queue_for_each_hw_ctx(q, hctx, i) {
2203 		if (i == nr_queue)
2204 			break;
2205 		blk_mq_exit_hctx(q, set, hctx, i);
2206 	}
2207 }
2208 
2209 static int blk_mq_init_hctx(struct request_queue *q,
2210 		struct blk_mq_tag_set *set,
2211 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2212 {
2213 	int node;
2214 
2215 	node = hctx->numa_node;
2216 	if (node == NUMA_NO_NODE)
2217 		node = hctx->numa_node = set->numa_node;
2218 
2219 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2220 	spin_lock_init(&hctx->lock);
2221 	INIT_LIST_HEAD(&hctx->dispatch);
2222 	hctx->queue = q;
2223 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2224 
2225 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2226 
2227 	hctx->tags = set->tags[hctx_idx];
2228 
2229 	/*
2230 	 * Allocate space for all possible cpus to avoid allocation at
2231 	 * runtime
2232 	 */
2233 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2234 					GFP_KERNEL, node);
2235 	if (!hctx->ctxs)
2236 		goto unregister_cpu_notifier;
2237 
2238 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2239 			      node))
2240 		goto free_ctxs;
2241 
2242 	hctx->nr_ctx = 0;
2243 
2244 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2245 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2246 
2247 	if (set->ops->init_hctx &&
2248 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2249 		goto free_bitmap;
2250 
2251 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2252 		goto exit_hctx;
2253 
2254 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2255 	if (!hctx->fq)
2256 		goto sched_exit_hctx;
2257 
2258 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2259 		goto free_fq;
2260 
2261 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2262 		init_srcu_struct(hctx->srcu);
2263 
2264 	blk_mq_debugfs_register_hctx(q, hctx);
2265 
2266 	return 0;
2267 
2268  free_fq:
2269 	kfree(hctx->fq);
2270  sched_exit_hctx:
2271 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2272  exit_hctx:
2273 	if (set->ops->exit_hctx)
2274 		set->ops->exit_hctx(hctx, hctx_idx);
2275  free_bitmap:
2276 	sbitmap_free(&hctx->ctx_map);
2277  free_ctxs:
2278 	kfree(hctx->ctxs);
2279  unregister_cpu_notifier:
2280 	blk_mq_remove_cpuhp(hctx);
2281 	return -1;
2282 }
2283 
2284 static void blk_mq_init_cpu_queues(struct request_queue *q,
2285 				   unsigned int nr_hw_queues)
2286 {
2287 	unsigned int i;
2288 
2289 	for_each_possible_cpu(i) {
2290 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2291 		struct blk_mq_hw_ctx *hctx;
2292 
2293 		__ctx->cpu = i;
2294 		spin_lock_init(&__ctx->lock);
2295 		INIT_LIST_HEAD(&__ctx->rq_list);
2296 		__ctx->queue = q;
2297 
2298 		/*
2299 		 * Set local node, IFF we have more than one hw queue. If
2300 		 * not, we remain on the home node of the device
2301 		 */
2302 		hctx = blk_mq_map_queue(q, i);
2303 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2304 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2305 	}
2306 }
2307 
2308 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2309 {
2310 	int ret = 0;
2311 
2312 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2313 					set->queue_depth, set->reserved_tags);
2314 	if (!set->tags[hctx_idx])
2315 		return false;
2316 
2317 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2318 				set->queue_depth);
2319 	if (!ret)
2320 		return true;
2321 
2322 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2323 	set->tags[hctx_idx] = NULL;
2324 	return false;
2325 }
2326 
2327 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2328 					 unsigned int hctx_idx)
2329 {
2330 	if (set->tags[hctx_idx]) {
2331 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2332 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2333 		set->tags[hctx_idx] = NULL;
2334 	}
2335 }
2336 
2337 static void blk_mq_map_swqueue(struct request_queue *q)
2338 {
2339 	unsigned int i, hctx_idx;
2340 	struct blk_mq_hw_ctx *hctx;
2341 	struct blk_mq_ctx *ctx;
2342 	struct blk_mq_tag_set *set = q->tag_set;
2343 
2344 	/*
2345 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2346 	 */
2347 	mutex_lock(&q->sysfs_lock);
2348 
2349 	queue_for_each_hw_ctx(q, hctx, i) {
2350 		cpumask_clear(hctx->cpumask);
2351 		hctx->nr_ctx = 0;
2352 	}
2353 
2354 	/*
2355 	 * Map software to hardware queues.
2356 	 *
2357 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2358 	 */
2359 	for_each_possible_cpu(i) {
2360 		hctx_idx = q->mq_map[i];
2361 		/* unmapped hw queue can be remapped after CPU topo changed */
2362 		if (!set->tags[hctx_idx] &&
2363 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2364 			/*
2365 			 * If tags initialization fail for some hctx,
2366 			 * that hctx won't be brought online.  In this
2367 			 * case, remap the current ctx to hctx[0] which
2368 			 * is guaranteed to always have tags allocated
2369 			 */
2370 			q->mq_map[i] = 0;
2371 		}
2372 
2373 		ctx = per_cpu_ptr(q->queue_ctx, i);
2374 		hctx = blk_mq_map_queue(q, i);
2375 
2376 		cpumask_set_cpu(i, hctx->cpumask);
2377 		ctx->index_hw = hctx->nr_ctx;
2378 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2379 	}
2380 
2381 	mutex_unlock(&q->sysfs_lock);
2382 
2383 	queue_for_each_hw_ctx(q, hctx, i) {
2384 		/*
2385 		 * If no software queues are mapped to this hardware queue,
2386 		 * disable it and free the request entries.
2387 		 */
2388 		if (!hctx->nr_ctx) {
2389 			/* Never unmap queue 0.  We need it as a
2390 			 * fallback in case of a new remap fails
2391 			 * allocation
2392 			 */
2393 			if (i && set->tags[i])
2394 				blk_mq_free_map_and_requests(set, i);
2395 
2396 			hctx->tags = NULL;
2397 			continue;
2398 		}
2399 
2400 		hctx->tags = set->tags[i];
2401 		WARN_ON(!hctx->tags);
2402 
2403 		/*
2404 		 * Set the map size to the number of mapped software queues.
2405 		 * This is more accurate and more efficient than looping
2406 		 * over all possibly mapped software queues.
2407 		 */
2408 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2409 
2410 		/*
2411 		 * Initialize batch roundrobin counts
2412 		 */
2413 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2414 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2415 	}
2416 }
2417 
2418 /*
2419  * Caller needs to ensure that we're either frozen/quiesced, or that
2420  * the queue isn't live yet.
2421  */
2422 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2423 {
2424 	struct blk_mq_hw_ctx *hctx;
2425 	int i;
2426 
2427 	queue_for_each_hw_ctx(q, hctx, i) {
2428 		if (shared) {
2429 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2430 				atomic_inc(&q->shared_hctx_restart);
2431 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2432 		} else {
2433 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2434 				atomic_dec(&q->shared_hctx_restart);
2435 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2436 		}
2437 	}
2438 }
2439 
2440 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2441 					bool shared)
2442 {
2443 	struct request_queue *q;
2444 
2445 	lockdep_assert_held(&set->tag_list_lock);
2446 
2447 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2448 		blk_mq_freeze_queue(q);
2449 		queue_set_hctx_shared(q, shared);
2450 		blk_mq_unfreeze_queue(q);
2451 	}
2452 }
2453 
2454 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2455 {
2456 	struct blk_mq_tag_set *set = q->tag_set;
2457 
2458 	mutex_lock(&set->tag_list_lock);
2459 	list_del_rcu(&q->tag_set_list);
2460 	INIT_LIST_HEAD(&q->tag_set_list);
2461 	if (list_is_singular(&set->tag_list)) {
2462 		/* just transitioned to unshared */
2463 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2464 		/* update existing queue */
2465 		blk_mq_update_tag_set_depth(set, false);
2466 	}
2467 	mutex_unlock(&set->tag_list_lock);
2468 
2469 	synchronize_rcu();
2470 }
2471 
2472 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2473 				     struct request_queue *q)
2474 {
2475 	q->tag_set = set;
2476 
2477 	mutex_lock(&set->tag_list_lock);
2478 
2479 	/*
2480 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2481 	 */
2482 	if (!list_empty(&set->tag_list) &&
2483 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2484 		set->flags |= BLK_MQ_F_TAG_SHARED;
2485 		/* update existing queue */
2486 		blk_mq_update_tag_set_depth(set, true);
2487 	}
2488 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2489 		queue_set_hctx_shared(q, true);
2490 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2491 
2492 	mutex_unlock(&set->tag_list_lock);
2493 }
2494 
2495 /*
2496  * It is the actual release handler for mq, but we do it from
2497  * request queue's release handler for avoiding use-after-free
2498  * and headache because q->mq_kobj shouldn't have been introduced,
2499  * but we can't group ctx/kctx kobj without it.
2500  */
2501 void blk_mq_release(struct request_queue *q)
2502 {
2503 	struct blk_mq_hw_ctx *hctx;
2504 	unsigned int i;
2505 
2506 	/* hctx kobj stays in hctx */
2507 	queue_for_each_hw_ctx(q, hctx, i) {
2508 		if (!hctx)
2509 			continue;
2510 		kobject_put(&hctx->kobj);
2511 	}
2512 
2513 	q->mq_map = NULL;
2514 
2515 	kfree(q->queue_hw_ctx);
2516 
2517 	/*
2518 	 * release .mq_kobj and sw queue's kobject now because
2519 	 * both share lifetime with request queue.
2520 	 */
2521 	blk_mq_sysfs_deinit(q);
2522 
2523 	free_percpu(q->queue_ctx);
2524 }
2525 
2526 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2527 {
2528 	struct request_queue *uninit_q, *q;
2529 
2530 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2531 	if (!uninit_q)
2532 		return ERR_PTR(-ENOMEM);
2533 
2534 	q = blk_mq_init_allocated_queue(set, uninit_q);
2535 	if (IS_ERR(q))
2536 		blk_cleanup_queue(uninit_q);
2537 
2538 	return q;
2539 }
2540 EXPORT_SYMBOL(blk_mq_init_queue);
2541 
2542 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2543 {
2544 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2545 
2546 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2547 			   __alignof__(struct blk_mq_hw_ctx)) !=
2548 		     sizeof(struct blk_mq_hw_ctx));
2549 
2550 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2551 		hw_ctx_size += sizeof(struct srcu_struct);
2552 
2553 	return hw_ctx_size;
2554 }
2555 
2556 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2557 						struct request_queue *q)
2558 {
2559 	int i, j;
2560 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2561 
2562 	blk_mq_sysfs_unregister(q);
2563 
2564 	/* protect against switching io scheduler  */
2565 	mutex_lock(&q->sysfs_lock);
2566 	for (i = 0; i < set->nr_hw_queues; i++) {
2567 		int node;
2568 
2569 		if (hctxs[i])
2570 			continue;
2571 
2572 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2573 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2574 					GFP_KERNEL, node);
2575 		if (!hctxs[i])
2576 			break;
2577 
2578 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2579 						node)) {
2580 			kfree(hctxs[i]);
2581 			hctxs[i] = NULL;
2582 			break;
2583 		}
2584 
2585 		atomic_set(&hctxs[i]->nr_active, 0);
2586 		hctxs[i]->numa_node = node;
2587 		hctxs[i]->queue_num = i;
2588 
2589 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2590 			free_cpumask_var(hctxs[i]->cpumask);
2591 			kfree(hctxs[i]);
2592 			hctxs[i] = NULL;
2593 			break;
2594 		}
2595 		blk_mq_hctx_kobj_init(hctxs[i]);
2596 	}
2597 	for (j = i; j < q->nr_hw_queues; j++) {
2598 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2599 
2600 		if (hctx) {
2601 			if (hctx->tags)
2602 				blk_mq_free_map_and_requests(set, j);
2603 			blk_mq_exit_hctx(q, set, hctx, j);
2604 			kobject_put(&hctx->kobj);
2605 			hctxs[j] = NULL;
2606 
2607 		}
2608 	}
2609 	q->nr_hw_queues = i;
2610 	mutex_unlock(&q->sysfs_lock);
2611 	blk_mq_sysfs_register(q);
2612 }
2613 
2614 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2615 						  struct request_queue *q)
2616 {
2617 	/* mark the queue as mq asap */
2618 	q->mq_ops = set->ops;
2619 
2620 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2621 					     blk_mq_poll_stats_bkt,
2622 					     BLK_MQ_POLL_STATS_BKTS, q);
2623 	if (!q->poll_cb)
2624 		goto err_exit;
2625 
2626 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2627 	if (!q->queue_ctx)
2628 		goto err_exit;
2629 
2630 	/* init q->mq_kobj and sw queues' kobjects */
2631 	blk_mq_sysfs_init(q);
2632 
2633 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2634 						GFP_KERNEL, set->numa_node);
2635 	if (!q->queue_hw_ctx)
2636 		goto err_percpu;
2637 
2638 	q->mq_map = set->mq_map;
2639 
2640 	blk_mq_realloc_hw_ctxs(set, q);
2641 	if (!q->nr_hw_queues)
2642 		goto err_hctxs;
2643 
2644 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2645 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2646 
2647 	q->nr_queues = nr_cpu_ids;
2648 
2649 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2650 
2651 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2652 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2653 
2654 	q->sg_reserved_size = INT_MAX;
2655 
2656 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2657 	INIT_LIST_HEAD(&q->requeue_list);
2658 	spin_lock_init(&q->requeue_lock);
2659 
2660 	blk_queue_make_request(q, blk_mq_make_request);
2661 	if (q->mq_ops->poll)
2662 		q->poll_fn = blk_mq_poll;
2663 
2664 	/*
2665 	 * Do this after blk_queue_make_request() overrides it...
2666 	 */
2667 	q->nr_requests = set->queue_depth;
2668 
2669 	/*
2670 	 * Default to classic polling
2671 	 */
2672 	q->poll_nsec = -1;
2673 
2674 	if (set->ops->complete)
2675 		blk_queue_softirq_done(q, set->ops->complete);
2676 
2677 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2678 	blk_mq_add_queue_tag_set(set, q);
2679 	blk_mq_map_swqueue(q);
2680 
2681 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2682 		int ret;
2683 
2684 		ret = blk_mq_sched_init(q);
2685 		if (ret)
2686 			return ERR_PTR(ret);
2687 	}
2688 
2689 	return q;
2690 
2691 err_hctxs:
2692 	kfree(q->queue_hw_ctx);
2693 err_percpu:
2694 	free_percpu(q->queue_ctx);
2695 err_exit:
2696 	q->mq_ops = NULL;
2697 	return ERR_PTR(-ENOMEM);
2698 }
2699 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2700 
2701 void blk_mq_free_queue(struct request_queue *q)
2702 {
2703 	struct blk_mq_tag_set	*set = q->tag_set;
2704 
2705 	blk_mq_del_queue_tag_set(q);
2706 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2707 }
2708 
2709 /* Basically redo blk_mq_init_queue with queue frozen */
2710 static void blk_mq_queue_reinit(struct request_queue *q)
2711 {
2712 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2713 
2714 	blk_mq_debugfs_unregister_hctxs(q);
2715 	blk_mq_sysfs_unregister(q);
2716 
2717 	/*
2718 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2719 	 * we should change hctx numa_node according to the new topology (this
2720 	 * involves freeing and re-allocating memory, worth doing?)
2721 	 */
2722 	blk_mq_map_swqueue(q);
2723 
2724 	blk_mq_sysfs_register(q);
2725 	blk_mq_debugfs_register_hctxs(q);
2726 }
2727 
2728 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2729 {
2730 	int i;
2731 
2732 	for (i = 0; i < set->nr_hw_queues; i++)
2733 		if (!__blk_mq_alloc_rq_map(set, i))
2734 			goto out_unwind;
2735 
2736 	return 0;
2737 
2738 out_unwind:
2739 	while (--i >= 0)
2740 		blk_mq_free_rq_map(set->tags[i]);
2741 
2742 	return -ENOMEM;
2743 }
2744 
2745 /*
2746  * Allocate the request maps associated with this tag_set. Note that this
2747  * may reduce the depth asked for, if memory is tight. set->queue_depth
2748  * will be updated to reflect the allocated depth.
2749  */
2750 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2751 {
2752 	unsigned int depth;
2753 	int err;
2754 
2755 	depth = set->queue_depth;
2756 	do {
2757 		err = __blk_mq_alloc_rq_maps(set);
2758 		if (!err)
2759 			break;
2760 
2761 		set->queue_depth >>= 1;
2762 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2763 			err = -ENOMEM;
2764 			break;
2765 		}
2766 	} while (set->queue_depth);
2767 
2768 	if (!set->queue_depth || err) {
2769 		pr_err("blk-mq: failed to allocate request map\n");
2770 		return -ENOMEM;
2771 	}
2772 
2773 	if (depth != set->queue_depth)
2774 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2775 						depth, set->queue_depth);
2776 
2777 	return 0;
2778 }
2779 
2780 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2781 {
2782 	if (set->ops->map_queues) {
2783 		int cpu;
2784 		/*
2785 		 * transport .map_queues is usually done in the following
2786 		 * way:
2787 		 *
2788 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2789 		 * 	mask = get_cpu_mask(queue)
2790 		 * 	for_each_cpu(cpu, mask)
2791 		 * 		set->mq_map[cpu] = queue;
2792 		 * }
2793 		 *
2794 		 * When we need to remap, the table has to be cleared for
2795 		 * killing stale mapping since one CPU may not be mapped
2796 		 * to any hw queue.
2797 		 */
2798 		for_each_possible_cpu(cpu)
2799 			set->mq_map[cpu] = 0;
2800 
2801 		return set->ops->map_queues(set);
2802 	} else
2803 		return blk_mq_map_queues(set);
2804 }
2805 
2806 /*
2807  * Alloc a tag set to be associated with one or more request queues.
2808  * May fail with EINVAL for various error conditions. May adjust the
2809  * requested depth down, if if it too large. In that case, the set
2810  * value will be stored in set->queue_depth.
2811  */
2812 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2813 {
2814 	int ret;
2815 
2816 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2817 
2818 	if (!set->nr_hw_queues)
2819 		return -EINVAL;
2820 	if (!set->queue_depth)
2821 		return -EINVAL;
2822 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2823 		return -EINVAL;
2824 
2825 	if (!set->ops->queue_rq)
2826 		return -EINVAL;
2827 
2828 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2829 		return -EINVAL;
2830 
2831 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2832 		pr_info("blk-mq: reduced tag depth to %u\n",
2833 			BLK_MQ_MAX_DEPTH);
2834 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2835 	}
2836 
2837 	/*
2838 	 * If a crashdump is active, then we are potentially in a very
2839 	 * memory constrained environment. Limit us to 1 queue and
2840 	 * 64 tags to prevent using too much memory.
2841 	 */
2842 	if (is_kdump_kernel()) {
2843 		set->nr_hw_queues = 1;
2844 		set->queue_depth = min(64U, set->queue_depth);
2845 	}
2846 	/*
2847 	 * There is no use for more h/w queues than cpus.
2848 	 */
2849 	if (set->nr_hw_queues > nr_cpu_ids)
2850 		set->nr_hw_queues = nr_cpu_ids;
2851 
2852 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2853 				 GFP_KERNEL, set->numa_node);
2854 	if (!set->tags)
2855 		return -ENOMEM;
2856 
2857 	ret = -ENOMEM;
2858 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2859 			GFP_KERNEL, set->numa_node);
2860 	if (!set->mq_map)
2861 		goto out_free_tags;
2862 
2863 	ret = blk_mq_update_queue_map(set);
2864 	if (ret)
2865 		goto out_free_mq_map;
2866 
2867 	ret = blk_mq_alloc_rq_maps(set);
2868 	if (ret)
2869 		goto out_free_mq_map;
2870 
2871 	mutex_init(&set->tag_list_lock);
2872 	INIT_LIST_HEAD(&set->tag_list);
2873 
2874 	return 0;
2875 
2876 out_free_mq_map:
2877 	kfree(set->mq_map);
2878 	set->mq_map = NULL;
2879 out_free_tags:
2880 	kfree(set->tags);
2881 	set->tags = NULL;
2882 	return ret;
2883 }
2884 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2885 
2886 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2887 {
2888 	int i;
2889 
2890 	for (i = 0; i < nr_cpu_ids; i++)
2891 		blk_mq_free_map_and_requests(set, i);
2892 
2893 	kfree(set->mq_map);
2894 	set->mq_map = NULL;
2895 
2896 	kfree(set->tags);
2897 	set->tags = NULL;
2898 }
2899 EXPORT_SYMBOL(blk_mq_free_tag_set);
2900 
2901 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2902 {
2903 	struct blk_mq_tag_set *set = q->tag_set;
2904 	struct blk_mq_hw_ctx *hctx;
2905 	int i, ret;
2906 
2907 	if (!set)
2908 		return -EINVAL;
2909 
2910 	blk_mq_freeze_queue(q);
2911 	blk_mq_quiesce_queue(q);
2912 
2913 	ret = 0;
2914 	queue_for_each_hw_ctx(q, hctx, i) {
2915 		if (!hctx->tags)
2916 			continue;
2917 		/*
2918 		 * If we're using an MQ scheduler, just update the scheduler
2919 		 * queue depth. This is similar to what the old code would do.
2920 		 */
2921 		if (!hctx->sched_tags) {
2922 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2923 							false);
2924 		} else {
2925 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2926 							nr, true);
2927 		}
2928 		if (ret)
2929 			break;
2930 	}
2931 
2932 	if (!ret)
2933 		q->nr_requests = nr;
2934 
2935 	blk_mq_unquiesce_queue(q);
2936 	blk_mq_unfreeze_queue(q);
2937 
2938 	return ret;
2939 }
2940 
2941 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2942 							int nr_hw_queues)
2943 {
2944 	struct request_queue *q;
2945 
2946 	lockdep_assert_held(&set->tag_list_lock);
2947 
2948 	if (nr_hw_queues > nr_cpu_ids)
2949 		nr_hw_queues = nr_cpu_ids;
2950 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2951 		return;
2952 
2953 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2954 		blk_mq_freeze_queue(q);
2955 
2956 	set->nr_hw_queues = nr_hw_queues;
2957 	blk_mq_update_queue_map(set);
2958 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2959 		blk_mq_realloc_hw_ctxs(set, q);
2960 		blk_mq_queue_reinit(q);
2961 	}
2962 
2963 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2964 		blk_mq_unfreeze_queue(q);
2965 }
2966 
2967 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2968 {
2969 	mutex_lock(&set->tag_list_lock);
2970 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2971 	mutex_unlock(&set->tag_list_lock);
2972 }
2973 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2974 
2975 /* Enable polling stats and return whether they were already enabled. */
2976 static bool blk_poll_stats_enable(struct request_queue *q)
2977 {
2978 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2979 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2980 		return true;
2981 	blk_stat_add_callback(q, q->poll_cb);
2982 	return false;
2983 }
2984 
2985 static void blk_mq_poll_stats_start(struct request_queue *q)
2986 {
2987 	/*
2988 	 * We don't arm the callback if polling stats are not enabled or the
2989 	 * callback is already active.
2990 	 */
2991 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2992 	    blk_stat_is_active(q->poll_cb))
2993 		return;
2994 
2995 	blk_stat_activate_msecs(q->poll_cb, 100);
2996 }
2997 
2998 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2999 {
3000 	struct request_queue *q = cb->data;
3001 	int bucket;
3002 
3003 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3004 		if (cb->stat[bucket].nr_samples)
3005 			q->poll_stat[bucket] = cb->stat[bucket];
3006 	}
3007 }
3008 
3009 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3010 				       struct blk_mq_hw_ctx *hctx,
3011 				       struct request *rq)
3012 {
3013 	unsigned long ret = 0;
3014 	int bucket;
3015 
3016 	/*
3017 	 * If stats collection isn't on, don't sleep but turn it on for
3018 	 * future users
3019 	 */
3020 	if (!blk_poll_stats_enable(q))
3021 		return 0;
3022 
3023 	/*
3024 	 * As an optimistic guess, use half of the mean service time
3025 	 * for this type of request. We can (and should) make this smarter.
3026 	 * For instance, if the completion latencies are tight, we can
3027 	 * get closer than just half the mean. This is especially
3028 	 * important on devices where the completion latencies are longer
3029 	 * than ~10 usec. We do use the stats for the relevant IO size
3030 	 * if available which does lead to better estimates.
3031 	 */
3032 	bucket = blk_mq_poll_stats_bkt(rq);
3033 	if (bucket < 0)
3034 		return ret;
3035 
3036 	if (q->poll_stat[bucket].nr_samples)
3037 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3038 
3039 	return ret;
3040 }
3041 
3042 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3043 				     struct blk_mq_hw_ctx *hctx,
3044 				     struct request *rq)
3045 {
3046 	struct hrtimer_sleeper hs;
3047 	enum hrtimer_mode mode;
3048 	unsigned int nsecs;
3049 	ktime_t kt;
3050 
3051 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3052 		return false;
3053 
3054 	/*
3055 	 * poll_nsec can be:
3056 	 *
3057 	 * -1:	don't ever hybrid sleep
3058 	 *  0:	use half of prev avg
3059 	 * >0:	use this specific value
3060 	 */
3061 	if (q->poll_nsec == -1)
3062 		return false;
3063 	else if (q->poll_nsec > 0)
3064 		nsecs = q->poll_nsec;
3065 	else
3066 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3067 
3068 	if (!nsecs)
3069 		return false;
3070 
3071 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3072 
3073 	/*
3074 	 * This will be replaced with the stats tracking code, using
3075 	 * 'avg_completion_time / 2' as the pre-sleep target.
3076 	 */
3077 	kt = nsecs;
3078 
3079 	mode = HRTIMER_MODE_REL;
3080 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3081 	hrtimer_set_expires(&hs.timer, kt);
3082 
3083 	hrtimer_init_sleeper(&hs, current);
3084 	do {
3085 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3086 			break;
3087 		set_current_state(TASK_UNINTERRUPTIBLE);
3088 		hrtimer_start_expires(&hs.timer, mode);
3089 		if (hs.task)
3090 			io_schedule();
3091 		hrtimer_cancel(&hs.timer);
3092 		mode = HRTIMER_MODE_ABS;
3093 	} while (hs.task && !signal_pending(current));
3094 
3095 	__set_current_state(TASK_RUNNING);
3096 	destroy_hrtimer_on_stack(&hs.timer);
3097 	return true;
3098 }
3099 
3100 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3101 {
3102 	struct request_queue *q = hctx->queue;
3103 	long state;
3104 
3105 	/*
3106 	 * If we sleep, have the caller restart the poll loop to reset
3107 	 * the state. Like for the other success return cases, the
3108 	 * caller is responsible for checking if the IO completed. If
3109 	 * the IO isn't complete, we'll get called again and will go
3110 	 * straight to the busy poll loop.
3111 	 */
3112 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3113 		return true;
3114 
3115 	hctx->poll_considered++;
3116 
3117 	state = current->state;
3118 	while (!need_resched()) {
3119 		int ret;
3120 
3121 		hctx->poll_invoked++;
3122 
3123 		ret = q->mq_ops->poll(hctx, rq->tag);
3124 		if (ret > 0) {
3125 			hctx->poll_success++;
3126 			set_current_state(TASK_RUNNING);
3127 			return true;
3128 		}
3129 
3130 		if (signal_pending_state(state, current))
3131 			set_current_state(TASK_RUNNING);
3132 
3133 		if (current->state == TASK_RUNNING)
3134 			return true;
3135 		if (ret < 0)
3136 			break;
3137 		cpu_relax();
3138 	}
3139 
3140 	__set_current_state(TASK_RUNNING);
3141 	return false;
3142 }
3143 
3144 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3145 {
3146 	struct blk_mq_hw_ctx *hctx;
3147 	struct request *rq;
3148 
3149 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3150 		return false;
3151 
3152 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3153 	if (!blk_qc_t_is_internal(cookie))
3154 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3155 	else {
3156 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3157 		/*
3158 		 * With scheduling, if the request has completed, we'll
3159 		 * get a NULL return here, as we clear the sched tag when
3160 		 * that happens. The request still remains valid, like always,
3161 		 * so we should be safe with just the NULL check.
3162 		 */
3163 		if (!rq)
3164 			return false;
3165 	}
3166 
3167 	return __blk_mq_poll(hctx, rq);
3168 }
3169 
3170 static int __init blk_mq_init(void)
3171 {
3172 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3173 				blk_mq_hctx_notify_dead);
3174 	return 0;
3175 }
3176 subsys_initcall(blk_mq_init);
3177