xref: /openbmc/linux/block/blk-mq.c (revision e044e3e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 #define BLK_QC_T_SHIFT		16
69 #define BLK_QC_T_INTERNAL	(1U << 31)
70 
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 		blk_qc_t qc)
73 {
74 	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75 }
76 
77 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78 		blk_qc_t qc)
79 {
80 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81 
82 	if (qc & BLK_QC_T_INTERNAL)
83 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84 	return blk_mq_tag_to_rq(hctx->tags, tag);
85 }
86 
87 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88 {
89 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90 		(rq->tag != -1 ?
91 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92 }
93 
94 /*
95  * Check if any of the ctx, dispatch list or elevator
96  * have pending work in this hardware queue.
97  */
98 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99 {
100 	return !list_empty_careful(&hctx->dispatch) ||
101 		sbitmap_any_bit_set(&hctx->ctx_map) ||
102 			blk_mq_sched_has_work(hctx);
103 }
104 
105 /*
106  * Mark this ctx as having pending work in this hardware queue
107  */
108 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109 				     struct blk_mq_ctx *ctx)
110 {
111 	const int bit = ctx->index_hw[hctx->type];
112 
113 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114 		sbitmap_set_bit(&hctx->ctx_map, bit);
115 }
116 
117 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118 				      struct blk_mq_ctx *ctx)
119 {
120 	const int bit = ctx->index_hw[hctx->type];
121 
122 	sbitmap_clear_bit(&hctx->ctx_map, bit);
123 }
124 
125 struct mq_inflight {
126 	struct block_device *part;
127 	unsigned int inflight[2];
128 };
129 
130 static bool blk_mq_check_inflight(struct request *rq, void *priv,
131 				  bool reserved)
132 {
133 	struct mq_inflight *mi = priv;
134 
135 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
136 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137 		mi->inflight[rq_data_dir(rq)]++;
138 
139 	return true;
140 }
141 
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143 		struct block_device *part)
144 {
145 	struct mq_inflight mi = { .part = part };
146 
147 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148 
149 	return mi.inflight[0] + mi.inflight[1];
150 }
151 
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153 		unsigned int inflight[2])
154 {
155 	struct mq_inflight mi = { .part = part };
156 
157 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158 	inflight[0] = mi.inflight[0];
159 	inflight[1] = mi.inflight[1];
160 }
161 
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164 	mutex_lock(&q->mq_freeze_lock);
165 	if (++q->mq_freeze_depth == 1) {
166 		percpu_ref_kill(&q->q_usage_counter);
167 		mutex_unlock(&q->mq_freeze_lock);
168 		if (queue_is_mq(q))
169 			blk_mq_run_hw_queues(q, false);
170 	} else {
171 		mutex_unlock(&q->mq_freeze_lock);
172 	}
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175 
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181 
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183 				     unsigned long timeout)
184 {
185 	return wait_event_timeout(q->mq_freeze_wq,
186 					percpu_ref_is_zero(&q->q_usage_counter),
187 					timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190 
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197 	/*
198 	 * In the !blk_mq case we are only calling this to kill the
199 	 * q_usage_counter, otherwise this increases the freeze depth
200 	 * and waits for it to return to zero.  For this reason there is
201 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202 	 * exported to drivers as the only user for unfreeze is blk_mq.
203 	 */
204 	blk_freeze_queue_start(q);
205 	blk_mq_freeze_queue_wait(q);
206 }
207 
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210 	/*
211 	 * ...just an alias to keep freeze and unfreeze actions balanced
212 	 * in the blk_mq_* namespace
213 	 */
214 	blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217 
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 	mutex_lock(&q->mq_freeze_lock);
221 	if (force_atomic)
222 		q->q_usage_counter.data->force_atomic = true;
223 	q->mq_freeze_depth--;
224 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
225 	if (!q->mq_freeze_depth) {
226 		percpu_ref_resurrect(&q->q_usage_counter);
227 		wake_up_all(&q->mq_freeze_wq);
228 	}
229 	mutex_unlock(&q->mq_freeze_lock);
230 }
231 
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234 	__blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237 
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244 	unsigned long flags;
245 
246 	spin_lock_irqsave(&q->queue_lock, flags);
247 	if (!q->quiesce_depth++)
248 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249 	spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252 
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262 	if (blk_queue_has_srcu(q))
263 		synchronize_srcu(q->srcu);
264 	else
265 		synchronize_rcu();
266 }
267 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
268 
269 /**
270  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
271  * @q: request queue.
272  *
273  * Note: this function does not prevent that the struct request end_io()
274  * callback function is invoked. Once this function is returned, we make
275  * sure no dispatch can happen until the queue is unquiesced via
276  * blk_mq_unquiesce_queue().
277  */
278 void blk_mq_quiesce_queue(struct request_queue *q)
279 {
280 	blk_mq_quiesce_queue_nowait(q);
281 	blk_mq_wait_quiesce_done(q);
282 }
283 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
284 
285 /*
286  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
287  * @q: request queue.
288  *
289  * This function recovers queue into the state before quiescing
290  * which is done by blk_mq_quiesce_queue.
291  */
292 void blk_mq_unquiesce_queue(struct request_queue *q)
293 {
294 	unsigned long flags;
295 	bool run_queue = false;
296 
297 	spin_lock_irqsave(&q->queue_lock, flags);
298 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
299 		;
300 	} else if (!--q->quiesce_depth) {
301 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
302 		run_queue = true;
303 	}
304 	spin_unlock_irqrestore(&q->queue_lock, flags);
305 
306 	/* dispatch requests which are inserted during quiescing */
307 	if (run_queue)
308 		blk_mq_run_hw_queues(q, true);
309 }
310 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
311 
312 void blk_mq_wake_waiters(struct request_queue *q)
313 {
314 	struct blk_mq_hw_ctx *hctx;
315 	unsigned int i;
316 
317 	queue_for_each_hw_ctx(q, hctx, i)
318 		if (blk_mq_hw_queue_mapped(hctx))
319 			blk_mq_tag_wakeup_all(hctx->tags, true);
320 }
321 
322 void blk_rq_init(struct request_queue *q, struct request *rq)
323 {
324 	memset(rq, 0, sizeof(*rq));
325 
326 	INIT_LIST_HEAD(&rq->queuelist);
327 	rq->q = q;
328 	rq->__sector = (sector_t) -1;
329 	INIT_HLIST_NODE(&rq->hash);
330 	RB_CLEAR_NODE(&rq->rb_node);
331 	rq->tag = BLK_MQ_NO_TAG;
332 	rq->internal_tag = BLK_MQ_NO_TAG;
333 	rq->start_time_ns = ktime_get_ns();
334 	rq->part = NULL;
335 	blk_crypto_rq_set_defaults(rq);
336 }
337 EXPORT_SYMBOL(blk_rq_init);
338 
339 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
340 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
341 {
342 	struct blk_mq_ctx *ctx = data->ctx;
343 	struct blk_mq_hw_ctx *hctx = data->hctx;
344 	struct request_queue *q = data->q;
345 	struct request *rq = tags->static_rqs[tag];
346 
347 	rq->q = q;
348 	rq->mq_ctx = ctx;
349 	rq->mq_hctx = hctx;
350 	rq->cmd_flags = data->cmd_flags;
351 
352 	if (data->flags & BLK_MQ_REQ_PM)
353 		data->rq_flags |= RQF_PM;
354 	if (blk_queue_io_stat(q))
355 		data->rq_flags |= RQF_IO_STAT;
356 	rq->rq_flags = data->rq_flags;
357 
358 	if (!(data->rq_flags & RQF_ELV)) {
359 		rq->tag = tag;
360 		rq->internal_tag = BLK_MQ_NO_TAG;
361 	} else {
362 		rq->tag = BLK_MQ_NO_TAG;
363 		rq->internal_tag = tag;
364 	}
365 	rq->timeout = 0;
366 
367 	if (blk_mq_need_time_stamp(rq))
368 		rq->start_time_ns = ktime_get_ns();
369 	else
370 		rq->start_time_ns = 0;
371 	rq->part = NULL;
372 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
373 	rq->alloc_time_ns = alloc_time_ns;
374 #endif
375 	rq->io_start_time_ns = 0;
376 	rq->stats_sectors = 0;
377 	rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379 	rq->nr_integrity_segments = 0;
380 #endif
381 	rq->end_io = NULL;
382 	rq->end_io_data = NULL;
383 
384 	blk_crypto_rq_set_defaults(rq);
385 	INIT_LIST_HEAD(&rq->queuelist);
386 	/* tag was already set */
387 	WRITE_ONCE(rq->deadline, 0);
388 	req_ref_set(rq, 1);
389 
390 	if (rq->rq_flags & RQF_ELV) {
391 		struct elevator_queue *e = data->q->elevator;
392 
393 		INIT_HLIST_NODE(&rq->hash);
394 		RB_CLEAR_NODE(&rq->rb_node);
395 
396 		if (!op_is_flush(data->cmd_flags) &&
397 		    e->type->ops.prepare_request) {
398 			e->type->ops.prepare_request(rq);
399 			rq->rq_flags |= RQF_ELVPRIV;
400 		}
401 	}
402 
403 	return rq;
404 }
405 
406 static inline struct request *
407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
408 		u64 alloc_time_ns)
409 {
410 	unsigned int tag, tag_offset;
411 	struct blk_mq_tags *tags;
412 	struct request *rq;
413 	unsigned long tag_mask;
414 	int i, nr = 0;
415 
416 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
417 	if (unlikely(!tag_mask))
418 		return NULL;
419 
420 	tags = blk_mq_tags_from_data(data);
421 	for (i = 0; tag_mask; i++) {
422 		if (!(tag_mask & (1UL << i)))
423 			continue;
424 		tag = tag_offset + i;
425 		prefetch(tags->static_rqs[tag]);
426 		tag_mask &= ~(1UL << i);
427 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
428 		rq_list_add(data->cached_rq, rq);
429 		nr++;
430 	}
431 	/* caller already holds a reference, add for remainder */
432 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433 	data->nr_tags -= nr;
434 
435 	return rq_list_pop(data->cached_rq);
436 }
437 
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440 	struct request_queue *q = data->q;
441 	u64 alloc_time_ns = 0;
442 	struct request *rq;
443 	unsigned int tag;
444 
445 	/* alloc_time includes depth and tag waits */
446 	if (blk_queue_rq_alloc_time(q))
447 		alloc_time_ns = ktime_get_ns();
448 
449 	if (data->cmd_flags & REQ_NOWAIT)
450 		data->flags |= BLK_MQ_REQ_NOWAIT;
451 
452 	if (q->elevator) {
453 		struct elevator_queue *e = q->elevator;
454 
455 		data->rq_flags |= RQF_ELV;
456 
457 		/*
458 		 * Flush/passthrough requests are special and go directly to the
459 		 * dispatch list. Don't include reserved tags in the
460 		 * limiting, as it isn't useful.
461 		 */
462 		if (!op_is_flush(data->cmd_flags) &&
463 		    !blk_op_is_passthrough(data->cmd_flags) &&
464 		    e->type->ops.limit_depth &&
465 		    !(data->flags & BLK_MQ_REQ_RESERVED))
466 			e->type->ops.limit_depth(data->cmd_flags, data);
467 	}
468 
469 retry:
470 	data->ctx = blk_mq_get_ctx(q);
471 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
472 	if (!(data->rq_flags & RQF_ELV))
473 		blk_mq_tag_busy(data->hctx);
474 
475 	/*
476 	 * Try batched alloc if we want more than 1 tag.
477 	 */
478 	if (data->nr_tags > 1) {
479 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
480 		if (rq)
481 			return rq;
482 		data->nr_tags = 1;
483 	}
484 
485 	/*
486 	 * Waiting allocations only fail because of an inactive hctx.  In that
487 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
488 	 * should have migrated us to an online CPU by now.
489 	 */
490 	tag = blk_mq_get_tag(data);
491 	if (tag == BLK_MQ_NO_TAG) {
492 		if (data->flags & BLK_MQ_REQ_NOWAIT)
493 			return NULL;
494 		/*
495 		 * Give up the CPU and sleep for a random short time to
496 		 * ensure that thread using a realtime scheduling class
497 		 * are migrated off the CPU, and thus off the hctx that
498 		 * is going away.
499 		 */
500 		msleep(3);
501 		goto retry;
502 	}
503 
504 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
505 					alloc_time_ns);
506 }
507 
508 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
509 		blk_mq_req_flags_t flags)
510 {
511 	struct blk_mq_alloc_data data = {
512 		.q		= q,
513 		.flags		= flags,
514 		.cmd_flags	= op,
515 		.nr_tags	= 1,
516 	};
517 	struct request *rq;
518 	int ret;
519 
520 	ret = blk_queue_enter(q, flags);
521 	if (ret)
522 		return ERR_PTR(ret);
523 
524 	rq = __blk_mq_alloc_requests(&data);
525 	if (!rq)
526 		goto out_queue_exit;
527 	rq->__data_len = 0;
528 	rq->__sector = (sector_t) -1;
529 	rq->bio = rq->biotail = NULL;
530 	return rq;
531 out_queue_exit:
532 	blk_queue_exit(q);
533 	return ERR_PTR(-EWOULDBLOCK);
534 }
535 EXPORT_SYMBOL(blk_mq_alloc_request);
536 
537 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
538 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
539 {
540 	struct blk_mq_alloc_data data = {
541 		.q		= q,
542 		.flags		= flags,
543 		.cmd_flags	= op,
544 		.nr_tags	= 1,
545 	};
546 	u64 alloc_time_ns = 0;
547 	unsigned int cpu;
548 	unsigned int tag;
549 	int ret;
550 
551 	/* alloc_time includes depth and tag waits */
552 	if (blk_queue_rq_alloc_time(q))
553 		alloc_time_ns = ktime_get_ns();
554 
555 	/*
556 	 * If the tag allocator sleeps we could get an allocation for a
557 	 * different hardware context.  No need to complicate the low level
558 	 * allocator for this for the rare use case of a command tied to
559 	 * a specific queue.
560 	 */
561 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
562 		return ERR_PTR(-EINVAL);
563 
564 	if (hctx_idx >= q->nr_hw_queues)
565 		return ERR_PTR(-EIO);
566 
567 	ret = blk_queue_enter(q, flags);
568 	if (ret)
569 		return ERR_PTR(ret);
570 
571 	/*
572 	 * Check if the hardware context is actually mapped to anything.
573 	 * If not tell the caller that it should skip this queue.
574 	 */
575 	ret = -EXDEV;
576 	data.hctx = q->queue_hw_ctx[hctx_idx];
577 	if (!blk_mq_hw_queue_mapped(data.hctx))
578 		goto out_queue_exit;
579 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
580 	data.ctx = __blk_mq_get_ctx(q, cpu);
581 
582 	if (!q->elevator)
583 		blk_mq_tag_busy(data.hctx);
584 	else
585 		data.rq_flags |= RQF_ELV;
586 
587 	ret = -EWOULDBLOCK;
588 	tag = blk_mq_get_tag(&data);
589 	if (tag == BLK_MQ_NO_TAG)
590 		goto out_queue_exit;
591 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
592 					alloc_time_ns);
593 
594 out_queue_exit:
595 	blk_queue_exit(q);
596 	return ERR_PTR(ret);
597 }
598 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
599 
600 static void __blk_mq_free_request(struct request *rq)
601 {
602 	struct request_queue *q = rq->q;
603 	struct blk_mq_ctx *ctx = rq->mq_ctx;
604 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
605 	const int sched_tag = rq->internal_tag;
606 
607 	blk_crypto_free_request(rq);
608 	blk_pm_mark_last_busy(rq);
609 	rq->mq_hctx = NULL;
610 	if (rq->tag != BLK_MQ_NO_TAG)
611 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
612 	if (sched_tag != BLK_MQ_NO_TAG)
613 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
614 	blk_mq_sched_restart(hctx);
615 	blk_queue_exit(q);
616 }
617 
618 void blk_mq_free_request(struct request *rq)
619 {
620 	struct request_queue *q = rq->q;
621 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
622 
623 	if ((rq->rq_flags & RQF_ELVPRIV) &&
624 	    q->elevator->type->ops.finish_request)
625 		q->elevator->type->ops.finish_request(rq);
626 
627 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
628 		__blk_mq_dec_active_requests(hctx);
629 
630 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
631 		laptop_io_completion(q->disk->bdi);
632 
633 	rq_qos_done(q, rq);
634 
635 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
636 	if (req_ref_put_and_test(rq))
637 		__blk_mq_free_request(rq);
638 }
639 EXPORT_SYMBOL_GPL(blk_mq_free_request);
640 
641 void blk_mq_free_plug_rqs(struct blk_plug *plug)
642 {
643 	struct request *rq;
644 
645 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
646 		blk_mq_free_request(rq);
647 }
648 
649 void blk_dump_rq_flags(struct request *rq, char *msg)
650 {
651 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
652 		rq->q->disk ? rq->q->disk->disk_name : "?",
653 		(unsigned long long) rq->cmd_flags);
654 
655 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
656 	       (unsigned long long)blk_rq_pos(rq),
657 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
658 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
659 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
660 }
661 EXPORT_SYMBOL(blk_dump_rq_flags);
662 
663 static void req_bio_endio(struct request *rq, struct bio *bio,
664 			  unsigned int nbytes, blk_status_t error)
665 {
666 	if (unlikely(error)) {
667 		bio->bi_status = error;
668 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
669 		/*
670 		 * Partial zone append completions cannot be supported as the
671 		 * BIO fragments may end up not being written sequentially.
672 		 */
673 		if (bio->bi_iter.bi_size != nbytes)
674 			bio->bi_status = BLK_STS_IOERR;
675 		else
676 			bio->bi_iter.bi_sector = rq->__sector;
677 	}
678 
679 	bio_advance(bio, nbytes);
680 
681 	if (unlikely(rq->rq_flags & RQF_QUIET))
682 		bio_set_flag(bio, BIO_QUIET);
683 	/* don't actually finish bio if it's part of flush sequence */
684 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
685 		bio_endio(bio);
686 }
687 
688 static void blk_account_io_completion(struct request *req, unsigned int bytes)
689 {
690 	if (req->part && blk_do_io_stat(req)) {
691 		const int sgrp = op_stat_group(req_op(req));
692 
693 		part_stat_lock();
694 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
695 		part_stat_unlock();
696 	}
697 }
698 
699 static void blk_print_req_error(struct request *req, blk_status_t status)
700 {
701 	printk_ratelimited(KERN_ERR
702 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
703 		"phys_seg %u prio class %u\n",
704 		blk_status_to_str(status),
705 		req->q->disk ? req->q->disk->disk_name : "?",
706 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
707 		req->cmd_flags & ~REQ_OP_MASK,
708 		req->nr_phys_segments,
709 		IOPRIO_PRIO_CLASS(req->ioprio));
710 }
711 
712 /*
713  * Fully end IO on a request. Does not support partial completions, or
714  * errors.
715  */
716 static void blk_complete_request(struct request *req)
717 {
718 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
719 	int total_bytes = blk_rq_bytes(req);
720 	struct bio *bio = req->bio;
721 
722 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
723 
724 	if (!bio)
725 		return;
726 
727 #ifdef CONFIG_BLK_DEV_INTEGRITY
728 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
729 		req->q->integrity.profile->complete_fn(req, total_bytes);
730 #endif
731 
732 	blk_account_io_completion(req, total_bytes);
733 
734 	do {
735 		struct bio *next = bio->bi_next;
736 
737 		/* Completion has already been traced */
738 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
739 		if (!is_flush)
740 			bio_endio(bio);
741 		bio = next;
742 	} while (bio);
743 
744 	/*
745 	 * Reset counters so that the request stacking driver
746 	 * can find how many bytes remain in the request
747 	 * later.
748 	 */
749 	req->bio = NULL;
750 	req->__data_len = 0;
751 }
752 
753 /**
754  * blk_update_request - Complete multiple bytes without completing the request
755  * @req:      the request being processed
756  * @error:    block status code
757  * @nr_bytes: number of bytes to complete for @req
758  *
759  * Description:
760  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
761  *     the request structure even if @req doesn't have leftover.
762  *     If @req has leftover, sets it up for the next range of segments.
763  *
764  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
765  *     %false return from this function.
766  *
767  * Note:
768  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
769  *      except in the consistency check at the end of this function.
770  *
771  * Return:
772  *     %false - this request doesn't have any more data
773  *     %true  - this request has more data
774  **/
775 bool blk_update_request(struct request *req, blk_status_t error,
776 		unsigned int nr_bytes)
777 {
778 	int total_bytes;
779 
780 	trace_block_rq_complete(req, error, nr_bytes);
781 
782 	if (!req->bio)
783 		return false;
784 
785 #ifdef CONFIG_BLK_DEV_INTEGRITY
786 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
787 	    error == BLK_STS_OK)
788 		req->q->integrity.profile->complete_fn(req, nr_bytes);
789 #endif
790 
791 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
792 		     !(req->rq_flags & RQF_QUIET)))
793 		blk_print_req_error(req, error);
794 
795 	blk_account_io_completion(req, nr_bytes);
796 
797 	total_bytes = 0;
798 	while (req->bio) {
799 		struct bio *bio = req->bio;
800 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
801 
802 		if (bio_bytes == bio->bi_iter.bi_size)
803 			req->bio = bio->bi_next;
804 
805 		/* Completion has already been traced */
806 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
807 		req_bio_endio(req, bio, bio_bytes, error);
808 
809 		total_bytes += bio_bytes;
810 		nr_bytes -= bio_bytes;
811 
812 		if (!nr_bytes)
813 			break;
814 	}
815 
816 	/*
817 	 * completely done
818 	 */
819 	if (!req->bio) {
820 		/*
821 		 * Reset counters so that the request stacking driver
822 		 * can find how many bytes remain in the request
823 		 * later.
824 		 */
825 		req->__data_len = 0;
826 		return false;
827 	}
828 
829 	req->__data_len -= total_bytes;
830 
831 	/* update sector only for requests with clear definition of sector */
832 	if (!blk_rq_is_passthrough(req))
833 		req->__sector += total_bytes >> 9;
834 
835 	/* mixed attributes always follow the first bio */
836 	if (req->rq_flags & RQF_MIXED_MERGE) {
837 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
838 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
839 	}
840 
841 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
842 		/*
843 		 * If total number of sectors is less than the first segment
844 		 * size, something has gone terribly wrong.
845 		 */
846 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
847 			blk_dump_rq_flags(req, "request botched");
848 			req->__data_len = blk_rq_cur_bytes(req);
849 		}
850 
851 		/* recalculate the number of segments */
852 		req->nr_phys_segments = blk_recalc_rq_segments(req);
853 	}
854 
855 	return true;
856 }
857 EXPORT_SYMBOL_GPL(blk_update_request);
858 
859 static void __blk_account_io_done(struct request *req, u64 now)
860 {
861 	const int sgrp = op_stat_group(req_op(req));
862 
863 	part_stat_lock();
864 	update_io_ticks(req->part, jiffies, true);
865 	part_stat_inc(req->part, ios[sgrp]);
866 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
867 	part_stat_unlock();
868 }
869 
870 static inline void blk_account_io_done(struct request *req, u64 now)
871 {
872 	/*
873 	 * Account IO completion.  flush_rq isn't accounted as a
874 	 * normal IO on queueing nor completion.  Accounting the
875 	 * containing request is enough.
876 	 */
877 	if (blk_do_io_stat(req) && req->part &&
878 	    !(req->rq_flags & RQF_FLUSH_SEQ))
879 		__blk_account_io_done(req, now);
880 }
881 
882 static void __blk_account_io_start(struct request *rq)
883 {
884 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
885 	if (rq->bio && rq->bio->bi_bdev)
886 		rq->part = rq->bio->bi_bdev;
887 	else if (rq->q->disk)
888 		rq->part = rq->q->disk->part0;
889 
890 	part_stat_lock();
891 	update_io_ticks(rq->part, jiffies, false);
892 	part_stat_unlock();
893 }
894 
895 static inline void blk_account_io_start(struct request *req)
896 {
897 	if (blk_do_io_stat(req))
898 		__blk_account_io_start(req);
899 }
900 
901 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
902 {
903 	if (rq->rq_flags & RQF_STATS) {
904 		blk_mq_poll_stats_start(rq->q);
905 		blk_stat_add(rq, now);
906 	}
907 
908 	blk_mq_sched_completed_request(rq, now);
909 	blk_account_io_done(rq, now);
910 }
911 
912 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
913 {
914 	if (blk_mq_need_time_stamp(rq))
915 		__blk_mq_end_request_acct(rq, ktime_get_ns());
916 
917 	if (rq->end_io) {
918 		rq_qos_done(rq->q, rq);
919 		rq->end_io(rq, error);
920 	} else {
921 		blk_mq_free_request(rq);
922 	}
923 }
924 EXPORT_SYMBOL(__blk_mq_end_request);
925 
926 void blk_mq_end_request(struct request *rq, blk_status_t error)
927 {
928 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
929 		BUG();
930 	__blk_mq_end_request(rq, error);
931 }
932 EXPORT_SYMBOL(blk_mq_end_request);
933 
934 #define TAG_COMP_BATCH		32
935 
936 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
937 					  int *tag_array, int nr_tags)
938 {
939 	struct request_queue *q = hctx->queue;
940 
941 	/*
942 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
943 	 * update hctx->nr_active in batch
944 	 */
945 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
946 		__blk_mq_sub_active_requests(hctx, nr_tags);
947 
948 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
949 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
950 }
951 
952 void blk_mq_end_request_batch(struct io_comp_batch *iob)
953 {
954 	int tags[TAG_COMP_BATCH], nr_tags = 0;
955 	struct blk_mq_hw_ctx *cur_hctx = NULL;
956 	struct request *rq;
957 	u64 now = 0;
958 
959 	if (iob->need_ts)
960 		now = ktime_get_ns();
961 
962 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
963 		prefetch(rq->bio);
964 		prefetch(rq->rq_next);
965 
966 		blk_complete_request(rq);
967 		if (iob->need_ts)
968 			__blk_mq_end_request_acct(rq, now);
969 
970 		rq_qos_done(rq->q, rq);
971 
972 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
973 		if (!req_ref_put_and_test(rq))
974 			continue;
975 
976 		blk_crypto_free_request(rq);
977 		blk_pm_mark_last_busy(rq);
978 
979 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
980 			if (cur_hctx)
981 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
982 			nr_tags = 0;
983 			cur_hctx = rq->mq_hctx;
984 		}
985 		tags[nr_tags++] = rq->tag;
986 	}
987 
988 	if (nr_tags)
989 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
990 }
991 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
992 
993 static void blk_complete_reqs(struct llist_head *list)
994 {
995 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
996 	struct request *rq, *next;
997 
998 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
999 		rq->q->mq_ops->complete(rq);
1000 }
1001 
1002 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1003 {
1004 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1005 }
1006 
1007 static int blk_softirq_cpu_dead(unsigned int cpu)
1008 {
1009 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1010 	return 0;
1011 }
1012 
1013 static void __blk_mq_complete_request_remote(void *data)
1014 {
1015 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1016 }
1017 
1018 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1019 {
1020 	int cpu = raw_smp_processor_id();
1021 
1022 	if (!IS_ENABLED(CONFIG_SMP) ||
1023 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1024 		return false;
1025 	/*
1026 	 * With force threaded interrupts enabled, raising softirq from an SMP
1027 	 * function call will always result in waking the ksoftirqd thread.
1028 	 * This is probably worse than completing the request on a different
1029 	 * cache domain.
1030 	 */
1031 	if (force_irqthreads())
1032 		return false;
1033 
1034 	/* same CPU or cache domain?  Complete locally */
1035 	if (cpu == rq->mq_ctx->cpu ||
1036 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1037 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1038 		return false;
1039 
1040 	/* don't try to IPI to an offline CPU */
1041 	return cpu_online(rq->mq_ctx->cpu);
1042 }
1043 
1044 static void blk_mq_complete_send_ipi(struct request *rq)
1045 {
1046 	struct llist_head *list;
1047 	unsigned int cpu;
1048 
1049 	cpu = rq->mq_ctx->cpu;
1050 	list = &per_cpu(blk_cpu_done, cpu);
1051 	if (llist_add(&rq->ipi_list, list)) {
1052 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1053 		smp_call_function_single_async(cpu, &rq->csd);
1054 	}
1055 }
1056 
1057 static void blk_mq_raise_softirq(struct request *rq)
1058 {
1059 	struct llist_head *list;
1060 
1061 	preempt_disable();
1062 	list = this_cpu_ptr(&blk_cpu_done);
1063 	if (llist_add(&rq->ipi_list, list))
1064 		raise_softirq(BLOCK_SOFTIRQ);
1065 	preempt_enable();
1066 }
1067 
1068 bool blk_mq_complete_request_remote(struct request *rq)
1069 {
1070 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1071 
1072 	/*
1073 	 * For a polled request, always complete locallly, it's pointless
1074 	 * to redirect the completion.
1075 	 */
1076 	if (rq->cmd_flags & REQ_POLLED)
1077 		return false;
1078 
1079 	if (blk_mq_complete_need_ipi(rq)) {
1080 		blk_mq_complete_send_ipi(rq);
1081 		return true;
1082 	}
1083 
1084 	if (rq->q->nr_hw_queues == 1) {
1085 		blk_mq_raise_softirq(rq);
1086 		return true;
1087 	}
1088 	return false;
1089 }
1090 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1091 
1092 /**
1093  * blk_mq_complete_request - end I/O on a request
1094  * @rq:		the request being processed
1095  *
1096  * Description:
1097  *	Complete a request by scheduling the ->complete_rq operation.
1098  **/
1099 void blk_mq_complete_request(struct request *rq)
1100 {
1101 	if (!blk_mq_complete_request_remote(rq))
1102 		rq->q->mq_ops->complete(rq);
1103 }
1104 EXPORT_SYMBOL(blk_mq_complete_request);
1105 
1106 /**
1107  * blk_mq_start_request - Start processing a request
1108  * @rq: Pointer to request to be started
1109  *
1110  * Function used by device drivers to notify the block layer that a request
1111  * is going to be processed now, so blk layer can do proper initializations
1112  * such as starting the timeout timer.
1113  */
1114 void blk_mq_start_request(struct request *rq)
1115 {
1116 	struct request_queue *q = rq->q;
1117 
1118 	trace_block_rq_issue(rq);
1119 
1120 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1121 		u64 start_time;
1122 #ifdef CONFIG_BLK_CGROUP
1123 		if (rq->bio)
1124 			start_time = bio_issue_time(&rq->bio->bi_issue);
1125 		else
1126 #endif
1127 			start_time = ktime_get_ns();
1128 		rq->io_start_time_ns = start_time;
1129 		rq->stats_sectors = blk_rq_sectors(rq);
1130 		rq->rq_flags |= RQF_STATS;
1131 		rq_qos_issue(q, rq);
1132 	}
1133 
1134 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1135 
1136 	blk_add_timer(rq);
1137 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1138 
1139 #ifdef CONFIG_BLK_DEV_INTEGRITY
1140 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1141 		q->integrity.profile->prepare_fn(rq);
1142 #endif
1143 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1144 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1145 }
1146 EXPORT_SYMBOL(blk_mq_start_request);
1147 
1148 /**
1149  * blk_end_sync_rq - executes a completion event on a request
1150  * @rq: request to complete
1151  * @error: end I/O status of the request
1152  */
1153 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1154 {
1155 	struct completion *waiting = rq->end_io_data;
1156 
1157 	rq->end_io_data = (void *)(uintptr_t)error;
1158 
1159 	/*
1160 	 * complete last, if this is a stack request the process (and thus
1161 	 * the rq pointer) could be invalid right after this complete()
1162 	 */
1163 	complete(waiting);
1164 }
1165 
1166 /**
1167  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1168  * @rq:		request to insert
1169  * @at_head:    insert request at head or tail of queue
1170  * @done:	I/O completion handler
1171  *
1172  * Description:
1173  *    Insert a fully prepared request at the back of the I/O scheduler queue
1174  *    for execution.  Don't wait for completion.
1175  *
1176  * Note:
1177  *    This function will invoke @done directly if the queue is dead.
1178  */
1179 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1180 {
1181 	WARN_ON(irqs_disabled());
1182 	WARN_ON(!blk_rq_is_passthrough(rq));
1183 
1184 	rq->end_io = done;
1185 
1186 	blk_account_io_start(rq);
1187 
1188 	/*
1189 	 * don't check dying flag for MQ because the request won't
1190 	 * be reused after dying flag is set
1191 	 */
1192 	blk_mq_sched_insert_request(rq, at_head, true, false);
1193 }
1194 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1195 
1196 static bool blk_rq_is_poll(struct request *rq)
1197 {
1198 	if (!rq->mq_hctx)
1199 		return false;
1200 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1201 		return false;
1202 	if (WARN_ON_ONCE(!rq->bio))
1203 		return false;
1204 	return true;
1205 }
1206 
1207 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1208 {
1209 	do {
1210 		bio_poll(rq->bio, NULL, 0);
1211 		cond_resched();
1212 	} while (!completion_done(wait));
1213 }
1214 
1215 /**
1216  * blk_execute_rq - insert a request into queue for execution
1217  * @rq:		request to insert
1218  * @at_head:    insert request at head or tail of queue
1219  *
1220  * Description:
1221  *    Insert a fully prepared request at the back of the I/O scheduler queue
1222  *    for execution and wait for completion.
1223  * Return: The blk_status_t result provided to blk_mq_end_request().
1224  */
1225 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1226 {
1227 	DECLARE_COMPLETION_ONSTACK(wait);
1228 	unsigned long hang_check;
1229 
1230 	rq->end_io_data = &wait;
1231 	blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1232 
1233 	/* Prevent hang_check timer from firing at us during very long I/O */
1234 	hang_check = sysctl_hung_task_timeout_secs;
1235 
1236 	if (blk_rq_is_poll(rq))
1237 		blk_rq_poll_completion(rq, &wait);
1238 	else if (hang_check)
1239 		while (!wait_for_completion_io_timeout(&wait,
1240 				hang_check * (HZ/2)))
1241 			;
1242 	else
1243 		wait_for_completion_io(&wait);
1244 
1245 	return (blk_status_t)(uintptr_t)rq->end_io_data;
1246 }
1247 EXPORT_SYMBOL(blk_execute_rq);
1248 
1249 static void __blk_mq_requeue_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	blk_mq_put_driver_tag(rq);
1254 
1255 	trace_block_rq_requeue(rq);
1256 	rq_qos_requeue(q, rq);
1257 
1258 	if (blk_mq_request_started(rq)) {
1259 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1260 		rq->rq_flags &= ~RQF_TIMED_OUT;
1261 	}
1262 }
1263 
1264 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1265 {
1266 	__blk_mq_requeue_request(rq);
1267 
1268 	/* this request will be re-inserted to io scheduler queue */
1269 	blk_mq_sched_requeue_request(rq);
1270 
1271 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1272 }
1273 EXPORT_SYMBOL(blk_mq_requeue_request);
1274 
1275 static void blk_mq_requeue_work(struct work_struct *work)
1276 {
1277 	struct request_queue *q =
1278 		container_of(work, struct request_queue, requeue_work.work);
1279 	LIST_HEAD(rq_list);
1280 	struct request *rq, *next;
1281 
1282 	spin_lock_irq(&q->requeue_lock);
1283 	list_splice_init(&q->requeue_list, &rq_list);
1284 	spin_unlock_irq(&q->requeue_lock);
1285 
1286 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1287 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1288 			continue;
1289 
1290 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1291 		list_del_init(&rq->queuelist);
1292 		/*
1293 		 * If RQF_DONTPREP, rq has contained some driver specific
1294 		 * data, so insert it to hctx dispatch list to avoid any
1295 		 * merge.
1296 		 */
1297 		if (rq->rq_flags & RQF_DONTPREP)
1298 			blk_mq_request_bypass_insert(rq, false, false);
1299 		else
1300 			blk_mq_sched_insert_request(rq, true, false, false);
1301 	}
1302 
1303 	while (!list_empty(&rq_list)) {
1304 		rq = list_entry(rq_list.next, struct request, queuelist);
1305 		list_del_init(&rq->queuelist);
1306 		blk_mq_sched_insert_request(rq, false, false, false);
1307 	}
1308 
1309 	blk_mq_run_hw_queues(q, false);
1310 }
1311 
1312 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1313 				bool kick_requeue_list)
1314 {
1315 	struct request_queue *q = rq->q;
1316 	unsigned long flags;
1317 
1318 	/*
1319 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1320 	 * request head insertion from the workqueue.
1321 	 */
1322 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1323 
1324 	spin_lock_irqsave(&q->requeue_lock, flags);
1325 	if (at_head) {
1326 		rq->rq_flags |= RQF_SOFTBARRIER;
1327 		list_add(&rq->queuelist, &q->requeue_list);
1328 	} else {
1329 		list_add_tail(&rq->queuelist, &q->requeue_list);
1330 	}
1331 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1332 
1333 	if (kick_requeue_list)
1334 		blk_mq_kick_requeue_list(q);
1335 }
1336 
1337 void blk_mq_kick_requeue_list(struct request_queue *q)
1338 {
1339 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1340 }
1341 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1342 
1343 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1344 				    unsigned long msecs)
1345 {
1346 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1347 				    msecs_to_jiffies(msecs));
1348 }
1349 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1350 
1351 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1352 			       bool reserved)
1353 {
1354 	/*
1355 	 * If we find a request that isn't idle we know the queue is busy
1356 	 * as it's checked in the iter.
1357 	 * Return false to stop the iteration.
1358 	 */
1359 	if (blk_mq_request_started(rq)) {
1360 		bool *busy = priv;
1361 
1362 		*busy = true;
1363 		return false;
1364 	}
1365 
1366 	return true;
1367 }
1368 
1369 bool blk_mq_queue_inflight(struct request_queue *q)
1370 {
1371 	bool busy = false;
1372 
1373 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1374 	return busy;
1375 }
1376 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1377 
1378 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1379 {
1380 	req->rq_flags |= RQF_TIMED_OUT;
1381 	if (req->q->mq_ops->timeout) {
1382 		enum blk_eh_timer_return ret;
1383 
1384 		ret = req->q->mq_ops->timeout(req, reserved);
1385 		if (ret == BLK_EH_DONE)
1386 			return;
1387 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1388 	}
1389 
1390 	blk_add_timer(req);
1391 }
1392 
1393 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1394 {
1395 	unsigned long deadline;
1396 
1397 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1398 		return false;
1399 	if (rq->rq_flags & RQF_TIMED_OUT)
1400 		return false;
1401 
1402 	deadline = READ_ONCE(rq->deadline);
1403 	if (time_after_eq(jiffies, deadline))
1404 		return true;
1405 
1406 	if (*next == 0)
1407 		*next = deadline;
1408 	else if (time_after(*next, deadline))
1409 		*next = deadline;
1410 	return false;
1411 }
1412 
1413 void blk_mq_put_rq_ref(struct request *rq)
1414 {
1415 	if (is_flush_rq(rq))
1416 		rq->end_io(rq, 0);
1417 	else if (req_ref_put_and_test(rq))
1418 		__blk_mq_free_request(rq);
1419 }
1420 
1421 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1422 {
1423 	unsigned long *next = priv;
1424 
1425 	/*
1426 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1427 	 * be reallocated underneath the timeout handler's processing, then
1428 	 * the expire check is reliable. If the request is not expired, then
1429 	 * it was completed and reallocated as a new request after returning
1430 	 * from blk_mq_check_expired().
1431 	 */
1432 	if (blk_mq_req_expired(rq, next))
1433 		blk_mq_rq_timed_out(rq, reserved);
1434 	return true;
1435 }
1436 
1437 static void blk_mq_timeout_work(struct work_struct *work)
1438 {
1439 	struct request_queue *q =
1440 		container_of(work, struct request_queue, timeout_work);
1441 	unsigned long next = 0;
1442 	struct blk_mq_hw_ctx *hctx;
1443 	int i;
1444 
1445 	/* A deadlock might occur if a request is stuck requiring a
1446 	 * timeout at the same time a queue freeze is waiting
1447 	 * completion, since the timeout code would not be able to
1448 	 * acquire the queue reference here.
1449 	 *
1450 	 * That's why we don't use blk_queue_enter here; instead, we use
1451 	 * percpu_ref_tryget directly, because we need to be able to
1452 	 * obtain a reference even in the short window between the queue
1453 	 * starting to freeze, by dropping the first reference in
1454 	 * blk_freeze_queue_start, and the moment the last request is
1455 	 * consumed, marked by the instant q_usage_counter reaches
1456 	 * zero.
1457 	 */
1458 	if (!percpu_ref_tryget(&q->q_usage_counter))
1459 		return;
1460 
1461 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1462 
1463 	if (next != 0) {
1464 		mod_timer(&q->timeout, next);
1465 	} else {
1466 		/*
1467 		 * Request timeouts are handled as a forward rolling timer. If
1468 		 * we end up here it means that no requests are pending and
1469 		 * also that no request has been pending for a while. Mark
1470 		 * each hctx as idle.
1471 		 */
1472 		queue_for_each_hw_ctx(q, hctx, i) {
1473 			/* the hctx may be unmapped, so check it here */
1474 			if (blk_mq_hw_queue_mapped(hctx))
1475 				blk_mq_tag_idle(hctx);
1476 		}
1477 	}
1478 	blk_queue_exit(q);
1479 }
1480 
1481 struct flush_busy_ctx_data {
1482 	struct blk_mq_hw_ctx *hctx;
1483 	struct list_head *list;
1484 };
1485 
1486 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1487 {
1488 	struct flush_busy_ctx_data *flush_data = data;
1489 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1490 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1491 	enum hctx_type type = hctx->type;
1492 
1493 	spin_lock(&ctx->lock);
1494 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1495 	sbitmap_clear_bit(sb, bitnr);
1496 	spin_unlock(&ctx->lock);
1497 	return true;
1498 }
1499 
1500 /*
1501  * Process software queues that have been marked busy, splicing them
1502  * to the for-dispatch
1503  */
1504 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1505 {
1506 	struct flush_busy_ctx_data data = {
1507 		.hctx = hctx,
1508 		.list = list,
1509 	};
1510 
1511 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1512 }
1513 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1514 
1515 struct dispatch_rq_data {
1516 	struct blk_mq_hw_ctx *hctx;
1517 	struct request *rq;
1518 };
1519 
1520 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1521 		void *data)
1522 {
1523 	struct dispatch_rq_data *dispatch_data = data;
1524 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1525 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1526 	enum hctx_type type = hctx->type;
1527 
1528 	spin_lock(&ctx->lock);
1529 	if (!list_empty(&ctx->rq_lists[type])) {
1530 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1531 		list_del_init(&dispatch_data->rq->queuelist);
1532 		if (list_empty(&ctx->rq_lists[type]))
1533 			sbitmap_clear_bit(sb, bitnr);
1534 	}
1535 	spin_unlock(&ctx->lock);
1536 
1537 	return !dispatch_data->rq;
1538 }
1539 
1540 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1541 					struct blk_mq_ctx *start)
1542 {
1543 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1544 	struct dispatch_rq_data data = {
1545 		.hctx = hctx,
1546 		.rq   = NULL,
1547 	};
1548 
1549 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1550 			       dispatch_rq_from_ctx, &data);
1551 
1552 	return data.rq;
1553 }
1554 
1555 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1556 {
1557 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1558 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1559 	int tag;
1560 
1561 	blk_mq_tag_busy(rq->mq_hctx);
1562 
1563 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1564 		bt = &rq->mq_hctx->tags->breserved_tags;
1565 		tag_offset = 0;
1566 	} else {
1567 		if (!hctx_may_queue(rq->mq_hctx, bt))
1568 			return false;
1569 	}
1570 
1571 	tag = __sbitmap_queue_get(bt);
1572 	if (tag == BLK_MQ_NO_TAG)
1573 		return false;
1574 
1575 	rq->tag = tag + tag_offset;
1576 	return true;
1577 }
1578 
1579 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1580 {
1581 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1582 		return false;
1583 
1584 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1585 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1586 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1587 		__blk_mq_inc_active_requests(hctx);
1588 	}
1589 	hctx->tags->rqs[rq->tag] = rq;
1590 	return true;
1591 }
1592 
1593 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1594 				int flags, void *key)
1595 {
1596 	struct blk_mq_hw_ctx *hctx;
1597 
1598 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1599 
1600 	spin_lock(&hctx->dispatch_wait_lock);
1601 	if (!list_empty(&wait->entry)) {
1602 		struct sbitmap_queue *sbq;
1603 
1604 		list_del_init(&wait->entry);
1605 		sbq = &hctx->tags->bitmap_tags;
1606 		atomic_dec(&sbq->ws_active);
1607 	}
1608 	spin_unlock(&hctx->dispatch_wait_lock);
1609 
1610 	blk_mq_run_hw_queue(hctx, true);
1611 	return 1;
1612 }
1613 
1614 /*
1615  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1616  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1617  * restart. For both cases, take care to check the condition again after
1618  * marking us as waiting.
1619  */
1620 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1621 				 struct request *rq)
1622 {
1623 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1624 	struct wait_queue_head *wq;
1625 	wait_queue_entry_t *wait;
1626 	bool ret;
1627 
1628 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1629 		blk_mq_sched_mark_restart_hctx(hctx);
1630 
1631 		/*
1632 		 * It's possible that a tag was freed in the window between the
1633 		 * allocation failure and adding the hardware queue to the wait
1634 		 * queue.
1635 		 *
1636 		 * Don't clear RESTART here, someone else could have set it.
1637 		 * At most this will cost an extra queue run.
1638 		 */
1639 		return blk_mq_get_driver_tag(rq);
1640 	}
1641 
1642 	wait = &hctx->dispatch_wait;
1643 	if (!list_empty_careful(&wait->entry))
1644 		return false;
1645 
1646 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1647 
1648 	spin_lock_irq(&wq->lock);
1649 	spin_lock(&hctx->dispatch_wait_lock);
1650 	if (!list_empty(&wait->entry)) {
1651 		spin_unlock(&hctx->dispatch_wait_lock);
1652 		spin_unlock_irq(&wq->lock);
1653 		return false;
1654 	}
1655 
1656 	atomic_inc(&sbq->ws_active);
1657 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1658 	__add_wait_queue(wq, wait);
1659 
1660 	/*
1661 	 * It's possible that a tag was freed in the window between the
1662 	 * allocation failure and adding the hardware queue to the wait
1663 	 * queue.
1664 	 */
1665 	ret = blk_mq_get_driver_tag(rq);
1666 	if (!ret) {
1667 		spin_unlock(&hctx->dispatch_wait_lock);
1668 		spin_unlock_irq(&wq->lock);
1669 		return false;
1670 	}
1671 
1672 	/*
1673 	 * We got a tag, remove ourselves from the wait queue to ensure
1674 	 * someone else gets the wakeup.
1675 	 */
1676 	list_del_init(&wait->entry);
1677 	atomic_dec(&sbq->ws_active);
1678 	spin_unlock(&hctx->dispatch_wait_lock);
1679 	spin_unlock_irq(&wq->lock);
1680 
1681 	return true;
1682 }
1683 
1684 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1685 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1686 /*
1687  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1688  * - EWMA is one simple way to compute running average value
1689  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1690  * - take 4 as factor for avoiding to get too small(0) result, and this
1691  *   factor doesn't matter because EWMA decreases exponentially
1692  */
1693 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1694 {
1695 	unsigned int ewma;
1696 
1697 	ewma = hctx->dispatch_busy;
1698 
1699 	if (!ewma && !busy)
1700 		return;
1701 
1702 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1703 	if (busy)
1704 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1705 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1706 
1707 	hctx->dispatch_busy = ewma;
1708 }
1709 
1710 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1711 
1712 static void blk_mq_handle_dev_resource(struct request *rq,
1713 				       struct list_head *list)
1714 {
1715 	struct request *next =
1716 		list_first_entry_or_null(list, struct request, queuelist);
1717 
1718 	/*
1719 	 * If an I/O scheduler has been configured and we got a driver tag for
1720 	 * the next request already, free it.
1721 	 */
1722 	if (next)
1723 		blk_mq_put_driver_tag(next);
1724 
1725 	list_add(&rq->queuelist, list);
1726 	__blk_mq_requeue_request(rq);
1727 }
1728 
1729 static void blk_mq_handle_zone_resource(struct request *rq,
1730 					struct list_head *zone_list)
1731 {
1732 	/*
1733 	 * If we end up here it is because we cannot dispatch a request to a
1734 	 * specific zone due to LLD level zone-write locking or other zone
1735 	 * related resource not being available. In this case, set the request
1736 	 * aside in zone_list for retrying it later.
1737 	 */
1738 	list_add(&rq->queuelist, zone_list);
1739 	__blk_mq_requeue_request(rq);
1740 }
1741 
1742 enum prep_dispatch {
1743 	PREP_DISPATCH_OK,
1744 	PREP_DISPATCH_NO_TAG,
1745 	PREP_DISPATCH_NO_BUDGET,
1746 };
1747 
1748 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1749 						  bool need_budget)
1750 {
1751 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1752 	int budget_token = -1;
1753 
1754 	if (need_budget) {
1755 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1756 		if (budget_token < 0) {
1757 			blk_mq_put_driver_tag(rq);
1758 			return PREP_DISPATCH_NO_BUDGET;
1759 		}
1760 		blk_mq_set_rq_budget_token(rq, budget_token);
1761 	}
1762 
1763 	if (!blk_mq_get_driver_tag(rq)) {
1764 		/*
1765 		 * The initial allocation attempt failed, so we need to
1766 		 * rerun the hardware queue when a tag is freed. The
1767 		 * waitqueue takes care of that. If the queue is run
1768 		 * before we add this entry back on the dispatch list,
1769 		 * we'll re-run it below.
1770 		 */
1771 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1772 			/*
1773 			 * All budgets not got from this function will be put
1774 			 * together during handling partial dispatch
1775 			 */
1776 			if (need_budget)
1777 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1778 			return PREP_DISPATCH_NO_TAG;
1779 		}
1780 	}
1781 
1782 	return PREP_DISPATCH_OK;
1783 }
1784 
1785 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1786 static void blk_mq_release_budgets(struct request_queue *q,
1787 		struct list_head *list)
1788 {
1789 	struct request *rq;
1790 
1791 	list_for_each_entry(rq, list, queuelist) {
1792 		int budget_token = blk_mq_get_rq_budget_token(rq);
1793 
1794 		if (budget_token >= 0)
1795 			blk_mq_put_dispatch_budget(q, budget_token);
1796 	}
1797 }
1798 
1799 /*
1800  * Returns true if we did some work AND can potentially do more.
1801  */
1802 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1803 			     unsigned int nr_budgets)
1804 {
1805 	enum prep_dispatch prep;
1806 	struct request_queue *q = hctx->queue;
1807 	struct request *rq, *nxt;
1808 	int errors, queued;
1809 	blk_status_t ret = BLK_STS_OK;
1810 	LIST_HEAD(zone_list);
1811 	bool needs_resource = false;
1812 
1813 	if (list_empty(list))
1814 		return false;
1815 
1816 	/*
1817 	 * Now process all the entries, sending them to the driver.
1818 	 */
1819 	errors = queued = 0;
1820 	do {
1821 		struct blk_mq_queue_data bd;
1822 
1823 		rq = list_first_entry(list, struct request, queuelist);
1824 
1825 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1826 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1827 		if (prep != PREP_DISPATCH_OK)
1828 			break;
1829 
1830 		list_del_init(&rq->queuelist);
1831 
1832 		bd.rq = rq;
1833 
1834 		/*
1835 		 * Flag last if we have no more requests, or if we have more
1836 		 * but can't assign a driver tag to it.
1837 		 */
1838 		if (list_empty(list))
1839 			bd.last = true;
1840 		else {
1841 			nxt = list_first_entry(list, struct request, queuelist);
1842 			bd.last = !blk_mq_get_driver_tag(nxt);
1843 		}
1844 
1845 		/*
1846 		 * once the request is queued to lld, no need to cover the
1847 		 * budget any more
1848 		 */
1849 		if (nr_budgets)
1850 			nr_budgets--;
1851 		ret = q->mq_ops->queue_rq(hctx, &bd);
1852 		switch (ret) {
1853 		case BLK_STS_OK:
1854 			queued++;
1855 			break;
1856 		case BLK_STS_RESOURCE:
1857 			needs_resource = true;
1858 			fallthrough;
1859 		case BLK_STS_DEV_RESOURCE:
1860 			blk_mq_handle_dev_resource(rq, list);
1861 			goto out;
1862 		case BLK_STS_ZONE_RESOURCE:
1863 			/*
1864 			 * Move the request to zone_list and keep going through
1865 			 * the dispatch list to find more requests the drive can
1866 			 * accept.
1867 			 */
1868 			blk_mq_handle_zone_resource(rq, &zone_list);
1869 			needs_resource = true;
1870 			break;
1871 		default:
1872 			errors++;
1873 			blk_mq_end_request(rq, ret);
1874 		}
1875 	} while (!list_empty(list));
1876 out:
1877 	if (!list_empty(&zone_list))
1878 		list_splice_tail_init(&zone_list, list);
1879 
1880 	/* If we didn't flush the entire list, we could have told the driver
1881 	 * there was more coming, but that turned out to be a lie.
1882 	 */
1883 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1884 		q->mq_ops->commit_rqs(hctx);
1885 	/*
1886 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1887 	 * that is where we will continue on next queue run.
1888 	 */
1889 	if (!list_empty(list)) {
1890 		bool needs_restart;
1891 		/* For non-shared tags, the RESTART check will suffice */
1892 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1893 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1894 
1895 		if (nr_budgets)
1896 			blk_mq_release_budgets(q, list);
1897 
1898 		spin_lock(&hctx->lock);
1899 		list_splice_tail_init(list, &hctx->dispatch);
1900 		spin_unlock(&hctx->lock);
1901 
1902 		/*
1903 		 * Order adding requests to hctx->dispatch and checking
1904 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1905 		 * in blk_mq_sched_restart(). Avoid restart code path to
1906 		 * miss the new added requests to hctx->dispatch, meantime
1907 		 * SCHED_RESTART is observed here.
1908 		 */
1909 		smp_mb();
1910 
1911 		/*
1912 		 * If SCHED_RESTART was set by the caller of this function and
1913 		 * it is no longer set that means that it was cleared by another
1914 		 * thread and hence that a queue rerun is needed.
1915 		 *
1916 		 * If 'no_tag' is set, that means that we failed getting
1917 		 * a driver tag with an I/O scheduler attached. If our dispatch
1918 		 * waitqueue is no longer active, ensure that we run the queue
1919 		 * AFTER adding our entries back to the list.
1920 		 *
1921 		 * If no I/O scheduler has been configured it is possible that
1922 		 * the hardware queue got stopped and restarted before requests
1923 		 * were pushed back onto the dispatch list. Rerun the queue to
1924 		 * avoid starvation. Notes:
1925 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1926 		 *   been stopped before rerunning a queue.
1927 		 * - Some but not all block drivers stop a queue before
1928 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1929 		 *   and dm-rq.
1930 		 *
1931 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1932 		 * bit is set, run queue after a delay to avoid IO stalls
1933 		 * that could otherwise occur if the queue is idle.  We'll do
1934 		 * similar if we couldn't get budget or couldn't lock a zone
1935 		 * and SCHED_RESTART is set.
1936 		 */
1937 		needs_restart = blk_mq_sched_needs_restart(hctx);
1938 		if (prep == PREP_DISPATCH_NO_BUDGET)
1939 			needs_resource = true;
1940 		if (!needs_restart ||
1941 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1942 			blk_mq_run_hw_queue(hctx, true);
1943 		else if (needs_restart && needs_resource)
1944 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1945 
1946 		blk_mq_update_dispatch_busy(hctx, true);
1947 		return false;
1948 	} else
1949 		blk_mq_update_dispatch_busy(hctx, false);
1950 
1951 	return (queued + errors) != 0;
1952 }
1953 
1954 /**
1955  * __blk_mq_run_hw_queue - Run a hardware queue.
1956  * @hctx: Pointer to the hardware queue to run.
1957  *
1958  * Send pending requests to the hardware.
1959  */
1960 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1961 {
1962 	/*
1963 	 * We can't run the queue inline with ints disabled. Ensure that
1964 	 * we catch bad users of this early.
1965 	 */
1966 	WARN_ON_ONCE(in_interrupt());
1967 
1968 	blk_mq_run_dispatch_ops(hctx->queue,
1969 			blk_mq_sched_dispatch_requests(hctx));
1970 }
1971 
1972 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1973 {
1974 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1975 
1976 	if (cpu >= nr_cpu_ids)
1977 		cpu = cpumask_first(hctx->cpumask);
1978 	return cpu;
1979 }
1980 
1981 /*
1982  * It'd be great if the workqueue API had a way to pass
1983  * in a mask and had some smarts for more clever placement.
1984  * For now we just round-robin here, switching for every
1985  * BLK_MQ_CPU_WORK_BATCH queued items.
1986  */
1987 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1988 {
1989 	bool tried = false;
1990 	int next_cpu = hctx->next_cpu;
1991 
1992 	if (hctx->queue->nr_hw_queues == 1)
1993 		return WORK_CPU_UNBOUND;
1994 
1995 	if (--hctx->next_cpu_batch <= 0) {
1996 select_cpu:
1997 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1998 				cpu_online_mask);
1999 		if (next_cpu >= nr_cpu_ids)
2000 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2001 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2002 	}
2003 
2004 	/*
2005 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2006 	 * and it should only happen in the path of handling CPU DEAD.
2007 	 */
2008 	if (!cpu_online(next_cpu)) {
2009 		if (!tried) {
2010 			tried = true;
2011 			goto select_cpu;
2012 		}
2013 
2014 		/*
2015 		 * Make sure to re-select CPU next time once after CPUs
2016 		 * in hctx->cpumask become online again.
2017 		 */
2018 		hctx->next_cpu = next_cpu;
2019 		hctx->next_cpu_batch = 1;
2020 		return WORK_CPU_UNBOUND;
2021 	}
2022 
2023 	hctx->next_cpu = next_cpu;
2024 	return next_cpu;
2025 }
2026 
2027 /**
2028  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2029  * @hctx: Pointer to the hardware queue to run.
2030  * @async: If we want to run the queue asynchronously.
2031  * @msecs: Milliseconds of delay to wait before running the queue.
2032  *
2033  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2034  * with a delay of @msecs.
2035  */
2036 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2037 					unsigned long msecs)
2038 {
2039 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2040 		return;
2041 
2042 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2043 		int cpu = get_cpu();
2044 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2045 			__blk_mq_run_hw_queue(hctx);
2046 			put_cpu();
2047 			return;
2048 		}
2049 
2050 		put_cpu();
2051 	}
2052 
2053 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2054 				    msecs_to_jiffies(msecs));
2055 }
2056 
2057 /**
2058  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2059  * @hctx: Pointer to the hardware queue to run.
2060  * @msecs: Milliseconds of delay to wait before running the queue.
2061  *
2062  * Run a hardware queue asynchronously with a delay of @msecs.
2063  */
2064 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2065 {
2066 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2067 }
2068 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2069 
2070 /**
2071  * blk_mq_run_hw_queue - Start to run a hardware queue.
2072  * @hctx: Pointer to the hardware queue to run.
2073  * @async: If we want to run the queue asynchronously.
2074  *
2075  * Check if the request queue is not in a quiesced state and if there are
2076  * pending requests to be sent. If this is true, run the queue to send requests
2077  * to hardware.
2078  */
2079 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2080 {
2081 	bool need_run;
2082 
2083 	/*
2084 	 * When queue is quiesced, we may be switching io scheduler, or
2085 	 * updating nr_hw_queues, or other things, and we can't run queue
2086 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2087 	 *
2088 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2089 	 * quiesced.
2090 	 */
2091 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2092 		need_run = !blk_queue_quiesced(hctx->queue) &&
2093 		blk_mq_hctx_has_pending(hctx));
2094 
2095 	if (need_run)
2096 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2097 }
2098 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2099 
2100 /*
2101  * Is the request queue handled by an IO scheduler that does not respect
2102  * hardware queues when dispatching?
2103  */
2104 static bool blk_mq_has_sqsched(struct request_queue *q)
2105 {
2106 	struct elevator_queue *e = q->elevator;
2107 
2108 	if (e && e->type->ops.dispatch_request &&
2109 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2110 		return true;
2111 	return false;
2112 }
2113 
2114 /*
2115  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2116  * scheduler.
2117  */
2118 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2119 {
2120 	struct blk_mq_hw_ctx *hctx;
2121 
2122 	/*
2123 	 * If the IO scheduler does not respect hardware queues when
2124 	 * dispatching, we just don't bother with multiple HW queues and
2125 	 * dispatch from hctx for the current CPU since running multiple queues
2126 	 * just causes lock contention inside the scheduler and pointless cache
2127 	 * bouncing.
2128 	 */
2129 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2130 				     raw_smp_processor_id());
2131 	if (!blk_mq_hctx_stopped(hctx))
2132 		return hctx;
2133 	return NULL;
2134 }
2135 
2136 /**
2137  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2138  * @q: Pointer to the request queue to run.
2139  * @async: If we want to run the queue asynchronously.
2140  */
2141 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2142 {
2143 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2144 	int i;
2145 
2146 	sq_hctx = NULL;
2147 	if (blk_mq_has_sqsched(q))
2148 		sq_hctx = blk_mq_get_sq_hctx(q);
2149 	queue_for_each_hw_ctx(q, hctx, i) {
2150 		if (blk_mq_hctx_stopped(hctx))
2151 			continue;
2152 		/*
2153 		 * Dispatch from this hctx either if there's no hctx preferred
2154 		 * by IO scheduler or if it has requests that bypass the
2155 		 * scheduler.
2156 		 */
2157 		if (!sq_hctx || sq_hctx == hctx ||
2158 		    !list_empty_careful(&hctx->dispatch))
2159 			blk_mq_run_hw_queue(hctx, async);
2160 	}
2161 }
2162 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2163 
2164 /**
2165  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2166  * @q: Pointer to the request queue to run.
2167  * @msecs: Milliseconds of delay to wait before running the queues.
2168  */
2169 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2170 {
2171 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2172 	int i;
2173 
2174 	sq_hctx = NULL;
2175 	if (blk_mq_has_sqsched(q))
2176 		sq_hctx = blk_mq_get_sq_hctx(q);
2177 	queue_for_each_hw_ctx(q, hctx, i) {
2178 		if (blk_mq_hctx_stopped(hctx))
2179 			continue;
2180 		/*
2181 		 * Dispatch from this hctx either if there's no hctx preferred
2182 		 * by IO scheduler or if it has requests that bypass the
2183 		 * scheduler.
2184 		 */
2185 		if (!sq_hctx || sq_hctx == hctx ||
2186 		    !list_empty_careful(&hctx->dispatch))
2187 			blk_mq_delay_run_hw_queue(hctx, msecs);
2188 	}
2189 }
2190 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2191 
2192 /**
2193  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2194  * @q: request queue.
2195  *
2196  * The caller is responsible for serializing this function against
2197  * blk_mq_{start,stop}_hw_queue().
2198  */
2199 bool blk_mq_queue_stopped(struct request_queue *q)
2200 {
2201 	struct blk_mq_hw_ctx *hctx;
2202 	int i;
2203 
2204 	queue_for_each_hw_ctx(q, hctx, i)
2205 		if (blk_mq_hctx_stopped(hctx))
2206 			return true;
2207 
2208 	return false;
2209 }
2210 EXPORT_SYMBOL(blk_mq_queue_stopped);
2211 
2212 /*
2213  * This function is often used for pausing .queue_rq() by driver when
2214  * there isn't enough resource or some conditions aren't satisfied, and
2215  * BLK_STS_RESOURCE is usually returned.
2216  *
2217  * We do not guarantee that dispatch can be drained or blocked
2218  * after blk_mq_stop_hw_queue() returns. Please use
2219  * blk_mq_quiesce_queue() for that requirement.
2220  */
2221 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2222 {
2223 	cancel_delayed_work(&hctx->run_work);
2224 
2225 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2226 }
2227 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2228 
2229 /*
2230  * This function is often used for pausing .queue_rq() by driver when
2231  * there isn't enough resource or some conditions aren't satisfied, and
2232  * BLK_STS_RESOURCE is usually returned.
2233  *
2234  * We do not guarantee that dispatch can be drained or blocked
2235  * after blk_mq_stop_hw_queues() returns. Please use
2236  * blk_mq_quiesce_queue() for that requirement.
2237  */
2238 void blk_mq_stop_hw_queues(struct request_queue *q)
2239 {
2240 	struct blk_mq_hw_ctx *hctx;
2241 	int i;
2242 
2243 	queue_for_each_hw_ctx(q, hctx, i)
2244 		blk_mq_stop_hw_queue(hctx);
2245 }
2246 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2247 
2248 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2249 {
2250 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2251 
2252 	blk_mq_run_hw_queue(hctx, false);
2253 }
2254 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2255 
2256 void blk_mq_start_hw_queues(struct request_queue *q)
2257 {
2258 	struct blk_mq_hw_ctx *hctx;
2259 	int i;
2260 
2261 	queue_for_each_hw_ctx(q, hctx, i)
2262 		blk_mq_start_hw_queue(hctx);
2263 }
2264 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2265 
2266 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2267 {
2268 	if (!blk_mq_hctx_stopped(hctx))
2269 		return;
2270 
2271 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2272 	blk_mq_run_hw_queue(hctx, async);
2273 }
2274 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2275 
2276 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2277 {
2278 	struct blk_mq_hw_ctx *hctx;
2279 	int i;
2280 
2281 	queue_for_each_hw_ctx(q, hctx, i)
2282 		blk_mq_start_stopped_hw_queue(hctx, async);
2283 }
2284 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2285 
2286 static void blk_mq_run_work_fn(struct work_struct *work)
2287 {
2288 	struct blk_mq_hw_ctx *hctx;
2289 
2290 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2291 
2292 	/*
2293 	 * If we are stopped, don't run the queue.
2294 	 */
2295 	if (blk_mq_hctx_stopped(hctx))
2296 		return;
2297 
2298 	__blk_mq_run_hw_queue(hctx);
2299 }
2300 
2301 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2302 					    struct request *rq,
2303 					    bool at_head)
2304 {
2305 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2306 	enum hctx_type type = hctx->type;
2307 
2308 	lockdep_assert_held(&ctx->lock);
2309 
2310 	trace_block_rq_insert(rq);
2311 
2312 	if (at_head)
2313 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2314 	else
2315 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2316 }
2317 
2318 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2319 			     bool at_head)
2320 {
2321 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2322 
2323 	lockdep_assert_held(&ctx->lock);
2324 
2325 	__blk_mq_insert_req_list(hctx, rq, at_head);
2326 	blk_mq_hctx_mark_pending(hctx, ctx);
2327 }
2328 
2329 /**
2330  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2331  * @rq: Pointer to request to be inserted.
2332  * @at_head: true if the request should be inserted at the head of the list.
2333  * @run_queue: If we should run the hardware queue after inserting the request.
2334  *
2335  * Should only be used carefully, when the caller knows we want to
2336  * bypass a potential IO scheduler on the target device.
2337  */
2338 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2339 				  bool run_queue)
2340 {
2341 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2342 
2343 	spin_lock(&hctx->lock);
2344 	if (at_head)
2345 		list_add(&rq->queuelist, &hctx->dispatch);
2346 	else
2347 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2348 	spin_unlock(&hctx->lock);
2349 
2350 	if (run_queue)
2351 		blk_mq_run_hw_queue(hctx, false);
2352 }
2353 
2354 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2355 			    struct list_head *list)
2356 
2357 {
2358 	struct request *rq;
2359 	enum hctx_type type = hctx->type;
2360 
2361 	/*
2362 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2363 	 * offline now
2364 	 */
2365 	list_for_each_entry(rq, list, queuelist) {
2366 		BUG_ON(rq->mq_ctx != ctx);
2367 		trace_block_rq_insert(rq);
2368 	}
2369 
2370 	spin_lock(&ctx->lock);
2371 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2372 	blk_mq_hctx_mark_pending(hctx, ctx);
2373 	spin_unlock(&ctx->lock);
2374 }
2375 
2376 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2377 			      bool from_schedule)
2378 {
2379 	if (hctx->queue->mq_ops->commit_rqs) {
2380 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2381 		hctx->queue->mq_ops->commit_rqs(hctx);
2382 	}
2383 	*queued = 0;
2384 }
2385 
2386 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2387 		unsigned int nr_segs)
2388 {
2389 	int err;
2390 
2391 	if (bio->bi_opf & REQ_RAHEAD)
2392 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2393 
2394 	rq->__sector = bio->bi_iter.bi_sector;
2395 	rq->write_hint = bio->bi_write_hint;
2396 	blk_rq_bio_prep(rq, bio, nr_segs);
2397 
2398 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2399 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2400 	WARN_ON_ONCE(err);
2401 
2402 	blk_account_io_start(rq);
2403 }
2404 
2405 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2406 					    struct request *rq, bool last)
2407 {
2408 	struct request_queue *q = rq->q;
2409 	struct blk_mq_queue_data bd = {
2410 		.rq = rq,
2411 		.last = last,
2412 	};
2413 	blk_status_t ret;
2414 
2415 	/*
2416 	 * For OK queue, we are done. For error, caller may kill it.
2417 	 * Any other error (busy), just add it to our list as we
2418 	 * previously would have done.
2419 	 */
2420 	ret = q->mq_ops->queue_rq(hctx, &bd);
2421 	switch (ret) {
2422 	case BLK_STS_OK:
2423 		blk_mq_update_dispatch_busy(hctx, false);
2424 		break;
2425 	case BLK_STS_RESOURCE:
2426 	case BLK_STS_DEV_RESOURCE:
2427 		blk_mq_update_dispatch_busy(hctx, true);
2428 		__blk_mq_requeue_request(rq);
2429 		break;
2430 	default:
2431 		blk_mq_update_dispatch_busy(hctx, false);
2432 		break;
2433 	}
2434 
2435 	return ret;
2436 }
2437 
2438 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2439 						struct request *rq,
2440 						bool bypass_insert, bool last)
2441 {
2442 	struct request_queue *q = rq->q;
2443 	bool run_queue = true;
2444 	int budget_token;
2445 
2446 	/*
2447 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2448 	 *
2449 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2450 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2451 	 * and avoid driver to try to dispatch again.
2452 	 */
2453 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2454 		run_queue = false;
2455 		bypass_insert = false;
2456 		goto insert;
2457 	}
2458 
2459 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2460 		goto insert;
2461 
2462 	budget_token = blk_mq_get_dispatch_budget(q);
2463 	if (budget_token < 0)
2464 		goto insert;
2465 
2466 	blk_mq_set_rq_budget_token(rq, budget_token);
2467 
2468 	if (!blk_mq_get_driver_tag(rq)) {
2469 		blk_mq_put_dispatch_budget(q, budget_token);
2470 		goto insert;
2471 	}
2472 
2473 	return __blk_mq_issue_directly(hctx, rq, last);
2474 insert:
2475 	if (bypass_insert)
2476 		return BLK_STS_RESOURCE;
2477 
2478 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2479 
2480 	return BLK_STS_OK;
2481 }
2482 
2483 /**
2484  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2485  * @hctx: Pointer of the associated hardware queue.
2486  * @rq: Pointer to request to be sent.
2487  *
2488  * If the device has enough resources to accept a new request now, send the
2489  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2490  * we can try send it another time in the future. Requests inserted at this
2491  * queue have higher priority.
2492  */
2493 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2494 		struct request *rq)
2495 {
2496 	blk_status_t ret =
2497 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2498 
2499 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2500 		blk_mq_request_bypass_insert(rq, false, true);
2501 	else if (ret != BLK_STS_OK)
2502 		blk_mq_end_request(rq, ret);
2503 }
2504 
2505 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2506 {
2507 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2508 }
2509 
2510 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2511 {
2512 	struct blk_mq_hw_ctx *hctx = NULL;
2513 	struct request *rq;
2514 	int queued = 0;
2515 	int errors = 0;
2516 
2517 	while ((rq = rq_list_pop(&plug->mq_list))) {
2518 		bool last = rq_list_empty(plug->mq_list);
2519 		blk_status_t ret;
2520 
2521 		if (hctx != rq->mq_hctx) {
2522 			if (hctx)
2523 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2524 			hctx = rq->mq_hctx;
2525 		}
2526 
2527 		ret = blk_mq_request_issue_directly(rq, last);
2528 		switch (ret) {
2529 		case BLK_STS_OK:
2530 			queued++;
2531 			break;
2532 		case BLK_STS_RESOURCE:
2533 		case BLK_STS_DEV_RESOURCE:
2534 			blk_mq_request_bypass_insert(rq, false, last);
2535 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2536 			return;
2537 		default:
2538 			blk_mq_end_request(rq, ret);
2539 			errors++;
2540 			break;
2541 		}
2542 	}
2543 
2544 	/*
2545 	 * If we didn't flush the entire list, we could have told the driver
2546 	 * there was more coming, but that turned out to be a lie.
2547 	 */
2548 	if (errors)
2549 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2550 }
2551 
2552 static void __blk_mq_flush_plug_list(struct request_queue *q,
2553 				     struct blk_plug *plug)
2554 {
2555 	if (blk_queue_quiesced(q))
2556 		return;
2557 	q->mq_ops->queue_rqs(&plug->mq_list);
2558 }
2559 
2560 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2561 {
2562 	struct blk_mq_hw_ctx *this_hctx;
2563 	struct blk_mq_ctx *this_ctx;
2564 	struct request *rq;
2565 	unsigned int depth;
2566 	LIST_HEAD(list);
2567 
2568 	if (rq_list_empty(plug->mq_list))
2569 		return;
2570 	plug->rq_count = 0;
2571 
2572 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2573 		struct request_queue *q;
2574 
2575 		rq = rq_list_peek(&plug->mq_list);
2576 		q = rq->q;
2577 
2578 		/*
2579 		 * Peek first request and see if we have a ->queue_rqs() hook.
2580 		 * If we do, we can dispatch the whole plug list in one go. We
2581 		 * already know at this point that all requests belong to the
2582 		 * same queue, caller must ensure that's the case.
2583 		 *
2584 		 * Since we pass off the full list to the driver at this point,
2585 		 * we do not increment the active request count for the queue.
2586 		 * Bypass shared tags for now because of that.
2587 		 */
2588 		if (q->mq_ops->queue_rqs &&
2589 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2590 			blk_mq_run_dispatch_ops(q,
2591 				__blk_mq_flush_plug_list(q, plug));
2592 			if (rq_list_empty(plug->mq_list))
2593 				return;
2594 		}
2595 
2596 		blk_mq_run_dispatch_ops(q,
2597 				blk_mq_plug_issue_direct(plug, false));
2598 		if (rq_list_empty(plug->mq_list))
2599 			return;
2600 	}
2601 
2602 	this_hctx = NULL;
2603 	this_ctx = NULL;
2604 	depth = 0;
2605 	do {
2606 		rq = rq_list_pop(&plug->mq_list);
2607 
2608 		if (!this_hctx) {
2609 			this_hctx = rq->mq_hctx;
2610 			this_ctx = rq->mq_ctx;
2611 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2612 			trace_block_unplug(this_hctx->queue, depth,
2613 						!from_schedule);
2614 			blk_mq_sched_insert_requests(this_hctx, this_ctx,
2615 						&list, from_schedule);
2616 			depth = 0;
2617 			this_hctx = rq->mq_hctx;
2618 			this_ctx = rq->mq_ctx;
2619 
2620 		}
2621 
2622 		list_add(&rq->queuelist, &list);
2623 		depth++;
2624 	} while (!rq_list_empty(plug->mq_list));
2625 
2626 	if (!list_empty(&list)) {
2627 		trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2628 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2629 						from_schedule);
2630 	}
2631 }
2632 
2633 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2634 		struct list_head *list)
2635 {
2636 	int queued = 0;
2637 	int errors = 0;
2638 
2639 	while (!list_empty(list)) {
2640 		blk_status_t ret;
2641 		struct request *rq = list_first_entry(list, struct request,
2642 				queuelist);
2643 
2644 		list_del_init(&rq->queuelist);
2645 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2646 		if (ret != BLK_STS_OK) {
2647 			if (ret == BLK_STS_RESOURCE ||
2648 					ret == BLK_STS_DEV_RESOURCE) {
2649 				blk_mq_request_bypass_insert(rq, false,
2650 							list_empty(list));
2651 				break;
2652 			}
2653 			blk_mq_end_request(rq, ret);
2654 			errors++;
2655 		} else
2656 			queued++;
2657 	}
2658 
2659 	/*
2660 	 * If we didn't flush the entire list, we could have told
2661 	 * the driver there was more coming, but that turned out to
2662 	 * be a lie.
2663 	 */
2664 	if ((!list_empty(list) || errors) &&
2665 	     hctx->queue->mq_ops->commit_rqs && queued)
2666 		hctx->queue->mq_ops->commit_rqs(hctx);
2667 }
2668 
2669 /*
2670  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2671  * queues. This is important for md arrays to benefit from merging
2672  * requests.
2673  */
2674 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2675 {
2676 	if (plug->multiple_queues)
2677 		return BLK_MAX_REQUEST_COUNT * 2;
2678 	return BLK_MAX_REQUEST_COUNT;
2679 }
2680 
2681 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2682 {
2683 	struct request *last = rq_list_peek(&plug->mq_list);
2684 
2685 	if (!plug->rq_count) {
2686 		trace_block_plug(rq->q);
2687 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2688 		   (!blk_queue_nomerges(rq->q) &&
2689 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2690 		blk_mq_flush_plug_list(plug, false);
2691 		trace_block_plug(rq->q);
2692 	}
2693 
2694 	if (!plug->multiple_queues && last && last->q != rq->q)
2695 		plug->multiple_queues = true;
2696 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2697 		plug->has_elevator = true;
2698 	rq->rq_next = NULL;
2699 	rq_list_add(&plug->mq_list, rq);
2700 	plug->rq_count++;
2701 }
2702 
2703 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2704 				     struct bio *bio, unsigned int nr_segs)
2705 {
2706 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2707 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2708 			return true;
2709 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2710 			return true;
2711 	}
2712 	return false;
2713 }
2714 
2715 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2716 					       struct blk_plug *plug,
2717 					       struct bio *bio)
2718 {
2719 	struct blk_mq_alloc_data data = {
2720 		.q		= q,
2721 		.nr_tags	= 1,
2722 		.cmd_flags	= bio->bi_opf,
2723 	};
2724 	struct request *rq;
2725 
2726 	if (unlikely(bio_queue_enter(bio)))
2727 		return NULL;
2728 
2729 	if (plug) {
2730 		data.nr_tags = plug->nr_ios;
2731 		plug->nr_ios = 1;
2732 		data.cached_rq = &plug->cached_rq;
2733 	}
2734 
2735 	rq = __blk_mq_alloc_requests(&data);
2736 	if (rq)
2737 		return rq;
2738 	rq_qos_cleanup(q, bio);
2739 	if (bio->bi_opf & REQ_NOWAIT)
2740 		bio_wouldblock_error(bio);
2741 	blk_queue_exit(q);
2742 	return NULL;
2743 }
2744 
2745 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2746 		struct blk_plug *plug, struct bio *bio)
2747 {
2748 	struct request *rq;
2749 
2750 	if (!plug)
2751 		return NULL;
2752 	rq = rq_list_peek(&plug->cached_rq);
2753 	if (!rq || rq->q != q)
2754 		return NULL;
2755 
2756 	if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2757 		return NULL;
2758 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2759 		return NULL;
2760 
2761 	rq->cmd_flags = bio->bi_opf;
2762 	plug->cached_rq = rq_list_next(rq);
2763 	INIT_LIST_HEAD(&rq->queuelist);
2764 	return rq;
2765 }
2766 
2767 /**
2768  * blk_mq_submit_bio - Create and send a request to block device.
2769  * @bio: Bio pointer.
2770  *
2771  * Builds up a request structure from @q and @bio and send to the device. The
2772  * request may not be queued directly to hardware if:
2773  * * This request can be merged with another one
2774  * * We want to place request at plug queue for possible future merging
2775  * * There is an IO scheduler active at this queue
2776  *
2777  * It will not queue the request if there is an error with the bio, or at the
2778  * request creation.
2779  */
2780 void blk_mq_submit_bio(struct bio *bio)
2781 {
2782 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2783 	struct blk_plug *plug = blk_mq_plug(q, bio);
2784 	const int is_sync = op_is_sync(bio->bi_opf);
2785 	struct request *rq;
2786 	unsigned int nr_segs = 1;
2787 	blk_status_t ret;
2788 
2789 	if (unlikely(!blk_crypto_bio_prep(&bio)))
2790 		return;
2791 
2792 	blk_queue_bounce(q, &bio);
2793 	if (blk_may_split(q, bio))
2794 		__blk_queue_split(q, &bio, &nr_segs);
2795 
2796 	if (!bio_integrity_prep(bio))
2797 		return;
2798 
2799 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2800 		return;
2801 
2802 	rq_qos_throttle(q, bio);
2803 
2804 	rq = blk_mq_get_cached_request(q, plug, bio);
2805 	if (!rq) {
2806 		rq = blk_mq_get_new_requests(q, plug, bio);
2807 		if (unlikely(!rq))
2808 			return;
2809 	}
2810 
2811 	trace_block_getrq(bio);
2812 
2813 	rq_qos_track(q, rq, bio);
2814 
2815 	blk_mq_bio_to_request(rq, bio, nr_segs);
2816 
2817 	ret = blk_crypto_init_request(rq);
2818 	if (ret != BLK_STS_OK) {
2819 		bio->bi_status = ret;
2820 		bio_endio(bio);
2821 		blk_mq_free_request(rq);
2822 		return;
2823 	}
2824 
2825 	if (op_is_flush(bio->bi_opf)) {
2826 		blk_insert_flush(rq);
2827 		return;
2828 	}
2829 
2830 	if (plug)
2831 		blk_add_rq_to_plug(plug, rq);
2832 	else if ((rq->rq_flags & RQF_ELV) ||
2833 		 (rq->mq_hctx->dispatch_busy &&
2834 		  (q->nr_hw_queues == 1 || !is_sync)))
2835 		blk_mq_sched_insert_request(rq, false, true, true);
2836 	else
2837 		blk_mq_run_dispatch_ops(rq->q,
2838 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2839 }
2840 
2841 /**
2842  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2843  *                              for the new queue limits
2844  * @q:  the queue
2845  * @rq: the request being checked
2846  *
2847  * Description:
2848  *    @rq may have been made based on weaker limitations of upper-level queues
2849  *    in request stacking drivers, and it may violate the limitation of @q.
2850  *    Since the block layer and the underlying device driver trust @rq
2851  *    after it is inserted to @q, it should be checked against @q before
2852  *    the insertion using this generic function.
2853  *
2854  *    Request stacking drivers like request-based dm may change the queue
2855  *    limits when retrying requests on other queues. Those requests need
2856  *    to be checked against the new queue limits again during dispatch.
2857  */
2858 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
2859 				      struct request *rq)
2860 {
2861 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2862 
2863 	if (blk_rq_sectors(rq) > max_sectors) {
2864 		/*
2865 		 * SCSI device does not have a good way to return if
2866 		 * Write Same/Zero is actually supported. If a device rejects
2867 		 * a non-read/write command (discard, write same,etc.) the
2868 		 * low-level device driver will set the relevant queue limit to
2869 		 * 0 to prevent blk-lib from issuing more of the offending
2870 		 * operations. Commands queued prior to the queue limit being
2871 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2872 		 * errors being propagated to upper layers.
2873 		 */
2874 		if (max_sectors == 0)
2875 			return BLK_STS_NOTSUPP;
2876 
2877 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2878 			__func__, blk_rq_sectors(rq), max_sectors);
2879 		return BLK_STS_IOERR;
2880 	}
2881 
2882 	/*
2883 	 * The queue settings related to segment counting may differ from the
2884 	 * original queue.
2885 	 */
2886 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2887 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2888 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2889 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2890 		return BLK_STS_IOERR;
2891 	}
2892 
2893 	return BLK_STS_OK;
2894 }
2895 
2896 /**
2897  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2898  * @q:  the queue to submit the request
2899  * @rq: the request being queued
2900  */
2901 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2902 {
2903 	blk_status_t ret;
2904 
2905 	ret = blk_cloned_rq_check_limits(q, rq);
2906 	if (ret != BLK_STS_OK)
2907 		return ret;
2908 
2909 	if (rq->q->disk &&
2910 	    should_fail_request(rq->q->disk->part0, blk_rq_bytes(rq)))
2911 		return BLK_STS_IOERR;
2912 
2913 	if (blk_crypto_insert_cloned_request(rq))
2914 		return BLK_STS_IOERR;
2915 
2916 	blk_account_io_start(rq);
2917 
2918 	/*
2919 	 * Since we have a scheduler attached on the top device,
2920 	 * bypass a potential scheduler on the bottom device for
2921 	 * insert.
2922 	 */
2923 	blk_mq_run_dispatch_ops(rq->q,
2924 			ret = blk_mq_request_issue_directly(rq, true));
2925 	return ret;
2926 }
2927 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2928 
2929 /**
2930  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2931  * @rq: the clone request to be cleaned up
2932  *
2933  * Description:
2934  *     Free all bios in @rq for a cloned request.
2935  */
2936 void blk_rq_unprep_clone(struct request *rq)
2937 {
2938 	struct bio *bio;
2939 
2940 	while ((bio = rq->bio) != NULL) {
2941 		rq->bio = bio->bi_next;
2942 
2943 		bio_put(bio);
2944 	}
2945 }
2946 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2947 
2948 /**
2949  * blk_rq_prep_clone - Helper function to setup clone request
2950  * @rq: the request to be setup
2951  * @rq_src: original request to be cloned
2952  * @bs: bio_set that bios for clone are allocated from
2953  * @gfp_mask: memory allocation mask for bio
2954  * @bio_ctr: setup function to be called for each clone bio.
2955  *           Returns %0 for success, non %0 for failure.
2956  * @data: private data to be passed to @bio_ctr
2957  *
2958  * Description:
2959  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2960  *     Also, pages which the original bios are pointing to are not copied
2961  *     and the cloned bios just point same pages.
2962  *     So cloned bios must be completed before original bios, which means
2963  *     the caller must complete @rq before @rq_src.
2964  */
2965 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2966 		      struct bio_set *bs, gfp_t gfp_mask,
2967 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2968 		      void *data)
2969 {
2970 	struct bio *bio, *bio_src;
2971 
2972 	if (!bs)
2973 		bs = &fs_bio_set;
2974 
2975 	__rq_for_each_bio(bio_src, rq_src) {
2976 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
2977 		if (!bio)
2978 			goto free_and_out;
2979 		bio->bi_bdev = rq->q->disk->part0;
2980 
2981 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2982 			goto free_and_out;
2983 
2984 		if (rq->bio) {
2985 			rq->biotail->bi_next = bio;
2986 			rq->biotail = bio;
2987 		} else {
2988 			rq->bio = rq->biotail = bio;
2989 		}
2990 		bio = NULL;
2991 	}
2992 
2993 	/* Copy attributes of the original request to the clone request. */
2994 	rq->__sector = blk_rq_pos(rq_src);
2995 	rq->__data_len = blk_rq_bytes(rq_src);
2996 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2997 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2998 		rq->special_vec = rq_src->special_vec;
2999 	}
3000 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3001 	rq->ioprio = rq_src->ioprio;
3002 
3003 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3004 		goto free_and_out;
3005 
3006 	return 0;
3007 
3008 free_and_out:
3009 	if (bio)
3010 		bio_put(bio);
3011 	blk_rq_unprep_clone(rq);
3012 
3013 	return -ENOMEM;
3014 }
3015 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3016 
3017 /*
3018  * Steal bios from a request and add them to a bio list.
3019  * The request must not have been partially completed before.
3020  */
3021 void blk_steal_bios(struct bio_list *list, struct request *rq)
3022 {
3023 	if (rq->bio) {
3024 		if (list->tail)
3025 			list->tail->bi_next = rq->bio;
3026 		else
3027 			list->head = rq->bio;
3028 		list->tail = rq->biotail;
3029 
3030 		rq->bio = NULL;
3031 		rq->biotail = NULL;
3032 	}
3033 
3034 	rq->__data_len = 0;
3035 }
3036 EXPORT_SYMBOL_GPL(blk_steal_bios);
3037 
3038 static size_t order_to_size(unsigned int order)
3039 {
3040 	return (size_t)PAGE_SIZE << order;
3041 }
3042 
3043 /* called before freeing request pool in @tags */
3044 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3045 				    struct blk_mq_tags *tags)
3046 {
3047 	struct page *page;
3048 	unsigned long flags;
3049 
3050 	/* There is no need to clear a driver tags own mapping */
3051 	if (drv_tags == tags)
3052 		return;
3053 
3054 	list_for_each_entry(page, &tags->page_list, lru) {
3055 		unsigned long start = (unsigned long)page_address(page);
3056 		unsigned long end = start + order_to_size(page->private);
3057 		int i;
3058 
3059 		for (i = 0; i < drv_tags->nr_tags; i++) {
3060 			struct request *rq = drv_tags->rqs[i];
3061 			unsigned long rq_addr = (unsigned long)rq;
3062 
3063 			if (rq_addr >= start && rq_addr < end) {
3064 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3065 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3066 			}
3067 		}
3068 	}
3069 
3070 	/*
3071 	 * Wait until all pending iteration is done.
3072 	 *
3073 	 * Request reference is cleared and it is guaranteed to be observed
3074 	 * after the ->lock is released.
3075 	 */
3076 	spin_lock_irqsave(&drv_tags->lock, flags);
3077 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3078 }
3079 
3080 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3081 		     unsigned int hctx_idx)
3082 {
3083 	struct blk_mq_tags *drv_tags;
3084 	struct page *page;
3085 
3086 	if (blk_mq_is_shared_tags(set->flags))
3087 		drv_tags = set->shared_tags;
3088 	else
3089 		drv_tags = set->tags[hctx_idx];
3090 
3091 	if (tags->static_rqs && set->ops->exit_request) {
3092 		int i;
3093 
3094 		for (i = 0; i < tags->nr_tags; i++) {
3095 			struct request *rq = tags->static_rqs[i];
3096 
3097 			if (!rq)
3098 				continue;
3099 			set->ops->exit_request(set, rq, hctx_idx);
3100 			tags->static_rqs[i] = NULL;
3101 		}
3102 	}
3103 
3104 	blk_mq_clear_rq_mapping(drv_tags, tags);
3105 
3106 	while (!list_empty(&tags->page_list)) {
3107 		page = list_first_entry(&tags->page_list, struct page, lru);
3108 		list_del_init(&page->lru);
3109 		/*
3110 		 * Remove kmemleak object previously allocated in
3111 		 * blk_mq_alloc_rqs().
3112 		 */
3113 		kmemleak_free(page_address(page));
3114 		__free_pages(page, page->private);
3115 	}
3116 }
3117 
3118 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3119 {
3120 	kfree(tags->rqs);
3121 	tags->rqs = NULL;
3122 	kfree(tags->static_rqs);
3123 	tags->static_rqs = NULL;
3124 
3125 	blk_mq_free_tags(tags);
3126 }
3127 
3128 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3129 					       unsigned int hctx_idx,
3130 					       unsigned int nr_tags,
3131 					       unsigned int reserved_tags)
3132 {
3133 	struct blk_mq_tags *tags;
3134 	int node;
3135 
3136 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3137 	if (node == NUMA_NO_NODE)
3138 		node = set->numa_node;
3139 
3140 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3141 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3142 	if (!tags)
3143 		return NULL;
3144 
3145 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3146 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3147 				 node);
3148 	if (!tags->rqs) {
3149 		blk_mq_free_tags(tags);
3150 		return NULL;
3151 	}
3152 
3153 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3154 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3155 					node);
3156 	if (!tags->static_rqs) {
3157 		kfree(tags->rqs);
3158 		blk_mq_free_tags(tags);
3159 		return NULL;
3160 	}
3161 
3162 	return tags;
3163 }
3164 
3165 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3166 			       unsigned int hctx_idx, int node)
3167 {
3168 	int ret;
3169 
3170 	if (set->ops->init_request) {
3171 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3172 		if (ret)
3173 			return ret;
3174 	}
3175 
3176 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3177 	return 0;
3178 }
3179 
3180 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3181 			    struct blk_mq_tags *tags,
3182 			    unsigned int hctx_idx, unsigned int depth)
3183 {
3184 	unsigned int i, j, entries_per_page, max_order = 4;
3185 	size_t rq_size, left;
3186 	int node;
3187 
3188 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3189 	if (node == NUMA_NO_NODE)
3190 		node = set->numa_node;
3191 
3192 	INIT_LIST_HEAD(&tags->page_list);
3193 
3194 	/*
3195 	 * rq_size is the size of the request plus driver payload, rounded
3196 	 * to the cacheline size
3197 	 */
3198 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3199 				cache_line_size());
3200 	left = rq_size * depth;
3201 
3202 	for (i = 0; i < depth; ) {
3203 		int this_order = max_order;
3204 		struct page *page;
3205 		int to_do;
3206 		void *p;
3207 
3208 		while (this_order && left < order_to_size(this_order - 1))
3209 			this_order--;
3210 
3211 		do {
3212 			page = alloc_pages_node(node,
3213 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3214 				this_order);
3215 			if (page)
3216 				break;
3217 			if (!this_order--)
3218 				break;
3219 			if (order_to_size(this_order) < rq_size)
3220 				break;
3221 		} while (1);
3222 
3223 		if (!page)
3224 			goto fail;
3225 
3226 		page->private = this_order;
3227 		list_add_tail(&page->lru, &tags->page_list);
3228 
3229 		p = page_address(page);
3230 		/*
3231 		 * Allow kmemleak to scan these pages as they contain pointers
3232 		 * to additional allocations like via ops->init_request().
3233 		 */
3234 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3235 		entries_per_page = order_to_size(this_order) / rq_size;
3236 		to_do = min(entries_per_page, depth - i);
3237 		left -= to_do * rq_size;
3238 		for (j = 0; j < to_do; j++) {
3239 			struct request *rq = p;
3240 
3241 			tags->static_rqs[i] = rq;
3242 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3243 				tags->static_rqs[i] = NULL;
3244 				goto fail;
3245 			}
3246 
3247 			p += rq_size;
3248 			i++;
3249 		}
3250 	}
3251 	return 0;
3252 
3253 fail:
3254 	blk_mq_free_rqs(set, tags, hctx_idx);
3255 	return -ENOMEM;
3256 }
3257 
3258 struct rq_iter_data {
3259 	struct blk_mq_hw_ctx *hctx;
3260 	bool has_rq;
3261 };
3262 
3263 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3264 {
3265 	struct rq_iter_data *iter_data = data;
3266 
3267 	if (rq->mq_hctx != iter_data->hctx)
3268 		return true;
3269 	iter_data->has_rq = true;
3270 	return false;
3271 }
3272 
3273 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3274 {
3275 	struct blk_mq_tags *tags = hctx->sched_tags ?
3276 			hctx->sched_tags : hctx->tags;
3277 	struct rq_iter_data data = {
3278 		.hctx	= hctx,
3279 	};
3280 
3281 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3282 	return data.has_rq;
3283 }
3284 
3285 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3286 		struct blk_mq_hw_ctx *hctx)
3287 {
3288 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3289 		return false;
3290 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3291 		return false;
3292 	return true;
3293 }
3294 
3295 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3296 {
3297 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3298 			struct blk_mq_hw_ctx, cpuhp_online);
3299 
3300 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3301 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3302 		return 0;
3303 
3304 	/*
3305 	 * Prevent new request from being allocated on the current hctx.
3306 	 *
3307 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3308 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3309 	 * seen once we return from the tag allocator.
3310 	 */
3311 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3312 	smp_mb__after_atomic();
3313 
3314 	/*
3315 	 * Try to grab a reference to the queue and wait for any outstanding
3316 	 * requests.  If we could not grab a reference the queue has been
3317 	 * frozen and there are no requests.
3318 	 */
3319 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3320 		while (blk_mq_hctx_has_requests(hctx))
3321 			msleep(5);
3322 		percpu_ref_put(&hctx->queue->q_usage_counter);
3323 	}
3324 
3325 	return 0;
3326 }
3327 
3328 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3329 {
3330 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3331 			struct blk_mq_hw_ctx, cpuhp_online);
3332 
3333 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3334 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3335 	return 0;
3336 }
3337 
3338 /*
3339  * 'cpu' is going away. splice any existing rq_list entries from this
3340  * software queue to the hw queue dispatch list, and ensure that it
3341  * gets run.
3342  */
3343 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3344 {
3345 	struct blk_mq_hw_ctx *hctx;
3346 	struct blk_mq_ctx *ctx;
3347 	LIST_HEAD(tmp);
3348 	enum hctx_type type;
3349 
3350 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3351 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3352 		return 0;
3353 
3354 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3355 	type = hctx->type;
3356 
3357 	spin_lock(&ctx->lock);
3358 	if (!list_empty(&ctx->rq_lists[type])) {
3359 		list_splice_init(&ctx->rq_lists[type], &tmp);
3360 		blk_mq_hctx_clear_pending(hctx, ctx);
3361 	}
3362 	spin_unlock(&ctx->lock);
3363 
3364 	if (list_empty(&tmp))
3365 		return 0;
3366 
3367 	spin_lock(&hctx->lock);
3368 	list_splice_tail_init(&tmp, &hctx->dispatch);
3369 	spin_unlock(&hctx->lock);
3370 
3371 	blk_mq_run_hw_queue(hctx, true);
3372 	return 0;
3373 }
3374 
3375 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3376 {
3377 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3378 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3379 						    &hctx->cpuhp_online);
3380 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3381 					    &hctx->cpuhp_dead);
3382 }
3383 
3384 /*
3385  * Before freeing hw queue, clearing the flush request reference in
3386  * tags->rqs[] for avoiding potential UAF.
3387  */
3388 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3389 		unsigned int queue_depth, struct request *flush_rq)
3390 {
3391 	int i;
3392 	unsigned long flags;
3393 
3394 	/* The hw queue may not be mapped yet */
3395 	if (!tags)
3396 		return;
3397 
3398 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3399 
3400 	for (i = 0; i < queue_depth; i++)
3401 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3402 
3403 	/*
3404 	 * Wait until all pending iteration is done.
3405 	 *
3406 	 * Request reference is cleared and it is guaranteed to be observed
3407 	 * after the ->lock is released.
3408 	 */
3409 	spin_lock_irqsave(&tags->lock, flags);
3410 	spin_unlock_irqrestore(&tags->lock, flags);
3411 }
3412 
3413 /* hctx->ctxs will be freed in queue's release handler */
3414 static void blk_mq_exit_hctx(struct request_queue *q,
3415 		struct blk_mq_tag_set *set,
3416 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3417 {
3418 	struct request *flush_rq = hctx->fq->flush_rq;
3419 
3420 	if (blk_mq_hw_queue_mapped(hctx))
3421 		blk_mq_tag_idle(hctx);
3422 
3423 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3424 			set->queue_depth, flush_rq);
3425 	if (set->ops->exit_request)
3426 		set->ops->exit_request(set, flush_rq, hctx_idx);
3427 
3428 	if (set->ops->exit_hctx)
3429 		set->ops->exit_hctx(hctx, hctx_idx);
3430 
3431 	blk_mq_remove_cpuhp(hctx);
3432 
3433 	spin_lock(&q->unused_hctx_lock);
3434 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3435 	spin_unlock(&q->unused_hctx_lock);
3436 }
3437 
3438 static void blk_mq_exit_hw_queues(struct request_queue *q,
3439 		struct blk_mq_tag_set *set, int nr_queue)
3440 {
3441 	struct blk_mq_hw_ctx *hctx;
3442 	unsigned int i;
3443 
3444 	queue_for_each_hw_ctx(q, hctx, i) {
3445 		if (i == nr_queue)
3446 			break;
3447 		blk_mq_debugfs_unregister_hctx(hctx);
3448 		blk_mq_exit_hctx(q, set, hctx, i);
3449 	}
3450 }
3451 
3452 static int blk_mq_init_hctx(struct request_queue *q,
3453 		struct blk_mq_tag_set *set,
3454 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3455 {
3456 	hctx->queue_num = hctx_idx;
3457 
3458 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3459 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3460 				&hctx->cpuhp_online);
3461 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3462 
3463 	hctx->tags = set->tags[hctx_idx];
3464 
3465 	if (set->ops->init_hctx &&
3466 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3467 		goto unregister_cpu_notifier;
3468 
3469 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3470 				hctx->numa_node))
3471 		goto exit_hctx;
3472 	return 0;
3473 
3474  exit_hctx:
3475 	if (set->ops->exit_hctx)
3476 		set->ops->exit_hctx(hctx, hctx_idx);
3477  unregister_cpu_notifier:
3478 	blk_mq_remove_cpuhp(hctx);
3479 	return -1;
3480 }
3481 
3482 static struct blk_mq_hw_ctx *
3483 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3484 		int node)
3485 {
3486 	struct blk_mq_hw_ctx *hctx;
3487 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3488 
3489 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3490 	if (!hctx)
3491 		goto fail_alloc_hctx;
3492 
3493 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3494 		goto free_hctx;
3495 
3496 	atomic_set(&hctx->nr_active, 0);
3497 	if (node == NUMA_NO_NODE)
3498 		node = set->numa_node;
3499 	hctx->numa_node = node;
3500 
3501 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3502 	spin_lock_init(&hctx->lock);
3503 	INIT_LIST_HEAD(&hctx->dispatch);
3504 	hctx->queue = q;
3505 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3506 
3507 	INIT_LIST_HEAD(&hctx->hctx_list);
3508 
3509 	/*
3510 	 * Allocate space for all possible cpus to avoid allocation at
3511 	 * runtime
3512 	 */
3513 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3514 			gfp, node);
3515 	if (!hctx->ctxs)
3516 		goto free_cpumask;
3517 
3518 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3519 				gfp, node, false, false))
3520 		goto free_ctxs;
3521 	hctx->nr_ctx = 0;
3522 
3523 	spin_lock_init(&hctx->dispatch_wait_lock);
3524 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3525 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3526 
3527 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3528 	if (!hctx->fq)
3529 		goto free_bitmap;
3530 
3531 	blk_mq_hctx_kobj_init(hctx);
3532 
3533 	return hctx;
3534 
3535  free_bitmap:
3536 	sbitmap_free(&hctx->ctx_map);
3537  free_ctxs:
3538 	kfree(hctx->ctxs);
3539  free_cpumask:
3540 	free_cpumask_var(hctx->cpumask);
3541  free_hctx:
3542 	kfree(hctx);
3543  fail_alloc_hctx:
3544 	return NULL;
3545 }
3546 
3547 static void blk_mq_init_cpu_queues(struct request_queue *q,
3548 				   unsigned int nr_hw_queues)
3549 {
3550 	struct blk_mq_tag_set *set = q->tag_set;
3551 	unsigned int i, j;
3552 
3553 	for_each_possible_cpu(i) {
3554 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3555 		struct blk_mq_hw_ctx *hctx;
3556 		int k;
3557 
3558 		__ctx->cpu = i;
3559 		spin_lock_init(&__ctx->lock);
3560 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3561 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3562 
3563 		__ctx->queue = q;
3564 
3565 		/*
3566 		 * Set local node, IFF we have more than one hw queue. If
3567 		 * not, we remain on the home node of the device
3568 		 */
3569 		for (j = 0; j < set->nr_maps; j++) {
3570 			hctx = blk_mq_map_queue_type(q, j, i);
3571 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3572 				hctx->numa_node = cpu_to_node(i);
3573 		}
3574 	}
3575 }
3576 
3577 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3578 					     unsigned int hctx_idx,
3579 					     unsigned int depth)
3580 {
3581 	struct blk_mq_tags *tags;
3582 	int ret;
3583 
3584 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3585 	if (!tags)
3586 		return NULL;
3587 
3588 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3589 	if (ret) {
3590 		blk_mq_free_rq_map(tags);
3591 		return NULL;
3592 	}
3593 
3594 	return tags;
3595 }
3596 
3597 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3598 				       int hctx_idx)
3599 {
3600 	if (blk_mq_is_shared_tags(set->flags)) {
3601 		set->tags[hctx_idx] = set->shared_tags;
3602 
3603 		return true;
3604 	}
3605 
3606 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3607 						       set->queue_depth);
3608 
3609 	return set->tags[hctx_idx];
3610 }
3611 
3612 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3613 			     struct blk_mq_tags *tags,
3614 			     unsigned int hctx_idx)
3615 {
3616 	if (tags) {
3617 		blk_mq_free_rqs(set, tags, hctx_idx);
3618 		blk_mq_free_rq_map(tags);
3619 	}
3620 }
3621 
3622 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3623 				      unsigned int hctx_idx)
3624 {
3625 	if (!blk_mq_is_shared_tags(set->flags))
3626 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3627 
3628 	set->tags[hctx_idx] = NULL;
3629 }
3630 
3631 static void blk_mq_map_swqueue(struct request_queue *q)
3632 {
3633 	unsigned int i, j, hctx_idx;
3634 	struct blk_mq_hw_ctx *hctx;
3635 	struct blk_mq_ctx *ctx;
3636 	struct blk_mq_tag_set *set = q->tag_set;
3637 
3638 	queue_for_each_hw_ctx(q, hctx, i) {
3639 		cpumask_clear(hctx->cpumask);
3640 		hctx->nr_ctx = 0;
3641 		hctx->dispatch_from = NULL;
3642 	}
3643 
3644 	/*
3645 	 * Map software to hardware queues.
3646 	 *
3647 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3648 	 */
3649 	for_each_possible_cpu(i) {
3650 
3651 		ctx = per_cpu_ptr(q->queue_ctx, i);
3652 		for (j = 0; j < set->nr_maps; j++) {
3653 			if (!set->map[j].nr_queues) {
3654 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3655 						HCTX_TYPE_DEFAULT, i);
3656 				continue;
3657 			}
3658 			hctx_idx = set->map[j].mq_map[i];
3659 			/* unmapped hw queue can be remapped after CPU topo changed */
3660 			if (!set->tags[hctx_idx] &&
3661 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3662 				/*
3663 				 * If tags initialization fail for some hctx,
3664 				 * that hctx won't be brought online.  In this
3665 				 * case, remap the current ctx to hctx[0] which
3666 				 * is guaranteed to always have tags allocated
3667 				 */
3668 				set->map[j].mq_map[i] = 0;
3669 			}
3670 
3671 			hctx = blk_mq_map_queue_type(q, j, i);
3672 			ctx->hctxs[j] = hctx;
3673 			/*
3674 			 * If the CPU is already set in the mask, then we've
3675 			 * mapped this one already. This can happen if
3676 			 * devices share queues across queue maps.
3677 			 */
3678 			if (cpumask_test_cpu(i, hctx->cpumask))
3679 				continue;
3680 
3681 			cpumask_set_cpu(i, hctx->cpumask);
3682 			hctx->type = j;
3683 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3684 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3685 
3686 			/*
3687 			 * If the nr_ctx type overflows, we have exceeded the
3688 			 * amount of sw queues we can support.
3689 			 */
3690 			BUG_ON(!hctx->nr_ctx);
3691 		}
3692 
3693 		for (; j < HCTX_MAX_TYPES; j++)
3694 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3695 					HCTX_TYPE_DEFAULT, i);
3696 	}
3697 
3698 	queue_for_each_hw_ctx(q, hctx, i) {
3699 		/*
3700 		 * If no software queues are mapped to this hardware queue,
3701 		 * disable it and free the request entries.
3702 		 */
3703 		if (!hctx->nr_ctx) {
3704 			/* Never unmap queue 0.  We need it as a
3705 			 * fallback in case of a new remap fails
3706 			 * allocation
3707 			 */
3708 			if (i)
3709 				__blk_mq_free_map_and_rqs(set, i);
3710 
3711 			hctx->tags = NULL;
3712 			continue;
3713 		}
3714 
3715 		hctx->tags = set->tags[i];
3716 		WARN_ON(!hctx->tags);
3717 
3718 		/*
3719 		 * Set the map size to the number of mapped software queues.
3720 		 * This is more accurate and more efficient than looping
3721 		 * over all possibly mapped software queues.
3722 		 */
3723 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3724 
3725 		/*
3726 		 * Initialize batch roundrobin counts
3727 		 */
3728 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3729 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3730 	}
3731 }
3732 
3733 /*
3734  * Caller needs to ensure that we're either frozen/quiesced, or that
3735  * the queue isn't live yet.
3736  */
3737 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3738 {
3739 	struct blk_mq_hw_ctx *hctx;
3740 	int i;
3741 
3742 	queue_for_each_hw_ctx(q, hctx, i) {
3743 		if (shared) {
3744 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3745 		} else {
3746 			blk_mq_tag_idle(hctx);
3747 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3748 		}
3749 	}
3750 }
3751 
3752 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3753 					 bool shared)
3754 {
3755 	struct request_queue *q;
3756 
3757 	lockdep_assert_held(&set->tag_list_lock);
3758 
3759 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3760 		blk_mq_freeze_queue(q);
3761 		queue_set_hctx_shared(q, shared);
3762 		blk_mq_unfreeze_queue(q);
3763 	}
3764 }
3765 
3766 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3767 {
3768 	struct blk_mq_tag_set *set = q->tag_set;
3769 
3770 	mutex_lock(&set->tag_list_lock);
3771 	list_del(&q->tag_set_list);
3772 	if (list_is_singular(&set->tag_list)) {
3773 		/* just transitioned to unshared */
3774 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3775 		/* update existing queue */
3776 		blk_mq_update_tag_set_shared(set, false);
3777 	}
3778 	mutex_unlock(&set->tag_list_lock);
3779 	INIT_LIST_HEAD(&q->tag_set_list);
3780 }
3781 
3782 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3783 				     struct request_queue *q)
3784 {
3785 	mutex_lock(&set->tag_list_lock);
3786 
3787 	/*
3788 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3789 	 */
3790 	if (!list_empty(&set->tag_list) &&
3791 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3792 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3793 		/* update existing queue */
3794 		blk_mq_update_tag_set_shared(set, true);
3795 	}
3796 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3797 		queue_set_hctx_shared(q, true);
3798 	list_add_tail(&q->tag_set_list, &set->tag_list);
3799 
3800 	mutex_unlock(&set->tag_list_lock);
3801 }
3802 
3803 /* All allocations will be freed in release handler of q->mq_kobj */
3804 static int blk_mq_alloc_ctxs(struct request_queue *q)
3805 {
3806 	struct blk_mq_ctxs *ctxs;
3807 	int cpu;
3808 
3809 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3810 	if (!ctxs)
3811 		return -ENOMEM;
3812 
3813 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3814 	if (!ctxs->queue_ctx)
3815 		goto fail;
3816 
3817 	for_each_possible_cpu(cpu) {
3818 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3819 		ctx->ctxs = ctxs;
3820 	}
3821 
3822 	q->mq_kobj = &ctxs->kobj;
3823 	q->queue_ctx = ctxs->queue_ctx;
3824 
3825 	return 0;
3826  fail:
3827 	kfree(ctxs);
3828 	return -ENOMEM;
3829 }
3830 
3831 /*
3832  * It is the actual release handler for mq, but we do it from
3833  * request queue's release handler for avoiding use-after-free
3834  * and headache because q->mq_kobj shouldn't have been introduced,
3835  * but we can't group ctx/kctx kobj without it.
3836  */
3837 void blk_mq_release(struct request_queue *q)
3838 {
3839 	struct blk_mq_hw_ctx *hctx, *next;
3840 	int i;
3841 
3842 	queue_for_each_hw_ctx(q, hctx, i)
3843 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3844 
3845 	/* all hctx are in .unused_hctx_list now */
3846 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3847 		list_del_init(&hctx->hctx_list);
3848 		kobject_put(&hctx->kobj);
3849 	}
3850 
3851 	kfree(q->queue_hw_ctx);
3852 
3853 	/*
3854 	 * release .mq_kobj and sw queue's kobject now because
3855 	 * both share lifetime with request queue.
3856 	 */
3857 	blk_mq_sysfs_deinit(q);
3858 }
3859 
3860 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3861 		void *queuedata)
3862 {
3863 	struct request_queue *q;
3864 	int ret;
3865 
3866 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3867 	if (!q)
3868 		return ERR_PTR(-ENOMEM);
3869 	q->queuedata = queuedata;
3870 	ret = blk_mq_init_allocated_queue(set, q);
3871 	if (ret) {
3872 		blk_cleanup_queue(q);
3873 		return ERR_PTR(ret);
3874 	}
3875 	return q;
3876 }
3877 
3878 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3879 {
3880 	return blk_mq_init_queue_data(set, NULL);
3881 }
3882 EXPORT_SYMBOL(blk_mq_init_queue);
3883 
3884 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3885 		struct lock_class_key *lkclass)
3886 {
3887 	struct request_queue *q;
3888 	struct gendisk *disk;
3889 
3890 	q = blk_mq_init_queue_data(set, queuedata);
3891 	if (IS_ERR(q))
3892 		return ERR_CAST(q);
3893 
3894 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3895 	if (!disk) {
3896 		blk_cleanup_queue(q);
3897 		return ERR_PTR(-ENOMEM);
3898 	}
3899 	return disk;
3900 }
3901 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3902 
3903 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3904 		struct blk_mq_tag_set *set, struct request_queue *q,
3905 		int hctx_idx, int node)
3906 {
3907 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3908 
3909 	/* reuse dead hctx first */
3910 	spin_lock(&q->unused_hctx_lock);
3911 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3912 		if (tmp->numa_node == node) {
3913 			hctx = tmp;
3914 			break;
3915 		}
3916 	}
3917 	if (hctx)
3918 		list_del_init(&hctx->hctx_list);
3919 	spin_unlock(&q->unused_hctx_lock);
3920 
3921 	if (!hctx)
3922 		hctx = blk_mq_alloc_hctx(q, set, node);
3923 	if (!hctx)
3924 		goto fail;
3925 
3926 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3927 		goto free_hctx;
3928 
3929 	return hctx;
3930 
3931  free_hctx:
3932 	kobject_put(&hctx->kobj);
3933  fail:
3934 	return NULL;
3935 }
3936 
3937 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3938 						struct request_queue *q)
3939 {
3940 	int i, j, end;
3941 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3942 
3943 	if (q->nr_hw_queues < set->nr_hw_queues) {
3944 		struct blk_mq_hw_ctx **new_hctxs;
3945 
3946 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3947 				       sizeof(*new_hctxs), GFP_KERNEL,
3948 				       set->numa_node);
3949 		if (!new_hctxs)
3950 			return;
3951 		if (hctxs)
3952 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3953 			       sizeof(*hctxs));
3954 		q->queue_hw_ctx = new_hctxs;
3955 		kfree(hctxs);
3956 		hctxs = new_hctxs;
3957 	}
3958 
3959 	/* protect against switching io scheduler  */
3960 	mutex_lock(&q->sysfs_lock);
3961 	for (i = 0; i < set->nr_hw_queues; i++) {
3962 		int node;
3963 		struct blk_mq_hw_ctx *hctx;
3964 
3965 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3966 		/*
3967 		 * If the hw queue has been mapped to another numa node,
3968 		 * we need to realloc the hctx. If allocation fails, fallback
3969 		 * to use the previous one.
3970 		 */
3971 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3972 			continue;
3973 
3974 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3975 		if (hctx) {
3976 			if (hctxs[i])
3977 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3978 			hctxs[i] = hctx;
3979 		} else {
3980 			if (hctxs[i])
3981 				pr_warn("Allocate new hctx on node %d fails,\
3982 						fallback to previous one on node %d\n",
3983 						node, hctxs[i]->numa_node);
3984 			else
3985 				break;
3986 		}
3987 	}
3988 	/*
3989 	 * Increasing nr_hw_queues fails. Free the newly allocated
3990 	 * hctxs and keep the previous q->nr_hw_queues.
3991 	 */
3992 	if (i != set->nr_hw_queues) {
3993 		j = q->nr_hw_queues;
3994 		end = i;
3995 	} else {
3996 		j = i;
3997 		end = q->nr_hw_queues;
3998 		q->nr_hw_queues = set->nr_hw_queues;
3999 	}
4000 
4001 	for (; j < end; j++) {
4002 		struct blk_mq_hw_ctx *hctx = hctxs[j];
4003 
4004 		if (hctx) {
4005 			blk_mq_exit_hctx(q, set, hctx, j);
4006 			hctxs[j] = NULL;
4007 		}
4008 	}
4009 	mutex_unlock(&q->sysfs_lock);
4010 }
4011 
4012 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4013 		struct request_queue *q)
4014 {
4015 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4016 			!!(set->flags & BLK_MQ_F_BLOCKING));
4017 
4018 	/* mark the queue as mq asap */
4019 	q->mq_ops = set->ops;
4020 
4021 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4022 					     blk_mq_poll_stats_bkt,
4023 					     BLK_MQ_POLL_STATS_BKTS, q);
4024 	if (!q->poll_cb)
4025 		goto err_exit;
4026 
4027 	if (blk_mq_alloc_ctxs(q))
4028 		goto err_poll;
4029 
4030 	/* init q->mq_kobj and sw queues' kobjects */
4031 	blk_mq_sysfs_init(q);
4032 
4033 	INIT_LIST_HEAD(&q->unused_hctx_list);
4034 	spin_lock_init(&q->unused_hctx_lock);
4035 
4036 	blk_mq_realloc_hw_ctxs(set, q);
4037 	if (!q->nr_hw_queues)
4038 		goto err_hctxs;
4039 
4040 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4041 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4042 
4043 	q->tag_set = set;
4044 
4045 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4046 	if (set->nr_maps > HCTX_TYPE_POLL &&
4047 	    set->map[HCTX_TYPE_POLL].nr_queues)
4048 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4049 
4050 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4051 	INIT_LIST_HEAD(&q->requeue_list);
4052 	spin_lock_init(&q->requeue_lock);
4053 
4054 	q->nr_requests = set->queue_depth;
4055 
4056 	/*
4057 	 * Default to classic polling
4058 	 */
4059 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4060 
4061 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4062 	blk_mq_add_queue_tag_set(set, q);
4063 	blk_mq_map_swqueue(q);
4064 	return 0;
4065 
4066 err_hctxs:
4067 	kfree(q->queue_hw_ctx);
4068 	q->nr_hw_queues = 0;
4069 	blk_mq_sysfs_deinit(q);
4070 err_poll:
4071 	blk_stat_free_callback(q->poll_cb);
4072 	q->poll_cb = NULL;
4073 err_exit:
4074 	q->mq_ops = NULL;
4075 	return -ENOMEM;
4076 }
4077 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4078 
4079 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4080 void blk_mq_exit_queue(struct request_queue *q)
4081 {
4082 	struct blk_mq_tag_set *set = q->tag_set;
4083 
4084 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4085 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4086 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4087 	blk_mq_del_queue_tag_set(q);
4088 }
4089 
4090 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4091 {
4092 	int i;
4093 
4094 	if (blk_mq_is_shared_tags(set->flags)) {
4095 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4096 						BLK_MQ_NO_HCTX_IDX,
4097 						set->queue_depth);
4098 		if (!set->shared_tags)
4099 			return -ENOMEM;
4100 	}
4101 
4102 	for (i = 0; i < set->nr_hw_queues; i++) {
4103 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4104 			goto out_unwind;
4105 		cond_resched();
4106 	}
4107 
4108 	return 0;
4109 
4110 out_unwind:
4111 	while (--i >= 0)
4112 		__blk_mq_free_map_and_rqs(set, i);
4113 
4114 	if (blk_mq_is_shared_tags(set->flags)) {
4115 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4116 					BLK_MQ_NO_HCTX_IDX);
4117 	}
4118 
4119 	return -ENOMEM;
4120 }
4121 
4122 /*
4123  * Allocate the request maps associated with this tag_set. Note that this
4124  * may reduce the depth asked for, if memory is tight. set->queue_depth
4125  * will be updated to reflect the allocated depth.
4126  */
4127 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4128 {
4129 	unsigned int depth;
4130 	int err;
4131 
4132 	depth = set->queue_depth;
4133 	do {
4134 		err = __blk_mq_alloc_rq_maps(set);
4135 		if (!err)
4136 			break;
4137 
4138 		set->queue_depth >>= 1;
4139 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4140 			err = -ENOMEM;
4141 			break;
4142 		}
4143 	} while (set->queue_depth);
4144 
4145 	if (!set->queue_depth || err) {
4146 		pr_err("blk-mq: failed to allocate request map\n");
4147 		return -ENOMEM;
4148 	}
4149 
4150 	if (depth != set->queue_depth)
4151 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4152 						depth, set->queue_depth);
4153 
4154 	return 0;
4155 }
4156 
4157 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4158 {
4159 	/*
4160 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4161 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4162 	 * number of hardware queues.
4163 	 */
4164 	if (set->nr_maps == 1)
4165 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4166 
4167 	if (set->ops->map_queues && !is_kdump_kernel()) {
4168 		int i;
4169 
4170 		/*
4171 		 * transport .map_queues is usually done in the following
4172 		 * way:
4173 		 *
4174 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4175 		 * 	mask = get_cpu_mask(queue)
4176 		 * 	for_each_cpu(cpu, mask)
4177 		 * 		set->map[x].mq_map[cpu] = queue;
4178 		 * }
4179 		 *
4180 		 * When we need to remap, the table has to be cleared for
4181 		 * killing stale mapping since one CPU may not be mapped
4182 		 * to any hw queue.
4183 		 */
4184 		for (i = 0; i < set->nr_maps; i++)
4185 			blk_mq_clear_mq_map(&set->map[i]);
4186 
4187 		return set->ops->map_queues(set);
4188 	} else {
4189 		BUG_ON(set->nr_maps > 1);
4190 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4191 	}
4192 }
4193 
4194 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4195 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4196 {
4197 	struct blk_mq_tags **new_tags;
4198 
4199 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4200 		return 0;
4201 
4202 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4203 				GFP_KERNEL, set->numa_node);
4204 	if (!new_tags)
4205 		return -ENOMEM;
4206 
4207 	if (set->tags)
4208 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4209 		       sizeof(*set->tags));
4210 	kfree(set->tags);
4211 	set->tags = new_tags;
4212 	set->nr_hw_queues = new_nr_hw_queues;
4213 
4214 	return 0;
4215 }
4216 
4217 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4218 				int new_nr_hw_queues)
4219 {
4220 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4221 }
4222 
4223 /*
4224  * Alloc a tag set to be associated with one or more request queues.
4225  * May fail with EINVAL for various error conditions. May adjust the
4226  * requested depth down, if it's too large. In that case, the set
4227  * value will be stored in set->queue_depth.
4228  */
4229 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4230 {
4231 	int i, ret;
4232 
4233 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4234 
4235 	if (!set->nr_hw_queues)
4236 		return -EINVAL;
4237 	if (!set->queue_depth)
4238 		return -EINVAL;
4239 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4240 		return -EINVAL;
4241 
4242 	if (!set->ops->queue_rq)
4243 		return -EINVAL;
4244 
4245 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4246 		return -EINVAL;
4247 
4248 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4249 		pr_info("blk-mq: reduced tag depth to %u\n",
4250 			BLK_MQ_MAX_DEPTH);
4251 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4252 	}
4253 
4254 	if (!set->nr_maps)
4255 		set->nr_maps = 1;
4256 	else if (set->nr_maps > HCTX_MAX_TYPES)
4257 		return -EINVAL;
4258 
4259 	/*
4260 	 * If a crashdump is active, then we are potentially in a very
4261 	 * memory constrained environment. Limit us to 1 queue and
4262 	 * 64 tags to prevent using too much memory.
4263 	 */
4264 	if (is_kdump_kernel()) {
4265 		set->nr_hw_queues = 1;
4266 		set->nr_maps = 1;
4267 		set->queue_depth = min(64U, set->queue_depth);
4268 	}
4269 	/*
4270 	 * There is no use for more h/w queues than cpus if we just have
4271 	 * a single map
4272 	 */
4273 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4274 		set->nr_hw_queues = nr_cpu_ids;
4275 
4276 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4277 		return -ENOMEM;
4278 
4279 	ret = -ENOMEM;
4280 	for (i = 0; i < set->nr_maps; i++) {
4281 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4282 						  sizeof(set->map[i].mq_map[0]),
4283 						  GFP_KERNEL, set->numa_node);
4284 		if (!set->map[i].mq_map)
4285 			goto out_free_mq_map;
4286 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4287 	}
4288 
4289 	ret = blk_mq_update_queue_map(set);
4290 	if (ret)
4291 		goto out_free_mq_map;
4292 
4293 	ret = blk_mq_alloc_set_map_and_rqs(set);
4294 	if (ret)
4295 		goto out_free_mq_map;
4296 
4297 	mutex_init(&set->tag_list_lock);
4298 	INIT_LIST_HEAD(&set->tag_list);
4299 
4300 	return 0;
4301 
4302 out_free_mq_map:
4303 	for (i = 0; i < set->nr_maps; i++) {
4304 		kfree(set->map[i].mq_map);
4305 		set->map[i].mq_map = NULL;
4306 	}
4307 	kfree(set->tags);
4308 	set->tags = NULL;
4309 	return ret;
4310 }
4311 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4312 
4313 /* allocate and initialize a tagset for a simple single-queue device */
4314 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4315 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4316 		unsigned int set_flags)
4317 {
4318 	memset(set, 0, sizeof(*set));
4319 	set->ops = ops;
4320 	set->nr_hw_queues = 1;
4321 	set->nr_maps = 1;
4322 	set->queue_depth = queue_depth;
4323 	set->numa_node = NUMA_NO_NODE;
4324 	set->flags = set_flags;
4325 	return blk_mq_alloc_tag_set(set);
4326 }
4327 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4328 
4329 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4330 {
4331 	int i, j;
4332 
4333 	for (i = 0; i < set->nr_hw_queues; i++)
4334 		__blk_mq_free_map_and_rqs(set, i);
4335 
4336 	if (blk_mq_is_shared_tags(set->flags)) {
4337 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4338 					BLK_MQ_NO_HCTX_IDX);
4339 	}
4340 
4341 	for (j = 0; j < set->nr_maps; j++) {
4342 		kfree(set->map[j].mq_map);
4343 		set->map[j].mq_map = NULL;
4344 	}
4345 
4346 	kfree(set->tags);
4347 	set->tags = NULL;
4348 }
4349 EXPORT_SYMBOL(blk_mq_free_tag_set);
4350 
4351 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4352 {
4353 	struct blk_mq_tag_set *set = q->tag_set;
4354 	struct blk_mq_hw_ctx *hctx;
4355 	int i, ret;
4356 
4357 	if (!set)
4358 		return -EINVAL;
4359 
4360 	if (q->nr_requests == nr)
4361 		return 0;
4362 
4363 	blk_mq_freeze_queue(q);
4364 	blk_mq_quiesce_queue(q);
4365 
4366 	ret = 0;
4367 	queue_for_each_hw_ctx(q, hctx, i) {
4368 		if (!hctx->tags)
4369 			continue;
4370 		/*
4371 		 * If we're using an MQ scheduler, just update the scheduler
4372 		 * queue depth. This is similar to what the old code would do.
4373 		 */
4374 		if (hctx->sched_tags) {
4375 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4376 						      nr, true);
4377 		} else {
4378 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4379 						      false);
4380 		}
4381 		if (ret)
4382 			break;
4383 		if (q->elevator && q->elevator->type->ops.depth_updated)
4384 			q->elevator->type->ops.depth_updated(hctx);
4385 	}
4386 	if (!ret) {
4387 		q->nr_requests = nr;
4388 		if (blk_mq_is_shared_tags(set->flags)) {
4389 			if (q->elevator)
4390 				blk_mq_tag_update_sched_shared_tags(q);
4391 			else
4392 				blk_mq_tag_resize_shared_tags(set, nr);
4393 		}
4394 	}
4395 
4396 	blk_mq_unquiesce_queue(q);
4397 	blk_mq_unfreeze_queue(q);
4398 
4399 	return ret;
4400 }
4401 
4402 /*
4403  * request_queue and elevator_type pair.
4404  * It is just used by __blk_mq_update_nr_hw_queues to cache
4405  * the elevator_type associated with a request_queue.
4406  */
4407 struct blk_mq_qe_pair {
4408 	struct list_head node;
4409 	struct request_queue *q;
4410 	struct elevator_type *type;
4411 };
4412 
4413 /*
4414  * Cache the elevator_type in qe pair list and switch the
4415  * io scheduler to 'none'
4416  */
4417 static bool blk_mq_elv_switch_none(struct list_head *head,
4418 		struct request_queue *q)
4419 {
4420 	struct blk_mq_qe_pair *qe;
4421 
4422 	if (!q->elevator)
4423 		return true;
4424 
4425 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4426 	if (!qe)
4427 		return false;
4428 
4429 	INIT_LIST_HEAD(&qe->node);
4430 	qe->q = q;
4431 	qe->type = q->elevator->type;
4432 	list_add(&qe->node, head);
4433 
4434 	mutex_lock(&q->sysfs_lock);
4435 	/*
4436 	 * After elevator_switch_mq, the previous elevator_queue will be
4437 	 * released by elevator_release. The reference of the io scheduler
4438 	 * module get by elevator_get will also be put. So we need to get
4439 	 * a reference of the io scheduler module here to prevent it to be
4440 	 * removed.
4441 	 */
4442 	__module_get(qe->type->elevator_owner);
4443 	elevator_switch_mq(q, NULL);
4444 	mutex_unlock(&q->sysfs_lock);
4445 
4446 	return true;
4447 }
4448 
4449 static void blk_mq_elv_switch_back(struct list_head *head,
4450 		struct request_queue *q)
4451 {
4452 	struct blk_mq_qe_pair *qe;
4453 	struct elevator_type *t = NULL;
4454 
4455 	list_for_each_entry(qe, head, node)
4456 		if (qe->q == q) {
4457 			t = qe->type;
4458 			break;
4459 		}
4460 
4461 	if (!t)
4462 		return;
4463 
4464 	list_del(&qe->node);
4465 	kfree(qe);
4466 
4467 	mutex_lock(&q->sysfs_lock);
4468 	elevator_switch_mq(q, t);
4469 	mutex_unlock(&q->sysfs_lock);
4470 }
4471 
4472 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4473 							int nr_hw_queues)
4474 {
4475 	struct request_queue *q;
4476 	LIST_HEAD(head);
4477 	int prev_nr_hw_queues;
4478 
4479 	lockdep_assert_held(&set->tag_list_lock);
4480 
4481 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4482 		nr_hw_queues = nr_cpu_ids;
4483 	if (nr_hw_queues < 1)
4484 		return;
4485 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4486 		return;
4487 
4488 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4489 		blk_mq_freeze_queue(q);
4490 	/*
4491 	 * Switch IO scheduler to 'none', cleaning up the data associated
4492 	 * with the previous scheduler. We will switch back once we are done
4493 	 * updating the new sw to hw queue mappings.
4494 	 */
4495 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4496 		if (!blk_mq_elv_switch_none(&head, q))
4497 			goto switch_back;
4498 
4499 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4500 		blk_mq_debugfs_unregister_hctxs(q);
4501 		blk_mq_sysfs_unregister(q);
4502 	}
4503 
4504 	prev_nr_hw_queues = set->nr_hw_queues;
4505 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4506 	    0)
4507 		goto reregister;
4508 
4509 	set->nr_hw_queues = nr_hw_queues;
4510 fallback:
4511 	blk_mq_update_queue_map(set);
4512 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4513 		blk_mq_realloc_hw_ctxs(set, q);
4514 		if (q->nr_hw_queues != set->nr_hw_queues) {
4515 			int i = prev_nr_hw_queues;
4516 
4517 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4518 					nr_hw_queues, prev_nr_hw_queues);
4519 			for (; i < set->nr_hw_queues; i++)
4520 				__blk_mq_free_map_and_rqs(set, i);
4521 
4522 			set->nr_hw_queues = prev_nr_hw_queues;
4523 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4524 			goto fallback;
4525 		}
4526 		blk_mq_map_swqueue(q);
4527 	}
4528 
4529 reregister:
4530 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4531 		blk_mq_sysfs_register(q);
4532 		blk_mq_debugfs_register_hctxs(q);
4533 	}
4534 
4535 switch_back:
4536 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4537 		blk_mq_elv_switch_back(&head, q);
4538 
4539 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4540 		blk_mq_unfreeze_queue(q);
4541 }
4542 
4543 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4544 {
4545 	mutex_lock(&set->tag_list_lock);
4546 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4547 	mutex_unlock(&set->tag_list_lock);
4548 }
4549 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4550 
4551 /* Enable polling stats and return whether they were already enabled. */
4552 static bool blk_poll_stats_enable(struct request_queue *q)
4553 {
4554 	if (q->poll_stat)
4555 		return true;
4556 
4557 	return blk_stats_alloc_enable(q);
4558 }
4559 
4560 static void blk_mq_poll_stats_start(struct request_queue *q)
4561 {
4562 	/*
4563 	 * We don't arm the callback if polling stats are not enabled or the
4564 	 * callback is already active.
4565 	 */
4566 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4567 		return;
4568 
4569 	blk_stat_activate_msecs(q->poll_cb, 100);
4570 }
4571 
4572 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4573 {
4574 	struct request_queue *q = cb->data;
4575 	int bucket;
4576 
4577 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4578 		if (cb->stat[bucket].nr_samples)
4579 			q->poll_stat[bucket] = cb->stat[bucket];
4580 	}
4581 }
4582 
4583 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4584 				       struct request *rq)
4585 {
4586 	unsigned long ret = 0;
4587 	int bucket;
4588 
4589 	/*
4590 	 * If stats collection isn't on, don't sleep but turn it on for
4591 	 * future users
4592 	 */
4593 	if (!blk_poll_stats_enable(q))
4594 		return 0;
4595 
4596 	/*
4597 	 * As an optimistic guess, use half of the mean service time
4598 	 * for this type of request. We can (and should) make this smarter.
4599 	 * For instance, if the completion latencies are tight, we can
4600 	 * get closer than just half the mean. This is especially
4601 	 * important on devices where the completion latencies are longer
4602 	 * than ~10 usec. We do use the stats for the relevant IO size
4603 	 * if available which does lead to better estimates.
4604 	 */
4605 	bucket = blk_mq_poll_stats_bkt(rq);
4606 	if (bucket < 0)
4607 		return ret;
4608 
4609 	if (q->poll_stat[bucket].nr_samples)
4610 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4611 
4612 	return ret;
4613 }
4614 
4615 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4616 {
4617 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4618 	struct request *rq = blk_qc_to_rq(hctx, qc);
4619 	struct hrtimer_sleeper hs;
4620 	enum hrtimer_mode mode;
4621 	unsigned int nsecs;
4622 	ktime_t kt;
4623 
4624 	/*
4625 	 * If a request has completed on queue that uses an I/O scheduler, we
4626 	 * won't get back a request from blk_qc_to_rq.
4627 	 */
4628 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4629 		return false;
4630 
4631 	/*
4632 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4633 	 *
4634 	 *  0:	use half of prev avg
4635 	 * >0:	use this specific value
4636 	 */
4637 	if (q->poll_nsec > 0)
4638 		nsecs = q->poll_nsec;
4639 	else
4640 		nsecs = blk_mq_poll_nsecs(q, rq);
4641 
4642 	if (!nsecs)
4643 		return false;
4644 
4645 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4646 
4647 	/*
4648 	 * This will be replaced with the stats tracking code, using
4649 	 * 'avg_completion_time / 2' as the pre-sleep target.
4650 	 */
4651 	kt = nsecs;
4652 
4653 	mode = HRTIMER_MODE_REL;
4654 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4655 	hrtimer_set_expires(&hs.timer, kt);
4656 
4657 	do {
4658 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4659 			break;
4660 		set_current_state(TASK_UNINTERRUPTIBLE);
4661 		hrtimer_sleeper_start_expires(&hs, mode);
4662 		if (hs.task)
4663 			io_schedule();
4664 		hrtimer_cancel(&hs.timer);
4665 		mode = HRTIMER_MODE_ABS;
4666 	} while (hs.task && !signal_pending(current));
4667 
4668 	__set_current_state(TASK_RUNNING);
4669 	destroy_hrtimer_on_stack(&hs.timer);
4670 
4671 	/*
4672 	 * If we sleep, have the caller restart the poll loop to reset the
4673 	 * state.  Like for the other success return cases, the caller is
4674 	 * responsible for checking if the IO completed.  If the IO isn't
4675 	 * complete, we'll get called again and will go straight to the busy
4676 	 * poll loop.
4677 	 */
4678 	return true;
4679 }
4680 
4681 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4682 			       struct io_comp_batch *iob, unsigned int flags)
4683 {
4684 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4685 	long state = get_current_state();
4686 	int ret;
4687 
4688 	do {
4689 		ret = q->mq_ops->poll(hctx, iob);
4690 		if (ret > 0) {
4691 			__set_current_state(TASK_RUNNING);
4692 			return ret;
4693 		}
4694 
4695 		if (signal_pending_state(state, current))
4696 			__set_current_state(TASK_RUNNING);
4697 		if (task_is_running(current))
4698 			return 1;
4699 
4700 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4701 			break;
4702 		cpu_relax();
4703 	} while (!need_resched());
4704 
4705 	__set_current_state(TASK_RUNNING);
4706 	return 0;
4707 }
4708 
4709 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4710 		unsigned int flags)
4711 {
4712 	if (!(flags & BLK_POLL_NOSLEEP) &&
4713 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4714 		if (blk_mq_poll_hybrid(q, cookie))
4715 			return 1;
4716 	}
4717 	return blk_mq_poll_classic(q, cookie, iob, flags);
4718 }
4719 
4720 unsigned int blk_mq_rq_cpu(struct request *rq)
4721 {
4722 	return rq->mq_ctx->cpu;
4723 }
4724 EXPORT_SYMBOL(blk_mq_rq_cpu);
4725 
4726 void blk_mq_cancel_work_sync(struct request_queue *q)
4727 {
4728 	if (queue_is_mq(q)) {
4729 		struct blk_mq_hw_ctx *hctx;
4730 		int i;
4731 
4732 		cancel_delayed_work_sync(&q->requeue_work);
4733 
4734 		queue_for_each_hw_ctx(q, hctx, i)
4735 			cancel_delayed_work_sync(&hctx->run_work);
4736 	}
4737 }
4738 
4739 static int __init blk_mq_init(void)
4740 {
4741 	int i;
4742 
4743 	for_each_possible_cpu(i)
4744 		init_llist_head(&per_cpu(blk_cpu_done, i));
4745 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4746 
4747 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4748 				  "block/softirq:dead", NULL,
4749 				  blk_softirq_cpu_dead);
4750 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4751 				blk_mq_hctx_notify_dead);
4752 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4753 				blk_mq_hctx_notify_online,
4754 				blk_mq_hctx_notify_offline);
4755 	return 0;
4756 }
4757 subsys_initcall(blk_mq_init);
4758