1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static void blk_mq_poll_stats_start(struct request_queue *q); 41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 42 43 static int blk_mq_poll_stats_bkt(const struct request *rq) 44 { 45 int ddir, bytes, bucket; 46 47 ddir = rq_data_dir(rq); 48 bytes = blk_rq_bytes(rq); 49 50 bucket = ddir + 2*(ilog2(bytes) - 9); 51 52 if (bucket < 0) 53 return -1; 54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 56 57 return bucket; 58 } 59 60 /* 61 * Check if any of the ctx's have pending work in this hardware queue 62 */ 63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 64 { 65 return sbitmap_any_bit_set(&hctx->ctx_map) || 66 !list_empty_careful(&hctx->dispatch) || 67 blk_mq_sched_has_work(hctx); 68 } 69 70 /* 71 * Mark this ctx as having pending work in this hardware queue 72 */ 73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 74 struct blk_mq_ctx *ctx) 75 { 76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 78 } 79 80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 84 } 85 86 void blk_freeze_queue_start(struct request_queue *q) 87 { 88 int freeze_depth; 89 90 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 91 if (freeze_depth == 1) { 92 percpu_ref_kill(&q->q_usage_counter); 93 blk_mq_run_hw_queues(q, false); 94 } 95 } 96 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 97 98 void blk_mq_freeze_queue_wait(struct request_queue *q) 99 { 100 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 101 } 102 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 103 104 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 105 unsigned long timeout) 106 { 107 return wait_event_timeout(q->mq_freeze_wq, 108 percpu_ref_is_zero(&q->q_usage_counter), 109 timeout); 110 } 111 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 112 113 /* 114 * Guarantee no request is in use, so we can change any data structure of 115 * the queue afterward. 116 */ 117 void blk_freeze_queue(struct request_queue *q) 118 { 119 /* 120 * In the !blk_mq case we are only calling this to kill the 121 * q_usage_counter, otherwise this increases the freeze depth 122 * and waits for it to return to zero. For this reason there is 123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 124 * exported to drivers as the only user for unfreeze is blk_mq. 125 */ 126 blk_freeze_queue_start(q); 127 blk_mq_freeze_queue_wait(q); 128 } 129 130 void blk_mq_freeze_queue(struct request_queue *q) 131 { 132 /* 133 * ...just an alias to keep freeze and unfreeze actions balanced 134 * in the blk_mq_* namespace 135 */ 136 blk_freeze_queue(q); 137 } 138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 139 140 void blk_mq_unfreeze_queue(struct request_queue *q) 141 { 142 int freeze_depth; 143 144 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 145 WARN_ON_ONCE(freeze_depth < 0); 146 if (!freeze_depth) { 147 percpu_ref_reinit(&q->q_usage_counter); 148 wake_up_all(&q->mq_freeze_wq); 149 } 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 152 153 /* 154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 155 * mpt3sas driver such that this function can be removed. 156 */ 157 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 158 { 159 unsigned long flags; 160 161 spin_lock_irqsave(q->queue_lock, flags); 162 queue_flag_set(QUEUE_FLAG_QUIESCED, q); 163 spin_unlock_irqrestore(q->queue_lock, flags); 164 } 165 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 166 167 /** 168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 169 * @q: request queue. 170 * 171 * Note: this function does not prevent that the struct request end_io() 172 * callback function is invoked. Once this function is returned, we make 173 * sure no dispatch can happen until the queue is unquiesced via 174 * blk_mq_unquiesce_queue(). 175 */ 176 void blk_mq_quiesce_queue(struct request_queue *q) 177 { 178 struct blk_mq_hw_ctx *hctx; 179 unsigned int i; 180 bool rcu = false; 181 182 blk_mq_quiesce_queue_nowait(q); 183 184 queue_for_each_hw_ctx(q, hctx, i) { 185 if (hctx->flags & BLK_MQ_F_BLOCKING) 186 synchronize_srcu(hctx->queue_rq_srcu); 187 else 188 rcu = true; 189 } 190 if (rcu) 191 synchronize_rcu(); 192 } 193 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 194 195 /* 196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 197 * @q: request queue. 198 * 199 * This function recovers queue into the state before quiescing 200 * which is done by blk_mq_quiesce_queue. 201 */ 202 void blk_mq_unquiesce_queue(struct request_queue *q) 203 { 204 unsigned long flags; 205 206 spin_lock_irqsave(q->queue_lock, flags); 207 queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 208 spin_unlock_irqrestore(q->queue_lock, flags); 209 210 /* dispatch requests which are inserted during quiescing */ 211 blk_mq_run_hw_queues(q, true); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 214 215 void blk_mq_wake_waiters(struct request_queue *q) 216 { 217 struct blk_mq_hw_ctx *hctx; 218 unsigned int i; 219 220 queue_for_each_hw_ctx(q, hctx, i) 221 if (blk_mq_hw_queue_mapped(hctx)) 222 blk_mq_tag_wakeup_all(hctx->tags, true); 223 224 /* 225 * If we are called because the queue has now been marked as 226 * dying, we need to ensure that processes currently waiting on 227 * the queue are notified as well. 228 */ 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 232 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 233 { 234 return blk_mq_has_free_tags(hctx->tags); 235 } 236 EXPORT_SYMBOL(blk_mq_can_queue); 237 238 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 239 unsigned int tag, unsigned int op) 240 { 241 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 242 struct request *rq = tags->static_rqs[tag]; 243 244 rq->rq_flags = 0; 245 246 if (data->flags & BLK_MQ_REQ_INTERNAL) { 247 rq->tag = -1; 248 rq->internal_tag = tag; 249 } else { 250 if (blk_mq_tag_busy(data->hctx)) { 251 rq->rq_flags = RQF_MQ_INFLIGHT; 252 atomic_inc(&data->hctx->nr_active); 253 } 254 rq->tag = tag; 255 rq->internal_tag = -1; 256 data->hctx->tags->rqs[rq->tag] = rq; 257 } 258 259 INIT_LIST_HEAD(&rq->queuelist); 260 /* csd/requeue_work/fifo_time is initialized before use */ 261 rq->q = data->q; 262 rq->mq_ctx = data->ctx; 263 rq->cmd_flags = op; 264 if (blk_queue_io_stat(data->q)) 265 rq->rq_flags |= RQF_IO_STAT; 266 /* do not touch atomic flags, it needs atomic ops against the timer */ 267 rq->cpu = -1; 268 INIT_HLIST_NODE(&rq->hash); 269 RB_CLEAR_NODE(&rq->rb_node); 270 rq->rq_disk = NULL; 271 rq->part = NULL; 272 rq->start_time = jiffies; 273 #ifdef CONFIG_BLK_CGROUP 274 rq->rl = NULL; 275 set_start_time_ns(rq); 276 rq->io_start_time_ns = 0; 277 #endif 278 rq->nr_phys_segments = 0; 279 #if defined(CONFIG_BLK_DEV_INTEGRITY) 280 rq->nr_integrity_segments = 0; 281 #endif 282 rq->special = NULL; 283 /* tag was already set */ 284 rq->extra_len = 0; 285 286 INIT_LIST_HEAD(&rq->timeout_list); 287 rq->timeout = 0; 288 289 rq->end_io = NULL; 290 rq->end_io_data = NULL; 291 rq->next_rq = NULL; 292 293 data->ctx->rq_dispatched[op_is_sync(op)]++; 294 return rq; 295 } 296 297 static struct request *blk_mq_get_request(struct request_queue *q, 298 struct bio *bio, unsigned int op, 299 struct blk_mq_alloc_data *data) 300 { 301 struct elevator_queue *e = q->elevator; 302 struct request *rq; 303 unsigned int tag; 304 struct blk_mq_ctx *local_ctx = NULL; 305 306 blk_queue_enter_live(q); 307 data->q = q; 308 if (likely(!data->ctx)) 309 data->ctx = local_ctx = blk_mq_get_ctx(q); 310 if (likely(!data->hctx)) 311 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 312 if (op & REQ_NOWAIT) 313 data->flags |= BLK_MQ_REQ_NOWAIT; 314 315 if (e) { 316 data->flags |= BLK_MQ_REQ_INTERNAL; 317 318 /* 319 * Flush requests are special and go directly to the 320 * dispatch list. 321 */ 322 if (!op_is_flush(op) && e->type->ops.mq.limit_depth) 323 e->type->ops.mq.limit_depth(op, data); 324 } 325 326 tag = blk_mq_get_tag(data); 327 if (tag == BLK_MQ_TAG_FAIL) { 328 if (local_ctx) { 329 blk_mq_put_ctx(local_ctx); 330 data->ctx = NULL; 331 } 332 blk_queue_exit(q); 333 return NULL; 334 } 335 336 rq = blk_mq_rq_ctx_init(data, tag, op); 337 if (!op_is_flush(op)) { 338 rq->elv.icq = NULL; 339 if (e && e->type->ops.mq.prepare_request) { 340 if (e->type->icq_cache && rq_ioc(bio)) 341 blk_mq_sched_assign_ioc(rq, bio); 342 343 e->type->ops.mq.prepare_request(rq, bio); 344 rq->rq_flags |= RQF_ELVPRIV; 345 } 346 } 347 data->hctx->queued++; 348 return rq; 349 } 350 351 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 352 unsigned int flags) 353 { 354 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 355 struct request *rq; 356 int ret; 357 358 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 359 if (ret) 360 return ERR_PTR(ret); 361 362 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 363 blk_queue_exit(q); 364 365 if (!rq) 366 return ERR_PTR(-EWOULDBLOCK); 367 368 blk_mq_put_ctx(alloc_data.ctx); 369 370 rq->__data_len = 0; 371 rq->__sector = (sector_t) -1; 372 rq->bio = rq->biotail = NULL; 373 return rq; 374 } 375 EXPORT_SYMBOL(blk_mq_alloc_request); 376 377 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 378 unsigned int op, unsigned int flags, unsigned int hctx_idx) 379 { 380 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 381 struct request *rq; 382 unsigned int cpu; 383 int ret; 384 385 /* 386 * If the tag allocator sleeps we could get an allocation for a 387 * different hardware context. No need to complicate the low level 388 * allocator for this for the rare use case of a command tied to 389 * a specific queue. 390 */ 391 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 392 return ERR_PTR(-EINVAL); 393 394 if (hctx_idx >= q->nr_hw_queues) 395 return ERR_PTR(-EIO); 396 397 ret = blk_queue_enter(q, true); 398 if (ret) 399 return ERR_PTR(ret); 400 401 /* 402 * Check if the hardware context is actually mapped to anything. 403 * If not tell the caller that it should skip this queue. 404 */ 405 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 406 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 407 blk_queue_exit(q); 408 return ERR_PTR(-EXDEV); 409 } 410 cpu = cpumask_first(alloc_data.hctx->cpumask); 411 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 412 413 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 414 blk_queue_exit(q); 415 416 if (!rq) 417 return ERR_PTR(-EWOULDBLOCK); 418 419 return rq; 420 } 421 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 422 423 void blk_mq_free_request(struct request *rq) 424 { 425 struct request_queue *q = rq->q; 426 struct elevator_queue *e = q->elevator; 427 struct blk_mq_ctx *ctx = rq->mq_ctx; 428 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 429 const int sched_tag = rq->internal_tag; 430 431 if (rq->rq_flags & RQF_ELVPRIV) { 432 if (e && e->type->ops.mq.finish_request) 433 e->type->ops.mq.finish_request(rq); 434 if (rq->elv.icq) { 435 put_io_context(rq->elv.icq->ioc); 436 rq->elv.icq = NULL; 437 } 438 } 439 440 ctx->rq_completed[rq_is_sync(rq)]++; 441 if (rq->rq_flags & RQF_MQ_INFLIGHT) 442 atomic_dec(&hctx->nr_active); 443 444 wbt_done(q->rq_wb, &rq->issue_stat); 445 446 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 447 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 448 if (rq->tag != -1) 449 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 450 if (sched_tag != -1) 451 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 452 blk_mq_sched_restart(hctx); 453 blk_queue_exit(q); 454 } 455 EXPORT_SYMBOL_GPL(blk_mq_free_request); 456 457 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 458 { 459 blk_account_io_done(rq); 460 461 if (rq->end_io) { 462 wbt_done(rq->q->rq_wb, &rq->issue_stat); 463 rq->end_io(rq, error); 464 } else { 465 if (unlikely(blk_bidi_rq(rq))) 466 blk_mq_free_request(rq->next_rq); 467 blk_mq_free_request(rq); 468 } 469 } 470 EXPORT_SYMBOL(__blk_mq_end_request); 471 472 void blk_mq_end_request(struct request *rq, blk_status_t error) 473 { 474 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 475 BUG(); 476 __blk_mq_end_request(rq, error); 477 } 478 EXPORT_SYMBOL(blk_mq_end_request); 479 480 static void __blk_mq_complete_request_remote(void *data) 481 { 482 struct request *rq = data; 483 484 rq->q->softirq_done_fn(rq); 485 } 486 487 static void __blk_mq_complete_request(struct request *rq) 488 { 489 struct blk_mq_ctx *ctx = rq->mq_ctx; 490 bool shared = false; 491 int cpu; 492 493 if (rq->internal_tag != -1) 494 blk_mq_sched_completed_request(rq); 495 if (rq->rq_flags & RQF_STATS) { 496 blk_mq_poll_stats_start(rq->q); 497 blk_stat_add(rq); 498 } 499 500 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 501 rq->q->softirq_done_fn(rq); 502 return; 503 } 504 505 cpu = get_cpu(); 506 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 507 shared = cpus_share_cache(cpu, ctx->cpu); 508 509 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 510 rq->csd.func = __blk_mq_complete_request_remote; 511 rq->csd.info = rq; 512 rq->csd.flags = 0; 513 smp_call_function_single_async(ctx->cpu, &rq->csd); 514 } else { 515 rq->q->softirq_done_fn(rq); 516 } 517 put_cpu(); 518 } 519 520 /** 521 * blk_mq_complete_request - end I/O on a request 522 * @rq: the request being processed 523 * 524 * Description: 525 * Ends all I/O on a request. It does not handle partial completions. 526 * The actual completion happens out-of-order, through a IPI handler. 527 **/ 528 void blk_mq_complete_request(struct request *rq) 529 { 530 struct request_queue *q = rq->q; 531 532 if (unlikely(blk_should_fake_timeout(q))) 533 return; 534 if (!blk_mark_rq_complete(rq)) 535 __blk_mq_complete_request(rq); 536 } 537 EXPORT_SYMBOL(blk_mq_complete_request); 538 539 int blk_mq_request_started(struct request *rq) 540 { 541 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 542 } 543 EXPORT_SYMBOL_GPL(blk_mq_request_started); 544 545 void blk_mq_start_request(struct request *rq) 546 { 547 struct request_queue *q = rq->q; 548 549 blk_mq_sched_started_request(rq); 550 551 trace_block_rq_issue(q, rq); 552 553 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 554 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq)); 555 rq->rq_flags |= RQF_STATS; 556 wbt_issue(q->rq_wb, &rq->issue_stat); 557 } 558 559 blk_add_timer(rq); 560 561 /* 562 * Ensure that ->deadline is visible before set the started 563 * flag and clear the completed flag. 564 */ 565 smp_mb__before_atomic(); 566 567 /* 568 * Mark us as started and clear complete. Complete might have been 569 * set if requeue raced with timeout, which then marked it as 570 * complete. So be sure to clear complete again when we start 571 * the request, otherwise we'll ignore the completion event. 572 */ 573 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 574 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 575 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 576 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 577 578 if (q->dma_drain_size && blk_rq_bytes(rq)) { 579 /* 580 * Make sure space for the drain appears. We know we can do 581 * this because max_hw_segments has been adjusted to be one 582 * fewer than the device can handle. 583 */ 584 rq->nr_phys_segments++; 585 } 586 } 587 EXPORT_SYMBOL(blk_mq_start_request); 588 589 /* 590 * When we reach here because queue is busy, REQ_ATOM_COMPLETE 591 * flag isn't set yet, so there may be race with timeout handler, 592 * but given rq->deadline is just set in .queue_rq() under 593 * this situation, the race won't be possible in reality because 594 * rq->timeout should be set as big enough to cover the window 595 * between blk_mq_start_request() called from .queue_rq() and 596 * clearing REQ_ATOM_STARTED here. 597 */ 598 static void __blk_mq_requeue_request(struct request *rq) 599 { 600 struct request_queue *q = rq->q; 601 602 trace_block_rq_requeue(q, rq); 603 wbt_requeue(q->rq_wb, &rq->issue_stat); 604 blk_mq_sched_requeue_request(rq); 605 606 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 607 if (q->dma_drain_size && blk_rq_bytes(rq)) 608 rq->nr_phys_segments--; 609 } 610 } 611 612 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 613 { 614 __blk_mq_requeue_request(rq); 615 616 BUG_ON(blk_queued_rq(rq)); 617 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 618 } 619 EXPORT_SYMBOL(blk_mq_requeue_request); 620 621 static void blk_mq_requeue_work(struct work_struct *work) 622 { 623 struct request_queue *q = 624 container_of(work, struct request_queue, requeue_work.work); 625 LIST_HEAD(rq_list); 626 struct request *rq, *next; 627 unsigned long flags; 628 629 spin_lock_irqsave(&q->requeue_lock, flags); 630 list_splice_init(&q->requeue_list, &rq_list); 631 spin_unlock_irqrestore(&q->requeue_lock, flags); 632 633 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 634 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 635 continue; 636 637 rq->rq_flags &= ~RQF_SOFTBARRIER; 638 list_del_init(&rq->queuelist); 639 blk_mq_sched_insert_request(rq, true, false, false, true); 640 } 641 642 while (!list_empty(&rq_list)) { 643 rq = list_entry(rq_list.next, struct request, queuelist); 644 list_del_init(&rq->queuelist); 645 blk_mq_sched_insert_request(rq, false, false, false, true); 646 } 647 648 blk_mq_run_hw_queues(q, false); 649 } 650 651 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 652 bool kick_requeue_list) 653 { 654 struct request_queue *q = rq->q; 655 unsigned long flags; 656 657 /* 658 * We abuse this flag that is otherwise used by the I/O scheduler to 659 * request head insertation from the workqueue. 660 */ 661 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 662 663 spin_lock_irqsave(&q->requeue_lock, flags); 664 if (at_head) { 665 rq->rq_flags |= RQF_SOFTBARRIER; 666 list_add(&rq->queuelist, &q->requeue_list); 667 } else { 668 list_add_tail(&rq->queuelist, &q->requeue_list); 669 } 670 spin_unlock_irqrestore(&q->requeue_lock, flags); 671 672 if (kick_requeue_list) 673 blk_mq_kick_requeue_list(q); 674 } 675 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 676 677 void blk_mq_kick_requeue_list(struct request_queue *q) 678 { 679 kblockd_schedule_delayed_work(&q->requeue_work, 0); 680 } 681 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 682 683 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 684 unsigned long msecs) 685 { 686 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 687 msecs_to_jiffies(msecs)); 688 } 689 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 690 691 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 692 { 693 if (tag < tags->nr_tags) { 694 prefetch(tags->rqs[tag]); 695 return tags->rqs[tag]; 696 } 697 698 return NULL; 699 } 700 EXPORT_SYMBOL(blk_mq_tag_to_rq); 701 702 struct blk_mq_timeout_data { 703 unsigned long next; 704 unsigned int next_set; 705 }; 706 707 void blk_mq_rq_timed_out(struct request *req, bool reserved) 708 { 709 const struct blk_mq_ops *ops = req->q->mq_ops; 710 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 711 712 /* 713 * We know that complete is set at this point. If STARTED isn't set 714 * anymore, then the request isn't active and the "timeout" should 715 * just be ignored. This can happen due to the bitflag ordering. 716 * Timeout first checks if STARTED is set, and if it is, assumes 717 * the request is active. But if we race with completion, then 718 * both flags will get cleared. So check here again, and ignore 719 * a timeout event with a request that isn't active. 720 */ 721 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 722 return; 723 724 if (ops->timeout) 725 ret = ops->timeout(req, reserved); 726 727 switch (ret) { 728 case BLK_EH_HANDLED: 729 __blk_mq_complete_request(req); 730 break; 731 case BLK_EH_RESET_TIMER: 732 blk_add_timer(req); 733 blk_clear_rq_complete(req); 734 break; 735 case BLK_EH_NOT_HANDLED: 736 break; 737 default: 738 printk(KERN_ERR "block: bad eh return: %d\n", ret); 739 break; 740 } 741 } 742 743 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 744 struct request *rq, void *priv, bool reserved) 745 { 746 struct blk_mq_timeout_data *data = priv; 747 748 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 749 return; 750 751 /* 752 * The rq being checked may have been freed and reallocated 753 * out already here, we avoid this race by checking rq->deadline 754 * and REQ_ATOM_COMPLETE flag together: 755 * 756 * - if rq->deadline is observed as new value because of 757 * reusing, the rq won't be timed out because of timing. 758 * - if rq->deadline is observed as previous value, 759 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path 760 * because we put a barrier between setting rq->deadline 761 * and clearing the flag in blk_mq_start_request(), so 762 * this rq won't be timed out too. 763 */ 764 if (time_after_eq(jiffies, rq->deadline)) { 765 if (!blk_mark_rq_complete(rq)) 766 blk_mq_rq_timed_out(rq, reserved); 767 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 768 data->next = rq->deadline; 769 data->next_set = 1; 770 } 771 } 772 773 static void blk_mq_timeout_work(struct work_struct *work) 774 { 775 struct request_queue *q = 776 container_of(work, struct request_queue, timeout_work); 777 struct blk_mq_timeout_data data = { 778 .next = 0, 779 .next_set = 0, 780 }; 781 int i; 782 783 /* A deadlock might occur if a request is stuck requiring a 784 * timeout at the same time a queue freeze is waiting 785 * completion, since the timeout code would not be able to 786 * acquire the queue reference here. 787 * 788 * That's why we don't use blk_queue_enter here; instead, we use 789 * percpu_ref_tryget directly, because we need to be able to 790 * obtain a reference even in the short window between the queue 791 * starting to freeze, by dropping the first reference in 792 * blk_freeze_queue_start, and the moment the last request is 793 * consumed, marked by the instant q_usage_counter reaches 794 * zero. 795 */ 796 if (!percpu_ref_tryget(&q->q_usage_counter)) 797 return; 798 799 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 800 801 if (data.next_set) { 802 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 803 mod_timer(&q->timeout, data.next); 804 } else { 805 struct blk_mq_hw_ctx *hctx; 806 807 queue_for_each_hw_ctx(q, hctx, i) { 808 /* the hctx may be unmapped, so check it here */ 809 if (blk_mq_hw_queue_mapped(hctx)) 810 blk_mq_tag_idle(hctx); 811 } 812 } 813 blk_queue_exit(q); 814 } 815 816 struct flush_busy_ctx_data { 817 struct blk_mq_hw_ctx *hctx; 818 struct list_head *list; 819 }; 820 821 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 822 { 823 struct flush_busy_ctx_data *flush_data = data; 824 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 825 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 826 827 sbitmap_clear_bit(sb, bitnr); 828 spin_lock(&ctx->lock); 829 list_splice_tail_init(&ctx->rq_list, flush_data->list); 830 spin_unlock(&ctx->lock); 831 return true; 832 } 833 834 /* 835 * Process software queues that have been marked busy, splicing them 836 * to the for-dispatch 837 */ 838 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 839 { 840 struct flush_busy_ctx_data data = { 841 .hctx = hctx, 842 .list = list, 843 }; 844 845 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 846 } 847 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 848 849 static inline unsigned int queued_to_index(unsigned int queued) 850 { 851 if (!queued) 852 return 0; 853 854 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 855 } 856 857 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 858 bool wait) 859 { 860 struct blk_mq_alloc_data data = { 861 .q = rq->q, 862 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 863 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 864 }; 865 866 might_sleep_if(wait); 867 868 if (rq->tag != -1) 869 goto done; 870 871 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 872 data.flags |= BLK_MQ_REQ_RESERVED; 873 874 rq->tag = blk_mq_get_tag(&data); 875 if (rq->tag >= 0) { 876 if (blk_mq_tag_busy(data.hctx)) { 877 rq->rq_flags |= RQF_MQ_INFLIGHT; 878 atomic_inc(&data.hctx->nr_active); 879 } 880 data.hctx->tags->rqs[rq->tag] = rq; 881 } 882 883 done: 884 if (hctx) 885 *hctx = data.hctx; 886 return rq->tag != -1; 887 } 888 889 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 890 struct request *rq) 891 { 892 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 893 rq->tag = -1; 894 895 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 896 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 897 atomic_dec(&hctx->nr_active); 898 } 899 } 900 901 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx, 902 struct request *rq) 903 { 904 if (rq->tag == -1 || rq->internal_tag == -1) 905 return; 906 907 __blk_mq_put_driver_tag(hctx, rq); 908 } 909 910 static void blk_mq_put_driver_tag(struct request *rq) 911 { 912 struct blk_mq_hw_ctx *hctx; 913 914 if (rq->tag == -1 || rq->internal_tag == -1) 915 return; 916 917 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 918 __blk_mq_put_driver_tag(hctx, rq); 919 } 920 921 /* 922 * If we fail getting a driver tag because all the driver tags are already 923 * assigned and on the dispatch list, BUT the first entry does not have a 924 * tag, then we could deadlock. For that case, move entries with assigned 925 * driver tags to the front, leaving the set of tagged requests in the 926 * same order, and the untagged set in the same order. 927 */ 928 static bool reorder_tags_to_front(struct list_head *list) 929 { 930 struct request *rq, *tmp, *first = NULL; 931 932 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 933 if (rq == first) 934 break; 935 if (rq->tag != -1) { 936 list_move(&rq->queuelist, list); 937 if (!first) 938 first = rq; 939 } 940 } 941 942 return first != NULL; 943 } 944 945 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 946 void *key) 947 { 948 struct blk_mq_hw_ctx *hctx; 949 950 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 951 952 list_del(&wait->entry); 953 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state); 954 blk_mq_run_hw_queue(hctx, true); 955 return 1; 956 } 957 958 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx) 959 { 960 struct sbq_wait_state *ws; 961 962 /* 963 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait. 964 * The thread which wins the race to grab this bit adds the hardware 965 * queue to the wait queue. 966 */ 967 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) || 968 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state)) 969 return false; 970 971 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 972 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx); 973 974 /* 975 * As soon as this returns, it's no longer safe to fiddle with 976 * hctx->dispatch_wait, since a completion can wake up the wait queue 977 * and unlock the bit. 978 */ 979 add_wait_queue(&ws->wait, &hctx->dispatch_wait); 980 return true; 981 } 982 983 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list) 984 { 985 struct blk_mq_hw_ctx *hctx; 986 struct request *rq; 987 int errors, queued; 988 989 if (list_empty(list)) 990 return false; 991 992 /* 993 * Now process all the entries, sending them to the driver. 994 */ 995 errors = queued = 0; 996 do { 997 struct blk_mq_queue_data bd; 998 blk_status_t ret; 999 1000 rq = list_first_entry(list, struct request, queuelist); 1001 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 1002 if (!queued && reorder_tags_to_front(list)) 1003 continue; 1004 1005 /* 1006 * The initial allocation attempt failed, so we need to 1007 * rerun the hardware queue when a tag is freed. 1008 */ 1009 if (!blk_mq_dispatch_wait_add(hctx)) 1010 break; 1011 1012 /* 1013 * It's possible that a tag was freed in the window 1014 * between the allocation failure and adding the 1015 * hardware queue to the wait queue. 1016 */ 1017 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1018 break; 1019 } 1020 1021 list_del_init(&rq->queuelist); 1022 1023 bd.rq = rq; 1024 1025 /* 1026 * Flag last if we have no more requests, or if we have more 1027 * but can't assign a driver tag to it. 1028 */ 1029 if (list_empty(list)) 1030 bd.last = true; 1031 else { 1032 struct request *nxt; 1033 1034 nxt = list_first_entry(list, struct request, queuelist); 1035 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1036 } 1037 1038 ret = q->mq_ops->queue_rq(hctx, &bd); 1039 if (ret == BLK_STS_RESOURCE) { 1040 blk_mq_put_driver_tag_hctx(hctx, rq); 1041 list_add(&rq->queuelist, list); 1042 __blk_mq_requeue_request(rq); 1043 break; 1044 } 1045 1046 if (unlikely(ret != BLK_STS_OK)) { 1047 errors++; 1048 blk_mq_end_request(rq, BLK_STS_IOERR); 1049 continue; 1050 } 1051 1052 queued++; 1053 } while (!list_empty(list)); 1054 1055 hctx->dispatched[queued_to_index(queued)]++; 1056 1057 /* 1058 * Any items that need requeuing? Stuff them into hctx->dispatch, 1059 * that is where we will continue on next queue run. 1060 */ 1061 if (!list_empty(list)) { 1062 /* 1063 * If an I/O scheduler has been configured and we got a driver 1064 * tag for the next request already, free it again. 1065 */ 1066 rq = list_first_entry(list, struct request, queuelist); 1067 blk_mq_put_driver_tag(rq); 1068 1069 spin_lock(&hctx->lock); 1070 list_splice_init(list, &hctx->dispatch); 1071 spin_unlock(&hctx->lock); 1072 1073 /* 1074 * If SCHED_RESTART was set by the caller of this function and 1075 * it is no longer set that means that it was cleared by another 1076 * thread and hence that a queue rerun is needed. 1077 * 1078 * If TAG_WAITING is set that means that an I/O scheduler has 1079 * been configured and another thread is waiting for a driver 1080 * tag. To guarantee fairness, do not rerun this hardware queue 1081 * but let the other thread grab the driver tag. 1082 * 1083 * If no I/O scheduler has been configured it is possible that 1084 * the hardware queue got stopped and restarted before requests 1085 * were pushed back onto the dispatch list. Rerun the queue to 1086 * avoid starvation. Notes: 1087 * - blk_mq_run_hw_queue() checks whether or not a queue has 1088 * been stopped before rerunning a queue. 1089 * - Some but not all block drivers stop a queue before 1090 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1091 * and dm-rq. 1092 */ 1093 if (!blk_mq_sched_needs_restart(hctx) && 1094 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) 1095 blk_mq_run_hw_queue(hctx, true); 1096 } 1097 1098 return (queued + errors) != 0; 1099 } 1100 1101 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1102 { 1103 int srcu_idx; 1104 1105 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1106 cpu_online(hctx->next_cpu)); 1107 1108 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1109 rcu_read_lock(); 1110 blk_mq_sched_dispatch_requests(hctx); 1111 rcu_read_unlock(); 1112 } else { 1113 might_sleep(); 1114 1115 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu); 1116 blk_mq_sched_dispatch_requests(hctx); 1117 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx); 1118 } 1119 } 1120 1121 /* 1122 * It'd be great if the workqueue API had a way to pass 1123 * in a mask and had some smarts for more clever placement. 1124 * For now we just round-robin here, switching for every 1125 * BLK_MQ_CPU_WORK_BATCH queued items. 1126 */ 1127 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1128 { 1129 if (hctx->queue->nr_hw_queues == 1) 1130 return WORK_CPU_UNBOUND; 1131 1132 if (--hctx->next_cpu_batch <= 0) { 1133 int next_cpu; 1134 1135 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1136 if (next_cpu >= nr_cpu_ids) 1137 next_cpu = cpumask_first(hctx->cpumask); 1138 1139 hctx->next_cpu = next_cpu; 1140 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1141 } 1142 1143 return hctx->next_cpu; 1144 } 1145 1146 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1147 unsigned long msecs) 1148 { 1149 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1150 return; 1151 1152 if (unlikely(blk_mq_hctx_stopped(hctx))) 1153 return; 1154 1155 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1156 int cpu = get_cpu(); 1157 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1158 __blk_mq_run_hw_queue(hctx); 1159 put_cpu(); 1160 return; 1161 } 1162 1163 put_cpu(); 1164 } 1165 1166 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1167 &hctx->run_work, 1168 msecs_to_jiffies(msecs)); 1169 } 1170 1171 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1172 { 1173 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1174 } 1175 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1176 1177 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1178 { 1179 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1180 } 1181 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1182 1183 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1184 { 1185 struct blk_mq_hw_ctx *hctx; 1186 int i; 1187 1188 queue_for_each_hw_ctx(q, hctx, i) { 1189 if (!blk_mq_hctx_has_pending(hctx) || 1190 blk_mq_hctx_stopped(hctx)) 1191 continue; 1192 1193 blk_mq_run_hw_queue(hctx, async); 1194 } 1195 } 1196 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1197 1198 /** 1199 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1200 * @q: request queue. 1201 * 1202 * The caller is responsible for serializing this function against 1203 * blk_mq_{start,stop}_hw_queue(). 1204 */ 1205 bool blk_mq_queue_stopped(struct request_queue *q) 1206 { 1207 struct blk_mq_hw_ctx *hctx; 1208 int i; 1209 1210 queue_for_each_hw_ctx(q, hctx, i) 1211 if (blk_mq_hctx_stopped(hctx)) 1212 return true; 1213 1214 return false; 1215 } 1216 EXPORT_SYMBOL(blk_mq_queue_stopped); 1217 1218 /* 1219 * This function is often used for pausing .queue_rq() by driver when 1220 * there isn't enough resource or some conditions aren't satisfied, and 1221 * BLK_MQ_RQ_QUEUE_BUSY is usually returned. 1222 * 1223 * We do not guarantee that dispatch can be drained or blocked 1224 * after blk_mq_stop_hw_queue() returns. Please use 1225 * blk_mq_quiesce_queue() for that requirement. 1226 */ 1227 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1228 { 1229 cancel_delayed_work(&hctx->run_work); 1230 1231 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1232 } 1233 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1234 1235 /* 1236 * This function is often used for pausing .queue_rq() by driver when 1237 * there isn't enough resource or some conditions aren't satisfied, and 1238 * BLK_MQ_RQ_QUEUE_BUSY is usually returned. 1239 * 1240 * We do not guarantee that dispatch can be drained or blocked 1241 * after blk_mq_stop_hw_queues() returns. Please use 1242 * blk_mq_quiesce_queue() for that requirement. 1243 */ 1244 void blk_mq_stop_hw_queues(struct request_queue *q) 1245 { 1246 struct blk_mq_hw_ctx *hctx; 1247 int i; 1248 1249 queue_for_each_hw_ctx(q, hctx, i) 1250 blk_mq_stop_hw_queue(hctx); 1251 } 1252 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1253 1254 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1255 { 1256 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1257 1258 blk_mq_run_hw_queue(hctx, false); 1259 } 1260 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1261 1262 void blk_mq_start_hw_queues(struct request_queue *q) 1263 { 1264 struct blk_mq_hw_ctx *hctx; 1265 int i; 1266 1267 queue_for_each_hw_ctx(q, hctx, i) 1268 blk_mq_start_hw_queue(hctx); 1269 } 1270 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1271 1272 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1273 { 1274 if (!blk_mq_hctx_stopped(hctx)) 1275 return; 1276 1277 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1278 blk_mq_run_hw_queue(hctx, async); 1279 } 1280 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1281 1282 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1283 { 1284 struct blk_mq_hw_ctx *hctx; 1285 int i; 1286 1287 queue_for_each_hw_ctx(q, hctx, i) 1288 blk_mq_start_stopped_hw_queue(hctx, async); 1289 } 1290 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1291 1292 static void blk_mq_run_work_fn(struct work_struct *work) 1293 { 1294 struct blk_mq_hw_ctx *hctx; 1295 1296 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1297 1298 /* 1299 * If we are stopped, don't run the queue. The exception is if 1300 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear 1301 * the STOPPED bit and run it. 1302 */ 1303 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) { 1304 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state)) 1305 return; 1306 1307 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1308 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1309 } 1310 1311 __blk_mq_run_hw_queue(hctx); 1312 } 1313 1314 1315 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1316 { 1317 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1318 return; 1319 1320 /* 1321 * Stop the hw queue, then modify currently delayed work. 1322 * This should prevent us from running the queue prematurely. 1323 * Mark the queue as auto-clearing STOPPED when it runs. 1324 */ 1325 blk_mq_stop_hw_queue(hctx); 1326 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1327 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1328 &hctx->run_work, 1329 msecs_to_jiffies(msecs)); 1330 } 1331 EXPORT_SYMBOL(blk_mq_delay_queue); 1332 1333 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1334 struct request *rq, 1335 bool at_head) 1336 { 1337 struct blk_mq_ctx *ctx = rq->mq_ctx; 1338 1339 lockdep_assert_held(&ctx->lock); 1340 1341 trace_block_rq_insert(hctx->queue, rq); 1342 1343 if (at_head) 1344 list_add(&rq->queuelist, &ctx->rq_list); 1345 else 1346 list_add_tail(&rq->queuelist, &ctx->rq_list); 1347 } 1348 1349 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1350 bool at_head) 1351 { 1352 struct blk_mq_ctx *ctx = rq->mq_ctx; 1353 1354 lockdep_assert_held(&ctx->lock); 1355 1356 __blk_mq_insert_req_list(hctx, rq, at_head); 1357 blk_mq_hctx_mark_pending(hctx, ctx); 1358 } 1359 1360 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1361 struct list_head *list) 1362 1363 { 1364 /* 1365 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1366 * offline now 1367 */ 1368 spin_lock(&ctx->lock); 1369 while (!list_empty(list)) { 1370 struct request *rq; 1371 1372 rq = list_first_entry(list, struct request, queuelist); 1373 BUG_ON(rq->mq_ctx != ctx); 1374 list_del_init(&rq->queuelist); 1375 __blk_mq_insert_req_list(hctx, rq, false); 1376 } 1377 blk_mq_hctx_mark_pending(hctx, ctx); 1378 spin_unlock(&ctx->lock); 1379 } 1380 1381 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1382 { 1383 struct request *rqa = container_of(a, struct request, queuelist); 1384 struct request *rqb = container_of(b, struct request, queuelist); 1385 1386 return !(rqa->mq_ctx < rqb->mq_ctx || 1387 (rqa->mq_ctx == rqb->mq_ctx && 1388 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1389 } 1390 1391 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1392 { 1393 struct blk_mq_ctx *this_ctx; 1394 struct request_queue *this_q; 1395 struct request *rq; 1396 LIST_HEAD(list); 1397 LIST_HEAD(ctx_list); 1398 unsigned int depth; 1399 1400 list_splice_init(&plug->mq_list, &list); 1401 1402 list_sort(NULL, &list, plug_ctx_cmp); 1403 1404 this_q = NULL; 1405 this_ctx = NULL; 1406 depth = 0; 1407 1408 while (!list_empty(&list)) { 1409 rq = list_entry_rq(list.next); 1410 list_del_init(&rq->queuelist); 1411 BUG_ON(!rq->q); 1412 if (rq->mq_ctx != this_ctx) { 1413 if (this_ctx) { 1414 trace_block_unplug(this_q, depth, from_schedule); 1415 blk_mq_sched_insert_requests(this_q, this_ctx, 1416 &ctx_list, 1417 from_schedule); 1418 } 1419 1420 this_ctx = rq->mq_ctx; 1421 this_q = rq->q; 1422 depth = 0; 1423 } 1424 1425 depth++; 1426 list_add_tail(&rq->queuelist, &ctx_list); 1427 } 1428 1429 /* 1430 * If 'this_ctx' is set, we know we have entries to complete 1431 * on 'ctx_list'. Do those. 1432 */ 1433 if (this_ctx) { 1434 trace_block_unplug(this_q, depth, from_schedule); 1435 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1436 from_schedule); 1437 } 1438 } 1439 1440 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1441 { 1442 blk_init_request_from_bio(rq, bio); 1443 1444 blk_account_io_start(rq, true); 1445 } 1446 1447 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1448 { 1449 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1450 !blk_queue_nomerges(hctx->queue); 1451 } 1452 1453 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx, 1454 struct blk_mq_ctx *ctx, 1455 struct request *rq) 1456 { 1457 spin_lock(&ctx->lock); 1458 __blk_mq_insert_request(hctx, rq, false); 1459 spin_unlock(&ctx->lock); 1460 } 1461 1462 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1463 { 1464 if (rq->tag != -1) 1465 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1466 1467 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1468 } 1469 1470 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1471 struct request *rq, 1472 blk_qc_t *cookie, bool may_sleep) 1473 { 1474 struct request_queue *q = rq->q; 1475 struct blk_mq_queue_data bd = { 1476 .rq = rq, 1477 .last = true, 1478 }; 1479 blk_qc_t new_cookie; 1480 blk_status_t ret; 1481 bool run_queue = true; 1482 1483 /* RCU or SRCU read lock is needed before checking quiesced flag */ 1484 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1485 run_queue = false; 1486 goto insert; 1487 } 1488 1489 if (q->elevator) 1490 goto insert; 1491 1492 if (!blk_mq_get_driver_tag(rq, NULL, false)) 1493 goto insert; 1494 1495 new_cookie = request_to_qc_t(hctx, rq); 1496 1497 /* 1498 * For OK queue, we are done. For error, kill it. Any other 1499 * error (busy), just add it to our list as we previously 1500 * would have done 1501 */ 1502 ret = q->mq_ops->queue_rq(hctx, &bd); 1503 switch (ret) { 1504 case BLK_STS_OK: 1505 *cookie = new_cookie; 1506 return; 1507 case BLK_STS_RESOURCE: 1508 __blk_mq_requeue_request(rq); 1509 goto insert; 1510 default: 1511 *cookie = BLK_QC_T_NONE; 1512 blk_mq_end_request(rq, ret); 1513 return; 1514 } 1515 1516 insert: 1517 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep); 1518 } 1519 1520 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1521 struct request *rq, blk_qc_t *cookie) 1522 { 1523 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1524 rcu_read_lock(); 1525 __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1526 rcu_read_unlock(); 1527 } else { 1528 unsigned int srcu_idx; 1529 1530 might_sleep(); 1531 1532 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu); 1533 __blk_mq_try_issue_directly(hctx, rq, cookie, true); 1534 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx); 1535 } 1536 } 1537 1538 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1539 { 1540 const int is_sync = op_is_sync(bio->bi_opf); 1541 const int is_flush_fua = op_is_flush(bio->bi_opf); 1542 struct blk_mq_alloc_data data = { .flags = 0 }; 1543 struct request *rq; 1544 unsigned int request_count = 0; 1545 struct blk_plug *plug; 1546 struct request *same_queue_rq = NULL; 1547 blk_qc_t cookie; 1548 unsigned int wb_acct; 1549 1550 blk_queue_bounce(q, &bio); 1551 1552 blk_queue_split(q, &bio); 1553 1554 if (!bio_integrity_prep(bio)) 1555 return BLK_QC_T_NONE; 1556 1557 if (!is_flush_fua && !blk_queue_nomerges(q) && 1558 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1559 return BLK_QC_T_NONE; 1560 1561 if (blk_mq_sched_bio_merge(q, bio)) 1562 return BLK_QC_T_NONE; 1563 1564 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1565 1566 trace_block_getrq(q, bio, bio->bi_opf); 1567 1568 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1569 if (unlikely(!rq)) { 1570 __wbt_done(q->rq_wb, wb_acct); 1571 if (bio->bi_opf & REQ_NOWAIT) 1572 bio_wouldblock_error(bio); 1573 return BLK_QC_T_NONE; 1574 } 1575 1576 wbt_track(&rq->issue_stat, wb_acct); 1577 1578 cookie = request_to_qc_t(data.hctx, rq); 1579 1580 plug = current->plug; 1581 if (unlikely(is_flush_fua)) { 1582 blk_mq_put_ctx(data.ctx); 1583 blk_mq_bio_to_request(rq, bio); 1584 if (q->elevator) { 1585 blk_mq_sched_insert_request(rq, false, true, true, 1586 true); 1587 } else { 1588 blk_insert_flush(rq); 1589 blk_mq_run_hw_queue(data.hctx, true); 1590 } 1591 } else if (plug && q->nr_hw_queues == 1) { 1592 struct request *last = NULL; 1593 1594 blk_mq_put_ctx(data.ctx); 1595 blk_mq_bio_to_request(rq, bio); 1596 1597 /* 1598 * @request_count may become stale because of schedule 1599 * out, so check the list again. 1600 */ 1601 if (list_empty(&plug->mq_list)) 1602 request_count = 0; 1603 else if (blk_queue_nomerges(q)) 1604 request_count = blk_plug_queued_count(q); 1605 1606 if (!request_count) 1607 trace_block_plug(q); 1608 else 1609 last = list_entry_rq(plug->mq_list.prev); 1610 1611 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1612 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1613 blk_flush_plug_list(plug, false); 1614 trace_block_plug(q); 1615 } 1616 1617 list_add_tail(&rq->queuelist, &plug->mq_list); 1618 } else if (plug && !blk_queue_nomerges(q)) { 1619 blk_mq_bio_to_request(rq, bio); 1620 1621 /* 1622 * We do limited plugging. If the bio can be merged, do that. 1623 * Otherwise the existing request in the plug list will be 1624 * issued. So the plug list will have one request at most 1625 * The plug list might get flushed before this. If that happens, 1626 * the plug list is empty, and same_queue_rq is invalid. 1627 */ 1628 if (list_empty(&plug->mq_list)) 1629 same_queue_rq = NULL; 1630 if (same_queue_rq) 1631 list_del_init(&same_queue_rq->queuelist); 1632 list_add_tail(&rq->queuelist, &plug->mq_list); 1633 1634 blk_mq_put_ctx(data.ctx); 1635 1636 if (same_queue_rq) { 1637 data.hctx = blk_mq_map_queue(q, 1638 same_queue_rq->mq_ctx->cpu); 1639 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1640 &cookie); 1641 } 1642 } else if (q->nr_hw_queues > 1 && is_sync) { 1643 blk_mq_put_ctx(data.ctx); 1644 blk_mq_bio_to_request(rq, bio); 1645 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1646 } else if (q->elevator) { 1647 blk_mq_put_ctx(data.ctx); 1648 blk_mq_bio_to_request(rq, bio); 1649 blk_mq_sched_insert_request(rq, false, true, true, true); 1650 } else { 1651 blk_mq_put_ctx(data.ctx); 1652 blk_mq_bio_to_request(rq, bio); 1653 blk_mq_queue_io(data.hctx, data.ctx, rq); 1654 blk_mq_run_hw_queue(data.hctx, true); 1655 } 1656 1657 return cookie; 1658 } 1659 1660 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1661 unsigned int hctx_idx) 1662 { 1663 struct page *page; 1664 1665 if (tags->rqs && set->ops->exit_request) { 1666 int i; 1667 1668 for (i = 0; i < tags->nr_tags; i++) { 1669 struct request *rq = tags->static_rqs[i]; 1670 1671 if (!rq) 1672 continue; 1673 set->ops->exit_request(set, rq, hctx_idx); 1674 tags->static_rqs[i] = NULL; 1675 } 1676 } 1677 1678 while (!list_empty(&tags->page_list)) { 1679 page = list_first_entry(&tags->page_list, struct page, lru); 1680 list_del_init(&page->lru); 1681 /* 1682 * Remove kmemleak object previously allocated in 1683 * blk_mq_init_rq_map(). 1684 */ 1685 kmemleak_free(page_address(page)); 1686 __free_pages(page, page->private); 1687 } 1688 } 1689 1690 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1691 { 1692 kfree(tags->rqs); 1693 tags->rqs = NULL; 1694 kfree(tags->static_rqs); 1695 tags->static_rqs = NULL; 1696 1697 blk_mq_free_tags(tags); 1698 } 1699 1700 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1701 unsigned int hctx_idx, 1702 unsigned int nr_tags, 1703 unsigned int reserved_tags) 1704 { 1705 struct blk_mq_tags *tags; 1706 int node; 1707 1708 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1709 if (node == NUMA_NO_NODE) 1710 node = set->numa_node; 1711 1712 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1713 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1714 if (!tags) 1715 return NULL; 1716 1717 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1718 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1719 node); 1720 if (!tags->rqs) { 1721 blk_mq_free_tags(tags); 1722 return NULL; 1723 } 1724 1725 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1726 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1727 node); 1728 if (!tags->static_rqs) { 1729 kfree(tags->rqs); 1730 blk_mq_free_tags(tags); 1731 return NULL; 1732 } 1733 1734 return tags; 1735 } 1736 1737 static size_t order_to_size(unsigned int order) 1738 { 1739 return (size_t)PAGE_SIZE << order; 1740 } 1741 1742 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1743 unsigned int hctx_idx, unsigned int depth) 1744 { 1745 unsigned int i, j, entries_per_page, max_order = 4; 1746 size_t rq_size, left; 1747 int node; 1748 1749 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1750 if (node == NUMA_NO_NODE) 1751 node = set->numa_node; 1752 1753 INIT_LIST_HEAD(&tags->page_list); 1754 1755 /* 1756 * rq_size is the size of the request plus driver payload, rounded 1757 * to the cacheline size 1758 */ 1759 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1760 cache_line_size()); 1761 left = rq_size * depth; 1762 1763 for (i = 0; i < depth; ) { 1764 int this_order = max_order; 1765 struct page *page; 1766 int to_do; 1767 void *p; 1768 1769 while (this_order && left < order_to_size(this_order - 1)) 1770 this_order--; 1771 1772 do { 1773 page = alloc_pages_node(node, 1774 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1775 this_order); 1776 if (page) 1777 break; 1778 if (!this_order--) 1779 break; 1780 if (order_to_size(this_order) < rq_size) 1781 break; 1782 } while (1); 1783 1784 if (!page) 1785 goto fail; 1786 1787 page->private = this_order; 1788 list_add_tail(&page->lru, &tags->page_list); 1789 1790 p = page_address(page); 1791 /* 1792 * Allow kmemleak to scan these pages as they contain pointers 1793 * to additional allocations like via ops->init_request(). 1794 */ 1795 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1796 entries_per_page = order_to_size(this_order) / rq_size; 1797 to_do = min(entries_per_page, depth - i); 1798 left -= to_do * rq_size; 1799 for (j = 0; j < to_do; j++) { 1800 struct request *rq = p; 1801 1802 tags->static_rqs[i] = rq; 1803 if (set->ops->init_request) { 1804 if (set->ops->init_request(set, rq, hctx_idx, 1805 node)) { 1806 tags->static_rqs[i] = NULL; 1807 goto fail; 1808 } 1809 } 1810 1811 p += rq_size; 1812 i++; 1813 } 1814 } 1815 return 0; 1816 1817 fail: 1818 blk_mq_free_rqs(set, tags, hctx_idx); 1819 return -ENOMEM; 1820 } 1821 1822 /* 1823 * 'cpu' is going away. splice any existing rq_list entries from this 1824 * software queue to the hw queue dispatch list, and ensure that it 1825 * gets run. 1826 */ 1827 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1828 { 1829 struct blk_mq_hw_ctx *hctx; 1830 struct blk_mq_ctx *ctx; 1831 LIST_HEAD(tmp); 1832 1833 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1834 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1835 1836 spin_lock(&ctx->lock); 1837 if (!list_empty(&ctx->rq_list)) { 1838 list_splice_init(&ctx->rq_list, &tmp); 1839 blk_mq_hctx_clear_pending(hctx, ctx); 1840 } 1841 spin_unlock(&ctx->lock); 1842 1843 if (list_empty(&tmp)) 1844 return 0; 1845 1846 spin_lock(&hctx->lock); 1847 list_splice_tail_init(&tmp, &hctx->dispatch); 1848 spin_unlock(&hctx->lock); 1849 1850 blk_mq_run_hw_queue(hctx, true); 1851 return 0; 1852 } 1853 1854 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1855 { 1856 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1857 &hctx->cpuhp_dead); 1858 } 1859 1860 /* hctx->ctxs will be freed in queue's release handler */ 1861 static void blk_mq_exit_hctx(struct request_queue *q, 1862 struct blk_mq_tag_set *set, 1863 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1864 { 1865 blk_mq_debugfs_unregister_hctx(hctx); 1866 1867 blk_mq_tag_idle(hctx); 1868 1869 if (set->ops->exit_request) 1870 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 1871 1872 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 1873 1874 if (set->ops->exit_hctx) 1875 set->ops->exit_hctx(hctx, hctx_idx); 1876 1877 if (hctx->flags & BLK_MQ_F_BLOCKING) 1878 cleanup_srcu_struct(hctx->queue_rq_srcu); 1879 1880 blk_mq_remove_cpuhp(hctx); 1881 blk_free_flush_queue(hctx->fq); 1882 sbitmap_free(&hctx->ctx_map); 1883 } 1884 1885 static void blk_mq_exit_hw_queues(struct request_queue *q, 1886 struct blk_mq_tag_set *set, int nr_queue) 1887 { 1888 struct blk_mq_hw_ctx *hctx; 1889 unsigned int i; 1890 1891 queue_for_each_hw_ctx(q, hctx, i) { 1892 if (i == nr_queue) 1893 break; 1894 blk_mq_exit_hctx(q, set, hctx, i); 1895 } 1896 } 1897 1898 static int blk_mq_init_hctx(struct request_queue *q, 1899 struct blk_mq_tag_set *set, 1900 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1901 { 1902 int node; 1903 1904 node = hctx->numa_node; 1905 if (node == NUMA_NO_NODE) 1906 node = hctx->numa_node = set->numa_node; 1907 1908 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1909 spin_lock_init(&hctx->lock); 1910 INIT_LIST_HEAD(&hctx->dispatch); 1911 hctx->queue = q; 1912 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1913 1914 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1915 1916 hctx->tags = set->tags[hctx_idx]; 1917 1918 /* 1919 * Allocate space for all possible cpus to avoid allocation at 1920 * runtime 1921 */ 1922 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1923 GFP_KERNEL, node); 1924 if (!hctx->ctxs) 1925 goto unregister_cpu_notifier; 1926 1927 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1928 node)) 1929 goto free_ctxs; 1930 1931 hctx->nr_ctx = 0; 1932 1933 if (set->ops->init_hctx && 1934 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1935 goto free_bitmap; 1936 1937 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 1938 goto exit_hctx; 1939 1940 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1941 if (!hctx->fq) 1942 goto sched_exit_hctx; 1943 1944 if (set->ops->init_request && 1945 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx, 1946 node)) 1947 goto free_fq; 1948 1949 if (hctx->flags & BLK_MQ_F_BLOCKING) 1950 init_srcu_struct(hctx->queue_rq_srcu); 1951 1952 blk_mq_debugfs_register_hctx(q, hctx); 1953 1954 return 0; 1955 1956 free_fq: 1957 kfree(hctx->fq); 1958 sched_exit_hctx: 1959 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 1960 exit_hctx: 1961 if (set->ops->exit_hctx) 1962 set->ops->exit_hctx(hctx, hctx_idx); 1963 free_bitmap: 1964 sbitmap_free(&hctx->ctx_map); 1965 free_ctxs: 1966 kfree(hctx->ctxs); 1967 unregister_cpu_notifier: 1968 blk_mq_remove_cpuhp(hctx); 1969 return -1; 1970 } 1971 1972 static void blk_mq_init_cpu_queues(struct request_queue *q, 1973 unsigned int nr_hw_queues) 1974 { 1975 unsigned int i; 1976 1977 for_each_possible_cpu(i) { 1978 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1979 struct blk_mq_hw_ctx *hctx; 1980 1981 __ctx->cpu = i; 1982 spin_lock_init(&__ctx->lock); 1983 INIT_LIST_HEAD(&__ctx->rq_list); 1984 __ctx->queue = q; 1985 1986 /* If the cpu isn't present, the cpu is mapped to first hctx */ 1987 if (!cpu_present(i)) 1988 continue; 1989 1990 hctx = blk_mq_map_queue(q, i); 1991 1992 /* 1993 * Set local node, IFF we have more than one hw queue. If 1994 * not, we remain on the home node of the device 1995 */ 1996 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1997 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1998 } 1999 } 2000 2001 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2002 { 2003 int ret = 0; 2004 2005 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2006 set->queue_depth, set->reserved_tags); 2007 if (!set->tags[hctx_idx]) 2008 return false; 2009 2010 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2011 set->queue_depth); 2012 if (!ret) 2013 return true; 2014 2015 blk_mq_free_rq_map(set->tags[hctx_idx]); 2016 set->tags[hctx_idx] = NULL; 2017 return false; 2018 } 2019 2020 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2021 unsigned int hctx_idx) 2022 { 2023 if (set->tags[hctx_idx]) { 2024 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2025 blk_mq_free_rq_map(set->tags[hctx_idx]); 2026 set->tags[hctx_idx] = NULL; 2027 } 2028 } 2029 2030 static void blk_mq_map_swqueue(struct request_queue *q) 2031 { 2032 unsigned int i, hctx_idx; 2033 struct blk_mq_hw_ctx *hctx; 2034 struct blk_mq_ctx *ctx; 2035 struct blk_mq_tag_set *set = q->tag_set; 2036 2037 /* 2038 * Avoid others reading imcomplete hctx->cpumask through sysfs 2039 */ 2040 mutex_lock(&q->sysfs_lock); 2041 2042 queue_for_each_hw_ctx(q, hctx, i) { 2043 cpumask_clear(hctx->cpumask); 2044 hctx->nr_ctx = 0; 2045 } 2046 2047 /* 2048 * Map software to hardware queues. 2049 * 2050 * If the cpu isn't present, the cpu is mapped to first hctx. 2051 */ 2052 for_each_present_cpu(i) { 2053 hctx_idx = q->mq_map[i]; 2054 /* unmapped hw queue can be remapped after CPU topo changed */ 2055 if (!set->tags[hctx_idx] && 2056 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2057 /* 2058 * If tags initialization fail for some hctx, 2059 * that hctx won't be brought online. In this 2060 * case, remap the current ctx to hctx[0] which 2061 * is guaranteed to always have tags allocated 2062 */ 2063 q->mq_map[i] = 0; 2064 } 2065 2066 ctx = per_cpu_ptr(q->queue_ctx, i); 2067 hctx = blk_mq_map_queue(q, i); 2068 2069 cpumask_set_cpu(i, hctx->cpumask); 2070 ctx->index_hw = hctx->nr_ctx; 2071 hctx->ctxs[hctx->nr_ctx++] = ctx; 2072 } 2073 2074 mutex_unlock(&q->sysfs_lock); 2075 2076 queue_for_each_hw_ctx(q, hctx, i) { 2077 /* 2078 * If no software queues are mapped to this hardware queue, 2079 * disable it and free the request entries. 2080 */ 2081 if (!hctx->nr_ctx) { 2082 /* Never unmap queue 0. We need it as a 2083 * fallback in case of a new remap fails 2084 * allocation 2085 */ 2086 if (i && set->tags[i]) 2087 blk_mq_free_map_and_requests(set, i); 2088 2089 hctx->tags = NULL; 2090 continue; 2091 } 2092 2093 hctx->tags = set->tags[i]; 2094 WARN_ON(!hctx->tags); 2095 2096 /* 2097 * Set the map size to the number of mapped software queues. 2098 * This is more accurate and more efficient than looping 2099 * over all possibly mapped software queues. 2100 */ 2101 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2102 2103 /* 2104 * Initialize batch roundrobin counts 2105 */ 2106 hctx->next_cpu = cpumask_first(hctx->cpumask); 2107 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2108 } 2109 } 2110 2111 /* 2112 * Caller needs to ensure that we're either frozen/quiesced, or that 2113 * the queue isn't live yet. 2114 */ 2115 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2116 { 2117 struct blk_mq_hw_ctx *hctx; 2118 int i; 2119 2120 queue_for_each_hw_ctx(q, hctx, i) { 2121 if (shared) { 2122 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2123 atomic_inc(&q->shared_hctx_restart); 2124 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2125 } else { 2126 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2127 atomic_dec(&q->shared_hctx_restart); 2128 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2129 } 2130 } 2131 } 2132 2133 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2134 bool shared) 2135 { 2136 struct request_queue *q; 2137 2138 lockdep_assert_held(&set->tag_list_lock); 2139 2140 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2141 blk_mq_freeze_queue(q); 2142 queue_set_hctx_shared(q, shared); 2143 blk_mq_unfreeze_queue(q); 2144 } 2145 } 2146 2147 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2148 { 2149 struct blk_mq_tag_set *set = q->tag_set; 2150 2151 mutex_lock(&set->tag_list_lock); 2152 list_del_rcu(&q->tag_set_list); 2153 INIT_LIST_HEAD(&q->tag_set_list); 2154 if (list_is_singular(&set->tag_list)) { 2155 /* just transitioned to unshared */ 2156 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2157 /* update existing queue */ 2158 blk_mq_update_tag_set_depth(set, false); 2159 } 2160 mutex_unlock(&set->tag_list_lock); 2161 2162 synchronize_rcu(); 2163 } 2164 2165 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2166 struct request_queue *q) 2167 { 2168 q->tag_set = set; 2169 2170 mutex_lock(&set->tag_list_lock); 2171 2172 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2173 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2174 set->flags |= BLK_MQ_F_TAG_SHARED; 2175 /* update existing queue */ 2176 blk_mq_update_tag_set_depth(set, true); 2177 } 2178 if (set->flags & BLK_MQ_F_TAG_SHARED) 2179 queue_set_hctx_shared(q, true); 2180 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2181 2182 mutex_unlock(&set->tag_list_lock); 2183 } 2184 2185 /* 2186 * It is the actual release handler for mq, but we do it from 2187 * request queue's release handler for avoiding use-after-free 2188 * and headache because q->mq_kobj shouldn't have been introduced, 2189 * but we can't group ctx/kctx kobj without it. 2190 */ 2191 void blk_mq_release(struct request_queue *q) 2192 { 2193 struct blk_mq_hw_ctx *hctx; 2194 unsigned int i; 2195 2196 /* hctx kobj stays in hctx */ 2197 queue_for_each_hw_ctx(q, hctx, i) { 2198 if (!hctx) 2199 continue; 2200 kobject_put(&hctx->kobj); 2201 } 2202 2203 q->mq_map = NULL; 2204 2205 kfree(q->queue_hw_ctx); 2206 2207 /* 2208 * release .mq_kobj and sw queue's kobject now because 2209 * both share lifetime with request queue. 2210 */ 2211 blk_mq_sysfs_deinit(q); 2212 2213 free_percpu(q->queue_ctx); 2214 } 2215 2216 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2217 { 2218 struct request_queue *uninit_q, *q; 2219 2220 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2221 if (!uninit_q) 2222 return ERR_PTR(-ENOMEM); 2223 2224 q = blk_mq_init_allocated_queue(set, uninit_q); 2225 if (IS_ERR(q)) 2226 blk_cleanup_queue(uninit_q); 2227 2228 return q; 2229 } 2230 EXPORT_SYMBOL(blk_mq_init_queue); 2231 2232 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2233 { 2234 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2235 2236 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu), 2237 __alignof__(struct blk_mq_hw_ctx)) != 2238 sizeof(struct blk_mq_hw_ctx)); 2239 2240 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2241 hw_ctx_size += sizeof(struct srcu_struct); 2242 2243 return hw_ctx_size; 2244 } 2245 2246 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2247 struct request_queue *q) 2248 { 2249 int i, j; 2250 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2251 2252 blk_mq_sysfs_unregister(q); 2253 for (i = 0; i < set->nr_hw_queues; i++) { 2254 int node; 2255 2256 if (hctxs[i]) 2257 continue; 2258 2259 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2260 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2261 GFP_KERNEL, node); 2262 if (!hctxs[i]) 2263 break; 2264 2265 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2266 node)) { 2267 kfree(hctxs[i]); 2268 hctxs[i] = NULL; 2269 break; 2270 } 2271 2272 atomic_set(&hctxs[i]->nr_active, 0); 2273 hctxs[i]->numa_node = node; 2274 hctxs[i]->queue_num = i; 2275 2276 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2277 free_cpumask_var(hctxs[i]->cpumask); 2278 kfree(hctxs[i]); 2279 hctxs[i] = NULL; 2280 break; 2281 } 2282 blk_mq_hctx_kobj_init(hctxs[i]); 2283 } 2284 for (j = i; j < q->nr_hw_queues; j++) { 2285 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2286 2287 if (hctx) { 2288 if (hctx->tags) 2289 blk_mq_free_map_and_requests(set, j); 2290 blk_mq_exit_hctx(q, set, hctx, j); 2291 kobject_put(&hctx->kobj); 2292 hctxs[j] = NULL; 2293 2294 } 2295 } 2296 q->nr_hw_queues = i; 2297 blk_mq_sysfs_register(q); 2298 } 2299 2300 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2301 struct request_queue *q) 2302 { 2303 /* mark the queue as mq asap */ 2304 q->mq_ops = set->ops; 2305 2306 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2307 blk_mq_poll_stats_bkt, 2308 BLK_MQ_POLL_STATS_BKTS, q); 2309 if (!q->poll_cb) 2310 goto err_exit; 2311 2312 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2313 if (!q->queue_ctx) 2314 goto err_exit; 2315 2316 /* init q->mq_kobj and sw queues' kobjects */ 2317 blk_mq_sysfs_init(q); 2318 2319 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2320 GFP_KERNEL, set->numa_node); 2321 if (!q->queue_hw_ctx) 2322 goto err_percpu; 2323 2324 q->mq_map = set->mq_map; 2325 2326 blk_mq_realloc_hw_ctxs(set, q); 2327 if (!q->nr_hw_queues) 2328 goto err_hctxs; 2329 2330 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2331 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2332 2333 q->nr_queues = nr_cpu_ids; 2334 2335 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2336 2337 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2338 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2339 2340 q->sg_reserved_size = INT_MAX; 2341 2342 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2343 INIT_LIST_HEAD(&q->requeue_list); 2344 spin_lock_init(&q->requeue_lock); 2345 2346 blk_queue_make_request(q, blk_mq_make_request); 2347 2348 /* 2349 * Do this after blk_queue_make_request() overrides it... 2350 */ 2351 q->nr_requests = set->queue_depth; 2352 2353 /* 2354 * Default to classic polling 2355 */ 2356 q->poll_nsec = -1; 2357 2358 if (set->ops->complete) 2359 blk_queue_softirq_done(q, set->ops->complete); 2360 2361 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2362 blk_mq_add_queue_tag_set(set, q); 2363 blk_mq_map_swqueue(q); 2364 2365 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2366 int ret; 2367 2368 ret = blk_mq_sched_init(q); 2369 if (ret) 2370 return ERR_PTR(ret); 2371 } 2372 2373 return q; 2374 2375 err_hctxs: 2376 kfree(q->queue_hw_ctx); 2377 err_percpu: 2378 free_percpu(q->queue_ctx); 2379 err_exit: 2380 q->mq_ops = NULL; 2381 return ERR_PTR(-ENOMEM); 2382 } 2383 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2384 2385 void blk_mq_free_queue(struct request_queue *q) 2386 { 2387 struct blk_mq_tag_set *set = q->tag_set; 2388 2389 blk_mq_del_queue_tag_set(q); 2390 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2391 } 2392 2393 /* Basically redo blk_mq_init_queue with queue frozen */ 2394 static void blk_mq_queue_reinit(struct request_queue *q) 2395 { 2396 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2397 2398 blk_mq_debugfs_unregister_hctxs(q); 2399 blk_mq_sysfs_unregister(q); 2400 2401 /* 2402 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2403 * we should change hctx numa_node according to new topology (this 2404 * involves free and re-allocate memory, worthy doing?) 2405 */ 2406 2407 blk_mq_map_swqueue(q); 2408 2409 blk_mq_sysfs_register(q); 2410 blk_mq_debugfs_register_hctxs(q); 2411 } 2412 2413 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2414 { 2415 int i; 2416 2417 for (i = 0; i < set->nr_hw_queues; i++) 2418 if (!__blk_mq_alloc_rq_map(set, i)) 2419 goto out_unwind; 2420 2421 return 0; 2422 2423 out_unwind: 2424 while (--i >= 0) 2425 blk_mq_free_rq_map(set->tags[i]); 2426 2427 return -ENOMEM; 2428 } 2429 2430 /* 2431 * Allocate the request maps associated with this tag_set. Note that this 2432 * may reduce the depth asked for, if memory is tight. set->queue_depth 2433 * will be updated to reflect the allocated depth. 2434 */ 2435 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2436 { 2437 unsigned int depth; 2438 int err; 2439 2440 depth = set->queue_depth; 2441 do { 2442 err = __blk_mq_alloc_rq_maps(set); 2443 if (!err) 2444 break; 2445 2446 set->queue_depth >>= 1; 2447 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2448 err = -ENOMEM; 2449 break; 2450 } 2451 } while (set->queue_depth); 2452 2453 if (!set->queue_depth || err) { 2454 pr_err("blk-mq: failed to allocate request map\n"); 2455 return -ENOMEM; 2456 } 2457 2458 if (depth != set->queue_depth) 2459 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2460 depth, set->queue_depth); 2461 2462 return 0; 2463 } 2464 2465 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2466 { 2467 if (set->ops->map_queues) 2468 return set->ops->map_queues(set); 2469 else 2470 return blk_mq_map_queues(set); 2471 } 2472 2473 /* 2474 * Alloc a tag set to be associated with one or more request queues. 2475 * May fail with EINVAL for various error conditions. May adjust the 2476 * requested depth down, if if it too large. In that case, the set 2477 * value will be stored in set->queue_depth. 2478 */ 2479 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2480 { 2481 int ret; 2482 2483 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2484 2485 if (!set->nr_hw_queues) 2486 return -EINVAL; 2487 if (!set->queue_depth) 2488 return -EINVAL; 2489 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2490 return -EINVAL; 2491 2492 if (!set->ops->queue_rq) 2493 return -EINVAL; 2494 2495 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2496 pr_info("blk-mq: reduced tag depth to %u\n", 2497 BLK_MQ_MAX_DEPTH); 2498 set->queue_depth = BLK_MQ_MAX_DEPTH; 2499 } 2500 2501 /* 2502 * If a crashdump is active, then we are potentially in a very 2503 * memory constrained environment. Limit us to 1 queue and 2504 * 64 tags to prevent using too much memory. 2505 */ 2506 if (is_kdump_kernel()) { 2507 set->nr_hw_queues = 1; 2508 set->queue_depth = min(64U, set->queue_depth); 2509 } 2510 /* 2511 * There is no use for more h/w queues than cpus. 2512 */ 2513 if (set->nr_hw_queues > nr_cpu_ids) 2514 set->nr_hw_queues = nr_cpu_ids; 2515 2516 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2517 GFP_KERNEL, set->numa_node); 2518 if (!set->tags) 2519 return -ENOMEM; 2520 2521 ret = -ENOMEM; 2522 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2523 GFP_KERNEL, set->numa_node); 2524 if (!set->mq_map) 2525 goto out_free_tags; 2526 2527 ret = blk_mq_update_queue_map(set); 2528 if (ret) 2529 goto out_free_mq_map; 2530 2531 ret = blk_mq_alloc_rq_maps(set); 2532 if (ret) 2533 goto out_free_mq_map; 2534 2535 mutex_init(&set->tag_list_lock); 2536 INIT_LIST_HEAD(&set->tag_list); 2537 2538 return 0; 2539 2540 out_free_mq_map: 2541 kfree(set->mq_map); 2542 set->mq_map = NULL; 2543 out_free_tags: 2544 kfree(set->tags); 2545 set->tags = NULL; 2546 return ret; 2547 } 2548 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2549 2550 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2551 { 2552 int i; 2553 2554 for (i = 0; i < nr_cpu_ids; i++) 2555 blk_mq_free_map_and_requests(set, i); 2556 2557 kfree(set->mq_map); 2558 set->mq_map = NULL; 2559 2560 kfree(set->tags); 2561 set->tags = NULL; 2562 } 2563 EXPORT_SYMBOL(blk_mq_free_tag_set); 2564 2565 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2566 { 2567 struct blk_mq_tag_set *set = q->tag_set; 2568 struct blk_mq_hw_ctx *hctx; 2569 int i, ret; 2570 2571 if (!set) 2572 return -EINVAL; 2573 2574 blk_mq_freeze_queue(q); 2575 2576 ret = 0; 2577 queue_for_each_hw_ctx(q, hctx, i) { 2578 if (!hctx->tags) 2579 continue; 2580 /* 2581 * If we're using an MQ scheduler, just update the scheduler 2582 * queue depth. This is similar to what the old code would do. 2583 */ 2584 if (!hctx->sched_tags) { 2585 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, 2586 min(nr, set->queue_depth), 2587 false); 2588 } else { 2589 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2590 nr, true); 2591 } 2592 if (ret) 2593 break; 2594 } 2595 2596 if (!ret) 2597 q->nr_requests = nr; 2598 2599 blk_mq_unfreeze_queue(q); 2600 2601 return ret; 2602 } 2603 2604 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2605 int nr_hw_queues) 2606 { 2607 struct request_queue *q; 2608 2609 lockdep_assert_held(&set->tag_list_lock); 2610 2611 if (nr_hw_queues > nr_cpu_ids) 2612 nr_hw_queues = nr_cpu_ids; 2613 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2614 return; 2615 2616 list_for_each_entry(q, &set->tag_list, tag_set_list) 2617 blk_mq_freeze_queue(q); 2618 2619 set->nr_hw_queues = nr_hw_queues; 2620 blk_mq_update_queue_map(set); 2621 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2622 blk_mq_realloc_hw_ctxs(set, q); 2623 blk_mq_queue_reinit(q); 2624 } 2625 2626 list_for_each_entry(q, &set->tag_list, tag_set_list) 2627 blk_mq_unfreeze_queue(q); 2628 } 2629 2630 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2631 { 2632 mutex_lock(&set->tag_list_lock); 2633 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 2634 mutex_unlock(&set->tag_list_lock); 2635 } 2636 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2637 2638 /* Enable polling stats and return whether they were already enabled. */ 2639 static bool blk_poll_stats_enable(struct request_queue *q) 2640 { 2641 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2642 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags)) 2643 return true; 2644 blk_stat_add_callback(q, q->poll_cb); 2645 return false; 2646 } 2647 2648 static void blk_mq_poll_stats_start(struct request_queue *q) 2649 { 2650 /* 2651 * We don't arm the callback if polling stats are not enabled or the 2652 * callback is already active. 2653 */ 2654 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2655 blk_stat_is_active(q->poll_cb)) 2656 return; 2657 2658 blk_stat_activate_msecs(q->poll_cb, 100); 2659 } 2660 2661 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 2662 { 2663 struct request_queue *q = cb->data; 2664 int bucket; 2665 2666 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 2667 if (cb->stat[bucket].nr_samples) 2668 q->poll_stat[bucket] = cb->stat[bucket]; 2669 } 2670 } 2671 2672 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2673 struct blk_mq_hw_ctx *hctx, 2674 struct request *rq) 2675 { 2676 unsigned long ret = 0; 2677 int bucket; 2678 2679 /* 2680 * If stats collection isn't on, don't sleep but turn it on for 2681 * future users 2682 */ 2683 if (!blk_poll_stats_enable(q)) 2684 return 0; 2685 2686 /* 2687 * As an optimistic guess, use half of the mean service time 2688 * for this type of request. We can (and should) make this smarter. 2689 * For instance, if the completion latencies are tight, we can 2690 * get closer than just half the mean. This is especially 2691 * important on devices where the completion latencies are longer 2692 * than ~10 usec. We do use the stats for the relevant IO size 2693 * if available which does lead to better estimates. 2694 */ 2695 bucket = blk_mq_poll_stats_bkt(rq); 2696 if (bucket < 0) 2697 return ret; 2698 2699 if (q->poll_stat[bucket].nr_samples) 2700 ret = (q->poll_stat[bucket].mean + 1) / 2; 2701 2702 return ret; 2703 } 2704 2705 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2706 struct blk_mq_hw_ctx *hctx, 2707 struct request *rq) 2708 { 2709 struct hrtimer_sleeper hs; 2710 enum hrtimer_mode mode; 2711 unsigned int nsecs; 2712 ktime_t kt; 2713 2714 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2715 return false; 2716 2717 /* 2718 * poll_nsec can be: 2719 * 2720 * -1: don't ever hybrid sleep 2721 * 0: use half of prev avg 2722 * >0: use this specific value 2723 */ 2724 if (q->poll_nsec == -1) 2725 return false; 2726 else if (q->poll_nsec > 0) 2727 nsecs = q->poll_nsec; 2728 else 2729 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2730 2731 if (!nsecs) 2732 return false; 2733 2734 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2735 2736 /* 2737 * This will be replaced with the stats tracking code, using 2738 * 'avg_completion_time / 2' as the pre-sleep target. 2739 */ 2740 kt = nsecs; 2741 2742 mode = HRTIMER_MODE_REL; 2743 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2744 hrtimer_set_expires(&hs.timer, kt); 2745 2746 hrtimer_init_sleeper(&hs, current); 2747 do { 2748 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2749 break; 2750 set_current_state(TASK_UNINTERRUPTIBLE); 2751 hrtimer_start_expires(&hs.timer, mode); 2752 if (hs.task) 2753 io_schedule(); 2754 hrtimer_cancel(&hs.timer); 2755 mode = HRTIMER_MODE_ABS; 2756 } while (hs.task && !signal_pending(current)); 2757 2758 __set_current_state(TASK_RUNNING); 2759 destroy_hrtimer_on_stack(&hs.timer); 2760 return true; 2761 } 2762 2763 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2764 { 2765 struct request_queue *q = hctx->queue; 2766 long state; 2767 2768 /* 2769 * If we sleep, have the caller restart the poll loop to reset 2770 * the state. Like for the other success return cases, the 2771 * caller is responsible for checking if the IO completed. If 2772 * the IO isn't complete, we'll get called again and will go 2773 * straight to the busy poll loop. 2774 */ 2775 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2776 return true; 2777 2778 hctx->poll_considered++; 2779 2780 state = current->state; 2781 while (!need_resched()) { 2782 int ret; 2783 2784 hctx->poll_invoked++; 2785 2786 ret = q->mq_ops->poll(hctx, rq->tag); 2787 if (ret > 0) { 2788 hctx->poll_success++; 2789 set_current_state(TASK_RUNNING); 2790 return true; 2791 } 2792 2793 if (signal_pending_state(state, current)) 2794 set_current_state(TASK_RUNNING); 2795 2796 if (current->state == TASK_RUNNING) 2797 return true; 2798 if (ret < 0) 2799 break; 2800 cpu_relax(); 2801 } 2802 2803 return false; 2804 } 2805 2806 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2807 { 2808 struct blk_mq_hw_ctx *hctx; 2809 struct blk_plug *plug; 2810 struct request *rq; 2811 2812 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2813 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2814 return false; 2815 2816 plug = current->plug; 2817 if (plug) 2818 blk_flush_plug_list(plug, false); 2819 2820 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2821 if (!blk_qc_t_is_internal(cookie)) 2822 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2823 else { 2824 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2825 /* 2826 * With scheduling, if the request has completed, we'll 2827 * get a NULL return here, as we clear the sched tag when 2828 * that happens. The request still remains valid, like always, 2829 * so we should be safe with just the NULL check. 2830 */ 2831 if (!rq) 2832 return false; 2833 } 2834 2835 return __blk_mq_poll(hctx, rq); 2836 } 2837 EXPORT_SYMBOL_GPL(blk_mq_poll); 2838 2839 static int __init blk_mq_init(void) 2840 { 2841 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2842 blk_mq_hctx_notify_dead); 2843 return 0; 2844 } 2845 subsys_initcall(blk_mq_init); 2846