xref: /openbmc/linux/block/blk-mq.c (revision de6e9190)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	if (force_atomic)
195 		q->q_usage_counter.data->force_atomic = true;
196 	q->mq_freeze_depth--;
197 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
198 	if (!q->mq_freeze_depth) {
199 		percpu_ref_resurrect(&q->q_usage_counter);
200 		wake_up_all(&q->mq_freeze_wq);
201 	}
202 	mutex_unlock(&q->mq_freeze_lock);
203 }
204 
205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207 	__blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210 
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220 
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 	struct blk_mq_hw_ctx *hctx;
233 	unsigned int i;
234 	bool rcu = false;
235 
236 	blk_mq_quiesce_queue_nowait(q);
237 
238 	queue_for_each_hw_ctx(q, hctx, i) {
239 		if (hctx->flags & BLK_MQ_F_BLOCKING)
240 			synchronize_srcu(hctx->srcu);
241 		else
242 			rcu = true;
243 	}
244 	if (rcu)
245 		synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248 
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259 
260 	/* dispatch requests which are inserted during quiescing */
261 	blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264 
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 	struct blk_mq_hw_ctx *hctx;
268 	unsigned int i;
269 
270 	queue_for_each_hw_ctx(q, hctx, i)
271 		if (blk_mq_hw_queue_mapped(hctx))
272 			blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274 
275 /*
276  * Only need start/end time stamping if we have iostat or
277  * blk stats enabled, or using an IO scheduler.
278  */
279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283 
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285 		unsigned int tag, u64 alloc_time_ns)
286 {
287 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288 	struct request *rq = tags->static_rqs[tag];
289 
290 	if (data->q->elevator) {
291 		rq->tag = BLK_MQ_NO_TAG;
292 		rq->internal_tag = tag;
293 	} else {
294 		rq->tag = tag;
295 		rq->internal_tag = BLK_MQ_NO_TAG;
296 	}
297 
298 	/* csd/requeue_work/fifo_time is initialized before use */
299 	rq->q = data->q;
300 	rq->mq_ctx = data->ctx;
301 	rq->mq_hctx = data->hctx;
302 	rq->rq_flags = 0;
303 	rq->cmd_flags = data->cmd_flags;
304 	if (data->flags & BLK_MQ_REQ_PM)
305 		rq->rq_flags |= RQF_PM;
306 	if (blk_queue_io_stat(data->q))
307 		rq->rq_flags |= RQF_IO_STAT;
308 	INIT_LIST_HEAD(&rq->queuelist);
309 	INIT_HLIST_NODE(&rq->hash);
310 	RB_CLEAR_NODE(&rq->rb_node);
311 	rq->rq_disk = NULL;
312 	rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314 	rq->alloc_time_ns = alloc_time_ns;
315 #endif
316 	if (blk_mq_need_time_stamp(rq))
317 		rq->start_time_ns = ktime_get_ns();
318 	else
319 		rq->start_time_ns = 0;
320 	rq->io_start_time_ns = 0;
321 	rq->stats_sectors = 0;
322 	rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324 	rq->nr_integrity_segments = 0;
325 #endif
326 	blk_crypto_rq_set_defaults(rq);
327 	/* tag was already set */
328 	WRITE_ONCE(rq->deadline, 0);
329 
330 	rq->timeout = 0;
331 
332 	rq->end_io = NULL;
333 	rq->end_io_data = NULL;
334 
335 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336 	refcount_set(&rq->ref, 1);
337 
338 	if (!op_is_flush(data->cmd_flags)) {
339 		struct elevator_queue *e = data->q->elevator;
340 
341 		rq->elv.icq = NULL;
342 		if (e && e->type->ops.prepare_request) {
343 			if (e->type->icq_cache)
344 				blk_mq_sched_assign_ioc(rq);
345 
346 			e->type->ops.prepare_request(rq);
347 			rq->rq_flags |= RQF_ELVPRIV;
348 		}
349 	}
350 
351 	data->hctx->queued++;
352 	return rq;
353 }
354 
355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357 	struct request_queue *q = data->q;
358 	struct elevator_queue *e = q->elevator;
359 	u64 alloc_time_ns = 0;
360 	unsigned int tag;
361 
362 	/* alloc_time includes depth and tag waits */
363 	if (blk_queue_rq_alloc_time(q))
364 		alloc_time_ns = ktime_get_ns();
365 
366 	if (data->cmd_flags & REQ_NOWAIT)
367 		data->flags |= BLK_MQ_REQ_NOWAIT;
368 
369 	if (e) {
370 		/*
371 		 * Flush/passthrough requests are special and go directly to the
372 		 * dispatch list. Don't include reserved tags in the
373 		 * limiting, as it isn't useful.
374 		 */
375 		if (!op_is_flush(data->cmd_flags) &&
376 		    !blk_op_is_passthrough(data->cmd_flags) &&
377 		    e->type->ops.limit_depth &&
378 		    !(data->flags & BLK_MQ_REQ_RESERVED))
379 			e->type->ops.limit_depth(data->cmd_flags, data);
380 	}
381 
382 retry:
383 	data->ctx = blk_mq_get_ctx(q);
384 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385 	if (!e)
386 		blk_mq_tag_busy(data->hctx);
387 
388 	/*
389 	 * Waiting allocations only fail because of an inactive hctx.  In that
390 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
391 	 * should have migrated us to an online CPU by now.
392 	 */
393 	tag = blk_mq_get_tag(data);
394 	if (tag == BLK_MQ_NO_TAG) {
395 		if (data->flags & BLK_MQ_REQ_NOWAIT)
396 			return NULL;
397 
398 		/*
399 		 * Give up the CPU and sleep for a random short time to ensure
400 		 * that thread using a realtime scheduling class are migrated
401 		 * off the CPU, and thus off the hctx that is going away.
402 		 */
403 		msleep(3);
404 		goto retry;
405 	}
406 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408 
409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410 		blk_mq_req_flags_t flags)
411 {
412 	struct blk_mq_alloc_data data = {
413 		.q		= q,
414 		.flags		= flags,
415 		.cmd_flags	= op,
416 	};
417 	struct request *rq;
418 	int ret;
419 
420 	ret = blk_queue_enter(q, flags);
421 	if (ret)
422 		return ERR_PTR(ret);
423 
424 	rq = __blk_mq_alloc_request(&data);
425 	if (!rq)
426 		goto out_queue_exit;
427 	rq->__data_len = 0;
428 	rq->__sector = (sector_t) -1;
429 	rq->bio = rq->biotail = NULL;
430 	return rq;
431 out_queue_exit:
432 	blk_queue_exit(q);
433 	return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436 
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440 	struct blk_mq_alloc_data data = {
441 		.q		= q,
442 		.flags		= flags,
443 		.cmd_flags	= op,
444 	};
445 	u64 alloc_time_ns = 0;
446 	unsigned int cpu;
447 	unsigned int tag;
448 	int ret;
449 
450 	/* alloc_time includes depth and tag waits */
451 	if (blk_queue_rq_alloc_time(q))
452 		alloc_time_ns = ktime_get_ns();
453 
454 	/*
455 	 * If the tag allocator sleeps we could get an allocation for a
456 	 * different hardware context.  No need to complicate the low level
457 	 * allocator for this for the rare use case of a command tied to
458 	 * a specific queue.
459 	 */
460 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461 		return ERR_PTR(-EINVAL);
462 
463 	if (hctx_idx >= q->nr_hw_queues)
464 		return ERR_PTR(-EIO);
465 
466 	ret = blk_queue_enter(q, flags);
467 	if (ret)
468 		return ERR_PTR(ret);
469 
470 	/*
471 	 * Check if the hardware context is actually mapped to anything.
472 	 * If not tell the caller that it should skip this queue.
473 	 */
474 	ret = -EXDEV;
475 	data.hctx = q->queue_hw_ctx[hctx_idx];
476 	if (!blk_mq_hw_queue_mapped(data.hctx))
477 		goto out_queue_exit;
478 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479 	data.ctx = __blk_mq_get_ctx(q, cpu);
480 
481 	if (!q->elevator)
482 		blk_mq_tag_busy(data.hctx);
483 
484 	ret = -EWOULDBLOCK;
485 	tag = blk_mq_get_tag(&data);
486 	if (tag == BLK_MQ_NO_TAG)
487 		goto out_queue_exit;
488 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
489 
490 out_queue_exit:
491 	blk_queue_exit(q);
492 	return ERR_PTR(ret);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
495 
496 static void __blk_mq_free_request(struct request *rq)
497 {
498 	struct request_queue *q = rq->q;
499 	struct blk_mq_ctx *ctx = rq->mq_ctx;
500 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
501 	const int sched_tag = rq->internal_tag;
502 
503 	blk_crypto_free_request(rq);
504 	blk_pm_mark_last_busy(rq);
505 	rq->mq_hctx = NULL;
506 	if (rq->tag != BLK_MQ_NO_TAG)
507 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
508 	if (sched_tag != BLK_MQ_NO_TAG)
509 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
510 	blk_mq_sched_restart(hctx);
511 	blk_queue_exit(q);
512 }
513 
514 void blk_mq_free_request(struct request *rq)
515 {
516 	struct request_queue *q = rq->q;
517 	struct elevator_queue *e = q->elevator;
518 	struct blk_mq_ctx *ctx = rq->mq_ctx;
519 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
520 
521 	if (rq->rq_flags & RQF_ELVPRIV) {
522 		if (e && e->type->ops.finish_request)
523 			e->type->ops.finish_request(rq);
524 		if (rq->elv.icq) {
525 			put_io_context(rq->elv.icq->ioc);
526 			rq->elv.icq = NULL;
527 		}
528 	}
529 
530 	ctx->rq_completed[rq_is_sync(rq)]++;
531 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
532 		__blk_mq_dec_active_requests(hctx);
533 
534 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
535 		laptop_io_completion(q->disk->bdi);
536 
537 	rq_qos_done(q, rq);
538 
539 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
540 	if (refcount_dec_and_test(&rq->ref))
541 		__blk_mq_free_request(rq);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_free_request);
544 
545 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
546 {
547 	u64 now = 0;
548 
549 	if (blk_mq_need_time_stamp(rq))
550 		now = ktime_get_ns();
551 
552 	if (rq->rq_flags & RQF_STATS) {
553 		blk_mq_poll_stats_start(rq->q);
554 		blk_stat_add(rq, now);
555 	}
556 
557 	blk_mq_sched_completed_request(rq, now);
558 
559 	blk_account_io_done(rq, now);
560 
561 	if (rq->end_io) {
562 		rq_qos_done(rq->q, rq);
563 		rq->end_io(rq, error);
564 	} else {
565 		blk_mq_free_request(rq);
566 	}
567 }
568 EXPORT_SYMBOL(__blk_mq_end_request);
569 
570 void blk_mq_end_request(struct request *rq, blk_status_t error)
571 {
572 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
573 		BUG();
574 	__blk_mq_end_request(rq, error);
575 }
576 EXPORT_SYMBOL(blk_mq_end_request);
577 
578 static void blk_complete_reqs(struct llist_head *list)
579 {
580 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
581 	struct request *rq, *next;
582 
583 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
584 		rq->q->mq_ops->complete(rq);
585 }
586 
587 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
588 {
589 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
590 }
591 
592 static int blk_softirq_cpu_dead(unsigned int cpu)
593 {
594 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
595 	return 0;
596 }
597 
598 static void __blk_mq_complete_request_remote(void *data)
599 {
600 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
601 }
602 
603 static inline bool blk_mq_complete_need_ipi(struct request *rq)
604 {
605 	int cpu = raw_smp_processor_id();
606 
607 	if (!IS_ENABLED(CONFIG_SMP) ||
608 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
609 		return false;
610 	/*
611 	 * With force threaded interrupts enabled, raising softirq from an SMP
612 	 * function call will always result in waking the ksoftirqd thread.
613 	 * This is probably worse than completing the request on a different
614 	 * cache domain.
615 	 */
616 	if (force_irqthreads())
617 		return false;
618 
619 	/* same CPU or cache domain?  Complete locally */
620 	if (cpu == rq->mq_ctx->cpu ||
621 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
622 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
623 		return false;
624 
625 	/* don't try to IPI to an offline CPU */
626 	return cpu_online(rq->mq_ctx->cpu);
627 }
628 
629 static void blk_mq_complete_send_ipi(struct request *rq)
630 {
631 	struct llist_head *list;
632 	unsigned int cpu;
633 
634 	cpu = rq->mq_ctx->cpu;
635 	list = &per_cpu(blk_cpu_done, cpu);
636 	if (llist_add(&rq->ipi_list, list)) {
637 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
638 		smp_call_function_single_async(cpu, &rq->csd);
639 	}
640 }
641 
642 static void blk_mq_raise_softirq(struct request *rq)
643 {
644 	struct llist_head *list;
645 
646 	preempt_disable();
647 	list = this_cpu_ptr(&blk_cpu_done);
648 	if (llist_add(&rq->ipi_list, list))
649 		raise_softirq(BLOCK_SOFTIRQ);
650 	preempt_enable();
651 }
652 
653 bool blk_mq_complete_request_remote(struct request *rq)
654 {
655 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
656 
657 	/*
658 	 * For a polled request, always complete locallly, it's pointless
659 	 * to redirect the completion.
660 	 */
661 	if (rq->cmd_flags & REQ_HIPRI)
662 		return false;
663 
664 	if (blk_mq_complete_need_ipi(rq)) {
665 		blk_mq_complete_send_ipi(rq);
666 		return true;
667 	}
668 
669 	if (rq->q->nr_hw_queues == 1) {
670 		blk_mq_raise_softirq(rq);
671 		return true;
672 	}
673 	return false;
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
676 
677 /**
678  * blk_mq_complete_request - end I/O on a request
679  * @rq:		the request being processed
680  *
681  * Description:
682  *	Complete a request by scheduling the ->complete_rq operation.
683  **/
684 void blk_mq_complete_request(struct request *rq)
685 {
686 	if (!blk_mq_complete_request_remote(rq))
687 		rq->q->mq_ops->complete(rq);
688 }
689 EXPORT_SYMBOL(blk_mq_complete_request);
690 
691 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
692 	__releases(hctx->srcu)
693 {
694 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
695 		rcu_read_unlock();
696 	else
697 		srcu_read_unlock(hctx->srcu, srcu_idx);
698 }
699 
700 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
701 	__acquires(hctx->srcu)
702 {
703 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
704 		/* shut up gcc false positive */
705 		*srcu_idx = 0;
706 		rcu_read_lock();
707 	} else
708 		*srcu_idx = srcu_read_lock(hctx->srcu);
709 }
710 
711 /**
712  * blk_mq_start_request - Start processing a request
713  * @rq: Pointer to request to be started
714  *
715  * Function used by device drivers to notify the block layer that a request
716  * is going to be processed now, so blk layer can do proper initializations
717  * such as starting the timeout timer.
718  */
719 void blk_mq_start_request(struct request *rq)
720 {
721 	struct request_queue *q = rq->q;
722 
723 	trace_block_rq_issue(rq);
724 
725 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
726 		rq->io_start_time_ns = ktime_get_ns();
727 		rq->stats_sectors = blk_rq_sectors(rq);
728 		rq->rq_flags |= RQF_STATS;
729 		rq_qos_issue(q, rq);
730 	}
731 
732 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
733 
734 	blk_add_timer(rq);
735 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
736 
737 #ifdef CONFIG_BLK_DEV_INTEGRITY
738 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
739 		q->integrity.profile->prepare_fn(rq);
740 #endif
741 }
742 EXPORT_SYMBOL(blk_mq_start_request);
743 
744 static void __blk_mq_requeue_request(struct request *rq)
745 {
746 	struct request_queue *q = rq->q;
747 
748 	blk_mq_put_driver_tag(rq);
749 
750 	trace_block_rq_requeue(rq);
751 	rq_qos_requeue(q, rq);
752 
753 	if (blk_mq_request_started(rq)) {
754 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
755 		rq->rq_flags &= ~RQF_TIMED_OUT;
756 	}
757 }
758 
759 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
760 {
761 	__blk_mq_requeue_request(rq);
762 
763 	/* this request will be re-inserted to io scheduler queue */
764 	blk_mq_sched_requeue_request(rq);
765 
766 	BUG_ON(!list_empty(&rq->queuelist));
767 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
768 }
769 EXPORT_SYMBOL(blk_mq_requeue_request);
770 
771 static void blk_mq_requeue_work(struct work_struct *work)
772 {
773 	struct request_queue *q =
774 		container_of(work, struct request_queue, requeue_work.work);
775 	LIST_HEAD(rq_list);
776 	struct request *rq, *next;
777 
778 	spin_lock_irq(&q->requeue_lock);
779 	list_splice_init(&q->requeue_list, &rq_list);
780 	spin_unlock_irq(&q->requeue_lock);
781 
782 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
783 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
784 			continue;
785 
786 		rq->rq_flags &= ~RQF_SOFTBARRIER;
787 		list_del_init(&rq->queuelist);
788 		/*
789 		 * If RQF_DONTPREP, rq has contained some driver specific
790 		 * data, so insert it to hctx dispatch list to avoid any
791 		 * merge.
792 		 */
793 		if (rq->rq_flags & RQF_DONTPREP)
794 			blk_mq_request_bypass_insert(rq, false, false);
795 		else
796 			blk_mq_sched_insert_request(rq, true, false, false);
797 	}
798 
799 	while (!list_empty(&rq_list)) {
800 		rq = list_entry(rq_list.next, struct request, queuelist);
801 		list_del_init(&rq->queuelist);
802 		blk_mq_sched_insert_request(rq, false, false, false);
803 	}
804 
805 	blk_mq_run_hw_queues(q, false);
806 }
807 
808 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
809 				bool kick_requeue_list)
810 {
811 	struct request_queue *q = rq->q;
812 	unsigned long flags;
813 
814 	/*
815 	 * We abuse this flag that is otherwise used by the I/O scheduler to
816 	 * request head insertion from the workqueue.
817 	 */
818 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
819 
820 	spin_lock_irqsave(&q->requeue_lock, flags);
821 	if (at_head) {
822 		rq->rq_flags |= RQF_SOFTBARRIER;
823 		list_add(&rq->queuelist, &q->requeue_list);
824 	} else {
825 		list_add_tail(&rq->queuelist, &q->requeue_list);
826 	}
827 	spin_unlock_irqrestore(&q->requeue_lock, flags);
828 
829 	if (kick_requeue_list)
830 		blk_mq_kick_requeue_list(q);
831 }
832 
833 void blk_mq_kick_requeue_list(struct request_queue *q)
834 {
835 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
836 }
837 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
838 
839 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
840 				    unsigned long msecs)
841 {
842 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
843 				    msecs_to_jiffies(msecs));
844 }
845 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
846 
847 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
848 {
849 	if (tag < tags->nr_tags) {
850 		prefetch(tags->rqs[tag]);
851 		return tags->rqs[tag];
852 	}
853 
854 	return NULL;
855 }
856 EXPORT_SYMBOL(blk_mq_tag_to_rq);
857 
858 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
859 			       void *priv, bool reserved)
860 {
861 	/*
862 	 * If we find a request that isn't idle and the queue matches,
863 	 * we know the queue is busy. Return false to stop the iteration.
864 	 */
865 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
866 		bool *busy = priv;
867 
868 		*busy = true;
869 		return false;
870 	}
871 
872 	return true;
873 }
874 
875 bool blk_mq_queue_inflight(struct request_queue *q)
876 {
877 	bool busy = false;
878 
879 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
880 	return busy;
881 }
882 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
883 
884 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
885 {
886 	req->rq_flags |= RQF_TIMED_OUT;
887 	if (req->q->mq_ops->timeout) {
888 		enum blk_eh_timer_return ret;
889 
890 		ret = req->q->mq_ops->timeout(req, reserved);
891 		if (ret == BLK_EH_DONE)
892 			return;
893 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
894 	}
895 
896 	blk_add_timer(req);
897 }
898 
899 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
900 {
901 	unsigned long deadline;
902 
903 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
904 		return false;
905 	if (rq->rq_flags & RQF_TIMED_OUT)
906 		return false;
907 
908 	deadline = READ_ONCE(rq->deadline);
909 	if (time_after_eq(jiffies, deadline))
910 		return true;
911 
912 	if (*next == 0)
913 		*next = deadline;
914 	else if (time_after(*next, deadline))
915 		*next = deadline;
916 	return false;
917 }
918 
919 void blk_mq_put_rq_ref(struct request *rq)
920 {
921 	if (is_flush_rq(rq))
922 		rq->end_io(rq, 0);
923 	else if (refcount_dec_and_test(&rq->ref))
924 		__blk_mq_free_request(rq);
925 }
926 
927 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
928 		struct request *rq, void *priv, bool reserved)
929 {
930 	unsigned long *next = priv;
931 
932 	/*
933 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
934 	 * be reallocated underneath the timeout handler's processing, then
935 	 * the expire check is reliable. If the request is not expired, then
936 	 * it was completed and reallocated as a new request after returning
937 	 * from blk_mq_check_expired().
938 	 */
939 	if (blk_mq_req_expired(rq, next))
940 		blk_mq_rq_timed_out(rq, reserved);
941 	return true;
942 }
943 
944 static void blk_mq_timeout_work(struct work_struct *work)
945 {
946 	struct request_queue *q =
947 		container_of(work, struct request_queue, timeout_work);
948 	unsigned long next = 0;
949 	struct blk_mq_hw_ctx *hctx;
950 	int i;
951 
952 	/* A deadlock might occur if a request is stuck requiring a
953 	 * timeout at the same time a queue freeze is waiting
954 	 * completion, since the timeout code would not be able to
955 	 * acquire the queue reference here.
956 	 *
957 	 * That's why we don't use blk_queue_enter here; instead, we use
958 	 * percpu_ref_tryget directly, because we need to be able to
959 	 * obtain a reference even in the short window between the queue
960 	 * starting to freeze, by dropping the first reference in
961 	 * blk_freeze_queue_start, and the moment the last request is
962 	 * consumed, marked by the instant q_usage_counter reaches
963 	 * zero.
964 	 */
965 	if (!percpu_ref_tryget(&q->q_usage_counter))
966 		return;
967 
968 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
969 
970 	if (next != 0) {
971 		mod_timer(&q->timeout, next);
972 	} else {
973 		/*
974 		 * Request timeouts are handled as a forward rolling timer. If
975 		 * we end up here it means that no requests are pending and
976 		 * also that no request has been pending for a while. Mark
977 		 * each hctx as idle.
978 		 */
979 		queue_for_each_hw_ctx(q, hctx, i) {
980 			/* the hctx may be unmapped, so check it here */
981 			if (blk_mq_hw_queue_mapped(hctx))
982 				blk_mq_tag_idle(hctx);
983 		}
984 	}
985 	blk_queue_exit(q);
986 }
987 
988 struct flush_busy_ctx_data {
989 	struct blk_mq_hw_ctx *hctx;
990 	struct list_head *list;
991 };
992 
993 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
994 {
995 	struct flush_busy_ctx_data *flush_data = data;
996 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
997 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
998 	enum hctx_type type = hctx->type;
999 
1000 	spin_lock(&ctx->lock);
1001 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1002 	sbitmap_clear_bit(sb, bitnr);
1003 	spin_unlock(&ctx->lock);
1004 	return true;
1005 }
1006 
1007 /*
1008  * Process software queues that have been marked busy, splicing them
1009  * to the for-dispatch
1010  */
1011 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1012 {
1013 	struct flush_busy_ctx_data data = {
1014 		.hctx = hctx,
1015 		.list = list,
1016 	};
1017 
1018 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1019 }
1020 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1021 
1022 struct dispatch_rq_data {
1023 	struct blk_mq_hw_ctx *hctx;
1024 	struct request *rq;
1025 };
1026 
1027 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1028 		void *data)
1029 {
1030 	struct dispatch_rq_data *dispatch_data = data;
1031 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1032 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033 	enum hctx_type type = hctx->type;
1034 
1035 	spin_lock(&ctx->lock);
1036 	if (!list_empty(&ctx->rq_lists[type])) {
1037 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1038 		list_del_init(&dispatch_data->rq->queuelist);
1039 		if (list_empty(&ctx->rq_lists[type]))
1040 			sbitmap_clear_bit(sb, bitnr);
1041 	}
1042 	spin_unlock(&ctx->lock);
1043 
1044 	return !dispatch_data->rq;
1045 }
1046 
1047 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1048 					struct blk_mq_ctx *start)
1049 {
1050 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1051 	struct dispatch_rq_data data = {
1052 		.hctx = hctx,
1053 		.rq   = NULL,
1054 	};
1055 
1056 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1057 			       dispatch_rq_from_ctx, &data);
1058 
1059 	return data.rq;
1060 }
1061 
1062 static inline unsigned int queued_to_index(unsigned int queued)
1063 {
1064 	if (!queued)
1065 		return 0;
1066 
1067 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1068 }
1069 
1070 static bool __blk_mq_get_driver_tag(struct request *rq)
1071 {
1072 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1073 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1074 	int tag;
1075 
1076 	blk_mq_tag_busy(rq->mq_hctx);
1077 
1078 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1079 		bt = rq->mq_hctx->tags->breserved_tags;
1080 		tag_offset = 0;
1081 	} else {
1082 		if (!hctx_may_queue(rq->mq_hctx, bt))
1083 			return false;
1084 	}
1085 
1086 	tag = __sbitmap_queue_get(bt);
1087 	if (tag == BLK_MQ_NO_TAG)
1088 		return false;
1089 
1090 	rq->tag = tag + tag_offset;
1091 	return true;
1092 }
1093 
1094 bool blk_mq_get_driver_tag(struct request *rq)
1095 {
1096 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1097 
1098 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1099 		return false;
1100 
1101 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1102 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1103 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1104 		__blk_mq_inc_active_requests(hctx);
1105 	}
1106 	hctx->tags->rqs[rq->tag] = rq;
1107 	return true;
1108 }
1109 
1110 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1111 				int flags, void *key)
1112 {
1113 	struct blk_mq_hw_ctx *hctx;
1114 
1115 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1116 
1117 	spin_lock(&hctx->dispatch_wait_lock);
1118 	if (!list_empty(&wait->entry)) {
1119 		struct sbitmap_queue *sbq;
1120 
1121 		list_del_init(&wait->entry);
1122 		sbq = hctx->tags->bitmap_tags;
1123 		atomic_dec(&sbq->ws_active);
1124 	}
1125 	spin_unlock(&hctx->dispatch_wait_lock);
1126 
1127 	blk_mq_run_hw_queue(hctx, true);
1128 	return 1;
1129 }
1130 
1131 /*
1132  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1133  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1134  * restart. For both cases, take care to check the condition again after
1135  * marking us as waiting.
1136  */
1137 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1138 				 struct request *rq)
1139 {
1140 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1141 	struct wait_queue_head *wq;
1142 	wait_queue_entry_t *wait;
1143 	bool ret;
1144 
1145 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1146 		blk_mq_sched_mark_restart_hctx(hctx);
1147 
1148 		/*
1149 		 * It's possible that a tag was freed in the window between the
1150 		 * allocation failure and adding the hardware queue to the wait
1151 		 * queue.
1152 		 *
1153 		 * Don't clear RESTART here, someone else could have set it.
1154 		 * At most this will cost an extra queue run.
1155 		 */
1156 		return blk_mq_get_driver_tag(rq);
1157 	}
1158 
1159 	wait = &hctx->dispatch_wait;
1160 	if (!list_empty_careful(&wait->entry))
1161 		return false;
1162 
1163 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1164 
1165 	spin_lock_irq(&wq->lock);
1166 	spin_lock(&hctx->dispatch_wait_lock);
1167 	if (!list_empty(&wait->entry)) {
1168 		spin_unlock(&hctx->dispatch_wait_lock);
1169 		spin_unlock_irq(&wq->lock);
1170 		return false;
1171 	}
1172 
1173 	atomic_inc(&sbq->ws_active);
1174 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1175 	__add_wait_queue(wq, wait);
1176 
1177 	/*
1178 	 * It's possible that a tag was freed in the window between the
1179 	 * allocation failure and adding the hardware queue to the wait
1180 	 * queue.
1181 	 */
1182 	ret = blk_mq_get_driver_tag(rq);
1183 	if (!ret) {
1184 		spin_unlock(&hctx->dispatch_wait_lock);
1185 		spin_unlock_irq(&wq->lock);
1186 		return false;
1187 	}
1188 
1189 	/*
1190 	 * We got a tag, remove ourselves from the wait queue to ensure
1191 	 * someone else gets the wakeup.
1192 	 */
1193 	list_del_init(&wait->entry);
1194 	atomic_dec(&sbq->ws_active);
1195 	spin_unlock(&hctx->dispatch_wait_lock);
1196 	spin_unlock_irq(&wq->lock);
1197 
1198 	return true;
1199 }
1200 
1201 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1202 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1203 /*
1204  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1205  * - EWMA is one simple way to compute running average value
1206  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1207  * - take 4 as factor for avoiding to get too small(0) result, and this
1208  *   factor doesn't matter because EWMA decreases exponentially
1209  */
1210 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1211 {
1212 	unsigned int ewma;
1213 
1214 	ewma = hctx->dispatch_busy;
1215 
1216 	if (!ewma && !busy)
1217 		return;
1218 
1219 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1220 	if (busy)
1221 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1222 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1223 
1224 	hctx->dispatch_busy = ewma;
1225 }
1226 
1227 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1228 
1229 static void blk_mq_handle_dev_resource(struct request *rq,
1230 				       struct list_head *list)
1231 {
1232 	struct request *next =
1233 		list_first_entry_or_null(list, struct request, queuelist);
1234 
1235 	/*
1236 	 * If an I/O scheduler has been configured and we got a driver tag for
1237 	 * the next request already, free it.
1238 	 */
1239 	if (next)
1240 		blk_mq_put_driver_tag(next);
1241 
1242 	list_add(&rq->queuelist, list);
1243 	__blk_mq_requeue_request(rq);
1244 }
1245 
1246 static void blk_mq_handle_zone_resource(struct request *rq,
1247 					struct list_head *zone_list)
1248 {
1249 	/*
1250 	 * If we end up here it is because we cannot dispatch a request to a
1251 	 * specific zone due to LLD level zone-write locking or other zone
1252 	 * related resource not being available. In this case, set the request
1253 	 * aside in zone_list for retrying it later.
1254 	 */
1255 	list_add(&rq->queuelist, zone_list);
1256 	__blk_mq_requeue_request(rq);
1257 }
1258 
1259 enum prep_dispatch {
1260 	PREP_DISPATCH_OK,
1261 	PREP_DISPATCH_NO_TAG,
1262 	PREP_DISPATCH_NO_BUDGET,
1263 };
1264 
1265 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1266 						  bool need_budget)
1267 {
1268 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1269 	int budget_token = -1;
1270 
1271 	if (need_budget) {
1272 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1273 		if (budget_token < 0) {
1274 			blk_mq_put_driver_tag(rq);
1275 			return PREP_DISPATCH_NO_BUDGET;
1276 		}
1277 		blk_mq_set_rq_budget_token(rq, budget_token);
1278 	}
1279 
1280 	if (!blk_mq_get_driver_tag(rq)) {
1281 		/*
1282 		 * The initial allocation attempt failed, so we need to
1283 		 * rerun the hardware queue when a tag is freed. The
1284 		 * waitqueue takes care of that. If the queue is run
1285 		 * before we add this entry back on the dispatch list,
1286 		 * we'll re-run it below.
1287 		 */
1288 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1289 			/*
1290 			 * All budgets not got from this function will be put
1291 			 * together during handling partial dispatch
1292 			 */
1293 			if (need_budget)
1294 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1295 			return PREP_DISPATCH_NO_TAG;
1296 		}
1297 	}
1298 
1299 	return PREP_DISPATCH_OK;
1300 }
1301 
1302 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1303 static void blk_mq_release_budgets(struct request_queue *q,
1304 		struct list_head *list)
1305 {
1306 	struct request *rq;
1307 
1308 	list_for_each_entry(rq, list, queuelist) {
1309 		int budget_token = blk_mq_get_rq_budget_token(rq);
1310 
1311 		if (budget_token >= 0)
1312 			blk_mq_put_dispatch_budget(q, budget_token);
1313 	}
1314 }
1315 
1316 /*
1317  * Returns true if we did some work AND can potentially do more.
1318  */
1319 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1320 			     unsigned int nr_budgets)
1321 {
1322 	enum prep_dispatch prep;
1323 	struct request_queue *q = hctx->queue;
1324 	struct request *rq, *nxt;
1325 	int errors, queued;
1326 	blk_status_t ret = BLK_STS_OK;
1327 	LIST_HEAD(zone_list);
1328 
1329 	if (list_empty(list))
1330 		return false;
1331 
1332 	/*
1333 	 * Now process all the entries, sending them to the driver.
1334 	 */
1335 	errors = queued = 0;
1336 	do {
1337 		struct blk_mq_queue_data bd;
1338 
1339 		rq = list_first_entry(list, struct request, queuelist);
1340 
1341 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1342 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1343 		if (prep != PREP_DISPATCH_OK)
1344 			break;
1345 
1346 		list_del_init(&rq->queuelist);
1347 
1348 		bd.rq = rq;
1349 
1350 		/*
1351 		 * Flag last if we have no more requests, or if we have more
1352 		 * but can't assign a driver tag to it.
1353 		 */
1354 		if (list_empty(list))
1355 			bd.last = true;
1356 		else {
1357 			nxt = list_first_entry(list, struct request, queuelist);
1358 			bd.last = !blk_mq_get_driver_tag(nxt);
1359 		}
1360 
1361 		/*
1362 		 * once the request is queued to lld, no need to cover the
1363 		 * budget any more
1364 		 */
1365 		if (nr_budgets)
1366 			nr_budgets--;
1367 		ret = q->mq_ops->queue_rq(hctx, &bd);
1368 		switch (ret) {
1369 		case BLK_STS_OK:
1370 			queued++;
1371 			break;
1372 		case BLK_STS_RESOURCE:
1373 		case BLK_STS_DEV_RESOURCE:
1374 			blk_mq_handle_dev_resource(rq, list);
1375 			goto out;
1376 		case BLK_STS_ZONE_RESOURCE:
1377 			/*
1378 			 * Move the request to zone_list and keep going through
1379 			 * the dispatch list to find more requests the drive can
1380 			 * accept.
1381 			 */
1382 			blk_mq_handle_zone_resource(rq, &zone_list);
1383 			break;
1384 		default:
1385 			errors++;
1386 			blk_mq_end_request(rq, ret);
1387 		}
1388 	} while (!list_empty(list));
1389 out:
1390 	if (!list_empty(&zone_list))
1391 		list_splice_tail_init(&zone_list, list);
1392 
1393 	hctx->dispatched[queued_to_index(queued)]++;
1394 
1395 	/* If we didn't flush the entire list, we could have told the driver
1396 	 * there was more coming, but that turned out to be a lie.
1397 	 */
1398 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1399 		q->mq_ops->commit_rqs(hctx);
1400 	/*
1401 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1402 	 * that is where we will continue on next queue run.
1403 	 */
1404 	if (!list_empty(list)) {
1405 		bool needs_restart;
1406 		/* For non-shared tags, the RESTART check will suffice */
1407 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1408 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1409 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1410 
1411 		if (nr_budgets)
1412 			blk_mq_release_budgets(q, list);
1413 
1414 		spin_lock(&hctx->lock);
1415 		list_splice_tail_init(list, &hctx->dispatch);
1416 		spin_unlock(&hctx->lock);
1417 
1418 		/*
1419 		 * Order adding requests to hctx->dispatch and checking
1420 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1421 		 * in blk_mq_sched_restart(). Avoid restart code path to
1422 		 * miss the new added requests to hctx->dispatch, meantime
1423 		 * SCHED_RESTART is observed here.
1424 		 */
1425 		smp_mb();
1426 
1427 		/*
1428 		 * If SCHED_RESTART was set by the caller of this function and
1429 		 * it is no longer set that means that it was cleared by another
1430 		 * thread and hence that a queue rerun is needed.
1431 		 *
1432 		 * If 'no_tag' is set, that means that we failed getting
1433 		 * a driver tag with an I/O scheduler attached. If our dispatch
1434 		 * waitqueue is no longer active, ensure that we run the queue
1435 		 * AFTER adding our entries back to the list.
1436 		 *
1437 		 * If no I/O scheduler has been configured it is possible that
1438 		 * the hardware queue got stopped and restarted before requests
1439 		 * were pushed back onto the dispatch list. Rerun the queue to
1440 		 * avoid starvation. Notes:
1441 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1442 		 *   been stopped before rerunning a queue.
1443 		 * - Some but not all block drivers stop a queue before
1444 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1445 		 *   and dm-rq.
1446 		 *
1447 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1448 		 * bit is set, run queue after a delay to avoid IO stalls
1449 		 * that could otherwise occur if the queue is idle.  We'll do
1450 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1451 		 */
1452 		needs_restart = blk_mq_sched_needs_restart(hctx);
1453 		if (!needs_restart ||
1454 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1455 			blk_mq_run_hw_queue(hctx, true);
1456 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1457 					   no_budget_avail))
1458 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1459 
1460 		blk_mq_update_dispatch_busy(hctx, true);
1461 		return false;
1462 	} else
1463 		blk_mq_update_dispatch_busy(hctx, false);
1464 
1465 	return (queued + errors) != 0;
1466 }
1467 
1468 /**
1469  * __blk_mq_run_hw_queue - Run a hardware queue.
1470  * @hctx: Pointer to the hardware queue to run.
1471  *
1472  * Send pending requests to the hardware.
1473  */
1474 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1475 {
1476 	int srcu_idx;
1477 
1478 	/*
1479 	 * We can't run the queue inline with ints disabled. Ensure that
1480 	 * we catch bad users of this early.
1481 	 */
1482 	WARN_ON_ONCE(in_interrupt());
1483 
1484 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1485 
1486 	hctx_lock(hctx, &srcu_idx);
1487 	blk_mq_sched_dispatch_requests(hctx);
1488 	hctx_unlock(hctx, srcu_idx);
1489 }
1490 
1491 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1492 {
1493 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1494 
1495 	if (cpu >= nr_cpu_ids)
1496 		cpu = cpumask_first(hctx->cpumask);
1497 	return cpu;
1498 }
1499 
1500 /*
1501  * It'd be great if the workqueue API had a way to pass
1502  * in a mask and had some smarts for more clever placement.
1503  * For now we just round-robin here, switching for every
1504  * BLK_MQ_CPU_WORK_BATCH queued items.
1505  */
1506 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1507 {
1508 	bool tried = false;
1509 	int next_cpu = hctx->next_cpu;
1510 
1511 	if (hctx->queue->nr_hw_queues == 1)
1512 		return WORK_CPU_UNBOUND;
1513 
1514 	if (--hctx->next_cpu_batch <= 0) {
1515 select_cpu:
1516 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1517 				cpu_online_mask);
1518 		if (next_cpu >= nr_cpu_ids)
1519 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1520 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1521 	}
1522 
1523 	/*
1524 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1525 	 * and it should only happen in the path of handling CPU DEAD.
1526 	 */
1527 	if (!cpu_online(next_cpu)) {
1528 		if (!tried) {
1529 			tried = true;
1530 			goto select_cpu;
1531 		}
1532 
1533 		/*
1534 		 * Make sure to re-select CPU next time once after CPUs
1535 		 * in hctx->cpumask become online again.
1536 		 */
1537 		hctx->next_cpu = next_cpu;
1538 		hctx->next_cpu_batch = 1;
1539 		return WORK_CPU_UNBOUND;
1540 	}
1541 
1542 	hctx->next_cpu = next_cpu;
1543 	return next_cpu;
1544 }
1545 
1546 /**
1547  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1548  * @hctx: Pointer to the hardware queue to run.
1549  * @async: If we want to run the queue asynchronously.
1550  * @msecs: Milliseconds of delay to wait before running the queue.
1551  *
1552  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1553  * with a delay of @msecs.
1554  */
1555 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1556 					unsigned long msecs)
1557 {
1558 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1559 		return;
1560 
1561 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1562 		int cpu = get_cpu();
1563 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1564 			__blk_mq_run_hw_queue(hctx);
1565 			put_cpu();
1566 			return;
1567 		}
1568 
1569 		put_cpu();
1570 	}
1571 
1572 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1573 				    msecs_to_jiffies(msecs));
1574 }
1575 
1576 /**
1577  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1578  * @hctx: Pointer to the hardware queue to run.
1579  * @msecs: Milliseconds of delay to wait before running the queue.
1580  *
1581  * Run a hardware queue asynchronously with a delay of @msecs.
1582  */
1583 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1584 {
1585 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1586 }
1587 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1588 
1589 /**
1590  * blk_mq_run_hw_queue - Start to run a hardware queue.
1591  * @hctx: Pointer to the hardware queue to run.
1592  * @async: If we want to run the queue asynchronously.
1593  *
1594  * Check if the request queue is not in a quiesced state and if there are
1595  * pending requests to be sent. If this is true, run the queue to send requests
1596  * to hardware.
1597  */
1598 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1599 {
1600 	int srcu_idx;
1601 	bool need_run;
1602 
1603 	/*
1604 	 * When queue is quiesced, we may be switching io scheduler, or
1605 	 * updating nr_hw_queues, or other things, and we can't run queue
1606 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1607 	 *
1608 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1609 	 * quiesced.
1610 	 */
1611 	hctx_lock(hctx, &srcu_idx);
1612 	need_run = !blk_queue_quiesced(hctx->queue) &&
1613 		blk_mq_hctx_has_pending(hctx);
1614 	hctx_unlock(hctx, srcu_idx);
1615 
1616 	if (need_run)
1617 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1618 }
1619 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1620 
1621 /*
1622  * Is the request queue handled by an IO scheduler that does not respect
1623  * hardware queues when dispatching?
1624  */
1625 static bool blk_mq_has_sqsched(struct request_queue *q)
1626 {
1627 	struct elevator_queue *e = q->elevator;
1628 
1629 	if (e && e->type->ops.dispatch_request &&
1630 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1631 		return true;
1632 	return false;
1633 }
1634 
1635 /*
1636  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1637  * scheduler.
1638  */
1639 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1640 {
1641 	struct blk_mq_hw_ctx *hctx;
1642 
1643 	/*
1644 	 * If the IO scheduler does not respect hardware queues when
1645 	 * dispatching, we just don't bother with multiple HW queues and
1646 	 * dispatch from hctx for the current CPU since running multiple queues
1647 	 * just causes lock contention inside the scheduler and pointless cache
1648 	 * bouncing.
1649 	 */
1650 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1651 				     raw_smp_processor_id());
1652 	if (!blk_mq_hctx_stopped(hctx))
1653 		return hctx;
1654 	return NULL;
1655 }
1656 
1657 /**
1658  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1659  * @q: Pointer to the request queue to run.
1660  * @async: If we want to run the queue asynchronously.
1661  */
1662 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1663 {
1664 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1665 	int i;
1666 
1667 	sq_hctx = NULL;
1668 	if (blk_mq_has_sqsched(q))
1669 		sq_hctx = blk_mq_get_sq_hctx(q);
1670 	queue_for_each_hw_ctx(q, hctx, i) {
1671 		if (blk_mq_hctx_stopped(hctx))
1672 			continue;
1673 		/*
1674 		 * Dispatch from this hctx either if there's no hctx preferred
1675 		 * by IO scheduler or if it has requests that bypass the
1676 		 * scheduler.
1677 		 */
1678 		if (!sq_hctx || sq_hctx == hctx ||
1679 		    !list_empty_careful(&hctx->dispatch))
1680 			blk_mq_run_hw_queue(hctx, async);
1681 	}
1682 }
1683 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1684 
1685 /**
1686  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1687  * @q: Pointer to the request queue to run.
1688  * @msecs: Milliseconds of delay to wait before running the queues.
1689  */
1690 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1691 {
1692 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1693 	int i;
1694 
1695 	sq_hctx = NULL;
1696 	if (blk_mq_has_sqsched(q))
1697 		sq_hctx = blk_mq_get_sq_hctx(q);
1698 	queue_for_each_hw_ctx(q, hctx, i) {
1699 		if (blk_mq_hctx_stopped(hctx))
1700 			continue;
1701 		/*
1702 		 * Dispatch from this hctx either if there's no hctx preferred
1703 		 * by IO scheduler or if it has requests that bypass the
1704 		 * scheduler.
1705 		 */
1706 		if (!sq_hctx || sq_hctx == hctx ||
1707 		    !list_empty_careful(&hctx->dispatch))
1708 			blk_mq_delay_run_hw_queue(hctx, msecs);
1709 	}
1710 }
1711 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1712 
1713 /**
1714  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1715  * @q: request queue.
1716  *
1717  * The caller is responsible for serializing this function against
1718  * blk_mq_{start,stop}_hw_queue().
1719  */
1720 bool blk_mq_queue_stopped(struct request_queue *q)
1721 {
1722 	struct blk_mq_hw_ctx *hctx;
1723 	int i;
1724 
1725 	queue_for_each_hw_ctx(q, hctx, i)
1726 		if (blk_mq_hctx_stopped(hctx))
1727 			return true;
1728 
1729 	return false;
1730 }
1731 EXPORT_SYMBOL(blk_mq_queue_stopped);
1732 
1733 /*
1734  * This function is often used for pausing .queue_rq() by driver when
1735  * there isn't enough resource or some conditions aren't satisfied, and
1736  * BLK_STS_RESOURCE is usually returned.
1737  *
1738  * We do not guarantee that dispatch can be drained or blocked
1739  * after blk_mq_stop_hw_queue() returns. Please use
1740  * blk_mq_quiesce_queue() for that requirement.
1741  */
1742 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1743 {
1744 	cancel_delayed_work(&hctx->run_work);
1745 
1746 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1747 }
1748 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1749 
1750 /*
1751  * This function is often used for pausing .queue_rq() by driver when
1752  * there isn't enough resource or some conditions aren't satisfied, and
1753  * BLK_STS_RESOURCE is usually returned.
1754  *
1755  * We do not guarantee that dispatch can be drained or blocked
1756  * after blk_mq_stop_hw_queues() returns. Please use
1757  * blk_mq_quiesce_queue() for that requirement.
1758  */
1759 void blk_mq_stop_hw_queues(struct request_queue *q)
1760 {
1761 	struct blk_mq_hw_ctx *hctx;
1762 	int i;
1763 
1764 	queue_for_each_hw_ctx(q, hctx, i)
1765 		blk_mq_stop_hw_queue(hctx);
1766 }
1767 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1768 
1769 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1770 {
1771 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1772 
1773 	blk_mq_run_hw_queue(hctx, false);
1774 }
1775 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1776 
1777 void blk_mq_start_hw_queues(struct request_queue *q)
1778 {
1779 	struct blk_mq_hw_ctx *hctx;
1780 	int i;
1781 
1782 	queue_for_each_hw_ctx(q, hctx, i)
1783 		blk_mq_start_hw_queue(hctx);
1784 }
1785 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1786 
1787 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1788 {
1789 	if (!blk_mq_hctx_stopped(hctx))
1790 		return;
1791 
1792 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1793 	blk_mq_run_hw_queue(hctx, async);
1794 }
1795 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1796 
1797 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1798 {
1799 	struct blk_mq_hw_ctx *hctx;
1800 	int i;
1801 
1802 	queue_for_each_hw_ctx(q, hctx, i)
1803 		blk_mq_start_stopped_hw_queue(hctx, async);
1804 }
1805 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1806 
1807 static void blk_mq_run_work_fn(struct work_struct *work)
1808 {
1809 	struct blk_mq_hw_ctx *hctx;
1810 
1811 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1812 
1813 	/*
1814 	 * If we are stopped, don't run the queue.
1815 	 */
1816 	if (blk_mq_hctx_stopped(hctx))
1817 		return;
1818 
1819 	__blk_mq_run_hw_queue(hctx);
1820 }
1821 
1822 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1823 					    struct request *rq,
1824 					    bool at_head)
1825 {
1826 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1827 	enum hctx_type type = hctx->type;
1828 
1829 	lockdep_assert_held(&ctx->lock);
1830 
1831 	trace_block_rq_insert(rq);
1832 
1833 	if (at_head)
1834 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1835 	else
1836 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1837 }
1838 
1839 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1840 			     bool at_head)
1841 {
1842 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1843 
1844 	lockdep_assert_held(&ctx->lock);
1845 
1846 	__blk_mq_insert_req_list(hctx, rq, at_head);
1847 	blk_mq_hctx_mark_pending(hctx, ctx);
1848 }
1849 
1850 /**
1851  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1852  * @rq: Pointer to request to be inserted.
1853  * @at_head: true if the request should be inserted at the head of the list.
1854  * @run_queue: If we should run the hardware queue after inserting the request.
1855  *
1856  * Should only be used carefully, when the caller knows we want to
1857  * bypass a potential IO scheduler on the target device.
1858  */
1859 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1860 				  bool run_queue)
1861 {
1862 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1863 
1864 	spin_lock(&hctx->lock);
1865 	if (at_head)
1866 		list_add(&rq->queuelist, &hctx->dispatch);
1867 	else
1868 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1869 	spin_unlock(&hctx->lock);
1870 
1871 	if (run_queue)
1872 		blk_mq_run_hw_queue(hctx, false);
1873 }
1874 
1875 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1876 			    struct list_head *list)
1877 
1878 {
1879 	struct request *rq;
1880 	enum hctx_type type = hctx->type;
1881 
1882 	/*
1883 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1884 	 * offline now
1885 	 */
1886 	list_for_each_entry(rq, list, queuelist) {
1887 		BUG_ON(rq->mq_ctx != ctx);
1888 		trace_block_rq_insert(rq);
1889 	}
1890 
1891 	spin_lock(&ctx->lock);
1892 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1893 	blk_mq_hctx_mark_pending(hctx, ctx);
1894 	spin_unlock(&ctx->lock);
1895 }
1896 
1897 static int plug_rq_cmp(void *priv, const struct list_head *a,
1898 		       const struct list_head *b)
1899 {
1900 	struct request *rqa = container_of(a, struct request, queuelist);
1901 	struct request *rqb = container_of(b, struct request, queuelist);
1902 
1903 	if (rqa->mq_ctx != rqb->mq_ctx)
1904 		return rqa->mq_ctx > rqb->mq_ctx;
1905 	if (rqa->mq_hctx != rqb->mq_hctx)
1906 		return rqa->mq_hctx > rqb->mq_hctx;
1907 
1908 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1909 }
1910 
1911 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1912 {
1913 	LIST_HEAD(list);
1914 
1915 	if (list_empty(&plug->mq_list))
1916 		return;
1917 	list_splice_init(&plug->mq_list, &list);
1918 
1919 	if (plug->rq_count > 2 && plug->multiple_queues)
1920 		list_sort(NULL, &list, plug_rq_cmp);
1921 
1922 	plug->rq_count = 0;
1923 
1924 	do {
1925 		struct list_head rq_list;
1926 		struct request *rq, *head_rq = list_entry_rq(list.next);
1927 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1928 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1929 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1930 		unsigned int depth = 1;
1931 
1932 		list_for_each_continue(pos, &list) {
1933 			rq = list_entry_rq(pos);
1934 			BUG_ON(!rq->q);
1935 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1936 				break;
1937 			depth++;
1938 		}
1939 
1940 		list_cut_before(&rq_list, &list, pos);
1941 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1942 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1943 						from_schedule);
1944 	} while(!list_empty(&list));
1945 }
1946 
1947 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1948 		unsigned int nr_segs)
1949 {
1950 	int err;
1951 
1952 	if (bio->bi_opf & REQ_RAHEAD)
1953 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1954 
1955 	rq->__sector = bio->bi_iter.bi_sector;
1956 	rq->write_hint = bio->bi_write_hint;
1957 	blk_rq_bio_prep(rq, bio, nr_segs);
1958 
1959 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1960 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1961 	WARN_ON_ONCE(err);
1962 
1963 	blk_account_io_start(rq);
1964 }
1965 
1966 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1967 					    struct request *rq,
1968 					    blk_qc_t *cookie, bool last)
1969 {
1970 	struct request_queue *q = rq->q;
1971 	struct blk_mq_queue_data bd = {
1972 		.rq = rq,
1973 		.last = last,
1974 	};
1975 	blk_qc_t new_cookie;
1976 	blk_status_t ret;
1977 
1978 	new_cookie = request_to_qc_t(hctx, rq);
1979 
1980 	/*
1981 	 * For OK queue, we are done. For error, caller may kill it.
1982 	 * Any other error (busy), just add it to our list as we
1983 	 * previously would have done.
1984 	 */
1985 	ret = q->mq_ops->queue_rq(hctx, &bd);
1986 	switch (ret) {
1987 	case BLK_STS_OK:
1988 		blk_mq_update_dispatch_busy(hctx, false);
1989 		*cookie = new_cookie;
1990 		break;
1991 	case BLK_STS_RESOURCE:
1992 	case BLK_STS_DEV_RESOURCE:
1993 		blk_mq_update_dispatch_busy(hctx, true);
1994 		__blk_mq_requeue_request(rq);
1995 		break;
1996 	default:
1997 		blk_mq_update_dispatch_busy(hctx, false);
1998 		*cookie = BLK_QC_T_NONE;
1999 		break;
2000 	}
2001 
2002 	return ret;
2003 }
2004 
2005 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2006 						struct request *rq,
2007 						blk_qc_t *cookie,
2008 						bool bypass_insert, bool last)
2009 {
2010 	struct request_queue *q = rq->q;
2011 	bool run_queue = true;
2012 	int budget_token;
2013 
2014 	/*
2015 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2016 	 *
2017 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2018 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2019 	 * and avoid driver to try to dispatch again.
2020 	 */
2021 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2022 		run_queue = false;
2023 		bypass_insert = false;
2024 		goto insert;
2025 	}
2026 
2027 	if (q->elevator && !bypass_insert)
2028 		goto insert;
2029 
2030 	budget_token = blk_mq_get_dispatch_budget(q);
2031 	if (budget_token < 0)
2032 		goto insert;
2033 
2034 	blk_mq_set_rq_budget_token(rq, budget_token);
2035 
2036 	if (!blk_mq_get_driver_tag(rq)) {
2037 		blk_mq_put_dispatch_budget(q, budget_token);
2038 		goto insert;
2039 	}
2040 
2041 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2042 insert:
2043 	if (bypass_insert)
2044 		return BLK_STS_RESOURCE;
2045 
2046 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2047 
2048 	return BLK_STS_OK;
2049 }
2050 
2051 /**
2052  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2053  * @hctx: Pointer of the associated hardware queue.
2054  * @rq: Pointer to request to be sent.
2055  * @cookie: Request queue cookie.
2056  *
2057  * If the device has enough resources to accept a new request now, send the
2058  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2059  * we can try send it another time in the future. Requests inserted at this
2060  * queue have higher priority.
2061  */
2062 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2063 		struct request *rq, blk_qc_t *cookie)
2064 {
2065 	blk_status_t ret;
2066 	int srcu_idx;
2067 
2068 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2069 
2070 	hctx_lock(hctx, &srcu_idx);
2071 
2072 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2073 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2074 		blk_mq_request_bypass_insert(rq, false, true);
2075 	else if (ret != BLK_STS_OK)
2076 		blk_mq_end_request(rq, ret);
2077 
2078 	hctx_unlock(hctx, srcu_idx);
2079 }
2080 
2081 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2082 {
2083 	blk_status_t ret;
2084 	int srcu_idx;
2085 	blk_qc_t unused_cookie;
2086 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2087 
2088 	hctx_lock(hctx, &srcu_idx);
2089 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2090 	hctx_unlock(hctx, srcu_idx);
2091 
2092 	return ret;
2093 }
2094 
2095 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2096 		struct list_head *list)
2097 {
2098 	int queued = 0;
2099 	int errors = 0;
2100 
2101 	while (!list_empty(list)) {
2102 		blk_status_t ret;
2103 		struct request *rq = list_first_entry(list, struct request,
2104 				queuelist);
2105 
2106 		list_del_init(&rq->queuelist);
2107 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2108 		if (ret != BLK_STS_OK) {
2109 			if (ret == BLK_STS_RESOURCE ||
2110 					ret == BLK_STS_DEV_RESOURCE) {
2111 				blk_mq_request_bypass_insert(rq, false,
2112 							list_empty(list));
2113 				break;
2114 			}
2115 			blk_mq_end_request(rq, ret);
2116 			errors++;
2117 		} else
2118 			queued++;
2119 	}
2120 
2121 	/*
2122 	 * If we didn't flush the entire list, we could have told
2123 	 * the driver there was more coming, but that turned out to
2124 	 * be a lie.
2125 	 */
2126 	if ((!list_empty(list) || errors) &&
2127 	     hctx->queue->mq_ops->commit_rqs && queued)
2128 		hctx->queue->mq_ops->commit_rqs(hctx);
2129 }
2130 
2131 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2132 {
2133 	list_add_tail(&rq->queuelist, &plug->mq_list);
2134 	plug->rq_count++;
2135 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2136 		struct request *tmp;
2137 
2138 		tmp = list_first_entry(&plug->mq_list, struct request,
2139 						queuelist);
2140 		if (tmp->q != rq->q)
2141 			plug->multiple_queues = true;
2142 	}
2143 }
2144 
2145 /*
2146  * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2147  * queues. This is important for md arrays to benefit from merging
2148  * requests.
2149  */
2150 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2151 {
2152 	if (plug->multiple_queues)
2153 		return BLK_MAX_REQUEST_COUNT * 4;
2154 	return BLK_MAX_REQUEST_COUNT;
2155 }
2156 
2157 /**
2158  * blk_mq_submit_bio - Create and send a request to block device.
2159  * @bio: Bio pointer.
2160  *
2161  * Builds up a request structure from @q and @bio and send to the device. The
2162  * request may not be queued directly to hardware if:
2163  * * This request can be merged with another one
2164  * * We want to place request at plug queue for possible future merging
2165  * * There is an IO scheduler active at this queue
2166  *
2167  * It will not queue the request if there is an error with the bio, or at the
2168  * request creation.
2169  *
2170  * Returns: Request queue cookie.
2171  */
2172 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2173 {
2174 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2175 	const int is_sync = op_is_sync(bio->bi_opf);
2176 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2177 	struct blk_mq_alloc_data data = {
2178 		.q		= q,
2179 	};
2180 	struct request *rq;
2181 	struct blk_plug *plug;
2182 	struct request *same_queue_rq = NULL;
2183 	unsigned int nr_segs;
2184 	blk_qc_t cookie;
2185 	blk_status_t ret;
2186 	bool hipri;
2187 
2188 	blk_queue_bounce(q, &bio);
2189 	__blk_queue_split(&bio, &nr_segs);
2190 
2191 	if (!bio_integrity_prep(bio))
2192 		goto queue_exit;
2193 
2194 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2195 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2196 		goto queue_exit;
2197 
2198 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2199 		goto queue_exit;
2200 
2201 	rq_qos_throttle(q, bio);
2202 
2203 	hipri = bio->bi_opf & REQ_HIPRI;
2204 
2205 	data.cmd_flags = bio->bi_opf;
2206 	rq = __blk_mq_alloc_request(&data);
2207 	if (unlikely(!rq)) {
2208 		rq_qos_cleanup(q, bio);
2209 		if (bio->bi_opf & REQ_NOWAIT)
2210 			bio_wouldblock_error(bio);
2211 		goto queue_exit;
2212 	}
2213 
2214 	trace_block_getrq(bio);
2215 
2216 	rq_qos_track(q, rq, bio);
2217 
2218 	cookie = request_to_qc_t(data.hctx, rq);
2219 
2220 	blk_mq_bio_to_request(rq, bio, nr_segs);
2221 
2222 	ret = blk_crypto_init_request(rq);
2223 	if (ret != BLK_STS_OK) {
2224 		bio->bi_status = ret;
2225 		bio_endio(bio);
2226 		blk_mq_free_request(rq);
2227 		return BLK_QC_T_NONE;
2228 	}
2229 
2230 	plug = blk_mq_plug(q, bio);
2231 	if (unlikely(is_flush_fua)) {
2232 		/* Bypass scheduler for flush requests */
2233 		blk_insert_flush(rq);
2234 		blk_mq_run_hw_queue(data.hctx, true);
2235 	} else if (plug && (q->nr_hw_queues == 1 ||
2236 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2237 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2238 		/*
2239 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2240 		 * we know the driver uses bd->last in a smart fashion.
2241 		 *
2242 		 * Use normal plugging if this disk is slow HDD, as sequential
2243 		 * IO may benefit a lot from plug merging.
2244 		 */
2245 		unsigned int request_count = plug->rq_count;
2246 		struct request *last = NULL;
2247 
2248 		if (!request_count)
2249 			trace_block_plug(q);
2250 		else
2251 			last = list_entry_rq(plug->mq_list.prev);
2252 
2253 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2254 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2255 			blk_flush_plug_list(plug, false);
2256 			trace_block_plug(q);
2257 		}
2258 
2259 		blk_add_rq_to_plug(plug, rq);
2260 	} else if (q->elevator) {
2261 		/* Insert the request at the IO scheduler queue */
2262 		blk_mq_sched_insert_request(rq, false, true, true);
2263 	} else if (plug && !blk_queue_nomerges(q)) {
2264 		/*
2265 		 * We do limited plugging. If the bio can be merged, do that.
2266 		 * Otherwise the existing request in the plug list will be
2267 		 * issued. So the plug list will have one request at most
2268 		 * The plug list might get flushed before this. If that happens,
2269 		 * the plug list is empty, and same_queue_rq is invalid.
2270 		 */
2271 		if (list_empty(&plug->mq_list))
2272 			same_queue_rq = NULL;
2273 		if (same_queue_rq) {
2274 			list_del_init(&same_queue_rq->queuelist);
2275 			plug->rq_count--;
2276 		}
2277 		blk_add_rq_to_plug(plug, rq);
2278 		trace_block_plug(q);
2279 
2280 		if (same_queue_rq) {
2281 			data.hctx = same_queue_rq->mq_hctx;
2282 			trace_block_unplug(q, 1, true);
2283 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2284 					&cookie);
2285 		}
2286 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2287 			!data.hctx->dispatch_busy) {
2288 		/*
2289 		 * There is no scheduler and we can try to send directly
2290 		 * to the hardware.
2291 		 */
2292 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2293 	} else {
2294 		/* Default case. */
2295 		blk_mq_sched_insert_request(rq, false, true, true);
2296 	}
2297 
2298 	if (!hipri)
2299 		return BLK_QC_T_NONE;
2300 	return cookie;
2301 queue_exit:
2302 	blk_queue_exit(q);
2303 	return BLK_QC_T_NONE;
2304 }
2305 
2306 static size_t order_to_size(unsigned int order)
2307 {
2308 	return (size_t)PAGE_SIZE << order;
2309 }
2310 
2311 /* called before freeing request pool in @tags */
2312 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2313 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2314 {
2315 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2316 	struct page *page;
2317 	unsigned long flags;
2318 
2319 	list_for_each_entry(page, &tags->page_list, lru) {
2320 		unsigned long start = (unsigned long)page_address(page);
2321 		unsigned long end = start + order_to_size(page->private);
2322 		int i;
2323 
2324 		for (i = 0; i < set->queue_depth; i++) {
2325 			struct request *rq = drv_tags->rqs[i];
2326 			unsigned long rq_addr = (unsigned long)rq;
2327 
2328 			if (rq_addr >= start && rq_addr < end) {
2329 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2330 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2331 			}
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * Wait until all pending iteration is done.
2337 	 *
2338 	 * Request reference is cleared and it is guaranteed to be observed
2339 	 * after the ->lock is released.
2340 	 */
2341 	spin_lock_irqsave(&drv_tags->lock, flags);
2342 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2343 }
2344 
2345 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2346 		     unsigned int hctx_idx)
2347 {
2348 	struct page *page;
2349 
2350 	if (tags->rqs && set->ops->exit_request) {
2351 		int i;
2352 
2353 		for (i = 0; i < tags->nr_tags; i++) {
2354 			struct request *rq = tags->static_rqs[i];
2355 
2356 			if (!rq)
2357 				continue;
2358 			set->ops->exit_request(set, rq, hctx_idx);
2359 			tags->static_rqs[i] = NULL;
2360 		}
2361 	}
2362 
2363 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2364 
2365 	while (!list_empty(&tags->page_list)) {
2366 		page = list_first_entry(&tags->page_list, struct page, lru);
2367 		list_del_init(&page->lru);
2368 		/*
2369 		 * Remove kmemleak object previously allocated in
2370 		 * blk_mq_alloc_rqs().
2371 		 */
2372 		kmemleak_free(page_address(page));
2373 		__free_pages(page, page->private);
2374 	}
2375 }
2376 
2377 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2378 {
2379 	kfree(tags->rqs);
2380 	tags->rqs = NULL;
2381 	kfree(tags->static_rqs);
2382 	tags->static_rqs = NULL;
2383 
2384 	blk_mq_free_tags(tags, flags);
2385 }
2386 
2387 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2388 					unsigned int hctx_idx,
2389 					unsigned int nr_tags,
2390 					unsigned int reserved_tags,
2391 					unsigned int flags)
2392 {
2393 	struct blk_mq_tags *tags;
2394 	int node;
2395 
2396 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2397 	if (node == NUMA_NO_NODE)
2398 		node = set->numa_node;
2399 
2400 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2401 	if (!tags)
2402 		return NULL;
2403 
2404 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2405 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2406 				 node);
2407 	if (!tags->rqs) {
2408 		blk_mq_free_tags(tags, flags);
2409 		return NULL;
2410 	}
2411 
2412 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2413 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2414 					node);
2415 	if (!tags->static_rqs) {
2416 		kfree(tags->rqs);
2417 		blk_mq_free_tags(tags, flags);
2418 		return NULL;
2419 	}
2420 
2421 	return tags;
2422 }
2423 
2424 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2425 			       unsigned int hctx_idx, int node)
2426 {
2427 	int ret;
2428 
2429 	if (set->ops->init_request) {
2430 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2431 		if (ret)
2432 			return ret;
2433 	}
2434 
2435 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2436 	return 0;
2437 }
2438 
2439 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2440 		     unsigned int hctx_idx, unsigned int depth)
2441 {
2442 	unsigned int i, j, entries_per_page, max_order = 4;
2443 	size_t rq_size, left;
2444 	int node;
2445 
2446 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2447 	if (node == NUMA_NO_NODE)
2448 		node = set->numa_node;
2449 
2450 	INIT_LIST_HEAD(&tags->page_list);
2451 
2452 	/*
2453 	 * rq_size is the size of the request plus driver payload, rounded
2454 	 * to the cacheline size
2455 	 */
2456 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2457 				cache_line_size());
2458 	left = rq_size * depth;
2459 
2460 	for (i = 0; i < depth; ) {
2461 		int this_order = max_order;
2462 		struct page *page;
2463 		int to_do;
2464 		void *p;
2465 
2466 		while (this_order && left < order_to_size(this_order - 1))
2467 			this_order--;
2468 
2469 		do {
2470 			page = alloc_pages_node(node,
2471 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2472 				this_order);
2473 			if (page)
2474 				break;
2475 			if (!this_order--)
2476 				break;
2477 			if (order_to_size(this_order) < rq_size)
2478 				break;
2479 		} while (1);
2480 
2481 		if (!page)
2482 			goto fail;
2483 
2484 		page->private = this_order;
2485 		list_add_tail(&page->lru, &tags->page_list);
2486 
2487 		p = page_address(page);
2488 		/*
2489 		 * Allow kmemleak to scan these pages as they contain pointers
2490 		 * to additional allocations like via ops->init_request().
2491 		 */
2492 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2493 		entries_per_page = order_to_size(this_order) / rq_size;
2494 		to_do = min(entries_per_page, depth - i);
2495 		left -= to_do * rq_size;
2496 		for (j = 0; j < to_do; j++) {
2497 			struct request *rq = p;
2498 
2499 			tags->static_rqs[i] = rq;
2500 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2501 				tags->static_rqs[i] = NULL;
2502 				goto fail;
2503 			}
2504 
2505 			p += rq_size;
2506 			i++;
2507 		}
2508 	}
2509 	return 0;
2510 
2511 fail:
2512 	blk_mq_free_rqs(set, tags, hctx_idx);
2513 	return -ENOMEM;
2514 }
2515 
2516 struct rq_iter_data {
2517 	struct blk_mq_hw_ctx *hctx;
2518 	bool has_rq;
2519 };
2520 
2521 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2522 {
2523 	struct rq_iter_data *iter_data = data;
2524 
2525 	if (rq->mq_hctx != iter_data->hctx)
2526 		return true;
2527 	iter_data->has_rq = true;
2528 	return false;
2529 }
2530 
2531 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2532 {
2533 	struct blk_mq_tags *tags = hctx->sched_tags ?
2534 			hctx->sched_tags : hctx->tags;
2535 	struct rq_iter_data data = {
2536 		.hctx	= hctx,
2537 	};
2538 
2539 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2540 	return data.has_rq;
2541 }
2542 
2543 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2544 		struct blk_mq_hw_ctx *hctx)
2545 {
2546 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2547 		return false;
2548 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2549 		return false;
2550 	return true;
2551 }
2552 
2553 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2554 {
2555 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2556 			struct blk_mq_hw_ctx, cpuhp_online);
2557 
2558 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2559 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2560 		return 0;
2561 
2562 	/*
2563 	 * Prevent new request from being allocated on the current hctx.
2564 	 *
2565 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2566 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2567 	 * seen once we return from the tag allocator.
2568 	 */
2569 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2570 	smp_mb__after_atomic();
2571 
2572 	/*
2573 	 * Try to grab a reference to the queue and wait for any outstanding
2574 	 * requests.  If we could not grab a reference the queue has been
2575 	 * frozen and there are no requests.
2576 	 */
2577 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2578 		while (blk_mq_hctx_has_requests(hctx))
2579 			msleep(5);
2580 		percpu_ref_put(&hctx->queue->q_usage_counter);
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2587 {
2588 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2589 			struct blk_mq_hw_ctx, cpuhp_online);
2590 
2591 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2592 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2593 	return 0;
2594 }
2595 
2596 /*
2597  * 'cpu' is going away. splice any existing rq_list entries from this
2598  * software queue to the hw queue dispatch list, and ensure that it
2599  * gets run.
2600  */
2601 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2602 {
2603 	struct blk_mq_hw_ctx *hctx;
2604 	struct blk_mq_ctx *ctx;
2605 	LIST_HEAD(tmp);
2606 	enum hctx_type type;
2607 
2608 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2609 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2610 		return 0;
2611 
2612 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2613 	type = hctx->type;
2614 
2615 	spin_lock(&ctx->lock);
2616 	if (!list_empty(&ctx->rq_lists[type])) {
2617 		list_splice_init(&ctx->rq_lists[type], &tmp);
2618 		blk_mq_hctx_clear_pending(hctx, ctx);
2619 	}
2620 	spin_unlock(&ctx->lock);
2621 
2622 	if (list_empty(&tmp))
2623 		return 0;
2624 
2625 	spin_lock(&hctx->lock);
2626 	list_splice_tail_init(&tmp, &hctx->dispatch);
2627 	spin_unlock(&hctx->lock);
2628 
2629 	blk_mq_run_hw_queue(hctx, true);
2630 	return 0;
2631 }
2632 
2633 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2634 {
2635 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2636 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2637 						    &hctx->cpuhp_online);
2638 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2639 					    &hctx->cpuhp_dead);
2640 }
2641 
2642 /*
2643  * Before freeing hw queue, clearing the flush request reference in
2644  * tags->rqs[] for avoiding potential UAF.
2645  */
2646 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2647 		unsigned int queue_depth, struct request *flush_rq)
2648 {
2649 	int i;
2650 	unsigned long flags;
2651 
2652 	/* The hw queue may not be mapped yet */
2653 	if (!tags)
2654 		return;
2655 
2656 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2657 
2658 	for (i = 0; i < queue_depth; i++)
2659 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2660 
2661 	/*
2662 	 * Wait until all pending iteration is done.
2663 	 *
2664 	 * Request reference is cleared and it is guaranteed to be observed
2665 	 * after the ->lock is released.
2666 	 */
2667 	spin_lock_irqsave(&tags->lock, flags);
2668 	spin_unlock_irqrestore(&tags->lock, flags);
2669 }
2670 
2671 /* hctx->ctxs will be freed in queue's release handler */
2672 static void blk_mq_exit_hctx(struct request_queue *q,
2673 		struct blk_mq_tag_set *set,
2674 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2675 {
2676 	struct request *flush_rq = hctx->fq->flush_rq;
2677 
2678 	if (blk_mq_hw_queue_mapped(hctx))
2679 		blk_mq_tag_idle(hctx);
2680 
2681 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2682 			set->queue_depth, flush_rq);
2683 	if (set->ops->exit_request)
2684 		set->ops->exit_request(set, flush_rq, hctx_idx);
2685 
2686 	if (set->ops->exit_hctx)
2687 		set->ops->exit_hctx(hctx, hctx_idx);
2688 
2689 	blk_mq_remove_cpuhp(hctx);
2690 
2691 	spin_lock(&q->unused_hctx_lock);
2692 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2693 	spin_unlock(&q->unused_hctx_lock);
2694 }
2695 
2696 static void blk_mq_exit_hw_queues(struct request_queue *q,
2697 		struct blk_mq_tag_set *set, int nr_queue)
2698 {
2699 	struct blk_mq_hw_ctx *hctx;
2700 	unsigned int i;
2701 
2702 	queue_for_each_hw_ctx(q, hctx, i) {
2703 		if (i == nr_queue)
2704 			break;
2705 		blk_mq_debugfs_unregister_hctx(hctx);
2706 		blk_mq_exit_hctx(q, set, hctx, i);
2707 	}
2708 }
2709 
2710 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2711 {
2712 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2713 
2714 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2715 			   __alignof__(struct blk_mq_hw_ctx)) !=
2716 		     sizeof(struct blk_mq_hw_ctx));
2717 
2718 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2719 		hw_ctx_size += sizeof(struct srcu_struct);
2720 
2721 	return hw_ctx_size;
2722 }
2723 
2724 static int blk_mq_init_hctx(struct request_queue *q,
2725 		struct blk_mq_tag_set *set,
2726 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2727 {
2728 	hctx->queue_num = hctx_idx;
2729 
2730 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2731 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2732 				&hctx->cpuhp_online);
2733 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2734 
2735 	hctx->tags = set->tags[hctx_idx];
2736 
2737 	if (set->ops->init_hctx &&
2738 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2739 		goto unregister_cpu_notifier;
2740 
2741 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2742 				hctx->numa_node))
2743 		goto exit_hctx;
2744 	return 0;
2745 
2746  exit_hctx:
2747 	if (set->ops->exit_hctx)
2748 		set->ops->exit_hctx(hctx, hctx_idx);
2749  unregister_cpu_notifier:
2750 	blk_mq_remove_cpuhp(hctx);
2751 	return -1;
2752 }
2753 
2754 static struct blk_mq_hw_ctx *
2755 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2756 		int node)
2757 {
2758 	struct blk_mq_hw_ctx *hctx;
2759 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2760 
2761 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2762 	if (!hctx)
2763 		goto fail_alloc_hctx;
2764 
2765 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2766 		goto free_hctx;
2767 
2768 	atomic_set(&hctx->nr_active, 0);
2769 	if (node == NUMA_NO_NODE)
2770 		node = set->numa_node;
2771 	hctx->numa_node = node;
2772 
2773 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2774 	spin_lock_init(&hctx->lock);
2775 	INIT_LIST_HEAD(&hctx->dispatch);
2776 	hctx->queue = q;
2777 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2778 
2779 	INIT_LIST_HEAD(&hctx->hctx_list);
2780 
2781 	/*
2782 	 * Allocate space for all possible cpus to avoid allocation at
2783 	 * runtime
2784 	 */
2785 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2786 			gfp, node);
2787 	if (!hctx->ctxs)
2788 		goto free_cpumask;
2789 
2790 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2791 				gfp, node, false, false))
2792 		goto free_ctxs;
2793 	hctx->nr_ctx = 0;
2794 
2795 	spin_lock_init(&hctx->dispatch_wait_lock);
2796 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2797 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2798 
2799 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2800 	if (!hctx->fq)
2801 		goto free_bitmap;
2802 
2803 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2804 		init_srcu_struct(hctx->srcu);
2805 	blk_mq_hctx_kobj_init(hctx);
2806 
2807 	return hctx;
2808 
2809  free_bitmap:
2810 	sbitmap_free(&hctx->ctx_map);
2811  free_ctxs:
2812 	kfree(hctx->ctxs);
2813  free_cpumask:
2814 	free_cpumask_var(hctx->cpumask);
2815  free_hctx:
2816 	kfree(hctx);
2817  fail_alloc_hctx:
2818 	return NULL;
2819 }
2820 
2821 static void blk_mq_init_cpu_queues(struct request_queue *q,
2822 				   unsigned int nr_hw_queues)
2823 {
2824 	struct blk_mq_tag_set *set = q->tag_set;
2825 	unsigned int i, j;
2826 
2827 	for_each_possible_cpu(i) {
2828 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2829 		struct blk_mq_hw_ctx *hctx;
2830 		int k;
2831 
2832 		__ctx->cpu = i;
2833 		spin_lock_init(&__ctx->lock);
2834 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2835 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2836 
2837 		__ctx->queue = q;
2838 
2839 		/*
2840 		 * Set local node, IFF we have more than one hw queue. If
2841 		 * not, we remain on the home node of the device
2842 		 */
2843 		for (j = 0; j < set->nr_maps; j++) {
2844 			hctx = blk_mq_map_queue_type(q, j, i);
2845 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2846 				hctx->numa_node = cpu_to_node(i);
2847 		}
2848 	}
2849 }
2850 
2851 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2852 					int hctx_idx)
2853 {
2854 	unsigned int flags = set->flags;
2855 	int ret = 0;
2856 
2857 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2858 					set->queue_depth, set->reserved_tags, flags);
2859 	if (!set->tags[hctx_idx])
2860 		return false;
2861 
2862 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2863 				set->queue_depth);
2864 	if (!ret)
2865 		return true;
2866 
2867 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2868 	set->tags[hctx_idx] = NULL;
2869 	return false;
2870 }
2871 
2872 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2873 					 unsigned int hctx_idx)
2874 {
2875 	unsigned int flags = set->flags;
2876 
2877 	if (set->tags && set->tags[hctx_idx]) {
2878 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2879 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2880 		set->tags[hctx_idx] = NULL;
2881 	}
2882 }
2883 
2884 static void blk_mq_map_swqueue(struct request_queue *q)
2885 {
2886 	unsigned int i, j, hctx_idx;
2887 	struct blk_mq_hw_ctx *hctx;
2888 	struct blk_mq_ctx *ctx;
2889 	struct blk_mq_tag_set *set = q->tag_set;
2890 
2891 	queue_for_each_hw_ctx(q, hctx, i) {
2892 		cpumask_clear(hctx->cpumask);
2893 		hctx->nr_ctx = 0;
2894 		hctx->dispatch_from = NULL;
2895 	}
2896 
2897 	/*
2898 	 * Map software to hardware queues.
2899 	 *
2900 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2901 	 */
2902 	for_each_possible_cpu(i) {
2903 
2904 		ctx = per_cpu_ptr(q->queue_ctx, i);
2905 		for (j = 0; j < set->nr_maps; j++) {
2906 			if (!set->map[j].nr_queues) {
2907 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2908 						HCTX_TYPE_DEFAULT, i);
2909 				continue;
2910 			}
2911 			hctx_idx = set->map[j].mq_map[i];
2912 			/* unmapped hw queue can be remapped after CPU topo changed */
2913 			if (!set->tags[hctx_idx] &&
2914 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2915 				/*
2916 				 * If tags initialization fail for some hctx,
2917 				 * that hctx won't be brought online.  In this
2918 				 * case, remap the current ctx to hctx[0] which
2919 				 * is guaranteed to always have tags allocated
2920 				 */
2921 				set->map[j].mq_map[i] = 0;
2922 			}
2923 
2924 			hctx = blk_mq_map_queue_type(q, j, i);
2925 			ctx->hctxs[j] = hctx;
2926 			/*
2927 			 * If the CPU is already set in the mask, then we've
2928 			 * mapped this one already. This can happen if
2929 			 * devices share queues across queue maps.
2930 			 */
2931 			if (cpumask_test_cpu(i, hctx->cpumask))
2932 				continue;
2933 
2934 			cpumask_set_cpu(i, hctx->cpumask);
2935 			hctx->type = j;
2936 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2937 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2938 
2939 			/*
2940 			 * If the nr_ctx type overflows, we have exceeded the
2941 			 * amount of sw queues we can support.
2942 			 */
2943 			BUG_ON(!hctx->nr_ctx);
2944 		}
2945 
2946 		for (; j < HCTX_MAX_TYPES; j++)
2947 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2948 					HCTX_TYPE_DEFAULT, i);
2949 	}
2950 
2951 	queue_for_each_hw_ctx(q, hctx, i) {
2952 		/*
2953 		 * If no software queues are mapped to this hardware queue,
2954 		 * disable it and free the request entries.
2955 		 */
2956 		if (!hctx->nr_ctx) {
2957 			/* Never unmap queue 0.  We need it as a
2958 			 * fallback in case of a new remap fails
2959 			 * allocation
2960 			 */
2961 			if (i && set->tags[i])
2962 				blk_mq_free_map_and_requests(set, i);
2963 
2964 			hctx->tags = NULL;
2965 			continue;
2966 		}
2967 
2968 		hctx->tags = set->tags[i];
2969 		WARN_ON(!hctx->tags);
2970 
2971 		/*
2972 		 * Set the map size to the number of mapped software queues.
2973 		 * This is more accurate and more efficient than looping
2974 		 * over all possibly mapped software queues.
2975 		 */
2976 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2977 
2978 		/*
2979 		 * Initialize batch roundrobin counts
2980 		 */
2981 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2982 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2983 	}
2984 }
2985 
2986 /*
2987  * Caller needs to ensure that we're either frozen/quiesced, or that
2988  * the queue isn't live yet.
2989  */
2990 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2991 {
2992 	struct blk_mq_hw_ctx *hctx;
2993 	int i;
2994 
2995 	queue_for_each_hw_ctx(q, hctx, i) {
2996 		if (shared) {
2997 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2998 		} else {
2999 			blk_mq_tag_idle(hctx);
3000 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3001 		}
3002 	}
3003 }
3004 
3005 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3006 					 bool shared)
3007 {
3008 	struct request_queue *q;
3009 
3010 	lockdep_assert_held(&set->tag_list_lock);
3011 
3012 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3013 		blk_mq_freeze_queue(q);
3014 		queue_set_hctx_shared(q, shared);
3015 		blk_mq_unfreeze_queue(q);
3016 	}
3017 }
3018 
3019 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3020 {
3021 	struct blk_mq_tag_set *set = q->tag_set;
3022 
3023 	mutex_lock(&set->tag_list_lock);
3024 	list_del(&q->tag_set_list);
3025 	if (list_is_singular(&set->tag_list)) {
3026 		/* just transitioned to unshared */
3027 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3028 		/* update existing queue */
3029 		blk_mq_update_tag_set_shared(set, false);
3030 	}
3031 	mutex_unlock(&set->tag_list_lock);
3032 	INIT_LIST_HEAD(&q->tag_set_list);
3033 }
3034 
3035 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3036 				     struct request_queue *q)
3037 {
3038 	mutex_lock(&set->tag_list_lock);
3039 
3040 	/*
3041 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3042 	 */
3043 	if (!list_empty(&set->tag_list) &&
3044 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3045 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3046 		/* update existing queue */
3047 		blk_mq_update_tag_set_shared(set, true);
3048 	}
3049 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3050 		queue_set_hctx_shared(q, true);
3051 	list_add_tail(&q->tag_set_list, &set->tag_list);
3052 
3053 	mutex_unlock(&set->tag_list_lock);
3054 }
3055 
3056 /* All allocations will be freed in release handler of q->mq_kobj */
3057 static int blk_mq_alloc_ctxs(struct request_queue *q)
3058 {
3059 	struct blk_mq_ctxs *ctxs;
3060 	int cpu;
3061 
3062 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3063 	if (!ctxs)
3064 		return -ENOMEM;
3065 
3066 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3067 	if (!ctxs->queue_ctx)
3068 		goto fail;
3069 
3070 	for_each_possible_cpu(cpu) {
3071 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3072 		ctx->ctxs = ctxs;
3073 	}
3074 
3075 	q->mq_kobj = &ctxs->kobj;
3076 	q->queue_ctx = ctxs->queue_ctx;
3077 
3078 	return 0;
3079  fail:
3080 	kfree(ctxs);
3081 	return -ENOMEM;
3082 }
3083 
3084 /*
3085  * It is the actual release handler for mq, but we do it from
3086  * request queue's release handler for avoiding use-after-free
3087  * and headache because q->mq_kobj shouldn't have been introduced,
3088  * but we can't group ctx/kctx kobj without it.
3089  */
3090 void blk_mq_release(struct request_queue *q)
3091 {
3092 	struct blk_mq_hw_ctx *hctx, *next;
3093 	int i;
3094 
3095 	queue_for_each_hw_ctx(q, hctx, i)
3096 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3097 
3098 	/* all hctx are in .unused_hctx_list now */
3099 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3100 		list_del_init(&hctx->hctx_list);
3101 		kobject_put(&hctx->kobj);
3102 	}
3103 
3104 	kfree(q->queue_hw_ctx);
3105 
3106 	/*
3107 	 * release .mq_kobj and sw queue's kobject now because
3108 	 * both share lifetime with request queue.
3109 	 */
3110 	blk_mq_sysfs_deinit(q);
3111 }
3112 
3113 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3114 		void *queuedata)
3115 {
3116 	struct request_queue *q;
3117 	int ret;
3118 
3119 	q = blk_alloc_queue(set->numa_node);
3120 	if (!q)
3121 		return ERR_PTR(-ENOMEM);
3122 	q->queuedata = queuedata;
3123 	ret = blk_mq_init_allocated_queue(set, q);
3124 	if (ret) {
3125 		blk_cleanup_queue(q);
3126 		return ERR_PTR(ret);
3127 	}
3128 	return q;
3129 }
3130 
3131 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3132 {
3133 	return blk_mq_init_queue_data(set, NULL);
3134 }
3135 EXPORT_SYMBOL(blk_mq_init_queue);
3136 
3137 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3138 		struct lock_class_key *lkclass)
3139 {
3140 	struct request_queue *q;
3141 	struct gendisk *disk;
3142 
3143 	q = blk_mq_init_queue_data(set, queuedata);
3144 	if (IS_ERR(q))
3145 		return ERR_CAST(q);
3146 
3147 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3148 	if (!disk) {
3149 		blk_cleanup_queue(q);
3150 		return ERR_PTR(-ENOMEM);
3151 	}
3152 	return disk;
3153 }
3154 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3155 
3156 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3157 		struct blk_mq_tag_set *set, struct request_queue *q,
3158 		int hctx_idx, int node)
3159 {
3160 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3161 
3162 	/* reuse dead hctx first */
3163 	spin_lock(&q->unused_hctx_lock);
3164 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3165 		if (tmp->numa_node == node) {
3166 			hctx = tmp;
3167 			break;
3168 		}
3169 	}
3170 	if (hctx)
3171 		list_del_init(&hctx->hctx_list);
3172 	spin_unlock(&q->unused_hctx_lock);
3173 
3174 	if (!hctx)
3175 		hctx = blk_mq_alloc_hctx(q, set, node);
3176 	if (!hctx)
3177 		goto fail;
3178 
3179 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3180 		goto free_hctx;
3181 
3182 	return hctx;
3183 
3184  free_hctx:
3185 	kobject_put(&hctx->kobj);
3186  fail:
3187 	return NULL;
3188 }
3189 
3190 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3191 						struct request_queue *q)
3192 {
3193 	int i, j, end;
3194 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3195 
3196 	if (q->nr_hw_queues < set->nr_hw_queues) {
3197 		struct blk_mq_hw_ctx **new_hctxs;
3198 
3199 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3200 				       sizeof(*new_hctxs), GFP_KERNEL,
3201 				       set->numa_node);
3202 		if (!new_hctxs)
3203 			return;
3204 		if (hctxs)
3205 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3206 			       sizeof(*hctxs));
3207 		q->queue_hw_ctx = new_hctxs;
3208 		kfree(hctxs);
3209 		hctxs = new_hctxs;
3210 	}
3211 
3212 	/* protect against switching io scheduler  */
3213 	mutex_lock(&q->sysfs_lock);
3214 	for (i = 0; i < set->nr_hw_queues; i++) {
3215 		int node;
3216 		struct blk_mq_hw_ctx *hctx;
3217 
3218 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3219 		/*
3220 		 * If the hw queue has been mapped to another numa node,
3221 		 * we need to realloc the hctx. If allocation fails, fallback
3222 		 * to use the previous one.
3223 		 */
3224 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3225 			continue;
3226 
3227 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3228 		if (hctx) {
3229 			if (hctxs[i])
3230 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3231 			hctxs[i] = hctx;
3232 		} else {
3233 			if (hctxs[i])
3234 				pr_warn("Allocate new hctx on node %d fails,\
3235 						fallback to previous one on node %d\n",
3236 						node, hctxs[i]->numa_node);
3237 			else
3238 				break;
3239 		}
3240 	}
3241 	/*
3242 	 * Increasing nr_hw_queues fails. Free the newly allocated
3243 	 * hctxs and keep the previous q->nr_hw_queues.
3244 	 */
3245 	if (i != set->nr_hw_queues) {
3246 		j = q->nr_hw_queues;
3247 		end = i;
3248 	} else {
3249 		j = i;
3250 		end = q->nr_hw_queues;
3251 		q->nr_hw_queues = set->nr_hw_queues;
3252 	}
3253 
3254 	for (; j < end; j++) {
3255 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3256 
3257 		if (hctx) {
3258 			if (hctx->tags)
3259 				blk_mq_free_map_and_requests(set, j);
3260 			blk_mq_exit_hctx(q, set, hctx, j);
3261 			hctxs[j] = NULL;
3262 		}
3263 	}
3264 	mutex_unlock(&q->sysfs_lock);
3265 }
3266 
3267 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3268 		struct request_queue *q)
3269 {
3270 	/* mark the queue as mq asap */
3271 	q->mq_ops = set->ops;
3272 
3273 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3274 					     blk_mq_poll_stats_bkt,
3275 					     BLK_MQ_POLL_STATS_BKTS, q);
3276 	if (!q->poll_cb)
3277 		goto err_exit;
3278 
3279 	if (blk_mq_alloc_ctxs(q))
3280 		goto err_poll;
3281 
3282 	/* init q->mq_kobj and sw queues' kobjects */
3283 	blk_mq_sysfs_init(q);
3284 
3285 	INIT_LIST_HEAD(&q->unused_hctx_list);
3286 	spin_lock_init(&q->unused_hctx_lock);
3287 
3288 	blk_mq_realloc_hw_ctxs(set, q);
3289 	if (!q->nr_hw_queues)
3290 		goto err_hctxs;
3291 
3292 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3293 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3294 
3295 	q->tag_set = set;
3296 
3297 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3298 	if (set->nr_maps > HCTX_TYPE_POLL &&
3299 	    set->map[HCTX_TYPE_POLL].nr_queues)
3300 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3301 
3302 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3303 	INIT_LIST_HEAD(&q->requeue_list);
3304 	spin_lock_init(&q->requeue_lock);
3305 
3306 	q->nr_requests = set->queue_depth;
3307 
3308 	/*
3309 	 * Default to classic polling
3310 	 */
3311 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3312 
3313 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3314 	blk_mq_add_queue_tag_set(set, q);
3315 	blk_mq_map_swqueue(q);
3316 	return 0;
3317 
3318 err_hctxs:
3319 	kfree(q->queue_hw_ctx);
3320 	q->nr_hw_queues = 0;
3321 	blk_mq_sysfs_deinit(q);
3322 err_poll:
3323 	blk_stat_free_callback(q->poll_cb);
3324 	q->poll_cb = NULL;
3325 err_exit:
3326 	q->mq_ops = NULL;
3327 	return -ENOMEM;
3328 }
3329 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3330 
3331 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3332 void blk_mq_exit_queue(struct request_queue *q)
3333 {
3334 	struct blk_mq_tag_set *set = q->tag_set;
3335 
3336 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3337 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3338 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3339 	blk_mq_del_queue_tag_set(q);
3340 }
3341 
3342 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3343 {
3344 	int i;
3345 
3346 	for (i = 0; i < set->nr_hw_queues; i++) {
3347 		if (!__blk_mq_alloc_map_and_request(set, i))
3348 			goto out_unwind;
3349 		cond_resched();
3350 	}
3351 
3352 	return 0;
3353 
3354 out_unwind:
3355 	while (--i >= 0)
3356 		blk_mq_free_map_and_requests(set, i);
3357 
3358 	return -ENOMEM;
3359 }
3360 
3361 /*
3362  * Allocate the request maps associated with this tag_set. Note that this
3363  * may reduce the depth asked for, if memory is tight. set->queue_depth
3364  * will be updated to reflect the allocated depth.
3365  */
3366 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3367 {
3368 	unsigned int depth;
3369 	int err;
3370 
3371 	depth = set->queue_depth;
3372 	do {
3373 		err = __blk_mq_alloc_rq_maps(set);
3374 		if (!err)
3375 			break;
3376 
3377 		set->queue_depth >>= 1;
3378 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3379 			err = -ENOMEM;
3380 			break;
3381 		}
3382 	} while (set->queue_depth);
3383 
3384 	if (!set->queue_depth || err) {
3385 		pr_err("blk-mq: failed to allocate request map\n");
3386 		return -ENOMEM;
3387 	}
3388 
3389 	if (depth != set->queue_depth)
3390 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3391 						depth, set->queue_depth);
3392 
3393 	return 0;
3394 }
3395 
3396 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3397 {
3398 	/*
3399 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3400 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3401 	 * number of hardware queues.
3402 	 */
3403 	if (set->nr_maps == 1)
3404 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3405 
3406 	if (set->ops->map_queues && !is_kdump_kernel()) {
3407 		int i;
3408 
3409 		/*
3410 		 * transport .map_queues is usually done in the following
3411 		 * way:
3412 		 *
3413 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3414 		 * 	mask = get_cpu_mask(queue)
3415 		 * 	for_each_cpu(cpu, mask)
3416 		 * 		set->map[x].mq_map[cpu] = queue;
3417 		 * }
3418 		 *
3419 		 * When we need to remap, the table has to be cleared for
3420 		 * killing stale mapping since one CPU may not be mapped
3421 		 * to any hw queue.
3422 		 */
3423 		for (i = 0; i < set->nr_maps; i++)
3424 			blk_mq_clear_mq_map(&set->map[i]);
3425 
3426 		return set->ops->map_queues(set);
3427 	} else {
3428 		BUG_ON(set->nr_maps > 1);
3429 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3430 	}
3431 }
3432 
3433 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3434 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3435 {
3436 	struct blk_mq_tags **new_tags;
3437 
3438 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3439 		return 0;
3440 
3441 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3442 				GFP_KERNEL, set->numa_node);
3443 	if (!new_tags)
3444 		return -ENOMEM;
3445 
3446 	if (set->tags)
3447 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3448 		       sizeof(*set->tags));
3449 	kfree(set->tags);
3450 	set->tags = new_tags;
3451 	set->nr_hw_queues = new_nr_hw_queues;
3452 
3453 	return 0;
3454 }
3455 
3456 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3457 				int new_nr_hw_queues)
3458 {
3459 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3460 }
3461 
3462 /*
3463  * Alloc a tag set to be associated with one or more request queues.
3464  * May fail with EINVAL for various error conditions. May adjust the
3465  * requested depth down, if it's too large. In that case, the set
3466  * value will be stored in set->queue_depth.
3467  */
3468 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3469 {
3470 	int i, ret;
3471 
3472 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3473 
3474 	if (!set->nr_hw_queues)
3475 		return -EINVAL;
3476 	if (!set->queue_depth)
3477 		return -EINVAL;
3478 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3479 		return -EINVAL;
3480 
3481 	if (!set->ops->queue_rq)
3482 		return -EINVAL;
3483 
3484 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3485 		return -EINVAL;
3486 
3487 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3488 		pr_info("blk-mq: reduced tag depth to %u\n",
3489 			BLK_MQ_MAX_DEPTH);
3490 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3491 	}
3492 
3493 	if (!set->nr_maps)
3494 		set->nr_maps = 1;
3495 	else if (set->nr_maps > HCTX_MAX_TYPES)
3496 		return -EINVAL;
3497 
3498 	/*
3499 	 * If a crashdump is active, then we are potentially in a very
3500 	 * memory constrained environment. Limit us to 1 queue and
3501 	 * 64 tags to prevent using too much memory.
3502 	 */
3503 	if (is_kdump_kernel()) {
3504 		set->nr_hw_queues = 1;
3505 		set->nr_maps = 1;
3506 		set->queue_depth = min(64U, set->queue_depth);
3507 	}
3508 	/*
3509 	 * There is no use for more h/w queues than cpus if we just have
3510 	 * a single map
3511 	 */
3512 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3513 		set->nr_hw_queues = nr_cpu_ids;
3514 
3515 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3516 		return -ENOMEM;
3517 
3518 	ret = -ENOMEM;
3519 	for (i = 0; i < set->nr_maps; i++) {
3520 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3521 						  sizeof(set->map[i].mq_map[0]),
3522 						  GFP_KERNEL, set->numa_node);
3523 		if (!set->map[i].mq_map)
3524 			goto out_free_mq_map;
3525 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3526 	}
3527 
3528 	ret = blk_mq_update_queue_map(set);
3529 	if (ret)
3530 		goto out_free_mq_map;
3531 
3532 	ret = blk_mq_alloc_map_and_requests(set);
3533 	if (ret)
3534 		goto out_free_mq_map;
3535 
3536 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3537 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3538 
3539 		if (blk_mq_init_shared_sbitmap(set)) {
3540 			ret = -ENOMEM;
3541 			goto out_free_mq_rq_maps;
3542 		}
3543 	}
3544 
3545 	mutex_init(&set->tag_list_lock);
3546 	INIT_LIST_HEAD(&set->tag_list);
3547 
3548 	return 0;
3549 
3550 out_free_mq_rq_maps:
3551 	for (i = 0; i < set->nr_hw_queues; i++)
3552 		blk_mq_free_map_and_requests(set, i);
3553 out_free_mq_map:
3554 	for (i = 0; i < set->nr_maps; i++) {
3555 		kfree(set->map[i].mq_map);
3556 		set->map[i].mq_map = NULL;
3557 	}
3558 	kfree(set->tags);
3559 	set->tags = NULL;
3560 	return ret;
3561 }
3562 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3563 
3564 /* allocate and initialize a tagset for a simple single-queue device */
3565 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3566 		const struct blk_mq_ops *ops, unsigned int queue_depth,
3567 		unsigned int set_flags)
3568 {
3569 	memset(set, 0, sizeof(*set));
3570 	set->ops = ops;
3571 	set->nr_hw_queues = 1;
3572 	set->nr_maps = 1;
3573 	set->queue_depth = queue_depth;
3574 	set->numa_node = NUMA_NO_NODE;
3575 	set->flags = set_flags;
3576 	return blk_mq_alloc_tag_set(set);
3577 }
3578 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3579 
3580 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3581 {
3582 	int i, j;
3583 
3584 	for (i = 0; i < set->nr_hw_queues; i++)
3585 		blk_mq_free_map_and_requests(set, i);
3586 
3587 	if (blk_mq_is_sbitmap_shared(set->flags))
3588 		blk_mq_exit_shared_sbitmap(set);
3589 
3590 	for (j = 0; j < set->nr_maps; j++) {
3591 		kfree(set->map[j].mq_map);
3592 		set->map[j].mq_map = NULL;
3593 	}
3594 
3595 	kfree(set->tags);
3596 	set->tags = NULL;
3597 }
3598 EXPORT_SYMBOL(blk_mq_free_tag_set);
3599 
3600 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3601 {
3602 	struct blk_mq_tag_set *set = q->tag_set;
3603 	struct blk_mq_hw_ctx *hctx;
3604 	int i, ret;
3605 
3606 	if (!set)
3607 		return -EINVAL;
3608 
3609 	if (q->nr_requests == nr)
3610 		return 0;
3611 
3612 	blk_mq_freeze_queue(q);
3613 	blk_mq_quiesce_queue(q);
3614 
3615 	ret = 0;
3616 	queue_for_each_hw_ctx(q, hctx, i) {
3617 		if (!hctx->tags)
3618 			continue;
3619 		/*
3620 		 * If we're using an MQ scheduler, just update the scheduler
3621 		 * queue depth. This is similar to what the old code would do.
3622 		 */
3623 		if (!hctx->sched_tags) {
3624 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3625 							false);
3626 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3627 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3628 		} else {
3629 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3630 							nr, true);
3631 			if (blk_mq_is_sbitmap_shared(set->flags)) {
3632 				hctx->sched_tags->bitmap_tags =
3633 					&q->sched_bitmap_tags;
3634 				hctx->sched_tags->breserved_tags =
3635 					&q->sched_breserved_tags;
3636 			}
3637 		}
3638 		if (ret)
3639 			break;
3640 		if (q->elevator && q->elevator->type->ops.depth_updated)
3641 			q->elevator->type->ops.depth_updated(hctx);
3642 	}
3643 	if (!ret) {
3644 		q->nr_requests = nr;
3645 		if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3646 			sbitmap_queue_resize(&q->sched_bitmap_tags,
3647 					     nr - set->reserved_tags);
3648 	}
3649 
3650 	blk_mq_unquiesce_queue(q);
3651 	blk_mq_unfreeze_queue(q);
3652 
3653 	return ret;
3654 }
3655 
3656 /*
3657  * request_queue and elevator_type pair.
3658  * It is just used by __blk_mq_update_nr_hw_queues to cache
3659  * the elevator_type associated with a request_queue.
3660  */
3661 struct blk_mq_qe_pair {
3662 	struct list_head node;
3663 	struct request_queue *q;
3664 	struct elevator_type *type;
3665 };
3666 
3667 /*
3668  * Cache the elevator_type in qe pair list and switch the
3669  * io scheduler to 'none'
3670  */
3671 static bool blk_mq_elv_switch_none(struct list_head *head,
3672 		struct request_queue *q)
3673 {
3674 	struct blk_mq_qe_pair *qe;
3675 
3676 	if (!q->elevator)
3677 		return true;
3678 
3679 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3680 	if (!qe)
3681 		return false;
3682 
3683 	INIT_LIST_HEAD(&qe->node);
3684 	qe->q = q;
3685 	qe->type = q->elevator->type;
3686 	list_add(&qe->node, head);
3687 
3688 	mutex_lock(&q->sysfs_lock);
3689 	/*
3690 	 * After elevator_switch_mq, the previous elevator_queue will be
3691 	 * released by elevator_release. The reference of the io scheduler
3692 	 * module get by elevator_get will also be put. So we need to get
3693 	 * a reference of the io scheduler module here to prevent it to be
3694 	 * removed.
3695 	 */
3696 	__module_get(qe->type->elevator_owner);
3697 	elevator_switch_mq(q, NULL);
3698 	mutex_unlock(&q->sysfs_lock);
3699 
3700 	return true;
3701 }
3702 
3703 static void blk_mq_elv_switch_back(struct list_head *head,
3704 		struct request_queue *q)
3705 {
3706 	struct blk_mq_qe_pair *qe;
3707 	struct elevator_type *t = NULL;
3708 
3709 	list_for_each_entry(qe, head, node)
3710 		if (qe->q == q) {
3711 			t = qe->type;
3712 			break;
3713 		}
3714 
3715 	if (!t)
3716 		return;
3717 
3718 	list_del(&qe->node);
3719 	kfree(qe);
3720 
3721 	mutex_lock(&q->sysfs_lock);
3722 	elevator_switch_mq(q, t);
3723 	mutex_unlock(&q->sysfs_lock);
3724 }
3725 
3726 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3727 							int nr_hw_queues)
3728 {
3729 	struct request_queue *q;
3730 	LIST_HEAD(head);
3731 	int prev_nr_hw_queues;
3732 
3733 	lockdep_assert_held(&set->tag_list_lock);
3734 
3735 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3736 		nr_hw_queues = nr_cpu_ids;
3737 	if (nr_hw_queues < 1)
3738 		return;
3739 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3740 		return;
3741 
3742 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3743 		blk_mq_freeze_queue(q);
3744 	/*
3745 	 * Switch IO scheduler to 'none', cleaning up the data associated
3746 	 * with the previous scheduler. We will switch back once we are done
3747 	 * updating the new sw to hw queue mappings.
3748 	 */
3749 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3750 		if (!blk_mq_elv_switch_none(&head, q))
3751 			goto switch_back;
3752 
3753 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3754 		blk_mq_debugfs_unregister_hctxs(q);
3755 		blk_mq_sysfs_unregister(q);
3756 	}
3757 
3758 	prev_nr_hw_queues = set->nr_hw_queues;
3759 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3760 	    0)
3761 		goto reregister;
3762 
3763 	set->nr_hw_queues = nr_hw_queues;
3764 fallback:
3765 	blk_mq_update_queue_map(set);
3766 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3767 		blk_mq_realloc_hw_ctxs(set, q);
3768 		if (q->nr_hw_queues != set->nr_hw_queues) {
3769 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3770 					nr_hw_queues, prev_nr_hw_queues);
3771 			set->nr_hw_queues = prev_nr_hw_queues;
3772 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3773 			goto fallback;
3774 		}
3775 		blk_mq_map_swqueue(q);
3776 	}
3777 
3778 reregister:
3779 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3780 		blk_mq_sysfs_register(q);
3781 		blk_mq_debugfs_register_hctxs(q);
3782 	}
3783 
3784 switch_back:
3785 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3786 		blk_mq_elv_switch_back(&head, q);
3787 
3788 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3789 		blk_mq_unfreeze_queue(q);
3790 }
3791 
3792 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3793 {
3794 	mutex_lock(&set->tag_list_lock);
3795 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3796 	mutex_unlock(&set->tag_list_lock);
3797 }
3798 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3799 
3800 /* Enable polling stats and return whether they were already enabled. */
3801 static bool blk_poll_stats_enable(struct request_queue *q)
3802 {
3803 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3804 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3805 		return true;
3806 	blk_stat_add_callback(q, q->poll_cb);
3807 	return false;
3808 }
3809 
3810 static void blk_mq_poll_stats_start(struct request_queue *q)
3811 {
3812 	/*
3813 	 * We don't arm the callback if polling stats are not enabled or the
3814 	 * callback is already active.
3815 	 */
3816 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3817 	    blk_stat_is_active(q->poll_cb))
3818 		return;
3819 
3820 	blk_stat_activate_msecs(q->poll_cb, 100);
3821 }
3822 
3823 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3824 {
3825 	struct request_queue *q = cb->data;
3826 	int bucket;
3827 
3828 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3829 		if (cb->stat[bucket].nr_samples)
3830 			q->poll_stat[bucket] = cb->stat[bucket];
3831 	}
3832 }
3833 
3834 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3835 				       struct request *rq)
3836 {
3837 	unsigned long ret = 0;
3838 	int bucket;
3839 
3840 	/*
3841 	 * If stats collection isn't on, don't sleep but turn it on for
3842 	 * future users
3843 	 */
3844 	if (!blk_poll_stats_enable(q))
3845 		return 0;
3846 
3847 	/*
3848 	 * As an optimistic guess, use half of the mean service time
3849 	 * for this type of request. We can (and should) make this smarter.
3850 	 * For instance, if the completion latencies are tight, we can
3851 	 * get closer than just half the mean. This is especially
3852 	 * important on devices where the completion latencies are longer
3853 	 * than ~10 usec. We do use the stats for the relevant IO size
3854 	 * if available which does lead to better estimates.
3855 	 */
3856 	bucket = blk_mq_poll_stats_bkt(rq);
3857 	if (bucket < 0)
3858 		return ret;
3859 
3860 	if (q->poll_stat[bucket].nr_samples)
3861 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3862 
3863 	return ret;
3864 }
3865 
3866 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3867 				     struct request *rq)
3868 {
3869 	struct hrtimer_sleeper hs;
3870 	enum hrtimer_mode mode;
3871 	unsigned int nsecs;
3872 	ktime_t kt;
3873 
3874 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3875 		return false;
3876 
3877 	/*
3878 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3879 	 *
3880 	 *  0:	use half of prev avg
3881 	 * >0:	use this specific value
3882 	 */
3883 	if (q->poll_nsec > 0)
3884 		nsecs = q->poll_nsec;
3885 	else
3886 		nsecs = blk_mq_poll_nsecs(q, rq);
3887 
3888 	if (!nsecs)
3889 		return false;
3890 
3891 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3892 
3893 	/*
3894 	 * This will be replaced with the stats tracking code, using
3895 	 * 'avg_completion_time / 2' as the pre-sleep target.
3896 	 */
3897 	kt = nsecs;
3898 
3899 	mode = HRTIMER_MODE_REL;
3900 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3901 	hrtimer_set_expires(&hs.timer, kt);
3902 
3903 	do {
3904 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3905 			break;
3906 		set_current_state(TASK_UNINTERRUPTIBLE);
3907 		hrtimer_sleeper_start_expires(&hs, mode);
3908 		if (hs.task)
3909 			io_schedule();
3910 		hrtimer_cancel(&hs.timer);
3911 		mode = HRTIMER_MODE_ABS;
3912 	} while (hs.task && !signal_pending(current));
3913 
3914 	__set_current_state(TASK_RUNNING);
3915 	destroy_hrtimer_on_stack(&hs.timer);
3916 	return true;
3917 }
3918 
3919 static bool blk_mq_poll_hybrid(struct request_queue *q,
3920 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3921 {
3922 	struct request *rq;
3923 
3924 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3925 		return false;
3926 
3927 	if (!blk_qc_t_is_internal(cookie))
3928 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3929 	else {
3930 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3931 		/*
3932 		 * With scheduling, if the request has completed, we'll
3933 		 * get a NULL return here, as we clear the sched tag when
3934 		 * that happens. The request still remains valid, like always,
3935 		 * so we should be safe with just the NULL check.
3936 		 */
3937 		if (!rq)
3938 			return false;
3939 	}
3940 
3941 	return blk_mq_poll_hybrid_sleep(q, rq);
3942 }
3943 
3944 /**
3945  * blk_poll - poll for IO completions
3946  * @q:  the queue
3947  * @cookie: cookie passed back at IO submission time
3948  * @spin: whether to spin for completions
3949  *
3950  * Description:
3951  *    Poll for completions on the passed in queue. Returns number of
3952  *    completed entries found. If @spin is true, then blk_poll will continue
3953  *    looping until at least one completion is found, unless the task is
3954  *    otherwise marked running (or we need to reschedule).
3955  */
3956 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3957 {
3958 	struct blk_mq_hw_ctx *hctx;
3959 	unsigned int state;
3960 
3961 	if (!blk_qc_t_valid(cookie) ||
3962 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3963 		return 0;
3964 
3965 	if (current->plug)
3966 		blk_flush_plug_list(current->plug, false);
3967 
3968 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3969 
3970 	/*
3971 	 * If we sleep, have the caller restart the poll loop to reset
3972 	 * the state. Like for the other success return cases, the
3973 	 * caller is responsible for checking if the IO completed. If
3974 	 * the IO isn't complete, we'll get called again and will go
3975 	 * straight to the busy poll loop. If specified not to spin,
3976 	 * we also should not sleep.
3977 	 */
3978 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3979 		return 1;
3980 
3981 	hctx->poll_considered++;
3982 
3983 	state = get_current_state();
3984 	do {
3985 		int ret;
3986 
3987 		hctx->poll_invoked++;
3988 
3989 		ret = q->mq_ops->poll(hctx);
3990 		if (ret > 0) {
3991 			hctx->poll_success++;
3992 			__set_current_state(TASK_RUNNING);
3993 			return ret;
3994 		}
3995 
3996 		if (signal_pending_state(state, current))
3997 			__set_current_state(TASK_RUNNING);
3998 
3999 		if (task_is_running(current))
4000 			return 1;
4001 		if (ret < 0 || !spin)
4002 			break;
4003 		cpu_relax();
4004 	} while (!need_resched());
4005 
4006 	__set_current_state(TASK_RUNNING);
4007 	return 0;
4008 }
4009 EXPORT_SYMBOL_GPL(blk_poll);
4010 
4011 unsigned int blk_mq_rq_cpu(struct request *rq)
4012 {
4013 	return rq->mq_ctx->cpu;
4014 }
4015 EXPORT_SYMBOL(blk_mq_rq_cpu);
4016 
4017 static int __init blk_mq_init(void)
4018 {
4019 	int i;
4020 
4021 	for_each_possible_cpu(i)
4022 		init_llist_head(&per_cpu(blk_cpu_done, i));
4023 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4024 
4025 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4026 				  "block/softirq:dead", NULL,
4027 				  blk_softirq_cpu_dead);
4028 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4029 				blk_mq_hctx_notify_dead);
4030 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4031 				blk_mq_hctx_notify_online,
4032 				blk_mq_hctx_notify_offline);
4033 	return 0;
4034 }
4035 subsys_initcall(blk_mq_init);
4036