xref: /openbmc/linux/block/blk-mq.c (revision ddc141e5)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99 		/*
100 		 * index[0] counts the specific partition that was asked
101 		 * for. index[1] counts the ones that are active on the
102 		 * whole device, so increment that if mi->part is indeed
103 		 * a partition, and not a whole device.
104 		 */
105 		if (rq->part == mi->part)
106 			mi->inflight[0]++;
107 		if (mi->part->partno)
108 			mi->inflight[1]++;
109 	}
110 }
111 
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 		      unsigned int inflight[2])
114 {
115 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
116 
117 	inflight[0] = inflight[1] = 0;
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120 
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 	int freeze_depth;
124 
125 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 	if (freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		if (q->mq_ops)
129 			blk_mq_run_hw_queues(q, false);
130 	}
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133 
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139 
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 				     unsigned long timeout)
142 {
143 	return wait_event_timeout(q->mq_freeze_wq,
144 					percpu_ref_is_zero(&q->q_usage_counter),
145 					timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148 
149 /*
150  * Guarantee no request is in use, so we can change any data structure of
151  * the queue afterward.
152  */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 	/*
156 	 * In the !blk_mq case we are only calling this to kill the
157 	 * q_usage_counter, otherwise this increases the freeze depth
158 	 * and waits for it to return to zero.  For this reason there is
159 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 	 * exported to drivers as the only user for unfreeze is blk_mq.
161 	 */
162 	blk_freeze_queue_start(q);
163 	if (!q->mq_ops)
164 		blk_drain_queue(q);
165 	blk_mq_freeze_queue_wait(q);
166 }
167 
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * ...just an alias to keep freeze and unfreeze actions balanced
172 	 * in the blk_mq_* namespace
173 	 */
174 	blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177 
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180 	int freeze_depth;
181 
182 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183 	WARN_ON_ONCE(freeze_depth < 0);
184 	if (!freeze_depth) {
185 		percpu_ref_reinit(&q->q_usage_counter);
186 		wake_up_all(&q->mq_freeze_wq);
187 	}
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190 
191 /*
192  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193  * mpt3sas driver such that this function can be removed.
194  */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197 	unsigned long flags;
198 
199 	spin_lock_irqsave(q->queue_lock, flags);
200 	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
201 	spin_unlock_irqrestore(q->queue_lock, flags);
202 }
203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
204 
205 /**
206  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
207  * @q: request queue.
208  *
209  * Note: this function does not prevent that the struct request end_io()
210  * callback function is invoked. Once this function is returned, we make
211  * sure no dispatch can happen until the queue is unquiesced via
212  * blk_mq_unquiesce_queue().
213  */
214 void blk_mq_quiesce_queue(struct request_queue *q)
215 {
216 	struct blk_mq_hw_ctx *hctx;
217 	unsigned int i;
218 	bool rcu = false;
219 
220 	blk_mq_quiesce_queue_nowait(q);
221 
222 	queue_for_each_hw_ctx(q, hctx, i) {
223 		if (hctx->flags & BLK_MQ_F_BLOCKING)
224 			synchronize_srcu(hctx->srcu);
225 		else
226 			rcu = true;
227 	}
228 	if (rcu)
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
232 
233 /*
234  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
235  * @q: request queue.
236  *
237  * This function recovers queue into the state before quiescing
238  * which is done by blk_mq_quiesce_queue.
239  */
240 void blk_mq_unquiesce_queue(struct request_queue *q)
241 {
242 	unsigned long flags;
243 
244 	spin_lock_irqsave(q->queue_lock, flags);
245 	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
246 	spin_unlock_irqrestore(q->queue_lock, flags);
247 
248 	/* dispatch requests which are inserted during quiescing */
249 	blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252 
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255 	struct blk_mq_hw_ctx *hctx;
256 	unsigned int i;
257 
258 	queue_for_each_hw_ctx(q, hctx, i)
259 		if (blk_mq_hw_queue_mapped(hctx))
260 			blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262 
263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
264 {
265 	return blk_mq_has_free_tags(hctx->tags);
266 }
267 EXPORT_SYMBOL(blk_mq_can_queue);
268 
269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
270 		unsigned int tag, unsigned int op)
271 {
272 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
273 	struct request *rq = tags->static_rqs[tag];
274 	req_flags_t rq_flags = 0;
275 
276 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 		rq->tag = -1;
278 		rq->internal_tag = tag;
279 	} else {
280 		if (blk_mq_tag_busy(data->hctx)) {
281 			rq_flags = RQF_MQ_INFLIGHT;
282 			atomic_inc(&data->hctx->nr_active);
283 		}
284 		rq->tag = tag;
285 		rq->internal_tag = -1;
286 		data->hctx->tags->rqs[rq->tag] = rq;
287 	}
288 
289 	/* csd/requeue_work/fifo_time is initialized before use */
290 	rq->q = data->q;
291 	rq->mq_ctx = data->ctx;
292 	rq->rq_flags = rq_flags;
293 	rq->cpu = -1;
294 	rq->cmd_flags = op;
295 	if (data->flags & BLK_MQ_REQ_PREEMPT)
296 		rq->rq_flags |= RQF_PREEMPT;
297 	if (blk_queue_io_stat(data->q))
298 		rq->rq_flags |= RQF_IO_STAT;
299 	INIT_LIST_HEAD(&rq->queuelist);
300 	INIT_HLIST_NODE(&rq->hash);
301 	RB_CLEAR_NODE(&rq->rb_node);
302 	rq->rq_disk = NULL;
303 	rq->part = NULL;
304 	rq->start_time = jiffies;
305 	rq->nr_phys_segments = 0;
306 #if defined(CONFIG_BLK_DEV_INTEGRITY)
307 	rq->nr_integrity_segments = 0;
308 #endif
309 	rq->special = NULL;
310 	/* tag was already set */
311 	rq->extra_len = 0;
312 	rq->__deadline = 0;
313 
314 	INIT_LIST_HEAD(&rq->timeout_list);
315 	rq->timeout = 0;
316 
317 	rq->end_io = NULL;
318 	rq->end_io_data = NULL;
319 	rq->next_rq = NULL;
320 
321 #ifdef CONFIG_BLK_CGROUP
322 	rq->rl = NULL;
323 	set_start_time_ns(rq);
324 	rq->io_start_time_ns = 0;
325 #endif
326 
327 	data->ctx->rq_dispatched[op_is_sync(op)]++;
328 	return rq;
329 }
330 
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 		struct bio *bio, unsigned int op,
333 		struct blk_mq_alloc_data *data)
334 {
335 	struct elevator_queue *e = q->elevator;
336 	struct request *rq;
337 	unsigned int tag;
338 	bool put_ctx_on_error = false;
339 
340 	blk_queue_enter_live(q);
341 	data->q = q;
342 	if (likely(!data->ctx)) {
343 		data->ctx = blk_mq_get_ctx(q);
344 		put_ctx_on_error = true;
345 	}
346 	if (likely(!data->hctx))
347 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 	if (op & REQ_NOWAIT)
349 		data->flags |= BLK_MQ_REQ_NOWAIT;
350 
351 	if (e) {
352 		data->flags |= BLK_MQ_REQ_INTERNAL;
353 
354 		/*
355 		 * Flush requests are special and go directly to the
356 		 * dispatch list.
357 		 */
358 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 			e->type->ops.mq.limit_depth(op, data);
360 	}
361 
362 	tag = blk_mq_get_tag(data);
363 	if (tag == BLK_MQ_TAG_FAIL) {
364 		if (put_ctx_on_error) {
365 			blk_mq_put_ctx(data->ctx);
366 			data->ctx = NULL;
367 		}
368 		blk_queue_exit(q);
369 		return NULL;
370 	}
371 
372 	rq = blk_mq_rq_ctx_init(data, tag, op);
373 	if (!op_is_flush(op)) {
374 		rq->elv.icq = NULL;
375 		if (e && e->type->ops.mq.prepare_request) {
376 			if (e->type->icq_cache && rq_ioc(bio))
377 				blk_mq_sched_assign_ioc(rq, bio);
378 
379 			e->type->ops.mq.prepare_request(rq, bio);
380 			rq->rq_flags |= RQF_ELVPRIV;
381 		}
382 	}
383 	data->hctx->queued++;
384 	return rq;
385 }
386 
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 		blk_mq_req_flags_t flags)
389 {
390 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 	struct request *rq;
392 	int ret;
393 
394 	ret = blk_queue_enter(q, flags);
395 	if (ret)
396 		return ERR_PTR(ret);
397 
398 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 	blk_queue_exit(q);
400 
401 	if (!rq)
402 		return ERR_PTR(-EWOULDBLOCK);
403 
404 	blk_mq_put_ctx(alloc_data.ctx);
405 
406 	rq->__data_len = 0;
407 	rq->__sector = (sector_t) -1;
408 	rq->bio = rq->biotail = NULL;
409 	return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412 
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 	struct request *rq;
418 	unsigned int cpu;
419 	int ret;
420 
421 	/*
422 	 * If the tag allocator sleeps we could get an allocation for a
423 	 * different hardware context.  No need to complicate the low level
424 	 * allocator for this for the rare use case of a command tied to
425 	 * a specific queue.
426 	 */
427 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 		return ERR_PTR(-EINVAL);
429 
430 	if (hctx_idx >= q->nr_hw_queues)
431 		return ERR_PTR(-EIO);
432 
433 	ret = blk_queue_enter(q, flags);
434 	if (ret)
435 		return ERR_PTR(ret);
436 
437 	/*
438 	 * Check if the hardware context is actually mapped to anything.
439 	 * If not tell the caller that it should skip this queue.
440 	 */
441 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 		blk_queue_exit(q);
444 		return ERR_PTR(-EXDEV);
445 	}
446 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448 
449 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 	blk_queue_exit(q);
451 
452 	if (!rq)
453 		return ERR_PTR(-EWOULDBLOCK);
454 
455 	return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458 
459 void blk_mq_free_request(struct request *rq)
460 {
461 	struct request_queue *q = rq->q;
462 	struct elevator_queue *e = q->elevator;
463 	struct blk_mq_ctx *ctx = rq->mq_ctx;
464 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 	const int sched_tag = rq->internal_tag;
466 
467 	if (rq->rq_flags & RQF_ELVPRIV) {
468 		if (e && e->type->ops.mq.finish_request)
469 			e->type->ops.mq.finish_request(rq);
470 		if (rq->elv.icq) {
471 			put_io_context(rq->elv.icq->ioc);
472 			rq->elv.icq = NULL;
473 		}
474 	}
475 
476 	ctx->rq_completed[rq_is_sync(rq)]++;
477 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 		atomic_dec(&hctx->nr_active);
479 
480 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 		laptop_io_completion(q->backing_dev_info);
482 
483 	wbt_done(q->rq_wb, &rq->issue_stat);
484 
485 	if (blk_rq_rl(rq))
486 		blk_put_rl(blk_rq_rl(rq));
487 
488 	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
489 	if (rq->tag != -1)
490 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491 	if (sched_tag != -1)
492 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493 	blk_mq_sched_restart(hctx);
494 	blk_queue_exit(q);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497 
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 {
500 	blk_account_io_done(rq);
501 
502 	if (rq->end_io) {
503 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
504 		rq->end_io(rq, error);
505 	} else {
506 		if (unlikely(blk_bidi_rq(rq)))
507 			blk_mq_free_request(rq->next_rq);
508 		blk_mq_free_request(rq);
509 	}
510 }
511 EXPORT_SYMBOL(__blk_mq_end_request);
512 
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516 		BUG();
517 	__blk_mq_end_request(rq, error);
518 }
519 EXPORT_SYMBOL(blk_mq_end_request);
520 
521 static void __blk_mq_complete_request_remote(void *data)
522 {
523 	struct request *rq = data;
524 
525 	rq->q->softirq_done_fn(rq);
526 }
527 
528 static void __blk_mq_complete_request(struct request *rq)
529 {
530 	struct blk_mq_ctx *ctx = rq->mq_ctx;
531 	bool shared = false;
532 	int cpu;
533 
534 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
535 	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
536 
537 	if (rq->internal_tag != -1)
538 		blk_mq_sched_completed_request(rq);
539 	if (rq->rq_flags & RQF_STATS) {
540 		blk_mq_poll_stats_start(rq->q);
541 		blk_stat_add(rq);
542 	}
543 
544 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 		rq->q->softirq_done_fn(rq);
546 		return;
547 	}
548 
549 	cpu = get_cpu();
550 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551 		shared = cpus_share_cache(cpu, ctx->cpu);
552 
553 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554 		rq->csd.func = __blk_mq_complete_request_remote;
555 		rq->csd.info = rq;
556 		rq->csd.flags = 0;
557 		smp_call_function_single_async(ctx->cpu, &rq->csd);
558 	} else {
559 		rq->q->softirq_done_fn(rq);
560 	}
561 	put_cpu();
562 }
563 
564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
565 	__releases(hctx->srcu)
566 {
567 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
568 		rcu_read_unlock();
569 	else
570 		srcu_read_unlock(hctx->srcu, srcu_idx);
571 }
572 
573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
574 	__acquires(hctx->srcu)
575 {
576 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
577 		/* shut up gcc false positive */
578 		*srcu_idx = 0;
579 		rcu_read_lock();
580 	} else
581 		*srcu_idx = srcu_read_lock(hctx->srcu);
582 }
583 
584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
585 {
586 	unsigned long flags;
587 
588 	/*
589 	 * blk_mq_rq_aborted_gstate() is used from the completion path and
590 	 * can thus be called from irq context.  u64_stats_fetch in the
591 	 * middle of update on the same CPU leads to lockup.  Disable irq
592 	 * while updating.
593 	 */
594 	local_irq_save(flags);
595 	u64_stats_update_begin(&rq->aborted_gstate_sync);
596 	rq->aborted_gstate = gstate;
597 	u64_stats_update_end(&rq->aborted_gstate_sync);
598 	local_irq_restore(flags);
599 }
600 
601 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
602 {
603 	unsigned int start;
604 	u64 aborted_gstate;
605 
606 	do {
607 		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
608 		aborted_gstate = rq->aborted_gstate;
609 	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
610 
611 	return aborted_gstate;
612 }
613 
614 /**
615  * blk_mq_complete_request - end I/O on a request
616  * @rq:		the request being processed
617  *
618  * Description:
619  *	Ends all I/O on a request. It does not handle partial completions.
620  *	The actual completion happens out-of-order, through a IPI handler.
621  **/
622 void blk_mq_complete_request(struct request *rq)
623 {
624 	struct request_queue *q = rq->q;
625 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
626 	int srcu_idx;
627 
628 	if (unlikely(blk_should_fake_timeout(q)))
629 		return;
630 
631 	/*
632 	 * If @rq->aborted_gstate equals the current instance, timeout is
633 	 * claiming @rq and we lost.  This is synchronized through
634 	 * hctx_lock().  See blk_mq_timeout_work() for details.
635 	 *
636 	 * Completion path never blocks and we can directly use RCU here
637 	 * instead of hctx_lock() which can be either RCU or SRCU.
638 	 * However, that would complicate paths which want to synchronize
639 	 * against us.  Let stay in sync with the issue path so that
640 	 * hctx_lock() covers both issue and completion paths.
641 	 */
642 	hctx_lock(hctx, &srcu_idx);
643 	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
644 		__blk_mq_complete_request(rq);
645 	hctx_unlock(hctx, srcu_idx);
646 }
647 EXPORT_SYMBOL(blk_mq_complete_request);
648 
649 int blk_mq_request_started(struct request *rq)
650 {
651 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
652 }
653 EXPORT_SYMBOL_GPL(blk_mq_request_started);
654 
655 void blk_mq_start_request(struct request *rq)
656 {
657 	struct request_queue *q = rq->q;
658 
659 	blk_mq_sched_started_request(rq);
660 
661 	trace_block_rq_issue(q, rq);
662 
663 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
664 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
665 		rq->rq_flags |= RQF_STATS;
666 		wbt_issue(q->rq_wb, &rq->issue_stat);
667 	}
668 
669 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
670 
671 	/*
672 	 * Mark @rq in-flight which also advances the generation number,
673 	 * and register for timeout.  Protect with a seqcount to allow the
674 	 * timeout path to read both @rq->gstate and @rq->deadline
675 	 * coherently.
676 	 *
677 	 * This is the only place where a request is marked in-flight.  If
678 	 * the timeout path reads an in-flight @rq->gstate, the
679 	 * @rq->deadline it reads together under @rq->gstate_seq is
680 	 * guaranteed to be the matching one.
681 	 */
682 	preempt_disable();
683 	write_seqcount_begin(&rq->gstate_seq);
684 
685 	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
686 	blk_add_timer(rq);
687 
688 	write_seqcount_end(&rq->gstate_seq);
689 	preempt_enable();
690 
691 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
692 		/*
693 		 * Make sure space for the drain appears.  We know we can do
694 		 * this because max_hw_segments has been adjusted to be one
695 		 * fewer than the device can handle.
696 		 */
697 		rq->nr_phys_segments++;
698 	}
699 }
700 EXPORT_SYMBOL(blk_mq_start_request);
701 
702 /*
703  * When we reach here because queue is busy, it's safe to change the state
704  * to IDLE without checking @rq->aborted_gstate because we should still be
705  * holding the RCU read lock and thus protected against timeout.
706  */
707 static void __blk_mq_requeue_request(struct request *rq)
708 {
709 	struct request_queue *q = rq->q;
710 
711 	blk_mq_put_driver_tag(rq);
712 
713 	trace_block_rq_requeue(q, rq);
714 	wbt_requeue(q->rq_wb, &rq->issue_stat);
715 
716 	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
717 		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
718 		if (q->dma_drain_size && blk_rq_bytes(rq))
719 			rq->nr_phys_segments--;
720 	}
721 }
722 
723 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
724 {
725 	__blk_mq_requeue_request(rq);
726 
727 	/* this request will be re-inserted to io scheduler queue */
728 	blk_mq_sched_requeue_request(rq);
729 
730 	BUG_ON(blk_queued_rq(rq));
731 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
732 }
733 EXPORT_SYMBOL(blk_mq_requeue_request);
734 
735 static void blk_mq_requeue_work(struct work_struct *work)
736 {
737 	struct request_queue *q =
738 		container_of(work, struct request_queue, requeue_work.work);
739 	LIST_HEAD(rq_list);
740 	struct request *rq, *next;
741 
742 	spin_lock_irq(&q->requeue_lock);
743 	list_splice_init(&q->requeue_list, &rq_list);
744 	spin_unlock_irq(&q->requeue_lock);
745 
746 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
747 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
748 			continue;
749 
750 		rq->rq_flags &= ~RQF_SOFTBARRIER;
751 		list_del_init(&rq->queuelist);
752 		blk_mq_sched_insert_request(rq, true, false, false);
753 	}
754 
755 	while (!list_empty(&rq_list)) {
756 		rq = list_entry(rq_list.next, struct request, queuelist);
757 		list_del_init(&rq->queuelist);
758 		blk_mq_sched_insert_request(rq, false, false, false);
759 	}
760 
761 	blk_mq_run_hw_queues(q, false);
762 }
763 
764 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
765 				bool kick_requeue_list)
766 {
767 	struct request_queue *q = rq->q;
768 	unsigned long flags;
769 
770 	/*
771 	 * We abuse this flag that is otherwise used by the I/O scheduler to
772 	 * request head insertion from the workqueue.
773 	 */
774 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
775 
776 	spin_lock_irqsave(&q->requeue_lock, flags);
777 	if (at_head) {
778 		rq->rq_flags |= RQF_SOFTBARRIER;
779 		list_add(&rq->queuelist, &q->requeue_list);
780 	} else {
781 		list_add_tail(&rq->queuelist, &q->requeue_list);
782 	}
783 	spin_unlock_irqrestore(&q->requeue_lock, flags);
784 
785 	if (kick_requeue_list)
786 		blk_mq_kick_requeue_list(q);
787 }
788 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
789 
790 void blk_mq_kick_requeue_list(struct request_queue *q)
791 {
792 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
793 }
794 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
795 
796 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
797 				    unsigned long msecs)
798 {
799 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
800 				    msecs_to_jiffies(msecs));
801 }
802 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
803 
804 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
805 {
806 	if (tag < tags->nr_tags) {
807 		prefetch(tags->rqs[tag]);
808 		return tags->rqs[tag];
809 	}
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(blk_mq_tag_to_rq);
814 
815 struct blk_mq_timeout_data {
816 	unsigned long next;
817 	unsigned int next_set;
818 	unsigned int nr_expired;
819 };
820 
821 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
822 {
823 	const struct blk_mq_ops *ops = req->q->mq_ops;
824 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
825 
826 	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
827 
828 	if (ops->timeout)
829 		ret = ops->timeout(req, reserved);
830 
831 	switch (ret) {
832 	case BLK_EH_HANDLED:
833 		__blk_mq_complete_request(req);
834 		break;
835 	case BLK_EH_RESET_TIMER:
836 		/*
837 		 * As nothing prevents from completion happening while
838 		 * ->aborted_gstate is set, this may lead to ignored
839 		 * completions and further spurious timeouts.
840 		 */
841 		blk_mq_rq_update_aborted_gstate(req, 0);
842 		blk_add_timer(req);
843 		break;
844 	case BLK_EH_NOT_HANDLED:
845 		break;
846 	default:
847 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
848 		break;
849 	}
850 }
851 
852 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
853 		struct request *rq, void *priv, bool reserved)
854 {
855 	struct blk_mq_timeout_data *data = priv;
856 	unsigned long gstate, deadline;
857 	int start;
858 
859 	might_sleep();
860 
861 	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
862 		return;
863 
864 	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
865 	while (true) {
866 		start = read_seqcount_begin(&rq->gstate_seq);
867 		gstate = READ_ONCE(rq->gstate);
868 		deadline = blk_rq_deadline(rq);
869 		if (!read_seqcount_retry(&rq->gstate_seq, start))
870 			break;
871 		cond_resched();
872 	}
873 
874 	/* if in-flight && overdue, mark for abortion */
875 	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
876 	    time_after_eq(jiffies, deadline)) {
877 		blk_mq_rq_update_aborted_gstate(rq, gstate);
878 		data->nr_expired++;
879 		hctx->nr_expired++;
880 	} else if (!data->next_set || time_after(data->next, deadline)) {
881 		data->next = deadline;
882 		data->next_set = 1;
883 	}
884 }
885 
886 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
887 		struct request *rq, void *priv, bool reserved)
888 {
889 	/*
890 	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
891 	 * completions that we lost to, they would have finished and
892 	 * updated @rq->gstate by now; otherwise, the completion path is
893 	 * now guaranteed to see @rq->aborted_gstate and yield.  If
894 	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
895 	 */
896 	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
897 	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
898 		blk_mq_rq_timed_out(rq, reserved);
899 }
900 
901 static void blk_mq_timeout_work(struct work_struct *work)
902 {
903 	struct request_queue *q =
904 		container_of(work, struct request_queue, timeout_work);
905 	struct blk_mq_timeout_data data = {
906 		.next		= 0,
907 		.next_set	= 0,
908 		.nr_expired	= 0,
909 	};
910 	struct blk_mq_hw_ctx *hctx;
911 	int i;
912 
913 	/* A deadlock might occur if a request is stuck requiring a
914 	 * timeout at the same time a queue freeze is waiting
915 	 * completion, since the timeout code would not be able to
916 	 * acquire the queue reference here.
917 	 *
918 	 * That's why we don't use blk_queue_enter here; instead, we use
919 	 * percpu_ref_tryget directly, because we need to be able to
920 	 * obtain a reference even in the short window between the queue
921 	 * starting to freeze, by dropping the first reference in
922 	 * blk_freeze_queue_start, and the moment the last request is
923 	 * consumed, marked by the instant q_usage_counter reaches
924 	 * zero.
925 	 */
926 	if (!percpu_ref_tryget(&q->q_usage_counter))
927 		return;
928 
929 	/* scan for the expired ones and set their ->aborted_gstate */
930 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
931 
932 	if (data.nr_expired) {
933 		bool has_rcu = false;
934 
935 		/*
936 		 * Wait till everyone sees ->aborted_gstate.  The
937 		 * sequential waits for SRCUs aren't ideal.  If this ever
938 		 * becomes a problem, we can add per-hw_ctx rcu_head and
939 		 * wait in parallel.
940 		 */
941 		queue_for_each_hw_ctx(q, hctx, i) {
942 			if (!hctx->nr_expired)
943 				continue;
944 
945 			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
946 				has_rcu = true;
947 			else
948 				synchronize_srcu(hctx->srcu);
949 
950 			hctx->nr_expired = 0;
951 		}
952 		if (has_rcu)
953 			synchronize_rcu();
954 
955 		/* terminate the ones we won */
956 		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
957 	}
958 
959 	if (data.next_set) {
960 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
961 		mod_timer(&q->timeout, data.next);
962 	} else {
963 		/*
964 		 * Request timeouts are handled as a forward rolling timer. If
965 		 * we end up here it means that no requests are pending and
966 		 * also that no request has been pending for a while. Mark
967 		 * each hctx as idle.
968 		 */
969 		queue_for_each_hw_ctx(q, hctx, i) {
970 			/* the hctx may be unmapped, so check it here */
971 			if (blk_mq_hw_queue_mapped(hctx))
972 				blk_mq_tag_idle(hctx);
973 		}
974 	}
975 	blk_queue_exit(q);
976 }
977 
978 struct flush_busy_ctx_data {
979 	struct blk_mq_hw_ctx *hctx;
980 	struct list_head *list;
981 };
982 
983 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
984 {
985 	struct flush_busy_ctx_data *flush_data = data;
986 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
987 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
988 
989 	sbitmap_clear_bit(sb, bitnr);
990 	spin_lock(&ctx->lock);
991 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
992 	spin_unlock(&ctx->lock);
993 	return true;
994 }
995 
996 /*
997  * Process software queues that have been marked busy, splicing them
998  * to the for-dispatch
999  */
1000 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1001 {
1002 	struct flush_busy_ctx_data data = {
1003 		.hctx = hctx,
1004 		.list = list,
1005 	};
1006 
1007 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1008 }
1009 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1010 
1011 struct dispatch_rq_data {
1012 	struct blk_mq_hw_ctx *hctx;
1013 	struct request *rq;
1014 };
1015 
1016 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1017 		void *data)
1018 {
1019 	struct dispatch_rq_data *dispatch_data = data;
1020 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1021 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1022 
1023 	spin_lock(&ctx->lock);
1024 	if (unlikely(!list_empty(&ctx->rq_list))) {
1025 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1026 		list_del_init(&dispatch_data->rq->queuelist);
1027 		if (list_empty(&ctx->rq_list))
1028 			sbitmap_clear_bit(sb, bitnr);
1029 	}
1030 	spin_unlock(&ctx->lock);
1031 
1032 	return !dispatch_data->rq;
1033 }
1034 
1035 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1036 					struct blk_mq_ctx *start)
1037 {
1038 	unsigned off = start ? start->index_hw : 0;
1039 	struct dispatch_rq_data data = {
1040 		.hctx = hctx,
1041 		.rq   = NULL,
1042 	};
1043 
1044 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1045 			       dispatch_rq_from_ctx, &data);
1046 
1047 	return data.rq;
1048 }
1049 
1050 static inline unsigned int queued_to_index(unsigned int queued)
1051 {
1052 	if (!queued)
1053 		return 0;
1054 
1055 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1056 }
1057 
1058 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1059 			   bool wait)
1060 {
1061 	struct blk_mq_alloc_data data = {
1062 		.q = rq->q,
1063 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1064 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1065 	};
1066 
1067 	might_sleep_if(wait);
1068 
1069 	if (rq->tag != -1)
1070 		goto done;
1071 
1072 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1073 		data.flags |= BLK_MQ_REQ_RESERVED;
1074 
1075 	rq->tag = blk_mq_get_tag(&data);
1076 	if (rq->tag >= 0) {
1077 		if (blk_mq_tag_busy(data.hctx)) {
1078 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1079 			atomic_inc(&data.hctx->nr_active);
1080 		}
1081 		data.hctx->tags->rqs[rq->tag] = rq;
1082 	}
1083 
1084 done:
1085 	if (hctx)
1086 		*hctx = data.hctx;
1087 	return rq->tag != -1;
1088 }
1089 
1090 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1091 				int flags, void *key)
1092 {
1093 	struct blk_mq_hw_ctx *hctx;
1094 
1095 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1096 
1097 	list_del_init(&wait->entry);
1098 	blk_mq_run_hw_queue(hctx, true);
1099 	return 1;
1100 }
1101 
1102 /*
1103  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1104  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1105  * restart. For both cases, take care to check the condition again after
1106  * marking us as waiting.
1107  */
1108 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1109 				 struct request *rq)
1110 {
1111 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1112 	struct sbq_wait_state *ws;
1113 	wait_queue_entry_t *wait;
1114 	bool ret;
1115 
1116 	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1117 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1118 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1119 
1120 		/*
1121 		 * It's possible that a tag was freed in the window between the
1122 		 * allocation failure and adding the hardware queue to the wait
1123 		 * queue.
1124 		 *
1125 		 * Don't clear RESTART here, someone else could have set it.
1126 		 * At most this will cost an extra queue run.
1127 		 */
1128 		return blk_mq_get_driver_tag(rq, hctx, false);
1129 	}
1130 
1131 	wait = &this_hctx->dispatch_wait;
1132 	if (!list_empty_careful(&wait->entry))
1133 		return false;
1134 
1135 	spin_lock(&this_hctx->lock);
1136 	if (!list_empty(&wait->entry)) {
1137 		spin_unlock(&this_hctx->lock);
1138 		return false;
1139 	}
1140 
1141 	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1142 	add_wait_queue(&ws->wait, wait);
1143 
1144 	/*
1145 	 * It's possible that a tag was freed in the window between the
1146 	 * allocation failure and adding the hardware queue to the wait
1147 	 * queue.
1148 	 */
1149 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1150 	if (!ret) {
1151 		spin_unlock(&this_hctx->lock);
1152 		return false;
1153 	}
1154 
1155 	/*
1156 	 * We got a tag, remove ourselves from the wait queue to ensure
1157 	 * someone else gets the wakeup.
1158 	 */
1159 	spin_lock_irq(&ws->wait.lock);
1160 	list_del_init(&wait->entry);
1161 	spin_unlock_irq(&ws->wait.lock);
1162 	spin_unlock(&this_hctx->lock);
1163 
1164 	return true;
1165 }
1166 
1167 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1168 
1169 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1170 			     bool got_budget)
1171 {
1172 	struct blk_mq_hw_ctx *hctx;
1173 	struct request *rq, *nxt;
1174 	bool no_tag = false;
1175 	int errors, queued;
1176 	blk_status_t ret = BLK_STS_OK;
1177 
1178 	if (list_empty(list))
1179 		return false;
1180 
1181 	WARN_ON(!list_is_singular(list) && got_budget);
1182 
1183 	/*
1184 	 * Now process all the entries, sending them to the driver.
1185 	 */
1186 	errors = queued = 0;
1187 	do {
1188 		struct blk_mq_queue_data bd;
1189 
1190 		rq = list_first_entry(list, struct request, queuelist);
1191 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1192 			/*
1193 			 * The initial allocation attempt failed, so we need to
1194 			 * rerun the hardware queue when a tag is freed. The
1195 			 * waitqueue takes care of that. If the queue is run
1196 			 * before we add this entry back on the dispatch list,
1197 			 * we'll re-run it below.
1198 			 */
1199 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1200 				if (got_budget)
1201 					blk_mq_put_dispatch_budget(hctx);
1202 				/*
1203 				 * For non-shared tags, the RESTART check
1204 				 * will suffice.
1205 				 */
1206 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1207 					no_tag = true;
1208 				break;
1209 			}
1210 		}
1211 
1212 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1213 			blk_mq_put_driver_tag(rq);
1214 			break;
1215 		}
1216 
1217 		list_del_init(&rq->queuelist);
1218 
1219 		bd.rq = rq;
1220 
1221 		/*
1222 		 * Flag last if we have no more requests, or if we have more
1223 		 * but can't assign a driver tag to it.
1224 		 */
1225 		if (list_empty(list))
1226 			bd.last = true;
1227 		else {
1228 			nxt = list_first_entry(list, struct request, queuelist);
1229 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1230 		}
1231 
1232 		ret = q->mq_ops->queue_rq(hctx, &bd);
1233 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1234 			/*
1235 			 * If an I/O scheduler has been configured and we got a
1236 			 * driver tag for the next request already, free it
1237 			 * again.
1238 			 */
1239 			if (!list_empty(list)) {
1240 				nxt = list_first_entry(list, struct request, queuelist);
1241 				blk_mq_put_driver_tag(nxt);
1242 			}
1243 			list_add(&rq->queuelist, list);
1244 			__blk_mq_requeue_request(rq);
1245 			break;
1246 		}
1247 
1248 		if (unlikely(ret != BLK_STS_OK)) {
1249 			errors++;
1250 			blk_mq_end_request(rq, BLK_STS_IOERR);
1251 			continue;
1252 		}
1253 
1254 		queued++;
1255 	} while (!list_empty(list));
1256 
1257 	hctx->dispatched[queued_to_index(queued)]++;
1258 
1259 	/*
1260 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1261 	 * that is where we will continue on next queue run.
1262 	 */
1263 	if (!list_empty(list)) {
1264 		bool needs_restart;
1265 
1266 		spin_lock(&hctx->lock);
1267 		list_splice_init(list, &hctx->dispatch);
1268 		spin_unlock(&hctx->lock);
1269 
1270 		/*
1271 		 * If SCHED_RESTART was set by the caller of this function and
1272 		 * it is no longer set that means that it was cleared by another
1273 		 * thread and hence that a queue rerun is needed.
1274 		 *
1275 		 * If 'no_tag' is set, that means that we failed getting
1276 		 * a driver tag with an I/O scheduler attached. If our dispatch
1277 		 * waitqueue is no longer active, ensure that we run the queue
1278 		 * AFTER adding our entries back to the list.
1279 		 *
1280 		 * If no I/O scheduler has been configured it is possible that
1281 		 * the hardware queue got stopped and restarted before requests
1282 		 * were pushed back onto the dispatch list. Rerun the queue to
1283 		 * avoid starvation. Notes:
1284 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1285 		 *   been stopped before rerunning a queue.
1286 		 * - Some but not all block drivers stop a queue before
1287 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1288 		 *   and dm-rq.
1289 		 *
1290 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1291 		 * bit is set, run queue after a delay to avoid IO stalls
1292 		 * that could otherwise occur if the queue is idle.
1293 		 */
1294 		needs_restart = blk_mq_sched_needs_restart(hctx);
1295 		if (!needs_restart ||
1296 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1297 			blk_mq_run_hw_queue(hctx, true);
1298 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1299 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1300 	}
1301 
1302 	return (queued + errors) != 0;
1303 }
1304 
1305 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1306 {
1307 	int srcu_idx;
1308 
1309 	/*
1310 	 * We should be running this queue from one of the CPUs that
1311 	 * are mapped to it.
1312 	 *
1313 	 * There are at least two related races now between setting
1314 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1315 	 * __blk_mq_run_hw_queue():
1316 	 *
1317 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1318 	 *   but later it becomes online, then this warning is harmless
1319 	 *   at all
1320 	 *
1321 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1322 	 *   but later it becomes offline, then the warning can't be
1323 	 *   triggered, and we depend on blk-mq timeout handler to
1324 	 *   handle dispatched requests to this hctx
1325 	 */
1326 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1327 		cpu_online(hctx->next_cpu)) {
1328 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1329 			raw_smp_processor_id(),
1330 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1331 		dump_stack();
1332 	}
1333 
1334 	/*
1335 	 * We can't run the queue inline with ints disabled. Ensure that
1336 	 * we catch bad users of this early.
1337 	 */
1338 	WARN_ON_ONCE(in_interrupt());
1339 
1340 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1341 
1342 	hctx_lock(hctx, &srcu_idx);
1343 	blk_mq_sched_dispatch_requests(hctx);
1344 	hctx_unlock(hctx, srcu_idx);
1345 }
1346 
1347 /*
1348  * It'd be great if the workqueue API had a way to pass
1349  * in a mask and had some smarts for more clever placement.
1350  * For now we just round-robin here, switching for every
1351  * BLK_MQ_CPU_WORK_BATCH queued items.
1352  */
1353 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1354 {
1355 	bool tried = false;
1356 
1357 	if (hctx->queue->nr_hw_queues == 1)
1358 		return WORK_CPU_UNBOUND;
1359 
1360 	if (--hctx->next_cpu_batch <= 0) {
1361 		int next_cpu;
1362 select_cpu:
1363 		next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1364 				cpu_online_mask);
1365 		if (next_cpu >= nr_cpu_ids)
1366 			next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1367 
1368 		/*
1369 		 * No online CPU is found, so have to make sure hctx->next_cpu
1370 		 * is set correctly for not breaking workqueue.
1371 		 */
1372 		if (next_cpu >= nr_cpu_ids)
1373 			hctx->next_cpu = cpumask_first(hctx->cpumask);
1374 		else
1375 			hctx->next_cpu = next_cpu;
1376 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1377 	}
1378 
1379 	/*
1380 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1381 	 * and it should only happen in the path of handling CPU DEAD.
1382 	 */
1383 	if (!cpu_online(hctx->next_cpu)) {
1384 		if (!tried) {
1385 			tried = true;
1386 			goto select_cpu;
1387 		}
1388 
1389 		/*
1390 		 * Make sure to re-select CPU next time once after CPUs
1391 		 * in hctx->cpumask become online again.
1392 		 */
1393 		hctx->next_cpu_batch = 1;
1394 		return WORK_CPU_UNBOUND;
1395 	}
1396 	return hctx->next_cpu;
1397 }
1398 
1399 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1400 					unsigned long msecs)
1401 {
1402 	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1403 		return;
1404 
1405 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1406 		return;
1407 
1408 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1409 		int cpu = get_cpu();
1410 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1411 			__blk_mq_run_hw_queue(hctx);
1412 			put_cpu();
1413 			return;
1414 		}
1415 
1416 		put_cpu();
1417 	}
1418 
1419 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1420 				    msecs_to_jiffies(msecs));
1421 }
1422 
1423 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1424 {
1425 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1426 }
1427 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1428 
1429 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1430 {
1431 	int srcu_idx;
1432 	bool need_run;
1433 
1434 	/*
1435 	 * When queue is quiesced, we may be switching io scheduler, or
1436 	 * updating nr_hw_queues, or other things, and we can't run queue
1437 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1438 	 *
1439 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1440 	 * quiesced.
1441 	 */
1442 	hctx_lock(hctx, &srcu_idx);
1443 	need_run = !blk_queue_quiesced(hctx->queue) &&
1444 		blk_mq_hctx_has_pending(hctx);
1445 	hctx_unlock(hctx, srcu_idx);
1446 
1447 	if (need_run) {
1448 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1449 		return true;
1450 	}
1451 
1452 	return false;
1453 }
1454 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1455 
1456 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1457 {
1458 	struct blk_mq_hw_ctx *hctx;
1459 	int i;
1460 
1461 	queue_for_each_hw_ctx(q, hctx, i) {
1462 		if (blk_mq_hctx_stopped(hctx))
1463 			continue;
1464 
1465 		blk_mq_run_hw_queue(hctx, async);
1466 	}
1467 }
1468 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1469 
1470 /**
1471  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1472  * @q: request queue.
1473  *
1474  * The caller is responsible for serializing this function against
1475  * blk_mq_{start,stop}_hw_queue().
1476  */
1477 bool blk_mq_queue_stopped(struct request_queue *q)
1478 {
1479 	struct blk_mq_hw_ctx *hctx;
1480 	int i;
1481 
1482 	queue_for_each_hw_ctx(q, hctx, i)
1483 		if (blk_mq_hctx_stopped(hctx))
1484 			return true;
1485 
1486 	return false;
1487 }
1488 EXPORT_SYMBOL(blk_mq_queue_stopped);
1489 
1490 /*
1491  * This function is often used for pausing .queue_rq() by driver when
1492  * there isn't enough resource or some conditions aren't satisfied, and
1493  * BLK_STS_RESOURCE is usually returned.
1494  *
1495  * We do not guarantee that dispatch can be drained or blocked
1496  * after blk_mq_stop_hw_queue() returns. Please use
1497  * blk_mq_quiesce_queue() for that requirement.
1498  */
1499 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1500 {
1501 	cancel_delayed_work(&hctx->run_work);
1502 
1503 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1504 }
1505 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1506 
1507 /*
1508  * This function is often used for pausing .queue_rq() by driver when
1509  * there isn't enough resource or some conditions aren't satisfied, and
1510  * BLK_STS_RESOURCE is usually returned.
1511  *
1512  * We do not guarantee that dispatch can be drained or blocked
1513  * after blk_mq_stop_hw_queues() returns. Please use
1514  * blk_mq_quiesce_queue() for that requirement.
1515  */
1516 void blk_mq_stop_hw_queues(struct request_queue *q)
1517 {
1518 	struct blk_mq_hw_ctx *hctx;
1519 	int i;
1520 
1521 	queue_for_each_hw_ctx(q, hctx, i)
1522 		blk_mq_stop_hw_queue(hctx);
1523 }
1524 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1525 
1526 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1527 {
1528 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1529 
1530 	blk_mq_run_hw_queue(hctx, false);
1531 }
1532 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1533 
1534 void blk_mq_start_hw_queues(struct request_queue *q)
1535 {
1536 	struct blk_mq_hw_ctx *hctx;
1537 	int i;
1538 
1539 	queue_for_each_hw_ctx(q, hctx, i)
1540 		blk_mq_start_hw_queue(hctx);
1541 }
1542 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1543 
1544 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1545 {
1546 	if (!blk_mq_hctx_stopped(hctx))
1547 		return;
1548 
1549 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1550 	blk_mq_run_hw_queue(hctx, async);
1551 }
1552 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1553 
1554 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1555 {
1556 	struct blk_mq_hw_ctx *hctx;
1557 	int i;
1558 
1559 	queue_for_each_hw_ctx(q, hctx, i)
1560 		blk_mq_start_stopped_hw_queue(hctx, async);
1561 }
1562 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1563 
1564 static void blk_mq_run_work_fn(struct work_struct *work)
1565 {
1566 	struct blk_mq_hw_ctx *hctx;
1567 
1568 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1569 
1570 	/*
1571 	 * If we are stopped, don't run the queue. The exception is if
1572 	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1573 	 * the STOPPED bit and run it.
1574 	 */
1575 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1576 		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1577 			return;
1578 
1579 		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1580 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1581 	}
1582 
1583 	__blk_mq_run_hw_queue(hctx);
1584 }
1585 
1586 
1587 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1588 {
1589 	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1590 		return;
1591 
1592 	/*
1593 	 * Stop the hw queue, then modify currently delayed work.
1594 	 * This should prevent us from running the queue prematurely.
1595 	 * Mark the queue as auto-clearing STOPPED when it runs.
1596 	 */
1597 	blk_mq_stop_hw_queue(hctx);
1598 	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1599 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1600 					&hctx->run_work,
1601 					msecs_to_jiffies(msecs));
1602 }
1603 EXPORT_SYMBOL(blk_mq_delay_queue);
1604 
1605 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1606 					    struct request *rq,
1607 					    bool at_head)
1608 {
1609 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1610 
1611 	lockdep_assert_held(&ctx->lock);
1612 
1613 	trace_block_rq_insert(hctx->queue, rq);
1614 
1615 	if (at_head)
1616 		list_add(&rq->queuelist, &ctx->rq_list);
1617 	else
1618 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1619 }
1620 
1621 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1622 			     bool at_head)
1623 {
1624 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1625 
1626 	lockdep_assert_held(&ctx->lock);
1627 
1628 	__blk_mq_insert_req_list(hctx, rq, at_head);
1629 	blk_mq_hctx_mark_pending(hctx, ctx);
1630 }
1631 
1632 /*
1633  * Should only be used carefully, when the caller knows we want to
1634  * bypass a potential IO scheduler on the target device.
1635  */
1636 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1637 {
1638 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1639 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1640 
1641 	spin_lock(&hctx->lock);
1642 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1643 	spin_unlock(&hctx->lock);
1644 
1645 	if (run_queue)
1646 		blk_mq_run_hw_queue(hctx, false);
1647 }
1648 
1649 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1650 			    struct list_head *list)
1651 
1652 {
1653 	/*
1654 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1655 	 * offline now
1656 	 */
1657 	spin_lock(&ctx->lock);
1658 	while (!list_empty(list)) {
1659 		struct request *rq;
1660 
1661 		rq = list_first_entry(list, struct request, queuelist);
1662 		BUG_ON(rq->mq_ctx != ctx);
1663 		list_del_init(&rq->queuelist);
1664 		__blk_mq_insert_req_list(hctx, rq, false);
1665 	}
1666 	blk_mq_hctx_mark_pending(hctx, ctx);
1667 	spin_unlock(&ctx->lock);
1668 }
1669 
1670 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1671 {
1672 	struct request *rqa = container_of(a, struct request, queuelist);
1673 	struct request *rqb = container_of(b, struct request, queuelist);
1674 
1675 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1676 		 (rqa->mq_ctx == rqb->mq_ctx &&
1677 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1678 }
1679 
1680 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1681 {
1682 	struct blk_mq_ctx *this_ctx;
1683 	struct request_queue *this_q;
1684 	struct request *rq;
1685 	LIST_HEAD(list);
1686 	LIST_HEAD(ctx_list);
1687 	unsigned int depth;
1688 
1689 	list_splice_init(&plug->mq_list, &list);
1690 
1691 	list_sort(NULL, &list, plug_ctx_cmp);
1692 
1693 	this_q = NULL;
1694 	this_ctx = NULL;
1695 	depth = 0;
1696 
1697 	while (!list_empty(&list)) {
1698 		rq = list_entry_rq(list.next);
1699 		list_del_init(&rq->queuelist);
1700 		BUG_ON(!rq->q);
1701 		if (rq->mq_ctx != this_ctx) {
1702 			if (this_ctx) {
1703 				trace_block_unplug(this_q, depth, from_schedule);
1704 				blk_mq_sched_insert_requests(this_q, this_ctx,
1705 								&ctx_list,
1706 								from_schedule);
1707 			}
1708 
1709 			this_ctx = rq->mq_ctx;
1710 			this_q = rq->q;
1711 			depth = 0;
1712 		}
1713 
1714 		depth++;
1715 		list_add_tail(&rq->queuelist, &ctx_list);
1716 	}
1717 
1718 	/*
1719 	 * If 'this_ctx' is set, we know we have entries to complete
1720 	 * on 'ctx_list'. Do those.
1721 	 */
1722 	if (this_ctx) {
1723 		trace_block_unplug(this_q, depth, from_schedule);
1724 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1725 						from_schedule);
1726 	}
1727 }
1728 
1729 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1730 {
1731 	blk_init_request_from_bio(rq, bio);
1732 
1733 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1734 
1735 	blk_account_io_start(rq, true);
1736 }
1737 
1738 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1739 				   struct blk_mq_ctx *ctx,
1740 				   struct request *rq)
1741 {
1742 	spin_lock(&ctx->lock);
1743 	__blk_mq_insert_request(hctx, rq, false);
1744 	spin_unlock(&ctx->lock);
1745 }
1746 
1747 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1748 {
1749 	if (rq->tag != -1)
1750 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1751 
1752 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1753 }
1754 
1755 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1756 					    struct request *rq,
1757 					    blk_qc_t *cookie)
1758 {
1759 	struct request_queue *q = rq->q;
1760 	struct blk_mq_queue_data bd = {
1761 		.rq = rq,
1762 		.last = true,
1763 	};
1764 	blk_qc_t new_cookie;
1765 	blk_status_t ret;
1766 
1767 	new_cookie = request_to_qc_t(hctx, rq);
1768 
1769 	/*
1770 	 * For OK queue, we are done. For error, caller may kill it.
1771 	 * Any other error (busy), just add it to our list as we
1772 	 * previously would have done.
1773 	 */
1774 	ret = q->mq_ops->queue_rq(hctx, &bd);
1775 	switch (ret) {
1776 	case BLK_STS_OK:
1777 		*cookie = new_cookie;
1778 		break;
1779 	case BLK_STS_RESOURCE:
1780 	case BLK_STS_DEV_RESOURCE:
1781 		__blk_mq_requeue_request(rq);
1782 		break;
1783 	default:
1784 		*cookie = BLK_QC_T_NONE;
1785 		break;
1786 	}
1787 
1788 	return ret;
1789 }
1790 
1791 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1792 						struct request *rq,
1793 						blk_qc_t *cookie,
1794 						bool bypass_insert)
1795 {
1796 	struct request_queue *q = rq->q;
1797 	bool run_queue = true;
1798 
1799 	/*
1800 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1801 	 *
1802 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1803 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1804 	 * and avoid driver to try to dispatch again.
1805 	 */
1806 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1807 		run_queue = false;
1808 		bypass_insert = false;
1809 		goto insert;
1810 	}
1811 
1812 	if (q->elevator && !bypass_insert)
1813 		goto insert;
1814 
1815 	if (!blk_mq_get_driver_tag(rq, NULL, false))
1816 		goto insert;
1817 
1818 	if (!blk_mq_get_dispatch_budget(hctx)) {
1819 		blk_mq_put_driver_tag(rq);
1820 		goto insert;
1821 	}
1822 
1823 	return __blk_mq_issue_directly(hctx, rq, cookie);
1824 insert:
1825 	if (bypass_insert)
1826 		return BLK_STS_RESOURCE;
1827 
1828 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1829 	return BLK_STS_OK;
1830 }
1831 
1832 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1833 		struct request *rq, blk_qc_t *cookie)
1834 {
1835 	blk_status_t ret;
1836 	int srcu_idx;
1837 
1838 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1839 
1840 	hctx_lock(hctx, &srcu_idx);
1841 
1842 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1843 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1844 		blk_mq_sched_insert_request(rq, false, true, false);
1845 	else if (ret != BLK_STS_OK)
1846 		blk_mq_end_request(rq, ret);
1847 
1848 	hctx_unlock(hctx, srcu_idx);
1849 }
1850 
1851 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1852 {
1853 	blk_status_t ret;
1854 	int srcu_idx;
1855 	blk_qc_t unused_cookie;
1856 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1857 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1858 
1859 	hctx_lock(hctx, &srcu_idx);
1860 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1861 	hctx_unlock(hctx, srcu_idx);
1862 
1863 	return ret;
1864 }
1865 
1866 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1867 {
1868 	const int is_sync = op_is_sync(bio->bi_opf);
1869 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1870 	struct blk_mq_alloc_data data = { .flags = 0 };
1871 	struct request *rq;
1872 	unsigned int request_count = 0;
1873 	struct blk_plug *plug;
1874 	struct request *same_queue_rq = NULL;
1875 	blk_qc_t cookie;
1876 	unsigned int wb_acct;
1877 
1878 	blk_queue_bounce(q, &bio);
1879 
1880 	blk_queue_split(q, &bio);
1881 
1882 	if (!bio_integrity_prep(bio))
1883 		return BLK_QC_T_NONE;
1884 
1885 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1886 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1887 		return BLK_QC_T_NONE;
1888 
1889 	if (blk_mq_sched_bio_merge(q, bio))
1890 		return BLK_QC_T_NONE;
1891 
1892 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1893 
1894 	trace_block_getrq(q, bio, bio->bi_opf);
1895 
1896 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1897 	if (unlikely(!rq)) {
1898 		__wbt_done(q->rq_wb, wb_acct);
1899 		if (bio->bi_opf & REQ_NOWAIT)
1900 			bio_wouldblock_error(bio);
1901 		return BLK_QC_T_NONE;
1902 	}
1903 
1904 	wbt_track(&rq->issue_stat, wb_acct);
1905 
1906 	cookie = request_to_qc_t(data.hctx, rq);
1907 
1908 	plug = current->plug;
1909 	if (unlikely(is_flush_fua)) {
1910 		blk_mq_put_ctx(data.ctx);
1911 		blk_mq_bio_to_request(rq, bio);
1912 
1913 		/* bypass scheduler for flush rq */
1914 		blk_insert_flush(rq);
1915 		blk_mq_run_hw_queue(data.hctx, true);
1916 	} else if (plug && q->nr_hw_queues == 1) {
1917 		struct request *last = NULL;
1918 
1919 		blk_mq_put_ctx(data.ctx);
1920 		blk_mq_bio_to_request(rq, bio);
1921 
1922 		/*
1923 		 * @request_count may become stale because of schedule
1924 		 * out, so check the list again.
1925 		 */
1926 		if (list_empty(&plug->mq_list))
1927 			request_count = 0;
1928 		else if (blk_queue_nomerges(q))
1929 			request_count = blk_plug_queued_count(q);
1930 
1931 		if (!request_count)
1932 			trace_block_plug(q);
1933 		else
1934 			last = list_entry_rq(plug->mq_list.prev);
1935 
1936 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1937 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1938 			blk_flush_plug_list(plug, false);
1939 			trace_block_plug(q);
1940 		}
1941 
1942 		list_add_tail(&rq->queuelist, &plug->mq_list);
1943 	} else if (plug && !blk_queue_nomerges(q)) {
1944 		blk_mq_bio_to_request(rq, bio);
1945 
1946 		/*
1947 		 * We do limited plugging. If the bio can be merged, do that.
1948 		 * Otherwise the existing request in the plug list will be
1949 		 * issued. So the plug list will have one request at most
1950 		 * The plug list might get flushed before this. If that happens,
1951 		 * the plug list is empty, and same_queue_rq is invalid.
1952 		 */
1953 		if (list_empty(&plug->mq_list))
1954 			same_queue_rq = NULL;
1955 		if (same_queue_rq)
1956 			list_del_init(&same_queue_rq->queuelist);
1957 		list_add_tail(&rq->queuelist, &plug->mq_list);
1958 
1959 		blk_mq_put_ctx(data.ctx);
1960 
1961 		if (same_queue_rq) {
1962 			data.hctx = blk_mq_map_queue(q,
1963 					same_queue_rq->mq_ctx->cpu);
1964 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1965 					&cookie);
1966 		}
1967 	} else if (q->nr_hw_queues > 1 && is_sync) {
1968 		blk_mq_put_ctx(data.ctx);
1969 		blk_mq_bio_to_request(rq, bio);
1970 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1971 	} else if (q->elevator) {
1972 		blk_mq_put_ctx(data.ctx);
1973 		blk_mq_bio_to_request(rq, bio);
1974 		blk_mq_sched_insert_request(rq, false, true, true);
1975 	} else {
1976 		blk_mq_put_ctx(data.ctx);
1977 		blk_mq_bio_to_request(rq, bio);
1978 		blk_mq_queue_io(data.hctx, data.ctx, rq);
1979 		blk_mq_run_hw_queue(data.hctx, true);
1980 	}
1981 
1982 	return cookie;
1983 }
1984 
1985 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1986 		     unsigned int hctx_idx)
1987 {
1988 	struct page *page;
1989 
1990 	if (tags->rqs && set->ops->exit_request) {
1991 		int i;
1992 
1993 		for (i = 0; i < tags->nr_tags; i++) {
1994 			struct request *rq = tags->static_rqs[i];
1995 
1996 			if (!rq)
1997 				continue;
1998 			set->ops->exit_request(set, rq, hctx_idx);
1999 			tags->static_rqs[i] = NULL;
2000 		}
2001 	}
2002 
2003 	while (!list_empty(&tags->page_list)) {
2004 		page = list_first_entry(&tags->page_list, struct page, lru);
2005 		list_del_init(&page->lru);
2006 		/*
2007 		 * Remove kmemleak object previously allocated in
2008 		 * blk_mq_init_rq_map().
2009 		 */
2010 		kmemleak_free(page_address(page));
2011 		__free_pages(page, page->private);
2012 	}
2013 }
2014 
2015 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2016 {
2017 	kfree(tags->rqs);
2018 	tags->rqs = NULL;
2019 	kfree(tags->static_rqs);
2020 	tags->static_rqs = NULL;
2021 
2022 	blk_mq_free_tags(tags);
2023 }
2024 
2025 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2026 					unsigned int hctx_idx,
2027 					unsigned int nr_tags,
2028 					unsigned int reserved_tags)
2029 {
2030 	struct blk_mq_tags *tags;
2031 	int node;
2032 
2033 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2034 	if (node == NUMA_NO_NODE)
2035 		node = set->numa_node;
2036 
2037 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2038 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2039 	if (!tags)
2040 		return NULL;
2041 
2042 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2043 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2044 				 node);
2045 	if (!tags->rqs) {
2046 		blk_mq_free_tags(tags);
2047 		return NULL;
2048 	}
2049 
2050 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2051 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2052 				 node);
2053 	if (!tags->static_rqs) {
2054 		kfree(tags->rqs);
2055 		blk_mq_free_tags(tags);
2056 		return NULL;
2057 	}
2058 
2059 	return tags;
2060 }
2061 
2062 static size_t order_to_size(unsigned int order)
2063 {
2064 	return (size_t)PAGE_SIZE << order;
2065 }
2066 
2067 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2068 			       unsigned int hctx_idx, int node)
2069 {
2070 	int ret;
2071 
2072 	if (set->ops->init_request) {
2073 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2074 		if (ret)
2075 			return ret;
2076 	}
2077 
2078 	seqcount_init(&rq->gstate_seq);
2079 	u64_stats_init(&rq->aborted_gstate_sync);
2080 	return 0;
2081 }
2082 
2083 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2084 		     unsigned int hctx_idx, unsigned int depth)
2085 {
2086 	unsigned int i, j, entries_per_page, max_order = 4;
2087 	size_t rq_size, left;
2088 	int node;
2089 
2090 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2091 	if (node == NUMA_NO_NODE)
2092 		node = set->numa_node;
2093 
2094 	INIT_LIST_HEAD(&tags->page_list);
2095 
2096 	/*
2097 	 * rq_size is the size of the request plus driver payload, rounded
2098 	 * to the cacheline size
2099 	 */
2100 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2101 				cache_line_size());
2102 	left = rq_size * depth;
2103 
2104 	for (i = 0; i < depth; ) {
2105 		int this_order = max_order;
2106 		struct page *page;
2107 		int to_do;
2108 		void *p;
2109 
2110 		while (this_order && left < order_to_size(this_order - 1))
2111 			this_order--;
2112 
2113 		do {
2114 			page = alloc_pages_node(node,
2115 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2116 				this_order);
2117 			if (page)
2118 				break;
2119 			if (!this_order--)
2120 				break;
2121 			if (order_to_size(this_order) < rq_size)
2122 				break;
2123 		} while (1);
2124 
2125 		if (!page)
2126 			goto fail;
2127 
2128 		page->private = this_order;
2129 		list_add_tail(&page->lru, &tags->page_list);
2130 
2131 		p = page_address(page);
2132 		/*
2133 		 * Allow kmemleak to scan these pages as they contain pointers
2134 		 * to additional allocations like via ops->init_request().
2135 		 */
2136 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2137 		entries_per_page = order_to_size(this_order) / rq_size;
2138 		to_do = min(entries_per_page, depth - i);
2139 		left -= to_do * rq_size;
2140 		for (j = 0; j < to_do; j++) {
2141 			struct request *rq = p;
2142 
2143 			tags->static_rqs[i] = rq;
2144 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2145 				tags->static_rqs[i] = NULL;
2146 				goto fail;
2147 			}
2148 
2149 			p += rq_size;
2150 			i++;
2151 		}
2152 	}
2153 	return 0;
2154 
2155 fail:
2156 	blk_mq_free_rqs(set, tags, hctx_idx);
2157 	return -ENOMEM;
2158 }
2159 
2160 /*
2161  * 'cpu' is going away. splice any existing rq_list entries from this
2162  * software queue to the hw queue dispatch list, and ensure that it
2163  * gets run.
2164  */
2165 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2166 {
2167 	struct blk_mq_hw_ctx *hctx;
2168 	struct blk_mq_ctx *ctx;
2169 	LIST_HEAD(tmp);
2170 
2171 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2172 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2173 
2174 	spin_lock(&ctx->lock);
2175 	if (!list_empty(&ctx->rq_list)) {
2176 		list_splice_init(&ctx->rq_list, &tmp);
2177 		blk_mq_hctx_clear_pending(hctx, ctx);
2178 	}
2179 	spin_unlock(&ctx->lock);
2180 
2181 	if (list_empty(&tmp))
2182 		return 0;
2183 
2184 	spin_lock(&hctx->lock);
2185 	list_splice_tail_init(&tmp, &hctx->dispatch);
2186 	spin_unlock(&hctx->lock);
2187 
2188 	blk_mq_run_hw_queue(hctx, true);
2189 	return 0;
2190 }
2191 
2192 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2193 {
2194 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2195 					    &hctx->cpuhp_dead);
2196 }
2197 
2198 /* hctx->ctxs will be freed in queue's release handler */
2199 static void blk_mq_exit_hctx(struct request_queue *q,
2200 		struct blk_mq_tag_set *set,
2201 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2202 {
2203 	blk_mq_debugfs_unregister_hctx(hctx);
2204 
2205 	if (blk_mq_hw_queue_mapped(hctx))
2206 		blk_mq_tag_idle(hctx);
2207 
2208 	if (set->ops->exit_request)
2209 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2210 
2211 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2212 
2213 	if (set->ops->exit_hctx)
2214 		set->ops->exit_hctx(hctx, hctx_idx);
2215 
2216 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2217 		cleanup_srcu_struct(hctx->srcu);
2218 
2219 	blk_mq_remove_cpuhp(hctx);
2220 	blk_free_flush_queue(hctx->fq);
2221 	sbitmap_free(&hctx->ctx_map);
2222 }
2223 
2224 static void blk_mq_exit_hw_queues(struct request_queue *q,
2225 		struct blk_mq_tag_set *set, int nr_queue)
2226 {
2227 	struct blk_mq_hw_ctx *hctx;
2228 	unsigned int i;
2229 
2230 	queue_for_each_hw_ctx(q, hctx, i) {
2231 		if (i == nr_queue)
2232 			break;
2233 		blk_mq_exit_hctx(q, set, hctx, i);
2234 	}
2235 }
2236 
2237 static int blk_mq_init_hctx(struct request_queue *q,
2238 		struct blk_mq_tag_set *set,
2239 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2240 {
2241 	int node;
2242 
2243 	node = hctx->numa_node;
2244 	if (node == NUMA_NO_NODE)
2245 		node = hctx->numa_node = set->numa_node;
2246 
2247 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2248 	spin_lock_init(&hctx->lock);
2249 	INIT_LIST_HEAD(&hctx->dispatch);
2250 	hctx->queue = q;
2251 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2252 
2253 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2254 
2255 	hctx->tags = set->tags[hctx_idx];
2256 
2257 	/*
2258 	 * Allocate space for all possible cpus to avoid allocation at
2259 	 * runtime
2260 	 */
2261 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2262 					GFP_KERNEL, node);
2263 	if (!hctx->ctxs)
2264 		goto unregister_cpu_notifier;
2265 
2266 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2267 			      node))
2268 		goto free_ctxs;
2269 
2270 	hctx->nr_ctx = 0;
2271 
2272 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2273 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2274 
2275 	if (set->ops->init_hctx &&
2276 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2277 		goto free_bitmap;
2278 
2279 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2280 		goto exit_hctx;
2281 
2282 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2283 	if (!hctx->fq)
2284 		goto sched_exit_hctx;
2285 
2286 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2287 		goto free_fq;
2288 
2289 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2290 		init_srcu_struct(hctx->srcu);
2291 
2292 	blk_mq_debugfs_register_hctx(q, hctx);
2293 
2294 	return 0;
2295 
2296  free_fq:
2297 	kfree(hctx->fq);
2298  sched_exit_hctx:
2299 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2300  exit_hctx:
2301 	if (set->ops->exit_hctx)
2302 		set->ops->exit_hctx(hctx, hctx_idx);
2303  free_bitmap:
2304 	sbitmap_free(&hctx->ctx_map);
2305  free_ctxs:
2306 	kfree(hctx->ctxs);
2307  unregister_cpu_notifier:
2308 	blk_mq_remove_cpuhp(hctx);
2309 	return -1;
2310 }
2311 
2312 static void blk_mq_init_cpu_queues(struct request_queue *q,
2313 				   unsigned int nr_hw_queues)
2314 {
2315 	unsigned int i;
2316 
2317 	for_each_possible_cpu(i) {
2318 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2319 		struct blk_mq_hw_ctx *hctx;
2320 
2321 		__ctx->cpu = i;
2322 		spin_lock_init(&__ctx->lock);
2323 		INIT_LIST_HEAD(&__ctx->rq_list);
2324 		__ctx->queue = q;
2325 
2326 		/*
2327 		 * Set local node, IFF we have more than one hw queue. If
2328 		 * not, we remain on the home node of the device
2329 		 */
2330 		hctx = blk_mq_map_queue(q, i);
2331 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2332 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2333 	}
2334 }
2335 
2336 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2337 {
2338 	int ret = 0;
2339 
2340 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2341 					set->queue_depth, set->reserved_tags);
2342 	if (!set->tags[hctx_idx])
2343 		return false;
2344 
2345 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2346 				set->queue_depth);
2347 	if (!ret)
2348 		return true;
2349 
2350 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2351 	set->tags[hctx_idx] = NULL;
2352 	return false;
2353 }
2354 
2355 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2356 					 unsigned int hctx_idx)
2357 {
2358 	if (set->tags[hctx_idx]) {
2359 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2360 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2361 		set->tags[hctx_idx] = NULL;
2362 	}
2363 }
2364 
2365 static void blk_mq_map_swqueue(struct request_queue *q)
2366 {
2367 	unsigned int i, hctx_idx;
2368 	struct blk_mq_hw_ctx *hctx;
2369 	struct blk_mq_ctx *ctx;
2370 	struct blk_mq_tag_set *set = q->tag_set;
2371 
2372 	/*
2373 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2374 	 */
2375 	mutex_lock(&q->sysfs_lock);
2376 
2377 	queue_for_each_hw_ctx(q, hctx, i) {
2378 		cpumask_clear(hctx->cpumask);
2379 		hctx->nr_ctx = 0;
2380 	}
2381 
2382 	/*
2383 	 * Map software to hardware queues.
2384 	 *
2385 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2386 	 */
2387 	for_each_possible_cpu(i) {
2388 		hctx_idx = q->mq_map[i];
2389 		/* unmapped hw queue can be remapped after CPU topo changed */
2390 		if (!set->tags[hctx_idx] &&
2391 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2392 			/*
2393 			 * If tags initialization fail for some hctx,
2394 			 * that hctx won't be brought online.  In this
2395 			 * case, remap the current ctx to hctx[0] which
2396 			 * is guaranteed to always have tags allocated
2397 			 */
2398 			q->mq_map[i] = 0;
2399 		}
2400 
2401 		ctx = per_cpu_ptr(q->queue_ctx, i);
2402 		hctx = blk_mq_map_queue(q, i);
2403 
2404 		cpumask_set_cpu(i, hctx->cpumask);
2405 		ctx->index_hw = hctx->nr_ctx;
2406 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2407 	}
2408 
2409 	mutex_unlock(&q->sysfs_lock);
2410 
2411 	queue_for_each_hw_ctx(q, hctx, i) {
2412 		/*
2413 		 * If no software queues are mapped to this hardware queue,
2414 		 * disable it and free the request entries.
2415 		 */
2416 		if (!hctx->nr_ctx) {
2417 			/* Never unmap queue 0.  We need it as a
2418 			 * fallback in case of a new remap fails
2419 			 * allocation
2420 			 */
2421 			if (i && set->tags[i])
2422 				blk_mq_free_map_and_requests(set, i);
2423 
2424 			hctx->tags = NULL;
2425 			continue;
2426 		}
2427 
2428 		hctx->tags = set->tags[i];
2429 		WARN_ON(!hctx->tags);
2430 
2431 		/*
2432 		 * Set the map size to the number of mapped software queues.
2433 		 * This is more accurate and more efficient than looping
2434 		 * over all possibly mapped software queues.
2435 		 */
2436 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2437 
2438 		/*
2439 		 * Initialize batch roundrobin counts
2440 		 */
2441 		hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2442 				cpu_online_mask);
2443 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2444 	}
2445 }
2446 
2447 /*
2448  * Caller needs to ensure that we're either frozen/quiesced, or that
2449  * the queue isn't live yet.
2450  */
2451 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2452 {
2453 	struct blk_mq_hw_ctx *hctx;
2454 	int i;
2455 
2456 	queue_for_each_hw_ctx(q, hctx, i) {
2457 		if (shared) {
2458 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2459 				atomic_inc(&q->shared_hctx_restart);
2460 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2461 		} else {
2462 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2463 				atomic_dec(&q->shared_hctx_restart);
2464 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2465 		}
2466 	}
2467 }
2468 
2469 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2470 					bool shared)
2471 {
2472 	struct request_queue *q;
2473 
2474 	lockdep_assert_held(&set->tag_list_lock);
2475 
2476 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2477 		blk_mq_freeze_queue(q);
2478 		queue_set_hctx_shared(q, shared);
2479 		blk_mq_unfreeze_queue(q);
2480 	}
2481 }
2482 
2483 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2484 {
2485 	struct blk_mq_tag_set *set = q->tag_set;
2486 
2487 	mutex_lock(&set->tag_list_lock);
2488 	list_del_rcu(&q->tag_set_list);
2489 	INIT_LIST_HEAD(&q->tag_set_list);
2490 	if (list_is_singular(&set->tag_list)) {
2491 		/* just transitioned to unshared */
2492 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2493 		/* update existing queue */
2494 		blk_mq_update_tag_set_depth(set, false);
2495 	}
2496 	mutex_unlock(&set->tag_list_lock);
2497 
2498 	synchronize_rcu();
2499 }
2500 
2501 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2502 				     struct request_queue *q)
2503 {
2504 	q->tag_set = set;
2505 
2506 	mutex_lock(&set->tag_list_lock);
2507 
2508 	/*
2509 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2510 	 */
2511 	if (!list_empty(&set->tag_list) &&
2512 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2513 		set->flags |= BLK_MQ_F_TAG_SHARED;
2514 		/* update existing queue */
2515 		blk_mq_update_tag_set_depth(set, true);
2516 	}
2517 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2518 		queue_set_hctx_shared(q, true);
2519 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2520 
2521 	mutex_unlock(&set->tag_list_lock);
2522 }
2523 
2524 /*
2525  * It is the actual release handler for mq, but we do it from
2526  * request queue's release handler for avoiding use-after-free
2527  * and headache because q->mq_kobj shouldn't have been introduced,
2528  * but we can't group ctx/kctx kobj without it.
2529  */
2530 void blk_mq_release(struct request_queue *q)
2531 {
2532 	struct blk_mq_hw_ctx *hctx;
2533 	unsigned int i;
2534 
2535 	/* hctx kobj stays in hctx */
2536 	queue_for_each_hw_ctx(q, hctx, i) {
2537 		if (!hctx)
2538 			continue;
2539 		kobject_put(&hctx->kobj);
2540 	}
2541 
2542 	q->mq_map = NULL;
2543 
2544 	kfree(q->queue_hw_ctx);
2545 
2546 	/*
2547 	 * release .mq_kobj and sw queue's kobject now because
2548 	 * both share lifetime with request queue.
2549 	 */
2550 	blk_mq_sysfs_deinit(q);
2551 
2552 	free_percpu(q->queue_ctx);
2553 }
2554 
2555 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2556 {
2557 	struct request_queue *uninit_q, *q;
2558 
2559 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2560 	if (!uninit_q)
2561 		return ERR_PTR(-ENOMEM);
2562 
2563 	q = blk_mq_init_allocated_queue(set, uninit_q);
2564 	if (IS_ERR(q))
2565 		blk_cleanup_queue(uninit_q);
2566 
2567 	return q;
2568 }
2569 EXPORT_SYMBOL(blk_mq_init_queue);
2570 
2571 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2572 {
2573 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2574 
2575 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2576 			   __alignof__(struct blk_mq_hw_ctx)) !=
2577 		     sizeof(struct blk_mq_hw_ctx));
2578 
2579 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2580 		hw_ctx_size += sizeof(struct srcu_struct);
2581 
2582 	return hw_ctx_size;
2583 }
2584 
2585 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2586 						struct request_queue *q)
2587 {
2588 	int i, j;
2589 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2590 
2591 	blk_mq_sysfs_unregister(q);
2592 
2593 	/* protect against switching io scheduler  */
2594 	mutex_lock(&q->sysfs_lock);
2595 	for (i = 0; i < set->nr_hw_queues; i++) {
2596 		int node;
2597 
2598 		if (hctxs[i])
2599 			continue;
2600 
2601 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2602 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2603 					GFP_KERNEL, node);
2604 		if (!hctxs[i])
2605 			break;
2606 
2607 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2608 						node)) {
2609 			kfree(hctxs[i]);
2610 			hctxs[i] = NULL;
2611 			break;
2612 		}
2613 
2614 		atomic_set(&hctxs[i]->nr_active, 0);
2615 		hctxs[i]->numa_node = node;
2616 		hctxs[i]->queue_num = i;
2617 
2618 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2619 			free_cpumask_var(hctxs[i]->cpumask);
2620 			kfree(hctxs[i]);
2621 			hctxs[i] = NULL;
2622 			break;
2623 		}
2624 		blk_mq_hctx_kobj_init(hctxs[i]);
2625 	}
2626 	for (j = i; j < q->nr_hw_queues; j++) {
2627 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2628 
2629 		if (hctx) {
2630 			if (hctx->tags)
2631 				blk_mq_free_map_and_requests(set, j);
2632 			blk_mq_exit_hctx(q, set, hctx, j);
2633 			kobject_put(&hctx->kobj);
2634 			hctxs[j] = NULL;
2635 
2636 		}
2637 	}
2638 	q->nr_hw_queues = i;
2639 	mutex_unlock(&q->sysfs_lock);
2640 	blk_mq_sysfs_register(q);
2641 }
2642 
2643 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2644 						  struct request_queue *q)
2645 {
2646 	/* mark the queue as mq asap */
2647 	q->mq_ops = set->ops;
2648 
2649 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2650 					     blk_mq_poll_stats_bkt,
2651 					     BLK_MQ_POLL_STATS_BKTS, q);
2652 	if (!q->poll_cb)
2653 		goto err_exit;
2654 
2655 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2656 	if (!q->queue_ctx)
2657 		goto err_exit;
2658 
2659 	/* init q->mq_kobj and sw queues' kobjects */
2660 	blk_mq_sysfs_init(q);
2661 
2662 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2663 						GFP_KERNEL, set->numa_node);
2664 	if (!q->queue_hw_ctx)
2665 		goto err_percpu;
2666 
2667 	q->mq_map = set->mq_map;
2668 
2669 	blk_mq_realloc_hw_ctxs(set, q);
2670 	if (!q->nr_hw_queues)
2671 		goto err_hctxs;
2672 
2673 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2674 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2675 
2676 	q->nr_queues = nr_cpu_ids;
2677 
2678 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2679 
2680 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2681 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2682 
2683 	q->sg_reserved_size = INT_MAX;
2684 
2685 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2686 	INIT_LIST_HEAD(&q->requeue_list);
2687 	spin_lock_init(&q->requeue_lock);
2688 
2689 	blk_queue_make_request(q, blk_mq_make_request);
2690 	if (q->mq_ops->poll)
2691 		q->poll_fn = blk_mq_poll;
2692 
2693 	/*
2694 	 * Do this after blk_queue_make_request() overrides it...
2695 	 */
2696 	q->nr_requests = set->queue_depth;
2697 
2698 	/*
2699 	 * Default to classic polling
2700 	 */
2701 	q->poll_nsec = -1;
2702 
2703 	if (set->ops->complete)
2704 		blk_queue_softirq_done(q, set->ops->complete);
2705 
2706 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2707 	blk_mq_add_queue_tag_set(set, q);
2708 	blk_mq_map_swqueue(q);
2709 
2710 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2711 		int ret;
2712 
2713 		ret = blk_mq_sched_init(q);
2714 		if (ret)
2715 			return ERR_PTR(ret);
2716 	}
2717 
2718 	return q;
2719 
2720 err_hctxs:
2721 	kfree(q->queue_hw_ctx);
2722 err_percpu:
2723 	free_percpu(q->queue_ctx);
2724 err_exit:
2725 	q->mq_ops = NULL;
2726 	return ERR_PTR(-ENOMEM);
2727 }
2728 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2729 
2730 void blk_mq_free_queue(struct request_queue *q)
2731 {
2732 	struct blk_mq_tag_set	*set = q->tag_set;
2733 
2734 	blk_mq_del_queue_tag_set(q);
2735 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2736 }
2737 
2738 /* Basically redo blk_mq_init_queue with queue frozen */
2739 static void blk_mq_queue_reinit(struct request_queue *q)
2740 {
2741 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2742 
2743 	blk_mq_debugfs_unregister_hctxs(q);
2744 	blk_mq_sysfs_unregister(q);
2745 
2746 	/*
2747 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2748 	 * we should change hctx numa_node according to the new topology (this
2749 	 * involves freeing and re-allocating memory, worth doing?)
2750 	 */
2751 	blk_mq_map_swqueue(q);
2752 
2753 	blk_mq_sysfs_register(q);
2754 	blk_mq_debugfs_register_hctxs(q);
2755 }
2756 
2757 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2758 {
2759 	int i;
2760 
2761 	for (i = 0; i < set->nr_hw_queues; i++)
2762 		if (!__blk_mq_alloc_rq_map(set, i))
2763 			goto out_unwind;
2764 
2765 	return 0;
2766 
2767 out_unwind:
2768 	while (--i >= 0)
2769 		blk_mq_free_rq_map(set->tags[i]);
2770 
2771 	return -ENOMEM;
2772 }
2773 
2774 /*
2775  * Allocate the request maps associated with this tag_set. Note that this
2776  * may reduce the depth asked for, if memory is tight. set->queue_depth
2777  * will be updated to reflect the allocated depth.
2778  */
2779 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2780 {
2781 	unsigned int depth;
2782 	int err;
2783 
2784 	depth = set->queue_depth;
2785 	do {
2786 		err = __blk_mq_alloc_rq_maps(set);
2787 		if (!err)
2788 			break;
2789 
2790 		set->queue_depth >>= 1;
2791 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2792 			err = -ENOMEM;
2793 			break;
2794 		}
2795 	} while (set->queue_depth);
2796 
2797 	if (!set->queue_depth || err) {
2798 		pr_err("blk-mq: failed to allocate request map\n");
2799 		return -ENOMEM;
2800 	}
2801 
2802 	if (depth != set->queue_depth)
2803 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2804 						depth, set->queue_depth);
2805 
2806 	return 0;
2807 }
2808 
2809 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2810 {
2811 	if (set->ops->map_queues) {
2812 		int cpu;
2813 		/*
2814 		 * transport .map_queues is usually done in the following
2815 		 * way:
2816 		 *
2817 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2818 		 * 	mask = get_cpu_mask(queue)
2819 		 * 	for_each_cpu(cpu, mask)
2820 		 * 		set->mq_map[cpu] = queue;
2821 		 * }
2822 		 *
2823 		 * When we need to remap, the table has to be cleared for
2824 		 * killing stale mapping since one CPU may not be mapped
2825 		 * to any hw queue.
2826 		 */
2827 		for_each_possible_cpu(cpu)
2828 			set->mq_map[cpu] = 0;
2829 
2830 		return set->ops->map_queues(set);
2831 	} else
2832 		return blk_mq_map_queues(set);
2833 }
2834 
2835 /*
2836  * Alloc a tag set to be associated with one or more request queues.
2837  * May fail with EINVAL for various error conditions. May adjust the
2838  * requested depth down, if if it too large. In that case, the set
2839  * value will be stored in set->queue_depth.
2840  */
2841 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2842 {
2843 	int ret;
2844 
2845 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2846 
2847 	if (!set->nr_hw_queues)
2848 		return -EINVAL;
2849 	if (!set->queue_depth)
2850 		return -EINVAL;
2851 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2852 		return -EINVAL;
2853 
2854 	if (!set->ops->queue_rq)
2855 		return -EINVAL;
2856 
2857 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2858 		return -EINVAL;
2859 
2860 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2861 		pr_info("blk-mq: reduced tag depth to %u\n",
2862 			BLK_MQ_MAX_DEPTH);
2863 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2864 	}
2865 
2866 	/*
2867 	 * If a crashdump is active, then we are potentially in a very
2868 	 * memory constrained environment. Limit us to 1 queue and
2869 	 * 64 tags to prevent using too much memory.
2870 	 */
2871 	if (is_kdump_kernel()) {
2872 		set->nr_hw_queues = 1;
2873 		set->queue_depth = min(64U, set->queue_depth);
2874 	}
2875 	/*
2876 	 * There is no use for more h/w queues than cpus.
2877 	 */
2878 	if (set->nr_hw_queues > nr_cpu_ids)
2879 		set->nr_hw_queues = nr_cpu_ids;
2880 
2881 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2882 				 GFP_KERNEL, set->numa_node);
2883 	if (!set->tags)
2884 		return -ENOMEM;
2885 
2886 	ret = -ENOMEM;
2887 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2888 			GFP_KERNEL, set->numa_node);
2889 	if (!set->mq_map)
2890 		goto out_free_tags;
2891 
2892 	ret = blk_mq_update_queue_map(set);
2893 	if (ret)
2894 		goto out_free_mq_map;
2895 
2896 	ret = blk_mq_alloc_rq_maps(set);
2897 	if (ret)
2898 		goto out_free_mq_map;
2899 
2900 	mutex_init(&set->tag_list_lock);
2901 	INIT_LIST_HEAD(&set->tag_list);
2902 
2903 	return 0;
2904 
2905 out_free_mq_map:
2906 	kfree(set->mq_map);
2907 	set->mq_map = NULL;
2908 out_free_tags:
2909 	kfree(set->tags);
2910 	set->tags = NULL;
2911 	return ret;
2912 }
2913 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2914 
2915 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2916 {
2917 	int i;
2918 
2919 	for (i = 0; i < nr_cpu_ids; i++)
2920 		blk_mq_free_map_and_requests(set, i);
2921 
2922 	kfree(set->mq_map);
2923 	set->mq_map = NULL;
2924 
2925 	kfree(set->tags);
2926 	set->tags = NULL;
2927 }
2928 EXPORT_SYMBOL(blk_mq_free_tag_set);
2929 
2930 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2931 {
2932 	struct blk_mq_tag_set *set = q->tag_set;
2933 	struct blk_mq_hw_ctx *hctx;
2934 	int i, ret;
2935 
2936 	if (!set)
2937 		return -EINVAL;
2938 
2939 	blk_mq_freeze_queue(q);
2940 	blk_mq_quiesce_queue(q);
2941 
2942 	ret = 0;
2943 	queue_for_each_hw_ctx(q, hctx, i) {
2944 		if (!hctx->tags)
2945 			continue;
2946 		/*
2947 		 * If we're using an MQ scheduler, just update the scheduler
2948 		 * queue depth. This is similar to what the old code would do.
2949 		 */
2950 		if (!hctx->sched_tags) {
2951 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2952 							false);
2953 		} else {
2954 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2955 							nr, true);
2956 		}
2957 		if (ret)
2958 			break;
2959 	}
2960 
2961 	if (!ret)
2962 		q->nr_requests = nr;
2963 
2964 	blk_mq_unquiesce_queue(q);
2965 	blk_mq_unfreeze_queue(q);
2966 
2967 	return ret;
2968 }
2969 
2970 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2971 							int nr_hw_queues)
2972 {
2973 	struct request_queue *q;
2974 
2975 	lockdep_assert_held(&set->tag_list_lock);
2976 
2977 	if (nr_hw_queues > nr_cpu_ids)
2978 		nr_hw_queues = nr_cpu_ids;
2979 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2980 		return;
2981 
2982 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2983 		blk_mq_freeze_queue(q);
2984 
2985 	set->nr_hw_queues = nr_hw_queues;
2986 	blk_mq_update_queue_map(set);
2987 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2988 		blk_mq_realloc_hw_ctxs(set, q);
2989 		blk_mq_queue_reinit(q);
2990 	}
2991 
2992 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2993 		blk_mq_unfreeze_queue(q);
2994 }
2995 
2996 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2997 {
2998 	mutex_lock(&set->tag_list_lock);
2999 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3000 	mutex_unlock(&set->tag_list_lock);
3001 }
3002 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3003 
3004 /* Enable polling stats and return whether they were already enabled. */
3005 static bool blk_poll_stats_enable(struct request_queue *q)
3006 {
3007 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3008 	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
3009 		return true;
3010 	blk_stat_add_callback(q, q->poll_cb);
3011 	return false;
3012 }
3013 
3014 static void blk_mq_poll_stats_start(struct request_queue *q)
3015 {
3016 	/*
3017 	 * We don't arm the callback if polling stats are not enabled or the
3018 	 * callback is already active.
3019 	 */
3020 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3021 	    blk_stat_is_active(q->poll_cb))
3022 		return;
3023 
3024 	blk_stat_activate_msecs(q->poll_cb, 100);
3025 }
3026 
3027 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3028 {
3029 	struct request_queue *q = cb->data;
3030 	int bucket;
3031 
3032 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3033 		if (cb->stat[bucket].nr_samples)
3034 			q->poll_stat[bucket] = cb->stat[bucket];
3035 	}
3036 }
3037 
3038 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3039 				       struct blk_mq_hw_ctx *hctx,
3040 				       struct request *rq)
3041 {
3042 	unsigned long ret = 0;
3043 	int bucket;
3044 
3045 	/*
3046 	 * If stats collection isn't on, don't sleep but turn it on for
3047 	 * future users
3048 	 */
3049 	if (!blk_poll_stats_enable(q))
3050 		return 0;
3051 
3052 	/*
3053 	 * As an optimistic guess, use half of the mean service time
3054 	 * for this type of request. We can (and should) make this smarter.
3055 	 * For instance, if the completion latencies are tight, we can
3056 	 * get closer than just half the mean. This is especially
3057 	 * important on devices where the completion latencies are longer
3058 	 * than ~10 usec. We do use the stats for the relevant IO size
3059 	 * if available which does lead to better estimates.
3060 	 */
3061 	bucket = blk_mq_poll_stats_bkt(rq);
3062 	if (bucket < 0)
3063 		return ret;
3064 
3065 	if (q->poll_stat[bucket].nr_samples)
3066 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3067 
3068 	return ret;
3069 }
3070 
3071 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3072 				     struct blk_mq_hw_ctx *hctx,
3073 				     struct request *rq)
3074 {
3075 	struct hrtimer_sleeper hs;
3076 	enum hrtimer_mode mode;
3077 	unsigned int nsecs;
3078 	ktime_t kt;
3079 
3080 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3081 		return false;
3082 
3083 	/*
3084 	 * poll_nsec can be:
3085 	 *
3086 	 * -1:	don't ever hybrid sleep
3087 	 *  0:	use half of prev avg
3088 	 * >0:	use this specific value
3089 	 */
3090 	if (q->poll_nsec == -1)
3091 		return false;
3092 	else if (q->poll_nsec > 0)
3093 		nsecs = q->poll_nsec;
3094 	else
3095 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3096 
3097 	if (!nsecs)
3098 		return false;
3099 
3100 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3101 
3102 	/*
3103 	 * This will be replaced with the stats tracking code, using
3104 	 * 'avg_completion_time / 2' as the pre-sleep target.
3105 	 */
3106 	kt = nsecs;
3107 
3108 	mode = HRTIMER_MODE_REL;
3109 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3110 	hrtimer_set_expires(&hs.timer, kt);
3111 
3112 	hrtimer_init_sleeper(&hs, current);
3113 	do {
3114 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3115 			break;
3116 		set_current_state(TASK_UNINTERRUPTIBLE);
3117 		hrtimer_start_expires(&hs.timer, mode);
3118 		if (hs.task)
3119 			io_schedule();
3120 		hrtimer_cancel(&hs.timer);
3121 		mode = HRTIMER_MODE_ABS;
3122 	} while (hs.task && !signal_pending(current));
3123 
3124 	__set_current_state(TASK_RUNNING);
3125 	destroy_hrtimer_on_stack(&hs.timer);
3126 	return true;
3127 }
3128 
3129 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3130 {
3131 	struct request_queue *q = hctx->queue;
3132 	long state;
3133 
3134 	/*
3135 	 * If we sleep, have the caller restart the poll loop to reset
3136 	 * the state. Like for the other success return cases, the
3137 	 * caller is responsible for checking if the IO completed. If
3138 	 * the IO isn't complete, we'll get called again and will go
3139 	 * straight to the busy poll loop.
3140 	 */
3141 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3142 		return true;
3143 
3144 	hctx->poll_considered++;
3145 
3146 	state = current->state;
3147 	while (!need_resched()) {
3148 		int ret;
3149 
3150 		hctx->poll_invoked++;
3151 
3152 		ret = q->mq_ops->poll(hctx, rq->tag);
3153 		if (ret > 0) {
3154 			hctx->poll_success++;
3155 			set_current_state(TASK_RUNNING);
3156 			return true;
3157 		}
3158 
3159 		if (signal_pending_state(state, current))
3160 			set_current_state(TASK_RUNNING);
3161 
3162 		if (current->state == TASK_RUNNING)
3163 			return true;
3164 		if (ret < 0)
3165 			break;
3166 		cpu_relax();
3167 	}
3168 
3169 	__set_current_state(TASK_RUNNING);
3170 	return false;
3171 }
3172 
3173 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3174 {
3175 	struct blk_mq_hw_ctx *hctx;
3176 	struct request *rq;
3177 
3178 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3179 		return false;
3180 
3181 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3182 	if (!blk_qc_t_is_internal(cookie))
3183 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3184 	else {
3185 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3186 		/*
3187 		 * With scheduling, if the request has completed, we'll
3188 		 * get a NULL return here, as we clear the sched tag when
3189 		 * that happens. The request still remains valid, like always,
3190 		 * so we should be safe with just the NULL check.
3191 		 */
3192 		if (!rq)
3193 			return false;
3194 	}
3195 
3196 	return __blk_mq_poll(hctx, rq);
3197 }
3198 
3199 static int __init blk_mq_init(void)
3200 {
3201 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3202 				blk_mq_hctx_notify_dead);
3203 	return 0;
3204 }
3205 subsys_initcall(blk_mq_init);
3206