xref: /openbmc/linux/block/blk-mq.c (revision ddae1423)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
34 #include "blk.h"
35 #include "blk-mq.h"
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42 
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48 	int ddir, sectors, bucket;
49 
50 	ddir = rq_data_dir(rq);
51 	sectors = blk_rq_stats_sectors(rq);
52 
53 	bucket = ddir + 2 * ilog2(sectors);
54 
55 	if (bucket < 0)
56 		return -1;
57 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59 
60 	return bucket;
61 }
62 
63 /*
64  * Check if any of the ctx, dispatch list or elevator
65  * have pending work in this hardware queue.
66  */
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 	return !list_empty_careful(&hctx->dispatch) ||
70 		sbitmap_any_bit_set(&hctx->ctx_map) ||
71 			blk_mq_sched_has_work(hctx);
72 }
73 
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 				     struct blk_mq_ctx *ctx)
79 {
80 	const int bit = ctx->index_hw[hctx->type];
81 
82 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 		sbitmap_set_bit(&hctx->ctx_map, bit);
84 }
85 
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 				      struct blk_mq_ctx *ctx)
88 {
89 	const int bit = ctx->index_hw[hctx->type];
90 
91 	sbitmap_clear_bit(&hctx->ctx_map, bit);
92 }
93 
94 struct mq_inflight {
95 	struct hd_struct *part;
96 	unsigned int inflight[2];
97 };
98 
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
100 				  struct request *rq, void *priv,
101 				  bool reserved)
102 {
103 	struct mq_inflight *mi = priv;
104 
105 	if (rq->part == mi->part)
106 		mi->inflight[rq_data_dir(rq)]++;
107 
108 	return true;
109 }
110 
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 	struct mq_inflight mi = { .part = part };
114 
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 
117 	return mi.inflight[0] + mi.inflight[1];
118 }
119 
120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
121 			 unsigned int inflight[2])
122 {
123 	struct mq_inflight mi = { .part = part };
124 
125 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 	inflight[0] = mi.inflight[0];
127 	inflight[1] = mi.inflight[1];
128 }
129 
130 void blk_freeze_queue_start(struct request_queue *q)
131 {
132 	mutex_lock(&q->mq_freeze_lock);
133 	if (++q->mq_freeze_depth == 1) {
134 		percpu_ref_kill(&q->q_usage_counter);
135 		mutex_unlock(&q->mq_freeze_lock);
136 		if (queue_is_mq(q))
137 			blk_mq_run_hw_queues(q, false);
138 	} else {
139 		mutex_unlock(&q->mq_freeze_lock);
140 	}
141 }
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143 
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
145 {
146 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149 
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 				     unsigned long timeout)
152 {
153 	return wait_event_timeout(q->mq_freeze_wq,
154 					percpu_ref_is_zero(&q->q_usage_counter),
155 					timeout);
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158 
159 /*
160  * Guarantee no request is in use, so we can change any data structure of
161  * the queue afterward.
162  */
163 void blk_freeze_queue(struct request_queue *q)
164 {
165 	/*
166 	 * In the !blk_mq case we are only calling this to kill the
167 	 * q_usage_counter, otherwise this increases the freeze depth
168 	 * and waits for it to return to zero.  For this reason there is
169 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 	 * exported to drivers as the only user for unfreeze is blk_mq.
171 	 */
172 	blk_freeze_queue_start(q);
173 	blk_mq_freeze_queue_wait(q);
174 }
175 
176 void blk_mq_freeze_queue(struct request_queue *q)
177 {
178 	/*
179 	 * ...just an alias to keep freeze and unfreeze actions balanced
180 	 * in the blk_mq_* namespace
181 	 */
182 	blk_freeze_queue(q);
183 }
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185 
186 void blk_mq_unfreeze_queue(struct request_queue *q)
187 {
188 	mutex_lock(&q->mq_freeze_lock);
189 	q->mq_freeze_depth--;
190 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
191 	if (!q->mq_freeze_depth) {
192 		percpu_ref_resurrect(&q->q_usage_counter);
193 		wake_up_all(&q->mq_freeze_wq);
194 	}
195 	mutex_unlock(&q->mq_freeze_lock);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
206 }
207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
208 
209 /**
210  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
211  * @q: request queue.
212  *
213  * Note: this function does not prevent that the struct request end_io()
214  * callback function is invoked. Once this function is returned, we make
215  * sure no dispatch can happen until the queue is unquiesced via
216  * blk_mq_unquiesce_queue().
217  */
218 void blk_mq_quiesce_queue(struct request_queue *q)
219 {
220 	struct blk_mq_hw_ctx *hctx;
221 	unsigned int i;
222 	bool rcu = false;
223 
224 	blk_mq_quiesce_queue_nowait(q);
225 
226 	queue_for_each_hw_ctx(q, hctx, i) {
227 		if (hctx->flags & BLK_MQ_F_BLOCKING)
228 			synchronize_srcu(hctx->srcu);
229 		else
230 			rcu = true;
231 	}
232 	if (rcu)
233 		synchronize_rcu();
234 }
235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
236 
237 /*
238  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
239  * @q: request queue.
240  *
241  * This function recovers queue into the state before quiescing
242  * which is done by blk_mq_quiesce_queue.
243  */
244 void blk_mq_unquiesce_queue(struct request_queue *q)
245 {
246 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247 
248 	/* dispatch requests which are inserted during quiescing */
249 	blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252 
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255 	struct blk_mq_hw_ctx *hctx;
256 	unsigned int i;
257 
258 	queue_for_each_hw_ctx(q, hctx, i)
259 		if (blk_mq_hw_queue_mapped(hctx))
260 			blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262 
263 /*
264  * Only need start/end time stamping if we have iostat or
265  * blk stats enabled, or using an IO scheduler.
266  */
267 static inline bool blk_mq_need_time_stamp(struct request *rq)
268 {
269 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
270 }
271 
272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
273 		unsigned int tag, unsigned int op, u64 alloc_time_ns)
274 {
275 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
276 	struct request *rq = tags->static_rqs[tag];
277 	req_flags_t rq_flags = 0;
278 
279 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
280 		rq->tag = -1;
281 		rq->internal_tag = tag;
282 	} else {
283 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
284 			rq_flags = RQF_MQ_INFLIGHT;
285 			atomic_inc(&data->hctx->nr_active);
286 		}
287 		rq->tag = tag;
288 		rq->internal_tag = -1;
289 		data->hctx->tags->rqs[rq->tag] = rq;
290 	}
291 
292 	/* csd/requeue_work/fifo_time is initialized before use */
293 	rq->q = data->q;
294 	rq->mq_ctx = data->ctx;
295 	rq->mq_hctx = data->hctx;
296 	rq->rq_flags = rq_flags;
297 	rq->cmd_flags = op;
298 	if (data->flags & BLK_MQ_REQ_PREEMPT)
299 		rq->rq_flags |= RQF_PREEMPT;
300 	if (blk_queue_io_stat(data->q))
301 		rq->rq_flags |= RQF_IO_STAT;
302 	INIT_LIST_HEAD(&rq->queuelist);
303 	INIT_HLIST_NODE(&rq->hash);
304 	RB_CLEAR_NODE(&rq->rb_node);
305 	rq->rq_disk = NULL;
306 	rq->part = NULL;
307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 	rq->alloc_time_ns = alloc_time_ns;
309 #endif
310 	if (blk_mq_need_time_stamp(rq))
311 		rq->start_time_ns = ktime_get_ns();
312 	else
313 		rq->start_time_ns = 0;
314 	rq->io_start_time_ns = 0;
315 	rq->stats_sectors = 0;
316 	rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 	rq->nr_integrity_segments = 0;
319 #endif
320 	/* tag was already set */
321 	rq->extra_len = 0;
322 	WRITE_ONCE(rq->deadline, 0);
323 
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 
329 	data->ctx->rq_dispatched[op_is_sync(op)]++;
330 	refcount_set(&rq->ref, 1);
331 	return rq;
332 }
333 
334 static struct request *blk_mq_get_request(struct request_queue *q,
335 					  struct bio *bio,
336 					  struct blk_mq_alloc_data *data)
337 {
338 	struct elevator_queue *e = q->elevator;
339 	struct request *rq;
340 	unsigned int tag;
341 	bool clear_ctx_on_error = false;
342 	u64 alloc_time_ns = 0;
343 
344 	blk_queue_enter_live(q);
345 
346 	/* alloc_time includes depth and tag waits */
347 	if (blk_queue_rq_alloc_time(q))
348 		alloc_time_ns = ktime_get_ns();
349 
350 	data->q = q;
351 	if (likely(!data->ctx)) {
352 		data->ctx = blk_mq_get_ctx(q);
353 		clear_ctx_on_error = true;
354 	}
355 	if (likely(!data->hctx))
356 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
357 						data->ctx);
358 	if (data->cmd_flags & REQ_NOWAIT)
359 		data->flags |= BLK_MQ_REQ_NOWAIT;
360 
361 	if (e) {
362 		data->flags |= BLK_MQ_REQ_INTERNAL;
363 
364 		/*
365 		 * Flush requests are special and go directly to the
366 		 * dispatch list. Don't include reserved tags in the
367 		 * limiting, as it isn't useful.
368 		 */
369 		if (!op_is_flush(data->cmd_flags) &&
370 		    e->type->ops.limit_depth &&
371 		    !(data->flags & BLK_MQ_REQ_RESERVED))
372 			e->type->ops.limit_depth(data->cmd_flags, data);
373 	} else {
374 		blk_mq_tag_busy(data->hctx);
375 	}
376 
377 	tag = blk_mq_get_tag(data);
378 	if (tag == BLK_MQ_TAG_FAIL) {
379 		if (clear_ctx_on_error)
380 			data->ctx = NULL;
381 		blk_queue_exit(q);
382 		return NULL;
383 	}
384 
385 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
386 	if (!op_is_flush(data->cmd_flags)) {
387 		rq->elv.icq = NULL;
388 		if (e && e->type->ops.prepare_request) {
389 			if (e->type->icq_cache)
390 				blk_mq_sched_assign_ioc(rq);
391 
392 			e->type->ops.prepare_request(rq, bio);
393 			rq->rq_flags |= RQF_ELVPRIV;
394 		}
395 	}
396 	data->hctx->queued++;
397 	return rq;
398 }
399 
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 		blk_mq_req_flags_t flags)
402 {
403 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
404 	struct request *rq;
405 	int ret;
406 
407 	ret = blk_queue_enter(q, flags);
408 	if (ret)
409 		return ERR_PTR(ret);
410 
411 	rq = blk_mq_get_request(q, NULL, &alloc_data);
412 	blk_queue_exit(q);
413 
414 	if (!rq)
415 		return ERR_PTR(-EWOULDBLOCK);
416 
417 	rq->__data_len = 0;
418 	rq->__sector = (sector_t) -1;
419 	rq->bio = rq->biotail = NULL;
420 	return rq;
421 }
422 EXPORT_SYMBOL(blk_mq_alloc_request);
423 
424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
425 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
426 {
427 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
428 	struct request *rq;
429 	unsigned int cpu;
430 	int ret;
431 
432 	/*
433 	 * If the tag allocator sleeps we could get an allocation for a
434 	 * different hardware context.  No need to complicate the low level
435 	 * allocator for this for the rare use case of a command tied to
436 	 * a specific queue.
437 	 */
438 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
439 		return ERR_PTR(-EINVAL);
440 
441 	if (hctx_idx >= q->nr_hw_queues)
442 		return ERR_PTR(-EIO);
443 
444 	ret = blk_queue_enter(q, flags);
445 	if (ret)
446 		return ERR_PTR(ret);
447 
448 	/*
449 	 * Check if the hardware context is actually mapped to anything.
450 	 * If not tell the caller that it should skip this queue.
451 	 */
452 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
453 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
454 		blk_queue_exit(q);
455 		return ERR_PTR(-EXDEV);
456 	}
457 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
458 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
459 
460 	rq = blk_mq_get_request(q, NULL, &alloc_data);
461 	blk_queue_exit(q);
462 
463 	if (!rq)
464 		return ERR_PTR(-EWOULDBLOCK);
465 
466 	return rq;
467 }
468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
469 
470 static void __blk_mq_free_request(struct request *rq)
471 {
472 	struct request_queue *q = rq->q;
473 	struct blk_mq_ctx *ctx = rq->mq_ctx;
474 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
475 	const int sched_tag = rq->internal_tag;
476 
477 	blk_pm_mark_last_busy(rq);
478 	rq->mq_hctx = NULL;
479 	if (rq->tag != -1)
480 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
481 	if (sched_tag != -1)
482 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
483 	blk_mq_sched_restart(hctx);
484 	blk_queue_exit(q);
485 }
486 
487 void blk_mq_free_request(struct request *rq)
488 {
489 	struct request_queue *q = rq->q;
490 	struct elevator_queue *e = q->elevator;
491 	struct blk_mq_ctx *ctx = rq->mq_ctx;
492 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 
494 	if (rq->rq_flags & RQF_ELVPRIV) {
495 		if (e && e->type->ops.finish_request)
496 			e->type->ops.finish_request(rq);
497 		if (rq->elv.icq) {
498 			put_io_context(rq->elv.icq->ioc);
499 			rq->elv.icq = NULL;
500 		}
501 	}
502 
503 	ctx->rq_completed[rq_is_sync(rq)]++;
504 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
505 		atomic_dec(&hctx->nr_active);
506 
507 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
508 		laptop_io_completion(q->backing_dev_info);
509 
510 	rq_qos_done(q, rq);
511 
512 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 	if (refcount_dec_and_test(&rq->ref))
514 		__blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517 
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 	u64 now = 0;
521 
522 	if (blk_mq_need_time_stamp(rq))
523 		now = ktime_get_ns();
524 
525 	if (rq->rq_flags & RQF_STATS) {
526 		blk_mq_poll_stats_start(rq->q);
527 		blk_stat_add(rq, now);
528 	}
529 
530 	if (rq->internal_tag != -1)
531 		blk_mq_sched_completed_request(rq, now);
532 
533 	blk_account_io_done(rq, now);
534 
535 	if (rq->end_io) {
536 		rq_qos_done(rq->q, rq);
537 		rq->end_io(rq, error);
538 	} else {
539 		blk_mq_free_request(rq);
540 	}
541 }
542 EXPORT_SYMBOL(__blk_mq_end_request);
543 
544 void blk_mq_end_request(struct request *rq, blk_status_t error)
545 {
546 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
547 		BUG();
548 	__blk_mq_end_request(rq, error);
549 }
550 EXPORT_SYMBOL(blk_mq_end_request);
551 
552 static void __blk_mq_complete_request_remote(void *data)
553 {
554 	struct request *rq = data;
555 	struct request_queue *q = rq->q;
556 
557 	q->mq_ops->complete(rq);
558 }
559 
560 static void __blk_mq_complete_request(struct request *rq)
561 {
562 	struct blk_mq_ctx *ctx = rq->mq_ctx;
563 	struct request_queue *q = rq->q;
564 	bool shared = false;
565 	int cpu;
566 
567 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
568 	/*
569 	 * Most of single queue controllers, there is only one irq vector
570 	 * for handling IO completion, and the only irq's affinity is set
571 	 * as all possible CPUs. On most of ARCHs, this affinity means the
572 	 * irq is handled on one specific CPU.
573 	 *
574 	 * So complete IO reqeust in softirq context in case of single queue
575 	 * for not degrading IO performance by irqsoff latency.
576 	 */
577 	if (q->nr_hw_queues == 1) {
578 		__blk_complete_request(rq);
579 		return;
580 	}
581 
582 	/*
583 	 * For a polled request, always complete locallly, it's pointless
584 	 * to redirect the completion.
585 	 */
586 	if ((rq->cmd_flags & REQ_HIPRI) ||
587 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
588 		q->mq_ops->complete(rq);
589 		return;
590 	}
591 
592 	cpu = get_cpu();
593 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
594 		shared = cpus_share_cache(cpu, ctx->cpu);
595 
596 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
597 		rq->csd.func = __blk_mq_complete_request_remote;
598 		rq->csd.info = rq;
599 		rq->csd.flags = 0;
600 		smp_call_function_single_async(ctx->cpu, &rq->csd);
601 	} else {
602 		q->mq_ops->complete(rq);
603 	}
604 	put_cpu();
605 }
606 
607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
608 	__releases(hctx->srcu)
609 {
610 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
611 		rcu_read_unlock();
612 	else
613 		srcu_read_unlock(hctx->srcu, srcu_idx);
614 }
615 
616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
617 	__acquires(hctx->srcu)
618 {
619 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
620 		/* shut up gcc false positive */
621 		*srcu_idx = 0;
622 		rcu_read_lock();
623 	} else
624 		*srcu_idx = srcu_read_lock(hctx->srcu);
625 }
626 
627 /**
628  * blk_mq_complete_request - end I/O on a request
629  * @rq:		the request being processed
630  *
631  * Description:
632  *	Ends all I/O on a request. It does not handle partial completions.
633  *	The actual completion happens out-of-order, through a IPI handler.
634  **/
635 bool blk_mq_complete_request(struct request *rq)
636 {
637 	if (unlikely(blk_should_fake_timeout(rq->q)))
638 		return false;
639 	__blk_mq_complete_request(rq);
640 	return true;
641 }
642 EXPORT_SYMBOL(blk_mq_complete_request);
643 
644 /**
645  * blk_mq_start_request - Start processing a request
646  * @rq: Pointer to request to be started
647  *
648  * Function used by device drivers to notify the block layer that a request
649  * is going to be processed now, so blk layer can do proper initializations
650  * such as starting the timeout timer.
651  */
652 void blk_mq_start_request(struct request *rq)
653 {
654 	struct request_queue *q = rq->q;
655 
656 	trace_block_rq_issue(q, rq);
657 
658 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
659 		rq->io_start_time_ns = ktime_get_ns();
660 		rq->stats_sectors = blk_rq_sectors(rq);
661 		rq->rq_flags |= RQF_STATS;
662 		rq_qos_issue(q, rq);
663 	}
664 
665 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
666 
667 	blk_add_timer(rq);
668 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
669 
670 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
671 		/*
672 		 * Make sure space for the drain appears.  We know we can do
673 		 * this because max_hw_segments has been adjusted to be one
674 		 * fewer than the device can handle.
675 		 */
676 		rq->nr_phys_segments++;
677 	}
678 
679 #ifdef CONFIG_BLK_DEV_INTEGRITY
680 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
681 		q->integrity.profile->prepare_fn(rq);
682 #endif
683 }
684 EXPORT_SYMBOL(blk_mq_start_request);
685 
686 static void __blk_mq_requeue_request(struct request *rq)
687 {
688 	struct request_queue *q = rq->q;
689 
690 	blk_mq_put_driver_tag(rq);
691 
692 	trace_block_rq_requeue(q, rq);
693 	rq_qos_requeue(q, rq);
694 
695 	if (blk_mq_request_started(rq)) {
696 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
697 		rq->rq_flags &= ~RQF_TIMED_OUT;
698 		if (q->dma_drain_size && blk_rq_bytes(rq))
699 			rq->nr_phys_segments--;
700 	}
701 }
702 
703 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
704 {
705 	__blk_mq_requeue_request(rq);
706 
707 	/* this request will be re-inserted to io scheduler queue */
708 	blk_mq_sched_requeue_request(rq);
709 
710 	BUG_ON(!list_empty(&rq->queuelist));
711 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
712 }
713 EXPORT_SYMBOL(blk_mq_requeue_request);
714 
715 static void blk_mq_requeue_work(struct work_struct *work)
716 {
717 	struct request_queue *q =
718 		container_of(work, struct request_queue, requeue_work.work);
719 	LIST_HEAD(rq_list);
720 	struct request *rq, *next;
721 
722 	spin_lock_irq(&q->requeue_lock);
723 	list_splice_init(&q->requeue_list, &rq_list);
724 	spin_unlock_irq(&q->requeue_lock);
725 
726 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
727 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
728 			continue;
729 
730 		rq->rq_flags &= ~RQF_SOFTBARRIER;
731 		list_del_init(&rq->queuelist);
732 		/*
733 		 * If RQF_DONTPREP, rq has contained some driver specific
734 		 * data, so insert it to hctx dispatch list to avoid any
735 		 * merge.
736 		 */
737 		if (rq->rq_flags & RQF_DONTPREP)
738 			blk_mq_request_bypass_insert(rq, false, false);
739 		else
740 			blk_mq_sched_insert_request(rq, true, false, false);
741 	}
742 
743 	while (!list_empty(&rq_list)) {
744 		rq = list_entry(rq_list.next, struct request, queuelist);
745 		list_del_init(&rq->queuelist);
746 		blk_mq_sched_insert_request(rq, false, false, false);
747 	}
748 
749 	blk_mq_run_hw_queues(q, false);
750 }
751 
752 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
753 				bool kick_requeue_list)
754 {
755 	struct request_queue *q = rq->q;
756 	unsigned long flags;
757 
758 	/*
759 	 * We abuse this flag that is otherwise used by the I/O scheduler to
760 	 * request head insertion from the workqueue.
761 	 */
762 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
763 
764 	spin_lock_irqsave(&q->requeue_lock, flags);
765 	if (at_head) {
766 		rq->rq_flags |= RQF_SOFTBARRIER;
767 		list_add(&rq->queuelist, &q->requeue_list);
768 	} else {
769 		list_add_tail(&rq->queuelist, &q->requeue_list);
770 	}
771 	spin_unlock_irqrestore(&q->requeue_lock, flags);
772 
773 	if (kick_requeue_list)
774 		blk_mq_kick_requeue_list(q);
775 }
776 
777 void blk_mq_kick_requeue_list(struct request_queue *q)
778 {
779 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
780 }
781 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
782 
783 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 				    unsigned long msecs)
785 {
786 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 				    msecs_to_jiffies(msecs));
788 }
789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
790 
791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
792 {
793 	if (tag < tags->nr_tags) {
794 		prefetch(tags->rqs[tag]);
795 		return tags->rqs[tag];
796 	}
797 
798 	return NULL;
799 }
800 EXPORT_SYMBOL(blk_mq_tag_to_rq);
801 
802 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
803 			       void *priv, bool reserved)
804 {
805 	/*
806 	 * If we find a request that is inflight and the queue matches,
807 	 * we know the queue is busy. Return false to stop the iteration.
808 	 */
809 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
810 		bool *busy = priv;
811 
812 		*busy = true;
813 		return false;
814 	}
815 
816 	return true;
817 }
818 
819 bool blk_mq_queue_inflight(struct request_queue *q)
820 {
821 	bool busy = false;
822 
823 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
824 	return busy;
825 }
826 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
827 
828 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
829 {
830 	req->rq_flags |= RQF_TIMED_OUT;
831 	if (req->q->mq_ops->timeout) {
832 		enum blk_eh_timer_return ret;
833 
834 		ret = req->q->mq_ops->timeout(req, reserved);
835 		if (ret == BLK_EH_DONE)
836 			return;
837 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
838 	}
839 
840 	blk_add_timer(req);
841 }
842 
843 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
844 {
845 	unsigned long deadline;
846 
847 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
848 		return false;
849 	if (rq->rq_flags & RQF_TIMED_OUT)
850 		return false;
851 
852 	deadline = READ_ONCE(rq->deadline);
853 	if (time_after_eq(jiffies, deadline))
854 		return true;
855 
856 	if (*next == 0)
857 		*next = deadline;
858 	else if (time_after(*next, deadline))
859 		*next = deadline;
860 	return false;
861 }
862 
863 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
864 		struct request *rq, void *priv, bool reserved)
865 {
866 	unsigned long *next = priv;
867 
868 	/*
869 	 * Just do a quick check if it is expired before locking the request in
870 	 * so we're not unnecessarilly synchronizing across CPUs.
871 	 */
872 	if (!blk_mq_req_expired(rq, next))
873 		return true;
874 
875 	/*
876 	 * We have reason to believe the request may be expired. Take a
877 	 * reference on the request to lock this request lifetime into its
878 	 * currently allocated context to prevent it from being reallocated in
879 	 * the event the completion by-passes this timeout handler.
880 	 *
881 	 * If the reference was already released, then the driver beat the
882 	 * timeout handler to posting a natural completion.
883 	 */
884 	if (!refcount_inc_not_zero(&rq->ref))
885 		return true;
886 
887 	/*
888 	 * The request is now locked and cannot be reallocated underneath the
889 	 * timeout handler's processing. Re-verify this exact request is truly
890 	 * expired; if it is not expired, then the request was completed and
891 	 * reallocated as a new request.
892 	 */
893 	if (blk_mq_req_expired(rq, next))
894 		blk_mq_rq_timed_out(rq, reserved);
895 
896 	if (is_flush_rq(rq, hctx))
897 		rq->end_io(rq, 0);
898 	else if (refcount_dec_and_test(&rq->ref))
899 		__blk_mq_free_request(rq);
900 
901 	return true;
902 }
903 
904 static void blk_mq_timeout_work(struct work_struct *work)
905 {
906 	struct request_queue *q =
907 		container_of(work, struct request_queue, timeout_work);
908 	unsigned long next = 0;
909 	struct blk_mq_hw_ctx *hctx;
910 	int i;
911 
912 	/* A deadlock might occur if a request is stuck requiring a
913 	 * timeout at the same time a queue freeze is waiting
914 	 * completion, since the timeout code would not be able to
915 	 * acquire the queue reference here.
916 	 *
917 	 * That's why we don't use blk_queue_enter here; instead, we use
918 	 * percpu_ref_tryget directly, because we need to be able to
919 	 * obtain a reference even in the short window between the queue
920 	 * starting to freeze, by dropping the first reference in
921 	 * blk_freeze_queue_start, and the moment the last request is
922 	 * consumed, marked by the instant q_usage_counter reaches
923 	 * zero.
924 	 */
925 	if (!percpu_ref_tryget(&q->q_usage_counter))
926 		return;
927 
928 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
929 
930 	if (next != 0) {
931 		mod_timer(&q->timeout, next);
932 	} else {
933 		/*
934 		 * Request timeouts are handled as a forward rolling timer. If
935 		 * we end up here it means that no requests are pending and
936 		 * also that no request has been pending for a while. Mark
937 		 * each hctx as idle.
938 		 */
939 		queue_for_each_hw_ctx(q, hctx, i) {
940 			/* the hctx may be unmapped, so check it here */
941 			if (blk_mq_hw_queue_mapped(hctx))
942 				blk_mq_tag_idle(hctx);
943 		}
944 	}
945 	blk_queue_exit(q);
946 }
947 
948 struct flush_busy_ctx_data {
949 	struct blk_mq_hw_ctx *hctx;
950 	struct list_head *list;
951 };
952 
953 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
954 {
955 	struct flush_busy_ctx_data *flush_data = data;
956 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
957 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
958 	enum hctx_type type = hctx->type;
959 
960 	spin_lock(&ctx->lock);
961 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
962 	sbitmap_clear_bit(sb, bitnr);
963 	spin_unlock(&ctx->lock);
964 	return true;
965 }
966 
967 /*
968  * Process software queues that have been marked busy, splicing them
969  * to the for-dispatch
970  */
971 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
972 {
973 	struct flush_busy_ctx_data data = {
974 		.hctx = hctx,
975 		.list = list,
976 	};
977 
978 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
979 }
980 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
981 
982 struct dispatch_rq_data {
983 	struct blk_mq_hw_ctx *hctx;
984 	struct request *rq;
985 };
986 
987 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
988 		void *data)
989 {
990 	struct dispatch_rq_data *dispatch_data = data;
991 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
992 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
993 	enum hctx_type type = hctx->type;
994 
995 	spin_lock(&ctx->lock);
996 	if (!list_empty(&ctx->rq_lists[type])) {
997 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
998 		list_del_init(&dispatch_data->rq->queuelist);
999 		if (list_empty(&ctx->rq_lists[type]))
1000 			sbitmap_clear_bit(sb, bitnr);
1001 	}
1002 	spin_unlock(&ctx->lock);
1003 
1004 	return !dispatch_data->rq;
1005 }
1006 
1007 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1008 					struct blk_mq_ctx *start)
1009 {
1010 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1011 	struct dispatch_rq_data data = {
1012 		.hctx = hctx,
1013 		.rq   = NULL,
1014 	};
1015 
1016 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1017 			       dispatch_rq_from_ctx, &data);
1018 
1019 	return data.rq;
1020 }
1021 
1022 static inline unsigned int queued_to_index(unsigned int queued)
1023 {
1024 	if (!queued)
1025 		return 0;
1026 
1027 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1028 }
1029 
1030 bool blk_mq_get_driver_tag(struct request *rq)
1031 {
1032 	struct blk_mq_alloc_data data = {
1033 		.q = rq->q,
1034 		.hctx = rq->mq_hctx,
1035 		.flags = BLK_MQ_REQ_NOWAIT,
1036 		.cmd_flags = rq->cmd_flags,
1037 	};
1038 	bool shared;
1039 
1040 	if (rq->tag != -1)
1041 		return true;
1042 
1043 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1044 		data.flags |= BLK_MQ_REQ_RESERVED;
1045 
1046 	shared = blk_mq_tag_busy(data.hctx);
1047 	rq->tag = blk_mq_get_tag(&data);
1048 	if (rq->tag >= 0) {
1049 		if (shared) {
1050 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1051 			atomic_inc(&data.hctx->nr_active);
1052 		}
1053 		data.hctx->tags->rqs[rq->tag] = rq;
1054 	}
1055 
1056 	return rq->tag != -1;
1057 }
1058 
1059 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1060 				int flags, void *key)
1061 {
1062 	struct blk_mq_hw_ctx *hctx;
1063 
1064 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1065 
1066 	spin_lock(&hctx->dispatch_wait_lock);
1067 	if (!list_empty(&wait->entry)) {
1068 		struct sbitmap_queue *sbq;
1069 
1070 		list_del_init(&wait->entry);
1071 		sbq = &hctx->tags->bitmap_tags;
1072 		atomic_dec(&sbq->ws_active);
1073 	}
1074 	spin_unlock(&hctx->dispatch_wait_lock);
1075 
1076 	blk_mq_run_hw_queue(hctx, true);
1077 	return 1;
1078 }
1079 
1080 /*
1081  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1082  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1083  * restart. For both cases, take care to check the condition again after
1084  * marking us as waiting.
1085  */
1086 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1087 				 struct request *rq)
1088 {
1089 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1090 	struct wait_queue_head *wq;
1091 	wait_queue_entry_t *wait;
1092 	bool ret;
1093 
1094 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1095 		blk_mq_sched_mark_restart_hctx(hctx);
1096 
1097 		/*
1098 		 * It's possible that a tag was freed in the window between the
1099 		 * allocation failure and adding the hardware queue to the wait
1100 		 * queue.
1101 		 *
1102 		 * Don't clear RESTART here, someone else could have set it.
1103 		 * At most this will cost an extra queue run.
1104 		 */
1105 		return blk_mq_get_driver_tag(rq);
1106 	}
1107 
1108 	wait = &hctx->dispatch_wait;
1109 	if (!list_empty_careful(&wait->entry))
1110 		return false;
1111 
1112 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1113 
1114 	spin_lock_irq(&wq->lock);
1115 	spin_lock(&hctx->dispatch_wait_lock);
1116 	if (!list_empty(&wait->entry)) {
1117 		spin_unlock(&hctx->dispatch_wait_lock);
1118 		spin_unlock_irq(&wq->lock);
1119 		return false;
1120 	}
1121 
1122 	atomic_inc(&sbq->ws_active);
1123 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1124 	__add_wait_queue(wq, wait);
1125 
1126 	/*
1127 	 * It's possible that a tag was freed in the window between the
1128 	 * allocation failure and adding the hardware queue to the wait
1129 	 * queue.
1130 	 */
1131 	ret = blk_mq_get_driver_tag(rq);
1132 	if (!ret) {
1133 		spin_unlock(&hctx->dispatch_wait_lock);
1134 		spin_unlock_irq(&wq->lock);
1135 		return false;
1136 	}
1137 
1138 	/*
1139 	 * We got a tag, remove ourselves from the wait queue to ensure
1140 	 * someone else gets the wakeup.
1141 	 */
1142 	list_del_init(&wait->entry);
1143 	atomic_dec(&sbq->ws_active);
1144 	spin_unlock(&hctx->dispatch_wait_lock);
1145 	spin_unlock_irq(&wq->lock);
1146 
1147 	return true;
1148 }
1149 
1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1151 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1152 /*
1153  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1154  * - EWMA is one simple way to compute running average value
1155  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1156  * - take 4 as factor for avoiding to get too small(0) result, and this
1157  *   factor doesn't matter because EWMA decreases exponentially
1158  */
1159 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1160 {
1161 	unsigned int ewma;
1162 
1163 	if (hctx->queue->elevator)
1164 		return;
1165 
1166 	ewma = hctx->dispatch_busy;
1167 
1168 	if (!ewma && !busy)
1169 		return;
1170 
1171 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1172 	if (busy)
1173 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1174 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1175 
1176 	hctx->dispatch_busy = ewma;
1177 }
1178 
1179 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1180 
1181 static void blk_mq_handle_dev_resource(struct request *rq,
1182 				       struct list_head *list)
1183 {
1184 	struct request *next =
1185 		list_first_entry_or_null(list, struct request, queuelist);
1186 
1187 	/*
1188 	 * If an I/O scheduler has been configured and we got a driver tag for
1189 	 * the next request already, free it.
1190 	 */
1191 	if (next)
1192 		blk_mq_put_driver_tag(next);
1193 
1194 	list_add(&rq->queuelist, list);
1195 	__blk_mq_requeue_request(rq);
1196 }
1197 
1198 /*
1199  * Returns true if we did some work AND can potentially do more.
1200  */
1201 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1202 			     bool got_budget)
1203 {
1204 	struct blk_mq_hw_ctx *hctx;
1205 	struct request *rq, *nxt;
1206 	bool no_tag = false;
1207 	int errors, queued;
1208 	blk_status_t ret = BLK_STS_OK;
1209 
1210 	if (list_empty(list))
1211 		return false;
1212 
1213 	WARN_ON(!list_is_singular(list) && got_budget);
1214 
1215 	/*
1216 	 * Now process all the entries, sending them to the driver.
1217 	 */
1218 	errors = queued = 0;
1219 	do {
1220 		struct blk_mq_queue_data bd;
1221 
1222 		rq = list_first_entry(list, struct request, queuelist);
1223 
1224 		hctx = rq->mq_hctx;
1225 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1226 			blk_mq_put_driver_tag(rq);
1227 			break;
1228 		}
1229 
1230 		if (!blk_mq_get_driver_tag(rq)) {
1231 			/*
1232 			 * The initial allocation attempt failed, so we need to
1233 			 * rerun the hardware queue when a tag is freed. The
1234 			 * waitqueue takes care of that. If the queue is run
1235 			 * before we add this entry back on the dispatch list,
1236 			 * we'll re-run it below.
1237 			 */
1238 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1239 				blk_mq_put_dispatch_budget(hctx);
1240 				/*
1241 				 * For non-shared tags, the RESTART check
1242 				 * will suffice.
1243 				 */
1244 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1245 					no_tag = true;
1246 				break;
1247 			}
1248 		}
1249 
1250 		list_del_init(&rq->queuelist);
1251 
1252 		bd.rq = rq;
1253 
1254 		/*
1255 		 * Flag last if we have no more requests, or if we have more
1256 		 * but can't assign a driver tag to it.
1257 		 */
1258 		if (list_empty(list))
1259 			bd.last = true;
1260 		else {
1261 			nxt = list_first_entry(list, struct request, queuelist);
1262 			bd.last = !blk_mq_get_driver_tag(nxt);
1263 		}
1264 
1265 		ret = q->mq_ops->queue_rq(hctx, &bd);
1266 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1267 			blk_mq_handle_dev_resource(rq, list);
1268 			break;
1269 		}
1270 
1271 		if (unlikely(ret != BLK_STS_OK)) {
1272 			errors++;
1273 			blk_mq_end_request(rq, BLK_STS_IOERR);
1274 			continue;
1275 		}
1276 
1277 		queued++;
1278 	} while (!list_empty(list));
1279 
1280 	hctx->dispatched[queued_to_index(queued)]++;
1281 
1282 	/*
1283 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1284 	 * that is where we will continue on next queue run.
1285 	 */
1286 	if (!list_empty(list)) {
1287 		bool needs_restart;
1288 
1289 		/*
1290 		 * If we didn't flush the entire list, we could have told
1291 		 * the driver there was more coming, but that turned out to
1292 		 * be a lie.
1293 		 */
1294 		if (q->mq_ops->commit_rqs && queued)
1295 			q->mq_ops->commit_rqs(hctx);
1296 
1297 		spin_lock(&hctx->lock);
1298 		list_splice_tail_init(list, &hctx->dispatch);
1299 		spin_unlock(&hctx->lock);
1300 
1301 		/*
1302 		 * If SCHED_RESTART was set by the caller of this function and
1303 		 * it is no longer set that means that it was cleared by another
1304 		 * thread and hence that a queue rerun is needed.
1305 		 *
1306 		 * If 'no_tag' is set, that means that we failed getting
1307 		 * a driver tag with an I/O scheduler attached. If our dispatch
1308 		 * waitqueue is no longer active, ensure that we run the queue
1309 		 * AFTER adding our entries back to the list.
1310 		 *
1311 		 * If no I/O scheduler has been configured it is possible that
1312 		 * the hardware queue got stopped and restarted before requests
1313 		 * were pushed back onto the dispatch list. Rerun the queue to
1314 		 * avoid starvation. Notes:
1315 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1316 		 *   been stopped before rerunning a queue.
1317 		 * - Some but not all block drivers stop a queue before
1318 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1319 		 *   and dm-rq.
1320 		 *
1321 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1322 		 * bit is set, run queue after a delay to avoid IO stalls
1323 		 * that could otherwise occur if the queue is idle.
1324 		 */
1325 		needs_restart = blk_mq_sched_needs_restart(hctx);
1326 		if (!needs_restart ||
1327 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1328 			blk_mq_run_hw_queue(hctx, true);
1329 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1330 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1331 
1332 		blk_mq_update_dispatch_busy(hctx, true);
1333 		return false;
1334 	} else
1335 		blk_mq_update_dispatch_busy(hctx, false);
1336 
1337 	/*
1338 	 * If the host/device is unable to accept more work, inform the
1339 	 * caller of that.
1340 	 */
1341 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1342 		return false;
1343 
1344 	return (queued + errors) != 0;
1345 }
1346 
1347 /**
1348  * __blk_mq_run_hw_queue - Run a hardware queue.
1349  * @hctx: Pointer to the hardware queue to run.
1350  *
1351  * Send pending requests to the hardware.
1352  */
1353 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1354 {
1355 	int srcu_idx;
1356 
1357 	/*
1358 	 * We should be running this queue from one of the CPUs that
1359 	 * are mapped to it.
1360 	 *
1361 	 * There are at least two related races now between setting
1362 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1363 	 * __blk_mq_run_hw_queue():
1364 	 *
1365 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1366 	 *   but later it becomes online, then this warning is harmless
1367 	 *   at all
1368 	 *
1369 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1370 	 *   but later it becomes offline, then the warning can't be
1371 	 *   triggered, and we depend on blk-mq timeout handler to
1372 	 *   handle dispatched requests to this hctx
1373 	 */
1374 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1375 		cpu_online(hctx->next_cpu)) {
1376 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1377 			raw_smp_processor_id(),
1378 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1379 		dump_stack();
1380 	}
1381 
1382 	/*
1383 	 * We can't run the queue inline with ints disabled. Ensure that
1384 	 * we catch bad users of this early.
1385 	 */
1386 	WARN_ON_ONCE(in_interrupt());
1387 
1388 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1389 
1390 	hctx_lock(hctx, &srcu_idx);
1391 	blk_mq_sched_dispatch_requests(hctx);
1392 	hctx_unlock(hctx, srcu_idx);
1393 }
1394 
1395 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1396 {
1397 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1398 
1399 	if (cpu >= nr_cpu_ids)
1400 		cpu = cpumask_first(hctx->cpumask);
1401 	return cpu;
1402 }
1403 
1404 /*
1405  * It'd be great if the workqueue API had a way to pass
1406  * in a mask and had some smarts for more clever placement.
1407  * For now we just round-robin here, switching for every
1408  * BLK_MQ_CPU_WORK_BATCH queued items.
1409  */
1410 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1411 {
1412 	bool tried = false;
1413 	int next_cpu = hctx->next_cpu;
1414 
1415 	if (hctx->queue->nr_hw_queues == 1)
1416 		return WORK_CPU_UNBOUND;
1417 
1418 	if (--hctx->next_cpu_batch <= 0) {
1419 select_cpu:
1420 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1421 				cpu_online_mask);
1422 		if (next_cpu >= nr_cpu_ids)
1423 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1424 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1425 	}
1426 
1427 	/*
1428 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1429 	 * and it should only happen in the path of handling CPU DEAD.
1430 	 */
1431 	if (!cpu_online(next_cpu)) {
1432 		if (!tried) {
1433 			tried = true;
1434 			goto select_cpu;
1435 		}
1436 
1437 		/*
1438 		 * Make sure to re-select CPU next time once after CPUs
1439 		 * in hctx->cpumask become online again.
1440 		 */
1441 		hctx->next_cpu = next_cpu;
1442 		hctx->next_cpu_batch = 1;
1443 		return WORK_CPU_UNBOUND;
1444 	}
1445 
1446 	hctx->next_cpu = next_cpu;
1447 	return next_cpu;
1448 }
1449 
1450 /**
1451  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1452  * @hctx: Pointer to the hardware queue to run.
1453  * @async: If we want to run the queue asynchronously.
1454  * @msecs: Microseconds of delay to wait before running the queue.
1455  *
1456  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1457  * with a delay of @msecs.
1458  */
1459 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1460 					unsigned long msecs)
1461 {
1462 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1463 		return;
1464 
1465 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1466 		int cpu = get_cpu();
1467 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1468 			__blk_mq_run_hw_queue(hctx);
1469 			put_cpu();
1470 			return;
1471 		}
1472 
1473 		put_cpu();
1474 	}
1475 
1476 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1477 				    msecs_to_jiffies(msecs));
1478 }
1479 
1480 /**
1481  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1482  * @hctx: Pointer to the hardware queue to run.
1483  * @msecs: Microseconds of delay to wait before running the queue.
1484  *
1485  * Run a hardware queue asynchronously with a delay of @msecs.
1486  */
1487 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1488 {
1489 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1490 }
1491 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1492 
1493 /**
1494  * blk_mq_run_hw_queue - Start to run a hardware queue.
1495  * @hctx: Pointer to the hardware queue to run.
1496  * @async: If we want to run the queue asynchronously.
1497  *
1498  * Check if the request queue is not in a quiesced state and if there are
1499  * pending requests to be sent. If this is true, run the queue to send requests
1500  * to hardware.
1501  */
1502 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1503 {
1504 	int srcu_idx;
1505 	bool need_run;
1506 
1507 	/*
1508 	 * When queue is quiesced, we may be switching io scheduler, or
1509 	 * updating nr_hw_queues, or other things, and we can't run queue
1510 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1511 	 *
1512 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1513 	 * quiesced.
1514 	 */
1515 	hctx_lock(hctx, &srcu_idx);
1516 	need_run = !blk_queue_quiesced(hctx->queue) &&
1517 		blk_mq_hctx_has_pending(hctx);
1518 	hctx_unlock(hctx, srcu_idx);
1519 
1520 	if (need_run)
1521 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1522 }
1523 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1524 
1525 /**
1526  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1527  * @q: Pointer to the request queue to run.
1528  * @async: If we want to run the queue asynchronously.
1529  */
1530 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1531 {
1532 	struct blk_mq_hw_ctx *hctx;
1533 	int i;
1534 
1535 	queue_for_each_hw_ctx(q, hctx, i) {
1536 		if (blk_mq_hctx_stopped(hctx))
1537 			continue;
1538 
1539 		blk_mq_run_hw_queue(hctx, async);
1540 	}
1541 }
1542 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1543 
1544 /**
1545  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1546  * @q: request queue.
1547  *
1548  * The caller is responsible for serializing this function against
1549  * blk_mq_{start,stop}_hw_queue().
1550  */
1551 bool blk_mq_queue_stopped(struct request_queue *q)
1552 {
1553 	struct blk_mq_hw_ctx *hctx;
1554 	int i;
1555 
1556 	queue_for_each_hw_ctx(q, hctx, i)
1557 		if (blk_mq_hctx_stopped(hctx))
1558 			return true;
1559 
1560 	return false;
1561 }
1562 EXPORT_SYMBOL(blk_mq_queue_stopped);
1563 
1564 /*
1565  * This function is often used for pausing .queue_rq() by driver when
1566  * there isn't enough resource or some conditions aren't satisfied, and
1567  * BLK_STS_RESOURCE is usually returned.
1568  *
1569  * We do not guarantee that dispatch can be drained or blocked
1570  * after blk_mq_stop_hw_queue() returns. Please use
1571  * blk_mq_quiesce_queue() for that requirement.
1572  */
1573 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1574 {
1575 	cancel_delayed_work(&hctx->run_work);
1576 
1577 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1578 }
1579 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1580 
1581 /*
1582  * This function is often used for pausing .queue_rq() by driver when
1583  * there isn't enough resource or some conditions aren't satisfied, and
1584  * BLK_STS_RESOURCE is usually returned.
1585  *
1586  * We do not guarantee that dispatch can be drained or blocked
1587  * after blk_mq_stop_hw_queues() returns. Please use
1588  * blk_mq_quiesce_queue() for that requirement.
1589  */
1590 void blk_mq_stop_hw_queues(struct request_queue *q)
1591 {
1592 	struct blk_mq_hw_ctx *hctx;
1593 	int i;
1594 
1595 	queue_for_each_hw_ctx(q, hctx, i)
1596 		blk_mq_stop_hw_queue(hctx);
1597 }
1598 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1599 
1600 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1601 {
1602 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1603 
1604 	blk_mq_run_hw_queue(hctx, false);
1605 }
1606 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1607 
1608 void blk_mq_start_hw_queues(struct request_queue *q)
1609 {
1610 	struct blk_mq_hw_ctx *hctx;
1611 	int i;
1612 
1613 	queue_for_each_hw_ctx(q, hctx, i)
1614 		blk_mq_start_hw_queue(hctx);
1615 }
1616 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1617 
1618 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1619 {
1620 	if (!blk_mq_hctx_stopped(hctx))
1621 		return;
1622 
1623 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1624 	blk_mq_run_hw_queue(hctx, async);
1625 }
1626 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1627 
1628 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1629 {
1630 	struct blk_mq_hw_ctx *hctx;
1631 	int i;
1632 
1633 	queue_for_each_hw_ctx(q, hctx, i)
1634 		blk_mq_start_stopped_hw_queue(hctx, async);
1635 }
1636 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1637 
1638 static void blk_mq_run_work_fn(struct work_struct *work)
1639 {
1640 	struct blk_mq_hw_ctx *hctx;
1641 
1642 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1643 
1644 	/*
1645 	 * If we are stopped, don't run the queue.
1646 	 */
1647 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1648 		return;
1649 
1650 	__blk_mq_run_hw_queue(hctx);
1651 }
1652 
1653 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1654 					    struct request *rq,
1655 					    bool at_head)
1656 {
1657 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1658 	enum hctx_type type = hctx->type;
1659 
1660 	lockdep_assert_held(&ctx->lock);
1661 
1662 	trace_block_rq_insert(hctx->queue, rq);
1663 
1664 	if (at_head)
1665 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1666 	else
1667 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1668 }
1669 
1670 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1671 			     bool at_head)
1672 {
1673 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1674 
1675 	lockdep_assert_held(&ctx->lock);
1676 
1677 	__blk_mq_insert_req_list(hctx, rq, at_head);
1678 	blk_mq_hctx_mark_pending(hctx, ctx);
1679 }
1680 
1681 /**
1682  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1683  * @rq: Pointer to request to be inserted.
1684  * @run_queue: If we should run the hardware queue after inserting the request.
1685  *
1686  * Should only be used carefully, when the caller knows we want to
1687  * bypass a potential IO scheduler on the target device.
1688  */
1689 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1690 				  bool run_queue)
1691 {
1692 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1693 
1694 	spin_lock(&hctx->lock);
1695 	if (at_head)
1696 		list_add(&rq->queuelist, &hctx->dispatch);
1697 	else
1698 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1699 	spin_unlock(&hctx->lock);
1700 
1701 	if (run_queue)
1702 		blk_mq_run_hw_queue(hctx, false);
1703 }
1704 
1705 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1706 			    struct list_head *list)
1707 
1708 {
1709 	struct request *rq;
1710 	enum hctx_type type = hctx->type;
1711 
1712 	/*
1713 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1714 	 * offline now
1715 	 */
1716 	list_for_each_entry(rq, list, queuelist) {
1717 		BUG_ON(rq->mq_ctx != ctx);
1718 		trace_block_rq_insert(hctx->queue, rq);
1719 	}
1720 
1721 	spin_lock(&ctx->lock);
1722 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1723 	blk_mq_hctx_mark_pending(hctx, ctx);
1724 	spin_unlock(&ctx->lock);
1725 }
1726 
1727 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1728 {
1729 	struct request *rqa = container_of(a, struct request, queuelist);
1730 	struct request *rqb = container_of(b, struct request, queuelist);
1731 
1732 	if (rqa->mq_ctx != rqb->mq_ctx)
1733 		return rqa->mq_ctx > rqb->mq_ctx;
1734 	if (rqa->mq_hctx != rqb->mq_hctx)
1735 		return rqa->mq_hctx > rqb->mq_hctx;
1736 
1737 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1738 }
1739 
1740 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1741 {
1742 	LIST_HEAD(list);
1743 
1744 	if (list_empty(&plug->mq_list))
1745 		return;
1746 	list_splice_init(&plug->mq_list, &list);
1747 
1748 	if (plug->rq_count > 2 && plug->multiple_queues)
1749 		list_sort(NULL, &list, plug_rq_cmp);
1750 
1751 	plug->rq_count = 0;
1752 
1753 	do {
1754 		struct list_head rq_list;
1755 		struct request *rq, *head_rq = list_entry_rq(list.next);
1756 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1757 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1758 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1759 		unsigned int depth = 1;
1760 
1761 		list_for_each_continue(pos, &list) {
1762 			rq = list_entry_rq(pos);
1763 			BUG_ON(!rq->q);
1764 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1765 				break;
1766 			depth++;
1767 		}
1768 
1769 		list_cut_before(&rq_list, &list, pos);
1770 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1771 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1772 						from_schedule);
1773 	} while(!list_empty(&list));
1774 }
1775 
1776 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1777 		unsigned int nr_segs)
1778 {
1779 	if (bio->bi_opf & REQ_RAHEAD)
1780 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1781 
1782 	rq->__sector = bio->bi_iter.bi_sector;
1783 	rq->write_hint = bio->bi_write_hint;
1784 	blk_rq_bio_prep(rq, bio, nr_segs);
1785 
1786 	blk_account_io_start(rq, true);
1787 }
1788 
1789 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1790 					    struct request *rq,
1791 					    blk_qc_t *cookie, bool last)
1792 {
1793 	struct request_queue *q = rq->q;
1794 	struct blk_mq_queue_data bd = {
1795 		.rq = rq,
1796 		.last = last,
1797 	};
1798 	blk_qc_t new_cookie;
1799 	blk_status_t ret;
1800 
1801 	new_cookie = request_to_qc_t(hctx, rq);
1802 
1803 	/*
1804 	 * For OK queue, we are done. For error, caller may kill it.
1805 	 * Any other error (busy), just add it to our list as we
1806 	 * previously would have done.
1807 	 */
1808 	ret = q->mq_ops->queue_rq(hctx, &bd);
1809 	switch (ret) {
1810 	case BLK_STS_OK:
1811 		blk_mq_update_dispatch_busy(hctx, false);
1812 		*cookie = new_cookie;
1813 		break;
1814 	case BLK_STS_RESOURCE:
1815 	case BLK_STS_DEV_RESOURCE:
1816 		blk_mq_update_dispatch_busy(hctx, true);
1817 		__blk_mq_requeue_request(rq);
1818 		break;
1819 	default:
1820 		blk_mq_update_dispatch_busy(hctx, false);
1821 		*cookie = BLK_QC_T_NONE;
1822 		break;
1823 	}
1824 
1825 	return ret;
1826 }
1827 
1828 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1829 						struct request *rq,
1830 						blk_qc_t *cookie,
1831 						bool bypass_insert, bool last)
1832 {
1833 	struct request_queue *q = rq->q;
1834 	bool run_queue = true;
1835 
1836 	/*
1837 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1838 	 *
1839 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1840 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1841 	 * and avoid driver to try to dispatch again.
1842 	 */
1843 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1844 		run_queue = false;
1845 		bypass_insert = false;
1846 		goto insert;
1847 	}
1848 
1849 	if (q->elevator && !bypass_insert)
1850 		goto insert;
1851 
1852 	if (!blk_mq_get_dispatch_budget(hctx))
1853 		goto insert;
1854 
1855 	if (!blk_mq_get_driver_tag(rq)) {
1856 		blk_mq_put_dispatch_budget(hctx);
1857 		goto insert;
1858 	}
1859 
1860 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1861 insert:
1862 	if (bypass_insert)
1863 		return BLK_STS_RESOURCE;
1864 
1865 	blk_mq_request_bypass_insert(rq, false, run_queue);
1866 	return BLK_STS_OK;
1867 }
1868 
1869 /**
1870  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1871  * @hctx: Pointer of the associated hardware queue.
1872  * @rq: Pointer to request to be sent.
1873  * @cookie: Request queue cookie.
1874  *
1875  * If the device has enough resources to accept a new request now, send the
1876  * request directly to device driver. Else, insert at hctx->dispatch queue, so
1877  * we can try send it another time in the future. Requests inserted at this
1878  * queue have higher priority.
1879  */
1880 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1881 		struct request *rq, blk_qc_t *cookie)
1882 {
1883 	blk_status_t ret;
1884 	int srcu_idx;
1885 
1886 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1887 
1888 	hctx_lock(hctx, &srcu_idx);
1889 
1890 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1891 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1892 		blk_mq_request_bypass_insert(rq, false, true);
1893 	else if (ret != BLK_STS_OK)
1894 		blk_mq_end_request(rq, ret);
1895 
1896 	hctx_unlock(hctx, srcu_idx);
1897 }
1898 
1899 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1900 {
1901 	blk_status_t ret;
1902 	int srcu_idx;
1903 	blk_qc_t unused_cookie;
1904 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1905 
1906 	hctx_lock(hctx, &srcu_idx);
1907 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1908 	hctx_unlock(hctx, srcu_idx);
1909 
1910 	return ret;
1911 }
1912 
1913 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1914 		struct list_head *list)
1915 {
1916 	int queued = 0;
1917 
1918 	while (!list_empty(list)) {
1919 		blk_status_t ret;
1920 		struct request *rq = list_first_entry(list, struct request,
1921 				queuelist);
1922 
1923 		list_del_init(&rq->queuelist);
1924 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1925 		if (ret != BLK_STS_OK) {
1926 			if (ret == BLK_STS_RESOURCE ||
1927 					ret == BLK_STS_DEV_RESOURCE) {
1928 				blk_mq_request_bypass_insert(rq, false,
1929 							list_empty(list));
1930 				break;
1931 			}
1932 			blk_mq_end_request(rq, ret);
1933 		} else
1934 			queued++;
1935 	}
1936 
1937 	/*
1938 	 * If we didn't flush the entire list, we could have told
1939 	 * the driver there was more coming, but that turned out to
1940 	 * be a lie.
1941 	 */
1942 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
1943 		hctx->queue->mq_ops->commit_rqs(hctx);
1944 }
1945 
1946 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1947 {
1948 	list_add_tail(&rq->queuelist, &plug->mq_list);
1949 	plug->rq_count++;
1950 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1951 		struct request *tmp;
1952 
1953 		tmp = list_first_entry(&plug->mq_list, struct request,
1954 						queuelist);
1955 		if (tmp->q != rq->q)
1956 			plug->multiple_queues = true;
1957 	}
1958 }
1959 
1960 /**
1961  * blk_mq_make_request - Create and send a request to block device.
1962  * @q: Request queue pointer.
1963  * @bio: Bio pointer.
1964  *
1965  * Builds up a request structure from @q and @bio and send to the device. The
1966  * request may not be queued directly to hardware if:
1967  * * This request can be merged with another one
1968  * * We want to place request at plug queue for possible future merging
1969  * * There is an IO scheduler active at this queue
1970  *
1971  * It will not queue the request if there is an error with the bio, or at the
1972  * request creation.
1973  *
1974  * Returns: Request queue cookie.
1975  */
1976 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1977 {
1978 	const int is_sync = op_is_sync(bio->bi_opf);
1979 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1980 	struct blk_mq_alloc_data data = { .flags = 0};
1981 	struct request *rq;
1982 	struct blk_plug *plug;
1983 	struct request *same_queue_rq = NULL;
1984 	unsigned int nr_segs;
1985 	blk_qc_t cookie;
1986 
1987 	blk_queue_bounce(q, &bio);
1988 	__blk_queue_split(q, &bio, &nr_segs);
1989 
1990 	if (!bio_integrity_prep(bio))
1991 		return BLK_QC_T_NONE;
1992 
1993 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1994 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1995 		return BLK_QC_T_NONE;
1996 
1997 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1998 		return BLK_QC_T_NONE;
1999 
2000 	rq_qos_throttle(q, bio);
2001 
2002 	data.cmd_flags = bio->bi_opf;
2003 	rq = blk_mq_get_request(q, bio, &data);
2004 	if (unlikely(!rq)) {
2005 		rq_qos_cleanup(q, bio);
2006 		if (bio->bi_opf & REQ_NOWAIT)
2007 			bio_wouldblock_error(bio);
2008 		return BLK_QC_T_NONE;
2009 	}
2010 
2011 	trace_block_getrq(q, bio, bio->bi_opf);
2012 
2013 	rq_qos_track(q, rq, bio);
2014 
2015 	cookie = request_to_qc_t(data.hctx, rq);
2016 
2017 	blk_mq_bio_to_request(rq, bio, nr_segs);
2018 
2019 	plug = blk_mq_plug(q, bio);
2020 	if (unlikely(is_flush_fua)) {
2021 		/* Bypass scheduler for flush requests */
2022 		blk_insert_flush(rq);
2023 		blk_mq_run_hw_queue(data.hctx, true);
2024 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2025 				!blk_queue_nonrot(q))) {
2026 		/*
2027 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2028 		 * we know the driver uses bd->last in a smart fashion.
2029 		 *
2030 		 * Use normal plugging if this disk is slow HDD, as sequential
2031 		 * IO may benefit a lot from plug merging.
2032 		 */
2033 		unsigned int request_count = plug->rq_count;
2034 		struct request *last = NULL;
2035 
2036 		if (!request_count)
2037 			trace_block_plug(q);
2038 		else
2039 			last = list_entry_rq(plug->mq_list.prev);
2040 
2041 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2042 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2043 			blk_flush_plug_list(plug, false);
2044 			trace_block_plug(q);
2045 		}
2046 
2047 		blk_add_rq_to_plug(plug, rq);
2048 	} else if (q->elevator) {
2049 		/* Insert the request at the IO scheduler queue */
2050 		blk_mq_sched_insert_request(rq, false, true, true);
2051 	} else if (plug && !blk_queue_nomerges(q)) {
2052 		/*
2053 		 * We do limited plugging. If the bio can be merged, do that.
2054 		 * Otherwise the existing request in the plug list will be
2055 		 * issued. So the plug list will have one request at most
2056 		 * The plug list might get flushed before this. If that happens,
2057 		 * the plug list is empty, and same_queue_rq is invalid.
2058 		 */
2059 		if (list_empty(&plug->mq_list))
2060 			same_queue_rq = NULL;
2061 		if (same_queue_rq) {
2062 			list_del_init(&same_queue_rq->queuelist);
2063 			plug->rq_count--;
2064 		}
2065 		blk_add_rq_to_plug(plug, rq);
2066 		trace_block_plug(q);
2067 
2068 		if (same_queue_rq) {
2069 			data.hctx = same_queue_rq->mq_hctx;
2070 			trace_block_unplug(q, 1, true);
2071 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2072 					&cookie);
2073 		}
2074 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2075 			!data.hctx->dispatch_busy) {
2076 		/*
2077 		 * There is no scheduler and we can try to send directly
2078 		 * to the hardware.
2079 		 */
2080 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2081 	} else {
2082 		/* Default case. */
2083 		blk_mq_sched_insert_request(rq, false, true, true);
2084 	}
2085 
2086 	return cookie;
2087 }
2088 
2089 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2090 		     unsigned int hctx_idx)
2091 {
2092 	struct page *page;
2093 
2094 	if (tags->rqs && set->ops->exit_request) {
2095 		int i;
2096 
2097 		for (i = 0; i < tags->nr_tags; i++) {
2098 			struct request *rq = tags->static_rqs[i];
2099 
2100 			if (!rq)
2101 				continue;
2102 			set->ops->exit_request(set, rq, hctx_idx);
2103 			tags->static_rqs[i] = NULL;
2104 		}
2105 	}
2106 
2107 	while (!list_empty(&tags->page_list)) {
2108 		page = list_first_entry(&tags->page_list, struct page, lru);
2109 		list_del_init(&page->lru);
2110 		/*
2111 		 * Remove kmemleak object previously allocated in
2112 		 * blk_mq_alloc_rqs().
2113 		 */
2114 		kmemleak_free(page_address(page));
2115 		__free_pages(page, page->private);
2116 	}
2117 }
2118 
2119 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2120 {
2121 	kfree(tags->rqs);
2122 	tags->rqs = NULL;
2123 	kfree(tags->static_rqs);
2124 	tags->static_rqs = NULL;
2125 
2126 	blk_mq_free_tags(tags);
2127 }
2128 
2129 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2130 					unsigned int hctx_idx,
2131 					unsigned int nr_tags,
2132 					unsigned int reserved_tags)
2133 {
2134 	struct blk_mq_tags *tags;
2135 	int node;
2136 
2137 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2138 	if (node == NUMA_NO_NODE)
2139 		node = set->numa_node;
2140 
2141 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2142 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2143 	if (!tags)
2144 		return NULL;
2145 
2146 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2147 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2148 				 node);
2149 	if (!tags->rqs) {
2150 		blk_mq_free_tags(tags);
2151 		return NULL;
2152 	}
2153 
2154 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2155 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2156 					node);
2157 	if (!tags->static_rqs) {
2158 		kfree(tags->rqs);
2159 		blk_mq_free_tags(tags);
2160 		return NULL;
2161 	}
2162 
2163 	return tags;
2164 }
2165 
2166 static size_t order_to_size(unsigned int order)
2167 {
2168 	return (size_t)PAGE_SIZE << order;
2169 }
2170 
2171 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2172 			       unsigned int hctx_idx, int node)
2173 {
2174 	int ret;
2175 
2176 	if (set->ops->init_request) {
2177 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2178 		if (ret)
2179 			return ret;
2180 	}
2181 
2182 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2183 	return 0;
2184 }
2185 
2186 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2187 		     unsigned int hctx_idx, unsigned int depth)
2188 {
2189 	unsigned int i, j, entries_per_page, max_order = 4;
2190 	size_t rq_size, left;
2191 	int node;
2192 
2193 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2194 	if (node == NUMA_NO_NODE)
2195 		node = set->numa_node;
2196 
2197 	INIT_LIST_HEAD(&tags->page_list);
2198 
2199 	/*
2200 	 * rq_size is the size of the request plus driver payload, rounded
2201 	 * to the cacheline size
2202 	 */
2203 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2204 				cache_line_size());
2205 	left = rq_size * depth;
2206 
2207 	for (i = 0; i < depth; ) {
2208 		int this_order = max_order;
2209 		struct page *page;
2210 		int to_do;
2211 		void *p;
2212 
2213 		while (this_order && left < order_to_size(this_order - 1))
2214 			this_order--;
2215 
2216 		do {
2217 			page = alloc_pages_node(node,
2218 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2219 				this_order);
2220 			if (page)
2221 				break;
2222 			if (!this_order--)
2223 				break;
2224 			if (order_to_size(this_order) < rq_size)
2225 				break;
2226 		} while (1);
2227 
2228 		if (!page)
2229 			goto fail;
2230 
2231 		page->private = this_order;
2232 		list_add_tail(&page->lru, &tags->page_list);
2233 
2234 		p = page_address(page);
2235 		/*
2236 		 * Allow kmemleak to scan these pages as they contain pointers
2237 		 * to additional allocations like via ops->init_request().
2238 		 */
2239 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2240 		entries_per_page = order_to_size(this_order) / rq_size;
2241 		to_do = min(entries_per_page, depth - i);
2242 		left -= to_do * rq_size;
2243 		for (j = 0; j < to_do; j++) {
2244 			struct request *rq = p;
2245 
2246 			tags->static_rqs[i] = rq;
2247 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2248 				tags->static_rqs[i] = NULL;
2249 				goto fail;
2250 			}
2251 
2252 			p += rq_size;
2253 			i++;
2254 		}
2255 	}
2256 	return 0;
2257 
2258 fail:
2259 	blk_mq_free_rqs(set, tags, hctx_idx);
2260 	return -ENOMEM;
2261 }
2262 
2263 /*
2264  * 'cpu' is going away. splice any existing rq_list entries from this
2265  * software queue to the hw queue dispatch list, and ensure that it
2266  * gets run.
2267  */
2268 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2269 {
2270 	struct blk_mq_hw_ctx *hctx;
2271 	struct blk_mq_ctx *ctx;
2272 	LIST_HEAD(tmp);
2273 	enum hctx_type type;
2274 
2275 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2276 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2277 	type = hctx->type;
2278 
2279 	spin_lock(&ctx->lock);
2280 	if (!list_empty(&ctx->rq_lists[type])) {
2281 		list_splice_init(&ctx->rq_lists[type], &tmp);
2282 		blk_mq_hctx_clear_pending(hctx, ctx);
2283 	}
2284 	spin_unlock(&ctx->lock);
2285 
2286 	if (list_empty(&tmp))
2287 		return 0;
2288 
2289 	spin_lock(&hctx->lock);
2290 	list_splice_tail_init(&tmp, &hctx->dispatch);
2291 	spin_unlock(&hctx->lock);
2292 
2293 	blk_mq_run_hw_queue(hctx, true);
2294 	return 0;
2295 }
2296 
2297 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2298 {
2299 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2300 					    &hctx->cpuhp_dead);
2301 }
2302 
2303 /* hctx->ctxs will be freed in queue's release handler */
2304 static void blk_mq_exit_hctx(struct request_queue *q,
2305 		struct blk_mq_tag_set *set,
2306 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2307 {
2308 	if (blk_mq_hw_queue_mapped(hctx))
2309 		blk_mq_tag_idle(hctx);
2310 
2311 	if (set->ops->exit_request)
2312 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2313 
2314 	if (set->ops->exit_hctx)
2315 		set->ops->exit_hctx(hctx, hctx_idx);
2316 
2317 	blk_mq_remove_cpuhp(hctx);
2318 
2319 	spin_lock(&q->unused_hctx_lock);
2320 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2321 	spin_unlock(&q->unused_hctx_lock);
2322 }
2323 
2324 static void blk_mq_exit_hw_queues(struct request_queue *q,
2325 		struct blk_mq_tag_set *set, int nr_queue)
2326 {
2327 	struct blk_mq_hw_ctx *hctx;
2328 	unsigned int i;
2329 
2330 	queue_for_each_hw_ctx(q, hctx, i) {
2331 		if (i == nr_queue)
2332 			break;
2333 		blk_mq_debugfs_unregister_hctx(hctx);
2334 		blk_mq_exit_hctx(q, set, hctx, i);
2335 	}
2336 }
2337 
2338 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2339 {
2340 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2341 
2342 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2343 			   __alignof__(struct blk_mq_hw_ctx)) !=
2344 		     sizeof(struct blk_mq_hw_ctx));
2345 
2346 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2347 		hw_ctx_size += sizeof(struct srcu_struct);
2348 
2349 	return hw_ctx_size;
2350 }
2351 
2352 static int blk_mq_init_hctx(struct request_queue *q,
2353 		struct blk_mq_tag_set *set,
2354 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2355 {
2356 	hctx->queue_num = hctx_idx;
2357 
2358 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2359 
2360 	hctx->tags = set->tags[hctx_idx];
2361 
2362 	if (set->ops->init_hctx &&
2363 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2364 		goto unregister_cpu_notifier;
2365 
2366 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2367 				hctx->numa_node))
2368 		goto exit_hctx;
2369 	return 0;
2370 
2371  exit_hctx:
2372 	if (set->ops->exit_hctx)
2373 		set->ops->exit_hctx(hctx, hctx_idx);
2374  unregister_cpu_notifier:
2375 	blk_mq_remove_cpuhp(hctx);
2376 	return -1;
2377 }
2378 
2379 static struct blk_mq_hw_ctx *
2380 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2381 		int node)
2382 {
2383 	struct blk_mq_hw_ctx *hctx;
2384 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2385 
2386 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2387 	if (!hctx)
2388 		goto fail_alloc_hctx;
2389 
2390 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2391 		goto free_hctx;
2392 
2393 	atomic_set(&hctx->nr_active, 0);
2394 	if (node == NUMA_NO_NODE)
2395 		node = set->numa_node;
2396 	hctx->numa_node = node;
2397 
2398 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2399 	spin_lock_init(&hctx->lock);
2400 	INIT_LIST_HEAD(&hctx->dispatch);
2401 	hctx->queue = q;
2402 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2403 
2404 	INIT_LIST_HEAD(&hctx->hctx_list);
2405 
2406 	/*
2407 	 * Allocate space for all possible cpus to avoid allocation at
2408 	 * runtime
2409 	 */
2410 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2411 			gfp, node);
2412 	if (!hctx->ctxs)
2413 		goto free_cpumask;
2414 
2415 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2416 				gfp, node))
2417 		goto free_ctxs;
2418 	hctx->nr_ctx = 0;
2419 
2420 	spin_lock_init(&hctx->dispatch_wait_lock);
2421 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2422 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2423 
2424 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2425 	if (!hctx->fq)
2426 		goto free_bitmap;
2427 
2428 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2429 		init_srcu_struct(hctx->srcu);
2430 	blk_mq_hctx_kobj_init(hctx);
2431 
2432 	return hctx;
2433 
2434  free_bitmap:
2435 	sbitmap_free(&hctx->ctx_map);
2436  free_ctxs:
2437 	kfree(hctx->ctxs);
2438  free_cpumask:
2439 	free_cpumask_var(hctx->cpumask);
2440  free_hctx:
2441 	kfree(hctx);
2442  fail_alloc_hctx:
2443 	return NULL;
2444 }
2445 
2446 static void blk_mq_init_cpu_queues(struct request_queue *q,
2447 				   unsigned int nr_hw_queues)
2448 {
2449 	struct blk_mq_tag_set *set = q->tag_set;
2450 	unsigned int i, j;
2451 
2452 	for_each_possible_cpu(i) {
2453 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2454 		struct blk_mq_hw_ctx *hctx;
2455 		int k;
2456 
2457 		__ctx->cpu = i;
2458 		spin_lock_init(&__ctx->lock);
2459 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2460 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2461 
2462 		__ctx->queue = q;
2463 
2464 		/*
2465 		 * Set local node, IFF we have more than one hw queue. If
2466 		 * not, we remain on the home node of the device
2467 		 */
2468 		for (j = 0; j < set->nr_maps; j++) {
2469 			hctx = blk_mq_map_queue_type(q, j, i);
2470 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2471 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2472 		}
2473 	}
2474 }
2475 
2476 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2477 {
2478 	int ret = 0;
2479 
2480 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2481 					set->queue_depth, set->reserved_tags);
2482 	if (!set->tags[hctx_idx])
2483 		return false;
2484 
2485 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2486 				set->queue_depth);
2487 	if (!ret)
2488 		return true;
2489 
2490 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2491 	set->tags[hctx_idx] = NULL;
2492 	return false;
2493 }
2494 
2495 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2496 					 unsigned int hctx_idx)
2497 {
2498 	if (set->tags && set->tags[hctx_idx]) {
2499 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2500 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2501 		set->tags[hctx_idx] = NULL;
2502 	}
2503 }
2504 
2505 static void blk_mq_map_swqueue(struct request_queue *q)
2506 {
2507 	unsigned int i, j, hctx_idx;
2508 	struct blk_mq_hw_ctx *hctx;
2509 	struct blk_mq_ctx *ctx;
2510 	struct blk_mq_tag_set *set = q->tag_set;
2511 
2512 	queue_for_each_hw_ctx(q, hctx, i) {
2513 		cpumask_clear(hctx->cpumask);
2514 		hctx->nr_ctx = 0;
2515 		hctx->dispatch_from = NULL;
2516 	}
2517 
2518 	/*
2519 	 * Map software to hardware queues.
2520 	 *
2521 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2522 	 */
2523 	for_each_possible_cpu(i) {
2524 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2525 		/* unmapped hw queue can be remapped after CPU topo changed */
2526 		if (!set->tags[hctx_idx] &&
2527 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2528 			/*
2529 			 * If tags initialization fail for some hctx,
2530 			 * that hctx won't be brought online.  In this
2531 			 * case, remap the current ctx to hctx[0] which
2532 			 * is guaranteed to always have tags allocated
2533 			 */
2534 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2535 		}
2536 
2537 		ctx = per_cpu_ptr(q->queue_ctx, i);
2538 		for (j = 0; j < set->nr_maps; j++) {
2539 			if (!set->map[j].nr_queues) {
2540 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2541 						HCTX_TYPE_DEFAULT, i);
2542 				continue;
2543 			}
2544 
2545 			hctx = blk_mq_map_queue_type(q, j, i);
2546 			ctx->hctxs[j] = hctx;
2547 			/*
2548 			 * If the CPU is already set in the mask, then we've
2549 			 * mapped this one already. This can happen if
2550 			 * devices share queues across queue maps.
2551 			 */
2552 			if (cpumask_test_cpu(i, hctx->cpumask))
2553 				continue;
2554 
2555 			cpumask_set_cpu(i, hctx->cpumask);
2556 			hctx->type = j;
2557 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2558 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2559 
2560 			/*
2561 			 * If the nr_ctx type overflows, we have exceeded the
2562 			 * amount of sw queues we can support.
2563 			 */
2564 			BUG_ON(!hctx->nr_ctx);
2565 		}
2566 
2567 		for (; j < HCTX_MAX_TYPES; j++)
2568 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2569 					HCTX_TYPE_DEFAULT, i);
2570 	}
2571 
2572 	queue_for_each_hw_ctx(q, hctx, i) {
2573 		/*
2574 		 * If no software queues are mapped to this hardware queue,
2575 		 * disable it and free the request entries.
2576 		 */
2577 		if (!hctx->nr_ctx) {
2578 			/* Never unmap queue 0.  We need it as a
2579 			 * fallback in case of a new remap fails
2580 			 * allocation
2581 			 */
2582 			if (i && set->tags[i])
2583 				blk_mq_free_map_and_requests(set, i);
2584 
2585 			hctx->tags = NULL;
2586 			continue;
2587 		}
2588 
2589 		hctx->tags = set->tags[i];
2590 		WARN_ON(!hctx->tags);
2591 
2592 		/*
2593 		 * Set the map size to the number of mapped software queues.
2594 		 * This is more accurate and more efficient than looping
2595 		 * over all possibly mapped software queues.
2596 		 */
2597 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2598 
2599 		/*
2600 		 * Initialize batch roundrobin counts
2601 		 */
2602 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2603 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2604 	}
2605 }
2606 
2607 /*
2608  * Caller needs to ensure that we're either frozen/quiesced, or that
2609  * the queue isn't live yet.
2610  */
2611 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2612 {
2613 	struct blk_mq_hw_ctx *hctx;
2614 	int i;
2615 
2616 	queue_for_each_hw_ctx(q, hctx, i) {
2617 		if (shared)
2618 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2619 		else
2620 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2621 	}
2622 }
2623 
2624 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2625 					bool shared)
2626 {
2627 	struct request_queue *q;
2628 
2629 	lockdep_assert_held(&set->tag_list_lock);
2630 
2631 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2632 		blk_mq_freeze_queue(q);
2633 		queue_set_hctx_shared(q, shared);
2634 		blk_mq_unfreeze_queue(q);
2635 	}
2636 }
2637 
2638 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2639 {
2640 	struct blk_mq_tag_set *set = q->tag_set;
2641 
2642 	mutex_lock(&set->tag_list_lock);
2643 	list_del_rcu(&q->tag_set_list);
2644 	if (list_is_singular(&set->tag_list)) {
2645 		/* just transitioned to unshared */
2646 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2647 		/* update existing queue */
2648 		blk_mq_update_tag_set_depth(set, false);
2649 	}
2650 	mutex_unlock(&set->tag_list_lock);
2651 	INIT_LIST_HEAD(&q->tag_set_list);
2652 }
2653 
2654 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2655 				     struct request_queue *q)
2656 {
2657 	mutex_lock(&set->tag_list_lock);
2658 
2659 	/*
2660 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2661 	 */
2662 	if (!list_empty(&set->tag_list) &&
2663 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2664 		set->flags |= BLK_MQ_F_TAG_SHARED;
2665 		/* update existing queue */
2666 		blk_mq_update_tag_set_depth(set, true);
2667 	}
2668 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2669 		queue_set_hctx_shared(q, true);
2670 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2671 
2672 	mutex_unlock(&set->tag_list_lock);
2673 }
2674 
2675 /* All allocations will be freed in release handler of q->mq_kobj */
2676 static int blk_mq_alloc_ctxs(struct request_queue *q)
2677 {
2678 	struct blk_mq_ctxs *ctxs;
2679 	int cpu;
2680 
2681 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2682 	if (!ctxs)
2683 		return -ENOMEM;
2684 
2685 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2686 	if (!ctxs->queue_ctx)
2687 		goto fail;
2688 
2689 	for_each_possible_cpu(cpu) {
2690 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2691 		ctx->ctxs = ctxs;
2692 	}
2693 
2694 	q->mq_kobj = &ctxs->kobj;
2695 	q->queue_ctx = ctxs->queue_ctx;
2696 
2697 	return 0;
2698  fail:
2699 	kfree(ctxs);
2700 	return -ENOMEM;
2701 }
2702 
2703 /*
2704  * It is the actual release handler for mq, but we do it from
2705  * request queue's release handler for avoiding use-after-free
2706  * and headache because q->mq_kobj shouldn't have been introduced,
2707  * but we can't group ctx/kctx kobj without it.
2708  */
2709 void blk_mq_release(struct request_queue *q)
2710 {
2711 	struct blk_mq_hw_ctx *hctx, *next;
2712 	int i;
2713 
2714 	queue_for_each_hw_ctx(q, hctx, i)
2715 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2716 
2717 	/* all hctx are in .unused_hctx_list now */
2718 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2719 		list_del_init(&hctx->hctx_list);
2720 		kobject_put(&hctx->kobj);
2721 	}
2722 
2723 	kfree(q->queue_hw_ctx);
2724 
2725 	/*
2726 	 * release .mq_kobj and sw queue's kobject now because
2727 	 * both share lifetime with request queue.
2728 	 */
2729 	blk_mq_sysfs_deinit(q);
2730 }
2731 
2732 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2733 		void *queuedata)
2734 {
2735 	struct request_queue *uninit_q, *q;
2736 
2737 	uninit_q = __blk_alloc_queue(set->numa_node);
2738 	if (!uninit_q)
2739 		return ERR_PTR(-ENOMEM);
2740 	uninit_q->queuedata = queuedata;
2741 
2742 	/*
2743 	 * Initialize the queue without an elevator. device_add_disk() will do
2744 	 * the initialization.
2745 	 */
2746 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2747 	if (IS_ERR(q))
2748 		blk_cleanup_queue(uninit_q);
2749 
2750 	return q;
2751 }
2752 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2753 
2754 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2755 {
2756 	return blk_mq_init_queue_data(set, NULL);
2757 }
2758 EXPORT_SYMBOL(blk_mq_init_queue);
2759 
2760 /*
2761  * Helper for setting up a queue with mq ops, given queue depth, and
2762  * the passed in mq ops flags.
2763  */
2764 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2765 					   const struct blk_mq_ops *ops,
2766 					   unsigned int queue_depth,
2767 					   unsigned int set_flags)
2768 {
2769 	struct request_queue *q;
2770 	int ret;
2771 
2772 	memset(set, 0, sizeof(*set));
2773 	set->ops = ops;
2774 	set->nr_hw_queues = 1;
2775 	set->nr_maps = 1;
2776 	set->queue_depth = queue_depth;
2777 	set->numa_node = NUMA_NO_NODE;
2778 	set->flags = set_flags;
2779 
2780 	ret = blk_mq_alloc_tag_set(set);
2781 	if (ret)
2782 		return ERR_PTR(ret);
2783 
2784 	q = blk_mq_init_queue(set);
2785 	if (IS_ERR(q)) {
2786 		blk_mq_free_tag_set(set);
2787 		return q;
2788 	}
2789 
2790 	return q;
2791 }
2792 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2793 
2794 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2795 		struct blk_mq_tag_set *set, struct request_queue *q,
2796 		int hctx_idx, int node)
2797 {
2798 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2799 
2800 	/* reuse dead hctx first */
2801 	spin_lock(&q->unused_hctx_lock);
2802 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2803 		if (tmp->numa_node == node) {
2804 			hctx = tmp;
2805 			break;
2806 		}
2807 	}
2808 	if (hctx)
2809 		list_del_init(&hctx->hctx_list);
2810 	spin_unlock(&q->unused_hctx_lock);
2811 
2812 	if (!hctx)
2813 		hctx = blk_mq_alloc_hctx(q, set, node);
2814 	if (!hctx)
2815 		goto fail;
2816 
2817 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2818 		goto free_hctx;
2819 
2820 	return hctx;
2821 
2822  free_hctx:
2823 	kobject_put(&hctx->kobj);
2824  fail:
2825 	return NULL;
2826 }
2827 
2828 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2829 						struct request_queue *q)
2830 {
2831 	int i, j, end;
2832 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2833 
2834 	if (q->nr_hw_queues < set->nr_hw_queues) {
2835 		struct blk_mq_hw_ctx **new_hctxs;
2836 
2837 		new_hctxs = kcalloc_node(set->nr_hw_queues,
2838 				       sizeof(*new_hctxs), GFP_KERNEL,
2839 				       set->numa_node);
2840 		if (!new_hctxs)
2841 			return;
2842 		if (hctxs)
2843 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2844 			       sizeof(*hctxs));
2845 		q->queue_hw_ctx = new_hctxs;
2846 		kfree(hctxs);
2847 		hctxs = new_hctxs;
2848 	}
2849 
2850 	/* protect against switching io scheduler  */
2851 	mutex_lock(&q->sysfs_lock);
2852 	for (i = 0; i < set->nr_hw_queues; i++) {
2853 		int node;
2854 		struct blk_mq_hw_ctx *hctx;
2855 
2856 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2857 		/*
2858 		 * If the hw queue has been mapped to another numa node,
2859 		 * we need to realloc the hctx. If allocation fails, fallback
2860 		 * to use the previous one.
2861 		 */
2862 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2863 			continue;
2864 
2865 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2866 		if (hctx) {
2867 			if (hctxs[i])
2868 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2869 			hctxs[i] = hctx;
2870 		} else {
2871 			if (hctxs[i])
2872 				pr_warn("Allocate new hctx on node %d fails,\
2873 						fallback to previous one on node %d\n",
2874 						node, hctxs[i]->numa_node);
2875 			else
2876 				break;
2877 		}
2878 	}
2879 	/*
2880 	 * Increasing nr_hw_queues fails. Free the newly allocated
2881 	 * hctxs and keep the previous q->nr_hw_queues.
2882 	 */
2883 	if (i != set->nr_hw_queues) {
2884 		j = q->nr_hw_queues;
2885 		end = i;
2886 	} else {
2887 		j = i;
2888 		end = q->nr_hw_queues;
2889 		q->nr_hw_queues = set->nr_hw_queues;
2890 	}
2891 
2892 	for (; j < end; j++) {
2893 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2894 
2895 		if (hctx) {
2896 			if (hctx->tags)
2897 				blk_mq_free_map_and_requests(set, j);
2898 			blk_mq_exit_hctx(q, set, hctx, j);
2899 			hctxs[j] = NULL;
2900 		}
2901 	}
2902 	mutex_unlock(&q->sysfs_lock);
2903 }
2904 
2905 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2906 						  struct request_queue *q,
2907 						  bool elevator_init)
2908 {
2909 	/* mark the queue as mq asap */
2910 	q->mq_ops = set->ops;
2911 
2912 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2913 					     blk_mq_poll_stats_bkt,
2914 					     BLK_MQ_POLL_STATS_BKTS, q);
2915 	if (!q->poll_cb)
2916 		goto err_exit;
2917 
2918 	if (blk_mq_alloc_ctxs(q))
2919 		goto err_poll;
2920 
2921 	/* init q->mq_kobj and sw queues' kobjects */
2922 	blk_mq_sysfs_init(q);
2923 
2924 	INIT_LIST_HEAD(&q->unused_hctx_list);
2925 	spin_lock_init(&q->unused_hctx_lock);
2926 
2927 	blk_mq_realloc_hw_ctxs(set, q);
2928 	if (!q->nr_hw_queues)
2929 		goto err_hctxs;
2930 
2931 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2932 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2933 
2934 	q->tag_set = set;
2935 
2936 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2937 	if (set->nr_maps > HCTX_TYPE_POLL &&
2938 	    set->map[HCTX_TYPE_POLL].nr_queues)
2939 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2940 
2941 	q->sg_reserved_size = INT_MAX;
2942 
2943 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2944 	INIT_LIST_HEAD(&q->requeue_list);
2945 	spin_lock_init(&q->requeue_lock);
2946 
2947 	q->make_request_fn = blk_mq_make_request;
2948 	q->nr_requests = set->queue_depth;
2949 
2950 	/*
2951 	 * Default to classic polling
2952 	 */
2953 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2954 
2955 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2956 	blk_mq_add_queue_tag_set(set, q);
2957 	blk_mq_map_swqueue(q);
2958 
2959 	if (elevator_init)
2960 		elevator_init_mq(q);
2961 
2962 	return q;
2963 
2964 err_hctxs:
2965 	kfree(q->queue_hw_ctx);
2966 	q->nr_hw_queues = 0;
2967 	blk_mq_sysfs_deinit(q);
2968 err_poll:
2969 	blk_stat_free_callback(q->poll_cb);
2970 	q->poll_cb = NULL;
2971 err_exit:
2972 	q->mq_ops = NULL;
2973 	return ERR_PTR(-ENOMEM);
2974 }
2975 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2976 
2977 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2978 void blk_mq_exit_queue(struct request_queue *q)
2979 {
2980 	struct blk_mq_tag_set	*set = q->tag_set;
2981 
2982 	blk_mq_del_queue_tag_set(q);
2983 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2984 }
2985 
2986 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2987 {
2988 	int i;
2989 
2990 	for (i = 0; i < set->nr_hw_queues; i++)
2991 		if (!__blk_mq_alloc_rq_map(set, i))
2992 			goto out_unwind;
2993 
2994 	return 0;
2995 
2996 out_unwind:
2997 	while (--i >= 0)
2998 		blk_mq_free_rq_map(set->tags[i]);
2999 
3000 	return -ENOMEM;
3001 }
3002 
3003 /*
3004  * Allocate the request maps associated with this tag_set. Note that this
3005  * may reduce the depth asked for, if memory is tight. set->queue_depth
3006  * will be updated to reflect the allocated depth.
3007  */
3008 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3009 {
3010 	unsigned int depth;
3011 	int err;
3012 
3013 	depth = set->queue_depth;
3014 	do {
3015 		err = __blk_mq_alloc_rq_maps(set);
3016 		if (!err)
3017 			break;
3018 
3019 		set->queue_depth >>= 1;
3020 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3021 			err = -ENOMEM;
3022 			break;
3023 		}
3024 	} while (set->queue_depth);
3025 
3026 	if (!set->queue_depth || err) {
3027 		pr_err("blk-mq: failed to allocate request map\n");
3028 		return -ENOMEM;
3029 	}
3030 
3031 	if (depth != set->queue_depth)
3032 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3033 						depth, set->queue_depth);
3034 
3035 	return 0;
3036 }
3037 
3038 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3039 {
3040 	/*
3041 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3042 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3043 	 * number of hardware queues.
3044 	 */
3045 	if (set->nr_maps == 1)
3046 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3047 
3048 	if (set->ops->map_queues && !is_kdump_kernel()) {
3049 		int i;
3050 
3051 		/*
3052 		 * transport .map_queues is usually done in the following
3053 		 * way:
3054 		 *
3055 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3056 		 * 	mask = get_cpu_mask(queue)
3057 		 * 	for_each_cpu(cpu, mask)
3058 		 * 		set->map[x].mq_map[cpu] = queue;
3059 		 * }
3060 		 *
3061 		 * When we need to remap, the table has to be cleared for
3062 		 * killing stale mapping since one CPU may not be mapped
3063 		 * to any hw queue.
3064 		 */
3065 		for (i = 0; i < set->nr_maps; i++)
3066 			blk_mq_clear_mq_map(&set->map[i]);
3067 
3068 		return set->ops->map_queues(set);
3069 	} else {
3070 		BUG_ON(set->nr_maps > 1);
3071 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3072 	}
3073 }
3074 
3075 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3076 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3077 {
3078 	struct blk_mq_tags **new_tags;
3079 
3080 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3081 		return 0;
3082 
3083 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3084 				GFP_KERNEL, set->numa_node);
3085 	if (!new_tags)
3086 		return -ENOMEM;
3087 
3088 	if (set->tags)
3089 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3090 		       sizeof(*set->tags));
3091 	kfree(set->tags);
3092 	set->tags = new_tags;
3093 	set->nr_hw_queues = new_nr_hw_queues;
3094 
3095 	return 0;
3096 }
3097 
3098 /*
3099  * Alloc a tag set to be associated with one or more request queues.
3100  * May fail with EINVAL for various error conditions. May adjust the
3101  * requested depth down, if it's too large. In that case, the set
3102  * value will be stored in set->queue_depth.
3103  */
3104 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3105 {
3106 	int i, ret;
3107 
3108 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3109 
3110 	if (!set->nr_hw_queues)
3111 		return -EINVAL;
3112 	if (!set->queue_depth)
3113 		return -EINVAL;
3114 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3115 		return -EINVAL;
3116 
3117 	if (!set->ops->queue_rq)
3118 		return -EINVAL;
3119 
3120 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3121 		return -EINVAL;
3122 
3123 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3124 		pr_info("blk-mq: reduced tag depth to %u\n",
3125 			BLK_MQ_MAX_DEPTH);
3126 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3127 	}
3128 
3129 	if (!set->nr_maps)
3130 		set->nr_maps = 1;
3131 	else if (set->nr_maps > HCTX_MAX_TYPES)
3132 		return -EINVAL;
3133 
3134 	/*
3135 	 * If a crashdump is active, then we are potentially in a very
3136 	 * memory constrained environment. Limit us to 1 queue and
3137 	 * 64 tags to prevent using too much memory.
3138 	 */
3139 	if (is_kdump_kernel()) {
3140 		set->nr_hw_queues = 1;
3141 		set->nr_maps = 1;
3142 		set->queue_depth = min(64U, set->queue_depth);
3143 	}
3144 	/*
3145 	 * There is no use for more h/w queues than cpus if we just have
3146 	 * a single map
3147 	 */
3148 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3149 		set->nr_hw_queues = nr_cpu_ids;
3150 
3151 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3152 		return -ENOMEM;
3153 
3154 	ret = -ENOMEM;
3155 	for (i = 0; i < set->nr_maps; i++) {
3156 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3157 						  sizeof(set->map[i].mq_map[0]),
3158 						  GFP_KERNEL, set->numa_node);
3159 		if (!set->map[i].mq_map)
3160 			goto out_free_mq_map;
3161 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3162 	}
3163 
3164 	ret = blk_mq_update_queue_map(set);
3165 	if (ret)
3166 		goto out_free_mq_map;
3167 
3168 	ret = blk_mq_alloc_rq_maps(set);
3169 	if (ret)
3170 		goto out_free_mq_map;
3171 
3172 	mutex_init(&set->tag_list_lock);
3173 	INIT_LIST_HEAD(&set->tag_list);
3174 
3175 	return 0;
3176 
3177 out_free_mq_map:
3178 	for (i = 0; i < set->nr_maps; i++) {
3179 		kfree(set->map[i].mq_map);
3180 		set->map[i].mq_map = NULL;
3181 	}
3182 	kfree(set->tags);
3183 	set->tags = NULL;
3184 	return ret;
3185 }
3186 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3187 
3188 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3189 {
3190 	int i, j;
3191 
3192 	for (i = 0; i < set->nr_hw_queues; i++)
3193 		blk_mq_free_map_and_requests(set, i);
3194 
3195 	for (j = 0; j < set->nr_maps; j++) {
3196 		kfree(set->map[j].mq_map);
3197 		set->map[j].mq_map = NULL;
3198 	}
3199 
3200 	kfree(set->tags);
3201 	set->tags = NULL;
3202 }
3203 EXPORT_SYMBOL(blk_mq_free_tag_set);
3204 
3205 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3206 {
3207 	struct blk_mq_tag_set *set = q->tag_set;
3208 	struct blk_mq_hw_ctx *hctx;
3209 	int i, ret;
3210 
3211 	if (!set)
3212 		return -EINVAL;
3213 
3214 	if (q->nr_requests == nr)
3215 		return 0;
3216 
3217 	blk_mq_freeze_queue(q);
3218 	blk_mq_quiesce_queue(q);
3219 
3220 	ret = 0;
3221 	queue_for_each_hw_ctx(q, hctx, i) {
3222 		if (!hctx->tags)
3223 			continue;
3224 		/*
3225 		 * If we're using an MQ scheduler, just update the scheduler
3226 		 * queue depth. This is similar to what the old code would do.
3227 		 */
3228 		if (!hctx->sched_tags) {
3229 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3230 							false);
3231 		} else {
3232 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3233 							nr, true);
3234 		}
3235 		if (ret)
3236 			break;
3237 		if (q->elevator && q->elevator->type->ops.depth_updated)
3238 			q->elevator->type->ops.depth_updated(hctx);
3239 	}
3240 
3241 	if (!ret)
3242 		q->nr_requests = nr;
3243 
3244 	blk_mq_unquiesce_queue(q);
3245 	blk_mq_unfreeze_queue(q);
3246 
3247 	return ret;
3248 }
3249 
3250 /*
3251  * request_queue and elevator_type pair.
3252  * It is just used by __blk_mq_update_nr_hw_queues to cache
3253  * the elevator_type associated with a request_queue.
3254  */
3255 struct blk_mq_qe_pair {
3256 	struct list_head node;
3257 	struct request_queue *q;
3258 	struct elevator_type *type;
3259 };
3260 
3261 /*
3262  * Cache the elevator_type in qe pair list and switch the
3263  * io scheduler to 'none'
3264  */
3265 static bool blk_mq_elv_switch_none(struct list_head *head,
3266 		struct request_queue *q)
3267 {
3268 	struct blk_mq_qe_pair *qe;
3269 
3270 	if (!q->elevator)
3271 		return true;
3272 
3273 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3274 	if (!qe)
3275 		return false;
3276 
3277 	INIT_LIST_HEAD(&qe->node);
3278 	qe->q = q;
3279 	qe->type = q->elevator->type;
3280 	list_add(&qe->node, head);
3281 
3282 	mutex_lock(&q->sysfs_lock);
3283 	/*
3284 	 * After elevator_switch_mq, the previous elevator_queue will be
3285 	 * released by elevator_release. The reference of the io scheduler
3286 	 * module get by elevator_get will also be put. So we need to get
3287 	 * a reference of the io scheduler module here to prevent it to be
3288 	 * removed.
3289 	 */
3290 	__module_get(qe->type->elevator_owner);
3291 	elevator_switch_mq(q, NULL);
3292 	mutex_unlock(&q->sysfs_lock);
3293 
3294 	return true;
3295 }
3296 
3297 static void blk_mq_elv_switch_back(struct list_head *head,
3298 		struct request_queue *q)
3299 {
3300 	struct blk_mq_qe_pair *qe;
3301 	struct elevator_type *t = NULL;
3302 
3303 	list_for_each_entry(qe, head, node)
3304 		if (qe->q == q) {
3305 			t = qe->type;
3306 			break;
3307 		}
3308 
3309 	if (!t)
3310 		return;
3311 
3312 	list_del(&qe->node);
3313 	kfree(qe);
3314 
3315 	mutex_lock(&q->sysfs_lock);
3316 	elevator_switch_mq(q, t);
3317 	mutex_unlock(&q->sysfs_lock);
3318 }
3319 
3320 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3321 							int nr_hw_queues)
3322 {
3323 	struct request_queue *q;
3324 	LIST_HEAD(head);
3325 	int prev_nr_hw_queues;
3326 
3327 	lockdep_assert_held(&set->tag_list_lock);
3328 
3329 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3330 		nr_hw_queues = nr_cpu_ids;
3331 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3332 		return;
3333 
3334 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3335 		blk_mq_freeze_queue(q);
3336 	/*
3337 	 * Switch IO scheduler to 'none', cleaning up the data associated
3338 	 * with the previous scheduler. We will switch back once we are done
3339 	 * updating the new sw to hw queue mappings.
3340 	 */
3341 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3342 		if (!blk_mq_elv_switch_none(&head, q))
3343 			goto switch_back;
3344 
3345 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3346 		blk_mq_debugfs_unregister_hctxs(q);
3347 		blk_mq_sysfs_unregister(q);
3348 	}
3349 
3350 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3351 	    0)
3352 		goto reregister;
3353 
3354 	prev_nr_hw_queues = set->nr_hw_queues;
3355 	set->nr_hw_queues = nr_hw_queues;
3356 	blk_mq_update_queue_map(set);
3357 fallback:
3358 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3359 		blk_mq_realloc_hw_ctxs(set, q);
3360 		if (q->nr_hw_queues != set->nr_hw_queues) {
3361 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3362 					nr_hw_queues, prev_nr_hw_queues);
3363 			set->nr_hw_queues = prev_nr_hw_queues;
3364 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3365 			goto fallback;
3366 		}
3367 		blk_mq_map_swqueue(q);
3368 	}
3369 
3370 reregister:
3371 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3372 		blk_mq_sysfs_register(q);
3373 		blk_mq_debugfs_register_hctxs(q);
3374 	}
3375 
3376 switch_back:
3377 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3378 		blk_mq_elv_switch_back(&head, q);
3379 
3380 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3381 		blk_mq_unfreeze_queue(q);
3382 }
3383 
3384 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3385 {
3386 	mutex_lock(&set->tag_list_lock);
3387 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3388 	mutex_unlock(&set->tag_list_lock);
3389 }
3390 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3391 
3392 /* Enable polling stats and return whether they were already enabled. */
3393 static bool blk_poll_stats_enable(struct request_queue *q)
3394 {
3395 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3396 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3397 		return true;
3398 	blk_stat_add_callback(q, q->poll_cb);
3399 	return false;
3400 }
3401 
3402 static void blk_mq_poll_stats_start(struct request_queue *q)
3403 {
3404 	/*
3405 	 * We don't arm the callback if polling stats are not enabled or the
3406 	 * callback is already active.
3407 	 */
3408 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3409 	    blk_stat_is_active(q->poll_cb))
3410 		return;
3411 
3412 	blk_stat_activate_msecs(q->poll_cb, 100);
3413 }
3414 
3415 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3416 {
3417 	struct request_queue *q = cb->data;
3418 	int bucket;
3419 
3420 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3421 		if (cb->stat[bucket].nr_samples)
3422 			q->poll_stat[bucket] = cb->stat[bucket];
3423 	}
3424 }
3425 
3426 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3427 				       struct request *rq)
3428 {
3429 	unsigned long ret = 0;
3430 	int bucket;
3431 
3432 	/*
3433 	 * If stats collection isn't on, don't sleep but turn it on for
3434 	 * future users
3435 	 */
3436 	if (!blk_poll_stats_enable(q))
3437 		return 0;
3438 
3439 	/*
3440 	 * As an optimistic guess, use half of the mean service time
3441 	 * for this type of request. We can (and should) make this smarter.
3442 	 * For instance, if the completion latencies are tight, we can
3443 	 * get closer than just half the mean. This is especially
3444 	 * important on devices where the completion latencies are longer
3445 	 * than ~10 usec. We do use the stats for the relevant IO size
3446 	 * if available which does lead to better estimates.
3447 	 */
3448 	bucket = blk_mq_poll_stats_bkt(rq);
3449 	if (bucket < 0)
3450 		return ret;
3451 
3452 	if (q->poll_stat[bucket].nr_samples)
3453 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3454 
3455 	return ret;
3456 }
3457 
3458 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3459 				     struct request *rq)
3460 {
3461 	struct hrtimer_sleeper hs;
3462 	enum hrtimer_mode mode;
3463 	unsigned int nsecs;
3464 	ktime_t kt;
3465 
3466 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3467 		return false;
3468 
3469 	/*
3470 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3471 	 *
3472 	 *  0:	use half of prev avg
3473 	 * >0:	use this specific value
3474 	 */
3475 	if (q->poll_nsec > 0)
3476 		nsecs = q->poll_nsec;
3477 	else
3478 		nsecs = blk_mq_poll_nsecs(q, rq);
3479 
3480 	if (!nsecs)
3481 		return false;
3482 
3483 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3484 
3485 	/*
3486 	 * This will be replaced with the stats tracking code, using
3487 	 * 'avg_completion_time / 2' as the pre-sleep target.
3488 	 */
3489 	kt = nsecs;
3490 
3491 	mode = HRTIMER_MODE_REL;
3492 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3493 	hrtimer_set_expires(&hs.timer, kt);
3494 
3495 	do {
3496 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3497 			break;
3498 		set_current_state(TASK_UNINTERRUPTIBLE);
3499 		hrtimer_sleeper_start_expires(&hs, mode);
3500 		if (hs.task)
3501 			io_schedule();
3502 		hrtimer_cancel(&hs.timer);
3503 		mode = HRTIMER_MODE_ABS;
3504 	} while (hs.task && !signal_pending(current));
3505 
3506 	__set_current_state(TASK_RUNNING);
3507 	destroy_hrtimer_on_stack(&hs.timer);
3508 	return true;
3509 }
3510 
3511 static bool blk_mq_poll_hybrid(struct request_queue *q,
3512 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3513 {
3514 	struct request *rq;
3515 
3516 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3517 		return false;
3518 
3519 	if (!blk_qc_t_is_internal(cookie))
3520 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3521 	else {
3522 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3523 		/*
3524 		 * With scheduling, if the request has completed, we'll
3525 		 * get a NULL return here, as we clear the sched tag when
3526 		 * that happens. The request still remains valid, like always,
3527 		 * so we should be safe with just the NULL check.
3528 		 */
3529 		if (!rq)
3530 			return false;
3531 	}
3532 
3533 	return blk_mq_poll_hybrid_sleep(q, rq);
3534 }
3535 
3536 /**
3537  * blk_poll - poll for IO completions
3538  * @q:  the queue
3539  * @cookie: cookie passed back at IO submission time
3540  * @spin: whether to spin for completions
3541  *
3542  * Description:
3543  *    Poll for completions on the passed in queue. Returns number of
3544  *    completed entries found. If @spin is true, then blk_poll will continue
3545  *    looping until at least one completion is found, unless the task is
3546  *    otherwise marked running (or we need to reschedule).
3547  */
3548 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3549 {
3550 	struct blk_mq_hw_ctx *hctx;
3551 	long state;
3552 
3553 	if (!blk_qc_t_valid(cookie) ||
3554 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3555 		return 0;
3556 
3557 	if (current->plug)
3558 		blk_flush_plug_list(current->plug, false);
3559 
3560 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3561 
3562 	/*
3563 	 * If we sleep, have the caller restart the poll loop to reset
3564 	 * the state. Like for the other success return cases, the
3565 	 * caller is responsible for checking if the IO completed. If
3566 	 * the IO isn't complete, we'll get called again and will go
3567 	 * straight to the busy poll loop.
3568 	 */
3569 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3570 		return 1;
3571 
3572 	hctx->poll_considered++;
3573 
3574 	state = current->state;
3575 	do {
3576 		int ret;
3577 
3578 		hctx->poll_invoked++;
3579 
3580 		ret = q->mq_ops->poll(hctx);
3581 		if (ret > 0) {
3582 			hctx->poll_success++;
3583 			__set_current_state(TASK_RUNNING);
3584 			return ret;
3585 		}
3586 
3587 		if (signal_pending_state(state, current))
3588 			__set_current_state(TASK_RUNNING);
3589 
3590 		if (current->state == TASK_RUNNING)
3591 			return 1;
3592 		if (ret < 0 || !spin)
3593 			break;
3594 		cpu_relax();
3595 	} while (!need_resched());
3596 
3597 	__set_current_state(TASK_RUNNING);
3598 	return 0;
3599 }
3600 EXPORT_SYMBOL_GPL(blk_poll);
3601 
3602 unsigned int blk_mq_rq_cpu(struct request *rq)
3603 {
3604 	return rq->mq_ctx->cpu;
3605 }
3606 EXPORT_SYMBOL(blk_mq_rq_cpu);
3607 
3608 static int __init blk_mq_init(void)
3609 {
3610 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3611 				blk_mq_hctx_notify_dead);
3612 	return 0;
3613 }
3614 subsys_initcall(blk_mq_init);
3615