xref: /openbmc/linux/block/blk-mq.c (revision dd5b2498)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40 
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx, dispatch list or elevator
63  * have pending work in this hardware queue.
64  */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 	return !list_empty_careful(&hctx->dispatch) ||
68 		sbitmap_any_bit_set(&hctx->ctx_map) ||
69 			blk_mq_sched_has_work(hctx);
70 }
71 
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 				     struct blk_mq_ctx *ctx)
77 {
78 	const int bit = ctx->index_hw[hctx->type];
79 
80 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81 		sbitmap_set_bit(&hctx->ctx_map, bit);
82 }
83 
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 				      struct blk_mq_ctx *ctx)
86 {
87 	const int bit = ctx->index_hw[hctx->type];
88 
89 	sbitmap_clear_bit(&hctx->ctx_map, bit);
90 }
91 
92 struct mq_inflight {
93 	struct hd_struct *part;
94 	unsigned int *inflight;
95 };
96 
97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98 				  struct request *rq, void *priv,
99 				  bool reserved)
100 {
101 	struct mq_inflight *mi = priv;
102 
103 	/*
104 	 * index[0] counts the specific partition that was asked for.
105 	 */
106 	if (rq->part == mi->part)
107 		mi->inflight[0]++;
108 
109 	return true;
110 }
111 
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114 	unsigned inflight[2];
115 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
116 
117 	inflight[0] = inflight[1] = 0;
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 
120 	return inflight[0];
121 }
122 
123 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
124 				     struct request *rq, void *priv,
125 				     bool reserved)
126 {
127 	struct mq_inflight *mi = priv;
128 
129 	if (rq->part == mi->part)
130 		mi->inflight[rq_data_dir(rq)]++;
131 
132 	return true;
133 }
134 
135 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
136 			 unsigned int inflight[2])
137 {
138 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
139 
140 	inflight[0] = inflight[1] = 0;
141 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
142 }
143 
144 void blk_freeze_queue_start(struct request_queue *q)
145 {
146 	int freeze_depth;
147 
148 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
149 	if (freeze_depth == 1) {
150 		percpu_ref_kill(&q->q_usage_counter);
151 		if (queue_is_mq(q))
152 			blk_mq_run_hw_queues(q, false);
153 	}
154 }
155 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
156 
157 void blk_mq_freeze_queue_wait(struct request_queue *q)
158 {
159 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
162 
163 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
164 				     unsigned long timeout)
165 {
166 	return wait_event_timeout(q->mq_freeze_wq,
167 					percpu_ref_is_zero(&q->q_usage_counter),
168 					timeout);
169 }
170 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
171 
172 /*
173  * Guarantee no request is in use, so we can change any data structure of
174  * the queue afterward.
175  */
176 void blk_freeze_queue(struct request_queue *q)
177 {
178 	/*
179 	 * In the !blk_mq case we are only calling this to kill the
180 	 * q_usage_counter, otherwise this increases the freeze depth
181 	 * and waits for it to return to zero.  For this reason there is
182 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
183 	 * exported to drivers as the only user for unfreeze is blk_mq.
184 	 */
185 	blk_freeze_queue_start(q);
186 	blk_mq_freeze_queue_wait(q);
187 }
188 
189 void blk_mq_freeze_queue(struct request_queue *q)
190 {
191 	/*
192 	 * ...just an alias to keep freeze and unfreeze actions balanced
193 	 * in the blk_mq_* namespace
194 	 */
195 	blk_freeze_queue(q);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
198 
199 void blk_mq_unfreeze_queue(struct request_queue *q)
200 {
201 	int freeze_depth;
202 
203 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
204 	WARN_ON_ONCE(freeze_depth < 0);
205 	if (!freeze_depth) {
206 		percpu_ref_resurrect(&q->q_usage_counter);
207 		wake_up_all(&q->mq_freeze_wq);
208 	}
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
211 
212 /*
213  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
214  * mpt3sas driver such that this function can be removed.
215  */
216 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
217 {
218 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219 }
220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
221 
222 /**
223  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
224  * @q: request queue.
225  *
226  * Note: this function does not prevent that the struct request end_io()
227  * callback function is invoked. Once this function is returned, we make
228  * sure no dispatch can happen until the queue is unquiesced via
229  * blk_mq_unquiesce_queue().
230  */
231 void blk_mq_quiesce_queue(struct request_queue *q)
232 {
233 	struct blk_mq_hw_ctx *hctx;
234 	unsigned int i;
235 	bool rcu = false;
236 
237 	blk_mq_quiesce_queue_nowait(q);
238 
239 	queue_for_each_hw_ctx(q, hctx, i) {
240 		if (hctx->flags & BLK_MQ_F_BLOCKING)
241 			synchronize_srcu(hctx->srcu);
242 		else
243 			rcu = true;
244 	}
245 	if (rcu)
246 		synchronize_rcu();
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
260 
261 	/* dispatch requests which are inserted during quiescing */
262 	blk_mq_run_hw_queues(q, true);
263 }
264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
265 
266 void blk_mq_wake_waiters(struct request_queue *q)
267 {
268 	struct blk_mq_hw_ctx *hctx;
269 	unsigned int i;
270 
271 	queue_for_each_hw_ctx(q, hctx, i)
272 		if (blk_mq_hw_queue_mapped(hctx))
273 			blk_mq_tag_wakeup_all(hctx->tags, true);
274 }
275 
276 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
277 {
278 	return blk_mq_has_free_tags(hctx->tags);
279 }
280 EXPORT_SYMBOL(blk_mq_can_queue);
281 
282 /*
283  * Only need start/end time stamping if we have stats enabled, or using
284  * an IO scheduler.
285  */
286 static inline bool blk_mq_need_time_stamp(struct request *rq)
287 {
288 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
289 }
290 
291 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
292 		unsigned int tag, unsigned int op)
293 {
294 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
295 	struct request *rq = tags->static_rqs[tag];
296 	req_flags_t rq_flags = 0;
297 
298 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
299 		rq->tag = -1;
300 		rq->internal_tag = tag;
301 	} else {
302 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
303 			rq_flags = RQF_MQ_INFLIGHT;
304 			atomic_inc(&data->hctx->nr_active);
305 		}
306 		rq->tag = tag;
307 		rq->internal_tag = -1;
308 		data->hctx->tags->rqs[rq->tag] = rq;
309 	}
310 
311 	/* csd/requeue_work/fifo_time is initialized before use */
312 	rq->q = data->q;
313 	rq->mq_ctx = data->ctx;
314 	rq->mq_hctx = data->hctx;
315 	rq->rq_flags = rq_flags;
316 	rq->cmd_flags = op;
317 	if (data->flags & BLK_MQ_REQ_PREEMPT)
318 		rq->rq_flags |= RQF_PREEMPT;
319 	if (blk_queue_io_stat(data->q))
320 		rq->rq_flags |= RQF_IO_STAT;
321 	INIT_LIST_HEAD(&rq->queuelist);
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->rq_disk = NULL;
325 	rq->part = NULL;
326 	if (blk_mq_need_time_stamp(rq))
327 		rq->start_time_ns = ktime_get_ns();
328 	else
329 		rq->start_time_ns = 0;
330 	rq->io_start_time_ns = 0;
331 	rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 	rq->nr_integrity_segments = 0;
334 #endif
335 	/* tag was already set */
336 	rq->extra_len = 0;
337 	WRITE_ONCE(rq->deadline, 0);
338 
339 	rq->timeout = 0;
340 
341 	rq->end_io = NULL;
342 	rq->end_io_data = NULL;
343 
344 	data->ctx->rq_dispatched[op_is_sync(op)]++;
345 	refcount_set(&rq->ref, 1);
346 	return rq;
347 }
348 
349 static struct request *blk_mq_get_request(struct request_queue *q,
350 					  struct bio *bio,
351 					  struct blk_mq_alloc_data *data)
352 {
353 	struct elevator_queue *e = q->elevator;
354 	struct request *rq;
355 	unsigned int tag;
356 	bool put_ctx_on_error = false;
357 
358 	blk_queue_enter_live(q);
359 	data->q = q;
360 	if (likely(!data->ctx)) {
361 		data->ctx = blk_mq_get_ctx(q);
362 		put_ctx_on_error = true;
363 	}
364 	if (likely(!data->hctx))
365 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
366 						data->ctx);
367 	if (data->cmd_flags & REQ_NOWAIT)
368 		data->flags |= BLK_MQ_REQ_NOWAIT;
369 
370 	if (e) {
371 		data->flags |= BLK_MQ_REQ_INTERNAL;
372 
373 		/*
374 		 * Flush requests are special and go directly to the
375 		 * dispatch list. Don't include reserved tags in the
376 		 * limiting, as it isn't useful.
377 		 */
378 		if (!op_is_flush(data->cmd_flags) &&
379 		    e->type->ops.limit_depth &&
380 		    !(data->flags & BLK_MQ_REQ_RESERVED))
381 			e->type->ops.limit_depth(data->cmd_flags, data);
382 	} else {
383 		blk_mq_tag_busy(data->hctx);
384 	}
385 
386 	tag = blk_mq_get_tag(data);
387 	if (tag == BLK_MQ_TAG_FAIL) {
388 		if (put_ctx_on_error) {
389 			blk_mq_put_ctx(data->ctx);
390 			data->ctx = NULL;
391 		}
392 		blk_queue_exit(q);
393 		return NULL;
394 	}
395 
396 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 	if (!op_is_flush(data->cmd_flags)) {
398 		rq->elv.icq = NULL;
399 		if (e && e->type->ops.prepare_request) {
400 			if (e->type->icq_cache)
401 				blk_mq_sched_assign_ioc(rq);
402 
403 			e->type->ops.prepare_request(rq, bio);
404 			rq->rq_flags |= RQF_ELVPRIV;
405 		}
406 	}
407 	data->hctx->queued++;
408 	return rq;
409 }
410 
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 		blk_mq_req_flags_t flags)
413 {
414 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415 	struct request *rq;
416 	int ret;
417 
418 	ret = blk_queue_enter(q, flags);
419 	if (ret)
420 		return ERR_PTR(ret);
421 
422 	rq = blk_mq_get_request(q, NULL, &alloc_data);
423 	blk_queue_exit(q);
424 
425 	if (!rq)
426 		return ERR_PTR(-EWOULDBLOCK);
427 
428 	blk_mq_put_ctx(alloc_data.ctx);
429 
430 	rq->__data_len = 0;
431 	rq->__sector = (sector_t) -1;
432 	rq->bio = rq->biotail = NULL;
433 	return rq;
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436 
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
441 	struct request *rq;
442 	unsigned int cpu;
443 	int ret;
444 
445 	/*
446 	 * If the tag allocator sleeps we could get an allocation for a
447 	 * different hardware context.  No need to complicate the low level
448 	 * allocator for this for the rare use case of a command tied to
449 	 * a specific queue.
450 	 */
451 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
452 		return ERR_PTR(-EINVAL);
453 
454 	if (hctx_idx >= q->nr_hw_queues)
455 		return ERR_PTR(-EIO);
456 
457 	ret = blk_queue_enter(q, flags);
458 	if (ret)
459 		return ERR_PTR(ret);
460 
461 	/*
462 	 * Check if the hardware context is actually mapped to anything.
463 	 * If not tell the caller that it should skip this queue.
464 	 */
465 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
466 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
467 		blk_queue_exit(q);
468 		return ERR_PTR(-EXDEV);
469 	}
470 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
471 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
472 
473 	rq = blk_mq_get_request(q, NULL, &alloc_data);
474 	blk_queue_exit(q);
475 
476 	if (!rq)
477 		return ERR_PTR(-EWOULDBLOCK);
478 
479 	return rq;
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
482 
483 static void __blk_mq_free_request(struct request *rq)
484 {
485 	struct request_queue *q = rq->q;
486 	struct blk_mq_ctx *ctx = rq->mq_ctx;
487 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
488 	const int sched_tag = rq->internal_tag;
489 
490 	blk_pm_mark_last_busy(rq);
491 	rq->mq_hctx = NULL;
492 	if (rq->tag != -1)
493 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494 	if (sched_tag != -1)
495 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496 	blk_mq_sched_restart(hctx);
497 	blk_queue_exit(q);
498 }
499 
500 void blk_mq_free_request(struct request *rq)
501 {
502 	struct request_queue *q = rq->q;
503 	struct elevator_queue *e = q->elevator;
504 	struct blk_mq_ctx *ctx = rq->mq_ctx;
505 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
506 
507 	if (rq->rq_flags & RQF_ELVPRIV) {
508 		if (e && e->type->ops.finish_request)
509 			e->type->ops.finish_request(rq);
510 		if (rq->elv.icq) {
511 			put_io_context(rq->elv.icq->ioc);
512 			rq->elv.icq = NULL;
513 		}
514 	}
515 
516 	ctx->rq_completed[rq_is_sync(rq)]++;
517 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
518 		atomic_dec(&hctx->nr_active);
519 
520 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
521 		laptop_io_completion(q->backing_dev_info);
522 
523 	rq_qos_done(q, rq);
524 
525 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
526 	if (refcount_dec_and_test(&rq->ref))
527 		__blk_mq_free_request(rq);
528 }
529 EXPORT_SYMBOL_GPL(blk_mq_free_request);
530 
531 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
532 {
533 	u64 now = 0;
534 
535 	if (blk_mq_need_time_stamp(rq))
536 		now = ktime_get_ns();
537 
538 	if (rq->rq_flags & RQF_STATS) {
539 		blk_mq_poll_stats_start(rq->q);
540 		blk_stat_add(rq, now);
541 	}
542 
543 	if (rq->internal_tag != -1)
544 		blk_mq_sched_completed_request(rq, now);
545 
546 	blk_account_io_done(rq, now);
547 
548 	if (rq->end_io) {
549 		rq_qos_done(rq->q, rq);
550 		rq->end_io(rq, error);
551 	} else {
552 		blk_mq_free_request(rq);
553 	}
554 }
555 EXPORT_SYMBOL(__blk_mq_end_request);
556 
557 void blk_mq_end_request(struct request *rq, blk_status_t error)
558 {
559 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
560 		BUG();
561 	__blk_mq_end_request(rq, error);
562 }
563 EXPORT_SYMBOL(blk_mq_end_request);
564 
565 static void __blk_mq_complete_request_remote(void *data)
566 {
567 	struct request *rq = data;
568 	struct request_queue *q = rq->q;
569 
570 	q->mq_ops->complete(rq);
571 }
572 
573 static void __blk_mq_complete_request(struct request *rq)
574 {
575 	struct blk_mq_ctx *ctx = rq->mq_ctx;
576 	struct request_queue *q = rq->q;
577 	bool shared = false;
578 	int cpu;
579 
580 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
581 	/*
582 	 * Most of single queue controllers, there is only one irq vector
583 	 * for handling IO completion, and the only irq's affinity is set
584 	 * as all possible CPUs. On most of ARCHs, this affinity means the
585 	 * irq is handled on one specific CPU.
586 	 *
587 	 * So complete IO reqeust in softirq context in case of single queue
588 	 * for not degrading IO performance by irqsoff latency.
589 	 */
590 	if (q->nr_hw_queues == 1) {
591 		__blk_complete_request(rq);
592 		return;
593 	}
594 
595 	/*
596 	 * For a polled request, always complete locallly, it's pointless
597 	 * to redirect the completion.
598 	 */
599 	if ((rq->cmd_flags & REQ_HIPRI) ||
600 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
601 		q->mq_ops->complete(rq);
602 		return;
603 	}
604 
605 	cpu = get_cpu();
606 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
607 		shared = cpus_share_cache(cpu, ctx->cpu);
608 
609 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
610 		rq->csd.func = __blk_mq_complete_request_remote;
611 		rq->csd.info = rq;
612 		rq->csd.flags = 0;
613 		smp_call_function_single_async(ctx->cpu, &rq->csd);
614 	} else {
615 		q->mq_ops->complete(rq);
616 	}
617 	put_cpu();
618 }
619 
620 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
621 	__releases(hctx->srcu)
622 {
623 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
624 		rcu_read_unlock();
625 	else
626 		srcu_read_unlock(hctx->srcu, srcu_idx);
627 }
628 
629 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
630 	__acquires(hctx->srcu)
631 {
632 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
633 		/* shut up gcc false positive */
634 		*srcu_idx = 0;
635 		rcu_read_lock();
636 	} else
637 		*srcu_idx = srcu_read_lock(hctx->srcu);
638 }
639 
640 /**
641  * blk_mq_complete_request - end I/O on a request
642  * @rq:		the request being processed
643  *
644  * Description:
645  *	Ends all I/O on a request. It does not handle partial completions.
646  *	The actual completion happens out-of-order, through a IPI handler.
647  **/
648 bool blk_mq_complete_request(struct request *rq)
649 {
650 	if (unlikely(blk_should_fake_timeout(rq->q)))
651 		return false;
652 	__blk_mq_complete_request(rq);
653 	return true;
654 }
655 EXPORT_SYMBOL(blk_mq_complete_request);
656 
657 int blk_mq_request_started(struct request *rq)
658 {
659 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
660 }
661 EXPORT_SYMBOL_GPL(blk_mq_request_started);
662 
663 void blk_mq_start_request(struct request *rq)
664 {
665 	struct request_queue *q = rq->q;
666 
667 	blk_mq_sched_started_request(rq);
668 
669 	trace_block_rq_issue(q, rq);
670 
671 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
672 		rq->io_start_time_ns = ktime_get_ns();
673 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
674 		rq->throtl_size = blk_rq_sectors(rq);
675 #endif
676 		rq->rq_flags |= RQF_STATS;
677 		rq_qos_issue(q, rq);
678 	}
679 
680 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
681 
682 	blk_add_timer(rq);
683 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
684 
685 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
686 		/*
687 		 * Make sure space for the drain appears.  We know we can do
688 		 * this because max_hw_segments has been adjusted to be one
689 		 * fewer than the device can handle.
690 		 */
691 		rq->nr_phys_segments++;
692 	}
693 }
694 EXPORT_SYMBOL(blk_mq_start_request);
695 
696 static void __blk_mq_requeue_request(struct request *rq)
697 {
698 	struct request_queue *q = rq->q;
699 
700 	blk_mq_put_driver_tag(rq);
701 
702 	trace_block_rq_requeue(q, rq);
703 	rq_qos_requeue(q, rq);
704 
705 	if (blk_mq_request_started(rq)) {
706 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
707 		rq->rq_flags &= ~RQF_TIMED_OUT;
708 		if (q->dma_drain_size && blk_rq_bytes(rq))
709 			rq->nr_phys_segments--;
710 	}
711 }
712 
713 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
714 {
715 	__blk_mq_requeue_request(rq);
716 
717 	/* this request will be re-inserted to io scheduler queue */
718 	blk_mq_sched_requeue_request(rq);
719 
720 	BUG_ON(!list_empty(&rq->queuelist));
721 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
722 }
723 EXPORT_SYMBOL(blk_mq_requeue_request);
724 
725 static void blk_mq_requeue_work(struct work_struct *work)
726 {
727 	struct request_queue *q =
728 		container_of(work, struct request_queue, requeue_work.work);
729 	LIST_HEAD(rq_list);
730 	struct request *rq, *next;
731 
732 	spin_lock_irq(&q->requeue_lock);
733 	list_splice_init(&q->requeue_list, &rq_list);
734 	spin_unlock_irq(&q->requeue_lock);
735 
736 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
737 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
738 			continue;
739 
740 		rq->rq_flags &= ~RQF_SOFTBARRIER;
741 		list_del_init(&rq->queuelist);
742 		/*
743 		 * If RQF_DONTPREP, rq has contained some driver specific
744 		 * data, so insert it to hctx dispatch list to avoid any
745 		 * merge.
746 		 */
747 		if (rq->rq_flags & RQF_DONTPREP)
748 			blk_mq_request_bypass_insert(rq, false);
749 		else
750 			blk_mq_sched_insert_request(rq, true, false, false);
751 	}
752 
753 	while (!list_empty(&rq_list)) {
754 		rq = list_entry(rq_list.next, struct request, queuelist);
755 		list_del_init(&rq->queuelist);
756 		blk_mq_sched_insert_request(rq, false, false, false);
757 	}
758 
759 	blk_mq_run_hw_queues(q, false);
760 }
761 
762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
763 				bool kick_requeue_list)
764 {
765 	struct request_queue *q = rq->q;
766 	unsigned long flags;
767 
768 	/*
769 	 * We abuse this flag that is otherwise used by the I/O scheduler to
770 	 * request head insertion from the workqueue.
771 	 */
772 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
773 
774 	spin_lock_irqsave(&q->requeue_lock, flags);
775 	if (at_head) {
776 		rq->rq_flags |= RQF_SOFTBARRIER;
777 		list_add(&rq->queuelist, &q->requeue_list);
778 	} else {
779 		list_add_tail(&rq->queuelist, &q->requeue_list);
780 	}
781 	spin_unlock_irqrestore(&q->requeue_lock, flags);
782 
783 	if (kick_requeue_list)
784 		blk_mq_kick_requeue_list(q);
785 }
786 
787 void blk_mq_kick_requeue_list(struct request_queue *q)
788 {
789 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
790 }
791 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
792 
793 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
794 				    unsigned long msecs)
795 {
796 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
797 				    msecs_to_jiffies(msecs));
798 }
799 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
800 
801 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
802 {
803 	if (tag < tags->nr_tags) {
804 		prefetch(tags->rqs[tag]);
805 		return tags->rqs[tag];
806 	}
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(blk_mq_tag_to_rq);
811 
812 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
813 			       void *priv, bool reserved)
814 {
815 	/*
816 	 * If we find a request that is inflight and the queue matches,
817 	 * we know the queue is busy. Return false to stop the iteration.
818 	 */
819 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
820 		bool *busy = priv;
821 
822 		*busy = true;
823 		return false;
824 	}
825 
826 	return true;
827 }
828 
829 bool blk_mq_queue_inflight(struct request_queue *q)
830 {
831 	bool busy = false;
832 
833 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
834 	return busy;
835 }
836 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
837 
838 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
839 {
840 	req->rq_flags |= RQF_TIMED_OUT;
841 	if (req->q->mq_ops->timeout) {
842 		enum blk_eh_timer_return ret;
843 
844 		ret = req->q->mq_ops->timeout(req, reserved);
845 		if (ret == BLK_EH_DONE)
846 			return;
847 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
848 	}
849 
850 	blk_add_timer(req);
851 }
852 
853 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
854 {
855 	unsigned long deadline;
856 
857 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
858 		return false;
859 	if (rq->rq_flags & RQF_TIMED_OUT)
860 		return false;
861 
862 	deadline = READ_ONCE(rq->deadline);
863 	if (time_after_eq(jiffies, deadline))
864 		return true;
865 
866 	if (*next == 0)
867 		*next = deadline;
868 	else if (time_after(*next, deadline))
869 		*next = deadline;
870 	return false;
871 }
872 
873 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
874 		struct request *rq, void *priv, bool reserved)
875 {
876 	unsigned long *next = priv;
877 
878 	/*
879 	 * Just do a quick check if it is expired before locking the request in
880 	 * so we're not unnecessarilly synchronizing across CPUs.
881 	 */
882 	if (!blk_mq_req_expired(rq, next))
883 		return true;
884 
885 	/*
886 	 * We have reason to believe the request may be expired. Take a
887 	 * reference on the request to lock this request lifetime into its
888 	 * currently allocated context to prevent it from being reallocated in
889 	 * the event the completion by-passes this timeout handler.
890 	 *
891 	 * If the reference was already released, then the driver beat the
892 	 * timeout handler to posting a natural completion.
893 	 */
894 	if (!refcount_inc_not_zero(&rq->ref))
895 		return true;
896 
897 	/*
898 	 * The request is now locked and cannot be reallocated underneath the
899 	 * timeout handler's processing. Re-verify this exact request is truly
900 	 * expired; if it is not expired, then the request was completed and
901 	 * reallocated as a new request.
902 	 */
903 	if (blk_mq_req_expired(rq, next))
904 		blk_mq_rq_timed_out(rq, reserved);
905 	if (refcount_dec_and_test(&rq->ref))
906 		__blk_mq_free_request(rq);
907 
908 	return true;
909 }
910 
911 static void blk_mq_timeout_work(struct work_struct *work)
912 {
913 	struct request_queue *q =
914 		container_of(work, struct request_queue, timeout_work);
915 	unsigned long next = 0;
916 	struct blk_mq_hw_ctx *hctx;
917 	int i;
918 
919 	/* A deadlock might occur if a request is stuck requiring a
920 	 * timeout at the same time a queue freeze is waiting
921 	 * completion, since the timeout code would not be able to
922 	 * acquire the queue reference here.
923 	 *
924 	 * That's why we don't use blk_queue_enter here; instead, we use
925 	 * percpu_ref_tryget directly, because we need to be able to
926 	 * obtain a reference even in the short window between the queue
927 	 * starting to freeze, by dropping the first reference in
928 	 * blk_freeze_queue_start, and the moment the last request is
929 	 * consumed, marked by the instant q_usage_counter reaches
930 	 * zero.
931 	 */
932 	if (!percpu_ref_tryget(&q->q_usage_counter))
933 		return;
934 
935 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
936 
937 	if (next != 0) {
938 		mod_timer(&q->timeout, next);
939 	} else {
940 		/*
941 		 * Request timeouts are handled as a forward rolling timer. If
942 		 * we end up here it means that no requests are pending and
943 		 * also that no request has been pending for a while. Mark
944 		 * each hctx as idle.
945 		 */
946 		queue_for_each_hw_ctx(q, hctx, i) {
947 			/* the hctx may be unmapped, so check it here */
948 			if (blk_mq_hw_queue_mapped(hctx))
949 				blk_mq_tag_idle(hctx);
950 		}
951 	}
952 	blk_queue_exit(q);
953 }
954 
955 struct flush_busy_ctx_data {
956 	struct blk_mq_hw_ctx *hctx;
957 	struct list_head *list;
958 };
959 
960 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
961 {
962 	struct flush_busy_ctx_data *flush_data = data;
963 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
964 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
965 	enum hctx_type type = hctx->type;
966 
967 	spin_lock(&ctx->lock);
968 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
969 	sbitmap_clear_bit(sb, bitnr);
970 	spin_unlock(&ctx->lock);
971 	return true;
972 }
973 
974 /*
975  * Process software queues that have been marked busy, splicing them
976  * to the for-dispatch
977  */
978 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
979 {
980 	struct flush_busy_ctx_data data = {
981 		.hctx = hctx,
982 		.list = list,
983 	};
984 
985 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
986 }
987 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
988 
989 struct dispatch_rq_data {
990 	struct blk_mq_hw_ctx *hctx;
991 	struct request *rq;
992 };
993 
994 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
995 		void *data)
996 {
997 	struct dispatch_rq_data *dispatch_data = data;
998 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
999 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1000 	enum hctx_type type = hctx->type;
1001 
1002 	spin_lock(&ctx->lock);
1003 	if (!list_empty(&ctx->rq_lists[type])) {
1004 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1005 		list_del_init(&dispatch_data->rq->queuelist);
1006 		if (list_empty(&ctx->rq_lists[type]))
1007 			sbitmap_clear_bit(sb, bitnr);
1008 	}
1009 	spin_unlock(&ctx->lock);
1010 
1011 	return !dispatch_data->rq;
1012 }
1013 
1014 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1015 					struct blk_mq_ctx *start)
1016 {
1017 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1018 	struct dispatch_rq_data data = {
1019 		.hctx = hctx,
1020 		.rq   = NULL,
1021 	};
1022 
1023 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1024 			       dispatch_rq_from_ctx, &data);
1025 
1026 	return data.rq;
1027 }
1028 
1029 static inline unsigned int queued_to_index(unsigned int queued)
1030 {
1031 	if (!queued)
1032 		return 0;
1033 
1034 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1035 }
1036 
1037 bool blk_mq_get_driver_tag(struct request *rq)
1038 {
1039 	struct blk_mq_alloc_data data = {
1040 		.q = rq->q,
1041 		.hctx = rq->mq_hctx,
1042 		.flags = BLK_MQ_REQ_NOWAIT,
1043 		.cmd_flags = rq->cmd_flags,
1044 	};
1045 	bool shared;
1046 
1047 	if (rq->tag != -1)
1048 		goto done;
1049 
1050 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1051 		data.flags |= BLK_MQ_REQ_RESERVED;
1052 
1053 	shared = blk_mq_tag_busy(data.hctx);
1054 	rq->tag = blk_mq_get_tag(&data);
1055 	if (rq->tag >= 0) {
1056 		if (shared) {
1057 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1058 			atomic_inc(&data.hctx->nr_active);
1059 		}
1060 		data.hctx->tags->rqs[rq->tag] = rq;
1061 	}
1062 
1063 done:
1064 	return rq->tag != -1;
1065 }
1066 
1067 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1068 				int flags, void *key)
1069 {
1070 	struct blk_mq_hw_ctx *hctx;
1071 
1072 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1073 
1074 	spin_lock(&hctx->dispatch_wait_lock);
1075 	if (!list_empty(&wait->entry)) {
1076 		struct sbitmap_queue *sbq;
1077 
1078 		list_del_init(&wait->entry);
1079 		sbq = &hctx->tags->bitmap_tags;
1080 		atomic_dec(&sbq->ws_active);
1081 	}
1082 	spin_unlock(&hctx->dispatch_wait_lock);
1083 
1084 	blk_mq_run_hw_queue(hctx, true);
1085 	return 1;
1086 }
1087 
1088 /*
1089  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1090  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1091  * restart. For both cases, take care to check the condition again after
1092  * marking us as waiting.
1093  */
1094 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1095 				 struct request *rq)
1096 {
1097 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1098 	struct wait_queue_head *wq;
1099 	wait_queue_entry_t *wait;
1100 	bool ret;
1101 
1102 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1103 		blk_mq_sched_mark_restart_hctx(hctx);
1104 
1105 		/*
1106 		 * It's possible that a tag was freed in the window between the
1107 		 * allocation failure and adding the hardware queue to the wait
1108 		 * queue.
1109 		 *
1110 		 * Don't clear RESTART here, someone else could have set it.
1111 		 * At most this will cost an extra queue run.
1112 		 */
1113 		return blk_mq_get_driver_tag(rq);
1114 	}
1115 
1116 	wait = &hctx->dispatch_wait;
1117 	if (!list_empty_careful(&wait->entry))
1118 		return false;
1119 
1120 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1121 
1122 	spin_lock_irq(&wq->lock);
1123 	spin_lock(&hctx->dispatch_wait_lock);
1124 	if (!list_empty(&wait->entry)) {
1125 		spin_unlock(&hctx->dispatch_wait_lock);
1126 		spin_unlock_irq(&wq->lock);
1127 		return false;
1128 	}
1129 
1130 	atomic_inc(&sbq->ws_active);
1131 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1132 	__add_wait_queue(wq, wait);
1133 
1134 	/*
1135 	 * It's possible that a tag was freed in the window between the
1136 	 * allocation failure and adding the hardware queue to the wait
1137 	 * queue.
1138 	 */
1139 	ret = blk_mq_get_driver_tag(rq);
1140 	if (!ret) {
1141 		spin_unlock(&hctx->dispatch_wait_lock);
1142 		spin_unlock_irq(&wq->lock);
1143 		return false;
1144 	}
1145 
1146 	/*
1147 	 * We got a tag, remove ourselves from the wait queue to ensure
1148 	 * someone else gets the wakeup.
1149 	 */
1150 	list_del_init(&wait->entry);
1151 	atomic_dec(&sbq->ws_active);
1152 	spin_unlock(&hctx->dispatch_wait_lock);
1153 	spin_unlock_irq(&wq->lock);
1154 
1155 	return true;
1156 }
1157 
1158 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1159 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1160 /*
1161  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1162  * - EWMA is one simple way to compute running average value
1163  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1164  * - take 4 as factor for avoiding to get too small(0) result, and this
1165  *   factor doesn't matter because EWMA decreases exponentially
1166  */
1167 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1168 {
1169 	unsigned int ewma;
1170 
1171 	if (hctx->queue->elevator)
1172 		return;
1173 
1174 	ewma = hctx->dispatch_busy;
1175 
1176 	if (!ewma && !busy)
1177 		return;
1178 
1179 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1180 	if (busy)
1181 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1182 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1183 
1184 	hctx->dispatch_busy = ewma;
1185 }
1186 
1187 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1188 
1189 /*
1190  * Returns true if we did some work AND can potentially do more.
1191  */
1192 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1193 			     bool got_budget)
1194 {
1195 	struct blk_mq_hw_ctx *hctx;
1196 	struct request *rq, *nxt;
1197 	bool no_tag = false;
1198 	int errors, queued;
1199 	blk_status_t ret = BLK_STS_OK;
1200 
1201 	if (list_empty(list))
1202 		return false;
1203 
1204 	WARN_ON(!list_is_singular(list) && got_budget);
1205 
1206 	/*
1207 	 * Now process all the entries, sending them to the driver.
1208 	 */
1209 	errors = queued = 0;
1210 	do {
1211 		struct blk_mq_queue_data bd;
1212 
1213 		rq = list_first_entry(list, struct request, queuelist);
1214 
1215 		hctx = rq->mq_hctx;
1216 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1217 			break;
1218 
1219 		if (!blk_mq_get_driver_tag(rq)) {
1220 			/*
1221 			 * The initial allocation attempt failed, so we need to
1222 			 * rerun the hardware queue when a tag is freed. The
1223 			 * waitqueue takes care of that. If the queue is run
1224 			 * before we add this entry back on the dispatch list,
1225 			 * we'll re-run it below.
1226 			 */
1227 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1228 				blk_mq_put_dispatch_budget(hctx);
1229 				/*
1230 				 * For non-shared tags, the RESTART check
1231 				 * will suffice.
1232 				 */
1233 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1234 					no_tag = true;
1235 				break;
1236 			}
1237 		}
1238 
1239 		list_del_init(&rq->queuelist);
1240 
1241 		bd.rq = rq;
1242 
1243 		/*
1244 		 * Flag last if we have no more requests, or if we have more
1245 		 * but can't assign a driver tag to it.
1246 		 */
1247 		if (list_empty(list))
1248 			bd.last = true;
1249 		else {
1250 			nxt = list_first_entry(list, struct request, queuelist);
1251 			bd.last = !blk_mq_get_driver_tag(nxt);
1252 		}
1253 
1254 		ret = q->mq_ops->queue_rq(hctx, &bd);
1255 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1256 			/*
1257 			 * If an I/O scheduler has been configured and we got a
1258 			 * driver tag for the next request already, free it
1259 			 * again.
1260 			 */
1261 			if (!list_empty(list)) {
1262 				nxt = list_first_entry(list, struct request, queuelist);
1263 				blk_mq_put_driver_tag(nxt);
1264 			}
1265 			list_add(&rq->queuelist, list);
1266 			__blk_mq_requeue_request(rq);
1267 			break;
1268 		}
1269 
1270 		if (unlikely(ret != BLK_STS_OK)) {
1271 			errors++;
1272 			blk_mq_end_request(rq, BLK_STS_IOERR);
1273 			continue;
1274 		}
1275 
1276 		queued++;
1277 	} while (!list_empty(list));
1278 
1279 	hctx->dispatched[queued_to_index(queued)]++;
1280 
1281 	/*
1282 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1283 	 * that is where we will continue on next queue run.
1284 	 */
1285 	if (!list_empty(list)) {
1286 		bool needs_restart;
1287 
1288 		/*
1289 		 * If we didn't flush the entire list, we could have told
1290 		 * the driver there was more coming, but that turned out to
1291 		 * be a lie.
1292 		 */
1293 		if (q->mq_ops->commit_rqs)
1294 			q->mq_ops->commit_rqs(hctx);
1295 
1296 		spin_lock(&hctx->lock);
1297 		list_splice_init(list, &hctx->dispatch);
1298 		spin_unlock(&hctx->lock);
1299 
1300 		/*
1301 		 * If SCHED_RESTART was set by the caller of this function and
1302 		 * it is no longer set that means that it was cleared by another
1303 		 * thread and hence that a queue rerun is needed.
1304 		 *
1305 		 * If 'no_tag' is set, that means that we failed getting
1306 		 * a driver tag with an I/O scheduler attached. If our dispatch
1307 		 * waitqueue is no longer active, ensure that we run the queue
1308 		 * AFTER adding our entries back to the list.
1309 		 *
1310 		 * If no I/O scheduler has been configured it is possible that
1311 		 * the hardware queue got stopped and restarted before requests
1312 		 * were pushed back onto the dispatch list. Rerun the queue to
1313 		 * avoid starvation. Notes:
1314 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1315 		 *   been stopped before rerunning a queue.
1316 		 * - Some but not all block drivers stop a queue before
1317 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1318 		 *   and dm-rq.
1319 		 *
1320 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1321 		 * bit is set, run queue after a delay to avoid IO stalls
1322 		 * that could otherwise occur if the queue is idle.
1323 		 */
1324 		needs_restart = blk_mq_sched_needs_restart(hctx);
1325 		if (!needs_restart ||
1326 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1327 			blk_mq_run_hw_queue(hctx, true);
1328 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1329 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1330 
1331 		blk_mq_update_dispatch_busy(hctx, true);
1332 		return false;
1333 	} else
1334 		blk_mq_update_dispatch_busy(hctx, false);
1335 
1336 	/*
1337 	 * If the host/device is unable to accept more work, inform the
1338 	 * caller of that.
1339 	 */
1340 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1341 		return false;
1342 
1343 	return (queued + errors) != 0;
1344 }
1345 
1346 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1347 {
1348 	int srcu_idx;
1349 
1350 	/*
1351 	 * We should be running this queue from one of the CPUs that
1352 	 * are mapped to it.
1353 	 *
1354 	 * There are at least two related races now between setting
1355 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1356 	 * __blk_mq_run_hw_queue():
1357 	 *
1358 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1359 	 *   but later it becomes online, then this warning is harmless
1360 	 *   at all
1361 	 *
1362 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1363 	 *   but later it becomes offline, then the warning can't be
1364 	 *   triggered, and we depend on blk-mq timeout handler to
1365 	 *   handle dispatched requests to this hctx
1366 	 */
1367 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1368 		cpu_online(hctx->next_cpu)) {
1369 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1370 			raw_smp_processor_id(),
1371 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1372 		dump_stack();
1373 	}
1374 
1375 	/*
1376 	 * We can't run the queue inline with ints disabled. Ensure that
1377 	 * we catch bad users of this early.
1378 	 */
1379 	WARN_ON_ONCE(in_interrupt());
1380 
1381 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1382 
1383 	hctx_lock(hctx, &srcu_idx);
1384 	blk_mq_sched_dispatch_requests(hctx);
1385 	hctx_unlock(hctx, srcu_idx);
1386 }
1387 
1388 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1389 {
1390 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1391 
1392 	if (cpu >= nr_cpu_ids)
1393 		cpu = cpumask_first(hctx->cpumask);
1394 	return cpu;
1395 }
1396 
1397 /*
1398  * It'd be great if the workqueue API had a way to pass
1399  * in a mask and had some smarts for more clever placement.
1400  * For now we just round-robin here, switching for every
1401  * BLK_MQ_CPU_WORK_BATCH queued items.
1402  */
1403 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1404 {
1405 	bool tried = false;
1406 	int next_cpu = hctx->next_cpu;
1407 
1408 	if (hctx->queue->nr_hw_queues == 1)
1409 		return WORK_CPU_UNBOUND;
1410 
1411 	if (--hctx->next_cpu_batch <= 0) {
1412 select_cpu:
1413 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1414 				cpu_online_mask);
1415 		if (next_cpu >= nr_cpu_ids)
1416 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1417 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1418 	}
1419 
1420 	/*
1421 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1422 	 * and it should only happen in the path of handling CPU DEAD.
1423 	 */
1424 	if (!cpu_online(next_cpu)) {
1425 		if (!tried) {
1426 			tried = true;
1427 			goto select_cpu;
1428 		}
1429 
1430 		/*
1431 		 * Make sure to re-select CPU next time once after CPUs
1432 		 * in hctx->cpumask become online again.
1433 		 */
1434 		hctx->next_cpu = next_cpu;
1435 		hctx->next_cpu_batch = 1;
1436 		return WORK_CPU_UNBOUND;
1437 	}
1438 
1439 	hctx->next_cpu = next_cpu;
1440 	return next_cpu;
1441 }
1442 
1443 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1444 					unsigned long msecs)
1445 {
1446 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1447 		return;
1448 
1449 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1450 		int cpu = get_cpu();
1451 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1452 			__blk_mq_run_hw_queue(hctx);
1453 			put_cpu();
1454 			return;
1455 		}
1456 
1457 		put_cpu();
1458 	}
1459 
1460 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1461 				    msecs_to_jiffies(msecs));
1462 }
1463 
1464 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1465 {
1466 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1467 }
1468 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1469 
1470 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1471 {
1472 	int srcu_idx;
1473 	bool need_run;
1474 
1475 	/*
1476 	 * When queue is quiesced, we may be switching io scheduler, or
1477 	 * updating nr_hw_queues, or other things, and we can't run queue
1478 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1479 	 *
1480 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1481 	 * quiesced.
1482 	 */
1483 	hctx_lock(hctx, &srcu_idx);
1484 	need_run = !blk_queue_quiesced(hctx->queue) &&
1485 		blk_mq_hctx_has_pending(hctx);
1486 	hctx_unlock(hctx, srcu_idx);
1487 
1488 	if (need_run) {
1489 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1490 		return true;
1491 	}
1492 
1493 	return false;
1494 }
1495 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1496 
1497 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1498 {
1499 	struct blk_mq_hw_ctx *hctx;
1500 	int i;
1501 
1502 	queue_for_each_hw_ctx(q, hctx, i) {
1503 		if (blk_mq_hctx_stopped(hctx))
1504 			continue;
1505 
1506 		blk_mq_run_hw_queue(hctx, async);
1507 	}
1508 }
1509 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1510 
1511 /**
1512  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1513  * @q: request queue.
1514  *
1515  * The caller is responsible for serializing this function against
1516  * blk_mq_{start,stop}_hw_queue().
1517  */
1518 bool blk_mq_queue_stopped(struct request_queue *q)
1519 {
1520 	struct blk_mq_hw_ctx *hctx;
1521 	int i;
1522 
1523 	queue_for_each_hw_ctx(q, hctx, i)
1524 		if (blk_mq_hctx_stopped(hctx))
1525 			return true;
1526 
1527 	return false;
1528 }
1529 EXPORT_SYMBOL(blk_mq_queue_stopped);
1530 
1531 /*
1532  * This function is often used for pausing .queue_rq() by driver when
1533  * there isn't enough resource or some conditions aren't satisfied, and
1534  * BLK_STS_RESOURCE is usually returned.
1535  *
1536  * We do not guarantee that dispatch can be drained or blocked
1537  * after blk_mq_stop_hw_queue() returns. Please use
1538  * blk_mq_quiesce_queue() for that requirement.
1539  */
1540 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1541 {
1542 	cancel_delayed_work(&hctx->run_work);
1543 
1544 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1545 }
1546 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1547 
1548 /*
1549  * This function is often used for pausing .queue_rq() by driver when
1550  * there isn't enough resource or some conditions aren't satisfied, and
1551  * BLK_STS_RESOURCE is usually returned.
1552  *
1553  * We do not guarantee that dispatch can be drained or blocked
1554  * after blk_mq_stop_hw_queues() returns. Please use
1555  * blk_mq_quiesce_queue() for that requirement.
1556  */
1557 void blk_mq_stop_hw_queues(struct request_queue *q)
1558 {
1559 	struct blk_mq_hw_ctx *hctx;
1560 	int i;
1561 
1562 	queue_for_each_hw_ctx(q, hctx, i)
1563 		blk_mq_stop_hw_queue(hctx);
1564 }
1565 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1566 
1567 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1568 {
1569 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1570 
1571 	blk_mq_run_hw_queue(hctx, false);
1572 }
1573 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1574 
1575 void blk_mq_start_hw_queues(struct request_queue *q)
1576 {
1577 	struct blk_mq_hw_ctx *hctx;
1578 	int i;
1579 
1580 	queue_for_each_hw_ctx(q, hctx, i)
1581 		blk_mq_start_hw_queue(hctx);
1582 }
1583 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1584 
1585 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1586 {
1587 	if (!blk_mq_hctx_stopped(hctx))
1588 		return;
1589 
1590 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1591 	blk_mq_run_hw_queue(hctx, async);
1592 }
1593 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1594 
1595 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1596 {
1597 	struct blk_mq_hw_ctx *hctx;
1598 	int i;
1599 
1600 	queue_for_each_hw_ctx(q, hctx, i)
1601 		blk_mq_start_stopped_hw_queue(hctx, async);
1602 }
1603 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1604 
1605 static void blk_mq_run_work_fn(struct work_struct *work)
1606 {
1607 	struct blk_mq_hw_ctx *hctx;
1608 
1609 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1610 
1611 	/*
1612 	 * If we are stopped, don't run the queue.
1613 	 */
1614 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1615 		return;
1616 
1617 	__blk_mq_run_hw_queue(hctx);
1618 }
1619 
1620 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1621 					    struct request *rq,
1622 					    bool at_head)
1623 {
1624 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1625 	enum hctx_type type = hctx->type;
1626 
1627 	lockdep_assert_held(&ctx->lock);
1628 
1629 	trace_block_rq_insert(hctx->queue, rq);
1630 
1631 	if (at_head)
1632 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1633 	else
1634 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1635 }
1636 
1637 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1638 			     bool at_head)
1639 {
1640 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1641 
1642 	lockdep_assert_held(&ctx->lock);
1643 
1644 	__blk_mq_insert_req_list(hctx, rq, at_head);
1645 	blk_mq_hctx_mark_pending(hctx, ctx);
1646 }
1647 
1648 /*
1649  * Should only be used carefully, when the caller knows we want to
1650  * bypass a potential IO scheduler on the target device.
1651  */
1652 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1653 {
1654 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1655 
1656 	spin_lock(&hctx->lock);
1657 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1658 	spin_unlock(&hctx->lock);
1659 
1660 	if (run_queue)
1661 		blk_mq_run_hw_queue(hctx, false);
1662 }
1663 
1664 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1665 			    struct list_head *list)
1666 
1667 {
1668 	struct request *rq;
1669 	enum hctx_type type = hctx->type;
1670 
1671 	/*
1672 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1673 	 * offline now
1674 	 */
1675 	list_for_each_entry(rq, list, queuelist) {
1676 		BUG_ON(rq->mq_ctx != ctx);
1677 		trace_block_rq_insert(hctx->queue, rq);
1678 	}
1679 
1680 	spin_lock(&ctx->lock);
1681 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1682 	blk_mq_hctx_mark_pending(hctx, ctx);
1683 	spin_unlock(&ctx->lock);
1684 }
1685 
1686 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1687 {
1688 	struct request *rqa = container_of(a, struct request, queuelist);
1689 	struct request *rqb = container_of(b, struct request, queuelist);
1690 
1691 	if (rqa->mq_ctx < rqb->mq_ctx)
1692 		return -1;
1693 	else if (rqa->mq_ctx > rqb->mq_ctx)
1694 		return 1;
1695 	else if (rqa->mq_hctx < rqb->mq_hctx)
1696 		return -1;
1697 	else if (rqa->mq_hctx > rqb->mq_hctx)
1698 		return 1;
1699 
1700 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1701 }
1702 
1703 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1704 {
1705 	struct blk_mq_hw_ctx *this_hctx;
1706 	struct blk_mq_ctx *this_ctx;
1707 	struct request_queue *this_q;
1708 	struct request *rq;
1709 	LIST_HEAD(list);
1710 	LIST_HEAD(rq_list);
1711 	unsigned int depth;
1712 
1713 	list_splice_init(&plug->mq_list, &list);
1714 
1715 	if (plug->rq_count > 2 && plug->multiple_queues)
1716 		list_sort(NULL, &list, plug_rq_cmp);
1717 
1718 	plug->rq_count = 0;
1719 
1720 	this_q = NULL;
1721 	this_hctx = NULL;
1722 	this_ctx = NULL;
1723 	depth = 0;
1724 
1725 	while (!list_empty(&list)) {
1726 		rq = list_entry_rq(list.next);
1727 		list_del_init(&rq->queuelist);
1728 		BUG_ON(!rq->q);
1729 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1730 			if (this_hctx) {
1731 				trace_block_unplug(this_q, depth, !from_schedule);
1732 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1733 								&rq_list,
1734 								from_schedule);
1735 			}
1736 
1737 			this_q = rq->q;
1738 			this_ctx = rq->mq_ctx;
1739 			this_hctx = rq->mq_hctx;
1740 			depth = 0;
1741 		}
1742 
1743 		depth++;
1744 		list_add_tail(&rq->queuelist, &rq_list);
1745 	}
1746 
1747 	/*
1748 	 * If 'this_hctx' is set, we know we have entries to complete
1749 	 * on 'rq_list'. Do those.
1750 	 */
1751 	if (this_hctx) {
1752 		trace_block_unplug(this_q, depth, !from_schedule);
1753 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1754 						from_schedule);
1755 	}
1756 }
1757 
1758 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1759 {
1760 	blk_init_request_from_bio(rq, bio);
1761 
1762 	blk_account_io_start(rq, true);
1763 }
1764 
1765 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1766 					    struct request *rq,
1767 					    blk_qc_t *cookie, bool last)
1768 {
1769 	struct request_queue *q = rq->q;
1770 	struct blk_mq_queue_data bd = {
1771 		.rq = rq,
1772 		.last = last,
1773 	};
1774 	blk_qc_t new_cookie;
1775 	blk_status_t ret;
1776 
1777 	new_cookie = request_to_qc_t(hctx, rq);
1778 
1779 	/*
1780 	 * For OK queue, we are done. For error, caller may kill it.
1781 	 * Any other error (busy), just add it to our list as we
1782 	 * previously would have done.
1783 	 */
1784 	ret = q->mq_ops->queue_rq(hctx, &bd);
1785 	switch (ret) {
1786 	case BLK_STS_OK:
1787 		blk_mq_update_dispatch_busy(hctx, false);
1788 		*cookie = new_cookie;
1789 		break;
1790 	case BLK_STS_RESOURCE:
1791 	case BLK_STS_DEV_RESOURCE:
1792 		blk_mq_update_dispatch_busy(hctx, true);
1793 		__blk_mq_requeue_request(rq);
1794 		break;
1795 	default:
1796 		blk_mq_update_dispatch_busy(hctx, false);
1797 		*cookie = BLK_QC_T_NONE;
1798 		break;
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1805 						struct request *rq,
1806 						blk_qc_t *cookie,
1807 						bool bypass_insert, bool last)
1808 {
1809 	struct request_queue *q = rq->q;
1810 	bool run_queue = true;
1811 
1812 	/*
1813 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1814 	 *
1815 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1816 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1817 	 * and avoid driver to try to dispatch again.
1818 	 */
1819 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1820 		run_queue = false;
1821 		bypass_insert = false;
1822 		goto insert;
1823 	}
1824 
1825 	if (q->elevator && !bypass_insert)
1826 		goto insert;
1827 
1828 	if (!blk_mq_get_dispatch_budget(hctx))
1829 		goto insert;
1830 
1831 	if (!blk_mq_get_driver_tag(rq)) {
1832 		blk_mq_put_dispatch_budget(hctx);
1833 		goto insert;
1834 	}
1835 
1836 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1837 insert:
1838 	if (bypass_insert)
1839 		return BLK_STS_RESOURCE;
1840 
1841 	blk_mq_request_bypass_insert(rq, run_queue);
1842 	return BLK_STS_OK;
1843 }
1844 
1845 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1846 		struct request *rq, blk_qc_t *cookie)
1847 {
1848 	blk_status_t ret;
1849 	int srcu_idx;
1850 
1851 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1852 
1853 	hctx_lock(hctx, &srcu_idx);
1854 
1855 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1856 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1857 		blk_mq_request_bypass_insert(rq, true);
1858 	else if (ret != BLK_STS_OK)
1859 		blk_mq_end_request(rq, ret);
1860 
1861 	hctx_unlock(hctx, srcu_idx);
1862 }
1863 
1864 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1865 {
1866 	blk_status_t ret;
1867 	int srcu_idx;
1868 	blk_qc_t unused_cookie;
1869 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1870 
1871 	hctx_lock(hctx, &srcu_idx);
1872 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1873 	hctx_unlock(hctx, srcu_idx);
1874 
1875 	return ret;
1876 }
1877 
1878 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1879 		struct list_head *list)
1880 {
1881 	while (!list_empty(list)) {
1882 		blk_status_t ret;
1883 		struct request *rq = list_first_entry(list, struct request,
1884 				queuelist);
1885 
1886 		list_del_init(&rq->queuelist);
1887 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1888 		if (ret != BLK_STS_OK) {
1889 			if (ret == BLK_STS_RESOURCE ||
1890 					ret == BLK_STS_DEV_RESOURCE) {
1891 				blk_mq_request_bypass_insert(rq,
1892 							list_empty(list));
1893 				break;
1894 			}
1895 			blk_mq_end_request(rq, ret);
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * If we didn't flush the entire list, we could have told
1901 	 * the driver there was more coming, but that turned out to
1902 	 * be a lie.
1903 	 */
1904 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1905 		hctx->queue->mq_ops->commit_rqs(hctx);
1906 }
1907 
1908 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1909 {
1910 	list_add_tail(&rq->queuelist, &plug->mq_list);
1911 	plug->rq_count++;
1912 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1913 		struct request *tmp;
1914 
1915 		tmp = list_first_entry(&plug->mq_list, struct request,
1916 						queuelist);
1917 		if (tmp->q != rq->q)
1918 			plug->multiple_queues = true;
1919 	}
1920 }
1921 
1922 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1923 {
1924 	const int is_sync = op_is_sync(bio->bi_opf);
1925 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1926 	struct blk_mq_alloc_data data = { .flags = 0};
1927 	struct request *rq;
1928 	struct blk_plug *plug;
1929 	struct request *same_queue_rq = NULL;
1930 	blk_qc_t cookie;
1931 
1932 	blk_queue_bounce(q, &bio);
1933 
1934 	blk_queue_split(q, &bio);
1935 
1936 	if (!bio_integrity_prep(bio))
1937 		return BLK_QC_T_NONE;
1938 
1939 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1940 	    blk_attempt_plug_merge(q, bio, &same_queue_rq))
1941 		return BLK_QC_T_NONE;
1942 
1943 	if (blk_mq_sched_bio_merge(q, bio))
1944 		return BLK_QC_T_NONE;
1945 
1946 	rq_qos_throttle(q, bio);
1947 
1948 	data.cmd_flags = bio->bi_opf;
1949 	rq = blk_mq_get_request(q, bio, &data);
1950 	if (unlikely(!rq)) {
1951 		rq_qos_cleanup(q, bio);
1952 		if (bio->bi_opf & REQ_NOWAIT)
1953 			bio_wouldblock_error(bio);
1954 		return BLK_QC_T_NONE;
1955 	}
1956 
1957 	trace_block_getrq(q, bio, bio->bi_opf);
1958 
1959 	rq_qos_track(q, rq, bio);
1960 
1961 	cookie = request_to_qc_t(data.hctx, rq);
1962 
1963 	plug = current->plug;
1964 	if (unlikely(is_flush_fua)) {
1965 		blk_mq_put_ctx(data.ctx);
1966 		blk_mq_bio_to_request(rq, bio);
1967 
1968 		/* bypass scheduler for flush rq */
1969 		blk_insert_flush(rq);
1970 		blk_mq_run_hw_queue(data.hctx, true);
1971 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1972 		/*
1973 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1974 		 * we know the driver uses bd->last in a smart fashion.
1975 		 */
1976 		unsigned int request_count = plug->rq_count;
1977 		struct request *last = NULL;
1978 
1979 		blk_mq_put_ctx(data.ctx);
1980 		blk_mq_bio_to_request(rq, bio);
1981 
1982 		if (!request_count)
1983 			trace_block_plug(q);
1984 		else
1985 			last = list_entry_rq(plug->mq_list.prev);
1986 
1987 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1988 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1989 			blk_flush_plug_list(plug, false);
1990 			trace_block_plug(q);
1991 		}
1992 
1993 		blk_add_rq_to_plug(plug, rq);
1994 	} else if (plug && !blk_queue_nomerges(q)) {
1995 		blk_mq_bio_to_request(rq, bio);
1996 
1997 		/*
1998 		 * We do limited plugging. If the bio can be merged, do that.
1999 		 * Otherwise the existing request in the plug list will be
2000 		 * issued. So the plug list will have one request at most
2001 		 * The plug list might get flushed before this. If that happens,
2002 		 * the plug list is empty, and same_queue_rq is invalid.
2003 		 */
2004 		if (list_empty(&plug->mq_list))
2005 			same_queue_rq = NULL;
2006 		if (same_queue_rq) {
2007 			list_del_init(&same_queue_rq->queuelist);
2008 			plug->rq_count--;
2009 		}
2010 		blk_add_rq_to_plug(plug, rq);
2011 		trace_block_plug(q);
2012 
2013 		blk_mq_put_ctx(data.ctx);
2014 
2015 		if (same_queue_rq) {
2016 			data.hctx = same_queue_rq->mq_hctx;
2017 			trace_block_unplug(q, 1, true);
2018 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2019 					&cookie);
2020 		}
2021 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2022 			!data.hctx->dispatch_busy)) {
2023 		blk_mq_put_ctx(data.ctx);
2024 		blk_mq_bio_to_request(rq, bio);
2025 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2026 	} else {
2027 		blk_mq_put_ctx(data.ctx);
2028 		blk_mq_bio_to_request(rq, bio);
2029 		blk_mq_sched_insert_request(rq, false, true, true);
2030 	}
2031 
2032 	return cookie;
2033 }
2034 
2035 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2036 		     unsigned int hctx_idx)
2037 {
2038 	struct page *page;
2039 
2040 	if (tags->rqs && set->ops->exit_request) {
2041 		int i;
2042 
2043 		for (i = 0; i < tags->nr_tags; i++) {
2044 			struct request *rq = tags->static_rqs[i];
2045 
2046 			if (!rq)
2047 				continue;
2048 			set->ops->exit_request(set, rq, hctx_idx);
2049 			tags->static_rqs[i] = NULL;
2050 		}
2051 	}
2052 
2053 	while (!list_empty(&tags->page_list)) {
2054 		page = list_first_entry(&tags->page_list, struct page, lru);
2055 		list_del_init(&page->lru);
2056 		/*
2057 		 * Remove kmemleak object previously allocated in
2058 		 * blk_mq_init_rq_map().
2059 		 */
2060 		kmemleak_free(page_address(page));
2061 		__free_pages(page, page->private);
2062 	}
2063 }
2064 
2065 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2066 {
2067 	kfree(tags->rqs);
2068 	tags->rqs = NULL;
2069 	kfree(tags->static_rqs);
2070 	tags->static_rqs = NULL;
2071 
2072 	blk_mq_free_tags(tags);
2073 }
2074 
2075 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2076 					unsigned int hctx_idx,
2077 					unsigned int nr_tags,
2078 					unsigned int reserved_tags)
2079 {
2080 	struct blk_mq_tags *tags;
2081 	int node;
2082 
2083 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2084 	if (node == NUMA_NO_NODE)
2085 		node = set->numa_node;
2086 
2087 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2088 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2089 	if (!tags)
2090 		return NULL;
2091 
2092 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2093 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2094 				 node);
2095 	if (!tags->rqs) {
2096 		blk_mq_free_tags(tags);
2097 		return NULL;
2098 	}
2099 
2100 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2101 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2102 					node);
2103 	if (!tags->static_rqs) {
2104 		kfree(tags->rqs);
2105 		blk_mq_free_tags(tags);
2106 		return NULL;
2107 	}
2108 
2109 	return tags;
2110 }
2111 
2112 static size_t order_to_size(unsigned int order)
2113 {
2114 	return (size_t)PAGE_SIZE << order;
2115 }
2116 
2117 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2118 			       unsigned int hctx_idx, int node)
2119 {
2120 	int ret;
2121 
2122 	if (set->ops->init_request) {
2123 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2124 		if (ret)
2125 			return ret;
2126 	}
2127 
2128 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2129 	return 0;
2130 }
2131 
2132 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2133 		     unsigned int hctx_idx, unsigned int depth)
2134 {
2135 	unsigned int i, j, entries_per_page, max_order = 4;
2136 	size_t rq_size, left;
2137 	int node;
2138 
2139 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2140 	if (node == NUMA_NO_NODE)
2141 		node = set->numa_node;
2142 
2143 	INIT_LIST_HEAD(&tags->page_list);
2144 
2145 	/*
2146 	 * rq_size is the size of the request plus driver payload, rounded
2147 	 * to the cacheline size
2148 	 */
2149 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2150 				cache_line_size());
2151 	left = rq_size * depth;
2152 
2153 	for (i = 0; i < depth; ) {
2154 		int this_order = max_order;
2155 		struct page *page;
2156 		int to_do;
2157 		void *p;
2158 
2159 		while (this_order && left < order_to_size(this_order - 1))
2160 			this_order--;
2161 
2162 		do {
2163 			page = alloc_pages_node(node,
2164 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2165 				this_order);
2166 			if (page)
2167 				break;
2168 			if (!this_order--)
2169 				break;
2170 			if (order_to_size(this_order) < rq_size)
2171 				break;
2172 		} while (1);
2173 
2174 		if (!page)
2175 			goto fail;
2176 
2177 		page->private = this_order;
2178 		list_add_tail(&page->lru, &tags->page_list);
2179 
2180 		p = page_address(page);
2181 		/*
2182 		 * Allow kmemleak to scan these pages as they contain pointers
2183 		 * to additional allocations like via ops->init_request().
2184 		 */
2185 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2186 		entries_per_page = order_to_size(this_order) / rq_size;
2187 		to_do = min(entries_per_page, depth - i);
2188 		left -= to_do * rq_size;
2189 		for (j = 0; j < to_do; j++) {
2190 			struct request *rq = p;
2191 
2192 			tags->static_rqs[i] = rq;
2193 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2194 				tags->static_rqs[i] = NULL;
2195 				goto fail;
2196 			}
2197 
2198 			p += rq_size;
2199 			i++;
2200 		}
2201 	}
2202 	return 0;
2203 
2204 fail:
2205 	blk_mq_free_rqs(set, tags, hctx_idx);
2206 	return -ENOMEM;
2207 }
2208 
2209 /*
2210  * 'cpu' is going away. splice any existing rq_list entries from this
2211  * software queue to the hw queue dispatch list, and ensure that it
2212  * gets run.
2213  */
2214 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2215 {
2216 	struct blk_mq_hw_ctx *hctx;
2217 	struct blk_mq_ctx *ctx;
2218 	LIST_HEAD(tmp);
2219 	enum hctx_type type;
2220 
2221 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2222 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2223 	type = hctx->type;
2224 
2225 	spin_lock(&ctx->lock);
2226 	if (!list_empty(&ctx->rq_lists[type])) {
2227 		list_splice_init(&ctx->rq_lists[type], &tmp);
2228 		blk_mq_hctx_clear_pending(hctx, ctx);
2229 	}
2230 	spin_unlock(&ctx->lock);
2231 
2232 	if (list_empty(&tmp))
2233 		return 0;
2234 
2235 	spin_lock(&hctx->lock);
2236 	list_splice_tail_init(&tmp, &hctx->dispatch);
2237 	spin_unlock(&hctx->lock);
2238 
2239 	blk_mq_run_hw_queue(hctx, true);
2240 	return 0;
2241 }
2242 
2243 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2244 {
2245 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2246 					    &hctx->cpuhp_dead);
2247 }
2248 
2249 /* hctx->ctxs will be freed in queue's release handler */
2250 static void blk_mq_exit_hctx(struct request_queue *q,
2251 		struct blk_mq_tag_set *set,
2252 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2253 {
2254 	if (blk_mq_hw_queue_mapped(hctx))
2255 		blk_mq_tag_idle(hctx);
2256 
2257 	if (set->ops->exit_request)
2258 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2259 
2260 	if (set->ops->exit_hctx)
2261 		set->ops->exit_hctx(hctx, hctx_idx);
2262 
2263 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2264 		cleanup_srcu_struct(hctx->srcu);
2265 
2266 	blk_mq_remove_cpuhp(hctx);
2267 	blk_free_flush_queue(hctx->fq);
2268 	sbitmap_free(&hctx->ctx_map);
2269 }
2270 
2271 static void blk_mq_exit_hw_queues(struct request_queue *q,
2272 		struct blk_mq_tag_set *set, int nr_queue)
2273 {
2274 	struct blk_mq_hw_ctx *hctx;
2275 	unsigned int i;
2276 
2277 	queue_for_each_hw_ctx(q, hctx, i) {
2278 		if (i == nr_queue)
2279 			break;
2280 		blk_mq_debugfs_unregister_hctx(hctx);
2281 		blk_mq_exit_hctx(q, set, hctx, i);
2282 	}
2283 }
2284 
2285 static int blk_mq_init_hctx(struct request_queue *q,
2286 		struct blk_mq_tag_set *set,
2287 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2288 {
2289 	int node;
2290 
2291 	node = hctx->numa_node;
2292 	if (node == NUMA_NO_NODE)
2293 		node = hctx->numa_node = set->numa_node;
2294 
2295 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2296 	spin_lock_init(&hctx->lock);
2297 	INIT_LIST_HEAD(&hctx->dispatch);
2298 	hctx->queue = q;
2299 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2300 
2301 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2302 
2303 	hctx->tags = set->tags[hctx_idx];
2304 
2305 	/*
2306 	 * Allocate space for all possible cpus to avoid allocation at
2307 	 * runtime
2308 	 */
2309 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2310 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2311 	if (!hctx->ctxs)
2312 		goto unregister_cpu_notifier;
2313 
2314 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2315 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2316 		goto free_ctxs;
2317 
2318 	hctx->nr_ctx = 0;
2319 
2320 	spin_lock_init(&hctx->dispatch_wait_lock);
2321 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2322 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2323 
2324 	if (set->ops->init_hctx &&
2325 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2326 		goto free_bitmap;
2327 
2328 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2329 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2330 	if (!hctx->fq)
2331 		goto exit_hctx;
2332 
2333 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2334 		goto free_fq;
2335 
2336 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2337 		init_srcu_struct(hctx->srcu);
2338 
2339 	return 0;
2340 
2341  free_fq:
2342 	blk_free_flush_queue(hctx->fq);
2343  exit_hctx:
2344 	if (set->ops->exit_hctx)
2345 		set->ops->exit_hctx(hctx, hctx_idx);
2346  free_bitmap:
2347 	sbitmap_free(&hctx->ctx_map);
2348  free_ctxs:
2349 	kfree(hctx->ctxs);
2350  unregister_cpu_notifier:
2351 	blk_mq_remove_cpuhp(hctx);
2352 	return -1;
2353 }
2354 
2355 static void blk_mq_init_cpu_queues(struct request_queue *q,
2356 				   unsigned int nr_hw_queues)
2357 {
2358 	struct blk_mq_tag_set *set = q->tag_set;
2359 	unsigned int i, j;
2360 
2361 	for_each_possible_cpu(i) {
2362 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2363 		struct blk_mq_hw_ctx *hctx;
2364 		int k;
2365 
2366 		__ctx->cpu = i;
2367 		spin_lock_init(&__ctx->lock);
2368 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2369 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2370 
2371 		__ctx->queue = q;
2372 
2373 		/*
2374 		 * Set local node, IFF we have more than one hw queue. If
2375 		 * not, we remain on the home node of the device
2376 		 */
2377 		for (j = 0; j < set->nr_maps; j++) {
2378 			hctx = blk_mq_map_queue_type(q, j, i);
2379 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2380 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2381 		}
2382 	}
2383 }
2384 
2385 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2386 {
2387 	int ret = 0;
2388 
2389 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2390 					set->queue_depth, set->reserved_tags);
2391 	if (!set->tags[hctx_idx])
2392 		return false;
2393 
2394 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2395 				set->queue_depth);
2396 	if (!ret)
2397 		return true;
2398 
2399 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2400 	set->tags[hctx_idx] = NULL;
2401 	return false;
2402 }
2403 
2404 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2405 					 unsigned int hctx_idx)
2406 {
2407 	if (set->tags && set->tags[hctx_idx]) {
2408 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2409 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2410 		set->tags[hctx_idx] = NULL;
2411 	}
2412 }
2413 
2414 static void blk_mq_map_swqueue(struct request_queue *q)
2415 {
2416 	unsigned int i, j, hctx_idx;
2417 	struct blk_mq_hw_ctx *hctx;
2418 	struct blk_mq_ctx *ctx;
2419 	struct blk_mq_tag_set *set = q->tag_set;
2420 
2421 	/*
2422 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2423 	 */
2424 	mutex_lock(&q->sysfs_lock);
2425 
2426 	queue_for_each_hw_ctx(q, hctx, i) {
2427 		cpumask_clear(hctx->cpumask);
2428 		hctx->nr_ctx = 0;
2429 		hctx->dispatch_from = NULL;
2430 	}
2431 
2432 	/*
2433 	 * Map software to hardware queues.
2434 	 *
2435 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2436 	 */
2437 	for_each_possible_cpu(i) {
2438 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2439 		/* unmapped hw queue can be remapped after CPU topo changed */
2440 		if (!set->tags[hctx_idx] &&
2441 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2442 			/*
2443 			 * If tags initialization fail for some hctx,
2444 			 * that hctx won't be brought online.  In this
2445 			 * case, remap the current ctx to hctx[0] which
2446 			 * is guaranteed to always have tags allocated
2447 			 */
2448 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2449 		}
2450 
2451 		ctx = per_cpu_ptr(q->queue_ctx, i);
2452 		for (j = 0; j < set->nr_maps; j++) {
2453 			if (!set->map[j].nr_queues) {
2454 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2455 						HCTX_TYPE_DEFAULT, i);
2456 				continue;
2457 			}
2458 
2459 			hctx = blk_mq_map_queue_type(q, j, i);
2460 			ctx->hctxs[j] = hctx;
2461 			/*
2462 			 * If the CPU is already set in the mask, then we've
2463 			 * mapped this one already. This can happen if
2464 			 * devices share queues across queue maps.
2465 			 */
2466 			if (cpumask_test_cpu(i, hctx->cpumask))
2467 				continue;
2468 
2469 			cpumask_set_cpu(i, hctx->cpumask);
2470 			hctx->type = j;
2471 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2472 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2473 
2474 			/*
2475 			 * If the nr_ctx type overflows, we have exceeded the
2476 			 * amount of sw queues we can support.
2477 			 */
2478 			BUG_ON(!hctx->nr_ctx);
2479 		}
2480 
2481 		for (; j < HCTX_MAX_TYPES; j++)
2482 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2483 					HCTX_TYPE_DEFAULT, i);
2484 	}
2485 
2486 	mutex_unlock(&q->sysfs_lock);
2487 
2488 	queue_for_each_hw_ctx(q, hctx, i) {
2489 		/*
2490 		 * If no software queues are mapped to this hardware queue,
2491 		 * disable it and free the request entries.
2492 		 */
2493 		if (!hctx->nr_ctx) {
2494 			/* Never unmap queue 0.  We need it as a
2495 			 * fallback in case of a new remap fails
2496 			 * allocation
2497 			 */
2498 			if (i && set->tags[i])
2499 				blk_mq_free_map_and_requests(set, i);
2500 
2501 			hctx->tags = NULL;
2502 			continue;
2503 		}
2504 
2505 		hctx->tags = set->tags[i];
2506 		WARN_ON(!hctx->tags);
2507 
2508 		/*
2509 		 * Set the map size to the number of mapped software queues.
2510 		 * This is more accurate and more efficient than looping
2511 		 * over all possibly mapped software queues.
2512 		 */
2513 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2514 
2515 		/*
2516 		 * Initialize batch roundrobin counts
2517 		 */
2518 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2519 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2520 	}
2521 }
2522 
2523 /*
2524  * Caller needs to ensure that we're either frozen/quiesced, or that
2525  * the queue isn't live yet.
2526  */
2527 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2528 {
2529 	struct blk_mq_hw_ctx *hctx;
2530 	int i;
2531 
2532 	queue_for_each_hw_ctx(q, hctx, i) {
2533 		if (shared)
2534 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2535 		else
2536 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2537 	}
2538 }
2539 
2540 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2541 					bool shared)
2542 {
2543 	struct request_queue *q;
2544 
2545 	lockdep_assert_held(&set->tag_list_lock);
2546 
2547 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2548 		blk_mq_freeze_queue(q);
2549 		queue_set_hctx_shared(q, shared);
2550 		blk_mq_unfreeze_queue(q);
2551 	}
2552 }
2553 
2554 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2555 {
2556 	struct blk_mq_tag_set *set = q->tag_set;
2557 
2558 	mutex_lock(&set->tag_list_lock);
2559 	list_del_rcu(&q->tag_set_list);
2560 	if (list_is_singular(&set->tag_list)) {
2561 		/* just transitioned to unshared */
2562 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2563 		/* update existing queue */
2564 		blk_mq_update_tag_set_depth(set, false);
2565 	}
2566 	mutex_unlock(&set->tag_list_lock);
2567 	INIT_LIST_HEAD(&q->tag_set_list);
2568 }
2569 
2570 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2571 				     struct request_queue *q)
2572 {
2573 	mutex_lock(&set->tag_list_lock);
2574 
2575 	/*
2576 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2577 	 */
2578 	if (!list_empty(&set->tag_list) &&
2579 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2580 		set->flags |= BLK_MQ_F_TAG_SHARED;
2581 		/* update existing queue */
2582 		blk_mq_update_tag_set_depth(set, true);
2583 	}
2584 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2585 		queue_set_hctx_shared(q, true);
2586 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2587 
2588 	mutex_unlock(&set->tag_list_lock);
2589 }
2590 
2591 /* All allocations will be freed in release handler of q->mq_kobj */
2592 static int blk_mq_alloc_ctxs(struct request_queue *q)
2593 {
2594 	struct blk_mq_ctxs *ctxs;
2595 	int cpu;
2596 
2597 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2598 	if (!ctxs)
2599 		return -ENOMEM;
2600 
2601 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2602 	if (!ctxs->queue_ctx)
2603 		goto fail;
2604 
2605 	for_each_possible_cpu(cpu) {
2606 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2607 		ctx->ctxs = ctxs;
2608 	}
2609 
2610 	q->mq_kobj = &ctxs->kobj;
2611 	q->queue_ctx = ctxs->queue_ctx;
2612 
2613 	return 0;
2614  fail:
2615 	kfree(ctxs);
2616 	return -ENOMEM;
2617 }
2618 
2619 /*
2620  * It is the actual release handler for mq, but we do it from
2621  * request queue's release handler for avoiding use-after-free
2622  * and headache because q->mq_kobj shouldn't have been introduced,
2623  * but we can't group ctx/kctx kobj without it.
2624  */
2625 void blk_mq_release(struct request_queue *q)
2626 {
2627 	struct blk_mq_hw_ctx *hctx;
2628 	unsigned int i;
2629 
2630 	/* hctx kobj stays in hctx */
2631 	queue_for_each_hw_ctx(q, hctx, i) {
2632 		if (!hctx)
2633 			continue;
2634 		kobject_put(&hctx->kobj);
2635 	}
2636 
2637 	kfree(q->queue_hw_ctx);
2638 
2639 	/*
2640 	 * release .mq_kobj and sw queue's kobject now because
2641 	 * both share lifetime with request queue.
2642 	 */
2643 	blk_mq_sysfs_deinit(q);
2644 }
2645 
2646 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2647 {
2648 	struct request_queue *uninit_q, *q;
2649 
2650 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2651 	if (!uninit_q)
2652 		return ERR_PTR(-ENOMEM);
2653 
2654 	q = blk_mq_init_allocated_queue(set, uninit_q);
2655 	if (IS_ERR(q))
2656 		blk_cleanup_queue(uninit_q);
2657 
2658 	return q;
2659 }
2660 EXPORT_SYMBOL(blk_mq_init_queue);
2661 
2662 /*
2663  * Helper for setting up a queue with mq ops, given queue depth, and
2664  * the passed in mq ops flags.
2665  */
2666 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2667 					   const struct blk_mq_ops *ops,
2668 					   unsigned int queue_depth,
2669 					   unsigned int set_flags)
2670 {
2671 	struct request_queue *q;
2672 	int ret;
2673 
2674 	memset(set, 0, sizeof(*set));
2675 	set->ops = ops;
2676 	set->nr_hw_queues = 1;
2677 	set->nr_maps = 1;
2678 	set->queue_depth = queue_depth;
2679 	set->numa_node = NUMA_NO_NODE;
2680 	set->flags = set_flags;
2681 
2682 	ret = blk_mq_alloc_tag_set(set);
2683 	if (ret)
2684 		return ERR_PTR(ret);
2685 
2686 	q = blk_mq_init_queue(set);
2687 	if (IS_ERR(q)) {
2688 		blk_mq_free_tag_set(set);
2689 		return q;
2690 	}
2691 
2692 	return q;
2693 }
2694 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2695 
2696 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2697 {
2698 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2699 
2700 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2701 			   __alignof__(struct blk_mq_hw_ctx)) !=
2702 		     sizeof(struct blk_mq_hw_ctx));
2703 
2704 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2705 		hw_ctx_size += sizeof(struct srcu_struct);
2706 
2707 	return hw_ctx_size;
2708 }
2709 
2710 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2711 		struct blk_mq_tag_set *set, struct request_queue *q,
2712 		int hctx_idx, int node)
2713 {
2714 	struct blk_mq_hw_ctx *hctx;
2715 
2716 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2717 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2718 			node);
2719 	if (!hctx)
2720 		return NULL;
2721 
2722 	if (!zalloc_cpumask_var_node(&hctx->cpumask,
2723 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2724 				node)) {
2725 		kfree(hctx);
2726 		return NULL;
2727 	}
2728 
2729 	atomic_set(&hctx->nr_active, 0);
2730 	hctx->numa_node = node;
2731 	hctx->queue_num = hctx_idx;
2732 
2733 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2734 		free_cpumask_var(hctx->cpumask);
2735 		kfree(hctx);
2736 		return NULL;
2737 	}
2738 	blk_mq_hctx_kobj_init(hctx);
2739 
2740 	return hctx;
2741 }
2742 
2743 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2744 						struct request_queue *q)
2745 {
2746 	int i, j, end;
2747 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2748 
2749 	/* protect against switching io scheduler  */
2750 	mutex_lock(&q->sysfs_lock);
2751 	for (i = 0; i < set->nr_hw_queues; i++) {
2752 		int node;
2753 		struct blk_mq_hw_ctx *hctx;
2754 
2755 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2756 		/*
2757 		 * If the hw queue has been mapped to another numa node,
2758 		 * we need to realloc the hctx. If allocation fails, fallback
2759 		 * to use the previous one.
2760 		 */
2761 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2762 			continue;
2763 
2764 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2765 		if (hctx) {
2766 			if (hctxs[i]) {
2767 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2768 				kobject_put(&hctxs[i]->kobj);
2769 			}
2770 			hctxs[i] = hctx;
2771 		} else {
2772 			if (hctxs[i])
2773 				pr_warn("Allocate new hctx on node %d fails,\
2774 						fallback to previous one on node %d\n",
2775 						node, hctxs[i]->numa_node);
2776 			else
2777 				break;
2778 		}
2779 	}
2780 	/*
2781 	 * Increasing nr_hw_queues fails. Free the newly allocated
2782 	 * hctxs and keep the previous q->nr_hw_queues.
2783 	 */
2784 	if (i != set->nr_hw_queues) {
2785 		j = q->nr_hw_queues;
2786 		end = i;
2787 	} else {
2788 		j = i;
2789 		end = q->nr_hw_queues;
2790 		q->nr_hw_queues = set->nr_hw_queues;
2791 	}
2792 
2793 	for (; j < end; j++) {
2794 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2795 
2796 		if (hctx) {
2797 			if (hctx->tags)
2798 				blk_mq_free_map_and_requests(set, j);
2799 			blk_mq_exit_hctx(q, set, hctx, j);
2800 			kobject_put(&hctx->kobj);
2801 			hctxs[j] = NULL;
2802 
2803 		}
2804 	}
2805 	mutex_unlock(&q->sysfs_lock);
2806 }
2807 
2808 /*
2809  * Maximum number of hardware queues we support. For single sets, we'll never
2810  * have more than the CPUs (software queues). For multiple sets, the tag_set
2811  * user may have set ->nr_hw_queues larger.
2812  */
2813 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2814 {
2815 	if (set->nr_maps == 1)
2816 		return nr_cpu_ids;
2817 
2818 	return max(set->nr_hw_queues, nr_cpu_ids);
2819 }
2820 
2821 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2822 						  struct request_queue *q)
2823 {
2824 	/* mark the queue as mq asap */
2825 	q->mq_ops = set->ops;
2826 
2827 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2828 					     blk_mq_poll_stats_bkt,
2829 					     BLK_MQ_POLL_STATS_BKTS, q);
2830 	if (!q->poll_cb)
2831 		goto err_exit;
2832 
2833 	if (blk_mq_alloc_ctxs(q))
2834 		goto err_exit;
2835 
2836 	/* init q->mq_kobj and sw queues' kobjects */
2837 	blk_mq_sysfs_init(q);
2838 
2839 	q->nr_queues = nr_hw_queues(set);
2840 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2841 						GFP_KERNEL, set->numa_node);
2842 	if (!q->queue_hw_ctx)
2843 		goto err_sys_init;
2844 
2845 	blk_mq_realloc_hw_ctxs(set, q);
2846 	if (!q->nr_hw_queues)
2847 		goto err_hctxs;
2848 
2849 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2850 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2851 
2852 	q->tag_set = set;
2853 
2854 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2855 	if (set->nr_maps > HCTX_TYPE_POLL &&
2856 	    set->map[HCTX_TYPE_POLL].nr_queues)
2857 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2858 
2859 	q->sg_reserved_size = INT_MAX;
2860 
2861 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2862 	INIT_LIST_HEAD(&q->requeue_list);
2863 	spin_lock_init(&q->requeue_lock);
2864 
2865 	blk_queue_make_request(q, blk_mq_make_request);
2866 
2867 	/*
2868 	 * Do this after blk_queue_make_request() overrides it...
2869 	 */
2870 	q->nr_requests = set->queue_depth;
2871 
2872 	/*
2873 	 * Default to classic polling
2874 	 */
2875 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2876 
2877 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2878 	blk_mq_add_queue_tag_set(set, q);
2879 	blk_mq_map_swqueue(q);
2880 
2881 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2882 		int ret;
2883 
2884 		ret = elevator_init_mq(q);
2885 		if (ret)
2886 			return ERR_PTR(ret);
2887 	}
2888 
2889 	return q;
2890 
2891 err_hctxs:
2892 	kfree(q->queue_hw_ctx);
2893 err_sys_init:
2894 	blk_mq_sysfs_deinit(q);
2895 err_exit:
2896 	q->mq_ops = NULL;
2897 	return ERR_PTR(-ENOMEM);
2898 }
2899 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2900 
2901 void blk_mq_free_queue(struct request_queue *q)
2902 {
2903 	struct blk_mq_tag_set	*set = q->tag_set;
2904 
2905 	blk_mq_del_queue_tag_set(q);
2906 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2907 }
2908 
2909 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2910 {
2911 	int i;
2912 
2913 	for (i = 0; i < set->nr_hw_queues; i++)
2914 		if (!__blk_mq_alloc_rq_map(set, i))
2915 			goto out_unwind;
2916 
2917 	return 0;
2918 
2919 out_unwind:
2920 	while (--i >= 0)
2921 		blk_mq_free_rq_map(set->tags[i]);
2922 
2923 	return -ENOMEM;
2924 }
2925 
2926 /*
2927  * Allocate the request maps associated with this tag_set. Note that this
2928  * may reduce the depth asked for, if memory is tight. set->queue_depth
2929  * will be updated to reflect the allocated depth.
2930  */
2931 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2932 {
2933 	unsigned int depth;
2934 	int err;
2935 
2936 	depth = set->queue_depth;
2937 	do {
2938 		err = __blk_mq_alloc_rq_maps(set);
2939 		if (!err)
2940 			break;
2941 
2942 		set->queue_depth >>= 1;
2943 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2944 			err = -ENOMEM;
2945 			break;
2946 		}
2947 	} while (set->queue_depth);
2948 
2949 	if (!set->queue_depth || err) {
2950 		pr_err("blk-mq: failed to allocate request map\n");
2951 		return -ENOMEM;
2952 	}
2953 
2954 	if (depth != set->queue_depth)
2955 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2956 						depth, set->queue_depth);
2957 
2958 	return 0;
2959 }
2960 
2961 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2962 {
2963 	if (set->ops->map_queues && !is_kdump_kernel()) {
2964 		int i;
2965 
2966 		/*
2967 		 * transport .map_queues is usually done in the following
2968 		 * way:
2969 		 *
2970 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2971 		 * 	mask = get_cpu_mask(queue)
2972 		 * 	for_each_cpu(cpu, mask)
2973 		 * 		set->map[x].mq_map[cpu] = queue;
2974 		 * }
2975 		 *
2976 		 * When we need to remap, the table has to be cleared for
2977 		 * killing stale mapping since one CPU may not be mapped
2978 		 * to any hw queue.
2979 		 */
2980 		for (i = 0; i < set->nr_maps; i++)
2981 			blk_mq_clear_mq_map(&set->map[i]);
2982 
2983 		return set->ops->map_queues(set);
2984 	} else {
2985 		BUG_ON(set->nr_maps > 1);
2986 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2987 	}
2988 }
2989 
2990 /*
2991  * Alloc a tag set to be associated with one or more request queues.
2992  * May fail with EINVAL for various error conditions. May adjust the
2993  * requested depth down, if it's too large. In that case, the set
2994  * value will be stored in set->queue_depth.
2995  */
2996 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2997 {
2998 	int i, ret;
2999 
3000 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3001 
3002 	if (!set->nr_hw_queues)
3003 		return -EINVAL;
3004 	if (!set->queue_depth)
3005 		return -EINVAL;
3006 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3007 		return -EINVAL;
3008 
3009 	if (!set->ops->queue_rq)
3010 		return -EINVAL;
3011 
3012 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3013 		return -EINVAL;
3014 
3015 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3016 		pr_info("blk-mq: reduced tag depth to %u\n",
3017 			BLK_MQ_MAX_DEPTH);
3018 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3019 	}
3020 
3021 	if (!set->nr_maps)
3022 		set->nr_maps = 1;
3023 	else if (set->nr_maps > HCTX_MAX_TYPES)
3024 		return -EINVAL;
3025 
3026 	/*
3027 	 * If a crashdump is active, then we are potentially in a very
3028 	 * memory constrained environment. Limit us to 1 queue and
3029 	 * 64 tags to prevent using too much memory.
3030 	 */
3031 	if (is_kdump_kernel()) {
3032 		set->nr_hw_queues = 1;
3033 		set->nr_maps = 1;
3034 		set->queue_depth = min(64U, set->queue_depth);
3035 	}
3036 	/*
3037 	 * There is no use for more h/w queues than cpus if we just have
3038 	 * a single map
3039 	 */
3040 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3041 		set->nr_hw_queues = nr_cpu_ids;
3042 
3043 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3044 				 GFP_KERNEL, set->numa_node);
3045 	if (!set->tags)
3046 		return -ENOMEM;
3047 
3048 	ret = -ENOMEM;
3049 	for (i = 0; i < set->nr_maps; i++) {
3050 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3051 						  sizeof(set->map[i].mq_map[0]),
3052 						  GFP_KERNEL, set->numa_node);
3053 		if (!set->map[i].mq_map)
3054 			goto out_free_mq_map;
3055 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3056 	}
3057 
3058 	ret = blk_mq_update_queue_map(set);
3059 	if (ret)
3060 		goto out_free_mq_map;
3061 
3062 	ret = blk_mq_alloc_rq_maps(set);
3063 	if (ret)
3064 		goto out_free_mq_map;
3065 
3066 	mutex_init(&set->tag_list_lock);
3067 	INIT_LIST_HEAD(&set->tag_list);
3068 
3069 	return 0;
3070 
3071 out_free_mq_map:
3072 	for (i = 0; i < set->nr_maps; i++) {
3073 		kfree(set->map[i].mq_map);
3074 		set->map[i].mq_map = NULL;
3075 	}
3076 	kfree(set->tags);
3077 	set->tags = NULL;
3078 	return ret;
3079 }
3080 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3081 
3082 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3083 {
3084 	int i, j;
3085 
3086 	for (i = 0; i < nr_hw_queues(set); i++)
3087 		blk_mq_free_map_and_requests(set, i);
3088 
3089 	for (j = 0; j < set->nr_maps; j++) {
3090 		kfree(set->map[j].mq_map);
3091 		set->map[j].mq_map = NULL;
3092 	}
3093 
3094 	kfree(set->tags);
3095 	set->tags = NULL;
3096 }
3097 EXPORT_SYMBOL(blk_mq_free_tag_set);
3098 
3099 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3100 {
3101 	struct blk_mq_tag_set *set = q->tag_set;
3102 	struct blk_mq_hw_ctx *hctx;
3103 	int i, ret;
3104 
3105 	if (!set)
3106 		return -EINVAL;
3107 
3108 	if (q->nr_requests == nr)
3109 		return 0;
3110 
3111 	blk_mq_freeze_queue(q);
3112 	blk_mq_quiesce_queue(q);
3113 
3114 	ret = 0;
3115 	queue_for_each_hw_ctx(q, hctx, i) {
3116 		if (!hctx->tags)
3117 			continue;
3118 		/*
3119 		 * If we're using an MQ scheduler, just update the scheduler
3120 		 * queue depth. This is similar to what the old code would do.
3121 		 */
3122 		if (!hctx->sched_tags) {
3123 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3124 							false);
3125 		} else {
3126 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3127 							nr, true);
3128 		}
3129 		if (ret)
3130 			break;
3131 	}
3132 
3133 	if (!ret)
3134 		q->nr_requests = nr;
3135 
3136 	blk_mq_unquiesce_queue(q);
3137 	blk_mq_unfreeze_queue(q);
3138 
3139 	return ret;
3140 }
3141 
3142 /*
3143  * request_queue and elevator_type pair.
3144  * It is just used by __blk_mq_update_nr_hw_queues to cache
3145  * the elevator_type associated with a request_queue.
3146  */
3147 struct blk_mq_qe_pair {
3148 	struct list_head node;
3149 	struct request_queue *q;
3150 	struct elevator_type *type;
3151 };
3152 
3153 /*
3154  * Cache the elevator_type in qe pair list and switch the
3155  * io scheduler to 'none'
3156  */
3157 static bool blk_mq_elv_switch_none(struct list_head *head,
3158 		struct request_queue *q)
3159 {
3160 	struct blk_mq_qe_pair *qe;
3161 
3162 	if (!q->elevator)
3163 		return true;
3164 
3165 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3166 	if (!qe)
3167 		return false;
3168 
3169 	INIT_LIST_HEAD(&qe->node);
3170 	qe->q = q;
3171 	qe->type = q->elevator->type;
3172 	list_add(&qe->node, head);
3173 
3174 	mutex_lock(&q->sysfs_lock);
3175 	/*
3176 	 * After elevator_switch_mq, the previous elevator_queue will be
3177 	 * released by elevator_release. The reference of the io scheduler
3178 	 * module get by elevator_get will also be put. So we need to get
3179 	 * a reference of the io scheduler module here to prevent it to be
3180 	 * removed.
3181 	 */
3182 	__module_get(qe->type->elevator_owner);
3183 	elevator_switch_mq(q, NULL);
3184 	mutex_unlock(&q->sysfs_lock);
3185 
3186 	return true;
3187 }
3188 
3189 static void blk_mq_elv_switch_back(struct list_head *head,
3190 		struct request_queue *q)
3191 {
3192 	struct blk_mq_qe_pair *qe;
3193 	struct elevator_type *t = NULL;
3194 
3195 	list_for_each_entry(qe, head, node)
3196 		if (qe->q == q) {
3197 			t = qe->type;
3198 			break;
3199 		}
3200 
3201 	if (!t)
3202 		return;
3203 
3204 	list_del(&qe->node);
3205 	kfree(qe);
3206 
3207 	mutex_lock(&q->sysfs_lock);
3208 	elevator_switch_mq(q, t);
3209 	mutex_unlock(&q->sysfs_lock);
3210 }
3211 
3212 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3213 							int nr_hw_queues)
3214 {
3215 	struct request_queue *q;
3216 	LIST_HEAD(head);
3217 	int prev_nr_hw_queues;
3218 
3219 	lockdep_assert_held(&set->tag_list_lock);
3220 
3221 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3222 		nr_hw_queues = nr_cpu_ids;
3223 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3224 		return;
3225 
3226 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3227 		blk_mq_freeze_queue(q);
3228 	/*
3229 	 * Sync with blk_mq_queue_tag_busy_iter.
3230 	 */
3231 	synchronize_rcu();
3232 	/*
3233 	 * Switch IO scheduler to 'none', cleaning up the data associated
3234 	 * with the previous scheduler. We will switch back once we are done
3235 	 * updating the new sw to hw queue mappings.
3236 	 */
3237 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3238 		if (!blk_mq_elv_switch_none(&head, q))
3239 			goto switch_back;
3240 
3241 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3242 		blk_mq_debugfs_unregister_hctxs(q);
3243 		blk_mq_sysfs_unregister(q);
3244 	}
3245 
3246 	prev_nr_hw_queues = set->nr_hw_queues;
3247 	set->nr_hw_queues = nr_hw_queues;
3248 	blk_mq_update_queue_map(set);
3249 fallback:
3250 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3251 		blk_mq_realloc_hw_ctxs(set, q);
3252 		if (q->nr_hw_queues != set->nr_hw_queues) {
3253 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3254 					nr_hw_queues, prev_nr_hw_queues);
3255 			set->nr_hw_queues = prev_nr_hw_queues;
3256 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3257 			goto fallback;
3258 		}
3259 		blk_mq_map_swqueue(q);
3260 	}
3261 
3262 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3263 		blk_mq_sysfs_register(q);
3264 		blk_mq_debugfs_register_hctxs(q);
3265 	}
3266 
3267 switch_back:
3268 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3269 		blk_mq_elv_switch_back(&head, q);
3270 
3271 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3272 		blk_mq_unfreeze_queue(q);
3273 }
3274 
3275 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3276 {
3277 	mutex_lock(&set->tag_list_lock);
3278 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3279 	mutex_unlock(&set->tag_list_lock);
3280 }
3281 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3282 
3283 /* Enable polling stats and return whether they were already enabled. */
3284 static bool blk_poll_stats_enable(struct request_queue *q)
3285 {
3286 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3287 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3288 		return true;
3289 	blk_stat_add_callback(q, q->poll_cb);
3290 	return false;
3291 }
3292 
3293 static void blk_mq_poll_stats_start(struct request_queue *q)
3294 {
3295 	/*
3296 	 * We don't arm the callback if polling stats are not enabled or the
3297 	 * callback is already active.
3298 	 */
3299 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3300 	    blk_stat_is_active(q->poll_cb))
3301 		return;
3302 
3303 	blk_stat_activate_msecs(q->poll_cb, 100);
3304 }
3305 
3306 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3307 {
3308 	struct request_queue *q = cb->data;
3309 	int bucket;
3310 
3311 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3312 		if (cb->stat[bucket].nr_samples)
3313 			q->poll_stat[bucket] = cb->stat[bucket];
3314 	}
3315 }
3316 
3317 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3318 				       struct blk_mq_hw_ctx *hctx,
3319 				       struct request *rq)
3320 {
3321 	unsigned long ret = 0;
3322 	int bucket;
3323 
3324 	/*
3325 	 * If stats collection isn't on, don't sleep but turn it on for
3326 	 * future users
3327 	 */
3328 	if (!blk_poll_stats_enable(q))
3329 		return 0;
3330 
3331 	/*
3332 	 * As an optimistic guess, use half of the mean service time
3333 	 * for this type of request. We can (and should) make this smarter.
3334 	 * For instance, if the completion latencies are tight, we can
3335 	 * get closer than just half the mean. This is especially
3336 	 * important on devices where the completion latencies are longer
3337 	 * than ~10 usec. We do use the stats for the relevant IO size
3338 	 * if available which does lead to better estimates.
3339 	 */
3340 	bucket = blk_mq_poll_stats_bkt(rq);
3341 	if (bucket < 0)
3342 		return ret;
3343 
3344 	if (q->poll_stat[bucket].nr_samples)
3345 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3346 
3347 	return ret;
3348 }
3349 
3350 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3351 				     struct blk_mq_hw_ctx *hctx,
3352 				     struct request *rq)
3353 {
3354 	struct hrtimer_sleeper hs;
3355 	enum hrtimer_mode mode;
3356 	unsigned int nsecs;
3357 	ktime_t kt;
3358 
3359 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3360 		return false;
3361 
3362 	/*
3363 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3364 	 *
3365 	 *  0:	use half of prev avg
3366 	 * >0:	use this specific value
3367 	 */
3368 	if (q->poll_nsec > 0)
3369 		nsecs = q->poll_nsec;
3370 	else
3371 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3372 
3373 	if (!nsecs)
3374 		return false;
3375 
3376 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3377 
3378 	/*
3379 	 * This will be replaced with the stats tracking code, using
3380 	 * 'avg_completion_time / 2' as the pre-sleep target.
3381 	 */
3382 	kt = nsecs;
3383 
3384 	mode = HRTIMER_MODE_REL;
3385 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3386 	hrtimer_set_expires(&hs.timer, kt);
3387 
3388 	hrtimer_init_sleeper(&hs, current);
3389 	do {
3390 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3391 			break;
3392 		set_current_state(TASK_UNINTERRUPTIBLE);
3393 		hrtimer_start_expires(&hs.timer, mode);
3394 		if (hs.task)
3395 			io_schedule();
3396 		hrtimer_cancel(&hs.timer);
3397 		mode = HRTIMER_MODE_ABS;
3398 	} while (hs.task && !signal_pending(current));
3399 
3400 	__set_current_state(TASK_RUNNING);
3401 	destroy_hrtimer_on_stack(&hs.timer);
3402 	return true;
3403 }
3404 
3405 static bool blk_mq_poll_hybrid(struct request_queue *q,
3406 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3407 {
3408 	struct request *rq;
3409 
3410 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3411 		return false;
3412 
3413 	if (!blk_qc_t_is_internal(cookie))
3414 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3415 	else {
3416 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3417 		/*
3418 		 * With scheduling, if the request has completed, we'll
3419 		 * get a NULL return here, as we clear the sched tag when
3420 		 * that happens. The request still remains valid, like always,
3421 		 * so we should be safe with just the NULL check.
3422 		 */
3423 		if (!rq)
3424 			return false;
3425 	}
3426 
3427 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3428 }
3429 
3430 /**
3431  * blk_poll - poll for IO completions
3432  * @q:  the queue
3433  * @cookie: cookie passed back at IO submission time
3434  * @spin: whether to spin for completions
3435  *
3436  * Description:
3437  *    Poll for completions on the passed in queue. Returns number of
3438  *    completed entries found. If @spin is true, then blk_poll will continue
3439  *    looping until at least one completion is found, unless the task is
3440  *    otherwise marked running (or we need to reschedule).
3441  */
3442 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3443 {
3444 	struct blk_mq_hw_ctx *hctx;
3445 	long state;
3446 
3447 	if (!blk_qc_t_valid(cookie) ||
3448 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3449 		return 0;
3450 
3451 	if (current->plug)
3452 		blk_flush_plug_list(current->plug, false);
3453 
3454 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3455 
3456 	/*
3457 	 * If we sleep, have the caller restart the poll loop to reset
3458 	 * the state. Like for the other success return cases, the
3459 	 * caller is responsible for checking if the IO completed. If
3460 	 * the IO isn't complete, we'll get called again and will go
3461 	 * straight to the busy poll loop.
3462 	 */
3463 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3464 		return 1;
3465 
3466 	hctx->poll_considered++;
3467 
3468 	state = current->state;
3469 	do {
3470 		int ret;
3471 
3472 		hctx->poll_invoked++;
3473 
3474 		ret = q->mq_ops->poll(hctx);
3475 		if (ret > 0) {
3476 			hctx->poll_success++;
3477 			__set_current_state(TASK_RUNNING);
3478 			return ret;
3479 		}
3480 
3481 		if (signal_pending_state(state, current))
3482 			__set_current_state(TASK_RUNNING);
3483 
3484 		if (current->state == TASK_RUNNING)
3485 			return 1;
3486 		if (ret < 0 || !spin)
3487 			break;
3488 		cpu_relax();
3489 	} while (!need_resched());
3490 
3491 	__set_current_state(TASK_RUNNING);
3492 	return 0;
3493 }
3494 EXPORT_SYMBOL_GPL(blk_poll);
3495 
3496 unsigned int blk_mq_rq_cpu(struct request *rq)
3497 {
3498 	return rq->mq_ctx->cpu;
3499 }
3500 EXPORT_SYMBOL(blk_mq_rq_cpu);
3501 
3502 static int __init blk_mq_init(void)
3503 {
3504 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3505 				blk_mq_hctx_notify_dead);
3506 	return 0;
3507 }
3508 subsys_initcall(blk_mq_init);
3509