1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 46 static void blk_mq_poll_stats_start(struct request_queue *q); 47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49 static int blk_mq_poll_stats_bkt(const struct request *rq) 50 { 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64 } 65 66 /* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71 { 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75 } 76 77 /* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87 } 88 89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91 { 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95 } 96 97 struct mq_inflight { 98 struct block_device *part; 99 unsigned int inflight[2]; 100 }; 101 102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105 { 106 struct mq_inflight *mi = priv; 107 108 if ((!mi->part->bd_partno || rq->part == mi->part) && 109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 110 mi->inflight[rq_data_dir(rq)]++; 111 112 return true; 113 } 114 115 unsigned int blk_mq_in_flight(struct request_queue *q, 116 struct block_device *part) 117 { 118 struct mq_inflight mi = { .part = part }; 119 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 121 122 return mi.inflight[0] + mi.inflight[1]; 123 } 124 125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 126 unsigned int inflight[2]) 127 { 128 struct mq_inflight mi = { .part = part }; 129 130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 131 inflight[0] = mi.inflight[0]; 132 inflight[1] = mi.inflight[1]; 133 } 134 135 void blk_freeze_queue_start(struct request_queue *q) 136 { 137 mutex_lock(&q->mq_freeze_lock); 138 if (++q->mq_freeze_depth == 1) { 139 percpu_ref_kill(&q->q_usage_counter); 140 mutex_unlock(&q->mq_freeze_lock); 141 if (queue_is_mq(q)) 142 blk_mq_run_hw_queues(q, false); 143 } else { 144 mutex_unlock(&q->mq_freeze_lock); 145 } 146 } 147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 148 149 void blk_mq_freeze_queue_wait(struct request_queue *q) 150 { 151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 154 155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 156 unsigned long timeout) 157 { 158 return wait_event_timeout(q->mq_freeze_wq, 159 percpu_ref_is_zero(&q->q_usage_counter), 160 timeout); 161 } 162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 163 164 /* 165 * Guarantee no request is in use, so we can change any data structure of 166 * the queue afterward. 167 */ 168 void blk_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * In the !blk_mq case we are only calling this to kill the 172 * q_usage_counter, otherwise this increases the freeze depth 173 * and waits for it to return to zero. For this reason there is 174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 175 * exported to drivers as the only user for unfreeze is blk_mq. 176 */ 177 blk_freeze_queue_start(q); 178 blk_mq_freeze_queue_wait(q); 179 } 180 181 void blk_mq_freeze_queue(struct request_queue *q) 182 { 183 /* 184 * ...just an alias to keep freeze and unfreeze actions balanced 185 * in the blk_mq_* namespace 186 */ 187 blk_freeze_queue(q); 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 190 191 void blk_mq_unfreeze_queue(struct request_queue *q) 192 { 193 mutex_lock(&q->mq_freeze_lock); 194 q->mq_freeze_depth--; 195 WARN_ON_ONCE(q->mq_freeze_depth < 0); 196 if (!q->mq_freeze_depth) { 197 percpu_ref_resurrect(&q->q_usage_counter); 198 wake_up_all(&q->mq_freeze_wq); 199 } 200 mutex_unlock(&q->mq_freeze_lock); 201 } 202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 203 204 /* 205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 206 * mpt3sas driver such that this function can be removed. 207 */ 208 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 209 { 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 216 * @q: request queue. 217 * 218 * Note: this function does not prevent that the struct request end_io() 219 * callback function is invoked. Once this function is returned, we make 220 * sure no dispatch can happen until the queue is unquiesced via 221 * blk_mq_unquiesce_queue(). 222 */ 223 void blk_mq_quiesce_queue(struct request_queue *q) 224 { 225 struct blk_mq_hw_ctx *hctx; 226 unsigned int i; 227 bool rcu = false; 228 229 blk_mq_quiesce_queue_nowait(q); 230 231 queue_for_each_hw_ctx(q, hctx, i) { 232 if (hctx->flags & BLK_MQ_F_BLOCKING) 233 synchronize_srcu(hctx->srcu); 234 else 235 rcu = true; 236 } 237 if (rcu) 238 synchronize_rcu(); 239 } 240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 241 242 /* 243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 244 * @q: request queue. 245 * 246 * This function recovers queue into the state before quiescing 247 * which is done by blk_mq_quiesce_queue. 248 */ 249 void blk_mq_unquiesce_queue(struct request_queue *q) 250 { 251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 252 253 /* dispatch requests which are inserted during quiescing */ 254 blk_mq_run_hw_queues(q, true); 255 } 256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 257 258 void blk_mq_wake_waiters(struct request_queue *q) 259 { 260 struct blk_mq_hw_ctx *hctx; 261 unsigned int i; 262 263 queue_for_each_hw_ctx(q, hctx, i) 264 if (blk_mq_hw_queue_mapped(hctx)) 265 blk_mq_tag_wakeup_all(hctx->tags, true); 266 } 267 268 /* 269 * Only need start/end time stamping if we have iostat or 270 * blk stats enabled, or using an IO scheduler. 271 */ 272 static inline bool blk_mq_need_time_stamp(struct request *rq) 273 { 274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 275 } 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, u64 alloc_time_ns) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 283 if (data->q->elevator) { 284 rq->tag = BLK_MQ_NO_TAG; 285 rq->internal_tag = tag; 286 } else { 287 rq->tag = tag; 288 rq->internal_tag = BLK_MQ_NO_TAG; 289 } 290 291 /* csd/requeue_work/fifo_time is initialized before use */ 292 rq->q = data->q; 293 rq->mq_ctx = data->ctx; 294 rq->mq_hctx = data->hctx; 295 rq->rq_flags = 0; 296 rq->cmd_flags = data->cmd_flags; 297 if (data->flags & BLK_MQ_REQ_PM) 298 rq->rq_flags |= RQF_PM; 299 if (blk_queue_io_stat(data->q)) 300 rq->rq_flags |= RQF_IO_STAT; 301 INIT_LIST_HEAD(&rq->queuelist); 302 INIT_HLIST_NODE(&rq->hash); 303 RB_CLEAR_NODE(&rq->rb_node); 304 rq->rq_disk = NULL; 305 rq->part = NULL; 306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 307 rq->alloc_time_ns = alloc_time_ns; 308 #endif 309 if (blk_mq_need_time_stamp(rq)) 310 rq->start_time_ns = ktime_get_ns(); 311 else 312 rq->start_time_ns = 0; 313 rq->io_start_time_ns = 0; 314 rq->stats_sectors = 0; 315 rq->nr_phys_segments = 0; 316 #if defined(CONFIG_BLK_DEV_INTEGRITY) 317 rq->nr_integrity_segments = 0; 318 #endif 319 blk_crypto_rq_set_defaults(rq); 320 /* tag was already set */ 321 WRITE_ONCE(rq->deadline, 0); 322 323 rq->timeout = 0; 324 325 rq->end_io = NULL; 326 rq->end_io_data = NULL; 327 328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 329 refcount_set(&rq->ref, 1); 330 331 if (!op_is_flush(data->cmd_flags)) { 332 struct elevator_queue *e = data->q->elevator; 333 334 rq->elv.icq = NULL; 335 if (e && e->type->ops.prepare_request) { 336 if (e->type->icq_cache) 337 blk_mq_sched_assign_ioc(rq); 338 339 e->type->ops.prepare_request(rq); 340 rq->rq_flags |= RQF_ELVPRIV; 341 } 342 } 343 344 data->hctx->queued++; 345 return rq; 346 } 347 348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 349 { 350 struct request_queue *q = data->q; 351 struct elevator_queue *e = q->elevator; 352 u64 alloc_time_ns = 0; 353 unsigned int tag; 354 355 /* alloc_time includes depth and tag waits */ 356 if (blk_queue_rq_alloc_time(q)) 357 alloc_time_ns = ktime_get_ns(); 358 359 if (data->cmd_flags & REQ_NOWAIT) 360 data->flags |= BLK_MQ_REQ_NOWAIT; 361 362 if (e) { 363 /* 364 * Flush/passthrough requests are special and go directly to the 365 * dispatch list. Don't include reserved tags in the 366 * limiting, as it isn't useful. 367 */ 368 if (!op_is_flush(data->cmd_flags) && 369 !blk_op_is_passthrough(data->cmd_flags) && 370 e->type->ops.limit_depth && 371 !(data->flags & BLK_MQ_REQ_RESERVED)) 372 e->type->ops.limit_depth(data->cmd_flags, data); 373 } 374 375 retry: 376 data->ctx = blk_mq_get_ctx(q); 377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 378 if (!e) 379 blk_mq_tag_busy(data->hctx); 380 381 /* 382 * Waiting allocations only fail because of an inactive hctx. In that 383 * case just retry the hctx assignment and tag allocation as CPU hotplug 384 * should have migrated us to an online CPU by now. 385 */ 386 tag = blk_mq_get_tag(data); 387 if (tag == BLK_MQ_NO_TAG) { 388 if (data->flags & BLK_MQ_REQ_NOWAIT) 389 return NULL; 390 391 /* 392 * Give up the CPU and sleep for a random short time to ensure 393 * that thread using a realtime scheduling class are migrated 394 * off the CPU, and thus off the hctx that is going away. 395 */ 396 msleep(3); 397 goto retry; 398 } 399 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 400 } 401 402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 403 blk_mq_req_flags_t flags) 404 { 405 struct blk_mq_alloc_data data = { 406 .q = q, 407 .flags = flags, 408 .cmd_flags = op, 409 }; 410 struct request *rq; 411 int ret; 412 413 ret = blk_queue_enter(q, flags); 414 if (ret) 415 return ERR_PTR(ret); 416 417 rq = __blk_mq_alloc_request(&data); 418 if (!rq) 419 goto out_queue_exit; 420 rq->__data_len = 0; 421 rq->__sector = (sector_t) -1; 422 rq->bio = rq->biotail = NULL; 423 return rq; 424 out_queue_exit: 425 blk_queue_exit(q); 426 return ERR_PTR(-EWOULDBLOCK); 427 } 428 EXPORT_SYMBOL(blk_mq_alloc_request); 429 430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 431 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 432 { 433 struct blk_mq_alloc_data data = { 434 .q = q, 435 .flags = flags, 436 .cmd_flags = op, 437 }; 438 u64 alloc_time_ns = 0; 439 unsigned int cpu; 440 unsigned int tag; 441 int ret; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 /* 448 * If the tag allocator sleeps we could get an allocation for a 449 * different hardware context. No need to complicate the low level 450 * allocator for this for the rare use case of a command tied to 451 * a specific queue. 452 */ 453 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 454 return ERR_PTR(-EINVAL); 455 456 if (hctx_idx >= q->nr_hw_queues) 457 return ERR_PTR(-EIO); 458 459 ret = blk_queue_enter(q, flags); 460 if (ret) 461 return ERR_PTR(ret); 462 463 /* 464 * Check if the hardware context is actually mapped to anything. 465 * If not tell the caller that it should skip this queue. 466 */ 467 ret = -EXDEV; 468 data.hctx = q->queue_hw_ctx[hctx_idx]; 469 if (!blk_mq_hw_queue_mapped(data.hctx)) 470 goto out_queue_exit; 471 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 472 data.ctx = __blk_mq_get_ctx(q, cpu); 473 474 if (!q->elevator) 475 blk_mq_tag_busy(data.hctx); 476 477 ret = -EWOULDBLOCK; 478 tag = blk_mq_get_tag(&data); 479 if (tag == BLK_MQ_NO_TAG) 480 goto out_queue_exit; 481 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 482 483 out_queue_exit: 484 blk_queue_exit(q); 485 return ERR_PTR(ret); 486 } 487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 488 489 static void __blk_mq_free_request(struct request *rq) 490 { 491 struct request_queue *q = rq->q; 492 struct blk_mq_ctx *ctx = rq->mq_ctx; 493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 494 const int sched_tag = rq->internal_tag; 495 496 blk_crypto_free_request(rq); 497 blk_pm_mark_last_busy(rq); 498 rq->mq_hctx = NULL; 499 if (rq->tag != BLK_MQ_NO_TAG) 500 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 501 if (sched_tag != BLK_MQ_NO_TAG) 502 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 503 blk_mq_sched_restart(hctx); 504 blk_queue_exit(q); 505 } 506 507 void blk_mq_free_request(struct request *rq) 508 { 509 struct request_queue *q = rq->q; 510 struct elevator_queue *e = q->elevator; 511 struct blk_mq_ctx *ctx = rq->mq_ctx; 512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 513 514 if (rq->rq_flags & RQF_ELVPRIV) { 515 if (e && e->type->ops.finish_request) 516 e->type->ops.finish_request(rq); 517 if (rq->elv.icq) { 518 put_io_context(rq->elv.icq->ioc); 519 rq->elv.icq = NULL; 520 } 521 } 522 523 ctx->rq_completed[rq_is_sync(rq)]++; 524 if (rq->rq_flags & RQF_MQ_INFLIGHT) 525 __blk_mq_dec_active_requests(hctx); 526 527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 528 laptop_io_completion(q->backing_dev_info); 529 530 rq_qos_done(q, rq); 531 532 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 533 if (refcount_dec_and_test(&rq->ref)) 534 __blk_mq_free_request(rq); 535 } 536 EXPORT_SYMBOL_GPL(blk_mq_free_request); 537 538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 539 { 540 u64 now = 0; 541 542 if (blk_mq_need_time_stamp(rq)) 543 now = ktime_get_ns(); 544 545 if (rq->rq_flags & RQF_STATS) { 546 blk_mq_poll_stats_start(rq->q); 547 blk_stat_add(rq, now); 548 } 549 550 blk_mq_sched_completed_request(rq, now); 551 552 blk_account_io_done(rq, now); 553 554 if (rq->end_io) { 555 rq_qos_done(rq->q, rq); 556 rq->end_io(rq, error); 557 } else { 558 blk_mq_free_request(rq); 559 } 560 } 561 EXPORT_SYMBOL(__blk_mq_end_request); 562 563 void blk_mq_end_request(struct request *rq, blk_status_t error) 564 { 565 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 566 BUG(); 567 __blk_mq_end_request(rq, error); 568 } 569 EXPORT_SYMBOL(blk_mq_end_request); 570 571 static void blk_complete_reqs(struct llist_head *list) 572 { 573 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 574 struct request *rq, *next; 575 576 llist_for_each_entry_safe(rq, next, entry, ipi_list) 577 rq->q->mq_ops->complete(rq); 578 } 579 580 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 581 { 582 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 583 } 584 585 static int blk_softirq_cpu_dead(unsigned int cpu) 586 { 587 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 588 return 0; 589 } 590 591 static void __blk_mq_complete_request_remote(void *data) 592 { 593 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 594 } 595 596 static inline bool blk_mq_complete_need_ipi(struct request *rq) 597 { 598 int cpu = raw_smp_processor_id(); 599 600 if (!IS_ENABLED(CONFIG_SMP) || 601 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 602 return false; 603 /* 604 * With force threaded interrupts enabled, raising softirq from an SMP 605 * function call will always result in waking the ksoftirqd thread. 606 * This is probably worse than completing the request on a different 607 * cache domain. 608 */ 609 if (force_irqthreads) 610 return false; 611 612 /* same CPU or cache domain? Complete locally */ 613 if (cpu == rq->mq_ctx->cpu || 614 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 615 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 616 return false; 617 618 /* don't try to IPI to an offline CPU */ 619 return cpu_online(rq->mq_ctx->cpu); 620 } 621 622 static void blk_mq_complete_send_ipi(struct request *rq) 623 { 624 struct llist_head *list; 625 unsigned int cpu; 626 627 cpu = rq->mq_ctx->cpu; 628 list = &per_cpu(blk_cpu_done, cpu); 629 if (llist_add(&rq->ipi_list, list)) { 630 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 631 smp_call_function_single_async(cpu, &rq->csd); 632 } 633 } 634 635 static void blk_mq_raise_softirq(struct request *rq) 636 { 637 struct llist_head *list; 638 639 preempt_disable(); 640 list = this_cpu_ptr(&blk_cpu_done); 641 if (llist_add(&rq->ipi_list, list)) 642 raise_softirq(BLOCK_SOFTIRQ); 643 preempt_enable(); 644 } 645 646 bool blk_mq_complete_request_remote(struct request *rq) 647 { 648 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 649 650 /* 651 * For a polled request, always complete locallly, it's pointless 652 * to redirect the completion. 653 */ 654 if (rq->cmd_flags & REQ_HIPRI) 655 return false; 656 657 if (blk_mq_complete_need_ipi(rq)) { 658 blk_mq_complete_send_ipi(rq); 659 return true; 660 } 661 662 if (rq->q->nr_hw_queues == 1) { 663 blk_mq_raise_softirq(rq); 664 return true; 665 } 666 return false; 667 } 668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 669 670 /** 671 * blk_mq_complete_request - end I/O on a request 672 * @rq: the request being processed 673 * 674 * Description: 675 * Complete a request by scheduling the ->complete_rq operation. 676 **/ 677 void blk_mq_complete_request(struct request *rq) 678 { 679 if (!blk_mq_complete_request_remote(rq)) 680 rq->q->mq_ops->complete(rq); 681 } 682 EXPORT_SYMBOL(blk_mq_complete_request); 683 684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 685 __releases(hctx->srcu) 686 { 687 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 688 rcu_read_unlock(); 689 else 690 srcu_read_unlock(hctx->srcu, srcu_idx); 691 } 692 693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 694 __acquires(hctx->srcu) 695 { 696 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 697 /* shut up gcc false positive */ 698 *srcu_idx = 0; 699 rcu_read_lock(); 700 } else 701 *srcu_idx = srcu_read_lock(hctx->srcu); 702 } 703 704 /** 705 * blk_mq_start_request - Start processing a request 706 * @rq: Pointer to request to be started 707 * 708 * Function used by device drivers to notify the block layer that a request 709 * is going to be processed now, so blk layer can do proper initializations 710 * such as starting the timeout timer. 711 */ 712 void blk_mq_start_request(struct request *rq) 713 { 714 struct request_queue *q = rq->q; 715 716 trace_block_rq_issue(rq); 717 718 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 719 rq->io_start_time_ns = ktime_get_ns(); 720 rq->stats_sectors = blk_rq_sectors(rq); 721 rq->rq_flags |= RQF_STATS; 722 rq_qos_issue(q, rq); 723 } 724 725 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 726 727 blk_add_timer(rq); 728 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 729 730 #ifdef CONFIG_BLK_DEV_INTEGRITY 731 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 732 q->integrity.profile->prepare_fn(rq); 733 #endif 734 } 735 EXPORT_SYMBOL(blk_mq_start_request); 736 737 static void __blk_mq_requeue_request(struct request *rq) 738 { 739 struct request_queue *q = rq->q; 740 741 blk_mq_put_driver_tag(rq); 742 743 trace_block_rq_requeue(rq); 744 rq_qos_requeue(q, rq); 745 746 if (blk_mq_request_started(rq)) { 747 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 748 rq->rq_flags &= ~RQF_TIMED_OUT; 749 } 750 } 751 752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 753 { 754 __blk_mq_requeue_request(rq); 755 756 /* this request will be re-inserted to io scheduler queue */ 757 blk_mq_sched_requeue_request(rq); 758 759 BUG_ON(!list_empty(&rq->queuelist)); 760 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 761 } 762 EXPORT_SYMBOL(blk_mq_requeue_request); 763 764 static void blk_mq_requeue_work(struct work_struct *work) 765 { 766 struct request_queue *q = 767 container_of(work, struct request_queue, requeue_work.work); 768 LIST_HEAD(rq_list); 769 struct request *rq, *next; 770 771 spin_lock_irq(&q->requeue_lock); 772 list_splice_init(&q->requeue_list, &rq_list); 773 spin_unlock_irq(&q->requeue_lock); 774 775 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 776 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 777 continue; 778 779 rq->rq_flags &= ~RQF_SOFTBARRIER; 780 list_del_init(&rq->queuelist); 781 /* 782 * If RQF_DONTPREP, rq has contained some driver specific 783 * data, so insert it to hctx dispatch list to avoid any 784 * merge. 785 */ 786 if (rq->rq_flags & RQF_DONTPREP) 787 blk_mq_request_bypass_insert(rq, false, false); 788 else 789 blk_mq_sched_insert_request(rq, true, false, false); 790 } 791 792 while (!list_empty(&rq_list)) { 793 rq = list_entry(rq_list.next, struct request, queuelist); 794 list_del_init(&rq->queuelist); 795 blk_mq_sched_insert_request(rq, false, false, false); 796 } 797 798 blk_mq_run_hw_queues(q, false); 799 } 800 801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 802 bool kick_requeue_list) 803 { 804 struct request_queue *q = rq->q; 805 unsigned long flags; 806 807 /* 808 * We abuse this flag that is otherwise used by the I/O scheduler to 809 * request head insertion from the workqueue. 810 */ 811 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 812 813 spin_lock_irqsave(&q->requeue_lock, flags); 814 if (at_head) { 815 rq->rq_flags |= RQF_SOFTBARRIER; 816 list_add(&rq->queuelist, &q->requeue_list); 817 } else { 818 list_add_tail(&rq->queuelist, &q->requeue_list); 819 } 820 spin_unlock_irqrestore(&q->requeue_lock, flags); 821 822 if (kick_requeue_list) 823 blk_mq_kick_requeue_list(q); 824 } 825 826 void blk_mq_kick_requeue_list(struct request_queue *q) 827 { 828 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 829 } 830 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 831 832 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 833 unsigned long msecs) 834 { 835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 836 msecs_to_jiffies(msecs)); 837 } 838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 839 840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 841 { 842 if (tag < tags->nr_tags) { 843 prefetch(tags->rqs[tag]); 844 return tags->rqs[tag]; 845 } 846 847 return NULL; 848 } 849 EXPORT_SYMBOL(blk_mq_tag_to_rq); 850 851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 852 void *priv, bool reserved) 853 { 854 /* 855 * If we find a request that isn't idle and the queue matches, 856 * we know the queue is busy. Return false to stop the iteration. 857 */ 858 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 859 bool *busy = priv; 860 861 *busy = true; 862 return false; 863 } 864 865 return true; 866 } 867 868 bool blk_mq_queue_inflight(struct request_queue *q) 869 { 870 bool busy = false; 871 872 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 873 return busy; 874 } 875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 876 877 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 878 { 879 req->rq_flags |= RQF_TIMED_OUT; 880 if (req->q->mq_ops->timeout) { 881 enum blk_eh_timer_return ret; 882 883 ret = req->q->mq_ops->timeout(req, reserved); 884 if (ret == BLK_EH_DONE) 885 return; 886 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 887 } 888 889 blk_add_timer(req); 890 } 891 892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 893 { 894 unsigned long deadline; 895 896 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 897 return false; 898 if (rq->rq_flags & RQF_TIMED_OUT) 899 return false; 900 901 deadline = READ_ONCE(rq->deadline); 902 if (time_after_eq(jiffies, deadline)) 903 return true; 904 905 if (*next == 0) 906 *next = deadline; 907 else if (time_after(*next, deadline)) 908 *next = deadline; 909 return false; 910 } 911 912 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 913 struct request *rq, void *priv, bool reserved) 914 { 915 unsigned long *next = priv; 916 917 /* 918 * Just do a quick check if it is expired before locking the request in 919 * so we're not unnecessarilly synchronizing across CPUs. 920 */ 921 if (!blk_mq_req_expired(rq, next)) 922 return true; 923 924 /* 925 * We have reason to believe the request may be expired. Take a 926 * reference on the request to lock this request lifetime into its 927 * currently allocated context to prevent it from being reallocated in 928 * the event the completion by-passes this timeout handler. 929 * 930 * If the reference was already released, then the driver beat the 931 * timeout handler to posting a natural completion. 932 */ 933 if (!refcount_inc_not_zero(&rq->ref)) 934 return true; 935 936 /* 937 * The request is now locked and cannot be reallocated underneath the 938 * timeout handler's processing. Re-verify this exact request is truly 939 * expired; if it is not expired, then the request was completed and 940 * reallocated as a new request. 941 */ 942 if (blk_mq_req_expired(rq, next)) 943 blk_mq_rq_timed_out(rq, reserved); 944 945 if (is_flush_rq(rq, hctx)) 946 rq->end_io(rq, 0); 947 else if (refcount_dec_and_test(&rq->ref)) 948 __blk_mq_free_request(rq); 949 950 return true; 951 } 952 953 static void blk_mq_timeout_work(struct work_struct *work) 954 { 955 struct request_queue *q = 956 container_of(work, struct request_queue, timeout_work); 957 unsigned long next = 0; 958 struct blk_mq_hw_ctx *hctx; 959 int i; 960 961 /* A deadlock might occur if a request is stuck requiring a 962 * timeout at the same time a queue freeze is waiting 963 * completion, since the timeout code would not be able to 964 * acquire the queue reference here. 965 * 966 * That's why we don't use blk_queue_enter here; instead, we use 967 * percpu_ref_tryget directly, because we need to be able to 968 * obtain a reference even in the short window between the queue 969 * starting to freeze, by dropping the first reference in 970 * blk_freeze_queue_start, and the moment the last request is 971 * consumed, marked by the instant q_usage_counter reaches 972 * zero. 973 */ 974 if (!percpu_ref_tryget(&q->q_usage_counter)) 975 return; 976 977 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 978 979 if (next != 0) { 980 mod_timer(&q->timeout, next); 981 } else { 982 /* 983 * Request timeouts are handled as a forward rolling timer. If 984 * we end up here it means that no requests are pending and 985 * also that no request has been pending for a while. Mark 986 * each hctx as idle. 987 */ 988 queue_for_each_hw_ctx(q, hctx, i) { 989 /* the hctx may be unmapped, so check it here */ 990 if (blk_mq_hw_queue_mapped(hctx)) 991 blk_mq_tag_idle(hctx); 992 } 993 } 994 blk_queue_exit(q); 995 } 996 997 struct flush_busy_ctx_data { 998 struct blk_mq_hw_ctx *hctx; 999 struct list_head *list; 1000 }; 1001 1002 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1003 { 1004 struct flush_busy_ctx_data *flush_data = data; 1005 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1006 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1007 enum hctx_type type = hctx->type; 1008 1009 spin_lock(&ctx->lock); 1010 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1011 sbitmap_clear_bit(sb, bitnr); 1012 spin_unlock(&ctx->lock); 1013 return true; 1014 } 1015 1016 /* 1017 * Process software queues that have been marked busy, splicing them 1018 * to the for-dispatch 1019 */ 1020 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1021 { 1022 struct flush_busy_ctx_data data = { 1023 .hctx = hctx, 1024 .list = list, 1025 }; 1026 1027 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1028 } 1029 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1030 1031 struct dispatch_rq_data { 1032 struct blk_mq_hw_ctx *hctx; 1033 struct request *rq; 1034 }; 1035 1036 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1037 void *data) 1038 { 1039 struct dispatch_rq_data *dispatch_data = data; 1040 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1041 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1042 enum hctx_type type = hctx->type; 1043 1044 spin_lock(&ctx->lock); 1045 if (!list_empty(&ctx->rq_lists[type])) { 1046 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1047 list_del_init(&dispatch_data->rq->queuelist); 1048 if (list_empty(&ctx->rq_lists[type])) 1049 sbitmap_clear_bit(sb, bitnr); 1050 } 1051 spin_unlock(&ctx->lock); 1052 1053 return !dispatch_data->rq; 1054 } 1055 1056 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1057 struct blk_mq_ctx *start) 1058 { 1059 unsigned off = start ? start->index_hw[hctx->type] : 0; 1060 struct dispatch_rq_data data = { 1061 .hctx = hctx, 1062 .rq = NULL, 1063 }; 1064 1065 __sbitmap_for_each_set(&hctx->ctx_map, off, 1066 dispatch_rq_from_ctx, &data); 1067 1068 return data.rq; 1069 } 1070 1071 static inline unsigned int queued_to_index(unsigned int queued) 1072 { 1073 if (!queued) 1074 return 0; 1075 1076 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1077 } 1078 1079 static bool __blk_mq_get_driver_tag(struct request *rq) 1080 { 1081 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1082 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1083 int tag; 1084 1085 blk_mq_tag_busy(rq->mq_hctx); 1086 1087 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1088 bt = rq->mq_hctx->tags->breserved_tags; 1089 tag_offset = 0; 1090 } else { 1091 if (!hctx_may_queue(rq->mq_hctx, bt)) 1092 return false; 1093 } 1094 1095 tag = __sbitmap_queue_get(bt); 1096 if (tag == BLK_MQ_NO_TAG) 1097 return false; 1098 1099 rq->tag = tag + tag_offset; 1100 return true; 1101 } 1102 1103 static bool blk_mq_get_driver_tag(struct request *rq) 1104 { 1105 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1106 1107 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1108 return false; 1109 1110 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1111 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1112 rq->rq_flags |= RQF_MQ_INFLIGHT; 1113 __blk_mq_inc_active_requests(hctx); 1114 } 1115 hctx->tags->rqs[rq->tag] = rq; 1116 return true; 1117 } 1118 1119 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1120 int flags, void *key) 1121 { 1122 struct blk_mq_hw_ctx *hctx; 1123 1124 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1125 1126 spin_lock(&hctx->dispatch_wait_lock); 1127 if (!list_empty(&wait->entry)) { 1128 struct sbitmap_queue *sbq; 1129 1130 list_del_init(&wait->entry); 1131 sbq = hctx->tags->bitmap_tags; 1132 atomic_dec(&sbq->ws_active); 1133 } 1134 spin_unlock(&hctx->dispatch_wait_lock); 1135 1136 blk_mq_run_hw_queue(hctx, true); 1137 return 1; 1138 } 1139 1140 /* 1141 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1142 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1143 * restart. For both cases, take care to check the condition again after 1144 * marking us as waiting. 1145 */ 1146 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1147 struct request *rq) 1148 { 1149 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1150 struct wait_queue_head *wq; 1151 wait_queue_entry_t *wait; 1152 bool ret; 1153 1154 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1155 blk_mq_sched_mark_restart_hctx(hctx); 1156 1157 /* 1158 * It's possible that a tag was freed in the window between the 1159 * allocation failure and adding the hardware queue to the wait 1160 * queue. 1161 * 1162 * Don't clear RESTART here, someone else could have set it. 1163 * At most this will cost an extra queue run. 1164 */ 1165 return blk_mq_get_driver_tag(rq); 1166 } 1167 1168 wait = &hctx->dispatch_wait; 1169 if (!list_empty_careful(&wait->entry)) 1170 return false; 1171 1172 wq = &bt_wait_ptr(sbq, hctx)->wait; 1173 1174 spin_lock_irq(&wq->lock); 1175 spin_lock(&hctx->dispatch_wait_lock); 1176 if (!list_empty(&wait->entry)) { 1177 spin_unlock(&hctx->dispatch_wait_lock); 1178 spin_unlock_irq(&wq->lock); 1179 return false; 1180 } 1181 1182 atomic_inc(&sbq->ws_active); 1183 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1184 __add_wait_queue(wq, wait); 1185 1186 /* 1187 * It's possible that a tag was freed in the window between the 1188 * allocation failure and adding the hardware queue to the wait 1189 * queue. 1190 */ 1191 ret = blk_mq_get_driver_tag(rq); 1192 if (!ret) { 1193 spin_unlock(&hctx->dispatch_wait_lock); 1194 spin_unlock_irq(&wq->lock); 1195 return false; 1196 } 1197 1198 /* 1199 * We got a tag, remove ourselves from the wait queue to ensure 1200 * someone else gets the wakeup. 1201 */ 1202 list_del_init(&wait->entry); 1203 atomic_dec(&sbq->ws_active); 1204 spin_unlock(&hctx->dispatch_wait_lock); 1205 spin_unlock_irq(&wq->lock); 1206 1207 return true; 1208 } 1209 1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1211 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1212 /* 1213 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1214 * - EWMA is one simple way to compute running average value 1215 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1216 * - take 4 as factor for avoiding to get too small(0) result, and this 1217 * factor doesn't matter because EWMA decreases exponentially 1218 */ 1219 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1220 { 1221 unsigned int ewma; 1222 1223 if (hctx->queue->elevator) 1224 return; 1225 1226 ewma = hctx->dispatch_busy; 1227 1228 if (!ewma && !busy) 1229 return; 1230 1231 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1232 if (busy) 1233 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1234 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1235 1236 hctx->dispatch_busy = ewma; 1237 } 1238 1239 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1240 1241 static void blk_mq_handle_dev_resource(struct request *rq, 1242 struct list_head *list) 1243 { 1244 struct request *next = 1245 list_first_entry_or_null(list, struct request, queuelist); 1246 1247 /* 1248 * If an I/O scheduler has been configured and we got a driver tag for 1249 * the next request already, free it. 1250 */ 1251 if (next) 1252 blk_mq_put_driver_tag(next); 1253 1254 list_add(&rq->queuelist, list); 1255 __blk_mq_requeue_request(rq); 1256 } 1257 1258 static void blk_mq_handle_zone_resource(struct request *rq, 1259 struct list_head *zone_list) 1260 { 1261 /* 1262 * If we end up here it is because we cannot dispatch a request to a 1263 * specific zone due to LLD level zone-write locking or other zone 1264 * related resource not being available. In this case, set the request 1265 * aside in zone_list for retrying it later. 1266 */ 1267 list_add(&rq->queuelist, zone_list); 1268 __blk_mq_requeue_request(rq); 1269 } 1270 1271 enum prep_dispatch { 1272 PREP_DISPATCH_OK, 1273 PREP_DISPATCH_NO_TAG, 1274 PREP_DISPATCH_NO_BUDGET, 1275 }; 1276 1277 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1278 bool need_budget) 1279 { 1280 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1281 int budget_token = -1; 1282 1283 if (need_budget) { 1284 budget_token = blk_mq_get_dispatch_budget(rq->q); 1285 if (budget_token < 0) { 1286 blk_mq_put_driver_tag(rq); 1287 return PREP_DISPATCH_NO_BUDGET; 1288 } 1289 blk_mq_set_rq_budget_token(rq, budget_token); 1290 } 1291 1292 if (!blk_mq_get_driver_tag(rq)) { 1293 /* 1294 * The initial allocation attempt failed, so we need to 1295 * rerun the hardware queue when a tag is freed. The 1296 * waitqueue takes care of that. If the queue is run 1297 * before we add this entry back on the dispatch list, 1298 * we'll re-run it below. 1299 */ 1300 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1301 /* 1302 * All budgets not got from this function will be put 1303 * together during handling partial dispatch 1304 */ 1305 if (need_budget) 1306 blk_mq_put_dispatch_budget(rq->q, budget_token); 1307 return PREP_DISPATCH_NO_TAG; 1308 } 1309 } 1310 1311 return PREP_DISPATCH_OK; 1312 } 1313 1314 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1315 static void blk_mq_release_budgets(struct request_queue *q, 1316 struct list_head *list) 1317 { 1318 struct request *rq; 1319 1320 list_for_each_entry(rq, list, queuelist) { 1321 int budget_token = blk_mq_get_rq_budget_token(rq); 1322 1323 if (budget_token >= 0) 1324 blk_mq_put_dispatch_budget(q, budget_token); 1325 } 1326 } 1327 1328 /* 1329 * Returns true if we did some work AND can potentially do more. 1330 */ 1331 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1332 unsigned int nr_budgets) 1333 { 1334 enum prep_dispatch prep; 1335 struct request_queue *q = hctx->queue; 1336 struct request *rq, *nxt; 1337 int errors, queued; 1338 blk_status_t ret = BLK_STS_OK; 1339 LIST_HEAD(zone_list); 1340 1341 if (list_empty(list)) 1342 return false; 1343 1344 /* 1345 * Now process all the entries, sending them to the driver. 1346 */ 1347 errors = queued = 0; 1348 do { 1349 struct blk_mq_queue_data bd; 1350 1351 rq = list_first_entry(list, struct request, queuelist); 1352 1353 WARN_ON_ONCE(hctx != rq->mq_hctx); 1354 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1355 if (prep != PREP_DISPATCH_OK) 1356 break; 1357 1358 list_del_init(&rq->queuelist); 1359 1360 bd.rq = rq; 1361 1362 /* 1363 * Flag last if we have no more requests, or if we have more 1364 * but can't assign a driver tag to it. 1365 */ 1366 if (list_empty(list)) 1367 bd.last = true; 1368 else { 1369 nxt = list_first_entry(list, struct request, queuelist); 1370 bd.last = !blk_mq_get_driver_tag(nxt); 1371 } 1372 1373 /* 1374 * once the request is queued to lld, no need to cover the 1375 * budget any more 1376 */ 1377 if (nr_budgets) 1378 nr_budgets--; 1379 ret = q->mq_ops->queue_rq(hctx, &bd); 1380 switch (ret) { 1381 case BLK_STS_OK: 1382 queued++; 1383 break; 1384 case BLK_STS_RESOURCE: 1385 case BLK_STS_DEV_RESOURCE: 1386 blk_mq_handle_dev_resource(rq, list); 1387 goto out; 1388 case BLK_STS_ZONE_RESOURCE: 1389 /* 1390 * Move the request to zone_list and keep going through 1391 * the dispatch list to find more requests the drive can 1392 * accept. 1393 */ 1394 blk_mq_handle_zone_resource(rq, &zone_list); 1395 break; 1396 default: 1397 errors++; 1398 blk_mq_end_request(rq, ret); 1399 } 1400 } while (!list_empty(list)); 1401 out: 1402 if (!list_empty(&zone_list)) 1403 list_splice_tail_init(&zone_list, list); 1404 1405 hctx->dispatched[queued_to_index(queued)]++; 1406 1407 /* If we didn't flush the entire list, we could have told the driver 1408 * there was more coming, but that turned out to be a lie. 1409 */ 1410 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1411 q->mq_ops->commit_rqs(hctx); 1412 /* 1413 * Any items that need requeuing? Stuff them into hctx->dispatch, 1414 * that is where we will continue on next queue run. 1415 */ 1416 if (!list_empty(list)) { 1417 bool needs_restart; 1418 /* For non-shared tags, the RESTART check will suffice */ 1419 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1420 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1421 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET; 1422 1423 if (nr_budgets) 1424 blk_mq_release_budgets(q, list); 1425 1426 spin_lock(&hctx->lock); 1427 list_splice_tail_init(list, &hctx->dispatch); 1428 spin_unlock(&hctx->lock); 1429 1430 /* 1431 * Order adding requests to hctx->dispatch and checking 1432 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1433 * in blk_mq_sched_restart(). Avoid restart code path to 1434 * miss the new added requests to hctx->dispatch, meantime 1435 * SCHED_RESTART is observed here. 1436 */ 1437 smp_mb(); 1438 1439 /* 1440 * If SCHED_RESTART was set by the caller of this function and 1441 * it is no longer set that means that it was cleared by another 1442 * thread and hence that a queue rerun is needed. 1443 * 1444 * If 'no_tag' is set, that means that we failed getting 1445 * a driver tag with an I/O scheduler attached. If our dispatch 1446 * waitqueue is no longer active, ensure that we run the queue 1447 * AFTER adding our entries back to the list. 1448 * 1449 * If no I/O scheduler has been configured it is possible that 1450 * the hardware queue got stopped and restarted before requests 1451 * were pushed back onto the dispatch list. Rerun the queue to 1452 * avoid starvation. Notes: 1453 * - blk_mq_run_hw_queue() checks whether or not a queue has 1454 * been stopped before rerunning a queue. 1455 * - Some but not all block drivers stop a queue before 1456 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1457 * and dm-rq. 1458 * 1459 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1460 * bit is set, run queue after a delay to avoid IO stalls 1461 * that could otherwise occur if the queue is idle. We'll do 1462 * similar if we couldn't get budget and SCHED_RESTART is set. 1463 */ 1464 needs_restart = blk_mq_sched_needs_restart(hctx); 1465 if (!needs_restart || 1466 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1467 blk_mq_run_hw_queue(hctx, true); 1468 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1469 no_budget_avail)) 1470 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1471 1472 blk_mq_update_dispatch_busy(hctx, true); 1473 return false; 1474 } else 1475 blk_mq_update_dispatch_busy(hctx, false); 1476 1477 return (queued + errors) != 0; 1478 } 1479 1480 /** 1481 * __blk_mq_run_hw_queue - Run a hardware queue. 1482 * @hctx: Pointer to the hardware queue to run. 1483 * 1484 * Send pending requests to the hardware. 1485 */ 1486 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1487 { 1488 int srcu_idx; 1489 1490 /* 1491 * We can't run the queue inline with ints disabled. Ensure that 1492 * we catch bad users of this early. 1493 */ 1494 WARN_ON_ONCE(in_interrupt()); 1495 1496 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1497 1498 hctx_lock(hctx, &srcu_idx); 1499 blk_mq_sched_dispatch_requests(hctx); 1500 hctx_unlock(hctx, srcu_idx); 1501 } 1502 1503 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1504 { 1505 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1506 1507 if (cpu >= nr_cpu_ids) 1508 cpu = cpumask_first(hctx->cpumask); 1509 return cpu; 1510 } 1511 1512 /* 1513 * It'd be great if the workqueue API had a way to pass 1514 * in a mask and had some smarts for more clever placement. 1515 * For now we just round-robin here, switching for every 1516 * BLK_MQ_CPU_WORK_BATCH queued items. 1517 */ 1518 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1519 { 1520 bool tried = false; 1521 int next_cpu = hctx->next_cpu; 1522 1523 if (hctx->queue->nr_hw_queues == 1) 1524 return WORK_CPU_UNBOUND; 1525 1526 if (--hctx->next_cpu_batch <= 0) { 1527 select_cpu: 1528 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1529 cpu_online_mask); 1530 if (next_cpu >= nr_cpu_ids) 1531 next_cpu = blk_mq_first_mapped_cpu(hctx); 1532 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1533 } 1534 1535 /* 1536 * Do unbound schedule if we can't find a online CPU for this hctx, 1537 * and it should only happen in the path of handling CPU DEAD. 1538 */ 1539 if (!cpu_online(next_cpu)) { 1540 if (!tried) { 1541 tried = true; 1542 goto select_cpu; 1543 } 1544 1545 /* 1546 * Make sure to re-select CPU next time once after CPUs 1547 * in hctx->cpumask become online again. 1548 */ 1549 hctx->next_cpu = next_cpu; 1550 hctx->next_cpu_batch = 1; 1551 return WORK_CPU_UNBOUND; 1552 } 1553 1554 hctx->next_cpu = next_cpu; 1555 return next_cpu; 1556 } 1557 1558 /** 1559 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1560 * @hctx: Pointer to the hardware queue to run. 1561 * @async: If we want to run the queue asynchronously. 1562 * @msecs: Milliseconds of delay to wait before running the queue. 1563 * 1564 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1565 * with a delay of @msecs. 1566 */ 1567 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1568 unsigned long msecs) 1569 { 1570 if (unlikely(blk_mq_hctx_stopped(hctx))) 1571 return; 1572 1573 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1574 int cpu = get_cpu(); 1575 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1576 __blk_mq_run_hw_queue(hctx); 1577 put_cpu(); 1578 return; 1579 } 1580 1581 put_cpu(); 1582 } 1583 1584 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1585 msecs_to_jiffies(msecs)); 1586 } 1587 1588 /** 1589 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1590 * @hctx: Pointer to the hardware queue to run. 1591 * @msecs: Milliseconds of delay to wait before running the queue. 1592 * 1593 * Run a hardware queue asynchronously with a delay of @msecs. 1594 */ 1595 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1596 { 1597 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1598 } 1599 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1600 1601 /** 1602 * blk_mq_run_hw_queue - Start to run a hardware queue. 1603 * @hctx: Pointer to the hardware queue to run. 1604 * @async: If we want to run the queue asynchronously. 1605 * 1606 * Check if the request queue is not in a quiesced state and if there are 1607 * pending requests to be sent. If this is true, run the queue to send requests 1608 * to hardware. 1609 */ 1610 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1611 { 1612 int srcu_idx; 1613 bool need_run; 1614 1615 /* 1616 * When queue is quiesced, we may be switching io scheduler, or 1617 * updating nr_hw_queues, or other things, and we can't run queue 1618 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1619 * 1620 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1621 * quiesced. 1622 */ 1623 hctx_lock(hctx, &srcu_idx); 1624 need_run = !blk_queue_quiesced(hctx->queue) && 1625 blk_mq_hctx_has_pending(hctx); 1626 hctx_unlock(hctx, srcu_idx); 1627 1628 if (need_run) 1629 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1630 } 1631 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1632 1633 /* 1634 * Is the request queue handled by an IO scheduler that does not respect 1635 * hardware queues when dispatching? 1636 */ 1637 static bool blk_mq_has_sqsched(struct request_queue *q) 1638 { 1639 struct elevator_queue *e = q->elevator; 1640 1641 if (e && e->type->ops.dispatch_request && 1642 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 1643 return true; 1644 return false; 1645 } 1646 1647 /* 1648 * Return prefered queue to dispatch from (if any) for non-mq aware IO 1649 * scheduler. 1650 */ 1651 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 1652 { 1653 struct blk_mq_hw_ctx *hctx; 1654 1655 /* 1656 * If the IO scheduler does not respect hardware queues when 1657 * dispatching, we just don't bother with multiple HW queues and 1658 * dispatch from hctx for the current CPU since running multiple queues 1659 * just causes lock contention inside the scheduler and pointless cache 1660 * bouncing. 1661 */ 1662 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 1663 raw_smp_processor_id()); 1664 if (!blk_mq_hctx_stopped(hctx)) 1665 return hctx; 1666 return NULL; 1667 } 1668 1669 /** 1670 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1671 * @q: Pointer to the request queue to run. 1672 * @async: If we want to run the queue asynchronously. 1673 */ 1674 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1675 { 1676 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1677 int i; 1678 1679 sq_hctx = NULL; 1680 if (blk_mq_has_sqsched(q)) 1681 sq_hctx = blk_mq_get_sq_hctx(q); 1682 queue_for_each_hw_ctx(q, hctx, i) { 1683 if (blk_mq_hctx_stopped(hctx)) 1684 continue; 1685 /* 1686 * Dispatch from this hctx either if there's no hctx preferred 1687 * by IO scheduler or if it has requests that bypass the 1688 * scheduler. 1689 */ 1690 if (!sq_hctx || sq_hctx == hctx || 1691 !list_empty_careful(&hctx->dispatch)) 1692 blk_mq_run_hw_queue(hctx, async); 1693 } 1694 } 1695 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1696 1697 /** 1698 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1699 * @q: Pointer to the request queue to run. 1700 * @msecs: Milliseconds of delay to wait before running the queues. 1701 */ 1702 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1703 { 1704 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1705 int i; 1706 1707 sq_hctx = NULL; 1708 if (blk_mq_has_sqsched(q)) 1709 sq_hctx = blk_mq_get_sq_hctx(q); 1710 queue_for_each_hw_ctx(q, hctx, i) { 1711 if (blk_mq_hctx_stopped(hctx)) 1712 continue; 1713 /* 1714 * Dispatch from this hctx either if there's no hctx preferred 1715 * by IO scheduler or if it has requests that bypass the 1716 * scheduler. 1717 */ 1718 if (!sq_hctx || sq_hctx == hctx || 1719 !list_empty_careful(&hctx->dispatch)) 1720 blk_mq_delay_run_hw_queue(hctx, msecs); 1721 } 1722 } 1723 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1724 1725 /** 1726 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1727 * @q: request queue. 1728 * 1729 * The caller is responsible for serializing this function against 1730 * blk_mq_{start,stop}_hw_queue(). 1731 */ 1732 bool blk_mq_queue_stopped(struct request_queue *q) 1733 { 1734 struct blk_mq_hw_ctx *hctx; 1735 int i; 1736 1737 queue_for_each_hw_ctx(q, hctx, i) 1738 if (blk_mq_hctx_stopped(hctx)) 1739 return true; 1740 1741 return false; 1742 } 1743 EXPORT_SYMBOL(blk_mq_queue_stopped); 1744 1745 /* 1746 * This function is often used for pausing .queue_rq() by driver when 1747 * there isn't enough resource or some conditions aren't satisfied, and 1748 * BLK_STS_RESOURCE is usually returned. 1749 * 1750 * We do not guarantee that dispatch can be drained or blocked 1751 * after blk_mq_stop_hw_queue() returns. Please use 1752 * blk_mq_quiesce_queue() for that requirement. 1753 */ 1754 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1755 { 1756 cancel_delayed_work(&hctx->run_work); 1757 1758 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1759 } 1760 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1761 1762 /* 1763 * This function is often used for pausing .queue_rq() by driver when 1764 * there isn't enough resource or some conditions aren't satisfied, and 1765 * BLK_STS_RESOURCE is usually returned. 1766 * 1767 * We do not guarantee that dispatch can be drained or blocked 1768 * after blk_mq_stop_hw_queues() returns. Please use 1769 * blk_mq_quiesce_queue() for that requirement. 1770 */ 1771 void blk_mq_stop_hw_queues(struct request_queue *q) 1772 { 1773 struct blk_mq_hw_ctx *hctx; 1774 int i; 1775 1776 queue_for_each_hw_ctx(q, hctx, i) 1777 blk_mq_stop_hw_queue(hctx); 1778 } 1779 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1780 1781 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1782 { 1783 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1784 1785 blk_mq_run_hw_queue(hctx, false); 1786 } 1787 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1788 1789 void blk_mq_start_hw_queues(struct request_queue *q) 1790 { 1791 struct blk_mq_hw_ctx *hctx; 1792 int i; 1793 1794 queue_for_each_hw_ctx(q, hctx, i) 1795 blk_mq_start_hw_queue(hctx); 1796 } 1797 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1798 1799 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1800 { 1801 if (!blk_mq_hctx_stopped(hctx)) 1802 return; 1803 1804 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1805 blk_mq_run_hw_queue(hctx, async); 1806 } 1807 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1808 1809 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1810 { 1811 struct blk_mq_hw_ctx *hctx; 1812 int i; 1813 1814 queue_for_each_hw_ctx(q, hctx, i) 1815 blk_mq_start_stopped_hw_queue(hctx, async); 1816 } 1817 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1818 1819 static void blk_mq_run_work_fn(struct work_struct *work) 1820 { 1821 struct blk_mq_hw_ctx *hctx; 1822 1823 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1824 1825 /* 1826 * If we are stopped, don't run the queue. 1827 */ 1828 if (blk_mq_hctx_stopped(hctx)) 1829 return; 1830 1831 __blk_mq_run_hw_queue(hctx); 1832 } 1833 1834 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1835 struct request *rq, 1836 bool at_head) 1837 { 1838 struct blk_mq_ctx *ctx = rq->mq_ctx; 1839 enum hctx_type type = hctx->type; 1840 1841 lockdep_assert_held(&ctx->lock); 1842 1843 trace_block_rq_insert(rq); 1844 1845 if (at_head) 1846 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1847 else 1848 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1849 } 1850 1851 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1852 bool at_head) 1853 { 1854 struct blk_mq_ctx *ctx = rq->mq_ctx; 1855 1856 lockdep_assert_held(&ctx->lock); 1857 1858 __blk_mq_insert_req_list(hctx, rq, at_head); 1859 blk_mq_hctx_mark_pending(hctx, ctx); 1860 } 1861 1862 /** 1863 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1864 * @rq: Pointer to request to be inserted. 1865 * @at_head: true if the request should be inserted at the head of the list. 1866 * @run_queue: If we should run the hardware queue after inserting the request. 1867 * 1868 * Should only be used carefully, when the caller knows we want to 1869 * bypass a potential IO scheduler on the target device. 1870 */ 1871 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1872 bool run_queue) 1873 { 1874 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1875 1876 spin_lock(&hctx->lock); 1877 if (at_head) 1878 list_add(&rq->queuelist, &hctx->dispatch); 1879 else 1880 list_add_tail(&rq->queuelist, &hctx->dispatch); 1881 spin_unlock(&hctx->lock); 1882 1883 if (run_queue) 1884 blk_mq_run_hw_queue(hctx, false); 1885 } 1886 1887 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1888 struct list_head *list) 1889 1890 { 1891 struct request *rq; 1892 enum hctx_type type = hctx->type; 1893 1894 /* 1895 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1896 * offline now 1897 */ 1898 list_for_each_entry(rq, list, queuelist) { 1899 BUG_ON(rq->mq_ctx != ctx); 1900 trace_block_rq_insert(rq); 1901 } 1902 1903 spin_lock(&ctx->lock); 1904 list_splice_tail_init(list, &ctx->rq_lists[type]); 1905 blk_mq_hctx_mark_pending(hctx, ctx); 1906 spin_unlock(&ctx->lock); 1907 } 1908 1909 static int plug_rq_cmp(void *priv, const struct list_head *a, 1910 const struct list_head *b) 1911 { 1912 struct request *rqa = container_of(a, struct request, queuelist); 1913 struct request *rqb = container_of(b, struct request, queuelist); 1914 1915 if (rqa->mq_ctx != rqb->mq_ctx) 1916 return rqa->mq_ctx > rqb->mq_ctx; 1917 if (rqa->mq_hctx != rqb->mq_hctx) 1918 return rqa->mq_hctx > rqb->mq_hctx; 1919 1920 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1921 } 1922 1923 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1924 { 1925 LIST_HEAD(list); 1926 1927 if (list_empty(&plug->mq_list)) 1928 return; 1929 list_splice_init(&plug->mq_list, &list); 1930 1931 if (plug->rq_count > 2 && plug->multiple_queues) 1932 list_sort(NULL, &list, plug_rq_cmp); 1933 1934 plug->rq_count = 0; 1935 1936 do { 1937 struct list_head rq_list; 1938 struct request *rq, *head_rq = list_entry_rq(list.next); 1939 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1940 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1941 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1942 unsigned int depth = 1; 1943 1944 list_for_each_continue(pos, &list) { 1945 rq = list_entry_rq(pos); 1946 BUG_ON(!rq->q); 1947 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1948 break; 1949 depth++; 1950 } 1951 1952 list_cut_before(&rq_list, &list, pos); 1953 trace_block_unplug(head_rq->q, depth, !from_schedule); 1954 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1955 from_schedule); 1956 } while(!list_empty(&list)); 1957 } 1958 1959 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1960 unsigned int nr_segs) 1961 { 1962 int err; 1963 1964 if (bio->bi_opf & REQ_RAHEAD) 1965 rq->cmd_flags |= REQ_FAILFAST_MASK; 1966 1967 rq->__sector = bio->bi_iter.bi_sector; 1968 rq->write_hint = bio->bi_write_hint; 1969 blk_rq_bio_prep(rq, bio, nr_segs); 1970 1971 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1972 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1973 WARN_ON_ONCE(err); 1974 1975 blk_account_io_start(rq); 1976 } 1977 1978 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1979 struct request *rq, 1980 blk_qc_t *cookie, bool last) 1981 { 1982 struct request_queue *q = rq->q; 1983 struct blk_mq_queue_data bd = { 1984 .rq = rq, 1985 .last = last, 1986 }; 1987 blk_qc_t new_cookie; 1988 blk_status_t ret; 1989 1990 new_cookie = request_to_qc_t(hctx, rq); 1991 1992 /* 1993 * For OK queue, we are done. For error, caller may kill it. 1994 * Any other error (busy), just add it to our list as we 1995 * previously would have done. 1996 */ 1997 ret = q->mq_ops->queue_rq(hctx, &bd); 1998 switch (ret) { 1999 case BLK_STS_OK: 2000 blk_mq_update_dispatch_busy(hctx, false); 2001 *cookie = new_cookie; 2002 break; 2003 case BLK_STS_RESOURCE: 2004 case BLK_STS_DEV_RESOURCE: 2005 blk_mq_update_dispatch_busy(hctx, true); 2006 __blk_mq_requeue_request(rq); 2007 break; 2008 default: 2009 blk_mq_update_dispatch_busy(hctx, false); 2010 *cookie = BLK_QC_T_NONE; 2011 break; 2012 } 2013 2014 return ret; 2015 } 2016 2017 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2018 struct request *rq, 2019 blk_qc_t *cookie, 2020 bool bypass_insert, bool last) 2021 { 2022 struct request_queue *q = rq->q; 2023 bool run_queue = true; 2024 int budget_token; 2025 2026 /* 2027 * RCU or SRCU read lock is needed before checking quiesced flag. 2028 * 2029 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2030 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2031 * and avoid driver to try to dispatch again. 2032 */ 2033 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2034 run_queue = false; 2035 bypass_insert = false; 2036 goto insert; 2037 } 2038 2039 if (q->elevator && !bypass_insert) 2040 goto insert; 2041 2042 budget_token = blk_mq_get_dispatch_budget(q); 2043 if (budget_token < 0) 2044 goto insert; 2045 2046 blk_mq_set_rq_budget_token(rq, budget_token); 2047 2048 if (!blk_mq_get_driver_tag(rq)) { 2049 blk_mq_put_dispatch_budget(q, budget_token); 2050 goto insert; 2051 } 2052 2053 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2054 insert: 2055 if (bypass_insert) 2056 return BLK_STS_RESOURCE; 2057 2058 blk_mq_sched_insert_request(rq, false, run_queue, false); 2059 2060 return BLK_STS_OK; 2061 } 2062 2063 /** 2064 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2065 * @hctx: Pointer of the associated hardware queue. 2066 * @rq: Pointer to request to be sent. 2067 * @cookie: Request queue cookie. 2068 * 2069 * If the device has enough resources to accept a new request now, send the 2070 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2071 * we can try send it another time in the future. Requests inserted at this 2072 * queue have higher priority. 2073 */ 2074 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2075 struct request *rq, blk_qc_t *cookie) 2076 { 2077 blk_status_t ret; 2078 int srcu_idx; 2079 2080 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2081 2082 hctx_lock(hctx, &srcu_idx); 2083 2084 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2085 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2086 blk_mq_request_bypass_insert(rq, false, true); 2087 else if (ret != BLK_STS_OK) 2088 blk_mq_end_request(rq, ret); 2089 2090 hctx_unlock(hctx, srcu_idx); 2091 } 2092 2093 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2094 { 2095 blk_status_t ret; 2096 int srcu_idx; 2097 blk_qc_t unused_cookie; 2098 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2099 2100 hctx_lock(hctx, &srcu_idx); 2101 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2102 hctx_unlock(hctx, srcu_idx); 2103 2104 return ret; 2105 } 2106 2107 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2108 struct list_head *list) 2109 { 2110 int queued = 0; 2111 int errors = 0; 2112 2113 while (!list_empty(list)) { 2114 blk_status_t ret; 2115 struct request *rq = list_first_entry(list, struct request, 2116 queuelist); 2117 2118 list_del_init(&rq->queuelist); 2119 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2120 if (ret != BLK_STS_OK) { 2121 if (ret == BLK_STS_RESOURCE || 2122 ret == BLK_STS_DEV_RESOURCE) { 2123 blk_mq_request_bypass_insert(rq, false, 2124 list_empty(list)); 2125 break; 2126 } 2127 blk_mq_end_request(rq, ret); 2128 errors++; 2129 } else 2130 queued++; 2131 } 2132 2133 /* 2134 * If we didn't flush the entire list, we could have told 2135 * the driver there was more coming, but that turned out to 2136 * be a lie. 2137 */ 2138 if ((!list_empty(list) || errors) && 2139 hctx->queue->mq_ops->commit_rqs && queued) 2140 hctx->queue->mq_ops->commit_rqs(hctx); 2141 } 2142 2143 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2144 { 2145 list_add_tail(&rq->queuelist, &plug->mq_list); 2146 plug->rq_count++; 2147 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2148 struct request *tmp; 2149 2150 tmp = list_first_entry(&plug->mq_list, struct request, 2151 queuelist); 2152 if (tmp->q != rq->q) 2153 plug->multiple_queues = true; 2154 } 2155 } 2156 2157 /** 2158 * blk_mq_submit_bio - Create and send a request to block device. 2159 * @bio: Bio pointer. 2160 * 2161 * Builds up a request structure from @q and @bio and send to the device. The 2162 * request may not be queued directly to hardware if: 2163 * * This request can be merged with another one 2164 * * We want to place request at plug queue for possible future merging 2165 * * There is an IO scheduler active at this queue 2166 * 2167 * It will not queue the request if there is an error with the bio, or at the 2168 * request creation. 2169 * 2170 * Returns: Request queue cookie. 2171 */ 2172 blk_qc_t blk_mq_submit_bio(struct bio *bio) 2173 { 2174 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 2175 const int is_sync = op_is_sync(bio->bi_opf); 2176 const int is_flush_fua = op_is_flush(bio->bi_opf); 2177 struct blk_mq_alloc_data data = { 2178 .q = q, 2179 }; 2180 struct request *rq; 2181 struct blk_plug *plug; 2182 struct request *same_queue_rq = NULL; 2183 unsigned int nr_segs; 2184 blk_qc_t cookie; 2185 blk_status_t ret; 2186 bool hipri; 2187 2188 blk_queue_bounce(q, &bio); 2189 __blk_queue_split(&bio, &nr_segs); 2190 2191 if (!bio_integrity_prep(bio)) 2192 goto queue_exit; 2193 2194 if (!is_flush_fua && !blk_queue_nomerges(q) && 2195 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2196 goto queue_exit; 2197 2198 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2199 goto queue_exit; 2200 2201 rq_qos_throttle(q, bio); 2202 2203 hipri = bio->bi_opf & REQ_HIPRI; 2204 2205 data.cmd_flags = bio->bi_opf; 2206 rq = __blk_mq_alloc_request(&data); 2207 if (unlikely(!rq)) { 2208 rq_qos_cleanup(q, bio); 2209 if (bio->bi_opf & REQ_NOWAIT) 2210 bio_wouldblock_error(bio); 2211 goto queue_exit; 2212 } 2213 2214 trace_block_getrq(bio); 2215 2216 rq_qos_track(q, rq, bio); 2217 2218 cookie = request_to_qc_t(data.hctx, rq); 2219 2220 blk_mq_bio_to_request(rq, bio, nr_segs); 2221 2222 ret = blk_crypto_init_request(rq); 2223 if (ret != BLK_STS_OK) { 2224 bio->bi_status = ret; 2225 bio_endio(bio); 2226 blk_mq_free_request(rq); 2227 return BLK_QC_T_NONE; 2228 } 2229 2230 plug = blk_mq_plug(q, bio); 2231 if (unlikely(is_flush_fua)) { 2232 /* Bypass scheduler for flush requests */ 2233 blk_insert_flush(rq); 2234 blk_mq_run_hw_queue(data.hctx, true); 2235 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2236 !blk_queue_nonrot(q))) { 2237 /* 2238 * Use plugging if we have a ->commit_rqs() hook as well, as 2239 * we know the driver uses bd->last in a smart fashion. 2240 * 2241 * Use normal plugging if this disk is slow HDD, as sequential 2242 * IO may benefit a lot from plug merging. 2243 */ 2244 unsigned int request_count = plug->rq_count; 2245 struct request *last = NULL; 2246 2247 if (!request_count) 2248 trace_block_plug(q); 2249 else 2250 last = list_entry_rq(plug->mq_list.prev); 2251 2252 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2253 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2254 blk_flush_plug_list(plug, false); 2255 trace_block_plug(q); 2256 } 2257 2258 blk_add_rq_to_plug(plug, rq); 2259 } else if (q->elevator) { 2260 /* Insert the request at the IO scheduler queue */ 2261 blk_mq_sched_insert_request(rq, false, true, true); 2262 } else if (plug && !blk_queue_nomerges(q)) { 2263 /* 2264 * We do limited plugging. If the bio can be merged, do that. 2265 * Otherwise the existing request in the plug list will be 2266 * issued. So the plug list will have one request at most 2267 * The plug list might get flushed before this. If that happens, 2268 * the plug list is empty, and same_queue_rq is invalid. 2269 */ 2270 if (list_empty(&plug->mq_list)) 2271 same_queue_rq = NULL; 2272 if (same_queue_rq) { 2273 list_del_init(&same_queue_rq->queuelist); 2274 plug->rq_count--; 2275 } 2276 blk_add_rq_to_plug(plug, rq); 2277 trace_block_plug(q); 2278 2279 if (same_queue_rq) { 2280 data.hctx = same_queue_rq->mq_hctx; 2281 trace_block_unplug(q, 1, true); 2282 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2283 &cookie); 2284 } 2285 } else if ((q->nr_hw_queues > 1 && is_sync) || 2286 !data.hctx->dispatch_busy) { 2287 /* 2288 * There is no scheduler and we can try to send directly 2289 * to the hardware. 2290 */ 2291 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2292 } else { 2293 /* Default case. */ 2294 blk_mq_sched_insert_request(rq, false, true, true); 2295 } 2296 2297 if (!hipri) 2298 return BLK_QC_T_NONE; 2299 return cookie; 2300 queue_exit: 2301 blk_queue_exit(q); 2302 return BLK_QC_T_NONE; 2303 } 2304 2305 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2306 unsigned int hctx_idx) 2307 { 2308 struct page *page; 2309 2310 if (tags->rqs && set->ops->exit_request) { 2311 int i; 2312 2313 for (i = 0; i < tags->nr_tags; i++) { 2314 struct request *rq = tags->static_rqs[i]; 2315 2316 if (!rq) 2317 continue; 2318 set->ops->exit_request(set, rq, hctx_idx); 2319 tags->static_rqs[i] = NULL; 2320 } 2321 } 2322 2323 while (!list_empty(&tags->page_list)) { 2324 page = list_first_entry(&tags->page_list, struct page, lru); 2325 list_del_init(&page->lru); 2326 /* 2327 * Remove kmemleak object previously allocated in 2328 * blk_mq_alloc_rqs(). 2329 */ 2330 kmemleak_free(page_address(page)); 2331 __free_pages(page, page->private); 2332 } 2333 } 2334 2335 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2336 { 2337 kfree(tags->rqs); 2338 tags->rqs = NULL; 2339 kfree(tags->static_rqs); 2340 tags->static_rqs = NULL; 2341 2342 blk_mq_free_tags(tags, flags); 2343 } 2344 2345 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2346 unsigned int hctx_idx, 2347 unsigned int nr_tags, 2348 unsigned int reserved_tags, 2349 unsigned int flags) 2350 { 2351 struct blk_mq_tags *tags; 2352 int node; 2353 2354 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2355 if (node == NUMA_NO_NODE) 2356 node = set->numa_node; 2357 2358 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2359 if (!tags) 2360 return NULL; 2361 2362 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2363 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2364 node); 2365 if (!tags->rqs) { 2366 blk_mq_free_tags(tags, flags); 2367 return NULL; 2368 } 2369 2370 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2371 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2372 node); 2373 if (!tags->static_rqs) { 2374 kfree(tags->rqs); 2375 blk_mq_free_tags(tags, flags); 2376 return NULL; 2377 } 2378 2379 return tags; 2380 } 2381 2382 static size_t order_to_size(unsigned int order) 2383 { 2384 return (size_t)PAGE_SIZE << order; 2385 } 2386 2387 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2388 unsigned int hctx_idx, int node) 2389 { 2390 int ret; 2391 2392 if (set->ops->init_request) { 2393 ret = set->ops->init_request(set, rq, hctx_idx, node); 2394 if (ret) 2395 return ret; 2396 } 2397 2398 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2399 return 0; 2400 } 2401 2402 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2403 unsigned int hctx_idx, unsigned int depth) 2404 { 2405 unsigned int i, j, entries_per_page, max_order = 4; 2406 size_t rq_size, left; 2407 int node; 2408 2409 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2410 if (node == NUMA_NO_NODE) 2411 node = set->numa_node; 2412 2413 INIT_LIST_HEAD(&tags->page_list); 2414 2415 /* 2416 * rq_size is the size of the request plus driver payload, rounded 2417 * to the cacheline size 2418 */ 2419 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2420 cache_line_size()); 2421 left = rq_size * depth; 2422 2423 for (i = 0; i < depth; ) { 2424 int this_order = max_order; 2425 struct page *page; 2426 int to_do; 2427 void *p; 2428 2429 while (this_order && left < order_to_size(this_order - 1)) 2430 this_order--; 2431 2432 do { 2433 page = alloc_pages_node(node, 2434 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2435 this_order); 2436 if (page) 2437 break; 2438 if (!this_order--) 2439 break; 2440 if (order_to_size(this_order) < rq_size) 2441 break; 2442 } while (1); 2443 2444 if (!page) 2445 goto fail; 2446 2447 page->private = this_order; 2448 list_add_tail(&page->lru, &tags->page_list); 2449 2450 p = page_address(page); 2451 /* 2452 * Allow kmemleak to scan these pages as they contain pointers 2453 * to additional allocations like via ops->init_request(). 2454 */ 2455 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2456 entries_per_page = order_to_size(this_order) / rq_size; 2457 to_do = min(entries_per_page, depth - i); 2458 left -= to_do * rq_size; 2459 for (j = 0; j < to_do; j++) { 2460 struct request *rq = p; 2461 2462 tags->static_rqs[i] = rq; 2463 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2464 tags->static_rqs[i] = NULL; 2465 goto fail; 2466 } 2467 2468 p += rq_size; 2469 i++; 2470 } 2471 } 2472 return 0; 2473 2474 fail: 2475 blk_mq_free_rqs(set, tags, hctx_idx); 2476 return -ENOMEM; 2477 } 2478 2479 struct rq_iter_data { 2480 struct blk_mq_hw_ctx *hctx; 2481 bool has_rq; 2482 }; 2483 2484 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2485 { 2486 struct rq_iter_data *iter_data = data; 2487 2488 if (rq->mq_hctx != iter_data->hctx) 2489 return true; 2490 iter_data->has_rq = true; 2491 return false; 2492 } 2493 2494 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2495 { 2496 struct blk_mq_tags *tags = hctx->sched_tags ? 2497 hctx->sched_tags : hctx->tags; 2498 struct rq_iter_data data = { 2499 .hctx = hctx, 2500 }; 2501 2502 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2503 return data.has_rq; 2504 } 2505 2506 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2507 struct blk_mq_hw_ctx *hctx) 2508 { 2509 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2510 return false; 2511 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2512 return false; 2513 return true; 2514 } 2515 2516 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2517 { 2518 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2519 struct blk_mq_hw_ctx, cpuhp_online); 2520 2521 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2522 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2523 return 0; 2524 2525 /* 2526 * Prevent new request from being allocated on the current hctx. 2527 * 2528 * The smp_mb__after_atomic() Pairs with the implied barrier in 2529 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2530 * seen once we return from the tag allocator. 2531 */ 2532 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2533 smp_mb__after_atomic(); 2534 2535 /* 2536 * Try to grab a reference to the queue and wait for any outstanding 2537 * requests. If we could not grab a reference the queue has been 2538 * frozen and there are no requests. 2539 */ 2540 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2541 while (blk_mq_hctx_has_requests(hctx)) 2542 msleep(5); 2543 percpu_ref_put(&hctx->queue->q_usage_counter); 2544 } 2545 2546 return 0; 2547 } 2548 2549 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2550 { 2551 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2552 struct blk_mq_hw_ctx, cpuhp_online); 2553 2554 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2555 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2556 return 0; 2557 } 2558 2559 /* 2560 * 'cpu' is going away. splice any existing rq_list entries from this 2561 * software queue to the hw queue dispatch list, and ensure that it 2562 * gets run. 2563 */ 2564 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2565 { 2566 struct blk_mq_hw_ctx *hctx; 2567 struct blk_mq_ctx *ctx; 2568 LIST_HEAD(tmp); 2569 enum hctx_type type; 2570 2571 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2572 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2573 return 0; 2574 2575 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2576 type = hctx->type; 2577 2578 spin_lock(&ctx->lock); 2579 if (!list_empty(&ctx->rq_lists[type])) { 2580 list_splice_init(&ctx->rq_lists[type], &tmp); 2581 blk_mq_hctx_clear_pending(hctx, ctx); 2582 } 2583 spin_unlock(&ctx->lock); 2584 2585 if (list_empty(&tmp)) 2586 return 0; 2587 2588 spin_lock(&hctx->lock); 2589 list_splice_tail_init(&tmp, &hctx->dispatch); 2590 spin_unlock(&hctx->lock); 2591 2592 blk_mq_run_hw_queue(hctx, true); 2593 return 0; 2594 } 2595 2596 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2597 { 2598 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2599 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2600 &hctx->cpuhp_online); 2601 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2602 &hctx->cpuhp_dead); 2603 } 2604 2605 /* hctx->ctxs will be freed in queue's release handler */ 2606 static void blk_mq_exit_hctx(struct request_queue *q, 2607 struct blk_mq_tag_set *set, 2608 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2609 { 2610 if (blk_mq_hw_queue_mapped(hctx)) 2611 blk_mq_tag_idle(hctx); 2612 2613 if (set->ops->exit_request) 2614 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2615 2616 if (set->ops->exit_hctx) 2617 set->ops->exit_hctx(hctx, hctx_idx); 2618 2619 blk_mq_remove_cpuhp(hctx); 2620 2621 spin_lock(&q->unused_hctx_lock); 2622 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2623 spin_unlock(&q->unused_hctx_lock); 2624 } 2625 2626 static void blk_mq_exit_hw_queues(struct request_queue *q, 2627 struct blk_mq_tag_set *set, int nr_queue) 2628 { 2629 struct blk_mq_hw_ctx *hctx; 2630 unsigned int i; 2631 2632 queue_for_each_hw_ctx(q, hctx, i) { 2633 if (i == nr_queue) 2634 break; 2635 blk_mq_debugfs_unregister_hctx(hctx); 2636 blk_mq_exit_hctx(q, set, hctx, i); 2637 } 2638 } 2639 2640 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2641 { 2642 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2643 2644 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2645 __alignof__(struct blk_mq_hw_ctx)) != 2646 sizeof(struct blk_mq_hw_ctx)); 2647 2648 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2649 hw_ctx_size += sizeof(struct srcu_struct); 2650 2651 return hw_ctx_size; 2652 } 2653 2654 static int blk_mq_init_hctx(struct request_queue *q, 2655 struct blk_mq_tag_set *set, 2656 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2657 { 2658 hctx->queue_num = hctx_idx; 2659 2660 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2661 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2662 &hctx->cpuhp_online); 2663 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2664 2665 hctx->tags = set->tags[hctx_idx]; 2666 2667 if (set->ops->init_hctx && 2668 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2669 goto unregister_cpu_notifier; 2670 2671 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2672 hctx->numa_node)) 2673 goto exit_hctx; 2674 return 0; 2675 2676 exit_hctx: 2677 if (set->ops->exit_hctx) 2678 set->ops->exit_hctx(hctx, hctx_idx); 2679 unregister_cpu_notifier: 2680 blk_mq_remove_cpuhp(hctx); 2681 return -1; 2682 } 2683 2684 static struct blk_mq_hw_ctx * 2685 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2686 int node) 2687 { 2688 struct blk_mq_hw_ctx *hctx; 2689 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2690 2691 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2692 if (!hctx) 2693 goto fail_alloc_hctx; 2694 2695 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2696 goto free_hctx; 2697 2698 atomic_set(&hctx->nr_active, 0); 2699 if (node == NUMA_NO_NODE) 2700 node = set->numa_node; 2701 hctx->numa_node = node; 2702 2703 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2704 spin_lock_init(&hctx->lock); 2705 INIT_LIST_HEAD(&hctx->dispatch); 2706 hctx->queue = q; 2707 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2708 2709 INIT_LIST_HEAD(&hctx->hctx_list); 2710 2711 /* 2712 * Allocate space for all possible cpus to avoid allocation at 2713 * runtime 2714 */ 2715 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2716 gfp, node); 2717 if (!hctx->ctxs) 2718 goto free_cpumask; 2719 2720 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2721 gfp, node, false, false)) 2722 goto free_ctxs; 2723 hctx->nr_ctx = 0; 2724 2725 spin_lock_init(&hctx->dispatch_wait_lock); 2726 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2727 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2728 2729 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2730 if (!hctx->fq) 2731 goto free_bitmap; 2732 2733 if (hctx->flags & BLK_MQ_F_BLOCKING) 2734 init_srcu_struct(hctx->srcu); 2735 blk_mq_hctx_kobj_init(hctx); 2736 2737 return hctx; 2738 2739 free_bitmap: 2740 sbitmap_free(&hctx->ctx_map); 2741 free_ctxs: 2742 kfree(hctx->ctxs); 2743 free_cpumask: 2744 free_cpumask_var(hctx->cpumask); 2745 free_hctx: 2746 kfree(hctx); 2747 fail_alloc_hctx: 2748 return NULL; 2749 } 2750 2751 static void blk_mq_init_cpu_queues(struct request_queue *q, 2752 unsigned int nr_hw_queues) 2753 { 2754 struct blk_mq_tag_set *set = q->tag_set; 2755 unsigned int i, j; 2756 2757 for_each_possible_cpu(i) { 2758 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2759 struct blk_mq_hw_ctx *hctx; 2760 int k; 2761 2762 __ctx->cpu = i; 2763 spin_lock_init(&__ctx->lock); 2764 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2765 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2766 2767 __ctx->queue = q; 2768 2769 /* 2770 * Set local node, IFF we have more than one hw queue. If 2771 * not, we remain on the home node of the device 2772 */ 2773 for (j = 0; j < set->nr_maps; j++) { 2774 hctx = blk_mq_map_queue_type(q, j, i); 2775 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2776 hctx->numa_node = cpu_to_node(i); 2777 } 2778 } 2779 } 2780 2781 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2782 int hctx_idx) 2783 { 2784 unsigned int flags = set->flags; 2785 int ret = 0; 2786 2787 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2788 set->queue_depth, set->reserved_tags, flags); 2789 if (!set->tags[hctx_idx]) 2790 return false; 2791 2792 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2793 set->queue_depth); 2794 if (!ret) 2795 return true; 2796 2797 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2798 set->tags[hctx_idx] = NULL; 2799 return false; 2800 } 2801 2802 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2803 unsigned int hctx_idx) 2804 { 2805 unsigned int flags = set->flags; 2806 2807 if (set->tags && set->tags[hctx_idx]) { 2808 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2809 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2810 set->tags[hctx_idx] = NULL; 2811 } 2812 } 2813 2814 static void blk_mq_map_swqueue(struct request_queue *q) 2815 { 2816 unsigned int i, j, hctx_idx; 2817 struct blk_mq_hw_ctx *hctx; 2818 struct blk_mq_ctx *ctx; 2819 struct blk_mq_tag_set *set = q->tag_set; 2820 2821 queue_for_each_hw_ctx(q, hctx, i) { 2822 cpumask_clear(hctx->cpumask); 2823 hctx->nr_ctx = 0; 2824 hctx->dispatch_from = NULL; 2825 } 2826 2827 /* 2828 * Map software to hardware queues. 2829 * 2830 * If the cpu isn't present, the cpu is mapped to first hctx. 2831 */ 2832 for_each_possible_cpu(i) { 2833 2834 ctx = per_cpu_ptr(q->queue_ctx, i); 2835 for (j = 0; j < set->nr_maps; j++) { 2836 if (!set->map[j].nr_queues) { 2837 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2838 HCTX_TYPE_DEFAULT, i); 2839 continue; 2840 } 2841 hctx_idx = set->map[j].mq_map[i]; 2842 /* unmapped hw queue can be remapped after CPU topo changed */ 2843 if (!set->tags[hctx_idx] && 2844 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2845 /* 2846 * If tags initialization fail for some hctx, 2847 * that hctx won't be brought online. In this 2848 * case, remap the current ctx to hctx[0] which 2849 * is guaranteed to always have tags allocated 2850 */ 2851 set->map[j].mq_map[i] = 0; 2852 } 2853 2854 hctx = blk_mq_map_queue_type(q, j, i); 2855 ctx->hctxs[j] = hctx; 2856 /* 2857 * If the CPU is already set in the mask, then we've 2858 * mapped this one already. This can happen if 2859 * devices share queues across queue maps. 2860 */ 2861 if (cpumask_test_cpu(i, hctx->cpumask)) 2862 continue; 2863 2864 cpumask_set_cpu(i, hctx->cpumask); 2865 hctx->type = j; 2866 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2867 hctx->ctxs[hctx->nr_ctx++] = ctx; 2868 2869 /* 2870 * If the nr_ctx type overflows, we have exceeded the 2871 * amount of sw queues we can support. 2872 */ 2873 BUG_ON(!hctx->nr_ctx); 2874 } 2875 2876 for (; j < HCTX_MAX_TYPES; j++) 2877 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2878 HCTX_TYPE_DEFAULT, i); 2879 } 2880 2881 queue_for_each_hw_ctx(q, hctx, i) { 2882 /* 2883 * If no software queues are mapped to this hardware queue, 2884 * disable it and free the request entries. 2885 */ 2886 if (!hctx->nr_ctx) { 2887 /* Never unmap queue 0. We need it as a 2888 * fallback in case of a new remap fails 2889 * allocation 2890 */ 2891 if (i && set->tags[i]) 2892 blk_mq_free_map_and_requests(set, i); 2893 2894 hctx->tags = NULL; 2895 continue; 2896 } 2897 2898 hctx->tags = set->tags[i]; 2899 WARN_ON(!hctx->tags); 2900 2901 /* 2902 * Set the map size to the number of mapped software queues. 2903 * This is more accurate and more efficient than looping 2904 * over all possibly mapped software queues. 2905 */ 2906 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2907 2908 /* 2909 * Initialize batch roundrobin counts 2910 */ 2911 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2912 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2913 } 2914 } 2915 2916 /* 2917 * Caller needs to ensure that we're either frozen/quiesced, or that 2918 * the queue isn't live yet. 2919 */ 2920 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2921 { 2922 struct blk_mq_hw_ctx *hctx; 2923 int i; 2924 2925 queue_for_each_hw_ctx(q, hctx, i) { 2926 if (shared) 2927 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2928 else 2929 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2930 } 2931 } 2932 2933 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 2934 bool shared) 2935 { 2936 struct request_queue *q; 2937 2938 lockdep_assert_held(&set->tag_list_lock); 2939 2940 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2941 blk_mq_freeze_queue(q); 2942 queue_set_hctx_shared(q, shared); 2943 blk_mq_unfreeze_queue(q); 2944 } 2945 } 2946 2947 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2948 { 2949 struct blk_mq_tag_set *set = q->tag_set; 2950 2951 mutex_lock(&set->tag_list_lock); 2952 list_del(&q->tag_set_list); 2953 if (list_is_singular(&set->tag_list)) { 2954 /* just transitioned to unshared */ 2955 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2956 /* update existing queue */ 2957 blk_mq_update_tag_set_shared(set, false); 2958 } 2959 mutex_unlock(&set->tag_list_lock); 2960 INIT_LIST_HEAD(&q->tag_set_list); 2961 } 2962 2963 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2964 struct request_queue *q) 2965 { 2966 mutex_lock(&set->tag_list_lock); 2967 2968 /* 2969 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2970 */ 2971 if (!list_empty(&set->tag_list) && 2972 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2973 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2974 /* update existing queue */ 2975 blk_mq_update_tag_set_shared(set, true); 2976 } 2977 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 2978 queue_set_hctx_shared(q, true); 2979 list_add_tail(&q->tag_set_list, &set->tag_list); 2980 2981 mutex_unlock(&set->tag_list_lock); 2982 } 2983 2984 /* All allocations will be freed in release handler of q->mq_kobj */ 2985 static int blk_mq_alloc_ctxs(struct request_queue *q) 2986 { 2987 struct blk_mq_ctxs *ctxs; 2988 int cpu; 2989 2990 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2991 if (!ctxs) 2992 return -ENOMEM; 2993 2994 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2995 if (!ctxs->queue_ctx) 2996 goto fail; 2997 2998 for_each_possible_cpu(cpu) { 2999 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3000 ctx->ctxs = ctxs; 3001 } 3002 3003 q->mq_kobj = &ctxs->kobj; 3004 q->queue_ctx = ctxs->queue_ctx; 3005 3006 return 0; 3007 fail: 3008 kfree(ctxs); 3009 return -ENOMEM; 3010 } 3011 3012 /* 3013 * It is the actual release handler for mq, but we do it from 3014 * request queue's release handler for avoiding use-after-free 3015 * and headache because q->mq_kobj shouldn't have been introduced, 3016 * but we can't group ctx/kctx kobj without it. 3017 */ 3018 void blk_mq_release(struct request_queue *q) 3019 { 3020 struct blk_mq_hw_ctx *hctx, *next; 3021 int i; 3022 3023 queue_for_each_hw_ctx(q, hctx, i) 3024 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3025 3026 /* all hctx are in .unused_hctx_list now */ 3027 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3028 list_del_init(&hctx->hctx_list); 3029 kobject_put(&hctx->kobj); 3030 } 3031 3032 kfree(q->queue_hw_ctx); 3033 3034 /* 3035 * release .mq_kobj and sw queue's kobject now because 3036 * both share lifetime with request queue. 3037 */ 3038 blk_mq_sysfs_deinit(q); 3039 } 3040 3041 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3042 void *queuedata) 3043 { 3044 struct request_queue *uninit_q, *q; 3045 3046 uninit_q = blk_alloc_queue(set->numa_node); 3047 if (!uninit_q) 3048 return ERR_PTR(-ENOMEM); 3049 uninit_q->queuedata = queuedata; 3050 3051 /* 3052 * Initialize the queue without an elevator. device_add_disk() will do 3053 * the initialization. 3054 */ 3055 q = blk_mq_init_allocated_queue(set, uninit_q, false); 3056 if (IS_ERR(q)) 3057 blk_cleanup_queue(uninit_q); 3058 3059 return q; 3060 } 3061 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 3062 3063 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3064 { 3065 return blk_mq_init_queue_data(set, NULL); 3066 } 3067 EXPORT_SYMBOL(blk_mq_init_queue); 3068 3069 /* 3070 * Helper for setting up a queue with mq ops, given queue depth, and 3071 * the passed in mq ops flags. 3072 */ 3073 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 3074 const struct blk_mq_ops *ops, 3075 unsigned int queue_depth, 3076 unsigned int set_flags) 3077 { 3078 struct request_queue *q; 3079 int ret; 3080 3081 memset(set, 0, sizeof(*set)); 3082 set->ops = ops; 3083 set->nr_hw_queues = 1; 3084 set->nr_maps = 1; 3085 set->queue_depth = queue_depth; 3086 set->numa_node = NUMA_NO_NODE; 3087 set->flags = set_flags; 3088 3089 ret = blk_mq_alloc_tag_set(set); 3090 if (ret) 3091 return ERR_PTR(ret); 3092 3093 q = blk_mq_init_queue(set); 3094 if (IS_ERR(q)) { 3095 blk_mq_free_tag_set(set); 3096 return q; 3097 } 3098 3099 return q; 3100 } 3101 EXPORT_SYMBOL(blk_mq_init_sq_queue); 3102 3103 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3104 struct blk_mq_tag_set *set, struct request_queue *q, 3105 int hctx_idx, int node) 3106 { 3107 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3108 3109 /* reuse dead hctx first */ 3110 spin_lock(&q->unused_hctx_lock); 3111 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3112 if (tmp->numa_node == node) { 3113 hctx = tmp; 3114 break; 3115 } 3116 } 3117 if (hctx) 3118 list_del_init(&hctx->hctx_list); 3119 spin_unlock(&q->unused_hctx_lock); 3120 3121 if (!hctx) 3122 hctx = blk_mq_alloc_hctx(q, set, node); 3123 if (!hctx) 3124 goto fail; 3125 3126 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3127 goto free_hctx; 3128 3129 return hctx; 3130 3131 free_hctx: 3132 kobject_put(&hctx->kobj); 3133 fail: 3134 return NULL; 3135 } 3136 3137 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3138 struct request_queue *q) 3139 { 3140 int i, j, end; 3141 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3142 3143 if (q->nr_hw_queues < set->nr_hw_queues) { 3144 struct blk_mq_hw_ctx **new_hctxs; 3145 3146 new_hctxs = kcalloc_node(set->nr_hw_queues, 3147 sizeof(*new_hctxs), GFP_KERNEL, 3148 set->numa_node); 3149 if (!new_hctxs) 3150 return; 3151 if (hctxs) 3152 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3153 sizeof(*hctxs)); 3154 q->queue_hw_ctx = new_hctxs; 3155 kfree(hctxs); 3156 hctxs = new_hctxs; 3157 } 3158 3159 /* protect against switching io scheduler */ 3160 mutex_lock(&q->sysfs_lock); 3161 for (i = 0; i < set->nr_hw_queues; i++) { 3162 int node; 3163 struct blk_mq_hw_ctx *hctx; 3164 3165 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3166 /* 3167 * If the hw queue has been mapped to another numa node, 3168 * we need to realloc the hctx. If allocation fails, fallback 3169 * to use the previous one. 3170 */ 3171 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3172 continue; 3173 3174 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3175 if (hctx) { 3176 if (hctxs[i]) 3177 blk_mq_exit_hctx(q, set, hctxs[i], i); 3178 hctxs[i] = hctx; 3179 } else { 3180 if (hctxs[i]) 3181 pr_warn("Allocate new hctx on node %d fails,\ 3182 fallback to previous one on node %d\n", 3183 node, hctxs[i]->numa_node); 3184 else 3185 break; 3186 } 3187 } 3188 /* 3189 * Increasing nr_hw_queues fails. Free the newly allocated 3190 * hctxs and keep the previous q->nr_hw_queues. 3191 */ 3192 if (i != set->nr_hw_queues) { 3193 j = q->nr_hw_queues; 3194 end = i; 3195 } else { 3196 j = i; 3197 end = q->nr_hw_queues; 3198 q->nr_hw_queues = set->nr_hw_queues; 3199 } 3200 3201 for (; j < end; j++) { 3202 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3203 3204 if (hctx) { 3205 if (hctx->tags) 3206 blk_mq_free_map_and_requests(set, j); 3207 blk_mq_exit_hctx(q, set, hctx, j); 3208 hctxs[j] = NULL; 3209 } 3210 } 3211 mutex_unlock(&q->sysfs_lock); 3212 } 3213 3214 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3215 struct request_queue *q, 3216 bool elevator_init) 3217 { 3218 /* mark the queue as mq asap */ 3219 q->mq_ops = set->ops; 3220 3221 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3222 blk_mq_poll_stats_bkt, 3223 BLK_MQ_POLL_STATS_BKTS, q); 3224 if (!q->poll_cb) 3225 goto err_exit; 3226 3227 if (blk_mq_alloc_ctxs(q)) 3228 goto err_poll; 3229 3230 /* init q->mq_kobj and sw queues' kobjects */ 3231 blk_mq_sysfs_init(q); 3232 3233 INIT_LIST_HEAD(&q->unused_hctx_list); 3234 spin_lock_init(&q->unused_hctx_lock); 3235 3236 blk_mq_realloc_hw_ctxs(set, q); 3237 if (!q->nr_hw_queues) 3238 goto err_hctxs; 3239 3240 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3241 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3242 3243 q->tag_set = set; 3244 3245 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3246 if (set->nr_maps > HCTX_TYPE_POLL && 3247 set->map[HCTX_TYPE_POLL].nr_queues) 3248 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3249 3250 q->sg_reserved_size = INT_MAX; 3251 3252 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3253 INIT_LIST_HEAD(&q->requeue_list); 3254 spin_lock_init(&q->requeue_lock); 3255 3256 q->nr_requests = set->queue_depth; 3257 3258 /* 3259 * Default to classic polling 3260 */ 3261 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3262 3263 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3264 blk_mq_add_queue_tag_set(set, q); 3265 blk_mq_map_swqueue(q); 3266 3267 if (elevator_init) 3268 elevator_init_mq(q); 3269 3270 return q; 3271 3272 err_hctxs: 3273 kfree(q->queue_hw_ctx); 3274 q->nr_hw_queues = 0; 3275 blk_mq_sysfs_deinit(q); 3276 err_poll: 3277 blk_stat_free_callback(q->poll_cb); 3278 q->poll_cb = NULL; 3279 err_exit: 3280 q->mq_ops = NULL; 3281 return ERR_PTR(-ENOMEM); 3282 } 3283 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3284 3285 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3286 void blk_mq_exit_queue(struct request_queue *q) 3287 { 3288 struct blk_mq_tag_set *set = q->tag_set; 3289 3290 blk_mq_del_queue_tag_set(q); 3291 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3292 } 3293 3294 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3295 { 3296 int i; 3297 3298 for (i = 0; i < set->nr_hw_queues; i++) { 3299 if (!__blk_mq_alloc_map_and_request(set, i)) 3300 goto out_unwind; 3301 cond_resched(); 3302 } 3303 3304 return 0; 3305 3306 out_unwind: 3307 while (--i >= 0) 3308 blk_mq_free_map_and_requests(set, i); 3309 3310 return -ENOMEM; 3311 } 3312 3313 /* 3314 * Allocate the request maps associated with this tag_set. Note that this 3315 * may reduce the depth asked for, if memory is tight. set->queue_depth 3316 * will be updated to reflect the allocated depth. 3317 */ 3318 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3319 { 3320 unsigned int depth; 3321 int err; 3322 3323 depth = set->queue_depth; 3324 do { 3325 err = __blk_mq_alloc_rq_maps(set); 3326 if (!err) 3327 break; 3328 3329 set->queue_depth >>= 1; 3330 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3331 err = -ENOMEM; 3332 break; 3333 } 3334 } while (set->queue_depth); 3335 3336 if (!set->queue_depth || err) { 3337 pr_err("blk-mq: failed to allocate request map\n"); 3338 return -ENOMEM; 3339 } 3340 3341 if (depth != set->queue_depth) 3342 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3343 depth, set->queue_depth); 3344 3345 return 0; 3346 } 3347 3348 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3349 { 3350 /* 3351 * blk_mq_map_queues() and multiple .map_queues() implementations 3352 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3353 * number of hardware queues. 3354 */ 3355 if (set->nr_maps == 1) 3356 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3357 3358 if (set->ops->map_queues && !is_kdump_kernel()) { 3359 int i; 3360 3361 /* 3362 * transport .map_queues is usually done in the following 3363 * way: 3364 * 3365 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3366 * mask = get_cpu_mask(queue) 3367 * for_each_cpu(cpu, mask) 3368 * set->map[x].mq_map[cpu] = queue; 3369 * } 3370 * 3371 * When we need to remap, the table has to be cleared for 3372 * killing stale mapping since one CPU may not be mapped 3373 * to any hw queue. 3374 */ 3375 for (i = 0; i < set->nr_maps; i++) 3376 blk_mq_clear_mq_map(&set->map[i]); 3377 3378 return set->ops->map_queues(set); 3379 } else { 3380 BUG_ON(set->nr_maps > 1); 3381 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3382 } 3383 } 3384 3385 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3386 int cur_nr_hw_queues, int new_nr_hw_queues) 3387 { 3388 struct blk_mq_tags **new_tags; 3389 3390 if (cur_nr_hw_queues >= new_nr_hw_queues) 3391 return 0; 3392 3393 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3394 GFP_KERNEL, set->numa_node); 3395 if (!new_tags) 3396 return -ENOMEM; 3397 3398 if (set->tags) 3399 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3400 sizeof(*set->tags)); 3401 kfree(set->tags); 3402 set->tags = new_tags; 3403 set->nr_hw_queues = new_nr_hw_queues; 3404 3405 return 0; 3406 } 3407 3408 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 3409 int new_nr_hw_queues) 3410 { 3411 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 3412 } 3413 3414 /* 3415 * Alloc a tag set to be associated with one or more request queues. 3416 * May fail with EINVAL for various error conditions. May adjust the 3417 * requested depth down, if it's too large. In that case, the set 3418 * value will be stored in set->queue_depth. 3419 */ 3420 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3421 { 3422 int i, ret; 3423 3424 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3425 3426 if (!set->nr_hw_queues) 3427 return -EINVAL; 3428 if (!set->queue_depth) 3429 return -EINVAL; 3430 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3431 return -EINVAL; 3432 3433 if (!set->ops->queue_rq) 3434 return -EINVAL; 3435 3436 if (!set->ops->get_budget ^ !set->ops->put_budget) 3437 return -EINVAL; 3438 3439 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3440 pr_info("blk-mq: reduced tag depth to %u\n", 3441 BLK_MQ_MAX_DEPTH); 3442 set->queue_depth = BLK_MQ_MAX_DEPTH; 3443 } 3444 3445 if (!set->nr_maps) 3446 set->nr_maps = 1; 3447 else if (set->nr_maps > HCTX_MAX_TYPES) 3448 return -EINVAL; 3449 3450 /* 3451 * If a crashdump is active, then we are potentially in a very 3452 * memory constrained environment. Limit us to 1 queue and 3453 * 64 tags to prevent using too much memory. 3454 */ 3455 if (is_kdump_kernel()) { 3456 set->nr_hw_queues = 1; 3457 set->nr_maps = 1; 3458 set->queue_depth = min(64U, set->queue_depth); 3459 } 3460 /* 3461 * There is no use for more h/w queues than cpus if we just have 3462 * a single map 3463 */ 3464 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3465 set->nr_hw_queues = nr_cpu_ids; 3466 3467 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 3468 return -ENOMEM; 3469 3470 ret = -ENOMEM; 3471 for (i = 0; i < set->nr_maps; i++) { 3472 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3473 sizeof(set->map[i].mq_map[0]), 3474 GFP_KERNEL, set->numa_node); 3475 if (!set->map[i].mq_map) 3476 goto out_free_mq_map; 3477 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3478 } 3479 3480 ret = blk_mq_update_queue_map(set); 3481 if (ret) 3482 goto out_free_mq_map; 3483 3484 ret = blk_mq_alloc_map_and_requests(set); 3485 if (ret) 3486 goto out_free_mq_map; 3487 3488 if (blk_mq_is_sbitmap_shared(set->flags)) { 3489 atomic_set(&set->active_queues_shared_sbitmap, 0); 3490 3491 if (blk_mq_init_shared_sbitmap(set, set->flags)) { 3492 ret = -ENOMEM; 3493 goto out_free_mq_rq_maps; 3494 } 3495 } 3496 3497 mutex_init(&set->tag_list_lock); 3498 INIT_LIST_HEAD(&set->tag_list); 3499 3500 return 0; 3501 3502 out_free_mq_rq_maps: 3503 for (i = 0; i < set->nr_hw_queues; i++) 3504 blk_mq_free_map_and_requests(set, i); 3505 out_free_mq_map: 3506 for (i = 0; i < set->nr_maps; i++) { 3507 kfree(set->map[i].mq_map); 3508 set->map[i].mq_map = NULL; 3509 } 3510 kfree(set->tags); 3511 set->tags = NULL; 3512 return ret; 3513 } 3514 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3515 3516 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3517 { 3518 int i, j; 3519 3520 for (i = 0; i < set->nr_hw_queues; i++) 3521 blk_mq_free_map_and_requests(set, i); 3522 3523 if (blk_mq_is_sbitmap_shared(set->flags)) 3524 blk_mq_exit_shared_sbitmap(set); 3525 3526 for (j = 0; j < set->nr_maps; j++) { 3527 kfree(set->map[j].mq_map); 3528 set->map[j].mq_map = NULL; 3529 } 3530 3531 kfree(set->tags); 3532 set->tags = NULL; 3533 } 3534 EXPORT_SYMBOL(blk_mq_free_tag_set); 3535 3536 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3537 { 3538 struct blk_mq_tag_set *set = q->tag_set; 3539 struct blk_mq_hw_ctx *hctx; 3540 int i, ret; 3541 3542 if (!set) 3543 return -EINVAL; 3544 3545 if (q->nr_requests == nr) 3546 return 0; 3547 3548 blk_mq_freeze_queue(q); 3549 blk_mq_quiesce_queue(q); 3550 3551 ret = 0; 3552 queue_for_each_hw_ctx(q, hctx, i) { 3553 if (!hctx->tags) 3554 continue; 3555 /* 3556 * If we're using an MQ scheduler, just update the scheduler 3557 * queue depth. This is similar to what the old code would do. 3558 */ 3559 if (!hctx->sched_tags) { 3560 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3561 false); 3562 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3563 blk_mq_tag_resize_shared_sbitmap(set, nr); 3564 } else { 3565 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3566 nr, true); 3567 } 3568 if (ret) 3569 break; 3570 if (q->elevator && q->elevator->type->ops.depth_updated) 3571 q->elevator->type->ops.depth_updated(hctx); 3572 } 3573 3574 if (!ret) 3575 q->nr_requests = nr; 3576 3577 blk_mq_unquiesce_queue(q); 3578 blk_mq_unfreeze_queue(q); 3579 3580 return ret; 3581 } 3582 3583 /* 3584 * request_queue and elevator_type pair. 3585 * It is just used by __blk_mq_update_nr_hw_queues to cache 3586 * the elevator_type associated with a request_queue. 3587 */ 3588 struct blk_mq_qe_pair { 3589 struct list_head node; 3590 struct request_queue *q; 3591 struct elevator_type *type; 3592 }; 3593 3594 /* 3595 * Cache the elevator_type in qe pair list and switch the 3596 * io scheduler to 'none' 3597 */ 3598 static bool blk_mq_elv_switch_none(struct list_head *head, 3599 struct request_queue *q) 3600 { 3601 struct blk_mq_qe_pair *qe; 3602 3603 if (!q->elevator) 3604 return true; 3605 3606 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3607 if (!qe) 3608 return false; 3609 3610 INIT_LIST_HEAD(&qe->node); 3611 qe->q = q; 3612 qe->type = q->elevator->type; 3613 list_add(&qe->node, head); 3614 3615 mutex_lock(&q->sysfs_lock); 3616 /* 3617 * After elevator_switch_mq, the previous elevator_queue will be 3618 * released by elevator_release. The reference of the io scheduler 3619 * module get by elevator_get will also be put. So we need to get 3620 * a reference of the io scheduler module here to prevent it to be 3621 * removed. 3622 */ 3623 __module_get(qe->type->elevator_owner); 3624 elevator_switch_mq(q, NULL); 3625 mutex_unlock(&q->sysfs_lock); 3626 3627 return true; 3628 } 3629 3630 static void blk_mq_elv_switch_back(struct list_head *head, 3631 struct request_queue *q) 3632 { 3633 struct blk_mq_qe_pair *qe; 3634 struct elevator_type *t = NULL; 3635 3636 list_for_each_entry(qe, head, node) 3637 if (qe->q == q) { 3638 t = qe->type; 3639 break; 3640 } 3641 3642 if (!t) 3643 return; 3644 3645 list_del(&qe->node); 3646 kfree(qe); 3647 3648 mutex_lock(&q->sysfs_lock); 3649 elevator_switch_mq(q, t); 3650 mutex_unlock(&q->sysfs_lock); 3651 } 3652 3653 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3654 int nr_hw_queues) 3655 { 3656 struct request_queue *q; 3657 LIST_HEAD(head); 3658 int prev_nr_hw_queues; 3659 3660 lockdep_assert_held(&set->tag_list_lock); 3661 3662 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3663 nr_hw_queues = nr_cpu_ids; 3664 if (nr_hw_queues < 1) 3665 return; 3666 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3667 return; 3668 3669 list_for_each_entry(q, &set->tag_list, tag_set_list) 3670 blk_mq_freeze_queue(q); 3671 /* 3672 * Switch IO scheduler to 'none', cleaning up the data associated 3673 * with the previous scheduler. We will switch back once we are done 3674 * updating the new sw to hw queue mappings. 3675 */ 3676 list_for_each_entry(q, &set->tag_list, tag_set_list) 3677 if (!blk_mq_elv_switch_none(&head, q)) 3678 goto switch_back; 3679 3680 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3681 blk_mq_debugfs_unregister_hctxs(q); 3682 blk_mq_sysfs_unregister(q); 3683 } 3684 3685 prev_nr_hw_queues = set->nr_hw_queues; 3686 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3687 0) 3688 goto reregister; 3689 3690 set->nr_hw_queues = nr_hw_queues; 3691 fallback: 3692 blk_mq_update_queue_map(set); 3693 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3694 blk_mq_realloc_hw_ctxs(set, q); 3695 if (q->nr_hw_queues != set->nr_hw_queues) { 3696 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3697 nr_hw_queues, prev_nr_hw_queues); 3698 set->nr_hw_queues = prev_nr_hw_queues; 3699 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3700 goto fallback; 3701 } 3702 blk_mq_map_swqueue(q); 3703 } 3704 3705 reregister: 3706 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3707 blk_mq_sysfs_register(q); 3708 blk_mq_debugfs_register_hctxs(q); 3709 } 3710 3711 switch_back: 3712 list_for_each_entry(q, &set->tag_list, tag_set_list) 3713 blk_mq_elv_switch_back(&head, q); 3714 3715 list_for_each_entry(q, &set->tag_list, tag_set_list) 3716 blk_mq_unfreeze_queue(q); 3717 } 3718 3719 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3720 { 3721 mutex_lock(&set->tag_list_lock); 3722 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3723 mutex_unlock(&set->tag_list_lock); 3724 } 3725 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3726 3727 /* Enable polling stats and return whether they were already enabled. */ 3728 static bool blk_poll_stats_enable(struct request_queue *q) 3729 { 3730 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3731 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3732 return true; 3733 blk_stat_add_callback(q, q->poll_cb); 3734 return false; 3735 } 3736 3737 static void blk_mq_poll_stats_start(struct request_queue *q) 3738 { 3739 /* 3740 * We don't arm the callback if polling stats are not enabled or the 3741 * callback is already active. 3742 */ 3743 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3744 blk_stat_is_active(q->poll_cb)) 3745 return; 3746 3747 blk_stat_activate_msecs(q->poll_cb, 100); 3748 } 3749 3750 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3751 { 3752 struct request_queue *q = cb->data; 3753 int bucket; 3754 3755 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3756 if (cb->stat[bucket].nr_samples) 3757 q->poll_stat[bucket] = cb->stat[bucket]; 3758 } 3759 } 3760 3761 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3762 struct request *rq) 3763 { 3764 unsigned long ret = 0; 3765 int bucket; 3766 3767 /* 3768 * If stats collection isn't on, don't sleep but turn it on for 3769 * future users 3770 */ 3771 if (!blk_poll_stats_enable(q)) 3772 return 0; 3773 3774 /* 3775 * As an optimistic guess, use half of the mean service time 3776 * for this type of request. We can (and should) make this smarter. 3777 * For instance, if the completion latencies are tight, we can 3778 * get closer than just half the mean. This is especially 3779 * important on devices where the completion latencies are longer 3780 * than ~10 usec. We do use the stats for the relevant IO size 3781 * if available which does lead to better estimates. 3782 */ 3783 bucket = blk_mq_poll_stats_bkt(rq); 3784 if (bucket < 0) 3785 return ret; 3786 3787 if (q->poll_stat[bucket].nr_samples) 3788 ret = (q->poll_stat[bucket].mean + 1) / 2; 3789 3790 return ret; 3791 } 3792 3793 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3794 struct request *rq) 3795 { 3796 struct hrtimer_sleeper hs; 3797 enum hrtimer_mode mode; 3798 unsigned int nsecs; 3799 ktime_t kt; 3800 3801 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3802 return false; 3803 3804 /* 3805 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3806 * 3807 * 0: use half of prev avg 3808 * >0: use this specific value 3809 */ 3810 if (q->poll_nsec > 0) 3811 nsecs = q->poll_nsec; 3812 else 3813 nsecs = blk_mq_poll_nsecs(q, rq); 3814 3815 if (!nsecs) 3816 return false; 3817 3818 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3819 3820 /* 3821 * This will be replaced with the stats tracking code, using 3822 * 'avg_completion_time / 2' as the pre-sleep target. 3823 */ 3824 kt = nsecs; 3825 3826 mode = HRTIMER_MODE_REL; 3827 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3828 hrtimer_set_expires(&hs.timer, kt); 3829 3830 do { 3831 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3832 break; 3833 set_current_state(TASK_UNINTERRUPTIBLE); 3834 hrtimer_sleeper_start_expires(&hs, mode); 3835 if (hs.task) 3836 io_schedule(); 3837 hrtimer_cancel(&hs.timer); 3838 mode = HRTIMER_MODE_ABS; 3839 } while (hs.task && !signal_pending(current)); 3840 3841 __set_current_state(TASK_RUNNING); 3842 destroy_hrtimer_on_stack(&hs.timer); 3843 return true; 3844 } 3845 3846 static bool blk_mq_poll_hybrid(struct request_queue *q, 3847 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3848 { 3849 struct request *rq; 3850 3851 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3852 return false; 3853 3854 if (!blk_qc_t_is_internal(cookie)) 3855 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3856 else { 3857 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3858 /* 3859 * With scheduling, if the request has completed, we'll 3860 * get a NULL return here, as we clear the sched tag when 3861 * that happens. The request still remains valid, like always, 3862 * so we should be safe with just the NULL check. 3863 */ 3864 if (!rq) 3865 return false; 3866 } 3867 3868 return blk_mq_poll_hybrid_sleep(q, rq); 3869 } 3870 3871 /** 3872 * blk_poll - poll for IO completions 3873 * @q: the queue 3874 * @cookie: cookie passed back at IO submission time 3875 * @spin: whether to spin for completions 3876 * 3877 * Description: 3878 * Poll for completions on the passed in queue. Returns number of 3879 * completed entries found. If @spin is true, then blk_poll will continue 3880 * looping until at least one completion is found, unless the task is 3881 * otherwise marked running (or we need to reschedule). 3882 */ 3883 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3884 { 3885 struct blk_mq_hw_ctx *hctx; 3886 long state; 3887 3888 if (!blk_qc_t_valid(cookie) || 3889 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3890 return 0; 3891 3892 if (current->plug) 3893 blk_flush_plug_list(current->plug, false); 3894 3895 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3896 3897 /* 3898 * If we sleep, have the caller restart the poll loop to reset 3899 * the state. Like for the other success return cases, the 3900 * caller is responsible for checking if the IO completed. If 3901 * the IO isn't complete, we'll get called again and will go 3902 * straight to the busy poll loop. If specified not to spin, 3903 * we also should not sleep. 3904 */ 3905 if (spin && blk_mq_poll_hybrid(q, hctx, cookie)) 3906 return 1; 3907 3908 hctx->poll_considered++; 3909 3910 state = current->state; 3911 do { 3912 int ret; 3913 3914 hctx->poll_invoked++; 3915 3916 ret = q->mq_ops->poll(hctx); 3917 if (ret > 0) { 3918 hctx->poll_success++; 3919 __set_current_state(TASK_RUNNING); 3920 return ret; 3921 } 3922 3923 if (signal_pending_state(state, current)) 3924 __set_current_state(TASK_RUNNING); 3925 3926 if (current->state == TASK_RUNNING) 3927 return 1; 3928 if (ret < 0 || !spin) 3929 break; 3930 cpu_relax(); 3931 } while (!need_resched()); 3932 3933 __set_current_state(TASK_RUNNING); 3934 return 0; 3935 } 3936 EXPORT_SYMBOL_GPL(blk_poll); 3937 3938 unsigned int blk_mq_rq_cpu(struct request *rq) 3939 { 3940 return rq->mq_ctx->cpu; 3941 } 3942 EXPORT_SYMBOL(blk_mq_rq_cpu); 3943 3944 static int __init blk_mq_init(void) 3945 { 3946 int i; 3947 3948 for_each_possible_cpu(i) 3949 init_llist_head(&per_cpu(blk_cpu_done, i)); 3950 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 3951 3952 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 3953 "block/softirq:dead", NULL, 3954 blk_softirq_cpu_dead); 3955 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3956 blk_mq_hctx_notify_dead); 3957 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 3958 blk_mq_hctx_notify_online, 3959 blk_mq_hctx_notify_offline); 3960 return 0; 3961 } 3962 subsys_initcall(blk_mq_init); 3963