xref: /openbmc/linux/block/blk-mq.c (revision cef69974)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 #define BLK_QC_T_SHIFT		16
69 #define BLK_QC_T_INTERNAL	(1U << 31)
70 
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 		blk_qc_t qc)
73 {
74 	return xa_load(&q->hctx_table,
75 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77 
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 		blk_qc_t qc)
80 {
81 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82 
83 	if (qc & BLK_QC_T_INTERNAL)
84 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 	return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87 
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 		(rq->tag != -1 ?
92 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94 
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101 	return !list_empty_careful(&hctx->dispatch) ||
102 		sbitmap_any_bit_set(&hctx->ctx_map) ||
103 			blk_mq_sched_has_work(hctx);
104 }
105 
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 				     struct blk_mq_ctx *ctx)
111 {
112 	const int bit = ctx->index_hw[hctx->type];
113 
114 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 		sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117 
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 				      struct blk_mq_ctx *ctx)
120 {
121 	const int bit = ctx->index_hw[hctx->type];
122 
123 	sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125 
126 struct mq_inflight {
127 	struct block_device *part;
128 	unsigned int inflight[2];
129 };
130 
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132 				  bool reserved)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
137 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138 		mi->inflight[rq_data_dir(rq)]++;
139 
140 	return true;
141 }
142 
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144 		struct block_device *part)
145 {
146 	struct mq_inflight mi = { .part = part };
147 
148 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149 
150 	return mi.inflight[0] + mi.inflight[1];
151 }
152 
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154 		unsigned int inflight[2])
155 {
156 	struct mq_inflight mi = { .part = part };
157 
158 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 	inflight[0] = mi.inflight[0];
160 	inflight[1] = mi.inflight[1];
161 }
162 
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165 	mutex_lock(&q->mq_freeze_lock);
166 	if (++q->mq_freeze_depth == 1) {
167 		percpu_ref_kill(&q->q_usage_counter);
168 		mutex_unlock(&q->mq_freeze_lock);
169 		if (queue_is_mq(q))
170 			blk_mq_run_hw_queues(q, false);
171 	} else {
172 		mutex_unlock(&q->mq_freeze_lock);
173 	}
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176 
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182 
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184 				     unsigned long timeout)
185 {
186 	return wait_event_timeout(q->mq_freeze_wq,
187 					percpu_ref_is_zero(&q->q_usage_counter),
188 					timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191 
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198 	/*
199 	 * In the !blk_mq case we are only calling this to kill the
200 	 * q_usage_counter, otherwise this increases the freeze depth
201 	 * and waits for it to return to zero.  For this reason there is
202 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203 	 * exported to drivers as the only user for unfreeze is blk_mq.
204 	 */
205 	blk_freeze_queue_start(q);
206 	blk_mq_freeze_queue_wait(q);
207 }
208 
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211 	/*
212 	 * ...just an alias to keep freeze and unfreeze actions balanced
213 	 * in the blk_mq_* namespace
214 	 */
215 	blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218 
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221 	mutex_lock(&q->mq_freeze_lock);
222 	if (force_atomic)
223 		q->q_usage_counter.data->force_atomic = true;
224 	q->mq_freeze_depth--;
225 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
226 	if (!q->mq_freeze_depth) {
227 		percpu_ref_resurrect(&q->q_usage_counter);
228 		wake_up_all(&q->mq_freeze_wq);
229 	}
230 	mutex_unlock(&q->mq_freeze_lock);
231 }
232 
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235 	__blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238 
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245 	unsigned long flags;
246 
247 	spin_lock_irqsave(&q->queue_lock, flags);
248 	if (!q->quiesce_depth++)
249 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250 	spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253 
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263 	if (blk_queue_has_srcu(q))
264 		synchronize_srcu(q->srcu);
265 	else
266 		synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269 
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281 	blk_mq_quiesce_queue_nowait(q);
282 	blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285 
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295 	unsigned long flags;
296 	bool run_queue = false;
297 
298 	spin_lock_irqsave(&q->queue_lock, flags);
299 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300 		;
301 	} else if (!--q->quiesce_depth) {
302 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303 		run_queue = true;
304 	}
305 	spin_unlock_irqrestore(&q->queue_lock, flags);
306 
307 	/* dispatch requests which are inserted during quiescing */
308 	if (run_queue)
309 		blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312 
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	unsigned long i;
317 
318 	queue_for_each_hw_ctx(q, hctx, i)
319 		if (blk_mq_hw_queue_mapped(hctx))
320 			blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322 
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325 	memset(rq, 0, sizeof(*rq));
326 
327 	INIT_LIST_HEAD(&rq->queuelist);
328 	rq->q = q;
329 	rq->__sector = (sector_t) -1;
330 	INIT_HLIST_NODE(&rq->hash);
331 	RB_CLEAR_NODE(&rq->rb_node);
332 	rq->tag = BLK_MQ_NO_TAG;
333 	rq->internal_tag = BLK_MQ_NO_TAG;
334 	rq->start_time_ns = ktime_get_ns();
335 	rq->part = NULL;
336 	blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339 
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343 	struct blk_mq_ctx *ctx = data->ctx;
344 	struct blk_mq_hw_ctx *hctx = data->hctx;
345 	struct request_queue *q = data->q;
346 	struct request *rq = tags->static_rqs[tag];
347 
348 	rq->q = q;
349 	rq->mq_ctx = ctx;
350 	rq->mq_hctx = hctx;
351 	rq->cmd_flags = data->cmd_flags;
352 
353 	if (data->flags & BLK_MQ_REQ_PM)
354 		data->rq_flags |= RQF_PM;
355 	if (blk_queue_io_stat(q))
356 		data->rq_flags |= RQF_IO_STAT;
357 	rq->rq_flags = data->rq_flags;
358 
359 	if (!(data->rq_flags & RQF_ELV)) {
360 		rq->tag = tag;
361 		rq->internal_tag = BLK_MQ_NO_TAG;
362 	} else {
363 		rq->tag = BLK_MQ_NO_TAG;
364 		rq->internal_tag = tag;
365 	}
366 	rq->timeout = 0;
367 
368 	if (blk_mq_need_time_stamp(rq))
369 		rq->start_time_ns = ktime_get_ns();
370 	else
371 		rq->start_time_ns = 0;
372 	rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374 	rq->alloc_time_ns = alloc_time_ns;
375 #endif
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_ELV) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (!op_is_flush(data->cmd_flags) &&
398 		    e->type->ops.prepare_request) {
399 			e->type->ops.prepare_request(rq);
400 			rq->rq_flags |= RQF_ELVPRIV;
401 		}
402 	}
403 
404 	return rq;
405 }
406 
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409 		u64 alloc_time_ns)
410 {
411 	unsigned int tag, tag_offset;
412 	struct blk_mq_tags *tags;
413 	struct request *rq;
414 	unsigned long tag_mask;
415 	int i, nr = 0;
416 
417 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418 	if (unlikely(!tag_mask))
419 		return NULL;
420 
421 	tags = blk_mq_tags_from_data(data);
422 	for (i = 0; tag_mask; i++) {
423 		if (!(tag_mask & (1UL << i)))
424 			continue;
425 		tag = tag_offset + i;
426 		prefetch(tags->static_rqs[tag]);
427 		tag_mask &= ~(1UL << i);
428 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429 		rq_list_add(data->cached_rq, rq);
430 		nr++;
431 	}
432 	/* caller already holds a reference, add for remainder */
433 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434 	data->nr_tags -= nr;
435 
436 	return rq_list_pop(data->cached_rq);
437 }
438 
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441 	struct request_queue *q = data->q;
442 	u64 alloc_time_ns = 0;
443 	struct request *rq;
444 	unsigned int tag;
445 
446 	/* alloc_time includes depth and tag waits */
447 	if (blk_queue_rq_alloc_time(q))
448 		alloc_time_ns = ktime_get_ns();
449 
450 	if (data->cmd_flags & REQ_NOWAIT)
451 		data->flags |= BLK_MQ_REQ_NOWAIT;
452 
453 	if (q->elevator) {
454 		struct elevator_queue *e = q->elevator;
455 
456 		data->rq_flags |= RQF_ELV;
457 
458 		/*
459 		 * Flush/passthrough requests are special and go directly to the
460 		 * dispatch list. Don't include reserved tags in the
461 		 * limiting, as it isn't useful.
462 		 */
463 		if (!op_is_flush(data->cmd_flags) &&
464 		    !blk_op_is_passthrough(data->cmd_flags) &&
465 		    e->type->ops.limit_depth &&
466 		    !(data->flags & BLK_MQ_REQ_RESERVED))
467 			e->type->ops.limit_depth(data->cmd_flags, data);
468 	}
469 
470 retry:
471 	data->ctx = blk_mq_get_ctx(q);
472 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473 	if (!(data->rq_flags & RQF_ELV))
474 		blk_mq_tag_busy(data->hctx);
475 
476 	/*
477 	 * Try batched alloc if we want more than 1 tag.
478 	 */
479 	if (data->nr_tags > 1) {
480 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481 		if (rq)
482 			return rq;
483 		data->nr_tags = 1;
484 	}
485 
486 	/*
487 	 * Waiting allocations only fail because of an inactive hctx.  In that
488 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
489 	 * should have migrated us to an online CPU by now.
490 	 */
491 	tag = blk_mq_get_tag(data);
492 	if (tag == BLK_MQ_NO_TAG) {
493 		if (data->flags & BLK_MQ_REQ_NOWAIT)
494 			return NULL;
495 		/*
496 		 * Give up the CPU and sleep for a random short time to
497 		 * ensure that thread using a realtime scheduling class
498 		 * are migrated off the CPU, and thus off the hctx that
499 		 * is going away.
500 		 */
501 		msleep(3);
502 		goto retry;
503 	}
504 
505 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506 					alloc_time_ns);
507 }
508 
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510 		blk_mq_req_flags_t flags)
511 {
512 	struct blk_mq_alloc_data data = {
513 		.q		= q,
514 		.flags		= flags,
515 		.cmd_flags	= op,
516 		.nr_tags	= 1,
517 	};
518 	struct request *rq;
519 	int ret;
520 
521 	ret = blk_queue_enter(q, flags);
522 	if (ret)
523 		return ERR_PTR(ret);
524 
525 	rq = __blk_mq_alloc_requests(&data);
526 	if (!rq)
527 		goto out_queue_exit;
528 	rq->__data_len = 0;
529 	rq->__sector = (sector_t) -1;
530 	rq->bio = rq->biotail = NULL;
531 	return rq;
532 out_queue_exit:
533 	blk_queue_exit(q);
534 	return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537 
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541 	struct blk_mq_alloc_data data = {
542 		.q		= q,
543 		.flags		= flags,
544 		.cmd_flags	= op,
545 		.nr_tags	= 1,
546 	};
547 	u64 alloc_time_ns = 0;
548 	unsigned int cpu;
549 	unsigned int tag;
550 	int ret;
551 
552 	/* alloc_time includes depth and tag waits */
553 	if (blk_queue_rq_alloc_time(q))
554 		alloc_time_ns = ktime_get_ns();
555 
556 	/*
557 	 * If the tag allocator sleeps we could get an allocation for a
558 	 * different hardware context.  No need to complicate the low level
559 	 * allocator for this for the rare use case of a command tied to
560 	 * a specific queue.
561 	 */
562 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563 		return ERR_PTR(-EINVAL);
564 
565 	if (hctx_idx >= q->nr_hw_queues)
566 		return ERR_PTR(-EIO);
567 
568 	ret = blk_queue_enter(q, flags);
569 	if (ret)
570 		return ERR_PTR(ret);
571 
572 	/*
573 	 * Check if the hardware context is actually mapped to anything.
574 	 * If not tell the caller that it should skip this queue.
575 	 */
576 	ret = -EXDEV;
577 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
578 	if (!blk_mq_hw_queue_mapped(data.hctx))
579 		goto out_queue_exit;
580 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581 	data.ctx = __blk_mq_get_ctx(q, cpu);
582 
583 	if (!q->elevator)
584 		blk_mq_tag_busy(data.hctx);
585 	else
586 		data.rq_flags |= RQF_ELV;
587 
588 	ret = -EWOULDBLOCK;
589 	tag = blk_mq_get_tag(&data);
590 	if (tag == BLK_MQ_NO_TAG)
591 		goto out_queue_exit;
592 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593 					alloc_time_ns);
594 
595 out_queue_exit:
596 	blk_queue_exit(q);
597 	return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600 
601 static void __blk_mq_free_request(struct request *rq)
602 {
603 	struct request_queue *q = rq->q;
604 	struct blk_mq_ctx *ctx = rq->mq_ctx;
605 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606 	const int sched_tag = rq->internal_tag;
607 
608 	blk_crypto_free_request(rq);
609 	blk_pm_mark_last_busy(rq);
610 	rq->mq_hctx = NULL;
611 	if (rq->tag != BLK_MQ_NO_TAG)
612 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613 	if (sched_tag != BLK_MQ_NO_TAG)
614 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615 	blk_mq_sched_restart(hctx);
616 	blk_queue_exit(q);
617 }
618 
619 void blk_mq_free_request(struct request *rq)
620 {
621 	struct request_queue *q = rq->q;
622 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623 
624 	if ((rq->rq_flags & RQF_ELVPRIV) &&
625 	    q->elevator->type->ops.finish_request)
626 		q->elevator->type->ops.finish_request(rq);
627 
628 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
629 		__blk_mq_dec_active_requests(hctx);
630 
631 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632 		laptop_io_completion(q->disk->bdi);
633 
634 	rq_qos_done(q, rq);
635 
636 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637 	if (req_ref_put_and_test(rq))
638 		__blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641 
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644 	struct request *rq;
645 
646 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647 		blk_mq_free_request(rq);
648 }
649 
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653 		rq->q->disk ? rq->q->disk->disk_name : "?",
654 		(unsigned long long) rq->cmd_flags);
655 
656 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657 	       (unsigned long long)blk_rq_pos(rq),
658 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663 
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665 			  unsigned int nbytes, blk_status_t error)
666 {
667 	if (unlikely(error)) {
668 		bio->bi_status = error;
669 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670 		/*
671 		 * Partial zone append completions cannot be supported as the
672 		 * BIO fragments may end up not being written sequentially.
673 		 */
674 		if (bio->bi_iter.bi_size != nbytes)
675 			bio->bi_status = BLK_STS_IOERR;
676 		else
677 			bio->bi_iter.bi_sector = rq->__sector;
678 	}
679 
680 	bio_advance(bio, nbytes);
681 
682 	if (unlikely(rq->rq_flags & RQF_QUIET))
683 		bio_set_flag(bio, BIO_QUIET);
684 	/* don't actually finish bio if it's part of flush sequence */
685 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686 		bio_endio(bio);
687 }
688 
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691 	if (req->part && blk_do_io_stat(req)) {
692 		const int sgrp = op_stat_group(req_op(req));
693 
694 		part_stat_lock();
695 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696 		part_stat_unlock();
697 	}
698 }
699 
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702 	printk_ratelimited(KERN_ERR
703 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704 		"phys_seg %u prio class %u\n",
705 		blk_status_to_str(status),
706 		req->q->disk ? req->q->disk->disk_name : "?",
707 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708 		req->cmd_flags & ~REQ_OP_MASK,
709 		req->nr_phys_segments,
710 		IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712 
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720 	int total_bytes = blk_rq_bytes(req);
721 	struct bio *bio = req->bio;
722 
723 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724 
725 	if (!bio)
726 		return;
727 
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730 		req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732 
733 	blk_account_io_completion(req, total_bytes);
734 
735 	do {
736 		struct bio *next = bio->bi_next;
737 
738 		/* Completion has already been traced */
739 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740 
741 		if (req_op(req) == REQ_OP_ZONE_APPEND)
742 			bio->bi_iter.bi_sector = req->__sector;
743 
744 		if (!is_flush)
745 			bio_endio(bio);
746 		bio = next;
747 	} while (bio);
748 
749 	/*
750 	 * Reset counters so that the request stacking driver
751 	 * can find how many bytes remain in the request
752 	 * later.
753 	 */
754 	req->bio = NULL;
755 	req->__data_len = 0;
756 }
757 
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781 		unsigned int nr_bytes)
782 {
783 	int total_bytes;
784 
785 	trace_block_rq_complete(req, error, nr_bytes);
786 
787 	if (!req->bio)
788 		return false;
789 
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792 	    error == BLK_STS_OK)
793 		req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795 
796 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
797 		     !(req->rq_flags & RQF_QUIET)) &&
798 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
799 		blk_print_req_error(req, error);
800 		trace_block_rq_error(req, error, nr_bytes);
801 	}
802 
803 	blk_account_io_completion(req, nr_bytes);
804 
805 	total_bytes = 0;
806 	while (req->bio) {
807 		struct bio *bio = req->bio;
808 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
809 
810 		if (bio_bytes == bio->bi_iter.bi_size)
811 			req->bio = bio->bi_next;
812 
813 		/* Completion has already been traced */
814 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
815 		req_bio_endio(req, bio, bio_bytes, error);
816 
817 		total_bytes += bio_bytes;
818 		nr_bytes -= bio_bytes;
819 
820 		if (!nr_bytes)
821 			break;
822 	}
823 
824 	/*
825 	 * completely done
826 	 */
827 	if (!req->bio) {
828 		/*
829 		 * Reset counters so that the request stacking driver
830 		 * can find how many bytes remain in the request
831 		 * later.
832 		 */
833 		req->__data_len = 0;
834 		return false;
835 	}
836 
837 	req->__data_len -= total_bytes;
838 
839 	/* update sector only for requests with clear definition of sector */
840 	if (!blk_rq_is_passthrough(req))
841 		req->__sector += total_bytes >> 9;
842 
843 	/* mixed attributes always follow the first bio */
844 	if (req->rq_flags & RQF_MIXED_MERGE) {
845 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
846 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
847 	}
848 
849 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
850 		/*
851 		 * If total number of sectors is less than the first segment
852 		 * size, something has gone terribly wrong.
853 		 */
854 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
855 			blk_dump_rq_flags(req, "request botched");
856 			req->__data_len = blk_rq_cur_bytes(req);
857 		}
858 
859 		/* recalculate the number of segments */
860 		req->nr_phys_segments = blk_recalc_rq_segments(req);
861 	}
862 
863 	return true;
864 }
865 EXPORT_SYMBOL_GPL(blk_update_request);
866 
867 static void __blk_account_io_done(struct request *req, u64 now)
868 {
869 	const int sgrp = op_stat_group(req_op(req));
870 
871 	part_stat_lock();
872 	update_io_ticks(req->part, jiffies, true);
873 	part_stat_inc(req->part, ios[sgrp]);
874 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
875 	part_stat_unlock();
876 }
877 
878 static inline void blk_account_io_done(struct request *req, u64 now)
879 {
880 	/*
881 	 * Account IO completion.  flush_rq isn't accounted as a
882 	 * normal IO on queueing nor completion.  Accounting the
883 	 * containing request is enough.
884 	 */
885 	if (blk_do_io_stat(req) && req->part &&
886 	    !(req->rq_flags & RQF_FLUSH_SEQ))
887 		__blk_account_io_done(req, now);
888 }
889 
890 static void __blk_account_io_start(struct request *rq)
891 {
892 	/*
893 	 * All non-passthrough requests are created from a bio with one
894 	 * exception: when a flush command that is part of a flush sequence
895 	 * generated by the state machine in blk-flush.c is cloned onto the
896 	 * lower device by dm-multipath we can get here without a bio.
897 	 */
898 	if (rq->bio)
899 		rq->part = rq->bio->bi_bdev;
900 	else
901 		rq->part = rq->q->disk->part0;
902 
903 	part_stat_lock();
904 	update_io_ticks(rq->part, jiffies, false);
905 	part_stat_unlock();
906 }
907 
908 static inline void blk_account_io_start(struct request *req)
909 {
910 	if (blk_do_io_stat(req))
911 		__blk_account_io_start(req);
912 }
913 
914 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
915 {
916 	if (rq->rq_flags & RQF_STATS) {
917 		blk_mq_poll_stats_start(rq->q);
918 		blk_stat_add(rq, now);
919 	}
920 
921 	blk_mq_sched_completed_request(rq, now);
922 	blk_account_io_done(rq, now);
923 }
924 
925 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
926 {
927 	if (blk_mq_need_time_stamp(rq))
928 		__blk_mq_end_request_acct(rq, ktime_get_ns());
929 
930 	if (rq->end_io) {
931 		rq_qos_done(rq->q, rq);
932 		rq->end_io(rq, error);
933 	} else {
934 		blk_mq_free_request(rq);
935 	}
936 }
937 EXPORT_SYMBOL(__blk_mq_end_request);
938 
939 void blk_mq_end_request(struct request *rq, blk_status_t error)
940 {
941 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
942 		BUG();
943 	__blk_mq_end_request(rq, error);
944 }
945 EXPORT_SYMBOL(blk_mq_end_request);
946 
947 #define TAG_COMP_BATCH		32
948 
949 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
950 					  int *tag_array, int nr_tags)
951 {
952 	struct request_queue *q = hctx->queue;
953 
954 	/*
955 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
956 	 * update hctx->nr_active in batch
957 	 */
958 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
959 		__blk_mq_sub_active_requests(hctx, nr_tags);
960 
961 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
962 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
963 }
964 
965 void blk_mq_end_request_batch(struct io_comp_batch *iob)
966 {
967 	int tags[TAG_COMP_BATCH], nr_tags = 0;
968 	struct blk_mq_hw_ctx *cur_hctx = NULL;
969 	struct request *rq;
970 	u64 now = 0;
971 
972 	if (iob->need_ts)
973 		now = ktime_get_ns();
974 
975 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
976 		prefetch(rq->bio);
977 		prefetch(rq->rq_next);
978 
979 		blk_complete_request(rq);
980 		if (iob->need_ts)
981 			__blk_mq_end_request_acct(rq, now);
982 
983 		rq_qos_done(rq->q, rq);
984 
985 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
986 		if (!req_ref_put_and_test(rq))
987 			continue;
988 
989 		blk_crypto_free_request(rq);
990 		blk_pm_mark_last_busy(rq);
991 
992 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
993 			if (cur_hctx)
994 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
995 			nr_tags = 0;
996 			cur_hctx = rq->mq_hctx;
997 		}
998 		tags[nr_tags++] = rq->tag;
999 	}
1000 
1001 	if (nr_tags)
1002 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1003 }
1004 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1005 
1006 static void blk_complete_reqs(struct llist_head *list)
1007 {
1008 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1009 	struct request *rq, *next;
1010 
1011 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1012 		rq->q->mq_ops->complete(rq);
1013 }
1014 
1015 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1016 {
1017 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1018 }
1019 
1020 static int blk_softirq_cpu_dead(unsigned int cpu)
1021 {
1022 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1023 	return 0;
1024 }
1025 
1026 static void __blk_mq_complete_request_remote(void *data)
1027 {
1028 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1029 }
1030 
1031 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1032 {
1033 	int cpu = raw_smp_processor_id();
1034 
1035 	if (!IS_ENABLED(CONFIG_SMP) ||
1036 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1037 		return false;
1038 	/*
1039 	 * With force threaded interrupts enabled, raising softirq from an SMP
1040 	 * function call will always result in waking the ksoftirqd thread.
1041 	 * This is probably worse than completing the request on a different
1042 	 * cache domain.
1043 	 */
1044 	if (force_irqthreads())
1045 		return false;
1046 
1047 	/* same CPU or cache domain?  Complete locally */
1048 	if (cpu == rq->mq_ctx->cpu ||
1049 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1050 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1051 		return false;
1052 
1053 	/* don't try to IPI to an offline CPU */
1054 	return cpu_online(rq->mq_ctx->cpu);
1055 }
1056 
1057 static void blk_mq_complete_send_ipi(struct request *rq)
1058 {
1059 	struct llist_head *list;
1060 	unsigned int cpu;
1061 
1062 	cpu = rq->mq_ctx->cpu;
1063 	list = &per_cpu(blk_cpu_done, cpu);
1064 	if (llist_add(&rq->ipi_list, list)) {
1065 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1066 		smp_call_function_single_async(cpu, &rq->csd);
1067 	}
1068 }
1069 
1070 static void blk_mq_raise_softirq(struct request *rq)
1071 {
1072 	struct llist_head *list;
1073 
1074 	preempt_disable();
1075 	list = this_cpu_ptr(&blk_cpu_done);
1076 	if (llist_add(&rq->ipi_list, list))
1077 		raise_softirq(BLOCK_SOFTIRQ);
1078 	preempt_enable();
1079 }
1080 
1081 bool blk_mq_complete_request_remote(struct request *rq)
1082 {
1083 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1084 
1085 	/*
1086 	 * For a polled request, always complete locallly, it's pointless
1087 	 * to redirect the completion.
1088 	 */
1089 	if (rq->cmd_flags & REQ_POLLED)
1090 		return false;
1091 
1092 	if (blk_mq_complete_need_ipi(rq)) {
1093 		blk_mq_complete_send_ipi(rq);
1094 		return true;
1095 	}
1096 
1097 	if (rq->q->nr_hw_queues == 1) {
1098 		blk_mq_raise_softirq(rq);
1099 		return true;
1100 	}
1101 	return false;
1102 }
1103 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1104 
1105 /**
1106  * blk_mq_complete_request - end I/O on a request
1107  * @rq:		the request being processed
1108  *
1109  * Description:
1110  *	Complete a request by scheduling the ->complete_rq operation.
1111  **/
1112 void blk_mq_complete_request(struct request *rq)
1113 {
1114 	if (!blk_mq_complete_request_remote(rq))
1115 		rq->q->mq_ops->complete(rq);
1116 }
1117 EXPORT_SYMBOL(blk_mq_complete_request);
1118 
1119 /**
1120  * blk_mq_start_request - Start processing a request
1121  * @rq: Pointer to request to be started
1122  *
1123  * Function used by device drivers to notify the block layer that a request
1124  * is going to be processed now, so blk layer can do proper initializations
1125  * such as starting the timeout timer.
1126  */
1127 void blk_mq_start_request(struct request *rq)
1128 {
1129 	struct request_queue *q = rq->q;
1130 
1131 	trace_block_rq_issue(rq);
1132 
1133 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1134 		u64 start_time;
1135 #ifdef CONFIG_BLK_CGROUP
1136 		if (rq->bio)
1137 			start_time = bio_issue_time(&rq->bio->bi_issue);
1138 		else
1139 #endif
1140 			start_time = ktime_get_ns();
1141 		rq->io_start_time_ns = start_time;
1142 		rq->stats_sectors = blk_rq_sectors(rq);
1143 		rq->rq_flags |= RQF_STATS;
1144 		rq_qos_issue(q, rq);
1145 	}
1146 
1147 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1148 
1149 	blk_add_timer(rq);
1150 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1151 
1152 #ifdef CONFIG_BLK_DEV_INTEGRITY
1153 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1154 		q->integrity.profile->prepare_fn(rq);
1155 #endif
1156 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1157 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1158 }
1159 EXPORT_SYMBOL(blk_mq_start_request);
1160 
1161 /**
1162  * blk_end_sync_rq - executes a completion event on a request
1163  * @rq: request to complete
1164  * @error: end I/O status of the request
1165  */
1166 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1167 {
1168 	struct completion *waiting = rq->end_io_data;
1169 
1170 	rq->end_io_data = (void *)(uintptr_t)error;
1171 
1172 	/*
1173 	 * complete last, if this is a stack request the process (and thus
1174 	 * the rq pointer) could be invalid right after this complete()
1175 	 */
1176 	complete(waiting);
1177 }
1178 
1179 /**
1180  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1181  * @rq:		request to insert
1182  * @at_head:    insert request at head or tail of queue
1183  * @done:	I/O completion handler
1184  *
1185  * Description:
1186  *    Insert a fully prepared request at the back of the I/O scheduler queue
1187  *    for execution.  Don't wait for completion.
1188  *
1189  * Note:
1190  *    This function will invoke @done directly if the queue is dead.
1191  */
1192 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1193 {
1194 	WARN_ON(irqs_disabled());
1195 	WARN_ON(!blk_rq_is_passthrough(rq));
1196 
1197 	rq->end_io = done;
1198 
1199 	blk_account_io_start(rq);
1200 
1201 	/*
1202 	 * don't check dying flag for MQ because the request won't
1203 	 * be reused after dying flag is set
1204 	 */
1205 	blk_mq_sched_insert_request(rq, at_head, true, false);
1206 }
1207 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1208 
1209 static bool blk_rq_is_poll(struct request *rq)
1210 {
1211 	if (!rq->mq_hctx)
1212 		return false;
1213 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1214 		return false;
1215 	if (WARN_ON_ONCE(!rq->bio))
1216 		return false;
1217 	return true;
1218 }
1219 
1220 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1221 {
1222 	do {
1223 		bio_poll(rq->bio, NULL, 0);
1224 		cond_resched();
1225 	} while (!completion_done(wait));
1226 }
1227 
1228 /**
1229  * blk_execute_rq - insert a request into queue for execution
1230  * @rq:		request to insert
1231  * @at_head:    insert request at head or tail of queue
1232  *
1233  * Description:
1234  *    Insert a fully prepared request at the back of the I/O scheduler queue
1235  *    for execution and wait for completion.
1236  * Return: The blk_status_t result provided to blk_mq_end_request().
1237  */
1238 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1239 {
1240 	DECLARE_COMPLETION_ONSTACK(wait);
1241 	unsigned long hang_check;
1242 
1243 	rq->end_io_data = &wait;
1244 	blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1245 
1246 	/* Prevent hang_check timer from firing at us during very long I/O */
1247 	hang_check = sysctl_hung_task_timeout_secs;
1248 
1249 	if (blk_rq_is_poll(rq))
1250 		blk_rq_poll_completion(rq, &wait);
1251 	else if (hang_check)
1252 		while (!wait_for_completion_io_timeout(&wait,
1253 				hang_check * (HZ/2)))
1254 			;
1255 	else
1256 		wait_for_completion_io(&wait);
1257 
1258 	return (blk_status_t)(uintptr_t)rq->end_io_data;
1259 }
1260 EXPORT_SYMBOL(blk_execute_rq);
1261 
1262 static void __blk_mq_requeue_request(struct request *rq)
1263 {
1264 	struct request_queue *q = rq->q;
1265 
1266 	blk_mq_put_driver_tag(rq);
1267 
1268 	trace_block_rq_requeue(rq);
1269 	rq_qos_requeue(q, rq);
1270 
1271 	if (blk_mq_request_started(rq)) {
1272 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1273 		rq->rq_flags &= ~RQF_TIMED_OUT;
1274 	}
1275 }
1276 
1277 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1278 {
1279 	__blk_mq_requeue_request(rq);
1280 
1281 	/* this request will be re-inserted to io scheduler queue */
1282 	blk_mq_sched_requeue_request(rq);
1283 
1284 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1285 }
1286 EXPORT_SYMBOL(blk_mq_requeue_request);
1287 
1288 static void blk_mq_requeue_work(struct work_struct *work)
1289 {
1290 	struct request_queue *q =
1291 		container_of(work, struct request_queue, requeue_work.work);
1292 	LIST_HEAD(rq_list);
1293 	struct request *rq, *next;
1294 
1295 	spin_lock_irq(&q->requeue_lock);
1296 	list_splice_init(&q->requeue_list, &rq_list);
1297 	spin_unlock_irq(&q->requeue_lock);
1298 
1299 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1300 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1301 			continue;
1302 
1303 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1304 		list_del_init(&rq->queuelist);
1305 		/*
1306 		 * If RQF_DONTPREP, rq has contained some driver specific
1307 		 * data, so insert it to hctx dispatch list to avoid any
1308 		 * merge.
1309 		 */
1310 		if (rq->rq_flags & RQF_DONTPREP)
1311 			blk_mq_request_bypass_insert(rq, false, false);
1312 		else
1313 			blk_mq_sched_insert_request(rq, true, false, false);
1314 	}
1315 
1316 	while (!list_empty(&rq_list)) {
1317 		rq = list_entry(rq_list.next, struct request, queuelist);
1318 		list_del_init(&rq->queuelist);
1319 		blk_mq_sched_insert_request(rq, false, false, false);
1320 	}
1321 
1322 	blk_mq_run_hw_queues(q, false);
1323 }
1324 
1325 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1326 				bool kick_requeue_list)
1327 {
1328 	struct request_queue *q = rq->q;
1329 	unsigned long flags;
1330 
1331 	/*
1332 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1333 	 * request head insertion from the workqueue.
1334 	 */
1335 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1336 
1337 	spin_lock_irqsave(&q->requeue_lock, flags);
1338 	if (at_head) {
1339 		rq->rq_flags |= RQF_SOFTBARRIER;
1340 		list_add(&rq->queuelist, &q->requeue_list);
1341 	} else {
1342 		list_add_tail(&rq->queuelist, &q->requeue_list);
1343 	}
1344 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1345 
1346 	if (kick_requeue_list)
1347 		blk_mq_kick_requeue_list(q);
1348 }
1349 
1350 void blk_mq_kick_requeue_list(struct request_queue *q)
1351 {
1352 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1353 }
1354 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1355 
1356 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1357 				    unsigned long msecs)
1358 {
1359 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1360 				    msecs_to_jiffies(msecs));
1361 }
1362 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1363 
1364 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1365 			       bool reserved)
1366 {
1367 	/*
1368 	 * If we find a request that isn't idle we know the queue is busy
1369 	 * as it's checked in the iter.
1370 	 * Return false to stop the iteration.
1371 	 */
1372 	if (blk_mq_request_started(rq)) {
1373 		bool *busy = priv;
1374 
1375 		*busy = true;
1376 		return false;
1377 	}
1378 
1379 	return true;
1380 }
1381 
1382 bool blk_mq_queue_inflight(struct request_queue *q)
1383 {
1384 	bool busy = false;
1385 
1386 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1387 	return busy;
1388 }
1389 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1390 
1391 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1392 {
1393 	req->rq_flags |= RQF_TIMED_OUT;
1394 	if (req->q->mq_ops->timeout) {
1395 		enum blk_eh_timer_return ret;
1396 
1397 		ret = req->q->mq_ops->timeout(req, reserved);
1398 		if (ret == BLK_EH_DONE)
1399 			return;
1400 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1401 	}
1402 
1403 	blk_add_timer(req);
1404 }
1405 
1406 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1407 {
1408 	unsigned long deadline;
1409 
1410 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1411 		return false;
1412 	if (rq->rq_flags & RQF_TIMED_OUT)
1413 		return false;
1414 
1415 	deadline = READ_ONCE(rq->deadline);
1416 	if (time_after_eq(jiffies, deadline))
1417 		return true;
1418 
1419 	if (*next == 0)
1420 		*next = deadline;
1421 	else if (time_after(*next, deadline))
1422 		*next = deadline;
1423 	return false;
1424 }
1425 
1426 void blk_mq_put_rq_ref(struct request *rq)
1427 {
1428 	if (is_flush_rq(rq))
1429 		rq->end_io(rq, 0);
1430 	else if (req_ref_put_and_test(rq))
1431 		__blk_mq_free_request(rq);
1432 }
1433 
1434 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1435 {
1436 	unsigned long *next = priv;
1437 
1438 	/*
1439 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1440 	 * be reallocated underneath the timeout handler's processing, then
1441 	 * the expire check is reliable. If the request is not expired, then
1442 	 * it was completed and reallocated as a new request after returning
1443 	 * from blk_mq_check_expired().
1444 	 */
1445 	if (blk_mq_req_expired(rq, next))
1446 		blk_mq_rq_timed_out(rq, reserved);
1447 	return true;
1448 }
1449 
1450 static void blk_mq_timeout_work(struct work_struct *work)
1451 {
1452 	struct request_queue *q =
1453 		container_of(work, struct request_queue, timeout_work);
1454 	unsigned long next = 0;
1455 	struct blk_mq_hw_ctx *hctx;
1456 	unsigned long i;
1457 
1458 	/* A deadlock might occur if a request is stuck requiring a
1459 	 * timeout at the same time a queue freeze is waiting
1460 	 * completion, since the timeout code would not be able to
1461 	 * acquire the queue reference here.
1462 	 *
1463 	 * That's why we don't use blk_queue_enter here; instead, we use
1464 	 * percpu_ref_tryget directly, because we need to be able to
1465 	 * obtain a reference even in the short window between the queue
1466 	 * starting to freeze, by dropping the first reference in
1467 	 * blk_freeze_queue_start, and the moment the last request is
1468 	 * consumed, marked by the instant q_usage_counter reaches
1469 	 * zero.
1470 	 */
1471 	if (!percpu_ref_tryget(&q->q_usage_counter))
1472 		return;
1473 
1474 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1475 
1476 	if (next != 0) {
1477 		mod_timer(&q->timeout, next);
1478 	} else {
1479 		/*
1480 		 * Request timeouts are handled as a forward rolling timer. If
1481 		 * we end up here it means that no requests are pending and
1482 		 * also that no request has been pending for a while. Mark
1483 		 * each hctx as idle.
1484 		 */
1485 		queue_for_each_hw_ctx(q, hctx, i) {
1486 			/* the hctx may be unmapped, so check it here */
1487 			if (blk_mq_hw_queue_mapped(hctx))
1488 				blk_mq_tag_idle(hctx);
1489 		}
1490 	}
1491 	blk_queue_exit(q);
1492 }
1493 
1494 struct flush_busy_ctx_data {
1495 	struct blk_mq_hw_ctx *hctx;
1496 	struct list_head *list;
1497 };
1498 
1499 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1500 {
1501 	struct flush_busy_ctx_data *flush_data = data;
1502 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1503 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1504 	enum hctx_type type = hctx->type;
1505 
1506 	spin_lock(&ctx->lock);
1507 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1508 	sbitmap_clear_bit(sb, bitnr);
1509 	spin_unlock(&ctx->lock);
1510 	return true;
1511 }
1512 
1513 /*
1514  * Process software queues that have been marked busy, splicing them
1515  * to the for-dispatch
1516  */
1517 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1518 {
1519 	struct flush_busy_ctx_data data = {
1520 		.hctx = hctx,
1521 		.list = list,
1522 	};
1523 
1524 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1525 }
1526 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1527 
1528 struct dispatch_rq_data {
1529 	struct blk_mq_hw_ctx *hctx;
1530 	struct request *rq;
1531 };
1532 
1533 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1534 		void *data)
1535 {
1536 	struct dispatch_rq_data *dispatch_data = data;
1537 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1538 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1539 	enum hctx_type type = hctx->type;
1540 
1541 	spin_lock(&ctx->lock);
1542 	if (!list_empty(&ctx->rq_lists[type])) {
1543 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1544 		list_del_init(&dispatch_data->rq->queuelist);
1545 		if (list_empty(&ctx->rq_lists[type]))
1546 			sbitmap_clear_bit(sb, bitnr);
1547 	}
1548 	spin_unlock(&ctx->lock);
1549 
1550 	return !dispatch_data->rq;
1551 }
1552 
1553 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1554 					struct blk_mq_ctx *start)
1555 {
1556 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1557 	struct dispatch_rq_data data = {
1558 		.hctx = hctx,
1559 		.rq   = NULL,
1560 	};
1561 
1562 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1563 			       dispatch_rq_from_ctx, &data);
1564 
1565 	return data.rq;
1566 }
1567 
1568 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1569 {
1570 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1571 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1572 	int tag;
1573 
1574 	blk_mq_tag_busy(rq->mq_hctx);
1575 
1576 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1577 		bt = &rq->mq_hctx->tags->breserved_tags;
1578 		tag_offset = 0;
1579 	} else {
1580 		if (!hctx_may_queue(rq->mq_hctx, bt))
1581 			return false;
1582 	}
1583 
1584 	tag = __sbitmap_queue_get(bt);
1585 	if (tag == BLK_MQ_NO_TAG)
1586 		return false;
1587 
1588 	rq->tag = tag + tag_offset;
1589 	return true;
1590 }
1591 
1592 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1593 {
1594 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1595 		return false;
1596 
1597 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1598 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1599 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1600 		__blk_mq_inc_active_requests(hctx);
1601 	}
1602 	hctx->tags->rqs[rq->tag] = rq;
1603 	return true;
1604 }
1605 
1606 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1607 				int flags, void *key)
1608 {
1609 	struct blk_mq_hw_ctx *hctx;
1610 
1611 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1612 
1613 	spin_lock(&hctx->dispatch_wait_lock);
1614 	if (!list_empty(&wait->entry)) {
1615 		struct sbitmap_queue *sbq;
1616 
1617 		list_del_init(&wait->entry);
1618 		sbq = &hctx->tags->bitmap_tags;
1619 		atomic_dec(&sbq->ws_active);
1620 	}
1621 	spin_unlock(&hctx->dispatch_wait_lock);
1622 
1623 	blk_mq_run_hw_queue(hctx, true);
1624 	return 1;
1625 }
1626 
1627 /*
1628  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1629  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1630  * restart. For both cases, take care to check the condition again after
1631  * marking us as waiting.
1632  */
1633 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1634 				 struct request *rq)
1635 {
1636 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1637 	struct wait_queue_head *wq;
1638 	wait_queue_entry_t *wait;
1639 	bool ret;
1640 
1641 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1642 		blk_mq_sched_mark_restart_hctx(hctx);
1643 
1644 		/*
1645 		 * It's possible that a tag was freed in the window between the
1646 		 * allocation failure and adding the hardware queue to the wait
1647 		 * queue.
1648 		 *
1649 		 * Don't clear RESTART here, someone else could have set it.
1650 		 * At most this will cost an extra queue run.
1651 		 */
1652 		return blk_mq_get_driver_tag(rq);
1653 	}
1654 
1655 	wait = &hctx->dispatch_wait;
1656 	if (!list_empty_careful(&wait->entry))
1657 		return false;
1658 
1659 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1660 
1661 	spin_lock_irq(&wq->lock);
1662 	spin_lock(&hctx->dispatch_wait_lock);
1663 	if (!list_empty(&wait->entry)) {
1664 		spin_unlock(&hctx->dispatch_wait_lock);
1665 		spin_unlock_irq(&wq->lock);
1666 		return false;
1667 	}
1668 
1669 	atomic_inc(&sbq->ws_active);
1670 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1671 	__add_wait_queue(wq, wait);
1672 
1673 	/*
1674 	 * It's possible that a tag was freed in the window between the
1675 	 * allocation failure and adding the hardware queue to the wait
1676 	 * queue.
1677 	 */
1678 	ret = blk_mq_get_driver_tag(rq);
1679 	if (!ret) {
1680 		spin_unlock(&hctx->dispatch_wait_lock);
1681 		spin_unlock_irq(&wq->lock);
1682 		return false;
1683 	}
1684 
1685 	/*
1686 	 * We got a tag, remove ourselves from the wait queue to ensure
1687 	 * someone else gets the wakeup.
1688 	 */
1689 	list_del_init(&wait->entry);
1690 	atomic_dec(&sbq->ws_active);
1691 	spin_unlock(&hctx->dispatch_wait_lock);
1692 	spin_unlock_irq(&wq->lock);
1693 
1694 	return true;
1695 }
1696 
1697 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1698 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1699 /*
1700  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1701  * - EWMA is one simple way to compute running average value
1702  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1703  * - take 4 as factor for avoiding to get too small(0) result, and this
1704  *   factor doesn't matter because EWMA decreases exponentially
1705  */
1706 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1707 {
1708 	unsigned int ewma;
1709 
1710 	ewma = hctx->dispatch_busy;
1711 
1712 	if (!ewma && !busy)
1713 		return;
1714 
1715 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1716 	if (busy)
1717 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1718 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1719 
1720 	hctx->dispatch_busy = ewma;
1721 }
1722 
1723 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1724 
1725 static void blk_mq_handle_dev_resource(struct request *rq,
1726 				       struct list_head *list)
1727 {
1728 	struct request *next =
1729 		list_first_entry_or_null(list, struct request, queuelist);
1730 
1731 	/*
1732 	 * If an I/O scheduler has been configured and we got a driver tag for
1733 	 * the next request already, free it.
1734 	 */
1735 	if (next)
1736 		blk_mq_put_driver_tag(next);
1737 
1738 	list_add(&rq->queuelist, list);
1739 	__blk_mq_requeue_request(rq);
1740 }
1741 
1742 static void blk_mq_handle_zone_resource(struct request *rq,
1743 					struct list_head *zone_list)
1744 {
1745 	/*
1746 	 * If we end up here it is because we cannot dispatch a request to a
1747 	 * specific zone due to LLD level zone-write locking or other zone
1748 	 * related resource not being available. In this case, set the request
1749 	 * aside in zone_list for retrying it later.
1750 	 */
1751 	list_add(&rq->queuelist, zone_list);
1752 	__blk_mq_requeue_request(rq);
1753 }
1754 
1755 enum prep_dispatch {
1756 	PREP_DISPATCH_OK,
1757 	PREP_DISPATCH_NO_TAG,
1758 	PREP_DISPATCH_NO_BUDGET,
1759 };
1760 
1761 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1762 						  bool need_budget)
1763 {
1764 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1765 	int budget_token = -1;
1766 
1767 	if (need_budget) {
1768 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1769 		if (budget_token < 0) {
1770 			blk_mq_put_driver_tag(rq);
1771 			return PREP_DISPATCH_NO_BUDGET;
1772 		}
1773 		blk_mq_set_rq_budget_token(rq, budget_token);
1774 	}
1775 
1776 	if (!blk_mq_get_driver_tag(rq)) {
1777 		/*
1778 		 * The initial allocation attempt failed, so we need to
1779 		 * rerun the hardware queue when a tag is freed. The
1780 		 * waitqueue takes care of that. If the queue is run
1781 		 * before we add this entry back on the dispatch list,
1782 		 * we'll re-run it below.
1783 		 */
1784 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1785 			/*
1786 			 * All budgets not got from this function will be put
1787 			 * together during handling partial dispatch
1788 			 */
1789 			if (need_budget)
1790 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1791 			return PREP_DISPATCH_NO_TAG;
1792 		}
1793 	}
1794 
1795 	return PREP_DISPATCH_OK;
1796 }
1797 
1798 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1799 static void blk_mq_release_budgets(struct request_queue *q,
1800 		struct list_head *list)
1801 {
1802 	struct request *rq;
1803 
1804 	list_for_each_entry(rq, list, queuelist) {
1805 		int budget_token = blk_mq_get_rq_budget_token(rq);
1806 
1807 		if (budget_token >= 0)
1808 			blk_mq_put_dispatch_budget(q, budget_token);
1809 	}
1810 }
1811 
1812 /*
1813  * Returns true if we did some work AND can potentially do more.
1814  */
1815 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1816 			     unsigned int nr_budgets)
1817 {
1818 	enum prep_dispatch prep;
1819 	struct request_queue *q = hctx->queue;
1820 	struct request *rq, *nxt;
1821 	int errors, queued;
1822 	blk_status_t ret = BLK_STS_OK;
1823 	LIST_HEAD(zone_list);
1824 	bool needs_resource = false;
1825 
1826 	if (list_empty(list))
1827 		return false;
1828 
1829 	/*
1830 	 * Now process all the entries, sending them to the driver.
1831 	 */
1832 	errors = queued = 0;
1833 	do {
1834 		struct blk_mq_queue_data bd;
1835 
1836 		rq = list_first_entry(list, struct request, queuelist);
1837 
1838 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1839 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1840 		if (prep != PREP_DISPATCH_OK)
1841 			break;
1842 
1843 		list_del_init(&rq->queuelist);
1844 
1845 		bd.rq = rq;
1846 
1847 		/*
1848 		 * Flag last if we have no more requests, or if we have more
1849 		 * but can't assign a driver tag to it.
1850 		 */
1851 		if (list_empty(list))
1852 			bd.last = true;
1853 		else {
1854 			nxt = list_first_entry(list, struct request, queuelist);
1855 			bd.last = !blk_mq_get_driver_tag(nxt);
1856 		}
1857 
1858 		/*
1859 		 * once the request is queued to lld, no need to cover the
1860 		 * budget any more
1861 		 */
1862 		if (nr_budgets)
1863 			nr_budgets--;
1864 		ret = q->mq_ops->queue_rq(hctx, &bd);
1865 		switch (ret) {
1866 		case BLK_STS_OK:
1867 			queued++;
1868 			break;
1869 		case BLK_STS_RESOURCE:
1870 			needs_resource = true;
1871 			fallthrough;
1872 		case BLK_STS_DEV_RESOURCE:
1873 			blk_mq_handle_dev_resource(rq, list);
1874 			goto out;
1875 		case BLK_STS_ZONE_RESOURCE:
1876 			/*
1877 			 * Move the request to zone_list and keep going through
1878 			 * the dispatch list to find more requests the drive can
1879 			 * accept.
1880 			 */
1881 			blk_mq_handle_zone_resource(rq, &zone_list);
1882 			needs_resource = true;
1883 			break;
1884 		default:
1885 			errors++;
1886 			blk_mq_end_request(rq, ret);
1887 		}
1888 	} while (!list_empty(list));
1889 out:
1890 	if (!list_empty(&zone_list))
1891 		list_splice_tail_init(&zone_list, list);
1892 
1893 	/* If we didn't flush the entire list, we could have told the driver
1894 	 * there was more coming, but that turned out to be a lie.
1895 	 */
1896 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1897 		q->mq_ops->commit_rqs(hctx);
1898 	/*
1899 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1900 	 * that is where we will continue on next queue run.
1901 	 */
1902 	if (!list_empty(list)) {
1903 		bool needs_restart;
1904 		/* For non-shared tags, the RESTART check will suffice */
1905 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1906 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1907 
1908 		if (nr_budgets)
1909 			blk_mq_release_budgets(q, list);
1910 
1911 		spin_lock(&hctx->lock);
1912 		list_splice_tail_init(list, &hctx->dispatch);
1913 		spin_unlock(&hctx->lock);
1914 
1915 		/*
1916 		 * Order adding requests to hctx->dispatch and checking
1917 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1918 		 * in blk_mq_sched_restart(). Avoid restart code path to
1919 		 * miss the new added requests to hctx->dispatch, meantime
1920 		 * SCHED_RESTART is observed here.
1921 		 */
1922 		smp_mb();
1923 
1924 		/*
1925 		 * If SCHED_RESTART was set by the caller of this function and
1926 		 * it is no longer set that means that it was cleared by another
1927 		 * thread and hence that a queue rerun is needed.
1928 		 *
1929 		 * If 'no_tag' is set, that means that we failed getting
1930 		 * a driver tag with an I/O scheduler attached. If our dispatch
1931 		 * waitqueue is no longer active, ensure that we run the queue
1932 		 * AFTER adding our entries back to the list.
1933 		 *
1934 		 * If no I/O scheduler has been configured it is possible that
1935 		 * the hardware queue got stopped and restarted before requests
1936 		 * were pushed back onto the dispatch list. Rerun the queue to
1937 		 * avoid starvation. Notes:
1938 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1939 		 *   been stopped before rerunning a queue.
1940 		 * - Some but not all block drivers stop a queue before
1941 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1942 		 *   and dm-rq.
1943 		 *
1944 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1945 		 * bit is set, run queue after a delay to avoid IO stalls
1946 		 * that could otherwise occur if the queue is idle.  We'll do
1947 		 * similar if we couldn't get budget or couldn't lock a zone
1948 		 * and SCHED_RESTART is set.
1949 		 */
1950 		needs_restart = blk_mq_sched_needs_restart(hctx);
1951 		if (prep == PREP_DISPATCH_NO_BUDGET)
1952 			needs_resource = true;
1953 		if (!needs_restart ||
1954 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1955 			blk_mq_run_hw_queue(hctx, true);
1956 		else if (needs_restart && needs_resource)
1957 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1958 
1959 		blk_mq_update_dispatch_busy(hctx, true);
1960 		return false;
1961 	} else
1962 		blk_mq_update_dispatch_busy(hctx, false);
1963 
1964 	return (queued + errors) != 0;
1965 }
1966 
1967 /**
1968  * __blk_mq_run_hw_queue - Run a hardware queue.
1969  * @hctx: Pointer to the hardware queue to run.
1970  *
1971  * Send pending requests to the hardware.
1972  */
1973 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1974 {
1975 	/*
1976 	 * We can't run the queue inline with ints disabled. Ensure that
1977 	 * we catch bad users of this early.
1978 	 */
1979 	WARN_ON_ONCE(in_interrupt());
1980 
1981 	blk_mq_run_dispatch_ops(hctx->queue,
1982 			blk_mq_sched_dispatch_requests(hctx));
1983 }
1984 
1985 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1986 {
1987 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1988 
1989 	if (cpu >= nr_cpu_ids)
1990 		cpu = cpumask_first(hctx->cpumask);
1991 	return cpu;
1992 }
1993 
1994 /*
1995  * It'd be great if the workqueue API had a way to pass
1996  * in a mask and had some smarts for more clever placement.
1997  * For now we just round-robin here, switching for every
1998  * BLK_MQ_CPU_WORK_BATCH queued items.
1999  */
2000 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2001 {
2002 	bool tried = false;
2003 	int next_cpu = hctx->next_cpu;
2004 
2005 	if (hctx->queue->nr_hw_queues == 1)
2006 		return WORK_CPU_UNBOUND;
2007 
2008 	if (--hctx->next_cpu_batch <= 0) {
2009 select_cpu:
2010 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2011 				cpu_online_mask);
2012 		if (next_cpu >= nr_cpu_ids)
2013 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2014 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2015 	}
2016 
2017 	/*
2018 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2019 	 * and it should only happen in the path of handling CPU DEAD.
2020 	 */
2021 	if (!cpu_online(next_cpu)) {
2022 		if (!tried) {
2023 			tried = true;
2024 			goto select_cpu;
2025 		}
2026 
2027 		/*
2028 		 * Make sure to re-select CPU next time once after CPUs
2029 		 * in hctx->cpumask become online again.
2030 		 */
2031 		hctx->next_cpu = next_cpu;
2032 		hctx->next_cpu_batch = 1;
2033 		return WORK_CPU_UNBOUND;
2034 	}
2035 
2036 	hctx->next_cpu = next_cpu;
2037 	return next_cpu;
2038 }
2039 
2040 /**
2041  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2042  * @hctx: Pointer to the hardware queue to run.
2043  * @async: If we want to run the queue asynchronously.
2044  * @msecs: Milliseconds of delay to wait before running the queue.
2045  *
2046  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2047  * with a delay of @msecs.
2048  */
2049 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2050 					unsigned long msecs)
2051 {
2052 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2053 		return;
2054 
2055 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2056 		int cpu = get_cpu();
2057 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2058 			__blk_mq_run_hw_queue(hctx);
2059 			put_cpu();
2060 			return;
2061 		}
2062 
2063 		put_cpu();
2064 	}
2065 
2066 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2067 				    msecs_to_jiffies(msecs));
2068 }
2069 
2070 /**
2071  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2072  * @hctx: Pointer to the hardware queue to run.
2073  * @msecs: Milliseconds of delay to wait before running the queue.
2074  *
2075  * Run a hardware queue asynchronously with a delay of @msecs.
2076  */
2077 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2078 {
2079 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2080 }
2081 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2082 
2083 /**
2084  * blk_mq_run_hw_queue - Start to run a hardware queue.
2085  * @hctx: Pointer to the hardware queue to run.
2086  * @async: If we want to run the queue asynchronously.
2087  *
2088  * Check if the request queue is not in a quiesced state and if there are
2089  * pending requests to be sent. If this is true, run the queue to send requests
2090  * to hardware.
2091  */
2092 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2093 {
2094 	bool need_run;
2095 
2096 	/*
2097 	 * When queue is quiesced, we may be switching io scheduler, or
2098 	 * updating nr_hw_queues, or other things, and we can't run queue
2099 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2100 	 *
2101 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2102 	 * quiesced.
2103 	 */
2104 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2105 		need_run = !blk_queue_quiesced(hctx->queue) &&
2106 		blk_mq_hctx_has_pending(hctx));
2107 
2108 	if (need_run)
2109 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2110 }
2111 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2112 
2113 /*
2114  * Is the request queue handled by an IO scheduler that does not respect
2115  * hardware queues when dispatching?
2116  */
2117 static bool blk_mq_has_sqsched(struct request_queue *q)
2118 {
2119 	struct elevator_queue *e = q->elevator;
2120 
2121 	if (e && e->type->ops.dispatch_request &&
2122 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2123 		return true;
2124 	return false;
2125 }
2126 
2127 /*
2128  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2129  * scheduler.
2130  */
2131 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2132 {
2133 	struct blk_mq_hw_ctx *hctx;
2134 
2135 	/*
2136 	 * If the IO scheduler does not respect hardware queues when
2137 	 * dispatching, we just don't bother with multiple HW queues and
2138 	 * dispatch from hctx for the current CPU since running multiple queues
2139 	 * just causes lock contention inside the scheduler and pointless cache
2140 	 * bouncing.
2141 	 */
2142 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2143 				     raw_smp_processor_id());
2144 	if (!blk_mq_hctx_stopped(hctx))
2145 		return hctx;
2146 	return NULL;
2147 }
2148 
2149 /**
2150  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2151  * @q: Pointer to the request queue to run.
2152  * @async: If we want to run the queue asynchronously.
2153  */
2154 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2155 {
2156 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2157 	unsigned long i;
2158 
2159 	sq_hctx = NULL;
2160 	if (blk_mq_has_sqsched(q))
2161 		sq_hctx = blk_mq_get_sq_hctx(q);
2162 	queue_for_each_hw_ctx(q, hctx, i) {
2163 		if (blk_mq_hctx_stopped(hctx))
2164 			continue;
2165 		/*
2166 		 * Dispatch from this hctx either if there's no hctx preferred
2167 		 * by IO scheduler or if it has requests that bypass the
2168 		 * scheduler.
2169 		 */
2170 		if (!sq_hctx || sq_hctx == hctx ||
2171 		    !list_empty_careful(&hctx->dispatch))
2172 			blk_mq_run_hw_queue(hctx, async);
2173 	}
2174 }
2175 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2176 
2177 /**
2178  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2179  * @q: Pointer to the request queue to run.
2180  * @msecs: Milliseconds of delay to wait before running the queues.
2181  */
2182 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2183 {
2184 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2185 	unsigned long i;
2186 
2187 	sq_hctx = NULL;
2188 	if (blk_mq_has_sqsched(q))
2189 		sq_hctx = blk_mq_get_sq_hctx(q);
2190 	queue_for_each_hw_ctx(q, hctx, i) {
2191 		if (blk_mq_hctx_stopped(hctx))
2192 			continue;
2193 		/*
2194 		 * If there is already a run_work pending, leave the
2195 		 * pending delay untouched. Otherwise, a hctx can stall
2196 		 * if another hctx is re-delaying the other's work
2197 		 * before the work executes.
2198 		 */
2199 		if (delayed_work_pending(&hctx->run_work))
2200 			continue;
2201 		/*
2202 		 * Dispatch from this hctx either if there's no hctx preferred
2203 		 * by IO scheduler or if it has requests that bypass the
2204 		 * scheduler.
2205 		 */
2206 		if (!sq_hctx || sq_hctx == hctx ||
2207 		    !list_empty_careful(&hctx->dispatch))
2208 			blk_mq_delay_run_hw_queue(hctx, msecs);
2209 	}
2210 }
2211 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2212 
2213 /**
2214  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2215  * @q: request queue.
2216  *
2217  * The caller is responsible for serializing this function against
2218  * blk_mq_{start,stop}_hw_queue().
2219  */
2220 bool blk_mq_queue_stopped(struct request_queue *q)
2221 {
2222 	struct blk_mq_hw_ctx *hctx;
2223 	unsigned long i;
2224 
2225 	queue_for_each_hw_ctx(q, hctx, i)
2226 		if (blk_mq_hctx_stopped(hctx))
2227 			return true;
2228 
2229 	return false;
2230 }
2231 EXPORT_SYMBOL(blk_mq_queue_stopped);
2232 
2233 /*
2234  * This function is often used for pausing .queue_rq() by driver when
2235  * there isn't enough resource or some conditions aren't satisfied, and
2236  * BLK_STS_RESOURCE is usually returned.
2237  *
2238  * We do not guarantee that dispatch can be drained or blocked
2239  * after blk_mq_stop_hw_queue() returns. Please use
2240  * blk_mq_quiesce_queue() for that requirement.
2241  */
2242 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2243 {
2244 	cancel_delayed_work(&hctx->run_work);
2245 
2246 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2247 }
2248 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2249 
2250 /*
2251  * This function is often used for pausing .queue_rq() by driver when
2252  * there isn't enough resource or some conditions aren't satisfied, and
2253  * BLK_STS_RESOURCE is usually returned.
2254  *
2255  * We do not guarantee that dispatch can be drained or blocked
2256  * after blk_mq_stop_hw_queues() returns. Please use
2257  * blk_mq_quiesce_queue() for that requirement.
2258  */
2259 void blk_mq_stop_hw_queues(struct request_queue *q)
2260 {
2261 	struct blk_mq_hw_ctx *hctx;
2262 	unsigned long i;
2263 
2264 	queue_for_each_hw_ctx(q, hctx, i)
2265 		blk_mq_stop_hw_queue(hctx);
2266 }
2267 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2268 
2269 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2270 {
2271 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2272 
2273 	blk_mq_run_hw_queue(hctx, false);
2274 }
2275 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2276 
2277 void blk_mq_start_hw_queues(struct request_queue *q)
2278 {
2279 	struct blk_mq_hw_ctx *hctx;
2280 	unsigned long i;
2281 
2282 	queue_for_each_hw_ctx(q, hctx, i)
2283 		blk_mq_start_hw_queue(hctx);
2284 }
2285 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2286 
2287 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2288 {
2289 	if (!blk_mq_hctx_stopped(hctx))
2290 		return;
2291 
2292 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2293 	blk_mq_run_hw_queue(hctx, async);
2294 }
2295 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2296 
2297 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2298 {
2299 	struct blk_mq_hw_ctx *hctx;
2300 	unsigned long i;
2301 
2302 	queue_for_each_hw_ctx(q, hctx, i)
2303 		blk_mq_start_stopped_hw_queue(hctx, async);
2304 }
2305 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2306 
2307 static void blk_mq_run_work_fn(struct work_struct *work)
2308 {
2309 	struct blk_mq_hw_ctx *hctx;
2310 
2311 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2312 
2313 	/*
2314 	 * If we are stopped, don't run the queue.
2315 	 */
2316 	if (blk_mq_hctx_stopped(hctx))
2317 		return;
2318 
2319 	__blk_mq_run_hw_queue(hctx);
2320 }
2321 
2322 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2323 					    struct request *rq,
2324 					    bool at_head)
2325 {
2326 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2327 	enum hctx_type type = hctx->type;
2328 
2329 	lockdep_assert_held(&ctx->lock);
2330 
2331 	trace_block_rq_insert(rq);
2332 
2333 	if (at_head)
2334 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2335 	else
2336 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2337 }
2338 
2339 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2340 			     bool at_head)
2341 {
2342 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2343 
2344 	lockdep_assert_held(&ctx->lock);
2345 
2346 	__blk_mq_insert_req_list(hctx, rq, at_head);
2347 	blk_mq_hctx_mark_pending(hctx, ctx);
2348 }
2349 
2350 /**
2351  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2352  * @rq: Pointer to request to be inserted.
2353  * @at_head: true if the request should be inserted at the head of the list.
2354  * @run_queue: If we should run the hardware queue after inserting the request.
2355  *
2356  * Should only be used carefully, when the caller knows we want to
2357  * bypass a potential IO scheduler on the target device.
2358  */
2359 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2360 				  bool run_queue)
2361 {
2362 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2363 
2364 	spin_lock(&hctx->lock);
2365 	if (at_head)
2366 		list_add(&rq->queuelist, &hctx->dispatch);
2367 	else
2368 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2369 	spin_unlock(&hctx->lock);
2370 
2371 	if (run_queue)
2372 		blk_mq_run_hw_queue(hctx, false);
2373 }
2374 
2375 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2376 			    struct list_head *list)
2377 
2378 {
2379 	struct request *rq;
2380 	enum hctx_type type = hctx->type;
2381 
2382 	/*
2383 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2384 	 * offline now
2385 	 */
2386 	list_for_each_entry(rq, list, queuelist) {
2387 		BUG_ON(rq->mq_ctx != ctx);
2388 		trace_block_rq_insert(rq);
2389 	}
2390 
2391 	spin_lock(&ctx->lock);
2392 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2393 	blk_mq_hctx_mark_pending(hctx, ctx);
2394 	spin_unlock(&ctx->lock);
2395 }
2396 
2397 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2398 			      bool from_schedule)
2399 {
2400 	if (hctx->queue->mq_ops->commit_rqs) {
2401 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2402 		hctx->queue->mq_ops->commit_rqs(hctx);
2403 	}
2404 	*queued = 0;
2405 }
2406 
2407 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2408 		unsigned int nr_segs)
2409 {
2410 	int err;
2411 
2412 	if (bio->bi_opf & REQ_RAHEAD)
2413 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2414 
2415 	rq->__sector = bio->bi_iter.bi_sector;
2416 	blk_rq_bio_prep(rq, bio, nr_segs);
2417 
2418 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2419 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2420 	WARN_ON_ONCE(err);
2421 
2422 	blk_account_io_start(rq);
2423 }
2424 
2425 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2426 					    struct request *rq, bool last)
2427 {
2428 	struct request_queue *q = rq->q;
2429 	struct blk_mq_queue_data bd = {
2430 		.rq = rq,
2431 		.last = last,
2432 	};
2433 	blk_status_t ret;
2434 
2435 	/*
2436 	 * For OK queue, we are done. For error, caller may kill it.
2437 	 * Any other error (busy), just add it to our list as we
2438 	 * previously would have done.
2439 	 */
2440 	ret = q->mq_ops->queue_rq(hctx, &bd);
2441 	switch (ret) {
2442 	case BLK_STS_OK:
2443 		blk_mq_update_dispatch_busy(hctx, false);
2444 		break;
2445 	case BLK_STS_RESOURCE:
2446 	case BLK_STS_DEV_RESOURCE:
2447 		blk_mq_update_dispatch_busy(hctx, true);
2448 		__blk_mq_requeue_request(rq);
2449 		break;
2450 	default:
2451 		blk_mq_update_dispatch_busy(hctx, false);
2452 		break;
2453 	}
2454 
2455 	return ret;
2456 }
2457 
2458 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2459 						struct request *rq,
2460 						bool bypass_insert, bool last)
2461 {
2462 	struct request_queue *q = rq->q;
2463 	bool run_queue = true;
2464 	int budget_token;
2465 
2466 	/*
2467 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2468 	 *
2469 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2470 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2471 	 * and avoid driver to try to dispatch again.
2472 	 */
2473 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2474 		run_queue = false;
2475 		bypass_insert = false;
2476 		goto insert;
2477 	}
2478 
2479 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2480 		goto insert;
2481 
2482 	budget_token = blk_mq_get_dispatch_budget(q);
2483 	if (budget_token < 0)
2484 		goto insert;
2485 
2486 	blk_mq_set_rq_budget_token(rq, budget_token);
2487 
2488 	if (!blk_mq_get_driver_tag(rq)) {
2489 		blk_mq_put_dispatch_budget(q, budget_token);
2490 		goto insert;
2491 	}
2492 
2493 	return __blk_mq_issue_directly(hctx, rq, last);
2494 insert:
2495 	if (bypass_insert)
2496 		return BLK_STS_RESOURCE;
2497 
2498 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2499 
2500 	return BLK_STS_OK;
2501 }
2502 
2503 /**
2504  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2505  * @hctx: Pointer of the associated hardware queue.
2506  * @rq: Pointer to request to be sent.
2507  *
2508  * If the device has enough resources to accept a new request now, send the
2509  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2510  * we can try send it another time in the future. Requests inserted at this
2511  * queue have higher priority.
2512  */
2513 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2514 		struct request *rq)
2515 {
2516 	blk_status_t ret =
2517 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2518 
2519 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2520 		blk_mq_request_bypass_insert(rq, false, true);
2521 	else if (ret != BLK_STS_OK)
2522 		blk_mq_end_request(rq, ret);
2523 }
2524 
2525 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2526 {
2527 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2528 }
2529 
2530 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2531 {
2532 	struct blk_mq_hw_ctx *hctx = NULL;
2533 	struct request *rq;
2534 	int queued = 0;
2535 	int errors = 0;
2536 
2537 	while ((rq = rq_list_pop(&plug->mq_list))) {
2538 		bool last = rq_list_empty(plug->mq_list);
2539 		blk_status_t ret;
2540 
2541 		if (hctx != rq->mq_hctx) {
2542 			if (hctx)
2543 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2544 			hctx = rq->mq_hctx;
2545 		}
2546 
2547 		ret = blk_mq_request_issue_directly(rq, last);
2548 		switch (ret) {
2549 		case BLK_STS_OK:
2550 			queued++;
2551 			break;
2552 		case BLK_STS_RESOURCE:
2553 		case BLK_STS_DEV_RESOURCE:
2554 			blk_mq_request_bypass_insert(rq, false, last);
2555 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2556 			return;
2557 		default:
2558 			blk_mq_end_request(rq, ret);
2559 			errors++;
2560 			break;
2561 		}
2562 	}
2563 
2564 	/*
2565 	 * If we didn't flush the entire list, we could have told the driver
2566 	 * there was more coming, but that turned out to be a lie.
2567 	 */
2568 	if (errors)
2569 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2570 }
2571 
2572 static void __blk_mq_flush_plug_list(struct request_queue *q,
2573 				     struct blk_plug *plug)
2574 {
2575 	if (blk_queue_quiesced(q))
2576 		return;
2577 	q->mq_ops->queue_rqs(&plug->mq_list);
2578 }
2579 
2580 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2581 {
2582 	struct blk_mq_hw_ctx *this_hctx = NULL;
2583 	struct blk_mq_ctx *this_ctx = NULL;
2584 	struct request *requeue_list = NULL;
2585 	unsigned int depth = 0;
2586 	LIST_HEAD(list);
2587 
2588 	do {
2589 		struct request *rq = rq_list_pop(&plug->mq_list);
2590 
2591 		if (!this_hctx) {
2592 			this_hctx = rq->mq_hctx;
2593 			this_ctx = rq->mq_ctx;
2594 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2595 			rq_list_add(&requeue_list, rq);
2596 			continue;
2597 		}
2598 		list_add_tail(&rq->queuelist, &list);
2599 		depth++;
2600 	} while (!rq_list_empty(plug->mq_list));
2601 
2602 	plug->mq_list = requeue_list;
2603 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2604 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2605 }
2606 
2607 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2608 {
2609 	struct request *rq;
2610 
2611 	if (rq_list_empty(plug->mq_list))
2612 		return;
2613 	plug->rq_count = 0;
2614 
2615 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2616 		struct request_queue *q;
2617 
2618 		rq = rq_list_peek(&plug->mq_list);
2619 		q = rq->q;
2620 
2621 		/*
2622 		 * Peek first request and see if we have a ->queue_rqs() hook.
2623 		 * If we do, we can dispatch the whole plug list in one go. We
2624 		 * already know at this point that all requests belong to the
2625 		 * same queue, caller must ensure that's the case.
2626 		 *
2627 		 * Since we pass off the full list to the driver at this point,
2628 		 * we do not increment the active request count for the queue.
2629 		 * Bypass shared tags for now because of that.
2630 		 */
2631 		if (q->mq_ops->queue_rqs &&
2632 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2633 			blk_mq_run_dispatch_ops(q,
2634 				__blk_mq_flush_plug_list(q, plug));
2635 			if (rq_list_empty(plug->mq_list))
2636 				return;
2637 		}
2638 
2639 		blk_mq_run_dispatch_ops(q,
2640 				blk_mq_plug_issue_direct(plug, false));
2641 		if (rq_list_empty(plug->mq_list))
2642 			return;
2643 	}
2644 
2645 	do {
2646 		blk_mq_dispatch_plug_list(plug, from_schedule);
2647 	} while (!rq_list_empty(plug->mq_list));
2648 }
2649 
2650 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2651 		struct list_head *list)
2652 {
2653 	int queued = 0;
2654 	int errors = 0;
2655 
2656 	while (!list_empty(list)) {
2657 		blk_status_t ret;
2658 		struct request *rq = list_first_entry(list, struct request,
2659 				queuelist);
2660 
2661 		list_del_init(&rq->queuelist);
2662 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2663 		if (ret != BLK_STS_OK) {
2664 			if (ret == BLK_STS_RESOURCE ||
2665 					ret == BLK_STS_DEV_RESOURCE) {
2666 				blk_mq_request_bypass_insert(rq, false,
2667 							list_empty(list));
2668 				break;
2669 			}
2670 			blk_mq_end_request(rq, ret);
2671 			errors++;
2672 		} else
2673 			queued++;
2674 	}
2675 
2676 	/*
2677 	 * If we didn't flush the entire list, we could have told
2678 	 * the driver there was more coming, but that turned out to
2679 	 * be a lie.
2680 	 */
2681 	if ((!list_empty(list) || errors) &&
2682 	     hctx->queue->mq_ops->commit_rqs && queued)
2683 		hctx->queue->mq_ops->commit_rqs(hctx);
2684 }
2685 
2686 /*
2687  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2688  * queues. This is important for md arrays to benefit from merging
2689  * requests.
2690  */
2691 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2692 {
2693 	if (plug->multiple_queues)
2694 		return BLK_MAX_REQUEST_COUNT * 2;
2695 	return BLK_MAX_REQUEST_COUNT;
2696 }
2697 
2698 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2699 {
2700 	struct request *last = rq_list_peek(&plug->mq_list);
2701 
2702 	if (!plug->rq_count) {
2703 		trace_block_plug(rq->q);
2704 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2705 		   (!blk_queue_nomerges(rq->q) &&
2706 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2707 		blk_mq_flush_plug_list(plug, false);
2708 		trace_block_plug(rq->q);
2709 	}
2710 
2711 	if (!plug->multiple_queues && last && last->q != rq->q)
2712 		plug->multiple_queues = true;
2713 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2714 		plug->has_elevator = true;
2715 	rq->rq_next = NULL;
2716 	rq_list_add(&plug->mq_list, rq);
2717 	plug->rq_count++;
2718 }
2719 
2720 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2721 				     struct bio *bio, unsigned int nr_segs)
2722 {
2723 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2724 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2725 			return true;
2726 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2727 			return true;
2728 	}
2729 	return false;
2730 }
2731 
2732 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2733 					       struct blk_plug *plug,
2734 					       struct bio *bio,
2735 					       unsigned int nsegs)
2736 {
2737 	struct blk_mq_alloc_data data = {
2738 		.q		= q,
2739 		.nr_tags	= 1,
2740 		.cmd_flags	= bio->bi_opf,
2741 	};
2742 	struct request *rq;
2743 
2744 	if (unlikely(bio_queue_enter(bio)))
2745 		return NULL;
2746 
2747 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2748 		goto queue_exit;
2749 
2750 	rq_qos_throttle(q, bio);
2751 
2752 	if (plug) {
2753 		data.nr_tags = plug->nr_ios;
2754 		plug->nr_ios = 1;
2755 		data.cached_rq = &plug->cached_rq;
2756 	}
2757 
2758 	rq = __blk_mq_alloc_requests(&data);
2759 	if (rq)
2760 		return rq;
2761 	rq_qos_cleanup(q, bio);
2762 	if (bio->bi_opf & REQ_NOWAIT)
2763 		bio_wouldblock_error(bio);
2764 queue_exit:
2765 	blk_queue_exit(q);
2766 	return NULL;
2767 }
2768 
2769 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2770 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2771 {
2772 	struct request *rq;
2773 
2774 	if (!plug)
2775 		return NULL;
2776 	rq = rq_list_peek(&plug->cached_rq);
2777 	if (!rq || rq->q != q)
2778 		return NULL;
2779 
2780 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2781 		*bio = NULL;
2782 		return NULL;
2783 	}
2784 
2785 	rq_qos_throttle(q, *bio);
2786 
2787 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2788 		return NULL;
2789 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2790 		return NULL;
2791 
2792 	rq->cmd_flags = (*bio)->bi_opf;
2793 	plug->cached_rq = rq_list_next(rq);
2794 	INIT_LIST_HEAD(&rq->queuelist);
2795 	return rq;
2796 }
2797 
2798 /**
2799  * blk_mq_submit_bio - Create and send a request to block device.
2800  * @bio: Bio pointer.
2801  *
2802  * Builds up a request structure from @q and @bio and send to the device. The
2803  * request may not be queued directly to hardware if:
2804  * * This request can be merged with another one
2805  * * We want to place request at plug queue for possible future merging
2806  * * There is an IO scheduler active at this queue
2807  *
2808  * It will not queue the request if there is an error with the bio, or at the
2809  * request creation.
2810  */
2811 void blk_mq_submit_bio(struct bio *bio)
2812 {
2813 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2814 	struct blk_plug *plug = blk_mq_plug(q, bio);
2815 	const int is_sync = op_is_sync(bio->bi_opf);
2816 	struct request *rq;
2817 	unsigned int nr_segs = 1;
2818 	blk_status_t ret;
2819 
2820 	blk_queue_bounce(q, &bio);
2821 	if (blk_may_split(q, bio))
2822 		__blk_queue_split(q, &bio, &nr_segs);
2823 
2824 	if (!bio_integrity_prep(bio))
2825 		return;
2826 
2827 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2828 	if (!rq) {
2829 		if (!bio)
2830 			return;
2831 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2832 		if (unlikely(!rq))
2833 			return;
2834 	}
2835 
2836 	trace_block_getrq(bio);
2837 
2838 	rq_qos_track(q, rq, bio);
2839 
2840 	blk_mq_bio_to_request(rq, bio, nr_segs);
2841 
2842 	ret = blk_crypto_init_request(rq);
2843 	if (ret != BLK_STS_OK) {
2844 		bio->bi_status = ret;
2845 		bio_endio(bio);
2846 		blk_mq_free_request(rq);
2847 		return;
2848 	}
2849 
2850 	if (op_is_flush(bio->bi_opf)) {
2851 		blk_insert_flush(rq);
2852 		return;
2853 	}
2854 
2855 	if (plug)
2856 		blk_add_rq_to_plug(plug, rq);
2857 	else if ((rq->rq_flags & RQF_ELV) ||
2858 		 (rq->mq_hctx->dispatch_busy &&
2859 		  (q->nr_hw_queues == 1 || !is_sync)))
2860 		blk_mq_sched_insert_request(rq, false, true, true);
2861 	else
2862 		blk_mq_run_dispatch_ops(rq->q,
2863 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2864 }
2865 
2866 #ifdef CONFIG_BLK_MQ_STACKING
2867 /**
2868  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2869  * @rq: the request being queued
2870  */
2871 blk_status_t blk_insert_cloned_request(struct request *rq)
2872 {
2873 	struct request_queue *q = rq->q;
2874 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2875 	blk_status_t ret;
2876 
2877 	if (blk_rq_sectors(rq) > max_sectors) {
2878 		/*
2879 		 * SCSI device does not have a good way to return if
2880 		 * Write Same/Zero is actually supported. If a device rejects
2881 		 * a non-read/write command (discard, write same,etc.) the
2882 		 * low-level device driver will set the relevant queue limit to
2883 		 * 0 to prevent blk-lib from issuing more of the offending
2884 		 * operations. Commands queued prior to the queue limit being
2885 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2886 		 * errors being propagated to upper layers.
2887 		 */
2888 		if (max_sectors == 0)
2889 			return BLK_STS_NOTSUPP;
2890 
2891 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2892 			__func__, blk_rq_sectors(rq), max_sectors);
2893 		return BLK_STS_IOERR;
2894 	}
2895 
2896 	/*
2897 	 * The queue settings related to segment counting may differ from the
2898 	 * original queue.
2899 	 */
2900 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2901 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2902 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2903 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2904 		return BLK_STS_IOERR;
2905 	}
2906 
2907 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2908 		return BLK_STS_IOERR;
2909 
2910 	if (blk_crypto_insert_cloned_request(rq))
2911 		return BLK_STS_IOERR;
2912 
2913 	blk_account_io_start(rq);
2914 
2915 	/*
2916 	 * Since we have a scheduler attached on the top device,
2917 	 * bypass a potential scheduler on the bottom device for
2918 	 * insert.
2919 	 */
2920 	blk_mq_run_dispatch_ops(q,
2921 			ret = blk_mq_request_issue_directly(rq, true));
2922 	if (ret)
2923 		blk_account_io_done(rq, ktime_get_ns());
2924 	return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2927 
2928 /**
2929  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2930  * @rq: the clone request to be cleaned up
2931  *
2932  * Description:
2933  *     Free all bios in @rq for a cloned request.
2934  */
2935 void blk_rq_unprep_clone(struct request *rq)
2936 {
2937 	struct bio *bio;
2938 
2939 	while ((bio = rq->bio) != NULL) {
2940 		rq->bio = bio->bi_next;
2941 
2942 		bio_put(bio);
2943 	}
2944 }
2945 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2946 
2947 /**
2948  * blk_rq_prep_clone - Helper function to setup clone request
2949  * @rq: the request to be setup
2950  * @rq_src: original request to be cloned
2951  * @bs: bio_set that bios for clone are allocated from
2952  * @gfp_mask: memory allocation mask for bio
2953  * @bio_ctr: setup function to be called for each clone bio.
2954  *           Returns %0 for success, non %0 for failure.
2955  * @data: private data to be passed to @bio_ctr
2956  *
2957  * Description:
2958  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2959  *     Also, pages which the original bios are pointing to are not copied
2960  *     and the cloned bios just point same pages.
2961  *     So cloned bios must be completed before original bios, which means
2962  *     the caller must complete @rq before @rq_src.
2963  */
2964 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2965 		      struct bio_set *bs, gfp_t gfp_mask,
2966 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2967 		      void *data)
2968 {
2969 	struct bio *bio, *bio_src;
2970 
2971 	if (!bs)
2972 		bs = &fs_bio_set;
2973 
2974 	__rq_for_each_bio(bio_src, rq_src) {
2975 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2976 				      bs);
2977 		if (!bio)
2978 			goto free_and_out;
2979 
2980 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2981 			goto free_and_out;
2982 
2983 		if (rq->bio) {
2984 			rq->biotail->bi_next = bio;
2985 			rq->biotail = bio;
2986 		} else {
2987 			rq->bio = rq->biotail = bio;
2988 		}
2989 		bio = NULL;
2990 	}
2991 
2992 	/* Copy attributes of the original request to the clone request. */
2993 	rq->__sector = blk_rq_pos(rq_src);
2994 	rq->__data_len = blk_rq_bytes(rq_src);
2995 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2996 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2997 		rq->special_vec = rq_src->special_vec;
2998 	}
2999 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3000 	rq->ioprio = rq_src->ioprio;
3001 
3002 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3003 		goto free_and_out;
3004 
3005 	return 0;
3006 
3007 free_and_out:
3008 	if (bio)
3009 		bio_put(bio);
3010 	blk_rq_unprep_clone(rq);
3011 
3012 	return -ENOMEM;
3013 }
3014 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3015 #endif /* CONFIG_BLK_MQ_STACKING */
3016 
3017 /*
3018  * Steal bios from a request and add them to a bio list.
3019  * The request must not have been partially completed before.
3020  */
3021 void blk_steal_bios(struct bio_list *list, struct request *rq)
3022 {
3023 	if (rq->bio) {
3024 		if (list->tail)
3025 			list->tail->bi_next = rq->bio;
3026 		else
3027 			list->head = rq->bio;
3028 		list->tail = rq->biotail;
3029 
3030 		rq->bio = NULL;
3031 		rq->biotail = NULL;
3032 	}
3033 
3034 	rq->__data_len = 0;
3035 }
3036 EXPORT_SYMBOL_GPL(blk_steal_bios);
3037 
3038 static size_t order_to_size(unsigned int order)
3039 {
3040 	return (size_t)PAGE_SIZE << order;
3041 }
3042 
3043 /* called before freeing request pool in @tags */
3044 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3045 				    struct blk_mq_tags *tags)
3046 {
3047 	struct page *page;
3048 	unsigned long flags;
3049 
3050 	/* There is no need to clear a driver tags own mapping */
3051 	if (drv_tags == tags)
3052 		return;
3053 
3054 	list_for_each_entry(page, &tags->page_list, lru) {
3055 		unsigned long start = (unsigned long)page_address(page);
3056 		unsigned long end = start + order_to_size(page->private);
3057 		int i;
3058 
3059 		for (i = 0; i < drv_tags->nr_tags; i++) {
3060 			struct request *rq = drv_tags->rqs[i];
3061 			unsigned long rq_addr = (unsigned long)rq;
3062 
3063 			if (rq_addr >= start && rq_addr < end) {
3064 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3065 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3066 			}
3067 		}
3068 	}
3069 
3070 	/*
3071 	 * Wait until all pending iteration is done.
3072 	 *
3073 	 * Request reference is cleared and it is guaranteed to be observed
3074 	 * after the ->lock is released.
3075 	 */
3076 	spin_lock_irqsave(&drv_tags->lock, flags);
3077 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3078 }
3079 
3080 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3081 		     unsigned int hctx_idx)
3082 {
3083 	struct blk_mq_tags *drv_tags;
3084 	struct page *page;
3085 
3086 	if (list_empty(&tags->page_list))
3087 		return;
3088 
3089 	if (blk_mq_is_shared_tags(set->flags))
3090 		drv_tags = set->shared_tags;
3091 	else
3092 		drv_tags = set->tags[hctx_idx];
3093 
3094 	if (tags->static_rqs && set->ops->exit_request) {
3095 		int i;
3096 
3097 		for (i = 0; i < tags->nr_tags; i++) {
3098 			struct request *rq = tags->static_rqs[i];
3099 
3100 			if (!rq)
3101 				continue;
3102 			set->ops->exit_request(set, rq, hctx_idx);
3103 			tags->static_rqs[i] = NULL;
3104 		}
3105 	}
3106 
3107 	blk_mq_clear_rq_mapping(drv_tags, tags);
3108 
3109 	while (!list_empty(&tags->page_list)) {
3110 		page = list_first_entry(&tags->page_list, struct page, lru);
3111 		list_del_init(&page->lru);
3112 		/*
3113 		 * Remove kmemleak object previously allocated in
3114 		 * blk_mq_alloc_rqs().
3115 		 */
3116 		kmemleak_free(page_address(page));
3117 		__free_pages(page, page->private);
3118 	}
3119 }
3120 
3121 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3122 {
3123 	kfree(tags->rqs);
3124 	tags->rqs = NULL;
3125 	kfree(tags->static_rqs);
3126 	tags->static_rqs = NULL;
3127 
3128 	blk_mq_free_tags(tags);
3129 }
3130 
3131 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3132 		unsigned int hctx_idx)
3133 {
3134 	int i;
3135 
3136 	for (i = 0; i < set->nr_maps; i++) {
3137 		unsigned int start = set->map[i].queue_offset;
3138 		unsigned int end = start + set->map[i].nr_queues;
3139 
3140 		if (hctx_idx >= start && hctx_idx < end)
3141 			break;
3142 	}
3143 
3144 	if (i >= set->nr_maps)
3145 		i = HCTX_TYPE_DEFAULT;
3146 
3147 	return i;
3148 }
3149 
3150 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3151 		unsigned int hctx_idx)
3152 {
3153 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3154 
3155 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3156 }
3157 
3158 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3159 					       unsigned int hctx_idx,
3160 					       unsigned int nr_tags,
3161 					       unsigned int reserved_tags)
3162 {
3163 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3164 	struct blk_mq_tags *tags;
3165 
3166 	if (node == NUMA_NO_NODE)
3167 		node = set->numa_node;
3168 
3169 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3170 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3171 	if (!tags)
3172 		return NULL;
3173 
3174 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3175 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3176 				 node);
3177 	if (!tags->rqs) {
3178 		blk_mq_free_tags(tags);
3179 		return NULL;
3180 	}
3181 
3182 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3183 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3184 					node);
3185 	if (!tags->static_rqs) {
3186 		kfree(tags->rqs);
3187 		blk_mq_free_tags(tags);
3188 		return NULL;
3189 	}
3190 
3191 	return tags;
3192 }
3193 
3194 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3195 			       unsigned int hctx_idx, int node)
3196 {
3197 	int ret;
3198 
3199 	if (set->ops->init_request) {
3200 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3201 		if (ret)
3202 			return ret;
3203 	}
3204 
3205 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3206 	return 0;
3207 }
3208 
3209 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3210 			    struct blk_mq_tags *tags,
3211 			    unsigned int hctx_idx, unsigned int depth)
3212 {
3213 	unsigned int i, j, entries_per_page, max_order = 4;
3214 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3215 	size_t rq_size, left;
3216 
3217 	if (node == NUMA_NO_NODE)
3218 		node = set->numa_node;
3219 
3220 	INIT_LIST_HEAD(&tags->page_list);
3221 
3222 	/*
3223 	 * rq_size is the size of the request plus driver payload, rounded
3224 	 * to the cacheline size
3225 	 */
3226 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3227 				cache_line_size());
3228 	left = rq_size * depth;
3229 
3230 	for (i = 0; i < depth; ) {
3231 		int this_order = max_order;
3232 		struct page *page;
3233 		int to_do;
3234 		void *p;
3235 
3236 		while (this_order && left < order_to_size(this_order - 1))
3237 			this_order--;
3238 
3239 		do {
3240 			page = alloc_pages_node(node,
3241 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3242 				this_order);
3243 			if (page)
3244 				break;
3245 			if (!this_order--)
3246 				break;
3247 			if (order_to_size(this_order) < rq_size)
3248 				break;
3249 		} while (1);
3250 
3251 		if (!page)
3252 			goto fail;
3253 
3254 		page->private = this_order;
3255 		list_add_tail(&page->lru, &tags->page_list);
3256 
3257 		p = page_address(page);
3258 		/*
3259 		 * Allow kmemleak to scan these pages as they contain pointers
3260 		 * to additional allocations like via ops->init_request().
3261 		 */
3262 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3263 		entries_per_page = order_to_size(this_order) / rq_size;
3264 		to_do = min(entries_per_page, depth - i);
3265 		left -= to_do * rq_size;
3266 		for (j = 0; j < to_do; j++) {
3267 			struct request *rq = p;
3268 
3269 			tags->static_rqs[i] = rq;
3270 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3271 				tags->static_rqs[i] = NULL;
3272 				goto fail;
3273 			}
3274 
3275 			p += rq_size;
3276 			i++;
3277 		}
3278 	}
3279 	return 0;
3280 
3281 fail:
3282 	blk_mq_free_rqs(set, tags, hctx_idx);
3283 	return -ENOMEM;
3284 }
3285 
3286 struct rq_iter_data {
3287 	struct blk_mq_hw_ctx *hctx;
3288 	bool has_rq;
3289 };
3290 
3291 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3292 {
3293 	struct rq_iter_data *iter_data = data;
3294 
3295 	if (rq->mq_hctx != iter_data->hctx)
3296 		return true;
3297 	iter_data->has_rq = true;
3298 	return false;
3299 }
3300 
3301 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3302 {
3303 	struct blk_mq_tags *tags = hctx->sched_tags ?
3304 			hctx->sched_tags : hctx->tags;
3305 	struct rq_iter_data data = {
3306 		.hctx	= hctx,
3307 	};
3308 
3309 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3310 	return data.has_rq;
3311 }
3312 
3313 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3314 		struct blk_mq_hw_ctx *hctx)
3315 {
3316 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3317 		return false;
3318 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3319 		return false;
3320 	return true;
3321 }
3322 
3323 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3324 {
3325 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3326 			struct blk_mq_hw_ctx, cpuhp_online);
3327 
3328 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3329 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3330 		return 0;
3331 
3332 	/*
3333 	 * Prevent new request from being allocated on the current hctx.
3334 	 *
3335 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3336 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3337 	 * seen once we return from the tag allocator.
3338 	 */
3339 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3340 	smp_mb__after_atomic();
3341 
3342 	/*
3343 	 * Try to grab a reference to the queue and wait for any outstanding
3344 	 * requests.  If we could not grab a reference the queue has been
3345 	 * frozen and there are no requests.
3346 	 */
3347 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3348 		while (blk_mq_hctx_has_requests(hctx))
3349 			msleep(5);
3350 		percpu_ref_put(&hctx->queue->q_usage_counter);
3351 	}
3352 
3353 	return 0;
3354 }
3355 
3356 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3357 {
3358 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3359 			struct blk_mq_hw_ctx, cpuhp_online);
3360 
3361 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3362 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3363 	return 0;
3364 }
3365 
3366 /*
3367  * 'cpu' is going away. splice any existing rq_list entries from this
3368  * software queue to the hw queue dispatch list, and ensure that it
3369  * gets run.
3370  */
3371 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3372 {
3373 	struct blk_mq_hw_ctx *hctx;
3374 	struct blk_mq_ctx *ctx;
3375 	LIST_HEAD(tmp);
3376 	enum hctx_type type;
3377 
3378 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3379 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3380 		return 0;
3381 
3382 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3383 	type = hctx->type;
3384 
3385 	spin_lock(&ctx->lock);
3386 	if (!list_empty(&ctx->rq_lists[type])) {
3387 		list_splice_init(&ctx->rq_lists[type], &tmp);
3388 		blk_mq_hctx_clear_pending(hctx, ctx);
3389 	}
3390 	spin_unlock(&ctx->lock);
3391 
3392 	if (list_empty(&tmp))
3393 		return 0;
3394 
3395 	spin_lock(&hctx->lock);
3396 	list_splice_tail_init(&tmp, &hctx->dispatch);
3397 	spin_unlock(&hctx->lock);
3398 
3399 	blk_mq_run_hw_queue(hctx, true);
3400 	return 0;
3401 }
3402 
3403 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3404 {
3405 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3406 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3407 						    &hctx->cpuhp_online);
3408 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3409 					    &hctx->cpuhp_dead);
3410 }
3411 
3412 /*
3413  * Before freeing hw queue, clearing the flush request reference in
3414  * tags->rqs[] for avoiding potential UAF.
3415  */
3416 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3417 		unsigned int queue_depth, struct request *flush_rq)
3418 {
3419 	int i;
3420 	unsigned long flags;
3421 
3422 	/* The hw queue may not be mapped yet */
3423 	if (!tags)
3424 		return;
3425 
3426 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3427 
3428 	for (i = 0; i < queue_depth; i++)
3429 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3430 
3431 	/*
3432 	 * Wait until all pending iteration is done.
3433 	 *
3434 	 * Request reference is cleared and it is guaranteed to be observed
3435 	 * after the ->lock is released.
3436 	 */
3437 	spin_lock_irqsave(&tags->lock, flags);
3438 	spin_unlock_irqrestore(&tags->lock, flags);
3439 }
3440 
3441 /* hctx->ctxs will be freed in queue's release handler */
3442 static void blk_mq_exit_hctx(struct request_queue *q,
3443 		struct blk_mq_tag_set *set,
3444 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3445 {
3446 	struct request *flush_rq = hctx->fq->flush_rq;
3447 
3448 	if (blk_mq_hw_queue_mapped(hctx))
3449 		blk_mq_tag_idle(hctx);
3450 
3451 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3452 			set->queue_depth, flush_rq);
3453 	if (set->ops->exit_request)
3454 		set->ops->exit_request(set, flush_rq, hctx_idx);
3455 
3456 	if (set->ops->exit_hctx)
3457 		set->ops->exit_hctx(hctx, hctx_idx);
3458 
3459 	blk_mq_remove_cpuhp(hctx);
3460 
3461 	xa_erase(&q->hctx_table, hctx_idx);
3462 
3463 	spin_lock(&q->unused_hctx_lock);
3464 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3465 	spin_unlock(&q->unused_hctx_lock);
3466 }
3467 
3468 static void blk_mq_exit_hw_queues(struct request_queue *q,
3469 		struct blk_mq_tag_set *set, int nr_queue)
3470 {
3471 	struct blk_mq_hw_ctx *hctx;
3472 	unsigned long i;
3473 
3474 	queue_for_each_hw_ctx(q, hctx, i) {
3475 		if (i == nr_queue)
3476 			break;
3477 		blk_mq_exit_hctx(q, set, hctx, i);
3478 	}
3479 }
3480 
3481 static int blk_mq_init_hctx(struct request_queue *q,
3482 		struct blk_mq_tag_set *set,
3483 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3484 {
3485 	hctx->queue_num = hctx_idx;
3486 
3487 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3488 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3489 				&hctx->cpuhp_online);
3490 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3491 
3492 	hctx->tags = set->tags[hctx_idx];
3493 
3494 	if (set->ops->init_hctx &&
3495 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3496 		goto unregister_cpu_notifier;
3497 
3498 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3499 				hctx->numa_node))
3500 		goto exit_hctx;
3501 
3502 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3503 		goto exit_flush_rq;
3504 
3505 	return 0;
3506 
3507  exit_flush_rq:
3508 	if (set->ops->exit_request)
3509 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3510  exit_hctx:
3511 	if (set->ops->exit_hctx)
3512 		set->ops->exit_hctx(hctx, hctx_idx);
3513  unregister_cpu_notifier:
3514 	blk_mq_remove_cpuhp(hctx);
3515 	return -1;
3516 }
3517 
3518 static struct blk_mq_hw_ctx *
3519 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3520 		int node)
3521 {
3522 	struct blk_mq_hw_ctx *hctx;
3523 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3524 
3525 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3526 	if (!hctx)
3527 		goto fail_alloc_hctx;
3528 
3529 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3530 		goto free_hctx;
3531 
3532 	atomic_set(&hctx->nr_active, 0);
3533 	if (node == NUMA_NO_NODE)
3534 		node = set->numa_node;
3535 	hctx->numa_node = node;
3536 
3537 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3538 	spin_lock_init(&hctx->lock);
3539 	INIT_LIST_HEAD(&hctx->dispatch);
3540 	hctx->queue = q;
3541 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3542 
3543 	INIT_LIST_HEAD(&hctx->hctx_list);
3544 
3545 	/*
3546 	 * Allocate space for all possible cpus to avoid allocation at
3547 	 * runtime
3548 	 */
3549 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3550 			gfp, node);
3551 	if (!hctx->ctxs)
3552 		goto free_cpumask;
3553 
3554 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3555 				gfp, node, false, false))
3556 		goto free_ctxs;
3557 	hctx->nr_ctx = 0;
3558 
3559 	spin_lock_init(&hctx->dispatch_wait_lock);
3560 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3561 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3562 
3563 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3564 	if (!hctx->fq)
3565 		goto free_bitmap;
3566 
3567 	blk_mq_hctx_kobj_init(hctx);
3568 
3569 	return hctx;
3570 
3571  free_bitmap:
3572 	sbitmap_free(&hctx->ctx_map);
3573  free_ctxs:
3574 	kfree(hctx->ctxs);
3575  free_cpumask:
3576 	free_cpumask_var(hctx->cpumask);
3577  free_hctx:
3578 	kfree(hctx);
3579  fail_alloc_hctx:
3580 	return NULL;
3581 }
3582 
3583 static void blk_mq_init_cpu_queues(struct request_queue *q,
3584 				   unsigned int nr_hw_queues)
3585 {
3586 	struct blk_mq_tag_set *set = q->tag_set;
3587 	unsigned int i, j;
3588 
3589 	for_each_possible_cpu(i) {
3590 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3591 		struct blk_mq_hw_ctx *hctx;
3592 		int k;
3593 
3594 		__ctx->cpu = i;
3595 		spin_lock_init(&__ctx->lock);
3596 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3597 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3598 
3599 		__ctx->queue = q;
3600 
3601 		/*
3602 		 * Set local node, IFF we have more than one hw queue. If
3603 		 * not, we remain on the home node of the device
3604 		 */
3605 		for (j = 0; j < set->nr_maps; j++) {
3606 			hctx = blk_mq_map_queue_type(q, j, i);
3607 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3608 				hctx->numa_node = cpu_to_node(i);
3609 		}
3610 	}
3611 }
3612 
3613 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3614 					     unsigned int hctx_idx,
3615 					     unsigned int depth)
3616 {
3617 	struct blk_mq_tags *tags;
3618 	int ret;
3619 
3620 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3621 	if (!tags)
3622 		return NULL;
3623 
3624 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3625 	if (ret) {
3626 		blk_mq_free_rq_map(tags);
3627 		return NULL;
3628 	}
3629 
3630 	return tags;
3631 }
3632 
3633 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3634 				       int hctx_idx)
3635 {
3636 	if (blk_mq_is_shared_tags(set->flags)) {
3637 		set->tags[hctx_idx] = set->shared_tags;
3638 
3639 		return true;
3640 	}
3641 
3642 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3643 						       set->queue_depth);
3644 
3645 	return set->tags[hctx_idx];
3646 }
3647 
3648 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3649 			     struct blk_mq_tags *tags,
3650 			     unsigned int hctx_idx)
3651 {
3652 	if (tags) {
3653 		blk_mq_free_rqs(set, tags, hctx_idx);
3654 		blk_mq_free_rq_map(tags);
3655 	}
3656 }
3657 
3658 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3659 				      unsigned int hctx_idx)
3660 {
3661 	if (!blk_mq_is_shared_tags(set->flags))
3662 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3663 
3664 	set->tags[hctx_idx] = NULL;
3665 }
3666 
3667 static void blk_mq_map_swqueue(struct request_queue *q)
3668 {
3669 	unsigned int j, hctx_idx;
3670 	unsigned long i;
3671 	struct blk_mq_hw_ctx *hctx;
3672 	struct blk_mq_ctx *ctx;
3673 	struct blk_mq_tag_set *set = q->tag_set;
3674 
3675 	queue_for_each_hw_ctx(q, hctx, i) {
3676 		cpumask_clear(hctx->cpumask);
3677 		hctx->nr_ctx = 0;
3678 		hctx->dispatch_from = NULL;
3679 	}
3680 
3681 	/*
3682 	 * Map software to hardware queues.
3683 	 *
3684 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3685 	 */
3686 	for_each_possible_cpu(i) {
3687 
3688 		ctx = per_cpu_ptr(q->queue_ctx, i);
3689 		for (j = 0; j < set->nr_maps; j++) {
3690 			if (!set->map[j].nr_queues) {
3691 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3692 						HCTX_TYPE_DEFAULT, i);
3693 				continue;
3694 			}
3695 			hctx_idx = set->map[j].mq_map[i];
3696 			/* unmapped hw queue can be remapped after CPU topo changed */
3697 			if (!set->tags[hctx_idx] &&
3698 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3699 				/*
3700 				 * If tags initialization fail for some hctx,
3701 				 * that hctx won't be brought online.  In this
3702 				 * case, remap the current ctx to hctx[0] which
3703 				 * is guaranteed to always have tags allocated
3704 				 */
3705 				set->map[j].mq_map[i] = 0;
3706 			}
3707 
3708 			hctx = blk_mq_map_queue_type(q, j, i);
3709 			ctx->hctxs[j] = hctx;
3710 			/*
3711 			 * If the CPU is already set in the mask, then we've
3712 			 * mapped this one already. This can happen if
3713 			 * devices share queues across queue maps.
3714 			 */
3715 			if (cpumask_test_cpu(i, hctx->cpumask))
3716 				continue;
3717 
3718 			cpumask_set_cpu(i, hctx->cpumask);
3719 			hctx->type = j;
3720 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3721 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3722 
3723 			/*
3724 			 * If the nr_ctx type overflows, we have exceeded the
3725 			 * amount of sw queues we can support.
3726 			 */
3727 			BUG_ON(!hctx->nr_ctx);
3728 		}
3729 
3730 		for (; j < HCTX_MAX_TYPES; j++)
3731 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3732 					HCTX_TYPE_DEFAULT, i);
3733 	}
3734 
3735 	queue_for_each_hw_ctx(q, hctx, i) {
3736 		/*
3737 		 * If no software queues are mapped to this hardware queue,
3738 		 * disable it and free the request entries.
3739 		 */
3740 		if (!hctx->nr_ctx) {
3741 			/* Never unmap queue 0.  We need it as a
3742 			 * fallback in case of a new remap fails
3743 			 * allocation
3744 			 */
3745 			if (i)
3746 				__blk_mq_free_map_and_rqs(set, i);
3747 
3748 			hctx->tags = NULL;
3749 			continue;
3750 		}
3751 
3752 		hctx->tags = set->tags[i];
3753 		WARN_ON(!hctx->tags);
3754 
3755 		/*
3756 		 * Set the map size to the number of mapped software queues.
3757 		 * This is more accurate and more efficient than looping
3758 		 * over all possibly mapped software queues.
3759 		 */
3760 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3761 
3762 		/*
3763 		 * Initialize batch roundrobin counts
3764 		 */
3765 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3766 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3767 	}
3768 }
3769 
3770 /*
3771  * Caller needs to ensure that we're either frozen/quiesced, or that
3772  * the queue isn't live yet.
3773  */
3774 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3775 {
3776 	struct blk_mq_hw_ctx *hctx;
3777 	unsigned long i;
3778 
3779 	queue_for_each_hw_ctx(q, hctx, i) {
3780 		if (shared) {
3781 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3782 		} else {
3783 			blk_mq_tag_idle(hctx);
3784 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3785 		}
3786 	}
3787 }
3788 
3789 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3790 					 bool shared)
3791 {
3792 	struct request_queue *q;
3793 
3794 	lockdep_assert_held(&set->tag_list_lock);
3795 
3796 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3797 		blk_mq_freeze_queue(q);
3798 		queue_set_hctx_shared(q, shared);
3799 		blk_mq_unfreeze_queue(q);
3800 	}
3801 }
3802 
3803 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3804 {
3805 	struct blk_mq_tag_set *set = q->tag_set;
3806 
3807 	mutex_lock(&set->tag_list_lock);
3808 	list_del(&q->tag_set_list);
3809 	if (list_is_singular(&set->tag_list)) {
3810 		/* just transitioned to unshared */
3811 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3812 		/* update existing queue */
3813 		blk_mq_update_tag_set_shared(set, false);
3814 	}
3815 	mutex_unlock(&set->tag_list_lock);
3816 	INIT_LIST_HEAD(&q->tag_set_list);
3817 }
3818 
3819 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3820 				     struct request_queue *q)
3821 {
3822 	mutex_lock(&set->tag_list_lock);
3823 
3824 	/*
3825 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3826 	 */
3827 	if (!list_empty(&set->tag_list) &&
3828 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3829 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3830 		/* update existing queue */
3831 		blk_mq_update_tag_set_shared(set, true);
3832 	}
3833 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3834 		queue_set_hctx_shared(q, true);
3835 	list_add_tail(&q->tag_set_list, &set->tag_list);
3836 
3837 	mutex_unlock(&set->tag_list_lock);
3838 }
3839 
3840 /* All allocations will be freed in release handler of q->mq_kobj */
3841 static int blk_mq_alloc_ctxs(struct request_queue *q)
3842 {
3843 	struct blk_mq_ctxs *ctxs;
3844 	int cpu;
3845 
3846 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3847 	if (!ctxs)
3848 		return -ENOMEM;
3849 
3850 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3851 	if (!ctxs->queue_ctx)
3852 		goto fail;
3853 
3854 	for_each_possible_cpu(cpu) {
3855 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3856 		ctx->ctxs = ctxs;
3857 	}
3858 
3859 	q->mq_kobj = &ctxs->kobj;
3860 	q->queue_ctx = ctxs->queue_ctx;
3861 
3862 	return 0;
3863  fail:
3864 	kfree(ctxs);
3865 	return -ENOMEM;
3866 }
3867 
3868 /*
3869  * It is the actual release handler for mq, but we do it from
3870  * request queue's release handler for avoiding use-after-free
3871  * and headache because q->mq_kobj shouldn't have been introduced,
3872  * but we can't group ctx/kctx kobj without it.
3873  */
3874 void blk_mq_release(struct request_queue *q)
3875 {
3876 	struct blk_mq_hw_ctx *hctx, *next;
3877 	unsigned long i;
3878 
3879 	queue_for_each_hw_ctx(q, hctx, i)
3880 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3881 
3882 	/* all hctx are in .unused_hctx_list now */
3883 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3884 		list_del_init(&hctx->hctx_list);
3885 		kobject_put(&hctx->kobj);
3886 	}
3887 
3888 	xa_destroy(&q->hctx_table);
3889 
3890 	/*
3891 	 * release .mq_kobj and sw queue's kobject now because
3892 	 * both share lifetime with request queue.
3893 	 */
3894 	blk_mq_sysfs_deinit(q);
3895 }
3896 
3897 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3898 		void *queuedata)
3899 {
3900 	struct request_queue *q;
3901 	int ret;
3902 
3903 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3904 	if (!q)
3905 		return ERR_PTR(-ENOMEM);
3906 	q->queuedata = queuedata;
3907 	ret = blk_mq_init_allocated_queue(set, q);
3908 	if (ret) {
3909 		blk_cleanup_queue(q);
3910 		return ERR_PTR(ret);
3911 	}
3912 	return q;
3913 }
3914 
3915 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3916 {
3917 	return blk_mq_init_queue_data(set, NULL);
3918 }
3919 EXPORT_SYMBOL(blk_mq_init_queue);
3920 
3921 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3922 		struct lock_class_key *lkclass)
3923 {
3924 	struct request_queue *q;
3925 	struct gendisk *disk;
3926 
3927 	q = blk_mq_init_queue_data(set, queuedata);
3928 	if (IS_ERR(q))
3929 		return ERR_CAST(q);
3930 
3931 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3932 	if (!disk) {
3933 		blk_cleanup_queue(q);
3934 		return ERR_PTR(-ENOMEM);
3935 	}
3936 	return disk;
3937 }
3938 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3939 
3940 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3941 		struct blk_mq_tag_set *set, struct request_queue *q,
3942 		int hctx_idx, int node)
3943 {
3944 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3945 
3946 	/* reuse dead hctx first */
3947 	spin_lock(&q->unused_hctx_lock);
3948 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3949 		if (tmp->numa_node == node) {
3950 			hctx = tmp;
3951 			break;
3952 		}
3953 	}
3954 	if (hctx)
3955 		list_del_init(&hctx->hctx_list);
3956 	spin_unlock(&q->unused_hctx_lock);
3957 
3958 	if (!hctx)
3959 		hctx = blk_mq_alloc_hctx(q, set, node);
3960 	if (!hctx)
3961 		goto fail;
3962 
3963 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3964 		goto free_hctx;
3965 
3966 	return hctx;
3967 
3968  free_hctx:
3969 	kobject_put(&hctx->kobj);
3970  fail:
3971 	return NULL;
3972 }
3973 
3974 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3975 						struct request_queue *q)
3976 {
3977 	struct blk_mq_hw_ctx *hctx;
3978 	unsigned long i, j;
3979 
3980 	/* protect against switching io scheduler  */
3981 	mutex_lock(&q->sysfs_lock);
3982 	for (i = 0; i < set->nr_hw_queues; i++) {
3983 		int old_node;
3984 		int node = blk_mq_get_hctx_node(set, i);
3985 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3986 
3987 		if (old_hctx) {
3988 			old_node = old_hctx->numa_node;
3989 			blk_mq_exit_hctx(q, set, old_hctx, i);
3990 		}
3991 
3992 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3993 			if (!old_hctx)
3994 				break;
3995 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3996 					node, old_node);
3997 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3998 			WARN_ON_ONCE(!hctx);
3999 		}
4000 	}
4001 	/*
4002 	 * Increasing nr_hw_queues fails. Free the newly allocated
4003 	 * hctxs and keep the previous q->nr_hw_queues.
4004 	 */
4005 	if (i != set->nr_hw_queues) {
4006 		j = q->nr_hw_queues;
4007 	} else {
4008 		j = i;
4009 		q->nr_hw_queues = set->nr_hw_queues;
4010 	}
4011 
4012 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4013 		blk_mq_exit_hctx(q, set, hctx, j);
4014 	mutex_unlock(&q->sysfs_lock);
4015 }
4016 
4017 static void blk_mq_update_poll_flag(struct request_queue *q)
4018 {
4019 	struct blk_mq_tag_set *set = q->tag_set;
4020 
4021 	if (set->nr_maps > HCTX_TYPE_POLL &&
4022 	    set->map[HCTX_TYPE_POLL].nr_queues)
4023 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4024 	else
4025 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4026 }
4027 
4028 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4029 		struct request_queue *q)
4030 {
4031 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4032 			!!(set->flags & BLK_MQ_F_BLOCKING));
4033 
4034 	/* mark the queue as mq asap */
4035 	q->mq_ops = set->ops;
4036 
4037 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4038 					     blk_mq_poll_stats_bkt,
4039 					     BLK_MQ_POLL_STATS_BKTS, q);
4040 	if (!q->poll_cb)
4041 		goto err_exit;
4042 
4043 	if (blk_mq_alloc_ctxs(q))
4044 		goto err_poll;
4045 
4046 	/* init q->mq_kobj and sw queues' kobjects */
4047 	blk_mq_sysfs_init(q);
4048 
4049 	INIT_LIST_HEAD(&q->unused_hctx_list);
4050 	spin_lock_init(&q->unused_hctx_lock);
4051 
4052 	xa_init(&q->hctx_table);
4053 
4054 	blk_mq_realloc_hw_ctxs(set, q);
4055 	if (!q->nr_hw_queues)
4056 		goto err_hctxs;
4057 
4058 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4059 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4060 
4061 	q->tag_set = set;
4062 
4063 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4064 	blk_mq_update_poll_flag(q);
4065 
4066 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4067 	INIT_LIST_HEAD(&q->requeue_list);
4068 	spin_lock_init(&q->requeue_lock);
4069 
4070 	q->nr_requests = set->queue_depth;
4071 
4072 	/*
4073 	 * Default to classic polling
4074 	 */
4075 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4076 
4077 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4078 	blk_mq_add_queue_tag_set(set, q);
4079 	blk_mq_map_swqueue(q);
4080 	return 0;
4081 
4082 err_hctxs:
4083 	xa_destroy(&q->hctx_table);
4084 	q->nr_hw_queues = 0;
4085 	blk_mq_sysfs_deinit(q);
4086 err_poll:
4087 	blk_stat_free_callback(q->poll_cb);
4088 	q->poll_cb = NULL;
4089 err_exit:
4090 	q->mq_ops = NULL;
4091 	return -ENOMEM;
4092 }
4093 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4094 
4095 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4096 void blk_mq_exit_queue(struct request_queue *q)
4097 {
4098 	struct blk_mq_tag_set *set = q->tag_set;
4099 
4100 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4101 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4102 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4103 	blk_mq_del_queue_tag_set(q);
4104 }
4105 
4106 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4107 {
4108 	int i;
4109 
4110 	if (blk_mq_is_shared_tags(set->flags)) {
4111 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4112 						BLK_MQ_NO_HCTX_IDX,
4113 						set->queue_depth);
4114 		if (!set->shared_tags)
4115 			return -ENOMEM;
4116 	}
4117 
4118 	for (i = 0; i < set->nr_hw_queues; i++) {
4119 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4120 			goto out_unwind;
4121 		cond_resched();
4122 	}
4123 
4124 	return 0;
4125 
4126 out_unwind:
4127 	while (--i >= 0)
4128 		__blk_mq_free_map_and_rqs(set, i);
4129 
4130 	if (blk_mq_is_shared_tags(set->flags)) {
4131 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4132 					BLK_MQ_NO_HCTX_IDX);
4133 	}
4134 
4135 	return -ENOMEM;
4136 }
4137 
4138 /*
4139  * Allocate the request maps associated with this tag_set. Note that this
4140  * may reduce the depth asked for, if memory is tight. set->queue_depth
4141  * will be updated to reflect the allocated depth.
4142  */
4143 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4144 {
4145 	unsigned int depth;
4146 	int err;
4147 
4148 	depth = set->queue_depth;
4149 	do {
4150 		err = __blk_mq_alloc_rq_maps(set);
4151 		if (!err)
4152 			break;
4153 
4154 		set->queue_depth >>= 1;
4155 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4156 			err = -ENOMEM;
4157 			break;
4158 		}
4159 	} while (set->queue_depth);
4160 
4161 	if (!set->queue_depth || err) {
4162 		pr_err("blk-mq: failed to allocate request map\n");
4163 		return -ENOMEM;
4164 	}
4165 
4166 	if (depth != set->queue_depth)
4167 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4168 						depth, set->queue_depth);
4169 
4170 	return 0;
4171 }
4172 
4173 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4174 {
4175 	/*
4176 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4177 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4178 	 * number of hardware queues.
4179 	 */
4180 	if (set->nr_maps == 1)
4181 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4182 
4183 	if (set->ops->map_queues && !is_kdump_kernel()) {
4184 		int i;
4185 
4186 		/*
4187 		 * transport .map_queues is usually done in the following
4188 		 * way:
4189 		 *
4190 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4191 		 * 	mask = get_cpu_mask(queue)
4192 		 * 	for_each_cpu(cpu, mask)
4193 		 * 		set->map[x].mq_map[cpu] = queue;
4194 		 * }
4195 		 *
4196 		 * When we need to remap, the table has to be cleared for
4197 		 * killing stale mapping since one CPU may not be mapped
4198 		 * to any hw queue.
4199 		 */
4200 		for (i = 0; i < set->nr_maps; i++)
4201 			blk_mq_clear_mq_map(&set->map[i]);
4202 
4203 		return set->ops->map_queues(set);
4204 	} else {
4205 		BUG_ON(set->nr_maps > 1);
4206 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4207 	}
4208 }
4209 
4210 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4211 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4212 {
4213 	struct blk_mq_tags **new_tags;
4214 
4215 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4216 		return 0;
4217 
4218 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4219 				GFP_KERNEL, set->numa_node);
4220 	if (!new_tags)
4221 		return -ENOMEM;
4222 
4223 	if (set->tags)
4224 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4225 		       sizeof(*set->tags));
4226 	kfree(set->tags);
4227 	set->tags = new_tags;
4228 	set->nr_hw_queues = new_nr_hw_queues;
4229 
4230 	return 0;
4231 }
4232 
4233 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4234 				int new_nr_hw_queues)
4235 {
4236 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4237 }
4238 
4239 /*
4240  * Alloc a tag set to be associated with one or more request queues.
4241  * May fail with EINVAL for various error conditions. May adjust the
4242  * requested depth down, if it's too large. In that case, the set
4243  * value will be stored in set->queue_depth.
4244  */
4245 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4246 {
4247 	int i, ret;
4248 
4249 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4250 
4251 	if (!set->nr_hw_queues)
4252 		return -EINVAL;
4253 	if (!set->queue_depth)
4254 		return -EINVAL;
4255 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4256 		return -EINVAL;
4257 
4258 	if (!set->ops->queue_rq)
4259 		return -EINVAL;
4260 
4261 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4262 		return -EINVAL;
4263 
4264 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4265 		pr_info("blk-mq: reduced tag depth to %u\n",
4266 			BLK_MQ_MAX_DEPTH);
4267 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4268 	}
4269 
4270 	if (!set->nr_maps)
4271 		set->nr_maps = 1;
4272 	else if (set->nr_maps > HCTX_MAX_TYPES)
4273 		return -EINVAL;
4274 
4275 	/*
4276 	 * If a crashdump is active, then we are potentially in a very
4277 	 * memory constrained environment. Limit us to 1 queue and
4278 	 * 64 tags to prevent using too much memory.
4279 	 */
4280 	if (is_kdump_kernel()) {
4281 		set->nr_hw_queues = 1;
4282 		set->nr_maps = 1;
4283 		set->queue_depth = min(64U, set->queue_depth);
4284 	}
4285 	/*
4286 	 * There is no use for more h/w queues than cpus if we just have
4287 	 * a single map
4288 	 */
4289 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4290 		set->nr_hw_queues = nr_cpu_ids;
4291 
4292 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4293 		return -ENOMEM;
4294 
4295 	ret = -ENOMEM;
4296 	for (i = 0; i < set->nr_maps; i++) {
4297 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4298 						  sizeof(set->map[i].mq_map[0]),
4299 						  GFP_KERNEL, set->numa_node);
4300 		if (!set->map[i].mq_map)
4301 			goto out_free_mq_map;
4302 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4303 	}
4304 
4305 	ret = blk_mq_update_queue_map(set);
4306 	if (ret)
4307 		goto out_free_mq_map;
4308 
4309 	ret = blk_mq_alloc_set_map_and_rqs(set);
4310 	if (ret)
4311 		goto out_free_mq_map;
4312 
4313 	mutex_init(&set->tag_list_lock);
4314 	INIT_LIST_HEAD(&set->tag_list);
4315 
4316 	return 0;
4317 
4318 out_free_mq_map:
4319 	for (i = 0; i < set->nr_maps; i++) {
4320 		kfree(set->map[i].mq_map);
4321 		set->map[i].mq_map = NULL;
4322 	}
4323 	kfree(set->tags);
4324 	set->tags = NULL;
4325 	return ret;
4326 }
4327 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4328 
4329 /* allocate and initialize a tagset for a simple single-queue device */
4330 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4331 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4332 		unsigned int set_flags)
4333 {
4334 	memset(set, 0, sizeof(*set));
4335 	set->ops = ops;
4336 	set->nr_hw_queues = 1;
4337 	set->nr_maps = 1;
4338 	set->queue_depth = queue_depth;
4339 	set->numa_node = NUMA_NO_NODE;
4340 	set->flags = set_flags;
4341 	return blk_mq_alloc_tag_set(set);
4342 }
4343 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4344 
4345 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4346 {
4347 	int i, j;
4348 
4349 	for (i = 0; i < set->nr_hw_queues; i++)
4350 		__blk_mq_free_map_and_rqs(set, i);
4351 
4352 	if (blk_mq_is_shared_tags(set->flags)) {
4353 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4354 					BLK_MQ_NO_HCTX_IDX);
4355 	}
4356 
4357 	for (j = 0; j < set->nr_maps; j++) {
4358 		kfree(set->map[j].mq_map);
4359 		set->map[j].mq_map = NULL;
4360 	}
4361 
4362 	kfree(set->tags);
4363 	set->tags = NULL;
4364 }
4365 EXPORT_SYMBOL(blk_mq_free_tag_set);
4366 
4367 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4368 {
4369 	struct blk_mq_tag_set *set = q->tag_set;
4370 	struct blk_mq_hw_ctx *hctx;
4371 	int ret;
4372 	unsigned long i;
4373 
4374 	if (!set)
4375 		return -EINVAL;
4376 
4377 	if (q->nr_requests == nr)
4378 		return 0;
4379 
4380 	blk_mq_freeze_queue(q);
4381 	blk_mq_quiesce_queue(q);
4382 
4383 	ret = 0;
4384 	queue_for_each_hw_ctx(q, hctx, i) {
4385 		if (!hctx->tags)
4386 			continue;
4387 		/*
4388 		 * If we're using an MQ scheduler, just update the scheduler
4389 		 * queue depth. This is similar to what the old code would do.
4390 		 */
4391 		if (hctx->sched_tags) {
4392 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4393 						      nr, true);
4394 		} else {
4395 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4396 						      false);
4397 		}
4398 		if (ret)
4399 			break;
4400 		if (q->elevator && q->elevator->type->ops.depth_updated)
4401 			q->elevator->type->ops.depth_updated(hctx);
4402 	}
4403 	if (!ret) {
4404 		q->nr_requests = nr;
4405 		if (blk_mq_is_shared_tags(set->flags)) {
4406 			if (q->elevator)
4407 				blk_mq_tag_update_sched_shared_tags(q);
4408 			else
4409 				blk_mq_tag_resize_shared_tags(set, nr);
4410 		}
4411 	}
4412 
4413 	blk_mq_unquiesce_queue(q);
4414 	blk_mq_unfreeze_queue(q);
4415 
4416 	return ret;
4417 }
4418 
4419 /*
4420  * request_queue and elevator_type pair.
4421  * It is just used by __blk_mq_update_nr_hw_queues to cache
4422  * the elevator_type associated with a request_queue.
4423  */
4424 struct blk_mq_qe_pair {
4425 	struct list_head node;
4426 	struct request_queue *q;
4427 	struct elevator_type *type;
4428 };
4429 
4430 /*
4431  * Cache the elevator_type in qe pair list and switch the
4432  * io scheduler to 'none'
4433  */
4434 static bool blk_mq_elv_switch_none(struct list_head *head,
4435 		struct request_queue *q)
4436 {
4437 	struct blk_mq_qe_pair *qe;
4438 
4439 	if (!q->elevator)
4440 		return true;
4441 
4442 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4443 	if (!qe)
4444 		return false;
4445 
4446 	INIT_LIST_HEAD(&qe->node);
4447 	qe->q = q;
4448 	qe->type = q->elevator->type;
4449 	list_add(&qe->node, head);
4450 
4451 	mutex_lock(&q->sysfs_lock);
4452 	/*
4453 	 * After elevator_switch_mq, the previous elevator_queue will be
4454 	 * released by elevator_release. The reference of the io scheduler
4455 	 * module get by elevator_get will also be put. So we need to get
4456 	 * a reference of the io scheduler module here to prevent it to be
4457 	 * removed.
4458 	 */
4459 	__module_get(qe->type->elevator_owner);
4460 	elevator_switch_mq(q, NULL);
4461 	mutex_unlock(&q->sysfs_lock);
4462 
4463 	return true;
4464 }
4465 
4466 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4467 						struct request_queue *q)
4468 {
4469 	struct blk_mq_qe_pair *qe;
4470 
4471 	list_for_each_entry(qe, head, node)
4472 		if (qe->q == q)
4473 			return qe;
4474 
4475 	return NULL;
4476 }
4477 
4478 static void blk_mq_elv_switch_back(struct list_head *head,
4479 				  struct request_queue *q)
4480 {
4481 	struct blk_mq_qe_pair *qe;
4482 	struct elevator_type *t;
4483 
4484 	qe = blk_lookup_qe_pair(head, q);
4485 	if (!qe)
4486 		return;
4487 	t = qe->type;
4488 	list_del(&qe->node);
4489 	kfree(qe);
4490 
4491 	mutex_lock(&q->sysfs_lock);
4492 	elevator_switch_mq(q, t);
4493 	mutex_unlock(&q->sysfs_lock);
4494 }
4495 
4496 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4497 							int nr_hw_queues)
4498 {
4499 	struct request_queue *q;
4500 	LIST_HEAD(head);
4501 	int prev_nr_hw_queues;
4502 
4503 	lockdep_assert_held(&set->tag_list_lock);
4504 
4505 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4506 		nr_hw_queues = nr_cpu_ids;
4507 	if (nr_hw_queues < 1)
4508 		return;
4509 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4510 		return;
4511 
4512 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4513 		blk_mq_freeze_queue(q);
4514 	/*
4515 	 * Switch IO scheduler to 'none', cleaning up the data associated
4516 	 * with the previous scheduler. We will switch back once we are done
4517 	 * updating the new sw to hw queue mappings.
4518 	 */
4519 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4520 		if (!blk_mq_elv_switch_none(&head, q))
4521 			goto switch_back;
4522 
4523 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4524 		blk_mq_debugfs_unregister_hctxs(q);
4525 		blk_mq_sysfs_unregister(q);
4526 	}
4527 
4528 	prev_nr_hw_queues = set->nr_hw_queues;
4529 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4530 	    0)
4531 		goto reregister;
4532 
4533 	set->nr_hw_queues = nr_hw_queues;
4534 fallback:
4535 	blk_mq_update_queue_map(set);
4536 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4537 		blk_mq_realloc_hw_ctxs(set, q);
4538 		blk_mq_update_poll_flag(q);
4539 		if (q->nr_hw_queues != set->nr_hw_queues) {
4540 			int i = prev_nr_hw_queues;
4541 
4542 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4543 					nr_hw_queues, prev_nr_hw_queues);
4544 			for (; i < set->nr_hw_queues; i++)
4545 				__blk_mq_free_map_and_rqs(set, i);
4546 
4547 			set->nr_hw_queues = prev_nr_hw_queues;
4548 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4549 			goto fallback;
4550 		}
4551 		blk_mq_map_swqueue(q);
4552 	}
4553 
4554 reregister:
4555 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4556 		blk_mq_sysfs_register(q);
4557 		blk_mq_debugfs_register_hctxs(q);
4558 	}
4559 
4560 switch_back:
4561 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4562 		blk_mq_elv_switch_back(&head, q);
4563 
4564 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4565 		blk_mq_unfreeze_queue(q);
4566 }
4567 
4568 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4569 {
4570 	mutex_lock(&set->tag_list_lock);
4571 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4572 	mutex_unlock(&set->tag_list_lock);
4573 }
4574 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4575 
4576 /* Enable polling stats and return whether they were already enabled. */
4577 static bool blk_poll_stats_enable(struct request_queue *q)
4578 {
4579 	if (q->poll_stat)
4580 		return true;
4581 
4582 	return blk_stats_alloc_enable(q);
4583 }
4584 
4585 static void blk_mq_poll_stats_start(struct request_queue *q)
4586 {
4587 	/*
4588 	 * We don't arm the callback if polling stats are not enabled or the
4589 	 * callback is already active.
4590 	 */
4591 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4592 		return;
4593 
4594 	blk_stat_activate_msecs(q->poll_cb, 100);
4595 }
4596 
4597 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4598 {
4599 	struct request_queue *q = cb->data;
4600 	int bucket;
4601 
4602 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4603 		if (cb->stat[bucket].nr_samples)
4604 			q->poll_stat[bucket] = cb->stat[bucket];
4605 	}
4606 }
4607 
4608 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4609 				       struct request *rq)
4610 {
4611 	unsigned long ret = 0;
4612 	int bucket;
4613 
4614 	/*
4615 	 * If stats collection isn't on, don't sleep but turn it on for
4616 	 * future users
4617 	 */
4618 	if (!blk_poll_stats_enable(q))
4619 		return 0;
4620 
4621 	/*
4622 	 * As an optimistic guess, use half of the mean service time
4623 	 * for this type of request. We can (and should) make this smarter.
4624 	 * For instance, if the completion latencies are tight, we can
4625 	 * get closer than just half the mean. This is especially
4626 	 * important on devices where the completion latencies are longer
4627 	 * than ~10 usec. We do use the stats for the relevant IO size
4628 	 * if available which does lead to better estimates.
4629 	 */
4630 	bucket = blk_mq_poll_stats_bkt(rq);
4631 	if (bucket < 0)
4632 		return ret;
4633 
4634 	if (q->poll_stat[bucket].nr_samples)
4635 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4636 
4637 	return ret;
4638 }
4639 
4640 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4641 {
4642 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4643 	struct request *rq = blk_qc_to_rq(hctx, qc);
4644 	struct hrtimer_sleeper hs;
4645 	enum hrtimer_mode mode;
4646 	unsigned int nsecs;
4647 	ktime_t kt;
4648 
4649 	/*
4650 	 * If a request has completed on queue that uses an I/O scheduler, we
4651 	 * won't get back a request from blk_qc_to_rq.
4652 	 */
4653 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4654 		return false;
4655 
4656 	/*
4657 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4658 	 *
4659 	 *  0:	use half of prev avg
4660 	 * >0:	use this specific value
4661 	 */
4662 	if (q->poll_nsec > 0)
4663 		nsecs = q->poll_nsec;
4664 	else
4665 		nsecs = blk_mq_poll_nsecs(q, rq);
4666 
4667 	if (!nsecs)
4668 		return false;
4669 
4670 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4671 
4672 	/*
4673 	 * This will be replaced with the stats tracking code, using
4674 	 * 'avg_completion_time / 2' as the pre-sleep target.
4675 	 */
4676 	kt = nsecs;
4677 
4678 	mode = HRTIMER_MODE_REL;
4679 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4680 	hrtimer_set_expires(&hs.timer, kt);
4681 
4682 	do {
4683 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4684 			break;
4685 		set_current_state(TASK_UNINTERRUPTIBLE);
4686 		hrtimer_sleeper_start_expires(&hs, mode);
4687 		if (hs.task)
4688 			io_schedule();
4689 		hrtimer_cancel(&hs.timer);
4690 		mode = HRTIMER_MODE_ABS;
4691 	} while (hs.task && !signal_pending(current));
4692 
4693 	__set_current_state(TASK_RUNNING);
4694 	destroy_hrtimer_on_stack(&hs.timer);
4695 
4696 	/*
4697 	 * If we sleep, have the caller restart the poll loop to reset the
4698 	 * state.  Like for the other success return cases, the caller is
4699 	 * responsible for checking if the IO completed.  If the IO isn't
4700 	 * complete, we'll get called again and will go straight to the busy
4701 	 * poll loop.
4702 	 */
4703 	return true;
4704 }
4705 
4706 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4707 			       struct io_comp_batch *iob, unsigned int flags)
4708 {
4709 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4710 	long state = get_current_state();
4711 	int ret;
4712 
4713 	do {
4714 		ret = q->mq_ops->poll(hctx, iob);
4715 		if (ret > 0) {
4716 			__set_current_state(TASK_RUNNING);
4717 			return ret;
4718 		}
4719 
4720 		if (signal_pending_state(state, current))
4721 			__set_current_state(TASK_RUNNING);
4722 		if (task_is_running(current))
4723 			return 1;
4724 
4725 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4726 			break;
4727 		cpu_relax();
4728 	} while (!need_resched());
4729 
4730 	__set_current_state(TASK_RUNNING);
4731 	return 0;
4732 }
4733 
4734 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4735 		unsigned int flags)
4736 {
4737 	if (!(flags & BLK_POLL_NOSLEEP) &&
4738 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4739 		if (blk_mq_poll_hybrid(q, cookie))
4740 			return 1;
4741 	}
4742 	return blk_mq_poll_classic(q, cookie, iob, flags);
4743 }
4744 
4745 unsigned int blk_mq_rq_cpu(struct request *rq)
4746 {
4747 	return rq->mq_ctx->cpu;
4748 }
4749 EXPORT_SYMBOL(blk_mq_rq_cpu);
4750 
4751 void blk_mq_cancel_work_sync(struct request_queue *q)
4752 {
4753 	if (queue_is_mq(q)) {
4754 		struct blk_mq_hw_ctx *hctx;
4755 		unsigned long i;
4756 
4757 		cancel_delayed_work_sync(&q->requeue_work);
4758 
4759 		queue_for_each_hw_ctx(q, hctx, i)
4760 			cancel_delayed_work_sync(&hctx->run_work);
4761 	}
4762 }
4763 
4764 static int __init blk_mq_init(void)
4765 {
4766 	int i;
4767 
4768 	for_each_possible_cpu(i)
4769 		init_llist_head(&per_cpu(blk_cpu_done, i));
4770 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4771 
4772 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4773 				  "block/softirq:dead", NULL,
4774 				  blk_softirq_cpu_dead);
4775 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4776 				blk_mq_hctx_notify_dead);
4777 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4778 				blk_mq_hctx_notify_online,
4779 				blk_mq_hctx_notify_offline);
4780 	return 0;
4781 }
4782 subsys_initcall(blk_mq_init);
4783