xref: /openbmc/linux/block/blk-mq.c (revision ce656528)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 #define BLK_QC_T_SHIFT		16
69 #define BLK_QC_T_INTERNAL	(1U << 31)
70 
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 		blk_qc_t qc)
73 {
74 	return xa_load(&q->hctx_table,
75 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77 
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 		blk_qc_t qc)
80 {
81 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82 
83 	if (qc & BLK_QC_T_INTERNAL)
84 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 	return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87 
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 		(rq->tag != -1 ?
92 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94 
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101 	return !list_empty_careful(&hctx->dispatch) ||
102 		sbitmap_any_bit_set(&hctx->ctx_map) ||
103 			blk_mq_sched_has_work(hctx);
104 }
105 
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 				     struct blk_mq_ctx *ctx)
111 {
112 	const int bit = ctx->index_hw[hctx->type];
113 
114 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 		sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117 
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 				      struct blk_mq_ctx *ctx)
120 {
121 	const int bit = ctx->index_hw[hctx->type];
122 
123 	sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125 
126 struct mq_inflight {
127 	struct block_device *part;
128 	unsigned int inflight[2];
129 };
130 
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132 				  bool reserved)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
137 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138 		mi->inflight[rq_data_dir(rq)]++;
139 
140 	return true;
141 }
142 
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144 		struct block_device *part)
145 {
146 	struct mq_inflight mi = { .part = part };
147 
148 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149 
150 	return mi.inflight[0] + mi.inflight[1];
151 }
152 
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154 		unsigned int inflight[2])
155 {
156 	struct mq_inflight mi = { .part = part };
157 
158 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 	inflight[0] = mi.inflight[0];
160 	inflight[1] = mi.inflight[1];
161 }
162 
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165 	mutex_lock(&q->mq_freeze_lock);
166 	if (++q->mq_freeze_depth == 1) {
167 		percpu_ref_kill(&q->q_usage_counter);
168 		mutex_unlock(&q->mq_freeze_lock);
169 		if (queue_is_mq(q))
170 			blk_mq_run_hw_queues(q, false);
171 	} else {
172 		mutex_unlock(&q->mq_freeze_lock);
173 	}
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176 
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182 
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184 				     unsigned long timeout)
185 {
186 	return wait_event_timeout(q->mq_freeze_wq,
187 					percpu_ref_is_zero(&q->q_usage_counter),
188 					timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191 
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198 	/*
199 	 * In the !blk_mq case we are only calling this to kill the
200 	 * q_usage_counter, otherwise this increases the freeze depth
201 	 * and waits for it to return to zero.  For this reason there is
202 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203 	 * exported to drivers as the only user for unfreeze is blk_mq.
204 	 */
205 	blk_freeze_queue_start(q);
206 	blk_mq_freeze_queue_wait(q);
207 }
208 
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211 	/*
212 	 * ...just an alias to keep freeze and unfreeze actions balanced
213 	 * in the blk_mq_* namespace
214 	 */
215 	blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218 
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221 	mutex_lock(&q->mq_freeze_lock);
222 	if (force_atomic)
223 		q->q_usage_counter.data->force_atomic = true;
224 	q->mq_freeze_depth--;
225 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
226 	if (!q->mq_freeze_depth) {
227 		percpu_ref_resurrect(&q->q_usage_counter);
228 		wake_up_all(&q->mq_freeze_wq);
229 	}
230 	mutex_unlock(&q->mq_freeze_lock);
231 }
232 
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235 	__blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238 
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245 	unsigned long flags;
246 
247 	spin_lock_irqsave(&q->queue_lock, flags);
248 	if (!q->quiesce_depth++)
249 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250 	spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253 
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263 	if (blk_queue_has_srcu(q))
264 		synchronize_srcu(q->srcu);
265 	else
266 		synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269 
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281 	blk_mq_quiesce_queue_nowait(q);
282 	blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285 
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295 	unsigned long flags;
296 	bool run_queue = false;
297 
298 	spin_lock_irqsave(&q->queue_lock, flags);
299 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300 		;
301 	} else if (!--q->quiesce_depth) {
302 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303 		run_queue = true;
304 	}
305 	spin_unlock_irqrestore(&q->queue_lock, flags);
306 
307 	/* dispatch requests which are inserted during quiescing */
308 	if (run_queue)
309 		blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312 
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	unsigned long i;
317 
318 	queue_for_each_hw_ctx(q, hctx, i)
319 		if (blk_mq_hw_queue_mapped(hctx))
320 			blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322 
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325 	memset(rq, 0, sizeof(*rq));
326 
327 	INIT_LIST_HEAD(&rq->queuelist);
328 	rq->q = q;
329 	rq->__sector = (sector_t) -1;
330 	INIT_HLIST_NODE(&rq->hash);
331 	RB_CLEAR_NODE(&rq->rb_node);
332 	rq->tag = BLK_MQ_NO_TAG;
333 	rq->internal_tag = BLK_MQ_NO_TAG;
334 	rq->start_time_ns = ktime_get_ns();
335 	rq->part = NULL;
336 	blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339 
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343 	struct blk_mq_ctx *ctx = data->ctx;
344 	struct blk_mq_hw_ctx *hctx = data->hctx;
345 	struct request_queue *q = data->q;
346 	struct request *rq = tags->static_rqs[tag];
347 
348 	rq->q = q;
349 	rq->mq_ctx = ctx;
350 	rq->mq_hctx = hctx;
351 	rq->cmd_flags = data->cmd_flags;
352 
353 	if (data->flags & BLK_MQ_REQ_PM)
354 		data->rq_flags |= RQF_PM;
355 	if (blk_queue_io_stat(q))
356 		data->rq_flags |= RQF_IO_STAT;
357 	rq->rq_flags = data->rq_flags;
358 
359 	if (!(data->rq_flags & RQF_ELV)) {
360 		rq->tag = tag;
361 		rq->internal_tag = BLK_MQ_NO_TAG;
362 	} else {
363 		rq->tag = BLK_MQ_NO_TAG;
364 		rq->internal_tag = tag;
365 	}
366 	rq->timeout = 0;
367 
368 	if (blk_mq_need_time_stamp(rq))
369 		rq->start_time_ns = ktime_get_ns();
370 	else
371 		rq->start_time_ns = 0;
372 	rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374 	rq->alloc_time_ns = alloc_time_ns;
375 #endif
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_ELV) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (!op_is_flush(data->cmd_flags) &&
398 		    e->type->ops.prepare_request) {
399 			e->type->ops.prepare_request(rq);
400 			rq->rq_flags |= RQF_ELVPRIV;
401 		}
402 	}
403 
404 	return rq;
405 }
406 
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409 		u64 alloc_time_ns)
410 {
411 	unsigned int tag, tag_offset;
412 	struct blk_mq_tags *tags;
413 	struct request *rq;
414 	unsigned long tag_mask;
415 	int i, nr = 0;
416 
417 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418 	if (unlikely(!tag_mask))
419 		return NULL;
420 
421 	tags = blk_mq_tags_from_data(data);
422 	for (i = 0; tag_mask; i++) {
423 		if (!(tag_mask & (1UL << i)))
424 			continue;
425 		tag = tag_offset + i;
426 		prefetch(tags->static_rqs[tag]);
427 		tag_mask &= ~(1UL << i);
428 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429 		rq_list_add(data->cached_rq, rq);
430 		nr++;
431 	}
432 	/* caller already holds a reference, add for remainder */
433 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434 	data->nr_tags -= nr;
435 
436 	return rq_list_pop(data->cached_rq);
437 }
438 
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441 	struct request_queue *q = data->q;
442 	u64 alloc_time_ns = 0;
443 	struct request *rq;
444 	unsigned int tag;
445 
446 	/* alloc_time includes depth and tag waits */
447 	if (blk_queue_rq_alloc_time(q))
448 		alloc_time_ns = ktime_get_ns();
449 
450 	if (data->cmd_flags & REQ_NOWAIT)
451 		data->flags |= BLK_MQ_REQ_NOWAIT;
452 
453 	if (q->elevator) {
454 		struct elevator_queue *e = q->elevator;
455 
456 		data->rq_flags |= RQF_ELV;
457 
458 		/*
459 		 * Flush/passthrough requests are special and go directly to the
460 		 * dispatch list. Don't include reserved tags in the
461 		 * limiting, as it isn't useful.
462 		 */
463 		if (!op_is_flush(data->cmd_flags) &&
464 		    !blk_op_is_passthrough(data->cmd_flags) &&
465 		    e->type->ops.limit_depth &&
466 		    !(data->flags & BLK_MQ_REQ_RESERVED))
467 			e->type->ops.limit_depth(data->cmd_flags, data);
468 	}
469 
470 retry:
471 	data->ctx = blk_mq_get_ctx(q);
472 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473 	if (!(data->rq_flags & RQF_ELV))
474 		blk_mq_tag_busy(data->hctx);
475 
476 	/*
477 	 * Try batched alloc if we want more than 1 tag.
478 	 */
479 	if (data->nr_tags > 1) {
480 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481 		if (rq)
482 			return rq;
483 		data->nr_tags = 1;
484 	}
485 
486 	/*
487 	 * Waiting allocations only fail because of an inactive hctx.  In that
488 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
489 	 * should have migrated us to an online CPU by now.
490 	 */
491 	tag = blk_mq_get_tag(data);
492 	if (tag == BLK_MQ_NO_TAG) {
493 		if (data->flags & BLK_MQ_REQ_NOWAIT)
494 			return NULL;
495 		/*
496 		 * Give up the CPU and sleep for a random short time to
497 		 * ensure that thread using a realtime scheduling class
498 		 * are migrated off the CPU, and thus off the hctx that
499 		 * is going away.
500 		 */
501 		msleep(3);
502 		goto retry;
503 	}
504 
505 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506 					alloc_time_ns);
507 }
508 
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510 		blk_mq_req_flags_t flags)
511 {
512 	struct blk_mq_alloc_data data = {
513 		.q		= q,
514 		.flags		= flags,
515 		.cmd_flags	= op,
516 		.nr_tags	= 1,
517 	};
518 	struct request *rq;
519 	int ret;
520 
521 	ret = blk_queue_enter(q, flags);
522 	if (ret)
523 		return ERR_PTR(ret);
524 
525 	rq = __blk_mq_alloc_requests(&data);
526 	if (!rq)
527 		goto out_queue_exit;
528 	rq->__data_len = 0;
529 	rq->__sector = (sector_t) -1;
530 	rq->bio = rq->biotail = NULL;
531 	return rq;
532 out_queue_exit:
533 	blk_queue_exit(q);
534 	return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537 
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541 	struct blk_mq_alloc_data data = {
542 		.q		= q,
543 		.flags		= flags,
544 		.cmd_flags	= op,
545 		.nr_tags	= 1,
546 	};
547 	u64 alloc_time_ns = 0;
548 	unsigned int cpu;
549 	unsigned int tag;
550 	int ret;
551 
552 	/* alloc_time includes depth and tag waits */
553 	if (blk_queue_rq_alloc_time(q))
554 		alloc_time_ns = ktime_get_ns();
555 
556 	/*
557 	 * If the tag allocator sleeps we could get an allocation for a
558 	 * different hardware context.  No need to complicate the low level
559 	 * allocator for this for the rare use case of a command tied to
560 	 * a specific queue.
561 	 */
562 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563 		return ERR_PTR(-EINVAL);
564 
565 	if (hctx_idx >= q->nr_hw_queues)
566 		return ERR_PTR(-EIO);
567 
568 	ret = blk_queue_enter(q, flags);
569 	if (ret)
570 		return ERR_PTR(ret);
571 
572 	/*
573 	 * Check if the hardware context is actually mapped to anything.
574 	 * If not tell the caller that it should skip this queue.
575 	 */
576 	ret = -EXDEV;
577 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
578 	if (!blk_mq_hw_queue_mapped(data.hctx))
579 		goto out_queue_exit;
580 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581 	data.ctx = __blk_mq_get_ctx(q, cpu);
582 
583 	if (!q->elevator)
584 		blk_mq_tag_busy(data.hctx);
585 	else
586 		data.rq_flags |= RQF_ELV;
587 
588 	ret = -EWOULDBLOCK;
589 	tag = blk_mq_get_tag(&data);
590 	if (tag == BLK_MQ_NO_TAG)
591 		goto out_queue_exit;
592 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593 					alloc_time_ns);
594 
595 out_queue_exit:
596 	blk_queue_exit(q);
597 	return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600 
601 static void __blk_mq_free_request(struct request *rq)
602 {
603 	struct request_queue *q = rq->q;
604 	struct blk_mq_ctx *ctx = rq->mq_ctx;
605 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606 	const int sched_tag = rq->internal_tag;
607 
608 	blk_crypto_free_request(rq);
609 	blk_pm_mark_last_busy(rq);
610 	rq->mq_hctx = NULL;
611 	if (rq->tag != BLK_MQ_NO_TAG)
612 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613 	if (sched_tag != BLK_MQ_NO_TAG)
614 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615 	blk_mq_sched_restart(hctx);
616 	blk_queue_exit(q);
617 }
618 
619 void blk_mq_free_request(struct request *rq)
620 {
621 	struct request_queue *q = rq->q;
622 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623 
624 	if ((rq->rq_flags & RQF_ELVPRIV) &&
625 	    q->elevator->type->ops.finish_request)
626 		q->elevator->type->ops.finish_request(rq);
627 
628 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
629 		__blk_mq_dec_active_requests(hctx);
630 
631 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632 		laptop_io_completion(q->disk->bdi);
633 
634 	rq_qos_done(q, rq);
635 
636 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637 	if (req_ref_put_and_test(rq))
638 		__blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641 
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644 	struct request *rq;
645 
646 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647 		blk_mq_free_request(rq);
648 }
649 
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653 		rq->q->disk ? rq->q->disk->disk_name : "?",
654 		(unsigned long long) rq->cmd_flags);
655 
656 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657 	       (unsigned long long)blk_rq_pos(rq),
658 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663 
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665 			  unsigned int nbytes, blk_status_t error)
666 {
667 	if (unlikely(error)) {
668 		bio->bi_status = error;
669 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670 		/*
671 		 * Partial zone append completions cannot be supported as the
672 		 * BIO fragments may end up not being written sequentially.
673 		 */
674 		if (bio->bi_iter.bi_size != nbytes)
675 			bio->bi_status = BLK_STS_IOERR;
676 		else
677 			bio->bi_iter.bi_sector = rq->__sector;
678 	}
679 
680 	bio_advance(bio, nbytes);
681 
682 	if (unlikely(rq->rq_flags & RQF_QUIET))
683 		bio_set_flag(bio, BIO_QUIET);
684 	/* don't actually finish bio if it's part of flush sequence */
685 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686 		bio_endio(bio);
687 }
688 
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691 	if (req->part && blk_do_io_stat(req)) {
692 		const int sgrp = op_stat_group(req_op(req));
693 
694 		part_stat_lock();
695 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696 		part_stat_unlock();
697 	}
698 }
699 
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702 	printk_ratelimited(KERN_ERR
703 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704 		"phys_seg %u prio class %u\n",
705 		blk_status_to_str(status),
706 		req->q->disk ? req->q->disk->disk_name : "?",
707 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708 		req->cmd_flags & ~REQ_OP_MASK,
709 		req->nr_phys_segments,
710 		IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712 
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720 	int total_bytes = blk_rq_bytes(req);
721 	struct bio *bio = req->bio;
722 
723 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724 
725 	if (!bio)
726 		return;
727 
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730 		req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732 
733 	blk_account_io_completion(req, total_bytes);
734 
735 	do {
736 		struct bio *next = bio->bi_next;
737 
738 		/* Completion has already been traced */
739 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740 
741 		if (req_op(req) == REQ_OP_ZONE_APPEND)
742 			bio->bi_iter.bi_sector = req->__sector;
743 
744 		if (!is_flush)
745 			bio_endio(bio);
746 		bio = next;
747 	} while (bio);
748 
749 	/*
750 	 * Reset counters so that the request stacking driver
751 	 * can find how many bytes remain in the request
752 	 * later.
753 	 */
754 	req->bio = NULL;
755 	req->__data_len = 0;
756 }
757 
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781 		unsigned int nr_bytes)
782 {
783 	int total_bytes;
784 
785 	trace_block_rq_complete(req, error, nr_bytes);
786 
787 	if (!req->bio)
788 		return false;
789 
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792 	    error == BLK_STS_OK)
793 		req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795 
796 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
797 		     !(req->rq_flags & RQF_QUIET))) {
798 		blk_print_req_error(req, error);
799 		trace_block_rq_error(req, error, nr_bytes);
800 	}
801 
802 	blk_account_io_completion(req, nr_bytes);
803 
804 	total_bytes = 0;
805 	while (req->bio) {
806 		struct bio *bio = req->bio;
807 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
808 
809 		if (bio_bytes == bio->bi_iter.bi_size)
810 			req->bio = bio->bi_next;
811 
812 		/* Completion has already been traced */
813 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
814 		req_bio_endio(req, bio, bio_bytes, error);
815 
816 		total_bytes += bio_bytes;
817 		nr_bytes -= bio_bytes;
818 
819 		if (!nr_bytes)
820 			break;
821 	}
822 
823 	/*
824 	 * completely done
825 	 */
826 	if (!req->bio) {
827 		/*
828 		 * Reset counters so that the request stacking driver
829 		 * can find how many bytes remain in the request
830 		 * later.
831 		 */
832 		req->__data_len = 0;
833 		return false;
834 	}
835 
836 	req->__data_len -= total_bytes;
837 
838 	/* update sector only for requests with clear definition of sector */
839 	if (!blk_rq_is_passthrough(req))
840 		req->__sector += total_bytes >> 9;
841 
842 	/* mixed attributes always follow the first bio */
843 	if (req->rq_flags & RQF_MIXED_MERGE) {
844 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
845 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
846 	}
847 
848 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
849 		/*
850 		 * If total number of sectors is less than the first segment
851 		 * size, something has gone terribly wrong.
852 		 */
853 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
854 			blk_dump_rq_flags(req, "request botched");
855 			req->__data_len = blk_rq_cur_bytes(req);
856 		}
857 
858 		/* recalculate the number of segments */
859 		req->nr_phys_segments = blk_recalc_rq_segments(req);
860 	}
861 
862 	return true;
863 }
864 EXPORT_SYMBOL_GPL(blk_update_request);
865 
866 static void __blk_account_io_done(struct request *req, u64 now)
867 {
868 	const int sgrp = op_stat_group(req_op(req));
869 
870 	part_stat_lock();
871 	update_io_ticks(req->part, jiffies, true);
872 	part_stat_inc(req->part, ios[sgrp]);
873 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
874 	part_stat_unlock();
875 }
876 
877 static inline void blk_account_io_done(struct request *req, u64 now)
878 {
879 	/*
880 	 * Account IO completion.  flush_rq isn't accounted as a
881 	 * normal IO on queueing nor completion.  Accounting the
882 	 * containing request is enough.
883 	 */
884 	if (blk_do_io_stat(req) && req->part &&
885 	    !(req->rq_flags & RQF_FLUSH_SEQ))
886 		__blk_account_io_done(req, now);
887 }
888 
889 static void __blk_account_io_start(struct request *rq)
890 {
891 	/*
892 	 * All non-passthrough requests are created from a bio with one
893 	 * exception: when a flush command that is part of a flush sequence
894 	 * generated by the state machine in blk-flush.c is cloned onto the
895 	 * lower device by dm-multipath we can get here without a bio.
896 	 */
897 	if (rq->bio)
898 		rq->part = rq->bio->bi_bdev;
899 	else
900 		rq->part = rq->q->disk->part0;
901 
902 	part_stat_lock();
903 	update_io_ticks(rq->part, jiffies, false);
904 	part_stat_unlock();
905 }
906 
907 static inline void blk_account_io_start(struct request *req)
908 {
909 	if (blk_do_io_stat(req))
910 		__blk_account_io_start(req);
911 }
912 
913 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
914 {
915 	if (rq->rq_flags & RQF_STATS) {
916 		blk_mq_poll_stats_start(rq->q);
917 		blk_stat_add(rq, now);
918 	}
919 
920 	blk_mq_sched_completed_request(rq, now);
921 	blk_account_io_done(rq, now);
922 }
923 
924 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
925 {
926 	if (blk_mq_need_time_stamp(rq))
927 		__blk_mq_end_request_acct(rq, ktime_get_ns());
928 
929 	if (rq->end_io) {
930 		rq_qos_done(rq->q, rq);
931 		rq->end_io(rq, error);
932 	} else {
933 		blk_mq_free_request(rq);
934 	}
935 }
936 EXPORT_SYMBOL(__blk_mq_end_request);
937 
938 void blk_mq_end_request(struct request *rq, blk_status_t error)
939 {
940 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
941 		BUG();
942 	__blk_mq_end_request(rq, error);
943 }
944 EXPORT_SYMBOL(blk_mq_end_request);
945 
946 #define TAG_COMP_BATCH		32
947 
948 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
949 					  int *tag_array, int nr_tags)
950 {
951 	struct request_queue *q = hctx->queue;
952 
953 	/*
954 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
955 	 * update hctx->nr_active in batch
956 	 */
957 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
958 		__blk_mq_sub_active_requests(hctx, nr_tags);
959 
960 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
961 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
962 }
963 
964 void blk_mq_end_request_batch(struct io_comp_batch *iob)
965 {
966 	int tags[TAG_COMP_BATCH], nr_tags = 0;
967 	struct blk_mq_hw_ctx *cur_hctx = NULL;
968 	struct request *rq;
969 	u64 now = 0;
970 
971 	if (iob->need_ts)
972 		now = ktime_get_ns();
973 
974 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
975 		prefetch(rq->bio);
976 		prefetch(rq->rq_next);
977 
978 		blk_complete_request(rq);
979 		if (iob->need_ts)
980 			__blk_mq_end_request_acct(rq, now);
981 
982 		rq_qos_done(rq->q, rq);
983 
984 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
985 		if (!req_ref_put_and_test(rq))
986 			continue;
987 
988 		blk_crypto_free_request(rq);
989 		blk_pm_mark_last_busy(rq);
990 
991 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
992 			if (cur_hctx)
993 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
994 			nr_tags = 0;
995 			cur_hctx = rq->mq_hctx;
996 		}
997 		tags[nr_tags++] = rq->tag;
998 	}
999 
1000 	if (nr_tags)
1001 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1002 }
1003 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1004 
1005 static void blk_complete_reqs(struct llist_head *list)
1006 {
1007 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1008 	struct request *rq, *next;
1009 
1010 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1011 		rq->q->mq_ops->complete(rq);
1012 }
1013 
1014 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1015 {
1016 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1017 }
1018 
1019 static int blk_softirq_cpu_dead(unsigned int cpu)
1020 {
1021 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1022 	return 0;
1023 }
1024 
1025 static void __blk_mq_complete_request_remote(void *data)
1026 {
1027 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1028 }
1029 
1030 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1031 {
1032 	int cpu = raw_smp_processor_id();
1033 
1034 	if (!IS_ENABLED(CONFIG_SMP) ||
1035 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1036 		return false;
1037 	/*
1038 	 * With force threaded interrupts enabled, raising softirq from an SMP
1039 	 * function call will always result in waking the ksoftirqd thread.
1040 	 * This is probably worse than completing the request on a different
1041 	 * cache domain.
1042 	 */
1043 	if (force_irqthreads())
1044 		return false;
1045 
1046 	/* same CPU or cache domain?  Complete locally */
1047 	if (cpu == rq->mq_ctx->cpu ||
1048 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1049 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1050 		return false;
1051 
1052 	/* don't try to IPI to an offline CPU */
1053 	return cpu_online(rq->mq_ctx->cpu);
1054 }
1055 
1056 static void blk_mq_complete_send_ipi(struct request *rq)
1057 {
1058 	struct llist_head *list;
1059 	unsigned int cpu;
1060 
1061 	cpu = rq->mq_ctx->cpu;
1062 	list = &per_cpu(blk_cpu_done, cpu);
1063 	if (llist_add(&rq->ipi_list, list)) {
1064 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1065 		smp_call_function_single_async(cpu, &rq->csd);
1066 	}
1067 }
1068 
1069 static void blk_mq_raise_softirq(struct request *rq)
1070 {
1071 	struct llist_head *list;
1072 
1073 	preempt_disable();
1074 	list = this_cpu_ptr(&blk_cpu_done);
1075 	if (llist_add(&rq->ipi_list, list))
1076 		raise_softirq(BLOCK_SOFTIRQ);
1077 	preempt_enable();
1078 }
1079 
1080 bool blk_mq_complete_request_remote(struct request *rq)
1081 {
1082 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1083 
1084 	/*
1085 	 * For a polled request, always complete locallly, it's pointless
1086 	 * to redirect the completion.
1087 	 */
1088 	if (rq->cmd_flags & REQ_POLLED)
1089 		return false;
1090 
1091 	if (blk_mq_complete_need_ipi(rq)) {
1092 		blk_mq_complete_send_ipi(rq);
1093 		return true;
1094 	}
1095 
1096 	if (rq->q->nr_hw_queues == 1) {
1097 		blk_mq_raise_softirq(rq);
1098 		return true;
1099 	}
1100 	return false;
1101 }
1102 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1103 
1104 /**
1105  * blk_mq_complete_request - end I/O on a request
1106  * @rq:		the request being processed
1107  *
1108  * Description:
1109  *	Complete a request by scheduling the ->complete_rq operation.
1110  **/
1111 void blk_mq_complete_request(struct request *rq)
1112 {
1113 	if (!blk_mq_complete_request_remote(rq))
1114 		rq->q->mq_ops->complete(rq);
1115 }
1116 EXPORT_SYMBOL(blk_mq_complete_request);
1117 
1118 /**
1119  * blk_mq_start_request - Start processing a request
1120  * @rq: Pointer to request to be started
1121  *
1122  * Function used by device drivers to notify the block layer that a request
1123  * is going to be processed now, so blk layer can do proper initializations
1124  * such as starting the timeout timer.
1125  */
1126 void blk_mq_start_request(struct request *rq)
1127 {
1128 	struct request_queue *q = rq->q;
1129 
1130 	trace_block_rq_issue(rq);
1131 
1132 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1133 		u64 start_time;
1134 #ifdef CONFIG_BLK_CGROUP
1135 		if (rq->bio)
1136 			start_time = bio_issue_time(&rq->bio->bi_issue);
1137 		else
1138 #endif
1139 			start_time = ktime_get_ns();
1140 		rq->io_start_time_ns = start_time;
1141 		rq->stats_sectors = blk_rq_sectors(rq);
1142 		rq->rq_flags |= RQF_STATS;
1143 		rq_qos_issue(q, rq);
1144 	}
1145 
1146 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1147 
1148 	blk_add_timer(rq);
1149 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1150 
1151 #ifdef CONFIG_BLK_DEV_INTEGRITY
1152 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1153 		q->integrity.profile->prepare_fn(rq);
1154 #endif
1155 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1156 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1157 }
1158 EXPORT_SYMBOL(blk_mq_start_request);
1159 
1160 /**
1161  * blk_end_sync_rq - executes a completion event on a request
1162  * @rq: request to complete
1163  * @error: end I/O status of the request
1164  */
1165 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1166 {
1167 	struct completion *waiting = rq->end_io_data;
1168 
1169 	rq->end_io_data = (void *)(uintptr_t)error;
1170 
1171 	/*
1172 	 * complete last, if this is a stack request the process (and thus
1173 	 * the rq pointer) could be invalid right after this complete()
1174 	 */
1175 	complete(waiting);
1176 }
1177 
1178 /**
1179  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1180  * @rq:		request to insert
1181  * @at_head:    insert request at head or tail of queue
1182  * @done:	I/O completion handler
1183  *
1184  * Description:
1185  *    Insert a fully prepared request at the back of the I/O scheduler queue
1186  *    for execution.  Don't wait for completion.
1187  *
1188  * Note:
1189  *    This function will invoke @done directly if the queue is dead.
1190  */
1191 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1192 {
1193 	WARN_ON(irqs_disabled());
1194 	WARN_ON(!blk_rq_is_passthrough(rq));
1195 
1196 	rq->end_io = done;
1197 
1198 	blk_account_io_start(rq);
1199 
1200 	/*
1201 	 * don't check dying flag for MQ because the request won't
1202 	 * be reused after dying flag is set
1203 	 */
1204 	blk_mq_sched_insert_request(rq, at_head, true, false);
1205 }
1206 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1207 
1208 static bool blk_rq_is_poll(struct request *rq)
1209 {
1210 	if (!rq->mq_hctx)
1211 		return false;
1212 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1213 		return false;
1214 	if (WARN_ON_ONCE(!rq->bio))
1215 		return false;
1216 	return true;
1217 }
1218 
1219 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1220 {
1221 	do {
1222 		bio_poll(rq->bio, NULL, 0);
1223 		cond_resched();
1224 	} while (!completion_done(wait));
1225 }
1226 
1227 /**
1228  * blk_execute_rq - insert a request into queue for execution
1229  * @rq:		request to insert
1230  * @at_head:    insert request at head or tail of queue
1231  *
1232  * Description:
1233  *    Insert a fully prepared request at the back of the I/O scheduler queue
1234  *    for execution and wait for completion.
1235  * Return: The blk_status_t result provided to blk_mq_end_request().
1236  */
1237 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1238 {
1239 	DECLARE_COMPLETION_ONSTACK(wait);
1240 	unsigned long hang_check;
1241 
1242 	rq->end_io_data = &wait;
1243 	blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1244 
1245 	/* Prevent hang_check timer from firing at us during very long I/O */
1246 	hang_check = sysctl_hung_task_timeout_secs;
1247 
1248 	if (blk_rq_is_poll(rq))
1249 		blk_rq_poll_completion(rq, &wait);
1250 	else if (hang_check)
1251 		while (!wait_for_completion_io_timeout(&wait,
1252 				hang_check * (HZ/2)))
1253 			;
1254 	else
1255 		wait_for_completion_io(&wait);
1256 
1257 	return (blk_status_t)(uintptr_t)rq->end_io_data;
1258 }
1259 EXPORT_SYMBOL(blk_execute_rq);
1260 
1261 static void __blk_mq_requeue_request(struct request *rq)
1262 {
1263 	struct request_queue *q = rq->q;
1264 
1265 	blk_mq_put_driver_tag(rq);
1266 
1267 	trace_block_rq_requeue(rq);
1268 	rq_qos_requeue(q, rq);
1269 
1270 	if (blk_mq_request_started(rq)) {
1271 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1272 		rq->rq_flags &= ~RQF_TIMED_OUT;
1273 	}
1274 }
1275 
1276 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1277 {
1278 	__blk_mq_requeue_request(rq);
1279 
1280 	/* this request will be re-inserted to io scheduler queue */
1281 	blk_mq_sched_requeue_request(rq);
1282 
1283 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1284 }
1285 EXPORT_SYMBOL(blk_mq_requeue_request);
1286 
1287 static void blk_mq_requeue_work(struct work_struct *work)
1288 {
1289 	struct request_queue *q =
1290 		container_of(work, struct request_queue, requeue_work.work);
1291 	LIST_HEAD(rq_list);
1292 	struct request *rq, *next;
1293 
1294 	spin_lock_irq(&q->requeue_lock);
1295 	list_splice_init(&q->requeue_list, &rq_list);
1296 	spin_unlock_irq(&q->requeue_lock);
1297 
1298 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1299 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1300 			continue;
1301 
1302 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1303 		list_del_init(&rq->queuelist);
1304 		/*
1305 		 * If RQF_DONTPREP, rq has contained some driver specific
1306 		 * data, so insert it to hctx dispatch list to avoid any
1307 		 * merge.
1308 		 */
1309 		if (rq->rq_flags & RQF_DONTPREP)
1310 			blk_mq_request_bypass_insert(rq, false, false);
1311 		else
1312 			blk_mq_sched_insert_request(rq, true, false, false);
1313 	}
1314 
1315 	while (!list_empty(&rq_list)) {
1316 		rq = list_entry(rq_list.next, struct request, queuelist);
1317 		list_del_init(&rq->queuelist);
1318 		blk_mq_sched_insert_request(rq, false, false, false);
1319 	}
1320 
1321 	blk_mq_run_hw_queues(q, false);
1322 }
1323 
1324 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1325 				bool kick_requeue_list)
1326 {
1327 	struct request_queue *q = rq->q;
1328 	unsigned long flags;
1329 
1330 	/*
1331 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1332 	 * request head insertion from the workqueue.
1333 	 */
1334 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1335 
1336 	spin_lock_irqsave(&q->requeue_lock, flags);
1337 	if (at_head) {
1338 		rq->rq_flags |= RQF_SOFTBARRIER;
1339 		list_add(&rq->queuelist, &q->requeue_list);
1340 	} else {
1341 		list_add_tail(&rq->queuelist, &q->requeue_list);
1342 	}
1343 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1344 
1345 	if (kick_requeue_list)
1346 		blk_mq_kick_requeue_list(q);
1347 }
1348 
1349 void blk_mq_kick_requeue_list(struct request_queue *q)
1350 {
1351 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1352 }
1353 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1354 
1355 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1356 				    unsigned long msecs)
1357 {
1358 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1359 				    msecs_to_jiffies(msecs));
1360 }
1361 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1362 
1363 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1364 			       bool reserved)
1365 {
1366 	/*
1367 	 * If we find a request that isn't idle we know the queue is busy
1368 	 * as it's checked in the iter.
1369 	 * Return false to stop the iteration.
1370 	 */
1371 	if (blk_mq_request_started(rq)) {
1372 		bool *busy = priv;
1373 
1374 		*busy = true;
1375 		return false;
1376 	}
1377 
1378 	return true;
1379 }
1380 
1381 bool blk_mq_queue_inflight(struct request_queue *q)
1382 {
1383 	bool busy = false;
1384 
1385 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1386 	return busy;
1387 }
1388 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1389 
1390 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1391 {
1392 	req->rq_flags |= RQF_TIMED_OUT;
1393 	if (req->q->mq_ops->timeout) {
1394 		enum blk_eh_timer_return ret;
1395 
1396 		ret = req->q->mq_ops->timeout(req, reserved);
1397 		if (ret == BLK_EH_DONE)
1398 			return;
1399 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1400 	}
1401 
1402 	blk_add_timer(req);
1403 }
1404 
1405 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1406 {
1407 	unsigned long deadline;
1408 
1409 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1410 		return false;
1411 	if (rq->rq_flags & RQF_TIMED_OUT)
1412 		return false;
1413 
1414 	deadline = READ_ONCE(rq->deadline);
1415 	if (time_after_eq(jiffies, deadline))
1416 		return true;
1417 
1418 	if (*next == 0)
1419 		*next = deadline;
1420 	else if (time_after(*next, deadline))
1421 		*next = deadline;
1422 	return false;
1423 }
1424 
1425 void blk_mq_put_rq_ref(struct request *rq)
1426 {
1427 	if (is_flush_rq(rq))
1428 		rq->end_io(rq, 0);
1429 	else if (req_ref_put_and_test(rq))
1430 		__blk_mq_free_request(rq);
1431 }
1432 
1433 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1434 {
1435 	unsigned long *next = priv;
1436 
1437 	/*
1438 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1439 	 * be reallocated underneath the timeout handler's processing, then
1440 	 * the expire check is reliable. If the request is not expired, then
1441 	 * it was completed and reallocated as a new request after returning
1442 	 * from blk_mq_check_expired().
1443 	 */
1444 	if (blk_mq_req_expired(rq, next))
1445 		blk_mq_rq_timed_out(rq, reserved);
1446 	return true;
1447 }
1448 
1449 static void blk_mq_timeout_work(struct work_struct *work)
1450 {
1451 	struct request_queue *q =
1452 		container_of(work, struct request_queue, timeout_work);
1453 	unsigned long next = 0;
1454 	struct blk_mq_hw_ctx *hctx;
1455 	unsigned long i;
1456 
1457 	/* A deadlock might occur if a request is stuck requiring a
1458 	 * timeout at the same time a queue freeze is waiting
1459 	 * completion, since the timeout code would not be able to
1460 	 * acquire the queue reference here.
1461 	 *
1462 	 * That's why we don't use blk_queue_enter here; instead, we use
1463 	 * percpu_ref_tryget directly, because we need to be able to
1464 	 * obtain a reference even in the short window between the queue
1465 	 * starting to freeze, by dropping the first reference in
1466 	 * blk_freeze_queue_start, and the moment the last request is
1467 	 * consumed, marked by the instant q_usage_counter reaches
1468 	 * zero.
1469 	 */
1470 	if (!percpu_ref_tryget(&q->q_usage_counter))
1471 		return;
1472 
1473 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1474 
1475 	if (next != 0) {
1476 		mod_timer(&q->timeout, next);
1477 	} else {
1478 		/*
1479 		 * Request timeouts are handled as a forward rolling timer. If
1480 		 * we end up here it means that no requests are pending and
1481 		 * also that no request has been pending for a while. Mark
1482 		 * each hctx as idle.
1483 		 */
1484 		queue_for_each_hw_ctx(q, hctx, i) {
1485 			/* the hctx may be unmapped, so check it here */
1486 			if (blk_mq_hw_queue_mapped(hctx))
1487 				blk_mq_tag_idle(hctx);
1488 		}
1489 	}
1490 	blk_queue_exit(q);
1491 }
1492 
1493 struct flush_busy_ctx_data {
1494 	struct blk_mq_hw_ctx *hctx;
1495 	struct list_head *list;
1496 };
1497 
1498 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1499 {
1500 	struct flush_busy_ctx_data *flush_data = data;
1501 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1502 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1503 	enum hctx_type type = hctx->type;
1504 
1505 	spin_lock(&ctx->lock);
1506 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1507 	sbitmap_clear_bit(sb, bitnr);
1508 	spin_unlock(&ctx->lock);
1509 	return true;
1510 }
1511 
1512 /*
1513  * Process software queues that have been marked busy, splicing them
1514  * to the for-dispatch
1515  */
1516 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1517 {
1518 	struct flush_busy_ctx_data data = {
1519 		.hctx = hctx,
1520 		.list = list,
1521 	};
1522 
1523 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1524 }
1525 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1526 
1527 struct dispatch_rq_data {
1528 	struct blk_mq_hw_ctx *hctx;
1529 	struct request *rq;
1530 };
1531 
1532 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1533 		void *data)
1534 {
1535 	struct dispatch_rq_data *dispatch_data = data;
1536 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1537 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1538 	enum hctx_type type = hctx->type;
1539 
1540 	spin_lock(&ctx->lock);
1541 	if (!list_empty(&ctx->rq_lists[type])) {
1542 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1543 		list_del_init(&dispatch_data->rq->queuelist);
1544 		if (list_empty(&ctx->rq_lists[type]))
1545 			sbitmap_clear_bit(sb, bitnr);
1546 	}
1547 	spin_unlock(&ctx->lock);
1548 
1549 	return !dispatch_data->rq;
1550 }
1551 
1552 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1553 					struct blk_mq_ctx *start)
1554 {
1555 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1556 	struct dispatch_rq_data data = {
1557 		.hctx = hctx,
1558 		.rq   = NULL,
1559 	};
1560 
1561 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1562 			       dispatch_rq_from_ctx, &data);
1563 
1564 	return data.rq;
1565 }
1566 
1567 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1568 {
1569 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1570 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1571 	int tag;
1572 
1573 	blk_mq_tag_busy(rq->mq_hctx);
1574 
1575 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1576 		bt = &rq->mq_hctx->tags->breserved_tags;
1577 		tag_offset = 0;
1578 	} else {
1579 		if (!hctx_may_queue(rq->mq_hctx, bt))
1580 			return false;
1581 	}
1582 
1583 	tag = __sbitmap_queue_get(bt);
1584 	if (tag == BLK_MQ_NO_TAG)
1585 		return false;
1586 
1587 	rq->tag = tag + tag_offset;
1588 	return true;
1589 }
1590 
1591 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1592 {
1593 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1594 		return false;
1595 
1596 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1597 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1598 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1599 		__blk_mq_inc_active_requests(hctx);
1600 	}
1601 	hctx->tags->rqs[rq->tag] = rq;
1602 	return true;
1603 }
1604 
1605 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1606 				int flags, void *key)
1607 {
1608 	struct blk_mq_hw_ctx *hctx;
1609 
1610 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1611 
1612 	spin_lock(&hctx->dispatch_wait_lock);
1613 	if (!list_empty(&wait->entry)) {
1614 		struct sbitmap_queue *sbq;
1615 
1616 		list_del_init(&wait->entry);
1617 		sbq = &hctx->tags->bitmap_tags;
1618 		atomic_dec(&sbq->ws_active);
1619 	}
1620 	spin_unlock(&hctx->dispatch_wait_lock);
1621 
1622 	blk_mq_run_hw_queue(hctx, true);
1623 	return 1;
1624 }
1625 
1626 /*
1627  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1628  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1629  * restart. For both cases, take care to check the condition again after
1630  * marking us as waiting.
1631  */
1632 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1633 				 struct request *rq)
1634 {
1635 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1636 	struct wait_queue_head *wq;
1637 	wait_queue_entry_t *wait;
1638 	bool ret;
1639 
1640 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1641 		blk_mq_sched_mark_restart_hctx(hctx);
1642 
1643 		/*
1644 		 * It's possible that a tag was freed in the window between the
1645 		 * allocation failure and adding the hardware queue to the wait
1646 		 * queue.
1647 		 *
1648 		 * Don't clear RESTART here, someone else could have set it.
1649 		 * At most this will cost an extra queue run.
1650 		 */
1651 		return blk_mq_get_driver_tag(rq);
1652 	}
1653 
1654 	wait = &hctx->dispatch_wait;
1655 	if (!list_empty_careful(&wait->entry))
1656 		return false;
1657 
1658 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1659 
1660 	spin_lock_irq(&wq->lock);
1661 	spin_lock(&hctx->dispatch_wait_lock);
1662 	if (!list_empty(&wait->entry)) {
1663 		spin_unlock(&hctx->dispatch_wait_lock);
1664 		spin_unlock_irq(&wq->lock);
1665 		return false;
1666 	}
1667 
1668 	atomic_inc(&sbq->ws_active);
1669 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1670 	__add_wait_queue(wq, wait);
1671 
1672 	/*
1673 	 * It's possible that a tag was freed in the window between the
1674 	 * allocation failure and adding the hardware queue to the wait
1675 	 * queue.
1676 	 */
1677 	ret = blk_mq_get_driver_tag(rq);
1678 	if (!ret) {
1679 		spin_unlock(&hctx->dispatch_wait_lock);
1680 		spin_unlock_irq(&wq->lock);
1681 		return false;
1682 	}
1683 
1684 	/*
1685 	 * We got a tag, remove ourselves from the wait queue to ensure
1686 	 * someone else gets the wakeup.
1687 	 */
1688 	list_del_init(&wait->entry);
1689 	atomic_dec(&sbq->ws_active);
1690 	spin_unlock(&hctx->dispatch_wait_lock);
1691 	spin_unlock_irq(&wq->lock);
1692 
1693 	return true;
1694 }
1695 
1696 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1697 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1698 /*
1699  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1700  * - EWMA is one simple way to compute running average value
1701  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1702  * - take 4 as factor for avoiding to get too small(0) result, and this
1703  *   factor doesn't matter because EWMA decreases exponentially
1704  */
1705 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1706 {
1707 	unsigned int ewma;
1708 
1709 	ewma = hctx->dispatch_busy;
1710 
1711 	if (!ewma && !busy)
1712 		return;
1713 
1714 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1715 	if (busy)
1716 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1717 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1718 
1719 	hctx->dispatch_busy = ewma;
1720 }
1721 
1722 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1723 
1724 static void blk_mq_handle_dev_resource(struct request *rq,
1725 				       struct list_head *list)
1726 {
1727 	struct request *next =
1728 		list_first_entry_or_null(list, struct request, queuelist);
1729 
1730 	/*
1731 	 * If an I/O scheduler has been configured and we got a driver tag for
1732 	 * the next request already, free it.
1733 	 */
1734 	if (next)
1735 		blk_mq_put_driver_tag(next);
1736 
1737 	list_add(&rq->queuelist, list);
1738 	__blk_mq_requeue_request(rq);
1739 }
1740 
1741 static void blk_mq_handle_zone_resource(struct request *rq,
1742 					struct list_head *zone_list)
1743 {
1744 	/*
1745 	 * If we end up here it is because we cannot dispatch a request to a
1746 	 * specific zone due to LLD level zone-write locking or other zone
1747 	 * related resource not being available. In this case, set the request
1748 	 * aside in zone_list for retrying it later.
1749 	 */
1750 	list_add(&rq->queuelist, zone_list);
1751 	__blk_mq_requeue_request(rq);
1752 }
1753 
1754 enum prep_dispatch {
1755 	PREP_DISPATCH_OK,
1756 	PREP_DISPATCH_NO_TAG,
1757 	PREP_DISPATCH_NO_BUDGET,
1758 };
1759 
1760 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1761 						  bool need_budget)
1762 {
1763 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1764 	int budget_token = -1;
1765 
1766 	if (need_budget) {
1767 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1768 		if (budget_token < 0) {
1769 			blk_mq_put_driver_tag(rq);
1770 			return PREP_DISPATCH_NO_BUDGET;
1771 		}
1772 		blk_mq_set_rq_budget_token(rq, budget_token);
1773 	}
1774 
1775 	if (!blk_mq_get_driver_tag(rq)) {
1776 		/*
1777 		 * The initial allocation attempt failed, so we need to
1778 		 * rerun the hardware queue when a tag is freed. The
1779 		 * waitqueue takes care of that. If the queue is run
1780 		 * before we add this entry back on the dispatch list,
1781 		 * we'll re-run it below.
1782 		 */
1783 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1784 			/*
1785 			 * All budgets not got from this function will be put
1786 			 * together during handling partial dispatch
1787 			 */
1788 			if (need_budget)
1789 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1790 			return PREP_DISPATCH_NO_TAG;
1791 		}
1792 	}
1793 
1794 	return PREP_DISPATCH_OK;
1795 }
1796 
1797 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1798 static void blk_mq_release_budgets(struct request_queue *q,
1799 		struct list_head *list)
1800 {
1801 	struct request *rq;
1802 
1803 	list_for_each_entry(rq, list, queuelist) {
1804 		int budget_token = blk_mq_get_rq_budget_token(rq);
1805 
1806 		if (budget_token >= 0)
1807 			blk_mq_put_dispatch_budget(q, budget_token);
1808 	}
1809 }
1810 
1811 /*
1812  * Returns true if we did some work AND can potentially do more.
1813  */
1814 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1815 			     unsigned int nr_budgets)
1816 {
1817 	enum prep_dispatch prep;
1818 	struct request_queue *q = hctx->queue;
1819 	struct request *rq, *nxt;
1820 	int errors, queued;
1821 	blk_status_t ret = BLK_STS_OK;
1822 	LIST_HEAD(zone_list);
1823 	bool needs_resource = false;
1824 
1825 	if (list_empty(list))
1826 		return false;
1827 
1828 	/*
1829 	 * Now process all the entries, sending them to the driver.
1830 	 */
1831 	errors = queued = 0;
1832 	do {
1833 		struct blk_mq_queue_data bd;
1834 
1835 		rq = list_first_entry(list, struct request, queuelist);
1836 
1837 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1838 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1839 		if (prep != PREP_DISPATCH_OK)
1840 			break;
1841 
1842 		list_del_init(&rq->queuelist);
1843 
1844 		bd.rq = rq;
1845 
1846 		/*
1847 		 * Flag last if we have no more requests, or if we have more
1848 		 * but can't assign a driver tag to it.
1849 		 */
1850 		if (list_empty(list))
1851 			bd.last = true;
1852 		else {
1853 			nxt = list_first_entry(list, struct request, queuelist);
1854 			bd.last = !blk_mq_get_driver_tag(nxt);
1855 		}
1856 
1857 		/*
1858 		 * once the request is queued to lld, no need to cover the
1859 		 * budget any more
1860 		 */
1861 		if (nr_budgets)
1862 			nr_budgets--;
1863 		ret = q->mq_ops->queue_rq(hctx, &bd);
1864 		switch (ret) {
1865 		case BLK_STS_OK:
1866 			queued++;
1867 			break;
1868 		case BLK_STS_RESOURCE:
1869 			needs_resource = true;
1870 			fallthrough;
1871 		case BLK_STS_DEV_RESOURCE:
1872 			blk_mq_handle_dev_resource(rq, list);
1873 			goto out;
1874 		case BLK_STS_ZONE_RESOURCE:
1875 			/*
1876 			 * Move the request to zone_list and keep going through
1877 			 * the dispatch list to find more requests the drive can
1878 			 * accept.
1879 			 */
1880 			blk_mq_handle_zone_resource(rq, &zone_list);
1881 			needs_resource = true;
1882 			break;
1883 		default:
1884 			errors++;
1885 			blk_mq_end_request(rq, ret);
1886 		}
1887 	} while (!list_empty(list));
1888 out:
1889 	if (!list_empty(&zone_list))
1890 		list_splice_tail_init(&zone_list, list);
1891 
1892 	/* If we didn't flush the entire list, we could have told the driver
1893 	 * there was more coming, but that turned out to be a lie.
1894 	 */
1895 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1896 		q->mq_ops->commit_rqs(hctx);
1897 	/*
1898 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1899 	 * that is where we will continue on next queue run.
1900 	 */
1901 	if (!list_empty(list)) {
1902 		bool needs_restart;
1903 		/* For non-shared tags, the RESTART check will suffice */
1904 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1905 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1906 
1907 		if (nr_budgets)
1908 			blk_mq_release_budgets(q, list);
1909 
1910 		spin_lock(&hctx->lock);
1911 		list_splice_tail_init(list, &hctx->dispatch);
1912 		spin_unlock(&hctx->lock);
1913 
1914 		/*
1915 		 * Order adding requests to hctx->dispatch and checking
1916 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1917 		 * in blk_mq_sched_restart(). Avoid restart code path to
1918 		 * miss the new added requests to hctx->dispatch, meantime
1919 		 * SCHED_RESTART is observed here.
1920 		 */
1921 		smp_mb();
1922 
1923 		/*
1924 		 * If SCHED_RESTART was set by the caller of this function and
1925 		 * it is no longer set that means that it was cleared by another
1926 		 * thread and hence that a queue rerun is needed.
1927 		 *
1928 		 * If 'no_tag' is set, that means that we failed getting
1929 		 * a driver tag with an I/O scheduler attached. If our dispatch
1930 		 * waitqueue is no longer active, ensure that we run the queue
1931 		 * AFTER adding our entries back to the list.
1932 		 *
1933 		 * If no I/O scheduler has been configured it is possible that
1934 		 * the hardware queue got stopped and restarted before requests
1935 		 * were pushed back onto the dispatch list. Rerun the queue to
1936 		 * avoid starvation. Notes:
1937 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1938 		 *   been stopped before rerunning a queue.
1939 		 * - Some but not all block drivers stop a queue before
1940 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1941 		 *   and dm-rq.
1942 		 *
1943 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1944 		 * bit is set, run queue after a delay to avoid IO stalls
1945 		 * that could otherwise occur if the queue is idle.  We'll do
1946 		 * similar if we couldn't get budget or couldn't lock a zone
1947 		 * and SCHED_RESTART is set.
1948 		 */
1949 		needs_restart = blk_mq_sched_needs_restart(hctx);
1950 		if (prep == PREP_DISPATCH_NO_BUDGET)
1951 			needs_resource = true;
1952 		if (!needs_restart ||
1953 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1954 			blk_mq_run_hw_queue(hctx, true);
1955 		else if (needs_restart && needs_resource)
1956 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1957 
1958 		blk_mq_update_dispatch_busy(hctx, true);
1959 		return false;
1960 	} else
1961 		blk_mq_update_dispatch_busy(hctx, false);
1962 
1963 	return (queued + errors) != 0;
1964 }
1965 
1966 /**
1967  * __blk_mq_run_hw_queue - Run a hardware queue.
1968  * @hctx: Pointer to the hardware queue to run.
1969  *
1970  * Send pending requests to the hardware.
1971  */
1972 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1973 {
1974 	/*
1975 	 * We can't run the queue inline with ints disabled. Ensure that
1976 	 * we catch bad users of this early.
1977 	 */
1978 	WARN_ON_ONCE(in_interrupt());
1979 
1980 	blk_mq_run_dispatch_ops(hctx->queue,
1981 			blk_mq_sched_dispatch_requests(hctx));
1982 }
1983 
1984 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1985 {
1986 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1987 
1988 	if (cpu >= nr_cpu_ids)
1989 		cpu = cpumask_first(hctx->cpumask);
1990 	return cpu;
1991 }
1992 
1993 /*
1994  * It'd be great if the workqueue API had a way to pass
1995  * in a mask and had some smarts for more clever placement.
1996  * For now we just round-robin here, switching for every
1997  * BLK_MQ_CPU_WORK_BATCH queued items.
1998  */
1999 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2000 {
2001 	bool tried = false;
2002 	int next_cpu = hctx->next_cpu;
2003 
2004 	if (hctx->queue->nr_hw_queues == 1)
2005 		return WORK_CPU_UNBOUND;
2006 
2007 	if (--hctx->next_cpu_batch <= 0) {
2008 select_cpu:
2009 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2010 				cpu_online_mask);
2011 		if (next_cpu >= nr_cpu_ids)
2012 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2013 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2014 	}
2015 
2016 	/*
2017 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2018 	 * and it should only happen in the path of handling CPU DEAD.
2019 	 */
2020 	if (!cpu_online(next_cpu)) {
2021 		if (!tried) {
2022 			tried = true;
2023 			goto select_cpu;
2024 		}
2025 
2026 		/*
2027 		 * Make sure to re-select CPU next time once after CPUs
2028 		 * in hctx->cpumask become online again.
2029 		 */
2030 		hctx->next_cpu = next_cpu;
2031 		hctx->next_cpu_batch = 1;
2032 		return WORK_CPU_UNBOUND;
2033 	}
2034 
2035 	hctx->next_cpu = next_cpu;
2036 	return next_cpu;
2037 }
2038 
2039 /**
2040  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2041  * @hctx: Pointer to the hardware queue to run.
2042  * @async: If we want to run the queue asynchronously.
2043  * @msecs: Milliseconds of delay to wait before running the queue.
2044  *
2045  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2046  * with a delay of @msecs.
2047  */
2048 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2049 					unsigned long msecs)
2050 {
2051 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2052 		return;
2053 
2054 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2055 		int cpu = get_cpu();
2056 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2057 			__blk_mq_run_hw_queue(hctx);
2058 			put_cpu();
2059 			return;
2060 		}
2061 
2062 		put_cpu();
2063 	}
2064 
2065 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2066 				    msecs_to_jiffies(msecs));
2067 }
2068 
2069 /**
2070  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2071  * @hctx: Pointer to the hardware queue to run.
2072  * @msecs: Milliseconds of delay to wait before running the queue.
2073  *
2074  * Run a hardware queue asynchronously with a delay of @msecs.
2075  */
2076 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2077 {
2078 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2079 }
2080 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2081 
2082 /**
2083  * blk_mq_run_hw_queue - Start to run a hardware queue.
2084  * @hctx: Pointer to the hardware queue to run.
2085  * @async: If we want to run the queue asynchronously.
2086  *
2087  * Check if the request queue is not in a quiesced state and if there are
2088  * pending requests to be sent. If this is true, run the queue to send requests
2089  * to hardware.
2090  */
2091 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2092 {
2093 	bool need_run;
2094 
2095 	/*
2096 	 * When queue is quiesced, we may be switching io scheduler, or
2097 	 * updating nr_hw_queues, or other things, and we can't run queue
2098 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2099 	 *
2100 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2101 	 * quiesced.
2102 	 */
2103 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2104 		need_run = !blk_queue_quiesced(hctx->queue) &&
2105 		blk_mq_hctx_has_pending(hctx));
2106 
2107 	if (need_run)
2108 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2109 }
2110 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2111 
2112 /*
2113  * Is the request queue handled by an IO scheduler that does not respect
2114  * hardware queues when dispatching?
2115  */
2116 static bool blk_mq_has_sqsched(struct request_queue *q)
2117 {
2118 	struct elevator_queue *e = q->elevator;
2119 
2120 	if (e && e->type->ops.dispatch_request &&
2121 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2122 		return true;
2123 	return false;
2124 }
2125 
2126 /*
2127  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2128  * scheduler.
2129  */
2130 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2131 {
2132 	struct blk_mq_hw_ctx *hctx;
2133 
2134 	/*
2135 	 * If the IO scheduler does not respect hardware queues when
2136 	 * dispatching, we just don't bother with multiple HW queues and
2137 	 * dispatch from hctx for the current CPU since running multiple queues
2138 	 * just causes lock contention inside the scheduler and pointless cache
2139 	 * bouncing.
2140 	 */
2141 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2142 				     raw_smp_processor_id());
2143 	if (!blk_mq_hctx_stopped(hctx))
2144 		return hctx;
2145 	return NULL;
2146 }
2147 
2148 /**
2149  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2150  * @q: Pointer to the request queue to run.
2151  * @async: If we want to run the queue asynchronously.
2152  */
2153 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2154 {
2155 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2156 	unsigned long i;
2157 
2158 	sq_hctx = NULL;
2159 	if (blk_mq_has_sqsched(q))
2160 		sq_hctx = blk_mq_get_sq_hctx(q);
2161 	queue_for_each_hw_ctx(q, hctx, i) {
2162 		if (blk_mq_hctx_stopped(hctx))
2163 			continue;
2164 		/*
2165 		 * Dispatch from this hctx either if there's no hctx preferred
2166 		 * by IO scheduler or if it has requests that bypass the
2167 		 * scheduler.
2168 		 */
2169 		if (!sq_hctx || sq_hctx == hctx ||
2170 		    !list_empty_careful(&hctx->dispatch))
2171 			blk_mq_run_hw_queue(hctx, async);
2172 	}
2173 }
2174 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2175 
2176 /**
2177  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2178  * @q: Pointer to the request queue to run.
2179  * @msecs: Milliseconds of delay to wait before running the queues.
2180  */
2181 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2182 {
2183 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2184 	unsigned long i;
2185 
2186 	sq_hctx = NULL;
2187 	if (blk_mq_has_sqsched(q))
2188 		sq_hctx = blk_mq_get_sq_hctx(q);
2189 	queue_for_each_hw_ctx(q, hctx, i) {
2190 		if (blk_mq_hctx_stopped(hctx))
2191 			continue;
2192 		/*
2193 		 * If there is already a run_work pending, leave the
2194 		 * pending delay untouched. Otherwise, a hctx can stall
2195 		 * if another hctx is re-delaying the other's work
2196 		 * before the work executes.
2197 		 */
2198 		if (delayed_work_pending(&hctx->run_work))
2199 			continue;
2200 		/*
2201 		 * Dispatch from this hctx either if there's no hctx preferred
2202 		 * by IO scheduler or if it has requests that bypass the
2203 		 * scheduler.
2204 		 */
2205 		if (!sq_hctx || sq_hctx == hctx ||
2206 		    !list_empty_careful(&hctx->dispatch))
2207 			blk_mq_delay_run_hw_queue(hctx, msecs);
2208 	}
2209 }
2210 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2211 
2212 /**
2213  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2214  * @q: request queue.
2215  *
2216  * The caller is responsible for serializing this function against
2217  * blk_mq_{start,stop}_hw_queue().
2218  */
2219 bool blk_mq_queue_stopped(struct request_queue *q)
2220 {
2221 	struct blk_mq_hw_ctx *hctx;
2222 	unsigned long i;
2223 
2224 	queue_for_each_hw_ctx(q, hctx, i)
2225 		if (blk_mq_hctx_stopped(hctx))
2226 			return true;
2227 
2228 	return false;
2229 }
2230 EXPORT_SYMBOL(blk_mq_queue_stopped);
2231 
2232 /*
2233  * This function is often used for pausing .queue_rq() by driver when
2234  * there isn't enough resource or some conditions aren't satisfied, and
2235  * BLK_STS_RESOURCE is usually returned.
2236  *
2237  * We do not guarantee that dispatch can be drained or blocked
2238  * after blk_mq_stop_hw_queue() returns. Please use
2239  * blk_mq_quiesce_queue() for that requirement.
2240  */
2241 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2242 {
2243 	cancel_delayed_work(&hctx->run_work);
2244 
2245 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2246 }
2247 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2248 
2249 /*
2250  * This function is often used for pausing .queue_rq() by driver when
2251  * there isn't enough resource or some conditions aren't satisfied, and
2252  * BLK_STS_RESOURCE is usually returned.
2253  *
2254  * We do not guarantee that dispatch can be drained or blocked
2255  * after blk_mq_stop_hw_queues() returns. Please use
2256  * blk_mq_quiesce_queue() for that requirement.
2257  */
2258 void blk_mq_stop_hw_queues(struct request_queue *q)
2259 {
2260 	struct blk_mq_hw_ctx *hctx;
2261 	unsigned long i;
2262 
2263 	queue_for_each_hw_ctx(q, hctx, i)
2264 		blk_mq_stop_hw_queue(hctx);
2265 }
2266 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2267 
2268 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2269 {
2270 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2271 
2272 	blk_mq_run_hw_queue(hctx, false);
2273 }
2274 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2275 
2276 void blk_mq_start_hw_queues(struct request_queue *q)
2277 {
2278 	struct blk_mq_hw_ctx *hctx;
2279 	unsigned long i;
2280 
2281 	queue_for_each_hw_ctx(q, hctx, i)
2282 		blk_mq_start_hw_queue(hctx);
2283 }
2284 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2285 
2286 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2287 {
2288 	if (!blk_mq_hctx_stopped(hctx))
2289 		return;
2290 
2291 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2292 	blk_mq_run_hw_queue(hctx, async);
2293 }
2294 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2295 
2296 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2297 {
2298 	struct blk_mq_hw_ctx *hctx;
2299 	unsigned long i;
2300 
2301 	queue_for_each_hw_ctx(q, hctx, i)
2302 		blk_mq_start_stopped_hw_queue(hctx, async);
2303 }
2304 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2305 
2306 static void blk_mq_run_work_fn(struct work_struct *work)
2307 {
2308 	struct blk_mq_hw_ctx *hctx;
2309 
2310 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2311 
2312 	/*
2313 	 * If we are stopped, don't run the queue.
2314 	 */
2315 	if (blk_mq_hctx_stopped(hctx))
2316 		return;
2317 
2318 	__blk_mq_run_hw_queue(hctx);
2319 }
2320 
2321 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2322 					    struct request *rq,
2323 					    bool at_head)
2324 {
2325 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2326 	enum hctx_type type = hctx->type;
2327 
2328 	lockdep_assert_held(&ctx->lock);
2329 
2330 	trace_block_rq_insert(rq);
2331 
2332 	if (at_head)
2333 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2334 	else
2335 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2336 }
2337 
2338 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2339 			     bool at_head)
2340 {
2341 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2342 
2343 	lockdep_assert_held(&ctx->lock);
2344 
2345 	__blk_mq_insert_req_list(hctx, rq, at_head);
2346 	blk_mq_hctx_mark_pending(hctx, ctx);
2347 }
2348 
2349 /**
2350  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2351  * @rq: Pointer to request to be inserted.
2352  * @at_head: true if the request should be inserted at the head of the list.
2353  * @run_queue: If we should run the hardware queue after inserting the request.
2354  *
2355  * Should only be used carefully, when the caller knows we want to
2356  * bypass a potential IO scheduler on the target device.
2357  */
2358 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2359 				  bool run_queue)
2360 {
2361 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2362 
2363 	spin_lock(&hctx->lock);
2364 	if (at_head)
2365 		list_add(&rq->queuelist, &hctx->dispatch);
2366 	else
2367 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2368 	spin_unlock(&hctx->lock);
2369 
2370 	if (run_queue)
2371 		blk_mq_run_hw_queue(hctx, false);
2372 }
2373 
2374 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2375 			    struct list_head *list)
2376 
2377 {
2378 	struct request *rq;
2379 	enum hctx_type type = hctx->type;
2380 
2381 	/*
2382 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2383 	 * offline now
2384 	 */
2385 	list_for_each_entry(rq, list, queuelist) {
2386 		BUG_ON(rq->mq_ctx != ctx);
2387 		trace_block_rq_insert(rq);
2388 	}
2389 
2390 	spin_lock(&ctx->lock);
2391 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2392 	blk_mq_hctx_mark_pending(hctx, ctx);
2393 	spin_unlock(&ctx->lock);
2394 }
2395 
2396 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2397 			      bool from_schedule)
2398 {
2399 	if (hctx->queue->mq_ops->commit_rqs) {
2400 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2401 		hctx->queue->mq_ops->commit_rqs(hctx);
2402 	}
2403 	*queued = 0;
2404 }
2405 
2406 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2407 		unsigned int nr_segs)
2408 {
2409 	int err;
2410 
2411 	if (bio->bi_opf & REQ_RAHEAD)
2412 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2413 
2414 	rq->__sector = bio->bi_iter.bi_sector;
2415 	blk_rq_bio_prep(rq, bio, nr_segs);
2416 
2417 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2418 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2419 	WARN_ON_ONCE(err);
2420 
2421 	blk_account_io_start(rq);
2422 }
2423 
2424 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2425 					    struct request *rq, bool last)
2426 {
2427 	struct request_queue *q = rq->q;
2428 	struct blk_mq_queue_data bd = {
2429 		.rq = rq,
2430 		.last = last,
2431 	};
2432 	blk_status_t ret;
2433 
2434 	/*
2435 	 * For OK queue, we are done. For error, caller may kill it.
2436 	 * Any other error (busy), just add it to our list as we
2437 	 * previously would have done.
2438 	 */
2439 	ret = q->mq_ops->queue_rq(hctx, &bd);
2440 	switch (ret) {
2441 	case BLK_STS_OK:
2442 		blk_mq_update_dispatch_busy(hctx, false);
2443 		break;
2444 	case BLK_STS_RESOURCE:
2445 	case BLK_STS_DEV_RESOURCE:
2446 		blk_mq_update_dispatch_busy(hctx, true);
2447 		__blk_mq_requeue_request(rq);
2448 		break;
2449 	default:
2450 		blk_mq_update_dispatch_busy(hctx, false);
2451 		break;
2452 	}
2453 
2454 	return ret;
2455 }
2456 
2457 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2458 						struct request *rq,
2459 						bool bypass_insert, bool last)
2460 {
2461 	struct request_queue *q = rq->q;
2462 	bool run_queue = true;
2463 	int budget_token;
2464 
2465 	/*
2466 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2467 	 *
2468 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2469 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2470 	 * and avoid driver to try to dispatch again.
2471 	 */
2472 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2473 		run_queue = false;
2474 		bypass_insert = false;
2475 		goto insert;
2476 	}
2477 
2478 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2479 		goto insert;
2480 
2481 	budget_token = blk_mq_get_dispatch_budget(q);
2482 	if (budget_token < 0)
2483 		goto insert;
2484 
2485 	blk_mq_set_rq_budget_token(rq, budget_token);
2486 
2487 	if (!blk_mq_get_driver_tag(rq)) {
2488 		blk_mq_put_dispatch_budget(q, budget_token);
2489 		goto insert;
2490 	}
2491 
2492 	return __blk_mq_issue_directly(hctx, rq, last);
2493 insert:
2494 	if (bypass_insert)
2495 		return BLK_STS_RESOURCE;
2496 
2497 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2498 
2499 	return BLK_STS_OK;
2500 }
2501 
2502 /**
2503  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2504  * @hctx: Pointer of the associated hardware queue.
2505  * @rq: Pointer to request to be sent.
2506  *
2507  * If the device has enough resources to accept a new request now, send the
2508  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2509  * we can try send it another time in the future. Requests inserted at this
2510  * queue have higher priority.
2511  */
2512 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2513 		struct request *rq)
2514 {
2515 	blk_status_t ret =
2516 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2517 
2518 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2519 		blk_mq_request_bypass_insert(rq, false, true);
2520 	else if (ret != BLK_STS_OK)
2521 		blk_mq_end_request(rq, ret);
2522 }
2523 
2524 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2525 {
2526 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2527 }
2528 
2529 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2530 {
2531 	struct blk_mq_hw_ctx *hctx = NULL;
2532 	struct request *rq;
2533 	int queued = 0;
2534 	int errors = 0;
2535 
2536 	while ((rq = rq_list_pop(&plug->mq_list))) {
2537 		bool last = rq_list_empty(plug->mq_list);
2538 		blk_status_t ret;
2539 
2540 		if (hctx != rq->mq_hctx) {
2541 			if (hctx)
2542 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2543 			hctx = rq->mq_hctx;
2544 		}
2545 
2546 		ret = blk_mq_request_issue_directly(rq, last);
2547 		switch (ret) {
2548 		case BLK_STS_OK:
2549 			queued++;
2550 			break;
2551 		case BLK_STS_RESOURCE:
2552 		case BLK_STS_DEV_RESOURCE:
2553 			blk_mq_request_bypass_insert(rq, false, last);
2554 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2555 			return;
2556 		default:
2557 			blk_mq_end_request(rq, ret);
2558 			errors++;
2559 			break;
2560 		}
2561 	}
2562 
2563 	/*
2564 	 * If we didn't flush the entire list, we could have told the driver
2565 	 * there was more coming, but that turned out to be a lie.
2566 	 */
2567 	if (errors)
2568 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2569 }
2570 
2571 static void __blk_mq_flush_plug_list(struct request_queue *q,
2572 				     struct blk_plug *plug)
2573 {
2574 	if (blk_queue_quiesced(q))
2575 		return;
2576 	q->mq_ops->queue_rqs(&plug->mq_list);
2577 }
2578 
2579 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2580 {
2581 	struct blk_mq_hw_ctx *this_hctx = NULL;
2582 	struct blk_mq_ctx *this_ctx = NULL;
2583 	struct request *requeue_list = NULL;
2584 	unsigned int depth = 0;
2585 	LIST_HEAD(list);
2586 
2587 	do {
2588 		struct request *rq = rq_list_pop(&plug->mq_list);
2589 
2590 		if (!this_hctx) {
2591 			this_hctx = rq->mq_hctx;
2592 			this_ctx = rq->mq_ctx;
2593 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2594 			rq_list_add(&requeue_list, rq);
2595 			continue;
2596 		}
2597 		list_add_tail(&rq->queuelist, &list);
2598 		depth++;
2599 	} while (!rq_list_empty(plug->mq_list));
2600 
2601 	plug->mq_list = requeue_list;
2602 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2603 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2604 }
2605 
2606 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2607 {
2608 	struct request *rq;
2609 
2610 	if (rq_list_empty(plug->mq_list))
2611 		return;
2612 	plug->rq_count = 0;
2613 
2614 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2615 		struct request_queue *q;
2616 
2617 		rq = rq_list_peek(&plug->mq_list);
2618 		q = rq->q;
2619 
2620 		/*
2621 		 * Peek first request and see if we have a ->queue_rqs() hook.
2622 		 * If we do, we can dispatch the whole plug list in one go. We
2623 		 * already know at this point that all requests belong to the
2624 		 * same queue, caller must ensure that's the case.
2625 		 *
2626 		 * Since we pass off the full list to the driver at this point,
2627 		 * we do not increment the active request count for the queue.
2628 		 * Bypass shared tags for now because of that.
2629 		 */
2630 		if (q->mq_ops->queue_rqs &&
2631 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2632 			blk_mq_run_dispatch_ops(q,
2633 				__blk_mq_flush_plug_list(q, plug));
2634 			if (rq_list_empty(plug->mq_list))
2635 				return;
2636 		}
2637 
2638 		blk_mq_run_dispatch_ops(q,
2639 				blk_mq_plug_issue_direct(plug, false));
2640 		if (rq_list_empty(plug->mq_list))
2641 			return;
2642 	}
2643 
2644 	do {
2645 		blk_mq_dispatch_plug_list(plug, from_schedule);
2646 	} while (!rq_list_empty(plug->mq_list));
2647 }
2648 
2649 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2650 		struct list_head *list)
2651 {
2652 	int queued = 0;
2653 	int errors = 0;
2654 
2655 	while (!list_empty(list)) {
2656 		blk_status_t ret;
2657 		struct request *rq = list_first_entry(list, struct request,
2658 				queuelist);
2659 
2660 		list_del_init(&rq->queuelist);
2661 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2662 		if (ret != BLK_STS_OK) {
2663 			if (ret == BLK_STS_RESOURCE ||
2664 					ret == BLK_STS_DEV_RESOURCE) {
2665 				blk_mq_request_bypass_insert(rq, false,
2666 							list_empty(list));
2667 				break;
2668 			}
2669 			blk_mq_end_request(rq, ret);
2670 			errors++;
2671 		} else
2672 			queued++;
2673 	}
2674 
2675 	/*
2676 	 * If we didn't flush the entire list, we could have told
2677 	 * the driver there was more coming, but that turned out to
2678 	 * be a lie.
2679 	 */
2680 	if ((!list_empty(list) || errors) &&
2681 	     hctx->queue->mq_ops->commit_rqs && queued)
2682 		hctx->queue->mq_ops->commit_rqs(hctx);
2683 }
2684 
2685 /*
2686  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2687  * queues. This is important for md arrays to benefit from merging
2688  * requests.
2689  */
2690 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2691 {
2692 	if (plug->multiple_queues)
2693 		return BLK_MAX_REQUEST_COUNT * 2;
2694 	return BLK_MAX_REQUEST_COUNT;
2695 }
2696 
2697 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2698 {
2699 	struct request *last = rq_list_peek(&plug->mq_list);
2700 
2701 	if (!plug->rq_count) {
2702 		trace_block_plug(rq->q);
2703 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2704 		   (!blk_queue_nomerges(rq->q) &&
2705 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2706 		blk_mq_flush_plug_list(plug, false);
2707 		trace_block_plug(rq->q);
2708 	}
2709 
2710 	if (!plug->multiple_queues && last && last->q != rq->q)
2711 		plug->multiple_queues = true;
2712 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2713 		plug->has_elevator = true;
2714 	rq->rq_next = NULL;
2715 	rq_list_add(&plug->mq_list, rq);
2716 	plug->rq_count++;
2717 }
2718 
2719 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2720 				     struct bio *bio, unsigned int nr_segs)
2721 {
2722 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2723 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2724 			return true;
2725 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2726 			return true;
2727 	}
2728 	return false;
2729 }
2730 
2731 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2732 					       struct blk_plug *plug,
2733 					       struct bio *bio,
2734 					       unsigned int nsegs)
2735 {
2736 	struct blk_mq_alloc_data data = {
2737 		.q		= q,
2738 		.nr_tags	= 1,
2739 		.cmd_flags	= bio->bi_opf,
2740 	};
2741 	struct request *rq;
2742 
2743 	if (unlikely(bio_queue_enter(bio)))
2744 		return NULL;
2745 
2746 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2747 		goto queue_exit;
2748 
2749 	rq_qos_throttle(q, bio);
2750 
2751 	if (plug) {
2752 		data.nr_tags = plug->nr_ios;
2753 		plug->nr_ios = 1;
2754 		data.cached_rq = &plug->cached_rq;
2755 	}
2756 
2757 	rq = __blk_mq_alloc_requests(&data);
2758 	if (rq)
2759 		return rq;
2760 	rq_qos_cleanup(q, bio);
2761 	if (bio->bi_opf & REQ_NOWAIT)
2762 		bio_wouldblock_error(bio);
2763 queue_exit:
2764 	blk_queue_exit(q);
2765 	return NULL;
2766 }
2767 
2768 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2769 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2770 {
2771 	struct request *rq;
2772 
2773 	if (!plug)
2774 		return NULL;
2775 	rq = rq_list_peek(&plug->cached_rq);
2776 	if (!rq || rq->q != q)
2777 		return NULL;
2778 
2779 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2780 		*bio = NULL;
2781 		return NULL;
2782 	}
2783 
2784 	rq_qos_throttle(q, *bio);
2785 
2786 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2787 		return NULL;
2788 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2789 		return NULL;
2790 
2791 	rq->cmd_flags = (*bio)->bi_opf;
2792 	plug->cached_rq = rq_list_next(rq);
2793 	INIT_LIST_HEAD(&rq->queuelist);
2794 	return rq;
2795 }
2796 
2797 /**
2798  * blk_mq_submit_bio - Create and send a request to block device.
2799  * @bio: Bio pointer.
2800  *
2801  * Builds up a request structure from @q and @bio and send to the device. The
2802  * request may not be queued directly to hardware if:
2803  * * This request can be merged with another one
2804  * * We want to place request at plug queue for possible future merging
2805  * * There is an IO scheduler active at this queue
2806  *
2807  * It will not queue the request if there is an error with the bio, or at the
2808  * request creation.
2809  */
2810 void blk_mq_submit_bio(struct bio *bio)
2811 {
2812 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2813 	struct blk_plug *plug = blk_mq_plug(q, bio);
2814 	const int is_sync = op_is_sync(bio->bi_opf);
2815 	struct request *rq;
2816 	unsigned int nr_segs = 1;
2817 	blk_status_t ret;
2818 
2819 	blk_queue_bounce(q, &bio);
2820 	if (blk_may_split(q, bio))
2821 		__blk_queue_split(q, &bio, &nr_segs);
2822 
2823 	if (!bio_integrity_prep(bio))
2824 		return;
2825 
2826 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2827 	if (!rq) {
2828 		if (!bio)
2829 			return;
2830 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2831 		if (unlikely(!rq))
2832 			return;
2833 	}
2834 
2835 	trace_block_getrq(bio);
2836 
2837 	rq_qos_track(q, rq, bio);
2838 
2839 	blk_mq_bio_to_request(rq, bio, nr_segs);
2840 
2841 	ret = blk_crypto_init_request(rq);
2842 	if (ret != BLK_STS_OK) {
2843 		bio->bi_status = ret;
2844 		bio_endio(bio);
2845 		blk_mq_free_request(rq);
2846 		return;
2847 	}
2848 
2849 	if (op_is_flush(bio->bi_opf)) {
2850 		blk_insert_flush(rq);
2851 		return;
2852 	}
2853 
2854 	if (plug)
2855 		blk_add_rq_to_plug(plug, rq);
2856 	else if ((rq->rq_flags & RQF_ELV) ||
2857 		 (rq->mq_hctx->dispatch_busy &&
2858 		  (q->nr_hw_queues == 1 || !is_sync)))
2859 		blk_mq_sched_insert_request(rq, false, true, true);
2860 	else
2861 		blk_mq_run_dispatch_ops(rq->q,
2862 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2863 }
2864 
2865 #ifdef CONFIG_BLK_MQ_STACKING
2866 /**
2867  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2868  * @rq: the request being queued
2869  */
2870 blk_status_t blk_insert_cloned_request(struct request *rq)
2871 {
2872 	struct request_queue *q = rq->q;
2873 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2874 	blk_status_t ret;
2875 
2876 	if (blk_rq_sectors(rq) > max_sectors) {
2877 		/*
2878 		 * SCSI device does not have a good way to return if
2879 		 * Write Same/Zero is actually supported. If a device rejects
2880 		 * a non-read/write command (discard, write same,etc.) the
2881 		 * low-level device driver will set the relevant queue limit to
2882 		 * 0 to prevent blk-lib from issuing more of the offending
2883 		 * operations. Commands queued prior to the queue limit being
2884 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2885 		 * errors being propagated to upper layers.
2886 		 */
2887 		if (max_sectors == 0)
2888 			return BLK_STS_NOTSUPP;
2889 
2890 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2891 			__func__, blk_rq_sectors(rq), max_sectors);
2892 		return BLK_STS_IOERR;
2893 	}
2894 
2895 	/*
2896 	 * The queue settings related to segment counting may differ from the
2897 	 * original queue.
2898 	 */
2899 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2900 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2901 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2902 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2903 		return BLK_STS_IOERR;
2904 	}
2905 
2906 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2907 		return BLK_STS_IOERR;
2908 
2909 	if (blk_crypto_insert_cloned_request(rq))
2910 		return BLK_STS_IOERR;
2911 
2912 	blk_account_io_start(rq);
2913 
2914 	/*
2915 	 * Since we have a scheduler attached on the top device,
2916 	 * bypass a potential scheduler on the bottom device for
2917 	 * insert.
2918 	 */
2919 	blk_mq_run_dispatch_ops(q,
2920 			ret = blk_mq_request_issue_directly(rq, true));
2921 	if (ret)
2922 		blk_account_io_done(rq, ktime_get_ns());
2923 	return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2926 
2927 /**
2928  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2929  * @rq: the clone request to be cleaned up
2930  *
2931  * Description:
2932  *     Free all bios in @rq for a cloned request.
2933  */
2934 void blk_rq_unprep_clone(struct request *rq)
2935 {
2936 	struct bio *bio;
2937 
2938 	while ((bio = rq->bio) != NULL) {
2939 		rq->bio = bio->bi_next;
2940 
2941 		bio_put(bio);
2942 	}
2943 }
2944 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2945 
2946 /**
2947  * blk_rq_prep_clone - Helper function to setup clone request
2948  * @rq: the request to be setup
2949  * @rq_src: original request to be cloned
2950  * @bs: bio_set that bios for clone are allocated from
2951  * @gfp_mask: memory allocation mask for bio
2952  * @bio_ctr: setup function to be called for each clone bio.
2953  *           Returns %0 for success, non %0 for failure.
2954  * @data: private data to be passed to @bio_ctr
2955  *
2956  * Description:
2957  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2958  *     Also, pages which the original bios are pointing to are not copied
2959  *     and the cloned bios just point same pages.
2960  *     So cloned bios must be completed before original bios, which means
2961  *     the caller must complete @rq before @rq_src.
2962  */
2963 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2964 		      struct bio_set *bs, gfp_t gfp_mask,
2965 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2966 		      void *data)
2967 {
2968 	struct bio *bio, *bio_src;
2969 
2970 	if (!bs)
2971 		bs = &fs_bio_set;
2972 
2973 	__rq_for_each_bio(bio_src, rq_src) {
2974 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2975 				      bs);
2976 		if (!bio)
2977 			goto free_and_out;
2978 
2979 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2980 			goto free_and_out;
2981 
2982 		if (rq->bio) {
2983 			rq->biotail->bi_next = bio;
2984 			rq->biotail = bio;
2985 		} else {
2986 			rq->bio = rq->biotail = bio;
2987 		}
2988 		bio = NULL;
2989 	}
2990 
2991 	/* Copy attributes of the original request to the clone request. */
2992 	rq->__sector = blk_rq_pos(rq_src);
2993 	rq->__data_len = blk_rq_bytes(rq_src);
2994 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2995 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2996 		rq->special_vec = rq_src->special_vec;
2997 	}
2998 	rq->nr_phys_segments = rq_src->nr_phys_segments;
2999 	rq->ioprio = rq_src->ioprio;
3000 
3001 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3002 		goto free_and_out;
3003 
3004 	return 0;
3005 
3006 free_and_out:
3007 	if (bio)
3008 		bio_put(bio);
3009 	blk_rq_unprep_clone(rq);
3010 
3011 	return -ENOMEM;
3012 }
3013 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3014 #endif /* CONFIG_BLK_MQ_STACKING */
3015 
3016 /*
3017  * Steal bios from a request and add them to a bio list.
3018  * The request must not have been partially completed before.
3019  */
3020 void blk_steal_bios(struct bio_list *list, struct request *rq)
3021 {
3022 	if (rq->bio) {
3023 		if (list->tail)
3024 			list->tail->bi_next = rq->bio;
3025 		else
3026 			list->head = rq->bio;
3027 		list->tail = rq->biotail;
3028 
3029 		rq->bio = NULL;
3030 		rq->biotail = NULL;
3031 	}
3032 
3033 	rq->__data_len = 0;
3034 }
3035 EXPORT_SYMBOL_GPL(blk_steal_bios);
3036 
3037 static size_t order_to_size(unsigned int order)
3038 {
3039 	return (size_t)PAGE_SIZE << order;
3040 }
3041 
3042 /* called before freeing request pool in @tags */
3043 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3044 				    struct blk_mq_tags *tags)
3045 {
3046 	struct page *page;
3047 	unsigned long flags;
3048 
3049 	/* There is no need to clear a driver tags own mapping */
3050 	if (drv_tags == tags)
3051 		return;
3052 
3053 	list_for_each_entry(page, &tags->page_list, lru) {
3054 		unsigned long start = (unsigned long)page_address(page);
3055 		unsigned long end = start + order_to_size(page->private);
3056 		int i;
3057 
3058 		for (i = 0; i < drv_tags->nr_tags; i++) {
3059 			struct request *rq = drv_tags->rqs[i];
3060 			unsigned long rq_addr = (unsigned long)rq;
3061 
3062 			if (rq_addr >= start && rq_addr < end) {
3063 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3064 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3065 			}
3066 		}
3067 	}
3068 
3069 	/*
3070 	 * Wait until all pending iteration is done.
3071 	 *
3072 	 * Request reference is cleared and it is guaranteed to be observed
3073 	 * after the ->lock is released.
3074 	 */
3075 	spin_lock_irqsave(&drv_tags->lock, flags);
3076 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3077 }
3078 
3079 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3080 		     unsigned int hctx_idx)
3081 {
3082 	struct blk_mq_tags *drv_tags;
3083 	struct page *page;
3084 
3085 	if (list_empty(&tags->page_list))
3086 		return;
3087 
3088 	if (blk_mq_is_shared_tags(set->flags))
3089 		drv_tags = set->shared_tags;
3090 	else
3091 		drv_tags = set->tags[hctx_idx];
3092 
3093 	if (tags->static_rqs && set->ops->exit_request) {
3094 		int i;
3095 
3096 		for (i = 0; i < tags->nr_tags; i++) {
3097 			struct request *rq = tags->static_rqs[i];
3098 
3099 			if (!rq)
3100 				continue;
3101 			set->ops->exit_request(set, rq, hctx_idx);
3102 			tags->static_rqs[i] = NULL;
3103 		}
3104 	}
3105 
3106 	blk_mq_clear_rq_mapping(drv_tags, tags);
3107 
3108 	while (!list_empty(&tags->page_list)) {
3109 		page = list_first_entry(&tags->page_list, struct page, lru);
3110 		list_del_init(&page->lru);
3111 		/*
3112 		 * Remove kmemleak object previously allocated in
3113 		 * blk_mq_alloc_rqs().
3114 		 */
3115 		kmemleak_free(page_address(page));
3116 		__free_pages(page, page->private);
3117 	}
3118 }
3119 
3120 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3121 {
3122 	kfree(tags->rqs);
3123 	tags->rqs = NULL;
3124 	kfree(tags->static_rqs);
3125 	tags->static_rqs = NULL;
3126 
3127 	blk_mq_free_tags(tags);
3128 }
3129 
3130 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3131 		unsigned int hctx_idx)
3132 {
3133 	int i;
3134 
3135 	for (i = 0; i < set->nr_maps; i++) {
3136 		unsigned int start = set->map[i].queue_offset;
3137 		unsigned int end = start + set->map[i].nr_queues;
3138 
3139 		if (hctx_idx >= start && hctx_idx < end)
3140 			break;
3141 	}
3142 
3143 	if (i >= set->nr_maps)
3144 		i = HCTX_TYPE_DEFAULT;
3145 
3146 	return i;
3147 }
3148 
3149 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3150 		unsigned int hctx_idx)
3151 {
3152 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3153 
3154 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3155 }
3156 
3157 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3158 					       unsigned int hctx_idx,
3159 					       unsigned int nr_tags,
3160 					       unsigned int reserved_tags)
3161 {
3162 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3163 	struct blk_mq_tags *tags;
3164 
3165 	if (node == NUMA_NO_NODE)
3166 		node = set->numa_node;
3167 
3168 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3169 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3170 	if (!tags)
3171 		return NULL;
3172 
3173 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3174 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3175 				 node);
3176 	if (!tags->rqs) {
3177 		blk_mq_free_tags(tags);
3178 		return NULL;
3179 	}
3180 
3181 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3182 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3183 					node);
3184 	if (!tags->static_rqs) {
3185 		kfree(tags->rqs);
3186 		blk_mq_free_tags(tags);
3187 		return NULL;
3188 	}
3189 
3190 	return tags;
3191 }
3192 
3193 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3194 			       unsigned int hctx_idx, int node)
3195 {
3196 	int ret;
3197 
3198 	if (set->ops->init_request) {
3199 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3200 		if (ret)
3201 			return ret;
3202 	}
3203 
3204 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3205 	return 0;
3206 }
3207 
3208 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3209 			    struct blk_mq_tags *tags,
3210 			    unsigned int hctx_idx, unsigned int depth)
3211 {
3212 	unsigned int i, j, entries_per_page, max_order = 4;
3213 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3214 	size_t rq_size, left;
3215 
3216 	if (node == NUMA_NO_NODE)
3217 		node = set->numa_node;
3218 
3219 	INIT_LIST_HEAD(&tags->page_list);
3220 
3221 	/*
3222 	 * rq_size is the size of the request plus driver payload, rounded
3223 	 * to the cacheline size
3224 	 */
3225 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3226 				cache_line_size());
3227 	left = rq_size * depth;
3228 
3229 	for (i = 0; i < depth; ) {
3230 		int this_order = max_order;
3231 		struct page *page;
3232 		int to_do;
3233 		void *p;
3234 
3235 		while (this_order && left < order_to_size(this_order - 1))
3236 			this_order--;
3237 
3238 		do {
3239 			page = alloc_pages_node(node,
3240 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3241 				this_order);
3242 			if (page)
3243 				break;
3244 			if (!this_order--)
3245 				break;
3246 			if (order_to_size(this_order) < rq_size)
3247 				break;
3248 		} while (1);
3249 
3250 		if (!page)
3251 			goto fail;
3252 
3253 		page->private = this_order;
3254 		list_add_tail(&page->lru, &tags->page_list);
3255 
3256 		p = page_address(page);
3257 		/*
3258 		 * Allow kmemleak to scan these pages as they contain pointers
3259 		 * to additional allocations like via ops->init_request().
3260 		 */
3261 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3262 		entries_per_page = order_to_size(this_order) / rq_size;
3263 		to_do = min(entries_per_page, depth - i);
3264 		left -= to_do * rq_size;
3265 		for (j = 0; j < to_do; j++) {
3266 			struct request *rq = p;
3267 
3268 			tags->static_rqs[i] = rq;
3269 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3270 				tags->static_rqs[i] = NULL;
3271 				goto fail;
3272 			}
3273 
3274 			p += rq_size;
3275 			i++;
3276 		}
3277 	}
3278 	return 0;
3279 
3280 fail:
3281 	blk_mq_free_rqs(set, tags, hctx_idx);
3282 	return -ENOMEM;
3283 }
3284 
3285 struct rq_iter_data {
3286 	struct blk_mq_hw_ctx *hctx;
3287 	bool has_rq;
3288 };
3289 
3290 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3291 {
3292 	struct rq_iter_data *iter_data = data;
3293 
3294 	if (rq->mq_hctx != iter_data->hctx)
3295 		return true;
3296 	iter_data->has_rq = true;
3297 	return false;
3298 }
3299 
3300 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3301 {
3302 	struct blk_mq_tags *tags = hctx->sched_tags ?
3303 			hctx->sched_tags : hctx->tags;
3304 	struct rq_iter_data data = {
3305 		.hctx	= hctx,
3306 	};
3307 
3308 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3309 	return data.has_rq;
3310 }
3311 
3312 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3313 		struct blk_mq_hw_ctx *hctx)
3314 {
3315 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3316 		return false;
3317 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3318 		return false;
3319 	return true;
3320 }
3321 
3322 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3323 {
3324 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3325 			struct blk_mq_hw_ctx, cpuhp_online);
3326 
3327 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3328 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3329 		return 0;
3330 
3331 	/*
3332 	 * Prevent new request from being allocated on the current hctx.
3333 	 *
3334 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3335 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3336 	 * seen once we return from the tag allocator.
3337 	 */
3338 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3339 	smp_mb__after_atomic();
3340 
3341 	/*
3342 	 * Try to grab a reference to the queue and wait for any outstanding
3343 	 * requests.  If we could not grab a reference the queue has been
3344 	 * frozen and there are no requests.
3345 	 */
3346 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3347 		while (blk_mq_hctx_has_requests(hctx))
3348 			msleep(5);
3349 		percpu_ref_put(&hctx->queue->q_usage_counter);
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3356 {
3357 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3358 			struct blk_mq_hw_ctx, cpuhp_online);
3359 
3360 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3361 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3362 	return 0;
3363 }
3364 
3365 /*
3366  * 'cpu' is going away. splice any existing rq_list entries from this
3367  * software queue to the hw queue dispatch list, and ensure that it
3368  * gets run.
3369  */
3370 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3371 {
3372 	struct blk_mq_hw_ctx *hctx;
3373 	struct blk_mq_ctx *ctx;
3374 	LIST_HEAD(tmp);
3375 	enum hctx_type type;
3376 
3377 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3378 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3379 		return 0;
3380 
3381 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3382 	type = hctx->type;
3383 
3384 	spin_lock(&ctx->lock);
3385 	if (!list_empty(&ctx->rq_lists[type])) {
3386 		list_splice_init(&ctx->rq_lists[type], &tmp);
3387 		blk_mq_hctx_clear_pending(hctx, ctx);
3388 	}
3389 	spin_unlock(&ctx->lock);
3390 
3391 	if (list_empty(&tmp))
3392 		return 0;
3393 
3394 	spin_lock(&hctx->lock);
3395 	list_splice_tail_init(&tmp, &hctx->dispatch);
3396 	spin_unlock(&hctx->lock);
3397 
3398 	blk_mq_run_hw_queue(hctx, true);
3399 	return 0;
3400 }
3401 
3402 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3403 {
3404 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3405 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3406 						    &hctx->cpuhp_online);
3407 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3408 					    &hctx->cpuhp_dead);
3409 }
3410 
3411 /*
3412  * Before freeing hw queue, clearing the flush request reference in
3413  * tags->rqs[] for avoiding potential UAF.
3414  */
3415 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3416 		unsigned int queue_depth, struct request *flush_rq)
3417 {
3418 	int i;
3419 	unsigned long flags;
3420 
3421 	/* The hw queue may not be mapped yet */
3422 	if (!tags)
3423 		return;
3424 
3425 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3426 
3427 	for (i = 0; i < queue_depth; i++)
3428 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3429 
3430 	/*
3431 	 * Wait until all pending iteration is done.
3432 	 *
3433 	 * Request reference is cleared and it is guaranteed to be observed
3434 	 * after the ->lock is released.
3435 	 */
3436 	spin_lock_irqsave(&tags->lock, flags);
3437 	spin_unlock_irqrestore(&tags->lock, flags);
3438 }
3439 
3440 /* hctx->ctxs will be freed in queue's release handler */
3441 static void blk_mq_exit_hctx(struct request_queue *q,
3442 		struct blk_mq_tag_set *set,
3443 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3444 {
3445 	struct request *flush_rq = hctx->fq->flush_rq;
3446 
3447 	if (blk_mq_hw_queue_mapped(hctx))
3448 		blk_mq_tag_idle(hctx);
3449 
3450 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3451 			set->queue_depth, flush_rq);
3452 	if (set->ops->exit_request)
3453 		set->ops->exit_request(set, flush_rq, hctx_idx);
3454 
3455 	if (set->ops->exit_hctx)
3456 		set->ops->exit_hctx(hctx, hctx_idx);
3457 
3458 	blk_mq_remove_cpuhp(hctx);
3459 
3460 	xa_erase(&q->hctx_table, hctx_idx);
3461 
3462 	spin_lock(&q->unused_hctx_lock);
3463 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3464 	spin_unlock(&q->unused_hctx_lock);
3465 }
3466 
3467 static void blk_mq_exit_hw_queues(struct request_queue *q,
3468 		struct blk_mq_tag_set *set, int nr_queue)
3469 {
3470 	struct blk_mq_hw_ctx *hctx;
3471 	unsigned long i;
3472 
3473 	queue_for_each_hw_ctx(q, hctx, i) {
3474 		if (i == nr_queue)
3475 			break;
3476 		blk_mq_exit_hctx(q, set, hctx, i);
3477 	}
3478 }
3479 
3480 static int blk_mq_init_hctx(struct request_queue *q,
3481 		struct blk_mq_tag_set *set,
3482 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3483 {
3484 	hctx->queue_num = hctx_idx;
3485 
3486 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3487 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3488 				&hctx->cpuhp_online);
3489 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3490 
3491 	hctx->tags = set->tags[hctx_idx];
3492 
3493 	if (set->ops->init_hctx &&
3494 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3495 		goto unregister_cpu_notifier;
3496 
3497 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3498 				hctx->numa_node))
3499 		goto exit_hctx;
3500 
3501 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3502 		goto exit_flush_rq;
3503 
3504 	return 0;
3505 
3506  exit_flush_rq:
3507 	if (set->ops->exit_request)
3508 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3509  exit_hctx:
3510 	if (set->ops->exit_hctx)
3511 		set->ops->exit_hctx(hctx, hctx_idx);
3512  unregister_cpu_notifier:
3513 	blk_mq_remove_cpuhp(hctx);
3514 	return -1;
3515 }
3516 
3517 static struct blk_mq_hw_ctx *
3518 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3519 		int node)
3520 {
3521 	struct blk_mq_hw_ctx *hctx;
3522 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3523 
3524 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3525 	if (!hctx)
3526 		goto fail_alloc_hctx;
3527 
3528 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3529 		goto free_hctx;
3530 
3531 	atomic_set(&hctx->nr_active, 0);
3532 	if (node == NUMA_NO_NODE)
3533 		node = set->numa_node;
3534 	hctx->numa_node = node;
3535 
3536 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3537 	spin_lock_init(&hctx->lock);
3538 	INIT_LIST_HEAD(&hctx->dispatch);
3539 	hctx->queue = q;
3540 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3541 
3542 	INIT_LIST_HEAD(&hctx->hctx_list);
3543 
3544 	/*
3545 	 * Allocate space for all possible cpus to avoid allocation at
3546 	 * runtime
3547 	 */
3548 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3549 			gfp, node);
3550 	if (!hctx->ctxs)
3551 		goto free_cpumask;
3552 
3553 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3554 				gfp, node, false, false))
3555 		goto free_ctxs;
3556 	hctx->nr_ctx = 0;
3557 
3558 	spin_lock_init(&hctx->dispatch_wait_lock);
3559 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3560 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3561 
3562 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3563 	if (!hctx->fq)
3564 		goto free_bitmap;
3565 
3566 	blk_mq_hctx_kobj_init(hctx);
3567 
3568 	return hctx;
3569 
3570  free_bitmap:
3571 	sbitmap_free(&hctx->ctx_map);
3572  free_ctxs:
3573 	kfree(hctx->ctxs);
3574  free_cpumask:
3575 	free_cpumask_var(hctx->cpumask);
3576  free_hctx:
3577 	kfree(hctx);
3578  fail_alloc_hctx:
3579 	return NULL;
3580 }
3581 
3582 static void blk_mq_init_cpu_queues(struct request_queue *q,
3583 				   unsigned int nr_hw_queues)
3584 {
3585 	struct blk_mq_tag_set *set = q->tag_set;
3586 	unsigned int i, j;
3587 
3588 	for_each_possible_cpu(i) {
3589 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3590 		struct blk_mq_hw_ctx *hctx;
3591 		int k;
3592 
3593 		__ctx->cpu = i;
3594 		spin_lock_init(&__ctx->lock);
3595 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3596 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3597 
3598 		__ctx->queue = q;
3599 
3600 		/*
3601 		 * Set local node, IFF we have more than one hw queue. If
3602 		 * not, we remain on the home node of the device
3603 		 */
3604 		for (j = 0; j < set->nr_maps; j++) {
3605 			hctx = blk_mq_map_queue_type(q, j, i);
3606 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3607 				hctx->numa_node = cpu_to_node(i);
3608 		}
3609 	}
3610 }
3611 
3612 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3613 					     unsigned int hctx_idx,
3614 					     unsigned int depth)
3615 {
3616 	struct blk_mq_tags *tags;
3617 	int ret;
3618 
3619 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3620 	if (!tags)
3621 		return NULL;
3622 
3623 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3624 	if (ret) {
3625 		blk_mq_free_rq_map(tags);
3626 		return NULL;
3627 	}
3628 
3629 	return tags;
3630 }
3631 
3632 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3633 				       int hctx_idx)
3634 {
3635 	if (blk_mq_is_shared_tags(set->flags)) {
3636 		set->tags[hctx_idx] = set->shared_tags;
3637 
3638 		return true;
3639 	}
3640 
3641 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3642 						       set->queue_depth);
3643 
3644 	return set->tags[hctx_idx];
3645 }
3646 
3647 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3648 			     struct blk_mq_tags *tags,
3649 			     unsigned int hctx_idx)
3650 {
3651 	if (tags) {
3652 		blk_mq_free_rqs(set, tags, hctx_idx);
3653 		blk_mq_free_rq_map(tags);
3654 	}
3655 }
3656 
3657 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3658 				      unsigned int hctx_idx)
3659 {
3660 	if (!blk_mq_is_shared_tags(set->flags))
3661 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3662 
3663 	set->tags[hctx_idx] = NULL;
3664 }
3665 
3666 static void blk_mq_map_swqueue(struct request_queue *q)
3667 {
3668 	unsigned int j, hctx_idx;
3669 	unsigned long i;
3670 	struct blk_mq_hw_ctx *hctx;
3671 	struct blk_mq_ctx *ctx;
3672 	struct blk_mq_tag_set *set = q->tag_set;
3673 
3674 	queue_for_each_hw_ctx(q, hctx, i) {
3675 		cpumask_clear(hctx->cpumask);
3676 		hctx->nr_ctx = 0;
3677 		hctx->dispatch_from = NULL;
3678 	}
3679 
3680 	/*
3681 	 * Map software to hardware queues.
3682 	 *
3683 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3684 	 */
3685 	for_each_possible_cpu(i) {
3686 
3687 		ctx = per_cpu_ptr(q->queue_ctx, i);
3688 		for (j = 0; j < set->nr_maps; j++) {
3689 			if (!set->map[j].nr_queues) {
3690 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3691 						HCTX_TYPE_DEFAULT, i);
3692 				continue;
3693 			}
3694 			hctx_idx = set->map[j].mq_map[i];
3695 			/* unmapped hw queue can be remapped after CPU topo changed */
3696 			if (!set->tags[hctx_idx] &&
3697 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3698 				/*
3699 				 * If tags initialization fail for some hctx,
3700 				 * that hctx won't be brought online.  In this
3701 				 * case, remap the current ctx to hctx[0] which
3702 				 * is guaranteed to always have tags allocated
3703 				 */
3704 				set->map[j].mq_map[i] = 0;
3705 			}
3706 
3707 			hctx = blk_mq_map_queue_type(q, j, i);
3708 			ctx->hctxs[j] = hctx;
3709 			/*
3710 			 * If the CPU is already set in the mask, then we've
3711 			 * mapped this one already. This can happen if
3712 			 * devices share queues across queue maps.
3713 			 */
3714 			if (cpumask_test_cpu(i, hctx->cpumask))
3715 				continue;
3716 
3717 			cpumask_set_cpu(i, hctx->cpumask);
3718 			hctx->type = j;
3719 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3720 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3721 
3722 			/*
3723 			 * If the nr_ctx type overflows, we have exceeded the
3724 			 * amount of sw queues we can support.
3725 			 */
3726 			BUG_ON(!hctx->nr_ctx);
3727 		}
3728 
3729 		for (; j < HCTX_MAX_TYPES; j++)
3730 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3731 					HCTX_TYPE_DEFAULT, i);
3732 	}
3733 
3734 	queue_for_each_hw_ctx(q, hctx, i) {
3735 		/*
3736 		 * If no software queues are mapped to this hardware queue,
3737 		 * disable it and free the request entries.
3738 		 */
3739 		if (!hctx->nr_ctx) {
3740 			/* Never unmap queue 0.  We need it as a
3741 			 * fallback in case of a new remap fails
3742 			 * allocation
3743 			 */
3744 			if (i)
3745 				__blk_mq_free_map_and_rqs(set, i);
3746 
3747 			hctx->tags = NULL;
3748 			continue;
3749 		}
3750 
3751 		hctx->tags = set->tags[i];
3752 		WARN_ON(!hctx->tags);
3753 
3754 		/*
3755 		 * Set the map size to the number of mapped software queues.
3756 		 * This is more accurate and more efficient than looping
3757 		 * over all possibly mapped software queues.
3758 		 */
3759 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3760 
3761 		/*
3762 		 * Initialize batch roundrobin counts
3763 		 */
3764 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3765 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3766 	}
3767 }
3768 
3769 /*
3770  * Caller needs to ensure that we're either frozen/quiesced, or that
3771  * the queue isn't live yet.
3772  */
3773 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3774 {
3775 	struct blk_mq_hw_ctx *hctx;
3776 	unsigned long i;
3777 
3778 	queue_for_each_hw_ctx(q, hctx, i) {
3779 		if (shared) {
3780 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3781 		} else {
3782 			blk_mq_tag_idle(hctx);
3783 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3784 		}
3785 	}
3786 }
3787 
3788 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3789 					 bool shared)
3790 {
3791 	struct request_queue *q;
3792 
3793 	lockdep_assert_held(&set->tag_list_lock);
3794 
3795 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3796 		blk_mq_freeze_queue(q);
3797 		queue_set_hctx_shared(q, shared);
3798 		blk_mq_unfreeze_queue(q);
3799 	}
3800 }
3801 
3802 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3803 {
3804 	struct blk_mq_tag_set *set = q->tag_set;
3805 
3806 	mutex_lock(&set->tag_list_lock);
3807 	list_del(&q->tag_set_list);
3808 	if (list_is_singular(&set->tag_list)) {
3809 		/* just transitioned to unshared */
3810 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3811 		/* update existing queue */
3812 		blk_mq_update_tag_set_shared(set, false);
3813 	}
3814 	mutex_unlock(&set->tag_list_lock);
3815 	INIT_LIST_HEAD(&q->tag_set_list);
3816 }
3817 
3818 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3819 				     struct request_queue *q)
3820 {
3821 	mutex_lock(&set->tag_list_lock);
3822 
3823 	/*
3824 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3825 	 */
3826 	if (!list_empty(&set->tag_list) &&
3827 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3828 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3829 		/* update existing queue */
3830 		blk_mq_update_tag_set_shared(set, true);
3831 	}
3832 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3833 		queue_set_hctx_shared(q, true);
3834 	list_add_tail(&q->tag_set_list, &set->tag_list);
3835 
3836 	mutex_unlock(&set->tag_list_lock);
3837 }
3838 
3839 /* All allocations will be freed in release handler of q->mq_kobj */
3840 static int blk_mq_alloc_ctxs(struct request_queue *q)
3841 {
3842 	struct blk_mq_ctxs *ctxs;
3843 	int cpu;
3844 
3845 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3846 	if (!ctxs)
3847 		return -ENOMEM;
3848 
3849 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3850 	if (!ctxs->queue_ctx)
3851 		goto fail;
3852 
3853 	for_each_possible_cpu(cpu) {
3854 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3855 		ctx->ctxs = ctxs;
3856 	}
3857 
3858 	q->mq_kobj = &ctxs->kobj;
3859 	q->queue_ctx = ctxs->queue_ctx;
3860 
3861 	return 0;
3862  fail:
3863 	kfree(ctxs);
3864 	return -ENOMEM;
3865 }
3866 
3867 /*
3868  * It is the actual release handler for mq, but we do it from
3869  * request queue's release handler for avoiding use-after-free
3870  * and headache because q->mq_kobj shouldn't have been introduced,
3871  * but we can't group ctx/kctx kobj without it.
3872  */
3873 void blk_mq_release(struct request_queue *q)
3874 {
3875 	struct blk_mq_hw_ctx *hctx, *next;
3876 	unsigned long i;
3877 
3878 	queue_for_each_hw_ctx(q, hctx, i)
3879 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3880 
3881 	/* all hctx are in .unused_hctx_list now */
3882 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3883 		list_del_init(&hctx->hctx_list);
3884 		kobject_put(&hctx->kobj);
3885 	}
3886 
3887 	xa_destroy(&q->hctx_table);
3888 
3889 	/*
3890 	 * release .mq_kobj and sw queue's kobject now because
3891 	 * both share lifetime with request queue.
3892 	 */
3893 	blk_mq_sysfs_deinit(q);
3894 }
3895 
3896 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3897 		void *queuedata)
3898 {
3899 	struct request_queue *q;
3900 	int ret;
3901 
3902 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3903 	if (!q)
3904 		return ERR_PTR(-ENOMEM);
3905 	q->queuedata = queuedata;
3906 	ret = blk_mq_init_allocated_queue(set, q);
3907 	if (ret) {
3908 		blk_cleanup_queue(q);
3909 		return ERR_PTR(ret);
3910 	}
3911 	return q;
3912 }
3913 
3914 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3915 {
3916 	return blk_mq_init_queue_data(set, NULL);
3917 }
3918 EXPORT_SYMBOL(blk_mq_init_queue);
3919 
3920 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3921 		struct lock_class_key *lkclass)
3922 {
3923 	struct request_queue *q;
3924 	struct gendisk *disk;
3925 
3926 	q = blk_mq_init_queue_data(set, queuedata);
3927 	if (IS_ERR(q))
3928 		return ERR_CAST(q);
3929 
3930 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3931 	if (!disk) {
3932 		blk_cleanup_queue(q);
3933 		return ERR_PTR(-ENOMEM);
3934 	}
3935 	return disk;
3936 }
3937 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3938 
3939 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3940 		struct blk_mq_tag_set *set, struct request_queue *q,
3941 		int hctx_idx, int node)
3942 {
3943 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3944 
3945 	/* reuse dead hctx first */
3946 	spin_lock(&q->unused_hctx_lock);
3947 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3948 		if (tmp->numa_node == node) {
3949 			hctx = tmp;
3950 			break;
3951 		}
3952 	}
3953 	if (hctx)
3954 		list_del_init(&hctx->hctx_list);
3955 	spin_unlock(&q->unused_hctx_lock);
3956 
3957 	if (!hctx)
3958 		hctx = blk_mq_alloc_hctx(q, set, node);
3959 	if (!hctx)
3960 		goto fail;
3961 
3962 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3963 		goto free_hctx;
3964 
3965 	return hctx;
3966 
3967  free_hctx:
3968 	kobject_put(&hctx->kobj);
3969  fail:
3970 	return NULL;
3971 }
3972 
3973 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3974 						struct request_queue *q)
3975 {
3976 	struct blk_mq_hw_ctx *hctx;
3977 	unsigned long i, j;
3978 
3979 	/* protect against switching io scheduler  */
3980 	mutex_lock(&q->sysfs_lock);
3981 	for (i = 0; i < set->nr_hw_queues; i++) {
3982 		int old_node;
3983 		int node = blk_mq_get_hctx_node(set, i);
3984 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3985 
3986 		if (old_hctx) {
3987 			old_node = old_hctx->numa_node;
3988 			blk_mq_exit_hctx(q, set, old_hctx, i);
3989 		}
3990 
3991 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3992 			if (!old_hctx)
3993 				break;
3994 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3995 					node, old_node);
3996 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3997 			WARN_ON_ONCE(!hctx);
3998 		}
3999 	}
4000 	/*
4001 	 * Increasing nr_hw_queues fails. Free the newly allocated
4002 	 * hctxs and keep the previous q->nr_hw_queues.
4003 	 */
4004 	if (i != set->nr_hw_queues) {
4005 		j = q->nr_hw_queues;
4006 	} else {
4007 		j = i;
4008 		q->nr_hw_queues = set->nr_hw_queues;
4009 	}
4010 
4011 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4012 		blk_mq_exit_hctx(q, set, hctx, j);
4013 	mutex_unlock(&q->sysfs_lock);
4014 }
4015 
4016 static void blk_mq_update_poll_flag(struct request_queue *q)
4017 {
4018 	struct blk_mq_tag_set *set = q->tag_set;
4019 
4020 	if (set->nr_maps > HCTX_TYPE_POLL &&
4021 	    set->map[HCTX_TYPE_POLL].nr_queues)
4022 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4023 	else
4024 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4025 }
4026 
4027 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4028 		struct request_queue *q)
4029 {
4030 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4031 			!!(set->flags & BLK_MQ_F_BLOCKING));
4032 
4033 	/* mark the queue as mq asap */
4034 	q->mq_ops = set->ops;
4035 
4036 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4037 					     blk_mq_poll_stats_bkt,
4038 					     BLK_MQ_POLL_STATS_BKTS, q);
4039 	if (!q->poll_cb)
4040 		goto err_exit;
4041 
4042 	if (blk_mq_alloc_ctxs(q))
4043 		goto err_poll;
4044 
4045 	/* init q->mq_kobj and sw queues' kobjects */
4046 	blk_mq_sysfs_init(q);
4047 
4048 	INIT_LIST_HEAD(&q->unused_hctx_list);
4049 	spin_lock_init(&q->unused_hctx_lock);
4050 
4051 	xa_init(&q->hctx_table);
4052 
4053 	blk_mq_realloc_hw_ctxs(set, q);
4054 	if (!q->nr_hw_queues)
4055 		goto err_hctxs;
4056 
4057 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4058 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4059 
4060 	q->tag_set = set;
4061 
4062 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4063 	blk_mq_update_poll_flag(q);
4064 
4065 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4066 	INIT_LIST_HEAD(&q->requeue_list);
4067 	spin_lock_init(&q->requeue_lock);
4068 
4069 	q->nr_requests = set->queue_depth;
4070 
4071 	/*
4072 	 * Default to classic polling
4073 	 */
4074 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4075 
4076 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4077 	blk_mq_add_queue_tag_set(set, q);
4078 	blk_mq_map_swqueue(q);
4079 	return 0;
4080 
4081 err_hctxs:
4082 	xa_destroy(&q->hctx_table);
4083 	q->nr_hw_queues = 0;
4084 	blk_mq_sysfs_deinit(q);
4085 err_poll:
4086 	blk_stat_free_callback(q->poll_cb);
4087 	q->poll_cb = NULL;
4088 err_exit:
4089 	q->mq_ops = NULL;
4090 	return -ENOMEM;
4091 }
4092 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4093 
4094 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4095 void blk_mq_exit_queue(struct request_queue *q)
4096 {
4097 	struct blk_mq_tag_set *set = q->tag_set;
4098 
4099 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4100 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4101 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4102 	blk_mq_del_queue_tag_set(q);
4103 }
4104 
4105 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4106 {
4107 	int i;
4108 
4109 	if (blk_mq_is_shared_tags(set->flags)) {
4110 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4111 						BLK_MQ_NO_HCTX_IDX,
4112 						set->queue_depth);
4113 		if (!set->shared_tags)
4114 			return -ENOMEM;
4115 	}
4116 
4117 	for (i = 0; i < set->nr_hw_queues; i++) {
4118 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4119 			goto out_unwind;
4120 		cond_resched();
4121 	}
4122 
4123 	return 0;
4124 
4125 out_unwind:
4126 	while (--i >= 0)
4127 		__blk_mq_free_map_and_rqs(set, i);
4128 
4129 	if (blk_mq_is_shared_tags(set->flags)) {
4130 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4131 					BLK_MQ_NO_HCTX_IDX);
4132 	}
4133 
4134 	return -ENOMEM;
4135 }
4136 
4137 /*
4138  * Allocate the request maps associated with this tag_set. Note that this
4139  * may reduce the depth asked for, if memory is tight. set->queue_depth
4140  * will be updated to reflect the allocated depth.
4141  */
4142 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4143 {
4144 	unsigned int depth;
4145 	int err;
4146 
4147 	depth = set->queue_depth;
4148 	do {
4149 		err = __blk_mq_alloc_rq_maps(set);
4150 		if (!err)
4151 			break;
4152 
4153 		set->queue_depth >>= 1;
4154 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4155 			err = -ENOMEM;
4156 			break;
4157 		}
4158 	} while (set->queue_depth);
4159 
4160 	if (!set->queue_depth || err) {
4161 		pr_err("blk-mq: failed to allocate request map\n");
4162 		return -ENOMEM;
4163 	}
4164 
4165 	if (depth != set->queue_depth)
4166 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4167 						depth, set->queue_depth);
4168 
4169 	return 0;
4170 }
4171 
4172 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4173 {
4174 	/*
4175 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4176 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4177 	 * number of hardware queues.
4178 	 */
4179 	if (set->nr_maps == 1)
4180 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4181 
4182 	if (set->ops->map_queues && !is_kdump_kernel()) {
4183 		int i;
4184 
4185 		/*
4186 		 * transport .map_queues is usually done in the following
4187 		 * way:
4188 		 *
4189 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4190 		 * 	mask = get_cpu_mask(queue)
4191 		 * 	for_each_cpu(cpu, mask)
4192 		 * 		set->map[x].mq_map[cpu] = queue;
4193 		 * }
4194 		 *
4195 		 * When we need to remap, the table has to be cleared for
4196 		 * killing stale mapping since one CPU may not be mapped
4197 		 * to any hw queue.
4198 		 */
4199 		for (i = 0; i < set->nr_maps; i++)
4200 			blk_mq_clear_mq_map(&set->map[i]);
4201 
4202 		return set->ops->map_queues(set);
4203 	} else {
4204 		BUG_ON(set->nr_maps > 1);
4205 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4206 	}
4207 }
4208 
4209 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4210 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4211 {
4212 	struct blk_mq_tags **new_tags;
4213 
4214 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4215 		return 0;
4216 
4217 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4218 				GFP_KERNEL, set->numa_node);
4219 	if (!new_tags)
4220 		return -ENOMEM;
4221 
4222 	if (set->tags)
4223 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4224 		       sizeof(*set->tags));
4225 	kfree(set->tags);
4226 	set->tags = new_tags;
4227 	set->nr_hw_queues = new_nr_hw_queues;
4228 
4229 	return 0;
4230 }
4231 
4232 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4233 				int new_nr_hw_queues)
4234 {
4235 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4236 }
4237 
4238 /*
4239  * Alloc a tag set to be associated with one or more request queues.
4240  * May fail with EINVAL for various error conditions. May adjust the
4241  * requested depth down, if it's too large. In that case, the set
4242  * value will be stored in set->queue_depth.
4243  */
4244 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4245 {
4246 	int i, ret;
4247 
4248 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4249 
4250 	if (!set->nr_hw_queues)
4251 		return -EINVAL;
4252 	if (!set->queue_depth)
4253 		return -EINVAL;
4254 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4255 		return -EINVAL;
4256 
4257 	if (!set->ops->queue_rq)
4258 		return -EINVAL;
4259 
4260 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4261 		return -EINVAL;
4262 
4263 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4264 		pr_info("blk-mq: reduced tag depth to %u\n",
4265 			BLK_MQ_MAX_DEPTH);
4266 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4267 	}
4268 
4269 	if (!set->nr_maps)
4270 		set->nr_maps = 1;
4271 	else if (set->nr_maps > HCTX_MAX_TYPES)
4272 		return -EINVAL;
4273 
4274 	/*
4275 	 * If a crashdump is active, then we are potentially in a very
4276 	 * memory constrained environment. Limit us to 1 queue and
4277 	 * 64 tags to prevent using too much memory.
4278 	 */
4279 	if (is_kdump_kernel()) {
4280 		set->nr_hw_queues = 1;
4281 		set->nr_maps = 1;
4282 		set->queue_depth = min(64U, set->queue_depth);
4283 	}
4284 	/*
4285 	 * There is no use for more h/w queues than cpus if we just have
4286 	 * a single map
4287 	 */
4288 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4289 		set->nr_hw_queues = nr_cpu_ids;
4290 
4291 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4292 		return -ENOMEM;
4293 
4294 	ret = -ENOMEM;
4295 	for (i = 0; i < set->nr_maps; i++) {
4296 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4297 						  sizeof(set->map[i].mq_map[0]),
4298 						  GFP_KERNEL, set->numa_node);
4299 		if (!set->map[i].mq_map)
4300 			goto out_free_mq_map;
4301 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4302 	}
4303 
4304 	ret = blk_mq_update_queue_map(set);
4305 	if (ret)
4306 		goto out_free_mq_map;
4307 
4308 	ret = blk_mq_alloc_set_map_and_rqs(set);
4309 	if (ret)
4310 		goto out_free_mq_map;
4311 
4312 	mutex_init(&set->tag_list_lock);
4313 	INIT_LIST_HEAD(&set->tag_list);
4314 
4315 	return 0;
4316 
4317 out_free_mq_map:
4318 	for (i = 0; i < set->nr_maps; i++) {
4319 		kfree(set->map[i].mq_map);
4320 		set->map[i].mq_map = NULL;
4321 	}
4322 	kfree(set->tags);
4323 	set->tags = NULL;
4324 	return ret;
4325 }
4326 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4327 
4328 /* allocate and initialize a tagset for a simple single-queue device */
4329 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4330 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4331 		unsigned int set_flags)
4332 {
4333 	memset(set, 0, sizeof(*set));
4334 	set->ops = ops;
4335 	set->nr_hw_queues = 1;
4336 	set->nr_maps = 1;
4337 	set->queue_depth = queue_depth;
4338 	set->numa_node = NUMA_NO_NODE;
4339 	set->flags = set_flags;
4340 	return blk_mq_alloc_tag_set(set);
4341 }
4342 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4343 
4344 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4345 {
4346 	int i, j;
4347 
4348 	for (i = 0; i < set->nr_hw_queues; i++)
4349 		__blk_mq_free_map_and_rqs(set, i);
4350 
4351 	if (blk_mq_is_shared_tags(set->flags)) {
4352 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4353 					BLK_MQ_NO_HCTX_IDX);
4354 	}
4355 
4356 	for (j = 0; j < set->nr_maps; j++) {
4357 		kfree(set->map[j].mq_map);
4358 		set->map[j].mq_map = NULL;
4359 	}
4360 
4361 	kfree(set->tags);
4362 	set->tags = NULL;
4363 }
4364 EXPORT_SYMBOL(blk_mq_free_tag_set);
4365 
4366 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4367 {
4368 	struct blk_mq_tag_set *set = q->tag_set;
4369 	struct blk_mq_hw_ctx *hctx;
4370 	int ret;
4371 	unsigned long i;
4372 
4373 	if (!set)
4374 		return -EINVAL;
4375 
4376 	if (q->nr_requests == nr)
4377 		return 0;
4378 
4379 	blk_mq_freeze_queue(q);
4380 	blk_mq_quiesce_queue(q);
4381 
4382 	ret = 0;
4383 	queue_for_each_hw_ctx(q, hctx, i) {
4384 		if (!hctx->tags)
4385 			continue;
4386 		/*
4387 		 * If we're using an MQ scheduler, just update the scheduler
4388 		 * queue depth. This is similar to what the old code would do.
4389 		 */
4390 		if (hctx->sched_tags) {
4391 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4392 						      nr, true);
4393 		} else {
4394 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4395 						      false);
4396 		}
4397 		if (ret)
4398 			break;
4399 		if (q->elevator && q->elevator->type->ops.depth_updated)
4400 			q->elevator->type->ops.depth_updated(hctx);
4401 	}
4402 	if (!ret) {
4403 		q->nr_requests = nr;
4404 		if (blk_mq_is_shared_tags(set->flags)) {
4405 			if (q->elevator)
4406 				blk_mq_tag_update_sched_shared_tags(q);
4407 			else
4408 				blk_mq_tag_resize_shared_tags(set, nr);
4409 		}
4410 	}
4411 
4412 	blk_mq_unquiesce_queue(q);
4413 	blk_mq_unfreeze_queue(q);
4414 
4415 	return ret;
4416 }
4417 
4418 /*
4419  * request_queue and elevator_type pair.
4420  * It is just used by __blk_mq_update_nr_hw_queues to cache
4421  * the elevator_type associated with a request_queue.
4422  */
4423 struct blk_mq_qe_pair {
4424 	struct list_head node;
4425 	struct request_queue *q;
4426 	struct elevator_type *type;
4427 };
4428 
4429 /*
4430  * Cache the elevator_type in qe pair list and switch the
4431  * io scheduler to 'none'
4432  */
4433 static bool blk_mq_elv_switch_none(struct list_head *head,
4434 		struct request_queue *q)
4435 {
4436 	struct blk_mq_qe_pair *qe;
4437 
4438 	if (!q->elevator)
4439 		return true;
4440 
4441 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4442 	if (!qe)
4443 		return false;
4444 
4445 	INIT_LIST_HEAD(&qe->node);
4446 	qe->q = q;
4447 	qe->type = q->elevator->type;
4448 	list_add(&qe->node, head);
4449 
4450 	mutex_lock(&q->sysfs_lock);
4451 	/*
4452 	 * After elevator_switch_mq, the previous elevator_queue will be
4453 	 * released by elevator_release. The reference of the io scheduler
4454 	 * module get by elevator_get will also be put. So we need to get
4455 	 * a reference of the io scheduler module here to prevent it to be
4456 	 * removed.
4457 	 */
4458 	__module_get(qe->type->elevator_owner);
4459 	elevator_switch_mq(q, NULL);
4460 	mutex_unlock(&q->sysfs_lock);
4461 
4462 	return true;
4463 }
4464 
4465 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4466 						struct request_queue *q)
4467 {
4468 	struct blk_mq_qe_pair *qe;
4469 
4470 	list_for_each_entry(qe, head, node)
4471 		if (qe->q == q)
4472 			return qe;
4473 
4474 	return NULL;
4475 }
4476 
4477 static void blk_mq_elv_switch_back(struct list_head *head,
4478 				  struct request_queue *q)
4479 {
4480 	struct blk_mq_qe_pair *qe;
4481 	struct elevator_type *t;
4482 
4483 	qe = blk_lookup_qe_pair(head, q);
4484 	if (!qe)
4485 		return;
4486 	t = qe->type;
4487 	list_del(&qe->node);
4488 	kfree(qe);
4489 
4490 	mutex_lock(&q->sysfs_lock);
4491 	elevator_switch_mq(q, t);
4492 	mutex_unlock(&q->sysfs_lock);
4493 }
4494 
4495 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4496 							int nr_hw_queues)
4497 {
4498 	struct request_queue *q;
4499 	LIST_HEAD(head);
4500 	int prev_nr_hw_queues;
4501 
4502 	lockdep_assert_held(&set->tag_list_lock);
4503 
4504 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4505 		nr_hw_queues = nr_cpu_ids;
4506 	if (nr_hw_queues < 1)
4507 		return;
4508 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4509 		return;
4510 
4511 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4512 		blk_mq_freeze_queue(q);
4513 	/*
4514 	 * Switch IO scheduler to 'none', cleaning up the data associated
4515 	 * with the previous scheduler. We will switch back once we are done
4516 	 * updating the new sw to hw queue mappings.
4517 	 */
4518 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4519 		if (!blk_mq_elv_switch_none(&head, q))
4520 			goto switch_back;
4521 
4522 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4523 		blk_mq_debugfs_unregister_hctxs(q);
4524 		blk_mq_sysfs_unregister(q);
4525 	}
4526 
4527 	prev_nr_hw_queues = set->nr_hw_queues;
4528 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4529 	    0)
4530 		goto reregister;
4531 
4532 	set->nr_hw_queues = nr_hw_queues;
4533 fallback:
4534 	blk_mq_update_queue_map(set);
4535 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4536 		blk_mq_realloc_hw_ctxs(set, q);
4537 		blk_mq_update_poll_flag(q);
4538 		if (q->nr_hw_queues != set->nr_hw_queues) {
4539 			int i = prev_nr_hw_queues;
4540 
4541 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4542 					nr_hw_queues, prev_nr_hw_queues);
4543 			for (; i < set->nr_hw_queues; i++)
4544 				__blk_mq_free_map_and_rqs(set, i);
4545 
4546 			set->nr_hw_queues = prev_nr_hw_queues;
4547 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4548 			goto fallback;
4549 		}
4550 		blk_mq_map_swqueue(q);
4551 	}
4552 
4553 reregister:
4554 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4555 		blk_mq_sysfs_register(q);
4556 		blk_mq_debugfs_register_hctxs(q);
4557 	}
4558 
4559 switch_back:
4560 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4561 		blk_mq_elv_switch_back(&head, q);
4562 
4563 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4564 		blk_mq_unfreeze_queue(q);
4565 }
4566 
4567 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4568 {
4569 	mutex_lock(&set->tag_list_lock);
4570 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4571 	mutex_unlock(&set->tag_list_lock);
4572 }
4573 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4574 
4575 /* Enable polling stats and return whether they were already enabled. */
4576 static bool blk_poll_stats_enable(struct request_queue *q)
4577 {
4578 	if (q->poll_stat)
4579 		return true;
4580 
4581 	return blk_stats_alloc_enable(q);
4582 }
4583 
4584 static void blk_mq_poll_stats_start(struct request_queue *q)
4585 {
4586 	/*
4587 	 * We don't arm the callback if polling stats are not enabled or the
4588 	 * callback is already active.
4589 	 */
4590 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4591 		return;
4592 
4593 	blk_stat_activate_msecs(q->poll_cb, 100);
4594 }
4595 
4596 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4597 {
4598 	struct request_queue *q = cb->data;
4599 	int bucket;
4600 
4601 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4602 		if (cb->stat[bucket].nr_samples)
4603 			q->poll_stat[bucket] = cb->stat[bucket];
4604 	}
4605 }
4606 
4607 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4608 				       struct request *rq)
4609 {
4610 	unsigned long ret = 0;
4611 	int bucket;
4612 
4613 	/*
4614 	 * If stats collection isn't on, don't sleep but turn it on for
4615 	 * future users
4616 	 */
4617 	if (!blk_poll_stats_enable(q))
4618 		return 0;
4619 
4620 	/*
4621 	 * As an optimistic guess, use half of the mean service time
4622 	 * for this type of request. We can (and should) make this smarter.
4623 	 * For instance, if the completion latencies are tight, we can
4624 	 * get closer than just half the mean. This is especially
4625 	 * important on devices where the completion latencies are longer
4626 	 * than ~10 usec. We do use the stats for the relevant IO size
4627 	 * if available which does lead to better estimates.
4628 	 */
4629 	bucket = blk_mq_poll_stats_bkt(rq);
4630 	if (bucket < 0)
4631 		return ret;
4632 
4633 	if (q->poll_stat[bucket].nr_samples)
4634 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4635 
4636 	return ret;
4637 }
4638 
4639 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4640 {
4641 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4642 	struct request *rq = blk_qc_to_rq(hctx, qc);
4643 	struct hrtimer_sleeper hs;
4644 	enum hrtimer_mode mode;
4645 	unsigned int nsecs;
4646 	ktime_t kt;
4647 
4648 	/*
4649 	 * If a request has completed on queue that uses an I/O scheduler, we
4650 	 * won't get back a request from blk_qc_to_rq.
4651 	 */
4652 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4653 		return false;
4654 
4655 	/*
4656 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4657 	 *
4658 	 *  0:	use half of prev avg
4659 	 * >0:	use this specific value
4660 	 */
4661 	if (q->poll_nsec > 0)
4662 		nsecs = q->poll_nsec;
4663 	else
4664 		nsecs = blk_mq_poll_nsecs(q, rq);
4665 
4666 	if (!nsecs)
4667 		return false;
4668 
4669 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4670 
4671 	/*
4672 	 * This will be replaced with the stats tracking code, using
4673 	 * 'avg_completion_time / 2' as the pre-sleep target.
4674 	 */
4675 	kt = nsecs;
4676 
4677 	mode = HRTIMER_MODE_REL;
4678 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4679 	hrtimer_set_expires(&hs.timer, kt);
4680 
4681 	do {
4682 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4683 			break;
4684 		set_current_state(TASK_UNINTERRUPTIBLE);
4685 		hrtimer_sleeper_start_expires(&hs, mode);
4686 		if (hs.task)
4687 			io_schedule();
4688 		hrtimer_cancel(&hs.timer);
4689 		mode = HRTIMER_MODE_ABS;
4690 	} while (hs.task && !signal_pending(current));
4691 
4692 	__set_current_state(TASK_RUNNING);
4693 	destroy_hrtimer_on_stack(&hs.timer);
4694 
4695 	/*
4696 	 * If we sleep, have the caller restart the poll loop to reset the
4697 	 * state.  Like for the other success return cases, the caller is
4698 	 * responsible for checking if the IO completed.  If the IO isn't
4699 	 * complete, we'll get called again and will go straight to the busy
4700 	 * poll loop.
4701 	 */
4702 	return true;
4703 }
4704 
4705 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4706 			       struct io_comp_batch *iob, unsigned int flags)
4707 {
4708 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4709 	long state = get_current_state();
4710 	int ret;
4711 
4712 	do {
4713 		ret = q->mq_ops->poll(hctx, iob);
4714 		if (ret > 0) {
4715 			__set_current_state(TASK_RUNNING);
4716 			return ret;
4717 		}
4718 
4719 		if (signal_pending_state(state, current))
4720 			__set_current_state(TASK_RUNNING);
4721 		if (task_is_running(current))
4722 			return 1;
4723 
4724 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4725 			break;
4726 		cpu_relax();
4727 	} while (!need_resched());
4728 
4729 	__set_current_state(TASK_RUNNING);
4730 	return 0;
4731 }
4732 
4733 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4734 		unsigned int flags)
4735 {
4736 	if (!(flags & BLK_POLL_NOSLEEP) &&
4737 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4738 		if (blk_mq_poll_hybrid(q, cookie))
4739 			return 1;
4740 	}
4741 	return blk_mq_poll_classic(q, cookie, iob, flags);
4742 }
4743 
4744 unsigned int blk_mq_rq_cpu(struct request *rq)
4745 {
4746 	return rq->mq_ctx->cpu;
4747 }
4748 EXPORT_SYMBOL(blk_mq_rq_cpu);
4749 
4750 void blk_mq_cancel_work_sync(struct request_queue *q)
4751 {
4752 	if (queue_is_mq(q)) {
4753 		struct blk_mq_hw_ctx *hctx;
4754 		unsigned long i;
4755 
4756 		cancel_delayed_work_sync(&q->requeue_work);
4757 
4758 		queue_for_each_hw_ctx(q, hctx, i)
4759 			cancel_delayed_work_sync(&hctx->run_work);
4760 	}
4761 }
4762 
4763 static int __init blk_mq_init(void)
4764 {
4765 	int i;
4766 
4767 	for_each_possible_cpu(i)
4768 		init_llist_head(&per_cpu(blk_cpu_done, i));
4769 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4770 
4771 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4772 				  "block/softirq:dead", NULL,
4773 				  blk_softirq_cpu_dead);
4774 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4775 				blk_mq_hctx_notify_dead);
4776 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4777 				blk_mq_hctx_notify_online,
4778 				blk_mq_hctx_notify_offline);
4779 	return 0;
4780 }
4781 subsys_initcall(blk_mq_init);
4782