xref: /openbmc/linux/block/blk-mq.c (revision cc8bbe1a)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, unsigned int rw_flags)
163 {
164 	if (blk_queue_io_stat(q))
165 		rw_flags |= REQ_IO_STAT;
166 
167 	INIT_LIST_HEAD(&rq->queuelist);
168 	/* csd/requeue_work/fifo_time is initialized before use */
169 	rq->q = q;
170 	rq->mq_ctx = ctx;
171 	rq->cmd_flags |= rw_flags;
172 	/* do not touch atomic flags, it needs atomic ops against the timer */
173 	rq->cpu = -1;
174 	INIT_HLIST_NODE(&rq->hash);
175 	RB_CLEAR_NODE(&rq->rb_node);
176 	rq->rq_disk = NULL;
177 	rq->part = NULL;
178 	rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 	rq->rl = NULL;
181 	set_start_time_ns(rq);
182 	rq->io_start_time_ns = 0;
183 #endif
184 	rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 	rq->nr_integrity_segments = 0;
187 #endif
188 	rq->special = NULL;
189 	/* tag was already set */
190 	rq->errors = 0;
191 
192 	rq->cmd = rq->__cmd;
193 
194 	rq->extra_len = 0;
195 	rq->sense_len = 0;
196 	rq->resid_len = 0;
197 	rq->sense = NULL;
198 
199 	INIT_LIST_HEAD(&rq->timeout_list);
200 	rq->timeout = 0;
201 
202 	rq->end_io = NULL;
203 	rq->end_io_data = NULL;
204 	rq->next_rq = NULL;
205 
206 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208 
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 	struct request *rq;
213 	unsigned int tag;
214 
215 	tag = blk_mq_get_tag(data);
216 	if (tag != BLK_MQ_TAG_FAIL) {
217 		rq = data->hctx->tags->rqs[tag];
218 
219 		if (blk_mq_tag_busy(data->hctx)) {
220 			rq->cmd_flags = REQ_MQ_INFLIGHT;
221 			atomic_inc(&data->hctx->nr_active);
222 		}
223 
224 		rq->tag = tag;
225 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 		return rq;
227 	}
228 
229 	return NULL;
230 }
231 
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 		unsigned int flags)
234 {
235 	struct blk_mq_ctx *ctx;
236 	struct blk_mq_hw_ctx *hctx;
237 	struct request *rq;
238 	struct blk_mq_alloc_data alloc_data;
239 	int ret;
240 
241 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 	if (ret)
243 		return ERR_PTR(ret);
244 
245 	ctx = blk_mq_get_ctx(q);
246 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248 
249 	rq = __blk_mq_alloc_request(&alloc_data, rw);
250 	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 		__blk_mq_run_hw_queue(hctx);
252 		blk_mq_put_ctx(ctx);
253 
254 		ctx = blk_mq_get_ctx(q);
255 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
258 		ctx = alloc_data.ctx;
259 	}
260 	blk_mq_put_ctx(ctx);
261 	if (!rq) {
262 		blk_queue_exit(q);
263 		return ERR_PTR(-EWOULDBLOCK);
264 	}
265 	return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268 
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 				  struct blk_mq_ctx *ctx, struct request *rq)
271 {
272 	const int tag = rq->tag;
273 	struct request_queue *q = rq->q;
274 
275 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 		atomic_dec(&hctx->nr_active);
277 	rq->cmd_flags = 0;
278 
279 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281 	blk_queue_exit(q);
282 }
283 
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 {
286 	struct blk_mq_ctx *ctx = rq->mq_ctx;
287 
288 	ctx->rq_completed[rq_is_sync(rq)]++;
289 	__blk_mq_free_request(hctx, ctx, rq);
290 
291 }
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293 
294 void blk_mq_free_request(struct request *rq)
295 {
296 	struct blk_mq_hw_ctx *hctx;
297 	struct request_queue *q = rq->q;
298 
299 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 	blk_mq_free_hctx_request(hctx, rq);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_free_request);
303 
304 inline void __blk_mq_end_request(struct request *rq, int error)
305 {
306 	blk_account_io_done(rq);
307 
308 	if (rq->end_io) {
309 		rq->end_io(rq, error);
310 	} else {
311 		if (unlikely(blk_bidi_rq(rq)))
312 			blk_mq_free_request(rq->next_rq);
313 		blk_mq_free_request(rq);
314 	}
315 }
316 EXPORT_SYMBOL(__blk_mq_end_request);
317 
318 void blk_mq_end_request(struct request *rq, int error)
319 {
320 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 		BUG();
322 	__blk_mq_end_request(rq, error);
323 }
324 EXPORT_SYMBOL(blk_mq_end_request);
325 
326 static void __blk_mq_complete_request_remote(void *data)
327 {
328 	struct request *rq = data;
329 
330 	rq->q->softirq_done_fn(rq);
331 }
332 
333 static void blk_mq_ipi_complete_request(struct request *rq)
334 {
335 	struct blk_mq_ctx *ctx = rq->mq_ctx;
336 	bool shared = false;
337 	int cpu;
338 
339 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 		rq->q->softirq_done_fn(rq);
341 		return;
342 	}
343 
344 	cpu = get_cpu();
345 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 		shared = cpus_share_cache(cpu, ctx->cpu);
347 
348 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349 		rq->csd.func = __blk_mq_complete_request_remote;
350 		rq->csd.info = rq;
351 		rq->csd.flags = 0;
352 		smp_call_function_single_async(ctx->cpu, &rq->csd);
353 	} else {
354 		rq->q->softirq_done_fn(rq);
355 	}
356 	put_cpu();
357 }
358 
359 static void __blk_mq_complete_request(struct request *rq)
360 {
361 	struct request_queue *q = rq->q;
362 
363 	if (!q->softirq_done_fn)
364 		blk_mq_end_request(rq, rq->errors);
365 	else
366 		blk_mq_ipi_complete_request(rq);
367 }
368 
369 /**
370  * blk_mq_complete_request - end I/O on a request
371  * @rq:		the request being processed
372  *
373  * Description:
374  *	Ends all I/O on a request. It does not handle partial completions.
375  *	The actual completion happens out-of-order, through a IPI handler.
376  **/
377 void blk_mq_complete_request(struct request *rq, int error)
378 {
379 	struct request_queue *q = rq->q;
380 
381 	if (unlikely(blk_should_fake_timeout(q)))
382 		return;
383 	if (!blk_mark_rq_complete(rq)) {
384 		rq->errors = error;
385 		__blk_mq_complete_request(rq);
386 	}
387 }
388 EXPORT_SYMBOL(blk_mq_complete_request);
389 
390 int blk_mq_request_started(struct request *rq)
391 {
392 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_request_started);
395 
396 void blk_mq_start_request(struct request *rq)
397 {
398 	struct request_queue *q = rq->q;
399 
400 	trace_block_rq_issue(q, rq);
401 
402 	rq->resid_len = blk_rq_bytes(rq);
403 	if (unlikely(blk_bidi_rq(rq)))
404 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
405 
406 	blk_add_timer(rq);
407 
408 	/*
409 	 * Ensure that ->deadline is visible before set the started
410 	 * flag and clear the completed flag.
411 	 */
412 	smp_mb__before_atomic();
413 
414 	/*
415 	 * Mark us as started and clear complete. Complete might have been
416 	 * set if requeue raced with timeout, which then marked it as
417 	 * complete. So be sure to clear complete again when we start
418 	 * the request, otherwise we'll ignore the completion event.
419 	 */
420 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424 
425 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
426 		/*
427 		 * Make sure space for the drain appears.  We know we can do
428 		 * this because max_hw_segments has been adjusted to be one
429 		 * fewer than the device can handle.
430 		 */
431 		rq->nr_phys_segments++;
432 	}
433 }
434 EXPORT_SYMBOL(blk_mq_start_request);
435 
436 static void __blk_mq_requeue_request(struct request *rq)
437 {
438 	struct request_queue *q = rq->q;
439 
440 	trace_block_rq_requeue(q, rq);
441 
442 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 		if (q->dma_drain_size && blk_rq_bytes(rq))
444 			rq->nr_phys_segments--;
445 	}
446 }
447 
448 void blk_mq_requeue_request(struct request *rq)
449 {
450 	__blk_mq_requeue_request(rq);
451 
452 	BUG_ON(blk_queued_rq(rq));
453 	blk_mq_add_to_requeue_list(rq, true);
454 }
455 EXPORT_SYMBOL(blk_mq_requeue_request);
456 
457 static void blk_mq_requeue_work(struct work_struct *work)
458 {
459 	struct request_queue *q =
460 		container_of(work, struct request_queue, requeue_work);
461 	LIST_HEAD(rq_list);
462 	struct request *rq, *next;
463 	unsigned long flags;
464 
465 	spin_lock_irqsave(&q->requeue_lock, flags);
466 	list_splice_init(&q->requeue_list, &rq_list);
467 	spin_unlock_irqrestore(&q->requeue_lock, flags);
468 
469 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 			continue;
472 
473 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 		list_del_init(&rq->queuelist);
475 		blk_mq_insert_request(rq, true, false, false);
476 	}
477 
478 	while (!list_empty(&rq_list)) {
479 		rq = list_entry(rq_list.next, struct request, queuelist);
480 		list_del_init(&rq->queuelist);
481 		blk_mq_insert_request(rq, false, false, false);
482 	}
483 
484 	/*
485 	 * Use the start variant of queue running here, so that running
486 	 * the requeue work will kick stopped queues.
487 	 */
488 	blk_mq_start_hw_queues(q);
489 }
490 
491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
492 {
493 	struct request_queue *q = rq->q;
494 	unsigned long flags;
495 
496 	/*
497 	 * We abuse this flag that is otherwise used by the I/O scheduler to
498 	 * request head insertation from the workqueue.
499 	 */
500 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
501 
502 	spin_lock_irqsave(&q->requeue_lock, flags);
503 	if (at_head) {
504 		rq->cmd_flags |= REQ_SOFTBARRIER;
505 		list_add(&rq->queuelist, &q->requeue_list);
506 	} else {
507 		list_add_tail(&rq->queuelist, &q->requeue_list);
508 	}
509 	spin_unlock_irqrestore(&q->requeue_lock, flags);
510 }
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
512 
513 void blk_mq_cancel_requeue_work(struct request_queue *q)
514 {
515 	cancel_work_sync(&q->requeue_work);
516 }
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
518 
519 void blk_mq_kick_requeue_list(struct request_queue *q)
520 {
521 	kblockd_schedule_work(&q->requeue_work);
522 }
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524 
525 void blk_mq_abort_requeue_list(struct request_queue *q)
526 {
527 	unsigned long flags;
528 	LIST_HEAD(rq_list);
529 
530 	spin_lock_irqsave(&q->requeue_lock, flags);
531 	list_splice_init(&q->requeue_list, &rq_list);
532 	spin_unlock_irqrestore(&q->requeue_lock, flags);
533 
534 	while (!list_empty(&rq_list)) {
535 		struct request *rq;
536 
537 		rq = list_first_entry(&rq_list, struct request, queuelist);
538 		list_del_init(&rq->queuelist);
539 		rq->errors = -EIO;
540 		blk_mq_end_request(rq, rq->errors);
541 	}
542 }
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
544 
545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
546 {
547 	return tags->rqs[tag];
548 }
549 EXPORT_SYMBOL(blk_mq_tag_to_rq);
550 
551 struct blk_mq_timeout_data {
552 	unsigned long next;
553 	unsigned int next_set;
554 };
555 
556 void blk_mq_rq_timed_out(struct request *req, bool reserved)
557 {
558 	struct blk_mq_ops *ops = req->q->mq_ops;
559 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560 
561 	/*
562 	 * We know that complete is set at this point. If STARTED isn't set
563 	 * anymore, then the request isn't active and the "timeout" should
564 	 * just be ignored. This can happen due to the bitflag ordering.
565 	 * Timeout first checks if STARTED is set, and if it is, assumes
566 	 * the request is active. But if we race with completion, then
567 	 * we both flags will get cleared. So check here again, and ignore
568 	 * a timeout event with a request that isn't active.
569 	 */
570 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
571 		return;
572 
573 	if (ops->timeout)
574 		ret = ops->timeout(req, reserved);
575 
576 	switch (ret) {
577 	case BLK_EH_HANDLED:
578 		__blk_mq_complete_request(req);
579 		break;
580 	case BLK_EH_RESET_TIMER:
581 		blk_add_timer(req);
582 		blk_clear_rq_complete(req);
583 		break;
584 	case BLK_EH_NOT_HANDLED:
585 		break;
586 	default:
587 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
588 		break;
589 	}
590 }
591 
592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
593 		struct request *rq, void *priv, bool reserved)
594 {
595 	struct blk_mq_timeout_data *data = priv;
596 
597 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
598 		/*
599 		 * If a request wasn't started before the queue was
600 		 * marked dying, kill it here or it'll go unnoticed.
601 		 */
602 		if (unlikely(blk_queue_dying(rq->q))) {
603 			rq->errors = -EIO;
604 			blk_mq_end_request(rq, rq->errors);
605 		}
606 		return;
607 	}
608 
609 	if (time_after_eq(jiffies, rq->deadline)) {
610 		if (!blk_mark_rq_complete(rq))
611 			blk_mq_rq_timed_out(rq, reserved);
612 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
613 		data->next = rq->deadline;
614 		data->next_set = 1;
615 	}
616 }
617 
618 static void blk_mq_timeout_work(struct work_struct *work)
619 {
620 	struct request_queue *q =
621 		container_of(work, struct request_queue, timeout_work);
622 	struct blk_mq_timeout_data data = {
623 		.next		= 0,
624 		.next_set	= 0,
625 	};
626 	int i;
627 
628 	if (blk_queue_enter(q, true))
629 		return;
630 
631 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
632 
633 	if (data.next_set) {
634 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
635 		mod_timer(&q->timeout, data.next);
636 	} else {
637 		struct blk_mq_hw_ctx *hctx;
638 
639 		queue_for_each_hw_ctx(q, hctx, i) {
640 			/* the hctx may be unmapped, so check it here */
641 			if (blk_mq_hw_queue_mapped(hctx))
642 				blk_mq_tag_idle(hctx);
643 		}
644 	}
645 	blk_queue_exit(q);
646 }
647 
648 /*
649  * Reverse check our software queue for entries that we could potentially
650  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
651  * too much time checking for merges.
652  */
653 static bool blk_mq_attempt_merge(struct request_queue *q,
654 				 struct blk_mq_ctx *ctx, struct bio *bio)
655 {
656 	struct request *rq;
657 	int checked = 8;
658 
659 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
660 		int el_ret;
661 
662 		if (!checked--)
663 			break;
664 
665 		if (!blk_rq_merge_ok(rq, bio))
666 			continue;
667 
668 		el_ret = blk_try_merge(rq, bio);
669 		if (el_ret == ELEVATOR_BACK_MERGE) {
670 			if (bio_attempt_back_merge(q, rq, bio)) {
671 				ctx->rq_merged++;
672 				return true;
673 			}
674 			break;
675 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
676 			if (bio_attempt_front_merge(q, rq, bio)) {
677 				ctx->rq_merged++;
678 				return true;
679 			}
680 			break;
681 		}
682 	}
683 
684 	return false;
685 }
686 
687 /*
688  * Process software queues that have been marked busy, splicing them
689  * to the for-dispatch
690  */
691 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
692 {
693 	struct blk_mq_ctx *ctx;
694 	int i;
695 
696 	for (i = 0; i < hctx->ctx_map.size; i++) {
697 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
698 		unsigned int off, bit;
699 
700 		if (!bm->word)
701 			continue;
702 
703 		bit = 0;
704 		off = i * hctx->ctx_map.bits_per_word;
705 		do {
706 			bit = find_next_bit(&bm->word, bm->depth, bit);
707 			if (bit >= bm->depth)
708 				break;
709 
710 			ctx = hctx->ctxs[bit + off];
711 			clear_bit(bit, &bm->word);
712 			spin_lock(&ctx->lock);
713 			list_splice_tail_init(&ctx->rq_list, list);
714 			spin_unlock(&ctx->lock);
715 
716 			bit++;
717 		} while (1);
718 	}
719 }
720 
721 /*
722  * Run this hardware queue, pulling any software queues mapped to it in.
723  * Note that this function currently has various problems around ordering
724  * of IO. In particular, we'd like FIFO behaviour on handling existing
725  * items on the hctx->dispatch list. Ignore that for now.
726  */
727 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
728 {
729 	struct request_queue *q = hctx->queue;
730 	struct request *rq;
731 	LIST_HEAD(rq_list);
732 	LIST_HEAD(driver_list);
733 	struct list_head *dptr;
734 	int queued;
735 
736 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
737 
738 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
739 		return;
740 
741 	hctx->run++;
742 
743 	/*
744 	 * Touch any software queue that has pending entries.
745 	 */
746 	flush_busy_ctxs(hctx, &rq_list);
747 
748 	/*
749 	 * If we have previous entries on our dispatch list, grab them
750 	 * and stuff them at the front for more fair dispatch.
751 	 */
752 	if (!list_empty_careful(&hctx->dispatch)) {
753 		spin_lock(&hctx->lock);
754 		if (!list_empty(&hctx->dispatch))
755 			list_splice_init(&hctx->dispatch, &rq_list);
756 		spin_unlock(&hctx->lock);
757 	}
758 
759 	/*
760 	 * Start off with dptr being NULL, so we start the first request
761 	 * immediately, even if we have more pending.
762 	 */
763 	dptr = NULL;
764 
765 	/*
766 	 * Now process all the entries, sending them to the driver.
767 	 */
768 	queued = 0;
769 	while (!list_empty(&rq_list)) {
770 		struct blk_mq_queue_data bd;
771 		int ret;
772 
773 		rq = list_first_entry(&rq_list, struct request, queuelist);
774 		list_del_init(&rq->queuelist);
775 
776 		bd.rq = rq;
777 		bd.list = dptr;
778 		bd.last = list_empty(&rq_list);
779 
780 		ret = q->mq_ops->queue_rq(hctx, &bd);
781 		switch (ret) {
782 		case BLK_MQ_RQ_QUEUE_OK:
783 			queued++;
784 			continue;
785 		case BLK_MQ_RQ_QUEUE_BUSY:
786 			list_add(&rq->queuelist, &rq_list);
787 			__blk_mq_requeue_request(rq);
788 			break;
789 		default:
790 			pr_err("blk-mq: bad return on queue: %d\n", ret);
791 		case BLK_MQ_RQ_QUEUE_ERROR:
792 			rq->errors = -EIO;
793 			blk_mq_end_request(rq, rq->errors);
794 			break;
795 		}
796 
797 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
798 			break;
799 
800 		/*
801 		 * We've done the first request. If we have more than 1
802 		 * left in the list, set dptr to defer issue.
803 		 */
804 		if (!dptr && rq_list.next != rq_list.prev)
805 			dptr = &driver_list;
806 	}
807 
808 	if (!queued)
809 		hctx->dispatched[0]++;
810 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
811 		hctx->dispatched[ilog2(queued) + 1]++;
812 
813 	/*
814 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
815 	 * that is where we will continue on next queue run.
816 	 */
817 	if (!list_empty(&rq_list)) {
818 		spin_lock(&hctx->lock);
819 		list_splice(&rq_list, &hctx->dispatch);
820 		spin_unlock(&hctx->lock);
821 		/*
822 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
823 		 * it's possible the queue is stopped and restarted again
824 		 * before this. Queue restart will dispatch requests. And since
825 		 * requests in rq_list aren't added into hctx->dispatch yet,
826 		 * the requests in rq_list might get lost.
827 		 *
828 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
829 		 **/
830 		blk_mq_run_hw_queue(hctx, true);
831 	}
832 }
833 
834 /*
835  * It'd be great if the workqueue API had a way to pass
836  * in a mask and had some smarts for more clever placement.
837  * For now we just round-robin here, switching for every
838  * BLK_MQ_CPU_WORK_BATCH queued items.
839  */
840 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
841 {
842 	if (hctx->queue->nr_hw_queues == 1)
843 		return WORK_CPU_UNBOUND;
844 
845 	if (--hctx->next_cpu_batch <= 0) {
846 		int cpu = hctx->next_cpu, next_cpu;
847 
848 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
849 		if (next_cpu >= nr_cpu_ids)
850 			next_cpu = cpumask_first(hctx->cpumask);
851 
852 		hctx->next_cpu = next_cpu;
853 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
854 
855 		return cpu;
856 	}
857 
858 	return hctx->next_cpu;
859 }
860 
861 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
862 {
863 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
864 	    !blk_mq_hw_queue_mapped(hctx)))
865 		return;
866 
867 	if (!async) {
868 		int cpu = get_cpu();
869 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
870 			__blk_mq_run_hw_queue(hctx);
871 			put_cpu();
872 			return;
873 		}
874 
875 		put_cpu();
876 	}
877 
878 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
879 			&hctx->run_work, 0);
880 }
881 
882 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
883 {
884 	struct blk_mq_hw_ctx *hctx;
885 	int i;
886 
887 	queue_for_each_hw_ctx(q, hctx, i) {
888 		if ((!blk_mq_hctx_has_pending(hctx) &&
889 		    list_empty_careful(&hctx->dispatch)) ||
890 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
891 			continue;
892 
893 		blk_mq_run_hw_queue(hctx, async);
894 	}
895 }
896 EXPORT_SYMBOL(blk_mq_run_hw_queues);
897 
898 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
899 {
900 	cancel_delayed_work(&hctx->run_work);
901 	cancel_delayed_work(&hctx->delay_work);
902 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
903 }
904 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
905 
906 void blk_mq_stop_hw_queues(struct request_queue *q)
907 {
908 	struct blk_mq_hw_ctx *hctx;
909 	int i;
910 
911 	queue_for_each_hw_ctx(q, hctx, i)
912 		blk_mq_stop_hw_queue(hctx);
913 }
914 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
915 
916 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
917 {
918 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
919 
920 	blk_mq_run_hw_queue(hctx, false);
921 }
922 EXPORT_SYMBOL(blk_mq_start_hw_queue);
923 
924 void blk_mq_start_hw_queues(struct request_queue *q)
925 {
926 	struct blk_mq_hw_ctx *hctx;
927 	int i;
928 
929 	queue_for_each_hw_ctx(q, hctx, i)
930 		blk_mq_start_hw_queue(hctx);
931 }
932 EXPORT_SYMBOL(blk_mq_start_hw_queues);
933 
934 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
935 {
936 	struct blk_mq_hw_ctx *hctx;
937 	int i;
938 
939 	queue_for_each_hw_ctx(q, hctx, i) {
940 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
941 			continue;
942 
943 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
944 		blk_mq_run_hw_queue(hctx, async);
945 	}
946 }
947 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
948 
949 static void blk_mq_run_work_fn(struct work_struct *work)
950 {
951 	struct blk_mq_hw_ctx *hctx;
952 
953 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
954 
955 	__blk_mq_run_hw_queue(hctx);
956 }
957 
958 static void blk_mq_delay_work_fn(struct work_struct *work)
959 {
960 	struct blk_mq_hw_ctx *hctx;
961 
962 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
963 
964 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
965 		__blk_mq_run_hw_queue(hctx);
966 }
967 
968 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
969 {
970 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
971 		return;
972 
973 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
974 			&hctx->delay_work, msecs_to_jiffies(msecs));
975 }
976 EXPORT_SYMBOL(blk_mq_delay_queue);
977 
978 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
979 					    struct blk_mq_ctx *ctx,
980 					    struct request *rq,
981 					    bool at_head)
982 {
983 	trace_block_rq_insert(hctx->queue, rq);
984 
985 	if (at_head)
986 		list_add(&rq->queuelist, &ctx->rq_list);
987 	else
988 		list_add_tail(&rq->queuelist, &ctx->rq_list);
989 }
990 
991 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
992 				    struct request *rq, bool at_head)
993 {
994 	struct blk_mq_ctx *ctx = rq->mq_ctx;
995 
996 	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
997 	blk_mq_hctx_mark_pending(hctx, ctx);
998 }
999 
1000 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1001 		bool async)
1002 {
1003 	struct request_queue *q = rq->q;
1004 	struct blk_mq_hw_ctx *hctx;
1005 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1006 
1007 	current_ctx = blk_mq_get_ctx(q);
1008 	if (!cpu_online(ctx->cpu))
1009 		rq->mq_ctx = ctx = current_ctx;
1010 
1011 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1012 
1013 	spin_lock(&ctx->lock);
1014 	__blk_mq_insert_request(hctx, rq, at_head);
1015 	spin_unlock(&ctx->lock);
1016 
1017 	if (run_queue)
1018 		blk_mq_run_hw_queue(hctx, async);
1019 
1020 	blk_mq_put_ctx(current_ctx);
1021 }
1022 
1023 static void blk_mq_insert_requests(struct request_queue *q,
1024 				     struct blk_mq_ctx *ctx,
1025 				     struct list_head *list,
1026 				     int depth,
1027 				     bool from_schedule)
1028 
1029 {
1030 	struct blk_mq_hw_ctx *hctx;
1031 	struct blk_mq_ctx *current_ctx;
1032 
1033 	trace_block_unplug(q, depth, !from_schedule);
1034 
1035 	current_ctx = blk_mq_get_ctx(q);
1036 
1037 	if (!cpu_online(ctx->cpu))
1038 		ctx = current_ctx;
1039 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1040 
1041 	/*
1042 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1043 	 * offline now
1044 	 */
1045 	spin_lock(&ctx->lock);
1046 	while (!list_empty(list)) {
1047 		struct request *rq;
1048 
1049 		rq = list_first_entry(list, struct request, queuelist);
1050 		list_del_init(&rq->queuelist);
1051 		rq->mq_ctx = ctx;
1052 		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1053 	}
1054 	blk_mq_hctx_mark_pending(hctx, ctx);
1055 	spin_unlock(&ctx->lock);
1056 
1057 	blk_mq_run_hw_queue(hctx, from_schedule);
1058 	blk_mq_put_ctx(current_ctx);
1059 }
1060 
1061 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1062 {
1063 	struct request *rqa = container_of(a, struct request, queuelist);
1064 	struct request *rqb = container_of(b, struct request, queuelist);
1065 
1066 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1067 		 (rqa->mq_ctx == rqb->mq_ctx &&
1068 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1069 }
1070 
1071 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1072 {
1073 	struct blk_mq_ctx *this_ctx;
1074 	struct request_queue *this_q;
1075 	struct request *rq;
1076 	LIST_HEAD(list);
1077 	LIST_HEAD(ctx_list);
1078 	unsigned int depth;
1079 
1080 	list_splice_init(&plug->mq_list, &list);
1081 
1082 	list_sort(NULL, &list, plug_ctx_cmp);
1083 
1084 	this_q = NULL;
1085 	this_ctx = NULL;
1086 	depth = 0;
1087 
1088 	while (!list_empty(&list)) {
1089 		rq = list_entry_rq(list.next);
1090 		list_del_init(&rq->queuelist);
1091 		BUG_ON(!rq->q);
1092 		if (rq->mq_ctx != this_ctx) {
1093 			if (this_ctx) {
1094 				blk_mq_insert_requests(this_q, this_ctx,
1095 							&ctx_list, depth,
1096 							from_schedule);
1097 			}
1098 
1099 			this_ctx = rq->mq_ctx;
1100 			this_q = rq->q;
1101 			depth = 0;
1102 		}
1103 
1104 		depth++;
1105 		list_add_tail(&rq->queuelist, &ctx_list);
1106 	}
1107 
1108 	/*
1109 	 * If 'this_ctx' is set, we know we have entries to complete
1110 	 * on 'ctx_list'. Do those.
1111 	 */
1112 	if (this_ctx) {
1113 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1114 				       from_schedule);
1115 	}
1116 }
1117 
1118 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1119 {
1120 	init_request_from_bio(rq, bio);
1121 
1122 	if (blk_do_io_stat(rq))
1123 		blk_account_io_start(rq, 1);
1124 }
1125 
1126 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1127 {
1128 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1129 		!blk_queue_nomerges(hctx->queue);
1130 }
1131 
1132 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1133 					 struct blk_mq_ctx *ctx,
1134 					 struct request *rq, struct bio *bio)
1135 {
1136 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1137 		blk_mq_bio_to_request(rq, bio);
1138 		spin_lock(&ctx->lock);
1139 insert_rq:
1140 		__blk_mq_insert_request(hctx, rq, false);
1141 		spin_unlock(&ctx->lock);
1142 		return false;
1143 	} else {
1144 		struct request_queue *q = hctx->queue;
1145 
1146 		spin_lock(&ctx->lock);
1147 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1148 			blk_mq_bio_to_request(rq, bio);
1149 			goto insert_rq;
1150 		}
1151 
1152 		spin_unlock(&ctx->lock);
1153 		__blk_mq_free_request(hctx, ctx, rq);
1154 		return true;
1155 	}
1156 }
1157 
1158 struct blk_map_ctx {
1159 	struct blk_mq_hw_ctx *hctx;
1160 	struct blk_mq_ctx *ctx;
1161 };
1162 
1163 static struct request *blk_mq_map_request(struct request_queue *q,
1164 					  struct bio *bio,
1165 					  struct blk_map_ctx *data)
1166 {
1167 	struct blk_mq_hw_ctx *hctx;
1168 	struct blk_mq_ctx *ctx;
1169 	struct request *rq;
1170 	int rw = bio_data_dir(bio);
1171 	struct blk_mq_alloc_data alloc_data;
1172 
1173 	blk_queue_enter_live(q);
1174 	ctx = blk_mq_get_ctx(q);
1175 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1176 
1177 	if (rw_is_sync(bio->bi_rw))
1178 		rw |= REQ_SYNC;
1179 
1180 	trace_block_getrq(q, bio, rw);
1181 	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1182 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1183 	if (unlikely(!rq)) {
1184 		__blk_mq_run_hw_queue(hctx);
1185 		blk_mq_put_ctx(ctx);
1186 		trace_block_sleeprq(q, bio, rw);
1187 
1188 		ctx = blk_mq_get_ctx(q);
1189 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1190 		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1191 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1192 		ctx = alloc_data.ctx;
1193 		hctx = alloc_data.hctx;
1194 	}
1195 
1196 	hctx->queued++;
1197 	data->hctx = hctx;
1198 	data->ctx = ctx;
1199 	return rq;
1200 }
1201 
1202 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1203 {
1204 	int ret;
1205 	struct request_queue *q = rq->q;
1206 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1207 			rq->mq_ctx->cpu);
1208 	struct blk_mq_queue_data bd = {
1209 		.rq = rq,
1210 		.list = NULL,
1211 		.last = 1
1212 	};
1213 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1214 
1215 	/*
1216 	 * For OK queue, we are done. For error, kill it. Any other
1217 	 * error (busy), just add it to our list as we previously
1218 	 * would have done
1219 	 */
1220 	ret = q->mq_ops->queue_rq(hctx, &bd);
1221 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1222 		*cookie = new_cookie;
1223 		return 0;
1224 	}
1225 
1226 	__blk_mq_requeue_request(rq);
1227 
1228 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1229 		*cookie = BLK_QC_T_NONE;
1230 		rq->errors = -EIO;
1231 		blk_mq_end_request(rq, rq->errors);
1232 		return 0;
1233 	}
1234 
1235 	return -1;
1236 }
1237 
1238 /*
1239  * Multiple hardware queue variant. This will not use per-process plugs,
1240  * but will attempt to bypass the hctx queueing if we can go straight to
1241  * hardware for SYNC IO.
1242  */
1243 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1244 {
1245 	const int is_sync = rw_is_sync(bio->bi_rw);
1246 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1247 	struct blk_map_ctx data;
1248 	struct request *rq;
1249 	unsigned int request_count = 0;
1250 	struct blk_plug *plug;
1251 	struct request *same_queue_rq = NULL;
1252 	blk_qc_t cookie;
1253 
1254 	blk_queue_bounce(q, &bio);
1255 
1256 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1257 		bio_io_error(bio);
1258 		return BLK_QC_T_NONE;
1259 	}
1260 
1261 	blk_queue_split(q, &bio, q->bio_split);
1262 
1263 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1264 		if (blk_attempt_plug_merge(q, bio, &request_count,
1265 					   &same_queue_rq))
1266 			return BLK_QC_T_NONE;
1267 	} else
1268 		request_count = blk_plug_queued_count(q);
1269 
1270 	rq = blk_mq_map_request(q, bio, &data);
1271 	if (unlikely(!rq))
1272 		return BLK_QC_T_NONE;
1273 
1274 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1275 
1276 	if (unlikely(is_flush_fua)) {
1277 		blk_mq_bio_to_request(rq, bio);
1278 		blk_insert_flush(rq);
1279 		goto run_queue;
1280 	}
1281 
1282 	plug = current->plug;
1283 	/*
1284 	 * If the driver supports defer issued based on 'last', then
1285 	 * queue it up like normal since we can potentially save some
1286 	 * CPU this way.
1287 	 */
1288 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1289 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1290 		struct request *old_rq = NULL;
1291 
1292 		blk_mq_bio_to_request(rq, bio);
1293 
1294 		/*
1295 		 * We do limited pluging. If the bio can be merged, do that.
1296 		 * Otherwise the existing request in the plug list will be
1297 		 * issued. So the plug list will have one request at most
1298 		 */
1299 		if (plug) {
1300 			/*
1301 			 * The plug list might get flushed before this. If that
1302 			 * happens, same_queue_rq is invalid and plug list is
1303 			 * empty
1304 			 */
1305 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1306 				old_rq = same_queue_rq;
1307 				list_del_init(&old_rq->queuelist);
1308 			}
1309 			list_add_tail(&rq->queuelist, &plug->mq_list);
1310 		} else /* is_sync */
1311 			old_rq = rq;
1312 		blk_mq_put_ctx(data.ctx);
1313 		if (!old_rq)
1314 			goto done;
1315 		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1316 			goto done;
1317 		blk_mq_insert_request(old_rq, false, true, true);
1318 		goto done;
1319 	}
1320 
1321 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1322 		/*
1323 		 * For a SYNC request, send it to the hardware immediately. For
1324 		 * an ASYNC request, just ensure that we run it later on. The
1325 		 * latter allows for merging opportunities and more efficient
1326 		 * dispatching.
1327 		 */
1328 run_queue:
1329 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1330 	}
1331 	blk_mq_put_ctx(data.ctx);
1332 done:
1333 	return cookie;
1334 }
1335 
1336 /*
1337  * Single hardware queue variant. This will attempt to use any per-process
1338  * plug for merging and IO deferral.
1339  */
1340 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1341 {
1342 	const int is_sync = rw_is_sync(bio->bi_rw);
1343 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1344 	struct blk_plug *plug;
1345 	unsigned int request_count = 0;
1346 	struct blk_map_ctx data;
1347 	struct request *rq;
1348 	blk_qc_t cookie;
1349 
1350 	blk_queue_bounce(q, &bio);
1351 
1352 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1353 		bio_io_error(bio);
1354 		return BLK_QC_T_NONE;
1355 	}
1356 
1357 	blk_queue_split(q, &bio, q->bio_split);
1358 
1359 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1360 	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1361 		return BLK_QC_T_NONE;
1362 
1363 	rq = blk_mq_map_request(q, bio, &data);
1364 	if (unlikely(!rq))
1365 		return BLK_QC_T_NONE;
1366 
1367 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1368 
1369 	if (unlikely(is_flush_fua)) {
1370 		blk_mq_bio_to_request(rq, bio);
1371 		blk_insert_flush(rq);
1372 		goto run_queue;
1373 	}
1374 
1375 	/*
1376 	 * A task plug currently exists. Since this is completely lockless,
1377 	 * utilize that to temporarily store requests until the task is
1378 	 * either done or scheduled away.
1379 	 */
1380 	plug = current->plug;
1381 	if (plug) {
1382 		blk_mq_bio_to_request(rq, bio);
1383 		if (!request_count)
1384 			trace_block_plug(q);
1385 
1386 		blk_mq_put_ctx(data.ctx);
1387 
1388 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1389 			blk_flush_plug_list(plug, false);
1390 			trace_block_plug(q);
1391 		}
1392 
1393 		list_add_tail(&rq->queuelist, &plug->mq_list);
1394 		return cookie;
1395 	}
1396 
1397 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1398 		/*
1399 		 * For a SYNC request, send it to the hardware immediately. For
1400 		 * an ASYNC request, just ensure that we run it later on. The
1401 		 * latter allows for merging opportunities and more efficient
1402 		 * dispatching.
1403 		 */
1404 run_queue:
1405 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1406 	}
1407 
1408 	blk_mq_put_ctx(data.ctx);
1409 	return cookie;
1410 }
1411 
1412 /*
1413  * Default mapping to a software queue, since we use one per CPU.
1414  */
1415 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1416 {
1417 	return q->queue_hw_ctx[q->mq_map[cpu]];
1418 }
1419 EXPORT_SYMBOL(blk_mq_map_queue);
1420 
1421 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1422 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1423 {
1424 	struct page *page;
1425 
1426 	if (tags->rqs && set->ops->exit_request) {
1427 		int i;
1428 
1429 		for (i = 0; i < tags->nr_tags; i++) {
1430 			if (!tags->rqs[i])
1431 				continue;
1432 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1433 						hctx_idx, i);
1434 			tags->rqs[i] = NULL;
1435 		}
1436 	}
1437 
1438 	while (!list_empty(&tags->page_list)) {
1439 		page = list_first_entry(&tags->page_list, struct page, lru);
1440 		list_del_init(&page->lru);
1441 		/*
1442 		 * Remove kmemleak object previously allocated in
1443 		 * blk_mq_init_rq_map().
1444 		 */
1445 		kmemleak_free(page_address(page));
1446 		__free_pages(page, page->private);
1447 	}
1448 
1449 	kfree(tags->rqs);
1450 
1451 	blk_mq_free_tags(tags);
1452 }
1453 
1454 static size_t order_to_size(unsigned int order)
1455 {
1456 	return (size_t)PAGE_SIZE << order;
1457 }
1458 
1459 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1460 		unsigned int hctx_idx)
1461 {
1462 	struct blk_mq_tags *tags;
1463 	unsigned int i, j, entries_per_page, max_order = 4;
1464 	size_t rq_size, left;
1465 
1466 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1467 				set->numa_node,
1468 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1469 	if (!tags)
1470 		return NULL;
1471 
1472 	INIT_LIST_HEAD(&tags->page_list);
1473 
1474 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1475 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1476 				 set->numa_node);
1477 	if (!tags->rqs) {
1478 		blk_mq_free_tags(tags);
1479 		return NULL;
1480 	}
1481 
1482 	/*
1483 	 * rq_size is the size of the request plus driver payload, rounded
1484 	 * to the cacheline size
1485 	 */
1486 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1487 				cache_line_size());
1488 	left = rq_size * set->queue_depth;
1489 
1490 	for (i = 0; i < set->queue_depth; ) {
1491 		int this_order = max_order;
1492 		struct page *page;
1493 		int to_do;
1494 		void *p;
1495 
1496 		while (left < order_to_size(this_order - 1) && this_order)
1497 			this_order--;
1498 
1499 		do {
1500 			page = alloc_pages_node(set->numa_node,
1501 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1502 				this_order);
1503 			if (page)
1504 				break;
1505 			if (!this_order--)
1506 				break;
1507 			if (order_to_size(this_order) < rq_size)
1508 				break;
1509 		} while (1);
1510 
1511 		if (!page)
1512 			goto fail;
1513 
1514 		page->private = this_order;
1515 		list_add_tail(&page->lru, &tags->page_list);
1516 
1517 		p = page_address(page);
1518 		/*
1519 		 * Allow kmemleak to scan these pages as they contain pointers
1520 		 * to additional allocations like via ops->init_request().
1521 		 */
1522 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1523 		entries_per_page = order_to_size(this_order) / rq_size;
1524 		to_do = min(entries_per_page, set->queue_depth - i);
1525 		left -= to_do * rq_size;
1526 		for (j = 0; j < to_do; j++) {
1527 			tags->rqs[i] = p;
1528 			if (set->ops->init_request) {
1529 				if (set->ops->init_request(set->driver_data,
1530 						tags->rqs[i], hctx_idx, i,
1531 						set->numa_node)) {
1532 					tags->rqs[i] = NULL;
1533 					goto fail;
1534 				}
1535 			}
1536 
1537 			p += rq_size;
1538 			i++;
1539 		}
1540 	}
1541 	return tags;
1542 
1543 fail:
1544 	blk_mq_free_rq_map(set, tags, hctx_idx);
1545 	return NULL;
1546 }
1547 
1548 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1549 {
1550 	kfree(bitmap->map);
1551 }
1552 
1553 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1554 {
1555 	unsigned int bpw = 8, total, num_maps, i;
1556 
1557 	bitmap->bits_per_word = bpw;
1558 
1559 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1560 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1561 					GFP_KERNEL, node);
1562 	if (!bitmap->map)
1563 		return -ENOMEM;
1564 
1565 	total = nr_cpu_ids;
1566 	for (i = 0; i < num_maps; i++) {
1567 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1568 		total -= bitmap->map[i].depth;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1575 {
1576 	struct request_queue *q = hctx->queue;
1577 	struct blk_mq_ctx *ctx;
1578 	LIST_HEAD(tmp);
1579 
1580 	/*
1581 	 * Move ctx entries to new CPU, if this one is going away.
1582 	 */
1583 	ctx = __blk_mq_get_ctx(q, cpu);
1584 
1585 	spin_lock(&ctx->lock);
1586 	if (!list_empty(&ctx->rq_list)) {
1587 		list_splice_init(&ctx->rq_list, &tmp);
1588 		blk_mq_hctx_clear_pending(hctx, ctx);
1589 	}
1590 	spin_unlock(&ctx->lock);
1591 
1592 	if (list_empty(&tmp))
1593 		return NOTIFY_OK;
1594 
1595 	ctx = blk_mq_get_ctx(q);
1596 	spin_lock(&ctx->lock);
1597 
1598 	while (!list_empty(&tmp)) {
1599 		struct request *rq;
1600 
1601 		rq = list_first_entry(&tmp, struct request, queuelist);
1602 		rq->mq_ctx = ctx;
1603 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1604 	}
1605 
1606 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1607 	blk_mq_hctx_mark_pending(hctx, ctx);
1608 
1609 	spin_unlock(&ctx->lock);
1610 
1611 	blk_mq_run_hw_queue(hctx, true);
1612 	blk_mq_put_ctx(ctx);
1613 	return NOTIFY_OK;
1614 }
1615 
1616 static int blk_mq_hctx_notify(void *data, unsigned long action,
1617 			      unsigned int cpu)
1618 {
1619 	struct blk_mq_hw_ctx *hctx = data;
1620 
1621 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1622 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1623 
1624 	/*
1625 	 * In case of CPU online, tags may be reallocated
1626 	 * in blk_mq_map_swqueue() after mapping is updated.
1627 	 */
1628 
1629 	return NOTIFY_OK;
1630 }
1631 
1632 /* hctx->ctxs will be freed in queue's release handler */
1633 static void blk_mq_exit_hctx(struct request_queue *q,
1634 		struct blk_mq_tag_set *set,
1635 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1636 {
1637 	unsigned flush_start_tag = set->queue_depth;
1638 
1639 	blk_mq_tag_idle(hctx);
1640 
1641 	if (set->ops->exit_request)
1642 		set->ops->exit_request(set->driver_data,
1643 				       hctx->fq->flush_rq, hctx_idx,
1644 				       flush_start_tag + hctx_idx);
1645 
1646 	if (set->ops->exit_hctx)
1647 		set->ops->exit_hctx(hctx, hctx_idx);
1648 
1649 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1650 	blk_free_flush_queue(hctx->fq);
1651 	blk_mq_free_bitmap(&hctx->ctx_map);
1652 }
1653 
1654 static void blk_mq_exit_hw_queues(struct request_queue *q,
1655 		struct blk_mq_tag_set *set, int nr_queue)
1656 {
1657 	struct blk_mq_hw_ctx *hctx;
1658 	unsigned int i;
1659 
1660 	queue_for_each_hw_ctx(q, hctx, i) {
1661 		if (i == nr_queue)
1662 			break;
1663 		blk_mq_exit_hctx(q, set, hctx, i);
1664 	}
1665 }
1666 
1667 static void blk_mq_free_hw_queues(struct request_queue *q,
1668 		struct blk_mq_tag_set *set)
1669 {
1670 	struct blk_mq_hw_ctx *hctx;
1671 	unsigned int i;
1672 
1673 	queue_for_each_hw_ctx(q, hctx, i)
1674 		free_cpumask_var(hctx->cpumask);
1675 }
1676 
1677 static int blk_mq_init_hctx(struct request_queue *q,
1678 		struct blk_mq_tag_set *set,
1679 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1680 {
1681 	int node;
1682 	unsigned flush_start_tag = set->queue_depth;
1683 
1684 	node = hctx->numa_node;
1685 	if (node == NUMA_NO_NODE)
1686 		node = hctx->numa_node = set->numa_node;
1687 
1688 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1689 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1690 	spin_lock_init(&hctx->lock);
1691 	INIT_LIST_HEAD(&hctx->dispatch);
1692 	hctx->queue = q;
1693 	hctx->queue_num = hctx_idx;
1694 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1695 
1696 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1697 					blk_mq_hctx_notify, hctx);
1698 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1699 
1700 	hctx->tags = set->tags[hctx_idx];
1701 
1702 	/*
1703 	 * Allocate space for all possible cpus to avoid allocation at
1704 	 * runtime
1705 	 */
1706 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1707 					GFP_KERNEL, node);
1708 	if (!hctx->ctxs)
1709 		goto unregister_cpu_notifier;
1710 
1711 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1712 		goto free_ctxs;
1713 
1714 	hctx->nr_ctx = 0;
1715 
1716 	if (set->ops->init_hctx &&
1717 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1718 		goto free_bitmap;
1719 
1720 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1721 	if (!hctx->fq)
1722 		goto exit_hctx;
1723 
1724 	if (set->ops->init_request &&
1725 	    set->ops->init_request(set->driver_data,
1726 				   hctx->fq->flush_rq, hctx_idx,
1727 				   flush_start_tag + hctx_idx, node))
1728 		goto free_fq;
1729 
1730 	return 0;
1731 
1732  free_fq:
1733 	kfree(hctx->fq);
1734  exit_hctx:
1735 	if (set->ops->exit_hctx)
1736 		set->ops->exit_hctx(hctx, hctx_idx);
1737  free_bitmap:
1738 	blk_mq_free_bitmap(&hctx->ctx_map);
1739  free_ctxs:
1740 	kfree(hctx->ctxs);
1741  unregister_cpu_notifier:
1742 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1743 
1744 	return -1;
1745 }
1746 
1747 static int blk_mq_init_hw_queues(struct request_queue *q,
1748 		struct blk_mq_tag_set *set)
1749 {
1750 	struct blk_mq_hw_ctx *hctx;
1751 	unsigned int i;
1752 
1753 	/*
1754 	 * Initialize hardware queues
1755 	 */
1756 	queue_for_each_hw_ctx(q, hctx, i) {
1757 		if (blk_mq_init_hctx(q, set, hctx, i))
1758 			break;
1759 	}
1760 
1761 	if (i == q->nr_hw_queues)
1762 		return 0;
1763 
1764 	/*
1765 	 * Init failed
1766 	 */
1767 	blk_mq_exit_hw_queues(q, set, i);
1768 
1769 	return 1;
1770 }
1771 
1772 static void blk_mq_init_cpu_queues(struct request_queue *q,
1773 				   unsigned int nr_hw_queues)
1774 {
1775 	unsigned int i;
1776 
1777 	for_each_possible_cpu(i) {
1778 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1779 		struct blk_mq_hw_ctx *hctx;
1780 
1781 		memset(__ctx, 0, sizeof(*__ctx));
1782 		__ctx->cpu = i;
1783 		spin_lock_init(&__ctx->lock);
1784 		INIT_LIST_HEAD(&__ctx->rq_list);
1785 		__ctx->queue = q;
1786 
1787 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1788 		if (!cpu_online(i))
1789 			continue;
1790 
1791 		hctx = q->mq_ops->map_queue(q, i);
1792 
1793 		/*
1794 		 * Set local node, IFF we have more than one hw queue. If
1795 		 * not, we remain on the home node of the device
1796 		 */
1797 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1798 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1799 	}
1800 }
1801 
1802 static void blk_mq_map_swqueue(struct request_queue *q,
1803 			       const struct cpumask *online_mask)
1804 {
1805 	unsigned int i;
1806 	struct blk_mq_hw_ctx *hctx;
1807 	struct blk_mq_ctx *ctx;
1808 	struct blk_mq_tag_set *set = q->tag_set;
1809 
1810 	/*
1811 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1812 	 */
1813 	mutex_lock(&q->sysfs_lock);
1814 
1815 	queue_for_each_hw_ctx(q, hctx, i) {
1816 		cpumask_clear(hctx->cpumask);
1817 		hctx->nr_ctx = 0;
1818 	}
1819 
1820 	/*
1821 	 * Map software to hardware queues
1822 	 */
1823 	queue_for_each_ctx(q, ctx, i) {
1824 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1825 		if (!cpumask_test_cpu(i, online_mask))
1826 			continue;
1827 
1828 		hctx = q->mq_ops->map_queue(q, i);
1829 		cpumask_set_cpu(i, hctx->cpumask);
1830 		ctx->index_hw = hctx->nr_ctx;
1831 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1832 	}
1833 
1834 	mutex_unlock(&q->sysfs_lock);
1835 
1836 	queue_for_each_hw_ctx(q, hctx, i) {
1837 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1838 
1839 		/*
1840 		 * If no software queues are mapped to this hardware queue,
1841 		 * disable it and free the request entries.
1842 		 */
1843 		if (!hctx->nr_ctx) {
1844 			if (set->tags[i]) {
1845 				blk_mq_free_rq_map(set, set->tags[i], i);
1846 				set->tags[i] = NULL;
1847 			}
1848 			hctx->tags = NULL;
1849 			continue;
1850 		}
1851 
1852 		/* unmapped hw queue can be remapped after CPU topo changed */
1853 		if (!set->tags[i])
1854 			set->tags[i] = blk_mq_init_rq_map(set, i);
1855 		hctx->tags = set->tags[i];
1856 		WARN_ON(!hctx->tags);
1857 
1858 		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1859 		/*
1860 		 * Set the map size to the number of mapped software queues.
1861 		 * This is more accurate and more efficient than looping
1862 		 * over all possibly mapped software queues.
1863 		 */
1864 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1865 
1866 		/*
1867 		 * Initialize batch roundrobin counts
1868 		 */
1869 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1870 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1871 	}
1872 }
1873 
1874 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1875 {
1876 	struct blk_mq_hw_ctx *hctx;
1877 	int i;
1878 
1879 	queue_for_each_hw_ctx(q, hctx, i) {
1880 		if (shared)
1881 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1882 		else
1883 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1884 	}
1885 }
1886 
1887 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1888 {
1889 	struct request_queue *q;
1890 
1891 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1892 		blk_mq_freeze_queue(q);
1893 		queue_set_hctx_shared(q, shared);
1894 		blk_mq_unfreeze_queue(q);
1895 	}
1896 }
1897 
1898 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1899 {
1900 	struct blk_mq_tag_set *set = q->tag_set;
1901 
1902 	mutex_lock(&set->tag_list_lock);
1903 	list_del_init(&q->tag_set_list);
1904 	if (list_is_singular(&set->tag_list)) {
1905 		/* just transitioned to unshared */
1906 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1907 		/* update existing queue */
1908 		blk_mq_update_tag_set_depth(set, false);
1909 	}
1910 	mutex_unlock(&set->tag_list_lock);
1911 }
1912 
1913 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1914 				     struct request_queue *q)
1915 {
1916 	q->tag_set = set;
1917 
1918 	mutex_lock(&set->tag_list_lock);
1919 
1920 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1921 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1922 		set->flags |= BLK_MQ_F_TAG_SHARED;
1923 		/* update existing queue */
1924 		blk_mq_update_tag_set_depth(set, true);
1925 	}
1926 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1927 		queue_set_hctx_shared(q, true);
1928 	list_add_tail(&q->tag_set_list, &set->tag_list);
1929 
1930 	mutex_unlock(&set->tag_list_lock);
1931 }
1932 
1933 /*
1934  * It is the actual release handler for mq, but we do it from
1935  * request queue's release handler for avoiding use-after-free
1936  * and headache because q->mq_kobj shouldn't have been introduced,
1937  * but we can't group ctx/kctx kobj without it.
1938  */
1939 void blk_mq_release(struct request_queue *q)
1940 {
1941 	struct blk_mq_hw_ctx *hctx;
1942 	unsigned int i;
1943 
1944 	/* hctx kobj stays in hctx */
1945 	queue_for_each_hw_ctx(q, hctx, i) {
1946 		if (!hctx)
1947 			continue;
1948 		kfree(hctx->ctxs);
1949 		kfree(hctx);
1950 	}
1951 
1952 	kfree(q->mq_map);
1953 	q->mq_map = NULL;
1954 
1955 	kfree(q->queue_hw_ctx);
1956 
1957 	/* ctx kobj stays in queue_ctx */
1958 	free_percpu(q->queue_ctx);
1959 }
1960 
1961 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1962 {
1963 	struct request_queue *uninit_q, *q;
1964 
1965 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1966 	if (!uninit_q)
1967 		return ERR_PTR(-ENOMEM);
1968 
1969 	q = blk_mq_init_allocated_queue(set, uninit_q);
1970 	if (IS_ERR(q))
1971 		blk_cleanup_queue(uninit_q);
1972 
1973 	return q;
1974 }
1975 EXPORT_SYMBOL(blk_mq_init_queue);
1976 
1977 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1978 						  struct request_queue *q)
1979 {
1980 	struct blk_mq_hw_ctx **hctxs;
1981 	struct blk_mq_ctx __percpu *ctx;
1982 	unsigned int *map;
1983 	int i;
1984 
1985 	ctx = alloc_percpu(struct blk_mq_ctx);
1986 	if (!ctx)
1987 		return ERR_PTR(-ENOMEM);
1988 
1989 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1990 			set->numa_node);
1991 
1992 	if (!hctxs)
1993 		goto err_percpu;
1994 
1995 	map = blk_mq_make_queue_map(set);
1996 	if (!map)
1997 		goto err_map;
1998 
1999 	for (i = 0; i < set->nr_hw_queues; i++) {
2000 		int node = blk_mq_hw_queue_to_node(map, i);
2001 
2002 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2003 					GFP_KERNEL, node);
2004 		if (!hctxs[i])
2005 			goto err_hctxs;
2006 
2007 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2008 						node))
2009 			goto err_hctxs;
2010 
2011 		atomic_set(&hctxs[i]->nr_active, 0);
2012 		hctxs[i]->numa_node = node;
2013 		hctxs[i]->queue_num = i;
2014 	}
2015 
2016 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2017 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2018 
2019 	q->nr_queues = nr_cpu_ids;
2020 	q->nr_hw_queues = set->nr_hw_queues;
2021 	q->mq_map = map;
2022 
2023 	q->queue_ctx = ctx;
2024 	q->queue_hw_ctx = hctxs;
2025 
2026 	q->mq_ops = set->ops;
2027 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2028 
2029 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2030 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2031 
2032 	q->sg_reserved_size = INT_MAX;
2033 
2034 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2035 	INIT_LIST_HEAD(&q->requeue_list);
2036 	spin_lock_init(&q->requeue_lock);
2037 
2038 	if (q->nr_hw_queues > 1)
2039 		blk_queue_make_request(q, blk_mq_make_request);
2040 	else
2041 		blk_queue_make_request(q, blk_sq_make_request);
2042 
2043 	/*
2044 	 * Do this after blk_queue_make_request() overrides it...
2045 	 */
2046 	q->nr_requests = set->queue_depth;
2047 
2048 	if (set->ops->complete)
2049 		blk_queue_softirq_done(q, set->ops->complete);
2050 
2051 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2052 
2053 	if (blk_mq_init_hw_queues(q, set))
2054 		goto err_hctxs;
2055 
2056 	get_online_cpus();
2057 	mutex_lock(&all_q_mutex);
2058 
2059 	list_add_tail(&q->all_q_node, &all_q_list);
2060 	blk_mq_add_queue_tag_set(set, q);
2061 	blk_mq_map_swqueue(q, cpu_online_mask);
2062 
2063 	mutex_unlock(&all_q_mutex);
2064 	put_online_cpus();
2065 
2066 	return q;
2067 
2068 err_hctxs:
2069 	kfree(map);
2070 	for (i = 0; i < set->nr_hw_queues; i++) {
2071 		if (!hctxs[i])
2072 			break;
2073 		free_cpumask_var(hctxs[i]->cpumask);
2074 		kfree(hctxs[i]);
2075 	}
2076 err_map:
2077 	kfree(hctxs);
2078 err_percpu:
2079 	free_percpu(ctx);
2080 	return ERR_PTR(-ENOMEM);
2081 }
2082 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2083 
2084 void blk_mq_free_queue(struct request_queue *q)
2085 {
2086 	struct blk_mq_tag_set	*set = q->tag_set;
2087 
2088 	mutex_lock(&all_q_mutex);
2089 	list_del_init(&q->all_q_node);
2090 	mutex_unlock(&all_q_mutex);
2091 
2092 	blk_mq_del_queue_tag_set(q);
2093 
2094 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2095 	blk_mq_free_hw_queues(q, set);
2096 }
2097 
2098 /* Basically redo blk_mq_init_queue with queue frozen */
2099 static void blk_mq_queue_reinit(struct request_queue *q,
2100 				const struct cpumask *online_mask)
2101 {
2102 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2103 
2104 	blk_mq_sysfs_unregister(q);
2105 
2106 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2107 
2108 	/*
2109 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2110 	 * we should change hctx numa_node according to new topology (this
2111 	 * involves free and re-allocate memory, worthy doing?)
2112 	 */
2113 
2114 	blk_mq_map_swqueue(q, online_mask);
2115 
2116 	blk_mq_sysfs_register(q);
2117 }
2118 
2119 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2120 				      unsigned long action, void *hcpu)
2121 {
2122 	struct request_queue *q;
2123 	int cpu = (unsigned long)hcpu;
2124 	/*
2125 	 * New online cpumask which is going to be set in this hotplug event.
2126 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2127 	 * one-by-one and dynamically allocating this could result in a failure.
2128 	 */
2129 	static struct cpumask online_new;
2130 
2131 	/*
2132 	 * Before hotadded cpu starts handling requests, new mappings must
2133 	 * be established.  Otherwise, these requests in hw queue might
2134 	 * never be dispatched.
2135 	 *
2136 	 * For example, there is a single hw queue (hctx) and two CPU queues
2137 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2138 	 *
2139 	 * Now CPU1 is just onlined and a request is inserted into
2140 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2141 	 * still zero.
2142 	 *
2143 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2144 	 * set in pending bitmap and tries to retrieve requests in
2145 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2146 	 * so the request in ctx1->rq_list is ignored.
2147 	 */
2148 	switch (action & ~CPU_TASKS_FROZEN) {
2149 	case CPU_DEAD:
2150 	case CPU_UP_CANCELED:
2151 		cpumask_copy(&online_new, cpu_online_mask);
2152 		break;
2153 	case CPU_UP_PREPARE:
2154 		cpumask_copy(&online_new, cpu_online_mask);
2155 		cpumask_set_cpu(cpu, &online_new);
2156 		break;
2157 	default:
2158 		return NOTIFY_OK;
2159 	}
2160 
2161 	mutex_lock(&all_q_mutex);
2162 
2163 	/*
2164 	 * We need to freeze and reinit all existing queues.  Freezing
2165 	 * involves synchronous wait for an RCU grace period and doing it
2166 	 * one by one may take a long time.  Start freezing all queues in
2167 	 * one swoop and then wait for the completions so that freezing can
2168 	 * take place in parallel.
2169 	 */
2170 	list_for_each_entry(q, &all_q_list, all_q_node)
2171 		blk_mq_freeze_queue_start(q);
2172 	list_for_each_entry(q, &all_q_list, all_q_node) {
2173 		blk_mq_freeze_queue_wait(q);
2174 
2175 		/*
2176 		 * timeout handler can't touch hw queue during the
2177 		 * reinitialization
2178 		 */
2179 		del_timer_sync(&q->timeout);
2180 	}
2181 
2182 	list_for_each_entry(q, &all_q_list, all_q_node)
2183 		blk_mq_queue_reinit(q, &online_new);
2184 
2185 	list_for_each_entry(q, &all_q_list, all_q_node)
2186 		blk_mq_unfreeze_queue(q);
2187 
2188 	mutex_unlock(&all_q_mutex);
2189 	return NOTIFY_OK;
2190 }
2191 
2192 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2193 {
2194 	int i;
2195 
2196 	for (i = 0; i < set->nr_hw_queues; i++) {
2197 		set->tags[i] = blk_mq_init_rq_map(set, i);
2198 		if (!set->tags[i])
2199 			goto out_unwind;
2200 	}
2201 
2202 	return 0;
2203 
2204 out_unwind:
2205 	while (--i >= 0)
2206 		blk_mq_free_rq_map(set, set->tags[i], i);
2207 
2208 	return -ENOMEM;
2209 }
2210 
2211 /*
2212  * Allocate the request maps associated with this tag_set. Note that this
2213  * may reduce the depth asked for, if memory is tight. set->queue_depth
2214  * will be updated to reflect the allocated depth.
2215  */
2216 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2217 {
2218 	unsigned int depth;
2219 	int err;
2220 
2221 	depth = set->queue_depth;
2222 	do {
2223 		err = __blk_mq_alloc_rq_maps(set);
2224 		if (!err)
2225 			break;
2226 
2227 		set->queue_depth >>= 1;
2228 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2229 			err = -ENOMEM;
2230 			break;
2231 		}
2232 	} while (set->queue_depth);
2233 
2234 	if (!set->queue_depth || err) {
2235 		pr_err("blk-mq: failed to allocate request map\n");
2236 		return -ENOMEM;
2237 	}
2238 
2239 	if (depth != set->queue_depth)
2240 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2241 						depth, set->queue_depth);
2242 
2243 	return 0;
2244 }
2245 
2246 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2247 {
2248 	return tags->cpumask;
2249 }
2250 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2251 
2252 /*
2253  * Alloc a tag set to be associated with one or more request queues.
2254  * May fail with EINVAL for various error conditions. May adjust the
2255  * requested depth down, if if it too large. In that case, the set
2256  * value will be stored in set->queue_depth.
2257  */
2258 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2259 {
2260 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2261 
2262 	if (!set->nr_hw_queues)
2263 		return -EINVAL;
2264 	if (!set->queue_depth)
2265 		return -EINVAL;
2266 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2267 		return -EINVAL;
2268 
2269 	if (!set->ops->queue_rq || !set->ops->map_queue)
2270 		return -EINVAL;
2271 
2272 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2273 		pr_info("blk-mq: reduced tag depth to %u\n",
2274 			BLK_MQ_MAX_DEPTH);
2275 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2276 	}
2277 
2278 	/*
2279 	 * If a crashdump is active, then we are potentially in a very
2280 	 * memory constrained environment. Limit us to 1 queue and
2281 	 * 64 tags to prevent using too much memory.
2282 	 */
2283 	if (is_kdump_kernel()) {
2284 		set->nr_hw_queues = 1;
2285 		set->queue_depth = min(64U, set->queue_depth);
2286 	}
2287 
2288 	set->tags = kmalloc_node(set->nr_hw_queues *
2289 				 sizeof(struct blk_mq_tags *),
2290 				 GFP_KERNEL, set->numa_node);
2291 	if (!set->tags)
2292 		return -ENOMEM;
2293 
2294 	if (blk_mq_alloc_rq_maps(set))
2295 		goto enomem;
2296 
2297 	mutex_init(&set->tag_list_lock);
2298 	INIT_LIST_HEAD(&set->tag_list);
2299 
2300 	return 0;
2301 enomem:
2302 	kfree(set->tags);
2303 	set->tags = NULL;
2304 	return -ENOMEM;
2305 }
2306 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2307 
2308 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2309 {
2310 	int i;
2311 
2312 	for (i = 0; i < set->nr_hw_queues; i++) {
2313 		if (set->tags[i])
2314 			blk_mq_free_rq_map(set, set->tags[i], i);
2315 	}
2316 
2317 	kfree(set->tags);
2318 	set->tags = NULL;
2319 }
2320 EXPORT_SYMBOL(blk_mq_free_tag_set);
2321 
2322 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2323 {
2324 	struct blk_mq_tag_set *set = q->tag_set;
2325 	struct blk_mq_hw_ctx *hctx;
2326 	int i, ret;
2327 
2328 	if (!set || nr > set->queue_depth)
2329 		return -EINVAL;
2330 
2331 	ret = 0;
2332 	queue_for_each_hw_ctx(q, hctx, i) {
2333 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2334 		if (ret)
2335 			break;
2336 	}
2337 
2338 	if (!ret)
2339 		q->nr_requests = nr;
2340 
2341 	return ret;
2342 }
2343 
2344 void blk_mq_disable_hotplug(void)
2345 {
2346 	mutex_lock(&all_q_mutex);
2347 }
2348 
2349 void blk_mq_enable_hotplug(void)
2350 {
2351 	mutex_unlock(&all_q_mutex);
2352 }
2353 
2354 static int __init blk_mq_init(void)
2355 {
2356 	blk_mq_cpu_init();
2357 
2358 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2359 
2360 	return 0;
2361 }
2362 subsys_initcall(blk_mq_init);
2363