xref: /openbmc/linux/block/blk-mq.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	unsigned int i;
43 
44 	for (i = 0; i < hctx->ctx_map.size; i++)
45 		if (hctx->ctx_map.map[i].word)
46 			return true;
47 
48 	return false;
49 }
50 
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 					      struct blk_mq_ctx *ctx)
53 {
54 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56 
57 #define CTX_TO_BIT(hctx, ctx)	\
58 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59 
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 				     struct blk_mq_ctx *ctx)
65 {
66 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67 
68 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71 
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 				      struct blk_mq_ctx *ctx)
74 {
75 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76 
77 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79 
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82 	while (true) {
83 		int ret;
84 
85 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 			return 0;
87 
88 		if (!(gfp & __GFP_WAIT))
89 			return -EBUSY;
90 
91 		ret = wait_event_interruptible(q->mq_freeze_wq,
92 				!atomic_read(&q->mq_freeze_depth) ||
93 				blk_queue_dying(q));
94 		if (blk_queue_dying(q))
95 			return -ENODEV;
96 		if (ret)
97 			return ret;
98 	}
99 }
100 
101 static void blk_mq_queue_exit(struct request_queue *q)
102 {
103 	percpu_ref_put(&q->mq_usage_counter);
104 }
105 
106 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
107 {
108 	struct request_queue *q =
109 		container_of(ref, struct request_queue, mq_usage_counter);
110 
111 	wake_up_all(&q->mq_freeze_wq);
112 }
113 
114 void blk_mq_freeze_queue_start(struct request_queue *q)
115 {
116 	int freeze_depth;
117 
118 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119 	if (freeze_depth == 1) {
120 		percpu_ref_kill(&q->mq_usage_counter);
121 		blk_mq_run_hw_queues(q, false);
122 	}
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 {
128 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 }
130 
131 /*
132  * Guarantee no request is in use, so we can change any data structure of
133  * the queue afterward.
134  */
135 void blk_mq_freeze_queue(struct request_queue *q)
136 {
137 	blk_mq_freeze_queue_start(q);
138 	blk_mq_freeze_queue_wait(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141 
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144 	int freeze_depth;
145 
146 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 	WARN_ON_ONCE(freeze_depth < 0);
148 	if (!freeze_depth) {
149 		percpu_ref_reinit(&q->mq_usage_counter);
150 		wake_up_all(&q->mq_freeze_wq);
151 	}
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154 
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 	struct blk_mq_hw_ctx *hctx;
158 	unsigned int i;
159 
160 	queue_for_each_hw_ctx(q, hctx, i)
161 		if (blk_mq_hw_queue_mapped(hctx))
162 			blk_mq_tag_wakeup_all(hctx->tags, true);
163 
164 	/*
165 	 * If we are called because the queue has now been marked as
166 	 * dying, we need to ensure that processes currently waiting on
167 	 * the queue are notified as well.
168 	 */
169 	wake_up_all(&q->mq_freeze_wq);
170 }
171 
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 	return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177 
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 			       struct request *rq, unsigned int rw_flags)
180 {
181 	if (blk_queue_io_stat(q))
182 		rw_flags |= REQ_IO_STAT;
183 
184 	INIT_LIST_HEAD(&rq->queuelist);
185 	/* csd/requeue_work/fifo_time is initialized before use */
186 	rq->q = q;
187 	rq->mq_ctx = ctx;
188 	rq->cmd_flags |= rw_flags;
189 	/* do not touch atomic flags, it needs atomic ops against the timer */
190 	rq->cpu = -1;
191 	INIT_HLIST_NODE(&rq->hash);
192 	RB_CLEAR_NODE(&rq->rb_node);
193 	rq->rq_disk = NULL;
194 	rq->part = NULL;
195 	rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 	rq->rl = NULL;
198 	set_start_time_ns(rq);
199 	rq->io_start_time_ns = 0;
200 #endif
201 	rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 	rq->nr_integrity_segments = 0;
204 #endif
205 	rq->special = NULL;
206 	/* tag was already set */
207 	rq->errors = 0;
208 
209 	rq->cmd = rq->__cmd;
210 
211 	rq->extra_len = 0;
212 	rq->sense_len = 0;
213 	rq->resid_len = 0;
214 	rq->sense = NULL;
215 
216 	INIT_LIST_HEAD(&rq->timeout_list);
217 	rq->timeout = 0;
218 
219 	rq->end_io = NULL;
220 	rq->end_io_data = NULL;
221 	rq->next_rq = NULL;
222 
223 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225 
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 	struct request *rq;
230 	unsigned int tag;
231 
232 	tag = blk_mq_get_tag(data);
233 	if (tag != BLK_MQ_TAG_FAIL) {
234 		rq = data->hctx->tags->rqs[tag];
235 
236 		if (blk_mq_tag_busy(data->hctx)) {
237 			rq->cmd_flags = REQ_MQ_INFLIGHT;
238 			atomic_inc(&data->hctx->nr_active);
239 		}
240 
241 		rq->tag = tag;
242 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 		return rq;
244 	}
245 
246 	return NULL;
247 }
248 
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 		bool reserved)
251 {
252 	struct blk_mq_ctx *ctx;
253 	struct blk_mq_hw_ctx *hctx;
254 	struct request *rq;
255 	struct blk_mq_alloc_data alloc_data;
256 	int ret;
257 
258 	ret = blk_mq_queue_enter(q, gfp);
259 	if (ret)
260 		return ERR_PTR(ret);
261 
262 	ctx = blk_mq_get_ctx(q);
263 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 			reserved, ctx, hctx);
266 
267 	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 	if (!rq && (gfp & __GFP_WAIT)) {
269 		__blk_mq_run_hw_queue(hctx);
270 		blk_mq_put_ctx(ctx);
271 
272 		ctx = blk_mq_get_ctx(q);
273 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 				hctx);
276 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
277 		ctx = alloc_data.ctx;
278 	}
279 	blk_mq_put_ctx(ctx);
280 	if (!rq) {
281 		blk_mq_queue_exit(q);
282 		return ERR_PTR(-EWOULDBLOCK);
283 	}
284 	return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287 
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 				  struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 	const int tag = rq->tag;
292 	struct request_queue *q = rq->q;
293 
294 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 		atomic_dec(&hctx->nr_active);
296 	rq->cmd_flags = 0;
297 
298 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 	blk_mq_queue_exit(q);
301 }
302 
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 	struct blk_mq_ctx *ctx = rq->mq_ctx;
306 
307 	ctx->rq_completed[rq_is_sync(rq)]++;
308 	__blk_mq_free_request(hctx, ctx, rq);
309 
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312 
313 void blk_mq_free_request(struct request *rq)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	struct request_queue *q = rq->q;
317 
318 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 	blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322 
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 	blk_account_io_done(rq);
326 
327 	if (rq->end_io) {
328 		rq->end_io(rq, error);
329 	} else {
330 		if (unlikely(blk_bidi_rq(rq)))
331 			blk_mq_free_request(rq->next_rq);
332 		blk_mq_free_request(rq);
333 	}
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336 
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 		BUG();
341 	__blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344 
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 	struct request *rq = data;
348 
349 	rq->q->softirq_done_fn(rq);
350 }
351 
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 	struct blk_mq_ctx *ctx = rq->mq_ctx;
355 	bool shared = false;
356 	int cpu;
357 
358 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 		rq->q->softirq_done_fn(rq);
360 		return;
361 	}
362 
363 	cpu = get_cpu();
364 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 		shared = cpus_share_cache(cpu, ctx->cpu);
366 
367 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 		rq->csd.func = __blk_mq_complete_request_remote;
369 		rq->csd.info = rq;
370 		rq->csd.flags = 0;
371 		smp_call_function_single_async(ctx->cpu, &rq->csd);
372 	} else {
373 		rq->q->softirq_done_fn(rq);
374 	}
375 	put_cpu();
376 }
377 
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 	struct request_queue *q = rq->q;
381 
382 	if (!q->softirq_done_fn)
383 		blk_mq_end_request(rq, rq->errors);
384 	else
385 		blk_mq_ipi_complete_request(rq);
386 }
387 
388 /**
389  * blk_mq_complete_request - end I/O on a request
390  * @rq:		the request being processed
391  *
392  * Description:
393  *	Ends all I/O on a request. It does not handle partial completions.
394  *	The actual completion happens out-of-order, through a IPI handler.
395  **/
396 void blk_mq_complete_request(struct request *rq, int error)
397 {
398 	struct request_queue *q = rq->q;
399 
400 	if (unlikely(blk_should_fake_timeout(q)))
401 		return;
402 	if (!blk_mark_rq_complete(rq)) {
403 		rq->errors = error;
404 		__blk_mq_complete_request(rq);
405 	}
406 }
407 EXPORT_SYMBOL(blk_mq_complete_request);
408 
409 int blk_mq_request_started(struct request *rq)
410 {
411 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
412 }
413 EXPORT_SYMBOL_GPL(blk_mq_request_started);
414 
415 void blk_mq_start_request(struct request *rq)
416 {
417 	struct request_queue *q = rq->q;
418 
419 	trace_block_rq_issue(q, rq);
420 
421 	rq->resid_len = blk_rq_bytes(rq);
422 	if (unlikely(blk_bidi_rq(rq)))
423 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
424 
425 	blk_add_timer(rq);
426 
427 	/*
428 	 * Ensure that ->deadline is visible before set the started
429 	 * flag and clear the completed flag.
430 	 */
431 	smp_mb__before_atomic();
432 
433 	/*
434 	 * Mark us as started and clear complete. Complete might have been
435 	 * set if requeue raced with timeout, which then marked it as
436 	 * complete. So be sure to clear complete again when we start
437 	 * the request, otherwise we'll ignore the completion event.
438 	 */
439 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
440 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
441 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
442 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
443 
444 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
445 		/*
446 		 * Make sure space for the drain appears.  We know we can do
447 		 * this because max_hw_segments has been adjusted to be one
448 		 * fewer than the device can handle.
449 		 */
450 		rq->nr_phys_segments++;
451 	}
452 }
453 EXPORT_SYMBOL(blk_mq_start_request);
454 
455 static void __blk_mq_requeue_request(struct request *rq)
456 {
457 	struct request_queue *q = rq->q;
458 
459 	trace_block_rq_requeue(q, rq);
460 
461 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
462 		if (q->dma_drain_size && blk_rq_bytes(rq))
463 			rq->nr_phys_segments--;
464 	}
465 }
466 
467 void blk_mq_requeue_request(struct request *rq)
468 {
469 	__blk_mq_requeue_request(rq);
470 
471 	BUG_ON(blk_queued_rq(rq));
472 	blk_mq_add_to_requeue_list(rq, true);
473 }
474 EXPORT_SYMBOL(blk_mq_requeue_request);
475 
476 static void blk_mq_requeue_work(struct work_struct *work)
477 {
478 	struct request_queue *q =
479 		container_of(work, struct request_queue, requeue_work);
480 	LIST_HEAD(rq_list);
481 	struct request *rq, *next;
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(&q->requeue_lock, flags);
485 	list_splice_init(&q->requeue_list, &rq_list);
486 	spin_unlock_irqrestore(&q->requeue_lock, flags);
487 
488 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
489 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
490 			continue;
491 
492 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
493 		list_del_init(&rq->queuelist);
494 		blk_mq_insert_request(rq, true, false, false);
495 	}
496 
497 	while (!list_empty(&rq_list)) {
498 		rq = list_entry(rq_list.next, struct request, queuelist);
499 		list_del_init(&rq->queuelist);
500 		blk_mq_insert_request(rq, false, false, false);
501 	}
502 
503 	/*
504 	 * Use the start variant of queue running here, so that running
505 	 * the requeue work will kick stopped queues.
506 	 */
507 	blk_mq_start_hw_queues(q);
508 }
509 
510 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
511 {
512 	struct request_queue *q = rq->q;
513 	unsigned long flags;
514 
515 	/*
516 	 * We abuse this flag that is otherwise used by the I/O scheduler to
517 	 * request head insertation from the workqueue.
518 	 */
519 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
520 
521 	spin_lock_irqsave(&q->requeue_lock, flags);
522 	if (at_head) {
523 		rq->cmd_flags |= REQ_SOFTBARRIER;
524 		list_add(&rq->queuelist, &q->requeue_list);
525 	} else {
526 		list_add_tail(&rq->queuelist, &q->requeue_list);
527 	}
528 	spin_unlock_irqrestore(&q->requeue_lock, flags);
529 }
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
531 
532 void blk_mq_cancel_requeue_work(struct request_queue *q)
533 {
534 	cancel_work_sync(&q->requeue_work);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
537 
538 void blk_mq_kick_requeue_list(struct request_queue *q)
539 {
540 	kblockd_schedule_work(&q->requeue_work);
541 }
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
543 
544 void blk_mq_abort_requeue_list(struct request_queue *q)
545 {
546 	unsigned long flags;
547 	LIST_HEAD(rq_list);
548 
549 	spin_lock_irqsave(&q->requeue_lock, flags);
550 	list_splice_init(&q->requeue_list, &rq_list);
551 	spin_unlock_irqrestore(&q->requeue_lock, flags);
552 
553 	while (!list_empty(&rq_list)) {
554 		struct request *rq;
555 
556 		rq = list_first_entry(&rq_list, struct request, queuelist);
557 		list_del_init(&rq->queuelist);
558 		rq->errors = -EIO;
559 		blk_mq_end_request(rq, rq->errors);
560 	}
561 }
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
563 
564 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
565 {
566 	return tags->rqs[tag];
567 }
568 EXPORT_SYMBOL(blk_mq_tag_to_rq);
569 
570 struct blk_mq_timeout_data {
571 	unsigned long next;
572 	unsigned int next_set;
573 };
574 
575 void blk_mq_rq_timed_out(struct request *req, bool reserved)
576 {
577 	struct blk_mq_ops *ops = req->q->mq_ops;
578 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
579 
580 	/*
581 	 * We know that complete is set at this point. If STARTED isn't set
582 	 * anymore, then the request isn't active and the "timeout" should
583 	 * just be ignored. This can happen due to the bitflag ordering.
584 	 * Timeout first checks if STARTED is set, and if it is, assumes
585 	 * the request is active. But if we race with completion, then
586 	 * we both flags will get cleared. So check here again, and ignore
587 	 * a timeout event with a request that isn't active.
588 	 */
589 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
590 		return;
591 
592 	if (ops->timeout)
593 		ret = ops->timeout(req, reserved);
594 
595 	switch (ret) {
596 	case BLK_EH_HANDLED:
597 		__blk_mq_complete_request(req);
598 		break;
599 	case BLK_EH_RESET_TIMER:
600 		blk_add_timer(req);
601 		blk_clear_rq_complete(req);
602 		break;
603 	case BLK_EH_NOT_HANDLED:
604 		break;
605 	default:
606 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
607 		break;
608 	}
609 }
610 
611 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
612 		struct request *rq, void *priv, bool reserved)
613 {
614 	struct blk_mq_timeout_data *data = priv;
615 
616 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
617 		/*
618 		 * If a request wasn't started before the queue was
619 		 * marked dying, kill it here or it'll go unnoticed.
620 		 */
621 		if (unlikely(blk_queue_dying(rq->q)))
622 			blk_mq_complete_request(rq, -EIO);
623 		return;
624 	}
625 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
626 		return;
627 
628 	if (time_after_eq(jiffies, rq->deadline)) {
629 		if (!blk_mark_rq_complete(rq))
630 			blk_mq_rq_timed_out(rq, reserved);
631 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
632 		data->next = rq->deadline;
633 		data->next_set = 1;
634 	}
635 }
636 
637 static void blk_mq_rq_timer(unsigned long priv)
638 {
639 	struct request_queue *q = (struct request_queue *)priv;
640 	struct blk_mq_timeout_data data = {
641 		.next		= 0,
642 		.next_set	= 0,
643 	};
644 	int i;
645 
646 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
647 
648 	if (data.next_set) {
649 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
650 		mod_timer(&q->timeout, data.next);
651 	} else {
652 		struct blk_mq_hw_ctx *hctx;
653 
654 		queue_for_each_hw_ctx(q, hctx, i) {
655 			/* the hctx may be unmapped, so check it here */
656 			if (blk_mq_hw_queue_mapped(hctx))
657 				blk_mq_tag_idle(hctx);
658 		}
659 	}
660 }
661 
662 /*
663  * Reverse check our software queue for entries that we could potentially
664  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
665  * too much time checking for merges.
666  */
667 static bool blk_mq_attempt_merge(struct request_queue *q,
668 				 struct blk_mq_ctx *ctx, struct bio *bio)
669 {
670 	struct request *rq;
671 	int checked = 8;
672 
673 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
674 		int el_ret;
675 
676 		if (!checked--)
677 			break;
678 
679 		if (!blk_rq_merge_ok(rq, bio))
680 			continue;
681 
682 		el_ret = blk_try_merge(rq, bio);
683 		if (el_ret == ELEVATOR_BACK_MERGE) {
684 			if (bio_attempt_back_merge(q, rq, bio)) {
685 				ctx->rq_merged++;
686 				return true;
687 			}
688 			break;
689 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
690 			if (bio_attempt_front_merge(q, rq, bio)) {
691 				ctx->rq_merged++;
692 				return true;
693 			}
694 			break;
695 		}
696 	}
697 
698 	return false;
699 }
700 
701 /*
702  * Process software queues that have been marked busy, splicing them
703  * to the for-dispatch
704  */
705 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
706 {
707 	struct blk_mq_ctx *ctx;
708 	int i;
709 
710 	for (i = 0; i < hctx->ctx_map.size; i++) {
711 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
712 		unsigned int off, bit;
713 
714 		if (!bm->word)
715 			continue;
716 
717 		bit = 0;
718 		off = i * hctx->ctx_map.bits_per_word;
719 		do {
720 			bit = find_next_bit(&bm->word, bm->depth, bit);
721 			if (bit >= bm->depth)
722 				break;
723 
724 			ctx = hctx->ctxs[bit + off];
725 			clear_bit(bit, &bm->word);
726 			spin_lock(&ctx->lock);
727 			list_splice_tail_init(&ctx->rq_list, list);
728 			spin_unlock(&ctx->lock);
729 
730 			bit++;
731 		} while (1);
732 	}
733 }
734 
735 /*
736  * Run this hardware queue, pulling any software queues mapped to it in.
737  * Note that this function currently has various problems around ordering
738  * of IO. In particular, we'd like FIFO behaviour on handling existing
739  * items on the hctx->dispatch list. Ignore that for now.
740  */
741 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
742 {
743 	struct request_queue *q = hctx->queue;
744 	struct request *rq;
745 	LIST_HEAD(rq_list);
746 	LIST_HEAD(driver_list);
747 	struct list_head *dptr;
748 	int queued;
749 
750 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
751 
752 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
753 		return;
754 
755 	hctx->run++;
756 
757 	/*
758 	 * Touch any software queue that has pending entries.
759 	 */
760 	flush_busy_ctxs(hctx, &rq_list);
761 
762 	/*
763 	 * If we have previous entries on our dispatch list, grab them
764 	 * and stuff them at the front for more fair dispatch.
765 	 */
766 	if (!list_empty_careful(&hctx->dispatch)) {
767 		spin_lock(&hctx->lock);
768 		if (!list_empty(&hctx->dispatch))
769 			list_splice_init(&hctx->dispatch, &rq_list);
770 		spin_unlock(&hctx->lock);
771 	}
772 
773 	/*
774 	 * Start off with dptr being NULL, so we start the first request
775 	 * immediately, even if we have more pending.
776 	 */
777 	dptr = NULL;
778 
779 	/*
780 	 * Now process all the entries, sending them to the driver.
781 	 */
782 	queued = 0;
783 	while (!list_empty(&rq_list)) {
784 		struct blk_mq_queue_data bd;
785 		int ret;
786 
787 		rq = list_first_entry(&rq_list, struct request, queuelist);
788 		list_del_init(&rq->queuelist);
789 
790 		bd.rq = rq;
791 		bd.list = dptr;
792 		bd.last = list_empty(&rq_list);
793 
794 		ret = q->mq_ops->queue_rq(hctx, &bd);
795 		switch (ret) {
796 		case BLK_MQ_RQ_QUEUE_OK:
797 			queued++;
798 			continue;
799 		case BLK_MQ_RQ_QUEUE_BUSY:
800 			list_add(&rq->queuelist, &rq_list);
801 			__blk_mq_requeue_request(rq);
802 			break;
803 		default:
804 			pr_err("blk-mq: bad return on queue: %d\n", ret);
805 		case BLK_MQ_RQ_QUEUE_ERROR:
806 			rq->errors = -EIO;
807 			blk_mq_end_request(rq, rq->errors);
808 			break;
809 		}
810 
811 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
812 			break;
813 
814 		/*
815 		 * We've done the first request. If we have more than 1
816 		 * left in the list, set dptr to defer issue.
817 		 */
818 		if (!dptr && rq_list.next != rq_list.prev)
819 			dptr = &driver_list;
820 	}
821 
822 	if (!queued)
823 		hctx->dispatched[0]++;
824 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
825 		hctx->dispatched[ilog2(queued) + 1]++;
826 
827 	/*
828 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
829 	 * that is where we will continue on next queue run.
830 	 */
831 	if (!list_empty(&rq_list)) {
832 		spin_lock(&hctx->lock);
833 		list_splice(&rq_list, &hctx->dispatch);
834 		spin_unlock(&hctx->lock);
835 		/*
836 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
837 		 * it's possible the queue is stopped and restarted again
838 		 * before this. Queue restart will dispatch requests. And since
839 		 * requests in rq_list aren't added into hctx->dispatch yet,
840 		 * the requests in rq_list might get lost.
841 		 *
842 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
843 		 **/
844 		blk_mq_run_hw_queue(hctx, true);
845 	}
846 }
847 
848 /*
849  * It'd be great if the workqueue API had a way to pass
850  * in a mask and had some smarts for more clever placement.
851  * For now we just round-robin here, switching for every
852  * BLK_MQ_CPU_WORK_BATCH queued items.
853  */
854 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
855 {
856 	if (hctx->queue->nr_hw_queues == 1)
857 		return WORK_CPU_UNBOUND;
858 
859 	if (--hctx->next_cpu_batch <= 0) {
860 		int cpu = hctx->next_cpu, next_cpu;
861 
862 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
863 		if (next_cpu >= nr_cpu_ids)
864 			next_cpu = cpumask_first(hctx->cpumask);
865 
866 		hctx->next_cpu = next_cpu;
867 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
868 
869 		return cpu;
870 	}
871 
872 	return hctx->next_cpu;
873 }
874 
875 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
876 {
877 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
878 	    !blk_mq_hw_queue_mapped(hctx)))
879 		return;
880 
881 	if (!async) {
882 		int cpu = get_cpu();
883 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
884 			__blk_mq_run_hw_queue(hctx);
885 			put_cpu();
886 			return;
887 		}
888 
889 		put_cpu();
890 	}
891 
892 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
893 			&hctx->run_work, 0);
894 }
895 
896 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
897 {
898 	struct blk_mq_hw_ctx *hctx;
899 	int i;
900 
901 	queue_for_each_hw_ctx(q, hctx, i) {
902 		if ((!blk_mq_hctx_has_pending(hctx) &&
903 		    list_empty_careful(&hctx->dispatch)) ||
904 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
905 			continue;
906 
907 		blk_mq_run_hw_queue(hctx, async);
908 	}
909 }
910 EXPORT_SYMBOL(blk_mq_run_hw_queues);
911 
912 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
913 {
914 	cancel_delayed_work(&hctx->run_work);
915 	cancel_delayed_work(&hctx->delay_work);
916 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
917 }
918 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
919 
920 void blk_mq_stop_hw_queues(struct request_queue *q)
921 {
922 	struct blk_mq_hw_ctx *hctx;
923 	int i;
924 
925 	queue_for_each_hw_ctx(q, hctx, i)
926 		blk_mq_stop_hw_queue(hctx);
927 }
928 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
929 
930 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
931 {
932 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
933 
934 	blk_mq_run_hw_queue(hctx, false);
935 }
936 EXPORT_SYMBOL(blk_mq_start_hw_queue);
937 
938 void blk_mq_start_hw_queues(struct request_queue *q)
939 {
940 	struct blk_mq_hw_ctx *hctx;
941 	int i;
942 
943 	queue_for_each_hw_ctx(q, hctx, i)
944 		blk_mq_start_hw_queue(hctx);
945 }
946 EXPORT_SYMBOL(blk_mq_start_hw_queues);
947 
948 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
949 {
950 	struct blk_mq_hw_ctx *hctx;
951 	int i;
952 
953 	queue_for_each_hw_ctx(q, hctx, i) {
954 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
955 			continue;
956 
957 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
958 		blk_mq_run_hw_queue(hctx, async);
959 	}
960 }
961 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
962 
963 static void blk_mq_run_work_fn(struct work_struct *work)
964 {
965 	struct blk_mq_hw_ctx *hctx;
966 
967 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
968 
969 	__blk_mq_run_hw_queue(hctx);
970 }
971 
972 static void blk_mq_delay_work_fn(struct work_struct *work)
973 {
974 	struct blk_mq_hw_ctx *hctx;
975 
976 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
977 
978 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
979 		__blk_mq_run_hw_queue(hctx);
980 }
981 
982 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
983 {
984 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
985 		return;
986 
987 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
988 			&hctx->delay_work, msecs_to_jiffies(msecs));
989 }
990 EXPORT_SYMBOL(blk_mq_delay_queue);
991 
992 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
993 				    struct request *rq, bool at_head)
994 {
995 	struct blk_mq_ctx *ctx = rq->mq_ctx;
996 
997 	trace_block_rq_insert(hctx->queue, rq);
998 
999 	if (at_head)
1000 		list_add(&rq->queuelist, &ctx->rq_list);
1001 	else
1002 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1003 
1004 	blk_mq_hctx_mark_pending(hctx, ctx);
1005 }
1006 
1007 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1008 		bool async)
1009 {
1010 	struct request_queue *q = rq->q;
1011 	struct blk_mq_hw_ctx *hctx;
1012 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1013 
1014 	current_ctx = blk_mq_get_ctx(q);
1015 	if (!cpu_online(ctx->cpu))
1016 		rq->mq_ctx = ctx = current_ctx;
1017 
1018 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1019 
1020 	spin_lock(&ctx->lock);
1021 	__blk_mq_insert_request(hctx, rq, at_head);
1022 	spin_unlock(&ctx->lock);
1023 
1024 	if (run_queue)
1025 		blk_mq_run_hw_queue(hctx, async);
1026 
1027 	blk_mq_put_ctx(current_ctx);
1028 }
1029 
1030 static void blk_mq_insert_requests(struct request_queue *q,
1031 				     struct blk_mq_ctx *ctx,
1032 				     struct list_head *list,
1033 				     int depth,
1034 				     bool from_schedule)
1035 
1036 {
1037 	struct blk_mq_hw_ctx *hctx;
1038 	struct blk_mq_ctx *current_ctx;
1039 
1040 	trace_block_unplug(q, depth, !from_schedule);
1041 
1042 	current_ctx = blk_mq_get_ctx(q);
1043 
1044 	if (!cpu_online(ctx->cpu))
1045 		ctx = current_ctx;
1046 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1047 
1048 	/*
1049 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1050 	 * offline now
1051 	 */
1052 	spin_lock(&ctx->lock);
1053 	while (!list_empty(list)) {
1054 		struct request *rq;
1055 
1056 		rq = list_first_entry(list, struct request, queuelist);
1057 		list_del_init(&rq->queuelist);
1058 		rq->mq_ctx = ctx;
1059 		__blk_mq_insert_request(hctx, rq, false);
1060 	}
1061 	spin_unlock(&ctx->lock);
1062 
1063 	blk_mq_run_hw_queue(hctx, from_schedule);
1064 	blk_mq_put_ctx(current_ctx);
1065 }
1066 
1067 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1068 {
1069 	struct request *rqa = container_of(a, struct request, queuelist);
1070 	struct request *rqb = container_of(b, struct request, queuelist);
1071 
1072 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1073 		 (rqa->mq_ctx == rqb->mq_ctx &&
1074 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1075 }
1076 
1077 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1078 {
1079 	struct blk_mq_ctx *this_ctx;
1080 	struct request_queue *this_q;
1081 	struct request *rq;
1082 	LIST_HEAD(list);
1083 	LIST_HEAD(ctx_list);
1084 	unsigned int depth;
1085 
1086 	list_splice_init(&plug->mq_list, &list);
1087 
1088 	list_sort(NULL, &list, plug_ctx_cmp);
1089 
1090 	this_q = NULL;
1091 	this_ctx = NULL;
1092 	depth = 0;
1093 
1094 	while (!list_empty(&list)) {
1095 		rq = list_entry_rq(list.next);
1096 		list_del_init(&rq->queuelist);
1097 		BUG_ON(!rq->q);
1098 		if (rq->mq_ctx != this_ctx) {
1099 			if (this_ctx) {
1100 				blk_mq_insert_requests(this_q, this_ctx,
1101 							&ctx_list, depth,
1102 							from_schedule);
1103 			}
1104 
1105 			this_ctx = rq->mq_ctx;
1106 			this_q = rq->q;
1107 			depth = 0;
1108 		}
1109 
1110 		depth++;
1111 		list_add_tail(&rq->queuelist, &ctx_list);
1112 	}
1113 
1114 	/*
1115 	 * If 'this_ctx' is set, we know we have entries to complete
1116 	 * on 'ctx_list'. Do those.
1117 	 */
1118 	if (this_ctx) {
1119 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1120 				       from_schedule);
1121 	}
1122 }
1123 
1124 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1125 {
1126 	init_request_from_bio(rq, bio);
1127 
1128 	if (blk_do_io_stat(rq))
1129 		blk_account_io_start(rq, 1);
1130 }
1131 
1132 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1133 {
1134 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1135 		!blk_queue_nomerges(hctx->queue);
1136 }
1137 
1138 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1139 					 struct blk_mq_ctx *ctx,
1140 					 struct request *rq, struct bio *bio)
1141 {
1142 	if (!hctx_allow_merges(hctx)) {
1143 		blk_mq_bio_to_request(rq, bio);
1144 		spin_lock(&ctx->lock);
1145 insert_rq:
1146 		__blk_mq_insert_request(hctx, rq, false);
1147 		spin_unlock(&ctx->lock);
1148 		return false;
1149 	} else {
1150 		struct request_queue *q = hctx->queue;
1151 
1152 		spin_lock(&ctx->lock);
1153 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1154 			blk_mq_bio_to_request(rq, bio);
1155 			goto insert_rq;
1156 		}
1157 
1158 		spin_unlock(&ctx->lock);
1159 		__blk_mq_free_request(hctx, ctx, rq);
1160 		return true;
1161 	}
1162 }
1163 
1164 struct blk_map_ctx {
1165 	struct blk_mq_hw_ctx *hctx;
1166 	struct blk_mq_ctx *ctx;
1167 };
1168 
1169 static struct request *blk_mq_map_request(struct request_queue *q,
1170 					  struct bio *bio,
1171 					  struct blk_map_ctx *data)
1172 {
1173 	struct blk_mq_hw_ctx *hctx;
1174 	struct blk_mq_ctx *ctx;
1175 	struct request *rq;
1176 	int rw = bio_data_dir(bio);
1177 	struct blk_mq_alloc_data alloc_data;
1178 
1179 	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1180 		bio_io_error(bio);
1181 		return NULL;
1182 	}
1183 
1184 	ctx = blk_mq_get_ctx(q);
1185 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1186 
1187 	if (rw_is_sync(bio->bi_rw))
1188 		rw |= REQ_SYNC;
1189 
1190 	trace_block_getrq(q, bio, rw);
1191 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1192 			hctx);
1193 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1194 	if (unlikely(!rq)) {
1195 		__blk_mq_run_hw_queue(hctx);
1196 		blk_mq_put_ctx(ctx);
1197 		trace_block_sleeprq(q, bio, rw);
1198 
1199 		ctx = blk_mq_get_ctx(q);
1200 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1201 		blk_mq_set_alloc_data(&alloc_data, q,
1202 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1203 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1204 		ctx = alloc_data.ctx;
1205 		hctx = alloc_data.hctx;
1206 	}
1207 
1208 	hctx->queued++;
1209 	data->hctx = hctx;
1210 	data->ctx = ctx;
1211 	return rq;
1212 }
1213 
1214 static int blk_mq_direct_issue_request(struct request *rq)
1215 {
1216 	int ret;
1217 	struct request_queue *q = rq->q;
1218 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1219 			rq->mq_ctx->cpu);
1220 	struct blk_mq_queue_data bd = {
1221 		.rq = rq,
1222 		.list = NULL,
1223 		.last = 1
1224 	};
1225 
1226 	/*
1227 	 * For OK queue, we are done. For error, kill it. Any other
1228 	 * error (busy), just add it to our list as we previously
1229 	 * would have done
1230 	 */
1231 	ret = q->mq_ops->queue_rq(hctx, &bd);
1232 	if (ret == BLK_MQ_RQ_QUEUE_OK)
1233 		return 0;
1234 	else {
1235 		__blk_mq_requeue_request(rq);
1236 
1237 		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1238 			rq->errors = -EIO;
1239 			blk_mq_end_request(rq, rq->errors);
1240 			return 0;
1241 		}
1242 		return -1;
1243 	}
1244 }
1245 
1246 /*
1247  * Multiple hardware queue variant. This will not use per-process plugs,
1248  * but will attempt to bypass the hctx queueing if we can go straight to
1249  * hardware for SYNC IO.
1250  */
1251 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1252 {
1253 	const int is_sync = rw_is_sync(bio->bi_rw);
1254 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1255 	struct blk_map_ctx data;
1256 	struct request *rq;
1257 	unsigned int request_count = 0;
1258 	struct blk_plug *plug;
1259 	struct request *same_queue_rq = NULL;
1260 
1261 	blk_queue_bounce(q, &bio);
1262 
1263 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1264 		bio_io_error(bio);
1265 		return;
1266 	}
1267 
1268 	blk_queue_split(q, &bio, q->bio_split);
1269 
1270 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1271 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1272 		return;
1273 
1274 	rq = blk_mq_map_request(q, bio, &data);
1275 	if (unlikely(!rq))
1276 		return;
1277 
1278 	if (unlikely(is_flush_fua)) {
1279 		blk_mq_bio_to_request(rq, bio);
1280 		blk_insert_flush(rq);
1281 		goto run_queue;
1282 	}
1283 
1284 	plug = current->plug;
1285 	/*
1286 	 * If the driver supports defer issued based on 'last', then
1287 	 * queue it up like normal since we can potentially save some
1288 	 * CPU this way.
1289 	 */
1290 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1291 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1292 		struct request *old_rq = NULL;
1293 
1294 		blk_mq_bio_to_request(rq, bio);
1295 
1296 		/*
1297 		 * we do limited pluging. If bio can be merged, do merge.
1298 		 * Otherwise the existing request in the plug list will be
1299 		 * issued. So the plug list will have one request at most
1300 		 */
1301 		if (plug) {
1302 			/*
1303 			 * The plug list might get flushed before this. If that
1304 			 * happens, same_queue_rq is invalid and plug list is empty
1305 			 **/
1306 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1307 				old_rq = same_queue_rq;
1308 				list_del_init(&old_rq->queuelist);
1309 			}
1310 			list_add_tail(&rq->queuelist, &plug->mq_list);
1311 		} else /* is_sync */
1312 			old_rq = rq;
1313 		blk_mq_put_ctx(data.ctx);
1314 		if (!old_rq)
1315 			return;
1316 		if (!blk_mq_direct_issue_request(old_rq))
1317 			return;
1318 		blk_mq_insert_request(old_rq, false, true, true);
1319 		return;
1320 	}
1321 
1322 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1323 		/*
1324 		 * For a SYNC request, send it to the hardware immediately. For
1325 		 * an ASYNC request, just ensure that we run it later on. The
1326 		 * latter allows for merging opportunities and more efficient
1327 		 * dispatching.
1328 		 */
1329 run_queue:
1330 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1331 	}
1332 	blk_mq_put_ctx(data.ctx);
1333 }
1334 
1335 /*
1336  * Single hardware queue variant. This will attempt to use any per-process
1337  * plug for merging and IO deferral.
1338  */
1339 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341 	const int is_sync = rw_is_sync(bio->bi_rw);
1342 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1343 	struct blk_plug *plug;
1344 	unsigned int request_count = 0;
1345 	struct blk_map_ctx data;
1346 	struct request *rq;
1347 
1348 	blk_queue_bounce(q, &bio);
1349 
1350 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1351 		bio_io_error(bio);
1352 		return;
1353 	}
1354 
1355 	blk_queue_split(q, &bio, q->bio_split);
1356 
1357 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1358 	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1359 		return;
1360 
1361 	rq = blk_mq_map_request(q, bio, &data);
1362 	if (unlikely(!rq))
1363 		return;
1364 
1365 	if (unlikely(is_flush_fua)) {
1366 		blk_mq_bio_to_request(rq, bio);
1367 		blk_insert_flush(rq);
1368 		goto run_queue;
1369 	}
1370 
1371 	/*
1372 	 * A task plug currently exists. Since this is completely lockless,
1373 	 * utilize that to temporarily store requests until the task is
1374 	 * either done or scheduled away.
1375 	 */
1376 	plug = current->plug;
1377 	if (plug) {
1378 		blk_mq_bio_to_request(rq, bio);
1379 		if (list_empty(&plug->mq_list))
1380 			trace_block_plug(q);
1381 		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1382 			blk_flush_plug_list(plug, false);
1383 			trace_block_plug(q);
1384 		}
1385 		list_add_tail(&rq->queuelist, &plug->mq_list);
1386 		blk_mq_put_ctx(data.ctx);
1387 		return;
1388 	}
1389 
1390 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1391 		/*
1392 		 * For a SYNC request, send it to the hardware immediately. For
1393 		 * an ASYNC request, just ensure that we run it later on. The
1394 		 * latter allows for merging opportunities and more efficient
1395 		 * dispatching.
1396 		 */
1397 run_queue:
1398 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1399 	}
1400 
1401 	blk_mq_put_ctx(data.ctx);
1402 }
1403 
1404 /*
1405  * Default mapping to a software queue, since we use one per CPU.
1406  */
1407 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1408 {
1409 	return q->queue_hw_ctx[q->mq_map[cpu]];
1410 }
1411 EXPORT_SYMBOL(blk_mq_map_queue);
1412 
1413 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1414 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1415 {
1416 	struct page *page;
1417 
1418 	if (tags->rqs && set->ops->exit_request) {
1419 		int i;
1420 
1421 		for (i = 0; i < tags->nr_tags; i++) {
1422 			if (!tags->rqs[i])
1423 				continue;
1424 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1425 						hctx_idx, i);
1426 			tags->rqs[i] = NULL;
1427 		}
1428 	}
1429 
1430 	while (!list_empty(&tags->page_list)) {
1431 		page = list_first_entry(&tags->page_list, struct page, lru);
1432 		list_del_init(&page->lru);
1433 		__free_pages(page, page->private);
1434 	}
1435 
1436 	kfree(tags->rqs);
1437 
1438 	blk_mq_free_tags(tags);
1439 }
1440 
1441 static size_t order_to_size(unsigned int order)
1442 {
1443 	return (size_t)PAGE_SIZE << order;
1444 }
1445 
1446 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1447 		unsigned int hctx_idx)
1448 {
1449 	struct blk_mq_tags *tags;
1450 	unsigned int i, j, entries_per_page, max_order = 4;
1451 	size_t rq_size, left;
1452 
1453 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1454 				set->numa_node,
1455 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1456 	if (!tags)
1457 		return NULL;
1458 
1459 	INIT_LIST_HEAD(&tags->page_list);
1460 
1461 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1462 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1463 				 set->numa_node);
1464 	if (!tags->rqs) {
1465 		blk_mq_free_tags(tags);
1466 		return NULL;
1467 	}
1468 
1469 	/*
1470 	 * rq_size is the size of the request plus driver payload, rounded
1471 	 * to the cacheline size
1472 	 */
1473 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1474 				cache_line_size());
1475 	left = rq_size * set->queue_depth;
1476 
1477 	for (i = 0; i < set->queue_depth; ) {
1478 		int this_order = max_order;
1479 		struct page *page;
1480 		int to_do;
1481 		void *p;
1482 
1483 		while (left < order_to_size(this_order - 1) && this_order)
1484 			this_order--;
1485 
1486 		do {
1487 			page = alloc_pages_node(set->numa_node,
1488 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1489 				this_order);
1490 			if (page)
1491 				break;
1492 			if (!this_order--)
1493 				break;
1494 			if (order_to_size(this_order) < rq_size)
1495 				break;
1496 		} while (1);
1497 
1498 		if (!page)
1499 			goto fail;
1500 
1501 		page->private = this_order;
1502 		list_add_tail(&page->lru, &tags->page_list);
1503 
1504 		p = page_address(page);
1505 		entries_per_page = order_to_size(this_order) / rq_size;
1506 		to_do = min(entries_per_page, set->queue_depth - i);
1507 		left -= to_do * rq_size;
1508 		for (j = 0; j < to_do; j++) {
1509 			tags->rqs[i] = p;
1510 			if (set->ops->init_request) {
1511 				if (set->ops->init_request(set->driver_data,
1512 						tags->rqs[i], hctx_idx, i,
1513 						set->numa_node)) {
1514 					tags->rqs[i] = NULL;
1515 					goto fail;
1516 				}
1517 			}
1518 
1519 			p += rq_size;
1520 			i++;
1521 		}
1522 	}
1523 	return tags;
1524 
1525 fail:
1526 	blk_mq_free_rq_map(set, tags, hctx_idx);
1527 	return NULL;
1528 }
1529 
1530 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1531 {
1532 	kfree(bitmap->map);
1533 }
1534 
1535 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1536 {
1537 	unsigned int bpw = 8, total, num_maps, i;
1538 
1539 	bitmap->bits_per_word = bpw;
1540 
1541 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1542 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1543 					GFP_KERNEL, node);
1544 	if (!bitmap->map)
1545 		return -ENOMEM;
1546 
1547 	total = nr_cpu_ids;
1548 	for (i = 0; i < num_maps; i++) {
1549 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1550 		total -= bitmap->map[i].depth;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1557 {
1558 	struct request_queue *q = hctx->queue;
1559 	struct blk_mq_ctx *ctx;
1560 	LIST_HEAD(tmp);
1561 
1562 	/*
1563 	 * Move ctx entries to new CPU, if this one is going away.
1564 	 */
1565 	ctx = __blk_mq_get_ctx(q, cpu);
1566 
1567 	spin_lock(&ctx->lock);
1568 	if (!list_empty(&ctx->rq_list)) {
1569 		list_splice_init(&ctx->rq_list, &tmp);
1570 		blk_mq_hctx_clear_pending(hctx, ctx);
1571 	}
1572 	spin_unlock(&ctx->lock);
1573 
1574 	if (list_empty(&tmp))
1575 		return NOTIFY_OK;
1576 
1577 	ctx = blk_mq_get_ctx(q);
1578 	spin_lock(&ctx->lock);
1579 
1580 	while (!list_empty(&tmp)) {
1581 		struct request *rq;
1582 
1583 		rq = list_first_entry(&tmp, struct request, queuelist);
1584 		rq->mq_ctx = ctx;
1585 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1586 	}
1587 
1588 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1589 	blk_mq_hctx_mark_pending(hctx, ctx);
1590 
1591 	spin_unlock(&ctx->lock);
1592 
1593 	blk_mq_run_hw_queue(hctx, true);
1594 	blk_mq_put_ctx(ctx);
1595 	return NOTIFY_OK;
1596 }
1597 
1598 static int blk_mq_hctx_notify(void *data, unsigned long action,
1599 			      unsigned int cpu)
1600 {
1601 	struct blk_mq_hw_ctx *hctx = data;
1602 
1603 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1604 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1605 
1606 	/*
1607 	 * In case of CPU online, tags may be reallocated
1608 	 * in blk_mq_map_swqueue() after mapping is updated.
1609 	 */
1610 
1611 	return NOTIFY_OK;
1612 }
1613 
1614 /* hctx->ctxs will be freed in queue's release handler */
1615 static void blk_mq_exit_hctx(struct request_queue *q,
1616 		struct blk_mq_tag_set *set,
1617 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1618 {
1619 	unsigned flush_start_tag = set->queue_depth;
1620 
1621 	blk_mq_tag_idle(hctx);
1622 
1623 	if (set->ops->exit_request)
1624 		set->ops->exit_request(set->driver_data,
1625 				       hctx->fq->flush_rq, hctx_idx,
1626 				       flush_start_tag + hctx_idx);
1627 
1628 	if (set->ops->exit_hctx)
1629 		set->ops->exit_hctx(hctx, hctx_idx);
1630 
1631 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1632 	blk_free_flush_queue(hctx->fq);
1633 	blk_mq_free_bitmap(&hctx->ctx_map);
1634 }
1635 
1636 static void blk_mq_exit_hw_queues(struct request_queue *q,
1637 		struct blk_mq_tag_set *set, int nr_queue)
1638 {
1639 	struct blk_mq_hw_ctx *hctx;
1640 	unsigned int i;
1641 
1642 	queue_for_each_hw_ctx(q, hctx, i) {
1643 		if (i == nr_queue)
1644 			break;
1645 		blk_mq_exit_hctx(q, set, hctx, i);
1646 	}
1647 }
1648 
1649 static void blk_mq_free_hw_queues(struct request_queue *q,
1650 		struct blk_mq_tag_set *set)
1651 {
1652 	struct blk_mq_hw_ctx *hctx;
1653 	unsigned int i;
1654 
1655 	queue_for_each_hw_ctx(q, hctx, i)
1656 		free_cpumask_var(hctx->cpumask);
1657 }
1658 
1659 static int blk_mq_init_hctx(struct request_queue *q,
1660 		struct blk_mq_tag_set *set,
1661 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1662 {
1663 	int node;
1664 	unsigned flush_start_tag = set->queue_depth;
1665 
1666 	node = hctx->numa_node;
1667 	if (node == NUMA_NO_NODE)
1668 		node = hctx->numa_node = set->numa_node;
1669 
1670 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1671 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1672 	spin_lock_init(&hctx->lock);
1673 	INIT_LIST_HEAD(&hctx->dispatch);
1674 	hctx->queue = q;
1675 	hctx->queue_num = hctx_idx;
1676 	hctx->flags = set->flags;
1677 
1678 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1679 					blk_mq_hctx_notify, hctx);
1680 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1681 
1682 	hctx->tags = set->tags[hctx_idx];
1683 
1684 	/*
1685 	 * Allocate space for all possible cpus to avoid allocation at
1686 	 * runtime
1687 	 */
1688 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1689 					GFP_KERNEL, node);
1690 	if (!hctx->ctxs)
1691 		goto unregister_cpu_notifier;
1692 
1693 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1694 		goto free_ctxs;
1695 
1696 	hctx->nr_ctx = 0;
1697 
1698 	if (set->ops->init_hctx &&
1699 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1700 		goto free_bitmap;
1701 
1702 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1703 	if (!hctx->fq)
1704 		goto exit_hctx;
1705 
1706 	if (set->ops->init_request &&
1707 	    set->ops->init_request(set->driver_data,
1708 				   hctx->fq->flush_rq, hctx_idx,
1709 				   flush_start_tag + hctx_idx, node))
1710 		goto free_fq;
1711 
1712 	return 0;
1713 
1714  free_fq:
1715 	kfree(hctx->fq);
1716  exit_hctx:
1717 	if (set->ops->exit_hctx)
1718 		set->ops->exit_hctx(hctx, hctx_idx);
1719  free_bitmap:
1720 	blk_mq_free_bitmap(&hctx->ctx_map);
1721  free_ctxs:
1722 	kfree(hctx->ctxs);
1723  unregister_cpu_notifier:
1724 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1725 
1726 	return -1;
1727 }
1728 
1729 static int blk_mq_init_hw_queues(struct request_queue *q,
1730 		struct blk_mq_tag_set *set)
1731 {
1732 	struct blk_mq_hw_ctx *hctx;
1733 	unsigned int i;
1734 
1735 	/*
1736 	 * Initialize hardware queues
1737 	 */
1738 	queue_for_each_hw_ctx(q, hctx, i) {
1739 		if (blk_mq_init_hctx(q, set, hctx, i))
1740 			break;
1741 	}
1742 
1743 	if (i == q->nr_hw_queues)
1744 		return 0;
1745 
1746 	/*
1747 	 * Init failed
1748 	 */
1749 	blk_mq_exit_hw_queues(q, set, i);
1750 
1751 	return 1;
1752 }
1753 
1754 static void blk_mq_init_cpu_queues(struct request_queue *q,
1755 				   unsigned int nr_hw_queues)
1756 {
1757 	unsigned int i;
1758 
1759 	for_each_possible_cpu(i) {
1760 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1761 		struct blk_mq_hw_ctx *hctx;
1762 
1763 		memset(__ctx, 0, sizeof(*__ctx));
1764 		__ctx->cpu = i;
1765 		spin_lock_init(&__ctx->lock);
1766 		INIT_LIST_HEAD(&__ctx->rq_list);
1767 		__ctx->queue = q;
1768 
1769 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1770 		if (!cpu_online(i))
1771 			continue;
1772 
1773 		hctx = q->mq_ops->map_queue(q, i);
1774 
1775 		/*
1776 		 * Set local node, IFF we have more than one hw queue. If
1777 		 * not, we remain on the home node of the device
1778 		 */
1779 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1780 			hctx->numa_node = cpu_to_node(i);
1781 	}
1782 }
1783 
1784 static void blk_mq_map_swqueue(struct request_queue *q,
1785 			       const struct cpumask *online_mask)
1786 {
1787 	unsigned int i;
1788 	struct blk_mq_hw_ctx *hctx;
1789 	struct blk_mq_ctx *ctx;
1790 	struct blk_mq_tag_set *set = q->tag_set;
1791 
1792 	/*
1793 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1794 	 */
1795 	mutex_lock(&q->sysfs_lock);
1796 
1797 	queue_for_each_hw_ctx(q, hctx, i) {
1798 		cpumask_clear(hctx->cpumask);
1799 		hctx->nr_ctx = 0;
1800 	}
1801 
1802 	/*
1803 	 * Map software to hardware queues
1804 	 */
1805 	queue_for_each_ctx(q, ctx, i) {
1806 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1807 		if (!cpumask_test_cpu(i, online_mask))
1808 			continue;
1809 
1810 		hctx = q->mq_ops->map_queue(q, i);
1811 		cpumask_set_cpu(i, hctx->cpumask);
1812 		ctx->index_hw = hctx->nr_ctx;
1813 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1814 	}
1815 
1816 	mutex_unlock(&q->sysfs_lock);
1817 
1818 	queue_for_each_hw_ctx(q, hctx, i) {
1819 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1820 
1821 		/*
1822 		 * If no software queues are mapped to this hardware queue,
1823 		 * disable it and free the request entries.
1824 		 */
1825 		if (!hctx->nr_ctx) {
1826 			if (set->tags[i]) {
1827 				blk_mq_free_rq_map(set, set->tags[i], i);
1828 				set->tags[i] = NULL;
1829 			}
1830 			hctx->tags = NULL;
1831 			continue;
1832 		}
1833 
1834 		/* unmapped hw queue can be remapped after CPU topo changed */
1835 		if (!set->tags[i])
1836 			set->tags[i] = blk_mq_init_rq_map(set, i);
1837 		hctx->tags = set->tags[i];
1838 		WARN_ON(!hctx->tags);
1839 
1840 		/*
1841 		 * Set the map size to the number of mapped software queues.
1842 		 * This is more accurate and more efficient than looping
1843 		 * over all possibly mapped software queues.
1844 		 */
1845 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1846 
1847 		/*
1848 		 * Initialize batch roundrobin counts
1849 		 */
1850 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1851 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1852 	}
1853 
1854 	queue_for_each_ctx(q, ctx, i) {
1855 		if (!cpumask_test_cpu(i, online_mask))
1856 			continue;
1857 
1858 		hctx = q->mq_ops->map_queue(q, i);
1859 		cpumask_set_cpu(i, hctx->tags->cpumask);
1860 	}
1861 }
1862 
1863 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1864 {
1865 	struct blk_mq_hw_ctx *hctx;
1866 	struct request_queue *q;
1867 	bool shared;
1868 	int i;
1869 
1870 	if (set->tag_list.next == set->tag_list.prev)
1871 		shared = false;
1872 	else
1873 		shared = true;
1874 
1875 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1876 		blk_mq_freeze_queue(q);
1877 
1878 		queue_for_each_hw_ctx(q, hctx, i) {
1879 			if (shared)
1880 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1881 			else
1882 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1883 		}
1884 		blk_mq_unfreeze_queue(q);
1885 	}
1886 }
1887 
1888 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1889 {
1890 	struct blk_mq_tag_set *set = q->tag_set;
1891 
1892 	mutex_lock(&set->tag_list_lock);
1893 	list_del_init(&q->tag_set_list);
1894 	blk_mq_update_tag_set_depth(set);
1895 	mutex_unlock(&set->tag_list_lock);
1896 }
1897 
1898 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1899 				     struct request_queue *q)
1900 {
1901 	q->tag_set = set;
1902 
1903 	mutex_lock(&set->tag_list_lock);
1904 	list_add_tail(&q->tag_set_list, &set->tag_list);
1905 	blk_mq_update_tag_set_depth(set);
1906 	mutex_unlock(&set->tag_list_lock);
1907 }
1908 
1909 /*
1910  * It is the actual release handler for mq, but we do it from
1911  * request queue's release handler for avoiding use-after-free
1912  * and headache because q->mq_kobj shouldn't have been introduced,
1913  * but we can't group ctx/kctx kobj without it.
1914  */
1915 void blk_mq_release(struct request_queue *q)
1916 {
1917 	struct blk_mq_hw_ctx *hctx;
1918 	unsigned int i;
1919 
1920 	/* hctx kobj stays in hctx */
1921 	queue_for_each_hw_ctx(q, hctx, i) {
1922 		if (!hctx)
1923 			continue;
1924 		kfree(hctx->ctxs);
1925 		kfree(hctx);
1926 	}
1927 
1928 	kfree(q->mq_map);
1929 	q->mq_map = NULL;
1930 
1931 	kfree(q->queue_hw_ctx);
1932 
1933 	/* ctx kobj stays in queue_ctx */
1934 	free_percpu(q->queue_ctx);
1935 }
1936 
1937 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1938 {
1939 	struct request_queue *uninit_q, *q;
1940 
1941 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1942 	if (!uninit_q)
1943 		return ERR_PTR(-ENOMEM);
1944 
1945 	q = blk_mq_init_allocated_queue(set, uninit_q);
1946 	if (IS_ERR(q))
1947 		blk_cleanup_queue(uninit_q);
1948 
1949 	return q;
1950 }
1951 EXPORT_SYMBOL(blk_mq_init_queue);
1952 
1953 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1954 						  struct request_queue *q)
1955 {
1956 	struct blk_mq_hw_ctx **hctxs;
1957 	struct blk_mq_ctx __percpu *ctx;
1958 	unsigned int *map;
1959 	int i;
1960 
1961 	ctx = alloc_percpu(struct blk_mq_ctx);
1962 	if (!ctx)
1963 		return ERR_PTR(-ENOMEM);
1964 
1965 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1966 			set->numa_node);
1967 
1968 	if (!hctxs)
1969 		goto err_percpu;
1970 
1971 	map = blk_mq_make_queue_map(set);
1972 	if (!map)
1973 		goto err_map;
1974 
1975 	for (i = 0; i < set->nr_hw_queues; i++) {
1976 		int node = blk_mq_hw_queue_to_node(map, i);
1977 
1978 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1979 					GFP_KERNEL, node);
1980 		if (!hctxs[i])
1981 			goto err_hctxs;
1982 
1983 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1984 						node))
1985 			goto err_hctxs;
1986 
1987 		atomic_set(&hctxs[i]->nr_active, 0);
1988 		hctxs[i]->numa_node = node;
1989 		hctxs[i]->queue_num = i;
1990 	}
1991 
1992 	/*
1993 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1994 	 * See blk_register_queue() for details.
1995 	 */
1996 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1997 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1998 		goto err_hctxs;
1999 
2000 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2001 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2002 
2003 	q->nr_queues = nr_cpu_ids;
2004 	q->nr_hw_queues = set->nr_hw_queues;
2005 	q->mq_map = map;
2006 
2007 	q->queue_ctx = ctx;
2008 	q->queue_hw_ctx = hctxs;
2009 
2010 	q->mq_ops = set->ops;
2011 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2012 
2013 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2014 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2015 
2016 	q->sg_reserved_size = INT_MAX;
2017 
2018 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2019 	INIT_LIST_HEAD(&q->requeue_list);
2020 	spin_lock_init(&q->requeue_lock);
2021 
2022 	if (q->nr_hw_queues > 1)
2023 		blk_queue_make_request(q, blk_mq_make_request);
2024 	else
2025 		blk_queue_make_request(q, blk_sq_make_request);
2026 
2027 	/*
2028 	 * Do this after blk_queue_make_request() overrides it...
2029 	 */
2030 	q->nr_requests = set->queue_depth;
2031 
2032 	if (set->ops->complete)
2033 		blk_queue_softirq_done(q, set->ops->complete);
2034 
2035 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2036 
2037 	if (blk_mq_init_hw_queues(q, set))
2038 		goto err_hctxs;
2039 
2040 	get_online_cpus();
2041 	mutex_lock(&all_q_mutex);
2042 
2043 	list_add_tail(&q->all_q_node, &all_q_list);
2044 	blk_mq_add_queue_tag_set(set, q);
2045 	blk_mq_map_swqueue(q, cpu_online_mask);
2046 
2047 	mutex_unlock(&all_q_mutex);
2048 	put_online_cpus();
2049 
2050 	return q;
2051 
2052 err_hctxs:
2053 	kfree(map);
2054 	for (i = 0; i < set->nr_hw_queues; i++) {
2055 		if (!hctxs[i])
2056 			break;
2057 		free_cpumask_var(hctxs[i]->cpumask);
2058 		kfree(hctxs[i]);
2059 	}
2060 err_map:
2061 	kfree(hctxs);
2062 err_percpu:
2063 	free_percpu(ctx);
2064 	return ERR_PTR(-ENOMEM);
2065 }
2066 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2067 
2068 void blk_mq_free_queue(struct request_queue *q)
2069 {
2070 	struct blk_mq_tag_set	*set = q->tag_set;
2071 
2072 	mutex_lock(&all_q_mutex);
2073 	list_del_init(&q->all_q_node);
2074 	mutex_unlock(&all_q_mutex);
2075 
2076 	blk_mq_del_queue_tag_set(q);
2077 
2078 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2079 	blk_mq_free_hw_queues(q, set);
2080 
2081 	percpu_ref_exit(&q->mq_usage_counter);
2082 }
2083 
2084 /* Basically redo blk_mq_init_queue with queue frozen */
2085 static void blk_mq_queue_reinit(struct request_queue *q,
2086 				const struct cpumask *online_mask)
2087 {
2088 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2089 
2090 	blk_mq_sysfs_unregister(q);
2091 
2092 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2093 
2094 	/*
2095 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2096 	 * we should change hctx numa_node according to new topology (this
2097 	 * involves free and re-allocate memory, worthy doing?)
2098 	 */
2099 
2100 	blk_mq_map_swqueue(q, online_mask);
2101 
2102 	blk_mq_sysfs_register(q);
2103 }
2104 
2105 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2106 				      unsigned long action, void *hcpu)
2107 {
2108 	struct request_queue *q;
2109 	int cpu = (unsigned long)hcpu;
2110 	/*
2111 	 * New online cpumask which is going to be set in this hotplug event.
2112 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2113 	 * one-by-one and dynamically allocating this could result in a failure.
2114 	 */
2115 	static struct cpumask online_new;
2116 
2117 	/*
2118 	 * Before hotadded cpu starts handling requests, new mappings must
2119 	 * be established.  Otherwise, these requests in hw queue might
2120 	 * never be dispatched.
2121 	 *
2122 	 * For example, there is a single hw queue (hctx) and two CPU queues
2123 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2124 	 *
2125 	 * Now CPU1 is just onlined and a request is inserted into
2126 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2127 	 * still zero.
2128 	 *
2129 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2130 	 * set in pending bitmap and tries to retrieve requests in
2131 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2132 	 * so the request in ctx1->rq_list is ignored.
2133 	 */
2134 	switch (action & ~CPU_TASKS_FROZEN) {
2135 	case CPU_DEAD:
2136 	case CPU_UP_CANCELED:
2137 		cpumask_copy(&online_new, cpu_online_mask);
2138 		break;
2139 	case CPU_UP_PREPARE:
2140 		cpumask_copy(&online_new, cpu_online_mask);
2141 		cpumask_set_cpu(cpu, &online_new);
2142 		break;
2143 	default:
2144 		return NOTIFY_OK;
2145 	}
2146 
2147 	mutex_lock(&all_q_mutex);
2148 
2149 	/*
2150 	 * We need to freeze and reinit all existing queues.  Freezing
2151 	 * involves synchronous wait for an RCU grace period and doing it
2152 	 * one by one may take a long time.  Start freezing all queues in
2153 	 * one swoop and then wait for the completions so that freezing can
2154 	 * take place in parallel.
2155 	 */
2156 	list_for_each_entry(q, &all_q_list, all_q_node)
2157 		blk_mq_freeze_queue_start(q);
2158 	list_for_each_entry(q, &all_q_list, all_q_node) {
2159 		blk_mq_freeze_queue_wait(q);
2160 
2161 		/*
2162 		 * timeout handler can't touch hw queue during the
2163 		 * reinitialization
2164 		 */
2165 		del_timer_sync(&q->timeout);
2166 	}
2167 
2168 	list_for_each_entry(q, &all_q_list, all_q_node)
2169 		blk_mq_queue_reinit(q, &online_new);
2170 
2171 	list_for_each_entry(q, &all_q_list, all_q_node)
2172 		blk_mq_unfreeze_queue(q);
2173 
2174 	mutex_unlock(&all_q_mutex);
2175 	return NOTIFY_OK;
2176 }
2177 
2178 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2179 {
2180 	int i;
2181 
2182 	for (i = 0; i < set->nr_hw_queues; i++) {
2183 		set->tags[i] = blk_mq_init_rq_map(set, i);
2184 		if (!set->tags[i])
2185 			goto out_unwind;
2186 	}
2187 
2188 	return 0;
2189 
2190 out_unwind:
2191 	while (--i >= 0)
2192 		blk_mq_free_rq_map(set, set->tags[i], i);
2193 
2194 	return -ENOMEM;
2195 }
2196 
2197 /*
2198  * Allocate the request maps associated with this tag_set. Note that this
2199  * may reduce the depth asked for, if memory is tight. set->queue_depth
2200  * will be updated to reflect the allocated depth.
2201  */
2202 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2203 {
2204 	unsigned int depth;
2205 	int err;
2206 
2207 	depth = set->queue_depth;
2208 	do {
2209 		err = __blk_mq_alloc_rq_maps(set);
2210 		if (!err)
2211 			break;
2212 
2213 		set->queue_depth >>= 1;
2214 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2215 			err = -ENOMEM;
2216 			break;
2217 		}
2218 	} while (set->queue_depth);
2219 
2220 	if (!set->queue_depth || err) {
2221 		pr_err("blk-mq: failed to allocate request map\n");
2222 		return -ENOMEM;
2223 	}
2224 
2225 	if (depth != set->queue_depth)
2226 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2227 						depth, set->queue_depth);
2228 
2229 	return 0;
2230 }
2231 
2232 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2233 {
2234 	return tags->cpumask;
2235 }
2236 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2237 
2238 /*
2239  * Alloc a tag set to be associated with one or more request queues.
2240  * May fail with EINVAL for various error conditions. May adjust the
2241  * requested depth down, if if it too large. In that case, the set
2242  * value will be stored in set->queue_depth.
2243  */
2244 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2245 {
2246 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2247 
2248 	if (!set->nr_hw_queues)
2249 		return -EINVAL;
2250 	if (!set->queue_depth)
2251 		return -EINVAL;
2252 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2253 		return -EINVAL;
2254 
2255 	if (!set->ops->queue_rq || !set->ops->map_queue)
2256 		return -EINVAL;
2257 
2258 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2259 		pr_info("blk-mq: reduced tag depth to %u\n",
2260 			BLK_MQ_MAX_DEPTH);
2261 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2262 	}
2263 
2264 	/*
2265 	 * If a crashdump is active, then we are potentially in a very
2266 	 * memory constrained environment. Limit us to 1 queue and
2267 	 * 64 tags to prevent using too much memory.
2268 	 */
2269 	if (is_kdump_kernel()) {
2270 		set->nr_hw_queues = 1;
2271 		set->queue_depth = min(64U, set->queue_depth);
2272 	}
2273 
2274 	set->tags = kmalloc_node(set->nr_hw_queues *
2275 				 sizeof(struct blk_mq_tags *),
2276 				 GFP_KERNEL, set->numa_node);
2277 	if (!set->tags)
2278 		return -ENOMEM;
2279 
2280 	if (blk_mq_alloc_rq_maps(set))
2281 		goto enomem;
2282 
2283 	mutex_init(&set->tag_list_lock);
2284 	INIT_LIST_HEAD(&set->tag_list);
2285 
2286 	return 0;
2287 enomem:
2288 	kfree(set->tags);
2289 	set->tags = NULL;
2290 	return -ENOMEM;
2291 }
2292 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2293 
2294 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2295 {
2296 	int i;
2297 
2298 	for (i = 0; i < set->nr_hw_queues; i++) {
2299 		if (set->tags[i])
2300 			blk_mq_free_rq_map(set, set->tags[i], i);
2301 	}
2302 
2303 	kfree(set->tags);
2304 	set->tags = NULL;
2305 }
2306 EXPORT_SYMBOL(blk_mq_free_tag_set);
2307 
2308 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2309 {
2310 	struct blk_mq_tag_set *set = q->tag_set;
2311 	struct blk_mq_hw_ctx *hctx;
2312 	int i, ret;
2313 
2314 	if (!set || nr > set->queue_depth)
2315 		return -EINVAL;
2316 
2317 	ret = 0;
2318 	queue_for_each_hw_ctx(q, hctx, i) {
2319 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2320 		if (ret)
2321 			break;
2322 	}
2323 
2324 	if (!ret)
2325 		q->nr_requests = nr;
2326 
2327 	return ret;
2328 }
2329 
2330 void blk_mq_disable_hotplug(void)
2331 {
2332 	mutex_lock(&all_q_mutex);
2333 }
2334 
2335 void blk_mq_enable_hotplug(void)
2336 {
2337 	mutex_unlock(&all_q_mutex);
2338 }
2339 
2340 static int __init blk_mq_init(void)
2341 {
2342 	blk_mq_cpu_init();
2343 
2344 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2345 
2346 	return 0;
2347 }
2348 subsys_initcall(blk_mq_init);
2349