1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 47 48 static void blk_mq_poll_stats_start(struct request_queue *q); 49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 50 51 static int blk_mq_poll_stats_bkt(const struct request *rq) 52 { 53 int ddir, sectors, bucket; 54 55 ddir = rq_data_dir(rq); 56 sectors = blk_rq_stats_sectors(rq); 57 58 bucket = ddir + 2 * ilog2(sectors); 59 60 if (bucket < 0) 61 return -1; 62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 64 65 return bucket; 66 } 67 68 #define BLK_QC_T_SHIFT 16 69 #define BLK_QC_T_INTERNAL (1U << 31) 70 71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 72 blk_qc_t qc) 73 { 74 return xa_load(&q->hctx_table, 75 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 76 } 77 78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 79 blk_qc_t qc) 80 { 81 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 82 83 if (qc & BLK_QC_T_INTERNAL) 84 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 85 return blk_mq_tag_to_rq(hctx->tags, tag); 86 } 87 88 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 89 { 90 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 91 (rq->tag != -1 ? 92 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 93 } 94 95 /* 96 * Check if any of the ctx, dispatch list or elevator 97 * have pending work in this hardware queue. 98 */ 99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 100 { 101 return !list_empty_careful(&hctx->dispatch) || 102 sbitmap_any_bit_set(&hctx->ctx_map) || 103 blk_mq_sched_has_work(hctx); 104 } 105 106 /* 107 * Mark this ctx as having pending work in this hardware queue 108 */ 109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 110 struct blk_mq_ctx *ctx) 111 { 112 const int bit = ctx->index_hw[hctx->type]; 113 114 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 115 sbitmap_set_bit(&hctx->ctx_map, bit); 116 } 117 118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 119 struct blk_mq_ctx *ctx) 120 { 121 const int bit = ctx->index_hw[hctx->type]; 122 123 sbitmap_clear_bit(&hctx->ctx_map, bit); 124 } 125 126 struct mq_inflight { 127 struct block_device *part; 128 unsigned int inflight[2]; 129 }; 130 131 static bool blk_mq_check_inflight(struct request *rq, void *priv, 132 bool reserved) 133 { 134 struct mq_inflight *mi = priv; 135 136 if ((!mi->part->bd_partno || rq->part == mi->part) && 137 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 138 mi->inflight[rq_data_dir(rq)]++; 139 140 return true; 141 } 142 143 unsigned int blk_mq_in_flight(struct request_queue *q, 144 struct block_device *part) 145 { 146 struct mq_inflight mi = { .part = part }; 147 148 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 149 150 return mi.inflight[0] + mi.inflight[1]; 151 } 152 153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 154 unsigned int inflight[2]) 155 { 156 struct mq_inflight mi = { .part = part }; 157 158 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 159 inflight[0] = mi.inflight[0]; 160 inflight[1] = mi.inflight[1]; 161 } 162 163 void blk_freeze_queue_start(struct request_queue *q) 164 { 165 mutex_lock(&q->mq_freeze_lock); 166 if (++q->mq_freeze_depth == 1) { 167 percpu_ref_kill(&q->q_usage_counter); 168 mutex_unlock(&q->mq_freeze_lock); 169 if (queue_is_mq(q)) 170 blk_mq_run_hw_queues(q, false); 171 } else { 172 mutex_unlock(&q->mq_freeze_lock); 173 } 174 } 175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 176 177 void blk_mq_freeze_queue_wait(struct request_queue *q) 178 { 179 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 180 } 181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 182 183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 184 unsigned long timeout) 185 { 186 return wait_event_timeout(q->mq_freeze_wq, 187 percpu_ref_is_zero(&q->q_usage_counter), 188 timeout); 189 } 190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 191 192 /* 193 * Guarantee no request is in use, so we can change any data structure of 194 * the queue afterward. 195 */ 196 void blk_freeze_queue(struct request_queue *q) 197 { 198 /* 199 * In the !blk_mq case we are only calling this to kill the 200 * q_usage_counter, otherwise this increases the freeze depth 201 * and waits for it to return to zero. For this reason there is 202 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 203 * exported to drivers as the only user for unfreeze is blk_mq. 204 */ 205 blk_freeze_queue_start(q); 206 blk_mq_freeze_queue_wait(q); 207 } 208 209 void blk_mq_freeze_queue(struct request_queue *q) 210 { 211 /* 212 * ...just an alias to keep freeze and unfreeze actions balanced 213 * in the blk_mq_* namespace 214 */ 215 blk_freeze_queue(q); 216 } 217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 218 219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 220 { 221 mutex_lock(&q->mq_freeze_lock); 222 if (force_atomic) 223 q->q_usage_counter.data->force_atomic = true; 224 q->mq_freeze_depth--; 225 WARN_ON_ONCE(q->mq_freeze_depth < 0); 226 if (!q->mq_freeze_depth) { 227 percpu_ref_resurrect(&q->q_usage_counter); 228 wake_up_all(&q->mq_freeze_wq); 229 } 230 mutex_unlock(&q->mq_freeze_lock); 231 } 232 233 void blk_mq_unfreeze_queue(struct request_queue *q) 234 { 235 __blk_mq_unfreeze_queue(q, false); 236 } 237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 238 239 /* 240 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 241 * mpt3sas driver such that this function can be removed. 242 */ 243 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 244 { 245 unsigned long flags; 246 247 spin_lock_irqsave(&q->queue_lock, flags); 248 if (!q->quiesce_depth++) 249 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 250 spin_unlock_irqrestore(&q->queue_lock, flags); 251 } 252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 253 254 /** 255 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 256 * @q: request queue. 257 * 258 * Note: it is driver's responsibility for making sure that quiesce has 259 * been started. 260 */ 261 void blk_mq_wait_quiesce_done(struct request_queue *q) 262 { 263 if (blk_queue_has_srcu(q)) 264 synchronize_srcu(q->srcu); 265 else 266 synchronize_rcu(); 267 } 268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 269 270 /** 271 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 272 * @q: request queue. 273 * 274 * Note: this function does not prevent that the struct request end_io() 275 * callback function is invoked. Once this function is returned, we make 276 * sure no dispatch can happen until the queue is unquiesced via 277 * blk_mq_unquiesce_queue(). 278 */ 279 void blk_mq_quiesce_queue(struct request_queue *q) 280 { 281 blk_mq_quiesce_queue_nowait(q); 282 blk_mq_wait_quiesce_done(q); 283 } 284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 285 286 /* 287 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 288 * @q: request queue. 289 * 290 * This function recovers queue into the state before quiescing 291 * which is done by blk_mq_quiesce_queue. 292 */ 293 void blk_mq_unquiesce_queue(struct request_queue *q) 294 { 295 unsigned long flags; 296 bool run_queue = false; 297 298 spin_lock_irqsave(&q->queue_lock, flags); 299 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 300 ; 301 } else if (!--q->quiesce_depth) { 302 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 303 run_queue = true; 304 } 305 spin_unlock_irqrestore(&q->queue_lock, flags); 306 307 /* dispatch requests which are inserted during quiescing */ 308 if (run_queue) 309 blk_mq_run_hw_queues(q, true); 310 } 311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 312 313 void blk_mq_wake_waiters(struct request_queue *q) 314 { 315 struct blk_mq_hw_ctx *hctx; 316 unsigned long i; 317 318 queue_for_each_hw_ctx(q, hctx, i) 319 if (blk_mq_hw_queue_mapped(hctx)) 320 blk_mq_tag_wakeup_all(hctx->tags, true); 321 } 322 323 void blk_rq_init(struct request_queue *q, struct request *rq) 324 { 325 memset(rq, 0, sizeof(*rq)); 326 327 INIT_LIST_HEAD(&rq->queuelist); 328 rq->q = q; 329 rq->__sector = (sector_t) -1; 330 INIT_HLIST_NODE(&rq->hash); 331 RB_CLEAR_NODE(&rq->rb_node); 332 rq->tag = BLK_MQ_NO_TAG; 333 rq->internal_tag = BLK_MQ_NO_TAG; 334 rq->start_time_ns = ktime_get_ns(); 335 rq->part = NULL; 336 blk_crypto_rq_set_defaults(rq); 337 } 338 EXPORT_SYMBOL(blk_rq_init); 339 340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 341 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 342 { 343 struct blk_mq_ctx *ctx = data->ctx; 344 struct blk_mq_hw_ctx *hctx = data->hctx; 345 struct request_queue *q = data->q; 346 struct request *rq = tags->static_rqs[tag]; 347 348 rq->q = q; 349 rq->mq_ctx = ctx; 350 rq->mq_hctx = hctx; 351 rq->cmd_flags = data->cmd_flags; 352 353 if (data->flags & BLK_MQ_REQ_PM) 354 data->rq_flags |= RQF_PM; 355 if (blk_queue_io_stat(q)) 356 data->rq_flags |= RQF_IO_STAT; 357 rq->rq_flags = data->rq_flags; 358 359 if (!(data->rq_flags & RQF_ELV)) { 360 rq->tag = tag; 361 rq->internal_tag = BLK_MQ_NO_TAG; 362 } else { 363 rq->tag = BLK_MQ_NO_TAG; 364 rq->internal_tag = tag; 365 } 366 rq->timeout = 0; 367 368 if (blk_mq_need_time_stamp(rq)) 369 rq->start_time_ns = ktime_get_ns(); 370 else 371 rq->start_time_ns = 0; 372 rq->part = NULL; 373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 374 rq->alloc_time_ns = alloc_time_ns; 375 #endif 376 rq->io_start_time_ns = 0; 377 rq->stats_sectors = 0; 378 rq->nr_phys_segments = 0; 379 #if defined(CONFIG_BLK_DEV_INTEGRITY) 380 rq->nr_integrity_segments = 0; 381 #endif 382 rq->end_io = NULL; 383 rq->end_io_data = NULL; 384 385 blk_crypto_rq_set_defaults(rq); 386 INIT_LIST_HEAD(&rq->queuelist); 387 /* tag was already set */ 388 WRITE_ONCE(rq->deadline, 0); 389 req_ref_set(rq, 1); 390 391 if (rq->rq_flags & RQF_ELV) { 392 struct elevator_queue *e = data->q->elevator; 393 394 INIT_HLIST_NODE(&rq->hash); 395 RB_CLEAR_NODE(&rq->rb_node); 396 397 if (!op_is_flush(data->cmd_flags) && 398 e->type->ops.prepare_request) { 399 e->type->ops.prepare_request(rq); 400 rq->rq_flags |= RQF_ELVPRIV; 401 } 402 } 403 404 return rq; 405 } 406 407 static inline struct request * 408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 409 u64 alloc_time_ns) 410 { 411 unsigned int tag, tag_offset; 412 struct blk_mq_tags *tags; 413 struct request *rq; 414 unsigned long tag_mask; 415 int i, nr = 0; 416 417 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 418 if (unlikely(!tag_mask)) 419 return NULL; 420 421 tags = blk_mq_tags_from_data(data); 422 for (i = 0; tag_mask; i++) { 423 if (!(tag_mask & (1UL << i))) 424 continue; 425 tag = tag_offset + i; 426 prefetch(tags->static_rqs[tag]); 427 tag_mask &= ~(1UL << i); 428 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 429 rq_list_add(data->cached_rq, rq); 430 nr++; 431 } 432 /* caller already holds a reference, add for remainder */ 433 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 434 data->nr_tags -= nr; 435 436 return rq_list_pop(data->cached_rq); 437 } 438 439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 440 { 441 struct request_queue *q = data->q; 442 u64 alloc_time_ns = 0; 443 struct request *rq; 444 unsigned int tag; 445 446 /* alloc_time includes depth and tag waits */ 447 if (blk_queue_rq_alloc_time(q)) 448 alloc_time_ns = ktime_get_ns(); 449 450 if (data->cmd_flags & REQ_NOWAIT) 451 data->flags |= BLK_MQ_REQ_NOWAIT; 452 453 if (q->elevator) { 454 struct elevator_queue *e = q->elevator; 455 456 data->rq_flags |= RQF_ELV; 457 458 /* 459 * Flush/passthrough requests are special and go directly to the 460 * dispatch list. Don't include reserved tags in the 461 * limiting, as it isn't useful. 462 */ 463 if (!op_is_flush(data->cmd_flags) && 464 !blk_op_is_passthrough(data->cmd_flags) && 465 e->type->ops.limit_depth && 466 !(data->flags & BLK_MQ_REQ_RESERVED)) 467 e->type->ops.limit_depth(data->cmd_flags, data); 468 } 469 470 retry: 471 data->ctx = blk_mq_get_ctx(q); 472 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 473 if (!(data->rq_flags & RQF_ELV)) 474 blk_mq_tag_busy(data->hctx); 475 476 /* 477 * Try batched alloc if we want more than 1 tag. 478 */ 479 if (data->nr_tags > 1) { 480 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 481 if (rq) 482 return rq; 483 data->nr_tags = 1; 484 } 485 486 /* 487 * Waiting allocations only fail because of an inactive hctx. In that 488 * case just retry the hctx assignment and tag allocation as CPU hotplug 489 * should have migrated us to an online CPU by now. 490 */ 491 tag = blk_mq_get_tag(data); 492 if (tag == BLK_MQ_NO_TAG) { 493 if (data->flags & BLK_MQ_REQ_NOWAIT) 494 return NULL; 495 /* 496 * Give up the CPU and sleep for a random short time to 497 * ensure that thread using a realtime scheduling class 498 * are migrated off the CPU, and thus off the hctx that 499 * is going away. 500 */ 501 msleep(3); 502 goto retry; 503 } 504 505 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 506 alloc_time_ns); 507 } 508 509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 510 blk_mq_req_flags_t flags) 511 { 512 struct blk_mq_alloc_data data = { 513 .q = q, 514 .flags = flags, 515 .cmd_flags = op, 516 .nr_tags = 1, 517 }; 518 struct request *rq; 519 int ret; 520 521 ret = blk_queue_enter(q, flags); 522 if (ret) 523 return ERR_PTR(ret); 524 525 rq = __blk_mq_alloc_requests(&data); 526 if (!rq) 527 goto out_queue_exit; 528 rq->__data_len = 0; 529 rq->__sector = (sector_t) -1; 530 rq->bio = rq->biotail = NULL; 531 return rq; 532 out_queue_exit: 533 blk_queue_exit(q); 534 return ERR_PTR(-EWOULDBLOCK); 535 } 536 EXPORT_SYMBOL(blk_mq_alloc_request); 537 538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 539 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 540 { 541 struct blk_mq_alloc_data data = { 542 .q = q, 543 .flags = flags, 544 .cmd_flags = op, 545 .nr_tags = 1, 546 }; 547 u64 alloc_time_ns = 0; 548 unsigned int cpu; 549 unsigned int tag; 550 int ret; 551 552 /* alloc_time includes depth and tag waits */ 553 if (blk_queue_rq_alloc_time(q)) 554 alloc_time_ns = ktime_get_ns(); 555 556 /* 557 * If the tag allocator sleeps we could get an allocation for a 558 * different hardware context. No need to complicate the low level 559 * allocator for this for the rare use case of a command tied to 560 * a specific queue. 561 */ 562 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 563 return ERR_PTR(-EINVAL); 564 565 if (hctx_idx >= q->nr_hw_queues) 566 return ERR_PTR(-EIO); 567 568 ret = blk_queue_enter(q, flags); 569 if (ret) 570 return ERR_PTR(ret); 571 572 /* 573 * Check if the hardware context is actually mapped to anything. 574 * If not tell the caller that it should skip this queue. 575 */ 576 ret = -EXDEV; 577 data.hctx = xa_load(&q->hctx_table, hctx_idx); 578 if (!blk_mq_hw_queue_mapped(data.hctx)) 579 goto out_queue_exit; 580 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 581 data.ctx = __blk_mq_get_ctx(q, cpu); 582 583 if (!q->elevator) 584 blk_mq_tag_busy(data.hctx); 585 else 586 data.rq_flags |= RQF_ELV; 587 588 ret = -EWOULDBLOCK; 589 tag = blk_mq_get_tag(&data); 590 if (tag == BLK_MQ_NO_TAG) 591 goto out_queue_exit; 592 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 593 alloc_time_ns); 594 595 out_queue_exit: 596 blk_queue_exit(q); 597 return ERR_PTR(ret); 598 } 599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 600 601 static void __blk_mq_free_request(struct request *rq) 602 { 603 struct request_queue *q = rq->q; 604 struct blk_mq_ctx *ctx = rq->mq_ctx; 605 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 606 const int sched_tag = rq->internal_tag; 607 608 blk_crypto_free_request(rq); 609 blk_pm_mark_last_busy(rq); 610 rq->mq_hctx = NULL; 611 if (rq->tag != BLK_MQ_NO_TAG) 612 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 613 if (sched_tag != BLK_MQ_NO_TAG) 614 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 615 blk_mq_sched_restart(hctx); 616 blk_queue_exit(q); 617 } 618 619 void blk_mq_free_request(struct request *rq) 620 { 621 struct request_queue *q = rq->q; 622 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 623 624 if ((rq->rq_flags & RQF_ELVPRIV) && 625 q->elevator->type->ops.finish_request) 626 q->elevator->type->ops.finish_request(rq); 627 628 if (rq->rq_flags & RQF_MQ_INFLIGHT) 629 __blk_mq_dec_active_requests(hctx); 630 631 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 632 laptop_io_completion(q->disk->bdi); 633 634 rq_qos_done(q, rq); 635 636 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 637 if (req_ref_put_and_test(rq)) 638 __blk_mq_free_request(rq); 639 } 640 EXPORT_SYMBOL_GPL(blk_mq_free_request); 641 642 void blk_mq_free_plug_rqs(struct blk_plug *plug) 643 { 644 struct request *rq; 645 646 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 647 blk_mq_free_request(rq); 648 } 649 650 void blk_dump_rq_flags(struct request *rq, char *msg) 651 { 652 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 653 rq->q->disk ? rq->q->disk->disk_name : "?", 654 (unsigned long long) rq->cmd_flags); 655 656 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 657 (unsigned long long)blk_rq_pos(rq), 658 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 659 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 660 rq->bio, rq->biotail, blk_rq_bytes(rq)); 661 } 662 EXPORT_SYMBOL(blk_dump_rq_flags); 663 664 static void req_bio_endio(struct request *rq, struct bio *bio, 665 unsigned int nbytes, blk_status_t error) 666 { 667 if (unlikely(error)) { 668 bio->bi_status = error; 669 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 670 /* 671 * Partial zone append completions cannot be supported as the 672 * BIO fragments may end up not being written sequentially. 673 */ 674 if (bio->bi_iter.bi_size != nbytes) 675 bio->bi_status = BLK_STS_IOERR; 676 else 677 bio->bi_iter.bi_sector = rq->__sector; 678 } 679 680 bio_advance(bio, nbytes); 681 682 if (unlikely(rq->rq_flags & RQF_QUIET)) 683 bio_set_flag(bio, BIO_QUIET); 684 /* don't actually finish bio if it's part of flush sequence */ 685 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 686 bio_endio(bio); 687 } 688 689 static void blk_account_io_completion(struct request *req, unsigned int bytes) 690 { 691 if (req->part && blk_do_io_stat(req)) { 692 const int sgrp = op_stat_group(req_op(req)); 693 694 part_stat_lock(); 695 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 696 part_stat_unlock(); 697 } 698 } 699 700 static void blk_print_req_error(struct request *req, blk_status_t status) 701 { 702 printk_ratelimited(KERN_ERR 703 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 704 "phys_seg %u prio class %u\n", 705 blk_status_to_str(status), 706 req->q->disk ? req->q->disk->disk_name : "?", 707 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 708 req->cmd_flags & ~REQ_OP_MASK, 709 req->nr_phys_segments, 710 IOPRIO_PRIO_CLASS(req->ioprio)); 711 } 712 713 /* 714 * Fully end IO on a request. Does not support partial completions, or 715 * errors. 716 */ 717 static void blk_complete_request(struct request *req) 718 { 719 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 720 int total_bytes = blk_rq_bytes(req); 721 struct bio *bio = req->bio; 722 723 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 724 725 if (!bio) 726 return; 727 728 #ifdef CONFIG_BLK_DEV_INTEGRITY 729 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 730 req->q->integrity.profile->complete_fn(req, total_bytes); 731 #endif 732 733 blk_account_io_completion(req, total_bytes); 734 735 do { 736 struct bio *next = bio->bi_next; 737 738 /* Completion has already been traced */ 739 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 740 741 if (req_op(req) == REQ_OP_ZONE_APPEND) 742 bio->bi_iter.bi_sector = req->__sector; 743 744 if (!is_flush) 745 bio_endio(bio); 746 bio = next; 747 } while (bio); 748 749 /* 750 * Reset counters so that the request stacking driver 751 * can find how many bytes remain in the request 752 * later. 753 */ 754 req->bio = NULL; 755 req->__data_len = 0; 756 } 757 758 /** 759 * blk_update_request - Complete multiple bytes without completing the request 760 * @req: the request being processed 761 * @error: block status code 762 * @nr_bytes: number of bytes to complete for @req 763 * 764 * Description: 765 * Ends I/O on a number of bytes attached to @req, but doesn't complete 766 * the request structure even if @req doesn't have leftover. 767 * If @req has leftover, sets it up for the next range of segments. 768 * 769 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 770 * %false return from this function. 771 * 772 * Note: 773 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 774 * except in the consistency check at the end of this function. 775 * 776 * Return: 777 * %false - this request doesn't have any more data 778 * %true - this request has more data 779 **/ 780 bool blk_update_request(struct request *req, blk_status_t error, 781 unsigned int nr_bytes) 782 { 783 int total_bytes; 784 785 trace_block_rq_complete(req, error, nr_bytes); 786 787 if (!req->bio) 788 return false; 789 790 #ifdef CONFIG_BLK_DEV_INTEGRITY 791 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 792 error == BLK_STS_OK) 793 req->q->integrity.profile->complete_fn(req, nr_bytes); 794 #endif 795 796 if (unlikely(error && !blk_rq_is_passthrough(req) && 797 !(req->rq_flags & RQF_QUIET)) && 798 !test_bit(GD_DEAD, &req->q->disk->state)) { 799 blk_print_req_error(req, error); 800 trace_block_rq_error(req, error, nr_bytes); 801 } 802 803 blk_account_io_completion(req, nr_bytes); 804 805 total_bytes = 0; 806 while (req->bio) { 807 struct bio *bio = req->bio; 808 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 809 810 if (bio_bytes == bio->bi_iter.bi_size) 811 req->bio = bio->bi_next; 812 813 /* Completion has already been traced */ 814 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 815 req_bio_endio(req, bio, bio_bytes, error); 816 817 total_bytes += bio_bytes; 818 nr_bytes -= bio_bytes; 819 820 if (!nr_bytes) 821 break; 822 } 823 824 /* 825 * completely done 826 */ 827 if (!req->bio) { 828 /* 829 * Reset counters so that the request stacking driver 830 * can find how many bytes remain in the request 831 * later. 832 */ 833 req->__data_len = 0; 834 return false; 835 } 836 837 req->__data_len -= total_bytes; 838 839 /* update sector only for requests with clear definition of sector */ 840 if (!blk_rq_is_passthrough(req)) 841 req->__sector += total_bytes >> 9; 842 843 /* mixed attributes always follow the first bio */ 844 if (req->rq_flags & RQF_MIXED_MERGE) { 845 req->cmd_flags &= ~REQ_FAILFAST_MASK; 846 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 847 } 848 849 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 850 /* 851 * If total number of sectors is less than the first segment 852 * size, something has gone terribly wrong. 853 */ 854 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 855 blk_dump_rq_flags(req, "request botched"); 856 req->__data_len = blk_rq_cur_bytes(req); 857 } 858 859 /* recalculate the number of segments */ 860 req->nr_phys_segments = blk_recalc_rq_segments(req); 861 } 862 863 return true; 864 } 865 EXPORT_SYMBOL_GPL(blk_update_request); 866 867 static void __blk_account_io_done(struct request *req, u64 now) 868 { 869 const int sgrp = op_stat_group(req_op(req)); 870 871 part_stat_lock(); 872 update_io_ticks(req->part, jiffies, true); 873 part_stat_inc(req->part, ios[sgrp]); 874 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 875 part_stat_unlock(); 876 } 877 878 static inline void blk_account_io_done(struct request *req, u64 now) 879 { 880 /* 881 * Account IO completion. flush_rq isn't accounted as a 882 * normal IO on queueing nor completion. Accounting the 883 * containing request is enough. 884 */ 885 if (blk_do_io_stat(req) && req->part && 886 !(req->rq_flags & RQF_FLUSH_SEQ)) 887 __blk_account_io_done(req, now); 888 } 889 890 static void __blk_account_io_start(struct request *rq) 891 { 892 /* 893 * All non-passthrough requests are created from a bio with one 894 * exception: when a flush command that is part of a flush sequence 895 * generated by the state machine in blk-flush.c is cloned onto the 896 * lower device by dm-multipath we can get here without a bio. 897 */ 898 if (rq->bio) 899 rq->part = rq->bio->bi_bdev; 900 else 901 rq->part = rq->q->disk->part0; 902 903 part_stat_lock(); 904 update_io_ticks(rq->part, jiffies, false); 905 part_stat_unlock(); 906 } 907 908 static inline void blk_account_io_start(struct request *req) 909 { 910 if (blk_do_io_stat(req)) 911 __blk_account_io_start(req); 912 } 913 914 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 915 { 916 if (rq->rq_flags & RQF_STATS) { 917 blk_mq_poll_stats_start(rq->q); 918 blk_stat_add(rq, now); 919 } 920 921 blk_mq_sched_completed_request(rq, now); 922 blk_account_io_done(rq, now); 923 } 924 925 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 926 { 927 if (blk_mq_need_time_stamp(rq)) 928 __blk_mq_end_request_acct(rq, ktime_get_ns()); 929 930 if (rq->end_io) { 931 rq_qos_done(rq->q, rq); 932 rq->end_io(rq, error); 933 } else { 934 blk_mq_free_request(rq); 935 } 936 } 937 EXPORT_SYMBOL(__blk_mq_end_request); 938 939 void blk_mq_end_request(struct request *rq, blk_status_t error) 940 { 941 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 942 BUG(); 943 __blk_mq_end_request(rq, error); 944 } 945 EXPORT_SYMBOL(blk_mq_end_request); 946 947 #define TAG_COMP_BATCH 32 948 949 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 950 int *tag_array, int nr_tags) 951 { 952 struct request_queue *q = hctx->queue; 953 954 /* 955 * All requests should have been marked as RQF_MQ_INFLIGHT, so 956 * update hctx->nr_active in batch 957 */ 958 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 959 __blk_mq_sub_active_requests(hctx, nr_tags); 960 961 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 962 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 963 } 964 965 void blk_mq_end_request_batch(struct io_comp_batch *iob) 966 { 967 int tags[TAG_COMP_BATCH], nr_tags = 0; 968 struct blk_mq_hw_ctx *cur_hctx = NULL; 969 struct request *rq; 970 u64 now = 0; 971 972 if (iob->need_ts) 973 now = ktime_get_ns(); 974 975 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 976 prefetch(rq->bio); 977 prefetch(rq->rq_next); 978 979 blk_complete_request(rq); 980 if (iob->need_ts) 981 __blk_mq_end_request_acct(rq, now); 982 983 rq_qos_done(rq->q, rq); 984 985 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 986 if (!req_ref_put_and_test(rq)) 987 continue; 988 989 blk_crypto_free_request(rq); 990 blk_pm_mark_last_busy(rq); 991 992 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 993 if (cur_hctx) 994 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 995 nr_tags = 0; 996 cur_hctx = rq->mq_hctx; 997 } 998 tags[nr_tags++] = rq->tag; 999 } 1000 1001 if (nr_tags) 1002 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1003 } 1004 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1005 1006 static void blk_complete_reqs(struct llist_head *list) 1007 { 1008 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1009 struct request *rq, *next; 1010 1011 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1012 rq->q->mq_ops->complete(rq); 1013 } 1014 1015 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1016 { 1017 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1018 } 1019 1020 static int blk_softirq_cpu_dead(unsigned int cpu) 1021 { 1022 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1023 return 0; 1024 } 1025 1026 static void __blk_mq_complete_request_remote(void *data) 1027 { 1028 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1029 } 1030 1031 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1032 { 1033 int cpu = raw_smp_processor_id(); 1034 1035 if (!IS_ENABLED(CONFIG_SMP) || 1036 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1037 return false; 1038 /* 1039 * With force threaded interrupts enabled, raising softirq from an SMP 1040 * function call will always result in waking the ksoftirqd thread. 1041 * This is probably worse than completing the request on a different 1042 * cache domain. 1043 */ 1044 if (force_irqthreads()) 1045 return false; 1046 1047 /* same CPU or cache domain? Complete locally */ 1048 if (cpu == rq->mq_ctx->cpu || 1049 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1050 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1051 return false; 1052 1053 /* don't try to IPI to an offline CPU */ 1054 return cpu_online(rq->mq_ctx->cpu); 1055 } 1056 1057 static void blk_mq_complete_send_ipi(struct request *rq) 1058 { 1059 struct llist_head *list; 1060 unsigned int cpu; 1061 1062 cpu = rq->mq_ctx->cpu; 1063 list = &per_cpu(blk_cpu_done, cpu); 1064 if (llist_add(&rq->ipi_list, list)) { 1065 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1066 smp_call_function_single_async(cpu, &rq->csd); 1067 } 1068 } 1069 1070 static void blk_mq_raise_softirq(struct request *rq) 1071 { 1072 struct llist_head *list; 1073 1074 preempt_disable(); 1075 list = this_cpu_ptr(&blk_cpu_done); 1076 if (llist_add(&rq->ipi_list, list)) 1077 raise_softirq(BLOCK_SOFTIRQ); 1078 preempt_enable(); 1079 } 1080 1081 bool blk_mq_complete_request_remote(struct request *rq) 1082 { 1083 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1084 1085 /* 1086 * For a polled request, always complete locallly, it's pointless 1087 * to redirect the completion. 1088 */ 1089 if (rq->cmd_flags & REQ_POLLED) 1090 return false; 1091 1092 if (blk_mq_complete_need_ipi(rq)) { 1093 blk_mq_complete_send_ipi(rq); 1094 return true; 1095 } 1096 1097 if (rq->q->nr_hw_queues == 1) { 1098 blk_mq_raise_softirq(rq); 1099 return true; 1100 } 1101 return false; 1102 } 1103 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1104 1105 /** 1106 * blk_mq_complete_request - end I/O on a request 1107 * @rq: the request being processed 1108 * 1109 * Description: 1110 * Complete a request by scheduling the ->complete_rq operation. 1111 **/ 1112 void blk_mq_complete_request(struct request *rq) 1113 { 1114 if (!blk_mq_complete_request_remote(rq)) 1115 rq->q->mq_ops->complete(rq); 1116 } 1117 EXPORT_SYMBOL(blk_mq_complete_request); 1118 1119 /** 1120 * blk_mq_start_request - Start processing a request 1121 * @rq: Pointer to request to be started 1122 * 1123 * Function used by device drivers to notify the block layer that a request 1124 * is going to be processed now, so blk layer can do proper initializations 1125 * such as starting the timeout timer. 1126 */ 1127 void blk_mq_start_request(struct request *rq) 1128 { 1129 struct request_queue *q = rq->q; 1130 1131 trace_block_rq_issue(rq); 1132 1133 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1134 rq->io_start_time_ns = ktime_get_ns(); 1135 rq->stats_sectors = blk_rq_sectors(rq); 1136 rq->rq_flags |= RQF_STATS; 1137 rq_qos_issue(q, rq); 1138 } 1139 1140 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1141 1142 blk_add_timer(rq); 1143 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1144 1145 #ifdef CONFIG_BLK_DEV_INTEGRITY 1146 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1147 q->integrity.profile->prepare_fn(rq); 1148 #endif 1149 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1150 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1151 } 1152 EXPORT_SYMBOL(blk_mq_start_request); 1153 1154 /** 1155 * blk_end_sync_rq - executes a completion event on a request 1156 * @rq: request to complete 1157 * @error: end I/O status of the request 1158 */ 1159 static void blk_end_sync_rq(struct request *rq, blk_status_t error) 1160 { 1161 struct completion *waiting = rq->end_io_data; 1162 1163 rq->end_io_data = (void *)(uintptr_t)error; 1164 1165 /* 1166 * complete last, if this is a stack request the process (and thus 1167 * the rq pointer) could be invalid right after this complete() 1168 */ 1169 complete(waiting); 1170 } 1171 1172 /** 1173 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1174 * @rq: request to insert 1175 * @at_head: insert request at head or tail of queue 1176 * @done: I/O completion handler 1177 * 1178 * Description: 1179 * Insert a fully prepared request at the back of the I/O scheduler queue 1180 * for execution. Don't wait for completion. 1181 * 1182 * Note: 1183 * This function will invoke @done directly if the queue is dead. 1184 */ 1185 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done) 1186 { 1187 WARN_ON(irqs_disabled()); 1188 WARN_ON(!blk_rq_is_passthrough(rq)); 1189 1190 rq->end_io = done; 1191 1192 blk_account_io_start(rq); 1193 1194 /* 1195 * don't check dying flag for MQ because the request won't 1196 * be reused after dying flag is set 1197 */ 1198 blk_mq_sched_insert_request(rq, at_head, true, false); 1199 } 1200 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1201 1202 static bool blk_rq_is_poll(struct request *rq) 1203 { 1204 if (!rq->mq_hctx) 1205 return false; 1206 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1207 return false; 1208 if (WARN_ON_ONCE(!rq->bio)) 1209 return false; 1210 return true; 1211 } 1212 1213 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1214 { 1215 do { 1216 bio_poll(rq->bio, NULL, 0); 1217 cond_resched(); 1218 } while (!completion_done(wait)); 1219 } 1220 1221 /** 1222 * blk_execute_rq - insert a request into queue for execution 1223 * @rq: request to insert 1224 * @at_head: insert request at head or tail of queue 1225 * 1226 * Description: 1227 * Insert a fully prepared request at the back of the I/O scheduler queue 1228 * for execution and wait for completion. 1229 * Return: The blk_status_t result provided to blk_mq_end_request(). 1230 */ 1231 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1232 { 1233 DECLARE_COMPLETION_ONSTACK(wait); 1234 unsigned long hang_check; 1235 1236 rq->end_io_data = &wait; 1237 blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq); 1238 1239 /* Prevent hang_check timer from firing at us during very long I/O */ 1240 hang_check = sysctl_hung_task_timeout_secs; 1241 1242 if (blk_rq_is_poll(rq)) 1243 blk_rq_poll_completion(rq, &wait); 1244 else if (hang_check) 1245 while (!wait_for_completion_io_timeout(&wait, 1246 hang_check * (HZ/2))) 1247 ; 1248 else 1249 wait_for_completion_io(&wait); 1250 1251 return (blk_status_t)(uintptr_t)rq->end_io_data; 1252 } 1253 EXPORT_SYMBOL(blk_execute_rq); 1254 1255 static void __blk_mq_requeue_request(struct request *rq) 1256 { 1257 struct request_queue *q = rq->q; 1258 1259 blk_mq_put_driver_tag(rq); 1260 1261 trace_block_rq_requeue(rq); 1262 rq_qos_requeue(q, rq); 1263 1264 if (blk_mq_request_started(rq)) { 1265 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1266 rq->rq_flags &= ~RQF_TIMED_OUT; 1267 } 1268 } 1269 1270 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1271 { 1272 __blk_mq_requeue_request(rq); 1273 1274 /* this request will be re-inserted to io scheduler queue */ 1275 blk_mq_sched_requeue_request(rq); 1276 1277 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1278 } 1279 EXPORT_SYMBOL(blk_mq_requeue_request); 1280 1281 static void blk_mq_requeue_work(struct work_struct *work) 1282 { 1283 struct request_queue *q = 1284 container_of(work, struct request_queue, requeue_work.work); 1285 LIST_HEAD(rq_list); 1286 struct request *rq, *next; 1287 1288 spin_lock_irq(&q->requeue_lock); 1289 list_splice_init(&q->requeue_list, &rq_list); 1290 spin_unlock_irq(&q->requeue_lock); 1291 1292 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1293 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1294 continue; 1295 1296 rq->rq_flags &= ~RQF_SOFTBARRIER; 1297 list_del_init(&rq->queuelist); 1298 /* 1299 * If RQF_DONTPREP, rq has contained some driver specific 1300 * data, so insert it to hctx dispatch list to avoid any 1301 * merge. 1302 */ 1303 if (rq->rq_flags & RQF_DONTPREP) 1304 blk_mq_request_bypass_insert(rq, false, false); 1305 else 1306 blk_mq_sched_insert_request(rq, true, false, false); 1307 } 1308 1309 while (!list_empty(&rq_list)) { 1310 rq = list_entry(rq_list.next, struct request, queuelist); 1311 list_del_init(&rq->queuelist); 1312 blk_mq_sched_insert_request(rq, false, false, false); 1313 } 1314 1315 blk_mq_run_hw_queues(q, false); 1316 } 1317 1318 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1319 bool kick_requeue_list) 1320 { 1321 struct request_queue *q = rq->q; 1322 unsigned long flags; 1323 1324 /* 1325 * We abuse this flag that is otherwise used by the I/O scheduler to 1326 * request head insertion from the workqueue. 1327 */ 1328 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1329 1330 spin_lock_irqsave(&q->requeue_lock, flags); 1331 if (at_head) { 1332 rq->rq_flags |= RQF_SOFTBARRIER; 1333 list_add(&rq->queuelist, &q->requeue_list); 1334 } else { 1335 list_add_tail(&rq->queuelist, &q->requeue_list); 1336 } 1337 spin_unlock_irqrestore(&q->requeue_lock, flags); 1338 1339 if (kick_requeue_list) 1340 blk_mq_kick_requeue_list(q); 1341 } 1342 1343 void blk_mq_kick_requeue_list(struct request_queue *q) 1344 { 1345 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1346 } 1347 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1348 1349 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1350 unsigned long msecs) 1351 { 1352 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1353 msecs_to_jiffies(msecs)); 1354 } 1355 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1356 1357 static bool blk_mq_rq_inflight(struct request *rq, void *priv, 1358 bool reserved) 1359 { 1360 /* 1361 * If we find a request that isn't idle we know the queue is busy 1362 * as it's checked in the iter. 1363 * Return false to stop the iteration. 1364 */ 1365 if (blk_mq_request_started(rq)) { 1366 bool *busy = priv; 1367 1368 *busy = true; 1369 return false; 1370 } 1371 1372 return true; 1373 } 1374 1375 bool blk_mq_queue_inflight(struct request_queue *q) 1376 { 1377 bool busy = false; 1378 1379 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1380 return busy; 1381 } 1382 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1383 1384 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 1385 { 1386 req->rq_flags |= RQF_TIMED_OUT; 1387 if (req->q->mq_ops->timeout) { 1388 enum blk_eh_timer_return ret; 1389 1390 ret = req->q->mq_ops->timeout(req, reserved); 1391 if (ret == BLK_EH_DONE) 1392 return; 1393 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1394 } 1395 1396 blk_add_timer(req); 1397 } 1398 1399 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1400 { 1401 unsigned long deadline; 1402 1403 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1404 return false; 1405 if (rq->rq_flags & RQF_TIMED_OUT) 1406 return false; 1407 1408 deadline = READ_ONCE(rq->deadline); 1409 if (time_after_eq(jiffies, deadline)) 1410 return true; 1411 1412 if (*next == 0) 1413 *next = deadline; 1414 else if (time_after(*next, deadline)) 1415 *next = deadline; 1416 return false; 1417 } 1418 1419 void blk_mq_put_rq_ref(struct request *rq) 1420 { 1421 if (is_flush_rq(rq)) 1422 rq->end_io(rq, 0); 1423 else if (req_ref_put_and_test(rq)) 1424 __blk_mq_free_request(rq); 1425 } 1426 1427 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved) 1428 { 1429 unsigned long *next = priv; 1430 1431 /* 1432 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1433 * be reallocated underneath the timeout handler's processing, then 1434 * the expire check is reliable. If the request is not expired, then 1435 * it was completed and reallocated as a new request after returning 1436 * from blk_mq_check_expired(). 1437 */ 1438 if (blk_mq_req_expired(rq, next)) 1439 blk_mq_rq_timed_out(rq, reserved); 1440 return true; 1441 } 1442 1443 static void blk_mq_timeout_work(struct work_struct *work) 1444 { 1445 struct request_queue *q = 1446 container_of(work, struct request_queue, timeout_work); 1447 unsigned long next = 0; 1448 struct blk_mq_hw_ctx *hctx; 1449 unsigned long i; 1450 1451 /* A deadlock might occur if a request is stuck requiring a 1452 * timeout at the same time a queue freeze is waiting 1453 * completion, since the timeout code would not be able to 1454 * acquire the queue reference here. 1455 * 1456 * That's why we don't use blk_queue_enter here; instead, we use 1457 * percpu_ref_tryget directly, because we need to be able to 1458 * obtain a reference even in the short window between the queue 1459 * starting to freeze, by dropping the first reference in 1460 * blk_freeze_queue_start, and the moment the last request is 1461 * consumed, marked by the instant q_usage_counter reaches 1462 * zero. 1463 */ 1464 if (!percpu_ref_tryget(&q->q_usage_counter)) 1465 return; 1466 1467 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1468 1469 if (next != 0) { 1470 mod_timer(&q->timeout, next); 1471 } else { 1472 /* 1473 * Request timeouts are handled as a forward rolling timer. If 1474 * we end up here it means that no requests are pending and 1475 * also that no request has been pending for a while. Mark 1476 * each hctx as idle. 1477 */ 1478 queue_for_each_hw_ctx(q, hctx, i) { 1479 /* the hctx may be unmapped, so check it here */ 1480 if (blk_mq_hw_queue_mapped(hctx)) 1481 blk_mq_tag_idle(hctx); 1482 } 1483 } 1484 blk_queue_exit(q); 1485 } 1486 1487 struct flush_busy_ctx_data { 1488 struct blk_mq_hw_ctx *hctx; 1489 struct list_head *list; 1490 }; 1491 1492 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1493 { 1494 struct flush_busy_ctx_data *flush_data = data; 1495 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1496 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1497 enum hctx_type type = hctx->type; 1498 1499 spin_lock(&ctx->lock); 1500 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1501 sbitmap_clear_bit(sb, bitnr); 1502 spin_unlock(&ctx->lock); 1503 return true; 1504 } 1505 1506 /* 1507 * Process software queues that have been marked busy, splicing them 1508 * to the for-dispatch 1509 */ 1510 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1511 { 1512 struct flush_busy_ctx_data data = { 1513 .hctx = hctx, 1514 .list = list, 1515 }; 1516 1517 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1518 } 1519 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1520 1521 struct dispatch_rq_data { 1522 struct blk_mq_hw_ctx *hctx; 1523 struct request *rq; 1524 }; 1525 1526 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1527 void *data) 1528 { 1529 struct dispatch_rq_data *dispatch_data = data; 1530 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1531 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1532 enum hctx_type type = hctx->type; 1533 1534 spin_lock(&ctx->lock); 1535 if (!list_empty(&ctx->rq_lists[type])) { 1536 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1537 list_del_init(&dispatch_data->rq->queuelist); 1538 if (list_empty(&ctx->rq_lists[type])) 1539 sbitmap_clear_bit(sb, bitnr); 1540 } 1541 spin_unlock(&ctx->lock); 1542 1543 return !dispatch_data->rq; 1544 } 1545 1546 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1547 struct blk_mq_ctx *start) 1548 { 1549 unsigned off = start ? start->index_hw[hctx->type] : 0; 1550 struct dispatch_rq_data data = { 1551 .hctx = hctx, 1552 .rq = NULL, 1553 }; 1554 1555 __sbitmap_for_each_set(&hctx->ctx_map, off, 1556 dispatch_rq_from_ctx, &data); 1557 1558 return data.rq; 1559 } 1560 1561 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1562 { 1563 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1564 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1565 int tag; 1566 1567 blk_mq_tag_busy(rq->mq_hctx); 1568 1569 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1570 bt = &rq->mq_hctx->tags->breserved_tags; 1571 tag_offset = 0; 1572 } else { 1573 if (!hctx_may_queue(rq->mq_hctx, bt)) 1574 return false; 1575 } 1576 1577 tag = __sbitmap_queue_get(bt); 1578 if (tag == BLK_MQ_NO_TAG) 1579 return false; 1580 1581 rq->tag = tag + tag_offset; 1582 return true; 1583 } 1584 1585 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1586 { 1587 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1588 return false; 1589 1590 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1591 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1592 rq->rq_flags |= RQF_MQ_INFLIGHT; 1593 __blk_mq_inc_active_requests(hctx); 1594 } 1595 hctx->tags->rqs[rq->tag] = rq; 1596 return true; 1597 } 1598 1599 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1600 int flags, void *key) 1601 { 1602 struct blk_mq_hw_ctx *hctx; 1603 1604 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1605 1606 spin_lock(&hctx->dispatch_wait_lock); 1607 if (!list_empty(&wait->entry)) { 1608 struct sbitmap_queue *sbq; 1609 1610 list_del_init(&wait->entry); 1611 sbq = &hctx->tags->bitmap_tags; 1612 atomic_dec(&sbq->ws_active); 1613 } 1614 spin_unlock(&hctx->dispatch_wait_lock); 1615 1616 blk_mq_run_hw_queue(hctx, true); 1617 return 1; 1618 } 1619 1620 /* 1621 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1622 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1623 * restart. For both cases, take care to check the condition again after 1624 * marking us as waiting. 1625 */ 1626 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1627 struct request *rq) 1628 { 1629 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1630 struct wait_queue_head *wq; 1631 wait_queue_entry_t *wait; 1632 bool ret; 1633 1634 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1635 blk_mq_sched_mark_restart_hctx(hctx); 1636 1637 /* 1638 * It's possible that a tag was freed in the window between the 1639 * allocation failure and adding the hardware queue to the wait 1640 * queue. 1641 * 1642 * Don't clear RESTART here, someone else could have set it. 1643 * At most this will cost an extra queue run. 1644 */ 1645 return blk_mq_get_driver_tag(rq); 1646 } 1647 1648 wait = &hctx->dispatch_wait; 1649 if (!list_empty_careful(&wait->entry)) 1650 return false; 1651 1652 wq = &bt_wait_ptr(sbq, hctx)->wait; 1653 1654 spin_lock_irq(&wq->lock); 1655 spin_lock(&hctx->dispatch_wait_lock); 1656 if (!list_empty(&wait->entry)) { 1657 spin_unlock(&hctx->dispatch_wait_lock); 1658 spin_unlock_irq(&wq->lock); 1659 return false; 1660 } 1661 1662 atomic_inc(&sbq->ws_active); 1663 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1664 __add_wait_queue(wq, wait); 1665 1666 /* 1667 * It's possible that a tag was freed in the window between the 1668 * allocation failure and adding the hardware queue to the wait 1669 * queue. 1670 */ 1671 ret = blk_mq_get_driver_tag(rq); 1672 if (!ret) { 1673 spin_unlock(&hctx->dispatch_wait_lock); 1674 spin_unlock_irq(&wq->lock); 1675 return false; 1676 } 1677 1678 /* 1679 * We got a tag, remove ourselves from the wait queue to ensure 1680 * someone else gets the wakeup. 1681 */ 1682 list_del_init(&wait->entry); 1683 atomic_dec(&sbq->ws_active); 1684 spin_unlock(&hctx->dispatch_wait_lock); 1685 spin_unlock_irq(&wq->lock); 1686 1687 return true; 1688 } 1689 1690 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1691 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1692 /* 1693 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1694 * - EWMA is one simple way to compute running average value 1695 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1696 * - take 4 as factor for avoiding to get too small(0) result, and this 1697 * factor doesn't matter because EWMA decreases exponentially 1698 */ 1699 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1700 { 1701 unsigned int ewma; 1702 1703 ewma = hctx->dispatch_busy; 1704 1705 if (!ewma && !busy) 1706 return; 1707 1708 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1709 if (busy) 1710 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1711 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1712 1713 hctx->dispatch_busy = ewma; 1714 } 1715 1716 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1717 1718 static void blk_mq_handle_dev_resource(struct request *rq, 1719 struct list_head *list) 1720 { 1721 struct request *next = 1722 list_first_entry_or_null(list, struct request, queuelist); 1723 1724 /* 1725 * If an I/O scheduler has been configured and we got a driver tag for 1726 * the next request already, free it. 1727 */ 1728 if (next) 1729 blk_mq_put_driver_tag(next); 1730 1731 list_add(&rq->queuelist, list); 1732 __blk_mq_requeue_request(rq); 1733 } 1734 1735 static void blk_mq_handle_zone_resource(struct request *rq, 1736 struct list_head *zone_list) 1737 { 1738 /* 1739 * If we end up here it is because we cannot dispatch a request to a 1740 * specific zone due to LLD level zone-write locking or other zone 1741 * related resource not being available. In this case, set the request 1742 * aside in zone_list for retrying it later. 1743 */ 1744 list_add(&rq->queuelist, zone_list); 1745 __blk_mq_requeue_request(rq); 1746 } 1747 1748 enum prep_dispatch { 1749 PREP_DISPATCH_OK, 1750 PREP_DISPATCH_NO_TAG, 1751 PREP_DISPATCH_NO_BUDGET, 1752 }; 1753 1754 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1755 bool need_budget) 1756 { 1757 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1758 int budget_token = -1; 1759 1760 if (need_budget) { 1761 budget_token = blk_mq_get_dispatch_budget(rq->q); 1762 if (budget_token < 0) { 1763 blk_mq_put_driver_tag(rq); 1764 return PREP_DISPATCH_NO_BUDGET; 1765 } 1766 blk_mq_set_rq_budget_token(rq, budget_token); 1767 } 1768 1769 if (!blk_mq_get_driver_tag(rq)) { 1770 /* 1771 * The initial allocation attempt failed, so we need to 1772 * rerun the hardware queue when a tag is freed. The 1773 * waitqueue takes care of that. If the queue is run 1774 * before we add this entry back on the dispatch list, 1775 * we'll re-run it below. 1776 */ 1777 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1778 /* 1779 * All budgets not got from this function will be put 1780 * together during handling partial dispatch 1781 */ 1782 if (need_budget) 1783 blk_mq_put_dispatch_budget(rq->q, budget_token); 1784 return PREP_DISPATCH_NO_TAG; 1785 } 1786 } 1787 1788 return PREP_DISPATCH_OK; 1789 } 1790 1791 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1792 static void blk_mq_release_budgets(struct request_queue *q, 1793 struct list_head *list) 1794 { 1795 struct request *rq; 1796 1797 list_for_each_entry(rq, list, queuelist) { 1798 int budget_token = blk_mq_get_rq_budget_token(rq); 1799 1800 if (budget_token >= 0) 1801 blk_mq_put_dispatch_budget(q, budget_token); 1802 } 1803 } 1804 1805 /* 1806 * Returns true if we did some work AND can potentially do more. 1807 */ 1808 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1809 unsigned int nr_budgets) 1810 { 1811 enum prep_dispatch prep; 1812 struct request_queue *q = hctx->queue; 1813 struct request *rq, *nxt; 1814 int errors, queued; 1815 blk_status_t ret = BLK_STS_OK; 1816 LIST_HEAD(zone_list); 1817 bool needs_resource = false; 1818 1819 if (list_empty(list)) 1820 return false; 1821 1822 /* 1823 * Now process all the entries, sending them to the driver. 1824 */ 1825 errors = queued = 0; 1826 do { 1827 struct blk_mq_queue_data bd; 1828 1829 rq = list_first_entry(list, struct request, queuelist); 1830 1831 WARN_ON_ONCE(hctx != rq->mq_hctx); 1832 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1833 if (prep != PREP_DISPATCH_OK) 1834 break; 1835 1836 list_del_init(&rq->queuelist); 1837 1838 bd.rq = rq; 1839 1840 /* 1841 * Flag last if we have no more requests, or if we have more 1842 * but can't assign a driver tag to it. 1843 */ 1844 if (list_empty(list)) 1845 bd.last = true; 1846 else { 1847 nxt = list_first_entry(list, struct request, queuelist); 1848 bd.last = !blk_mq_get_driver_tag(nxt); 1849 } 1850 1851 /* 1852 * once the request is queued to lld, no need to cover the 1853 * budget any more 1854 */ 1855 if (nr_budgets) 1856 nr_budgets--; 1857 ret = q->mq_ops->queue_rq(hctx, &bd); 1858 switch (ret) { 1859 case BLK_STS_OK: 1860 queued++; 1861 break; 1862 case BLK_STS_RESOURCE: 1863 needs_resource = true; 1864 fallthrough; 1865 case BLK_STS_DEV_RESOURCE: 1866 blk_mq_handle_dev_resource(rq, list); 1867 goto out; 1868 case BLK_STS_ZONE_RESOURCE: 1869 /* 1870 * Move the request to zone_list and keep going through 1871 * the dispatch list to find more requests the drive can 1872 * accept. 1873 */ 1874 blk_mq_handle_zone_resource(rq, &zone_list); 1875 needs_resource = true; 1876 break; 1877 default: 1878 errors++; 1879 blk_mq_end_request(rq, ret); 1880 } 1881 } while (!list_empty(list)); 1882 out: 1883 if (!list_empty(&zone_list)) 1884 list_splice_tail_init(&zone_list, list); 1885 1886 /* If we didn't flush the entire list, we could have told the driver 1887 * there was more coming, but that turned out to be a lie. 1888 */ 1889 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1890 q->mq_ops->commit_rqs(hctx); 1891 /* 1892 * Any items that need requeuing? Stuff them into hctx->dispatch, 1893 * that is where we will continue on next queue run. 1894 */ 1895 if (!list_empty(list)) { 1896 bool needs_restart; 1897 /* For non-shared tags, the RESTART check will suffice */ 1898 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1899 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1900 1901 if (nr_budgets) 1902 blk_mq_release_budgets(q, list); 1903 1904 spin_lock(&hctx->lock); 1905 list_splice_tail_init(list, &hctx->dispatch); 1906 spin_unlock(&hctx->lock); 1907 1908 /* 1909 * Order adding requests to hctx->dispatch and checking 1910 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1911 * in blk_mq_sched_restart(). Avoid restart code path to 1912 * miss the new added requests to hctx->dispatch, meantime 1913 * SCHED_RESTART is observed here. 1914 */ 1915 smp_mb(); 1916 1917 /* 1918 * If SCHED_RESTART was set by the caller of this function and 1919 * it is no longer set that means that it was cleared by another 1920 * thread and hence that a queue rerun is needed. 1921 * 1922 * If 'no_tag' is set, that means that we failed getting 1923 * a driver tag with an I/O scheduler attached. If our dispatch 1924 * waitqueue is no longer active, ensure that we run the queue 1925 * AFTER adding our entries back to the list. 1926 * 1927 * If no I/O scheduler has been configured it is possible that 1928 * the hardware queue got stopped and restarted before requests 1929 * were pushed back onto the dispatch list. Rerun the queue to 1930 * avoid starvation. Notes: 1931 * - blk_mq_run_hw_queue() checks whether or not a queue has 1932 * been stopped before rerunning a queue. 1933 * - Some but not all block drivers stop a queue before 1934 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1935 * and dm-rq. 1936 * 1937 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1938 * bit is set, run queue after a delay to avoid IO stalls 1939 * that could otherwise occur if the queue is idle. We'll do 1940 * similar if we couldn't get budget or couldn't lock a zone 1941 * and SCHED_RESTART is set. 1942 */ 1943 needs_restart = blk_mq_sched_needs_restart(hctx); 1944 if (prep == PREP_DISPATCH_NO_BUDGET) 1945 needs_resource = true; 1946 if (!needs_restart || 1947 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1948 blk_mq_run_hw_queue(hctx, true); 1949 else if (needs_restart && needs_resource) 1950 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1951 1952 blk_mq_update_dispatch_busy(hctx, true); 1953 return false; 1954 } else 1955 blk_mq_update_dispatch_busy(hctx, false); 1956 1957 return (queued + errors) != 0; 1958 } 1959 1960 /** 1961 * __blk_mq_run_hw_queue - Run a hardware queue. 1962 * @hctx: Pointer to the hardware queue to run. 1963 * 1964 * Send pending requests to the hardware. 1965 */ 1966 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1967 { 1968 /* 1969 * We can't run the queue inline with ints disabled. Ensure that 1970 * we catch bad users of this early. 1971 */ 1972 WARN_ON_ONCE(in_interrupt()); 1973 1974 blk_mq_run_dispatch_ops(hctx->queue, 1975 blk_mq_sched_dispatch_requests(hctx)); 1976 } 1977 1978 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1979 { 1980 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1981 1982 if (cpu >= nr_cpu_ids) 1983 cpu = cpumask_first(hctx->cpumask); 1984 return cpu; 1985 } 1986 1987 /* 1988 * It'd be great if the workqueue API had a way to pass 1989 * in a mask and had some smarts for more clever placement. 1990 * For now we just round-robin here, switching for every 1991 * BLK_MQ_CPU_WORK_BATCH queued items. 1992 */ 1993 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1994 { 1995 bool tried = false; 1996 int next_cpu = hctx->next_cpu; 1997 1998 if (hctx->queue->nr_hw_queues == 1) 1999 return WORK_CPU_UNBOUND; 2000 2001 if (--hctx->next_cpu_batch <= 0) { 2002 select_cpu: 2003 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2004 cpu_online_mask); 2005 if (next_cpu >= nr_cpu_ids) 2006 next_cpu = blk_mq_first_mapped_cpu(hctx); 2007 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2008 } 2009 2010 /* 2011 * Do unbound schedule if we can't find a online CPU for this hctx, 2012 * and it should only happen in the path of handling CPU DEAD. 2013 */ 2014 if (!cpu_online(next_cpu)) { 2015 if (!tried) { 2016 tried = true; 2017 goto select_cpu; 2018 } 2019 2020 /* 2021 * Make sure to re-select CPU next time once after CPUs 2022 * in hctx->cpumask become online again. 2023 */ 2024 hctx->next_cpu = next_cpu; 2025 hctx->next_cpu_batch = 1; 2026 return WORK_CPU_UNBOUND; 2027 } 2028 2029 hctx->next_cpu = next_cpu; 2030 return next_cpu; 2031 } 2032 2033 /** 2034 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2035 * @hctx: Pointer to the hardware queue to run. 2036 * @async: If we want to run the queue asynchronously. 2037 * @msecs: Milliseconds of delay to wait before running the queue. 2038 * 2039 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2040 * with a delay of @msecs. 2041 */ 2042 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2043 unsigned long msecs) 2044 { 2045 if (unlikely(blk_mq_hctx_stopped(hctx))) 2046 return; 2047 2048 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2049 int cpu = get_cpu(); 2050 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 2051 __blk_mq_run_hw_queue(hctx); 2052 put_cpu(); 2053 return; 2054 } 2055 2056 put_cpu(); 2057 } 2058 2059 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2060 msecs_to_jiffies(msecs)); 2061 } 2062 2063 /** 2064 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2065 * @hctx: Pointer to the hardware queue to run. 2066 * @msecs: Milliseconds of delay to wait before running the queue. 2067 * 2068 * Run a hardware queue asynchronously with a delay of @msecs. 2069 */ 2070 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2071 { 2072 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2073 } 2074 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2075 2076 /** 2077 * blk_mq_run_hw_queue - Start to run a hardware queue. 2078 * @hctx: Pointer to the hardware queue to run. 2079 * @async: If we want to run the queue asynchronously. 2080 * 2081 * Check if the request queue is not in a quiesced state and if there are 2082 * pending requests to be sent. If this is true, run the queue to send requests 2083 * to hardware. 2084 */ 2085 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2086 { 2087 bool need_run; 2088 2089 /* 2090 * When queue is quiesced, we may be switching io scheduler, or 2091 * updating nr_hw_queues, or other things, and we can't run queue 2092 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2093 * 2094 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2095 * quiesced. 2096 */ 2097 __blk_mq_run_dispatch_ops(hctx->queue, false, 2098 need_run = !blk_queue_quiesced(hctx->queue) && 2099 blk_mq_hctx_has_pending(hctx)); 2100 2101 if (need_run) 2102 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2103 } 2104 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2105 2106 /* 2107 * Is the request queue handled by an IO scheduler that does not respect 2108 * hardware queues when dispatching? 2109 */ 2110 static bool blk_mq_has_sqsched(struct request_queue *q) 2111 { 2112 struct elevator_queue *e = q->elevator; 2113 2114 if (e && e->type->ops.dispatch_request && 2115 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 2116 return true; 2117 return false; 2118 } 2119 2120 /* 2121 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2122 * scheduler. 2123 */ 2124 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2125 { 2126 struct blk_mq_hw_ctx *hctx; 2127 2128 /* 2129 * If the IO scheduler does not respect hardware queues when 2130 * dispatching, we just don't bother with multiple HW queues and 2131 * dispatch from hctx for the current CPU since running multiple queues 2132 * just causes lock contention inside the scheduler and pointless cache 2133 * bouncing. 2134 */ 2135 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 2136 raw_smp_processor_id()); 2137 if (!blk_mq_hctx_stopped(hctx)) 2138 return hctx; 2139 return NULL; 2140 } 2141 2142 /** 2143 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2144 * @q: Pointer to the request queue to run. 2145 * @async: If we want to run the queue asynchronously. 2146 */ 2147 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2148 { 2149 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2150 unsigned long i; 2151 2152 sq_hctx = NULL; 2153 if (blk_mq_has_sqsched(q)) 2154 sq_hctx = blk_mq_get_sq_hctx(q); 2155 queue_for_each_hw_ctx(q, hctx, i) { 2156 if (blk_mq_hctx_stopped(hctx)) 2157 continue; 2158 /* 2159 * Dispatch from this hctx either if there's no hctx preferred 2160 * by IO scheduler or if it has requests that bypass the 2161 * scheduler. 2162 */ 2163 if (!sq_hctx || sq_hctx == hctx || 2164 !list_empty_careful(&hctx->dispatch)) 2165 blk_mq_run_hw_queue(hctx, async); 2166 } 2167 } 2168 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2169 2170 /** 2171 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2172 * @q: Pointer to the request queue to run. 2173 * @msecs: Milliseconds of delay to wait before running the queues. 2174 */ 2175 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2176 { 2177 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2178 unsigned long i; 2179 2180 sq_hctx = NULL; 2181 if (blk_mq_has_sqsched(q)) 2182 sq_hctx = blk_mq_get_sq_hctx(q); 2183 queue_for_each_hw_ctx(q, hctx, i) { 2184 if (blk_mq_hctx_stopped(hctx)) 2185 continue; 2186 /* 2187 * If there is already a run_work pending, leave the 2188 * pending delay untouched. Otherwise, a hctx can stall 2189 * if another hctx is re-delaying the other's work 2190 * before the work executes. 2191 */ 2192 if (delayed_work_pending(&hctx->run_work)) 2193 continue; 2194 /* 2195 * Dispatch from this hctx either if there's no hctx preferred 2196 * by IO scheduler or if it has requests that bypass the 2197 * scheduler. 2198 */ 2199 if (!sq_hctx || sq_hctx == hctx || 2200 !list_empty_careful(&hctx->dispatch)) 2201 blk_mq_delay_run_hw_queue(hctx, msecs); 2202 } 2203 } 2204 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2205 2206 /** 2207 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 2208 * @q: request queue. 2209 * 2210 * The caller is responsible for serializing this function against 2211 * blk_mq_{start,stop}_hw_queue(). 2212 */ 2213 bool blk_mq_queue_stopped(struct request_queue *q) 2214 { 2215 struct blk_mq_hw_ctx *hctx; 2216 unsigned long i; 2217 2218 queue_for_each_hw_ctx(q, hctx, i) 2219 if (blk_mq_hctx_stopped(hctx)) 2220 return true; 2221 2222 return false; 2223 } 2224 EXPORT_SYMBOL(blk_mq_queue_stopped); 2225 2226 /* 2227 * This function is often used for pausing .queue_rq() by driver when 2228 * there isn't enough resource or some conditions aren't satisfied, and 2229 * BLK_STS_RESOURCE is usually returned. 2230 * 2231 * We do not guarantee that dispatch can be drained or blocked 2232 * after blk_mq_stop_hw_queue() returns. Please use 2233 * blk_mq_quiesce_queue() for that requirement. 2234 */ 2235 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2236 { 2237 cancel_delayed_work(&hctx->run_work); 2238 2239 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2240 } 2241 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2242 2243 /* 2244 * This function is often used for pausing .queue_rq() by driver when 2245 * there isn't enough resource or some conditions aren't satisfied, and 2246 * BLK_STS_RESOURCE is usually returned. 2247 * 2248 * We do not guarantee that dispatch can be drained or blocked 2249 * after blk_mq_stop_hw_queues() returns. Please use 2250 * blk_mq_quiesce_queue() for that requirement. 2251 */ 2252 void blk_mq_stop_hw_queues(struct request_queue *q) 2253 { 2254 struct blk_mq_hw_ctx *hctx; 2255 unsigned long i; 2256 2257 queue_for_each_hw_ctx(q, hctx, i) 2258 blk_mq_stop_hw_queue(hctx); 2259 } 2260 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2261 2262 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2263 { 2264 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2265 2266 blk_mq_run_hw_queue(hctx, false); 2267 } 2268 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2269 2270 void blk_mq_start_hw_queues(struct request_queue *q) 2271 { 2272 struct blk_mq_hw_ctx *hctx; 2273 unsigned long i; 2274 2275 queue_for_each_hw_ctx(q, hctx, i) 2276 blk_mq_start_hw_queue(hctx); 2277 } 2278 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2279 2280 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2281 { 2282 if (!blk_mq_hctx_stopped(hctx)) 2283 return; 2284 2285 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2286 blk_mq_run_hw_queue(hctx, async); 2287 } 2288 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2289 2290 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2291 { 2292 struct blk_mq_hw_ctx *hctx; 2293 unsigned long i; 2294 2295 queue_for_each_hw_ctx(q, hctx, i) 2296 blk_mq_start_stopped_hw_queue(hctx, async); 2297 } 2298 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2299 2300 static void blk_mq_run_work_fn(struct work_struct *work) 2301 { 2302 struct blk_mq_hw_ctx *hctx; 2303 2304 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2305 2306 /* 2307 * If we are stopped, don't run the queue. 2308 */ 2309 if (blk_mq_hctx_stopped(hctx)) 2310 return; 2311 2312 __blk_mq_run_hw_queue(hctx); 2313 } 2314 2315 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2316 struct request *rq, 2317 bool at_head) 2318 { 2319 struct blk_mq_ctx *ctx = rq->mq_ctx; 2320 enum hctx_type type = hctx->type; 2321 2322 lockdep_assert_held(&ctx->lock); 2323 2324 trace_block_rq_insert(rq); 2325 2326 if (at_head) 2327 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2328 else 2329 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2330 } 2331 2332 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2333 bool at_head) 2334 { 2335 struct blk_mq_ctx *ctx = rq->mq_ctx; 2336 2337 lockdep_assert_held(&ctx->lock); 2338 2339 __blk_mq_insert_req_list(hctx, rq, at_head); 2340 blk_mq_hctx_mark_pending(hctx, ctx); 2341 } 2342 2343 /** 2344 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2345 * @rq: Pointer to request to be inserted. 2346 * @at_head: true if the request should be inserted at the head of the list. 2347 * @run_queue: If we should run the hardware queue after inserting the request. 2348 * 2349 * Should only be used carefully, when the caller knows we want to 2350 * bypass a potential IO scheduler on the target device. 2351 */ 2352 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2353 bool run_queue) 2354 { 2355 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2356 2357 spin_lock(&hctx->lock); 2358 if (at_head) 2359 list_add(&rq->queuelist, &hctx->dispatch); 2360 else 2361 list_add_tail(&rq->queuelist, &hctx->dispatch); 2362 spin_unlock(&hctx->lock); 2363 2364 if (run_queue) 2365 blk_mq_run_hw_queue(hctx, false); 2366 } 2367 2368 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2369 struct list_head *list) 2370 2371 { 2372 struct request *rq; 2373 enum hctx_type type = hctx->type; 2374 2375 /* 2376 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2377 * offline now 2378 */ 2379 list_for_each_entry(rq, list, queuelist) { 2380 BUG_ON(rq->mq_ctx != ctx); 2381 trace_block_rq_insert(rq); 2382 } 2383 2384 spin_lock(&ctx->lock); 2385 list_splice_tail_init(list, &ctx->rq_lists[type]); 2386 blk_mq_hctx_mark_pending(hctx, ctx); 2387 spin_unlock(&ctx->lock); 2388 } 2389 2390 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2391 bool from_schedule) 2392 { 2393 if (hctx->queue->mq_ops->commit_rqs) { 2394 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2395 hctx->queue->mq_ops->commit_rqs(hctx); 2396 } 2397 *queued = 0; 2398 } 2399 2400 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2401 unsigned int nr_segs) 2402 { 2403 int err; 2404 2405 if (bio->bi_opf & REQ_RAHEAD) 2406 rq->cmd_flags |= REQ_FAILFAST_MASK; 2407 2408 rq->__sector = bio->bi_iter.bi_sector; 2409 blk_rq_bio_prep(rq, bio, nr_segs); 2410 2411 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2412 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2413 WARN_ON_ONCE(err); 2414 2415 blk_account_io_start(rq); 2416 } 2417 2418 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2419 struct request *rq, bool last) 2420 { 2421 struct request_queue *q = rq->q; 2422 struct blk_mq_queue_data bd = { 2423 .rq = rq, 2424 .last = last, 2425 }; 2426 blk_status_t ret; 2427 2428 /* 2429 * For OK queue, we are done. For error, caller may kill it. 2430 * Any other error (busy), just add it to our list as we 2431 * previously would have done. 2432 */ 2433 ret = q->mq_ops->queue_rq(hctx, &bd); 2434 switch (ret) { 2435 case BLK_STS_OK: 2436 blk_mq_update_dispatch_busy(hctx, false); 2437 break; 2438 case BLK_STS_RESOURCE: 2439 case BLK_STS_DEV_RESOURCE: 2440 blk_mq_update_dispatch_busy(hctx, true); 2441 __blk_mq_requeue_request(rq); 2442 break; 2443 default: 2444 blk_mq_update_dispatch_busy(hctx, false); 2445 break; 2446 } 2447 2448 return ret; 2449 } 2450 2451 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2452 struct request *rq, 2453 bool bypass_insert, bool last) 2454 { 2455 struct request_queue *q = rq->q; 2456 bool run_queue = true; 2457 int budget_token; 2458 2459 /* 2460 * RCU or SRCU read lock is needed before checking quiesced flag. 2461 * 2462 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2463 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2464 * and avoid driver to try to dispatch again. 2465 */ 2466 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2467 run_queue = false; 2468 bypass_insert = false; 2469 goto insert; 2470 } 2471 2472 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2473 goto insert; 2474 2475 budget_token = blk_mq_get_dispatch_budget(q); 2476 if (budget_token < 0) 2477 goto insert; 2478 2479 blk_mq_set_rq_budget_token(rq, budget_token); 2480 2481 if (!blk_mq_get_driver_tag(rq)) { 2482 blk_mq_put_dispatch_budget(q, budget_token); 2483 goto insert; 2484 } 2485 2486 return __blk_mq_issue_directly(hctx, rq, last); 2487 insert: 2488 if (bypass_insert) 2489 return BLK_STS_RESOURCE; 2490 2491 blk_mq_sched_insert_request(rq, false, run_queue, false); 2492 2493 return BLK_STS_OK; 2494 } 2495 2496 /** 2497 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2498 * @hctx: Pointer of the associated hardware queue. 2499 * @rq: Pointer to request to be sent. 2500 * 2501 * If the device has enough resources to accept a new request now, send the 2502 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2503 * we can try send it another time in the future. Requests inserted at this 2504 * queue have higher priority. 2505 */ 2506 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2507 struct request *rq) 2508 { 2509 blk_status_t ret = 2510 __blk_mq_try_issue_directly(hctx, rq, false, true); 2511 2512 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2513 blk_mq_request_bypass_insert(rq, false, true); 2514 else if (ret != BLK_STS_OK) 2515 blk_mq_end_request(rq, ret); 2516 } 2517 2518 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2519 { 2520 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2521 } 2522 2523 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2524 { 2525 struct blk_mq_hw_ctx *hctx = NULL; 2526 struct request *rq; 2527 int queued = 0; 2528 int errors = 0; 2529 2530 while ((rq = rq_list_pop(&plug->mq_list))) { 2531 bool last = rq_list_empty(plug->mq_list); 2532 blk_status_t ret; 2533 2534 if (hctx != rq->mq_hctx) { 2535 if (hctx) 2536 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2537 hctx = rq->mq_hctx; 2538 } 2539 2540 ret = blk_mq_request_issue_directly(rq, last); 2541 switch (ret) { 2542 case BLK_STS_OK: 2543 queued++; 2544 break; 2545 case BLK_STS_RESOURCE: 2546 case BLK_STS_DEV_RESOURCE: 2547 blk_mq_request_bypass_insert(rq, false, last); 2548 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2549 return; 2550 default: 2551 blk_mq_end_request(rq, ret); 2552 errors++; 2553 break; 2554 } 2555 } 2556 2557 /* 2558 * If we didn't flush the entire list, we could have told the driver 2559 * there was more coming, but that turned out to be a lie. 2560 */ 2561 if (errors) 2562 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2563 } 2564 2565 static void __blk_mq_flush_plug_list(struct request_queue *q, 2566 struct blk_plug *plug) 2567 { 2568 if (blk_queue_quiesced(q)) 2569 return; 2570 q->mq_ops->queue_rqs(&plug->mq_list); 2571 } 2572 2573 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2574 { 2575 struct blk_mq_hw_ctx *this_hctx = NULL; 2576 struct blk_mq_ctx *this_ctx = NULL; 2577 struct request *requeue_list = NULL; 2578 unsigned int depth = 0; 2579 LIST_HEAD(list); 2580 2581 do { 2582 struct request *rq = rq_list_pop(&plug->mq_list); 2583 2584 if (!this_hctx) { 2585 this_hctx = rq->mq_hctx; 2586 this_ctx = rq->mq_ctx; 2587 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2588 rq_list_add(&requeue_list, rq); 2589 continue; 2590 } 2591 list_add_tail(&rq->queuelist, &list); 2592 depth++; 2593 } while (!rq_list_empty(plug->mq_list)); 2594 2595 plug->mq_list = requeue_list; 2596 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2597 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2598 } 2599 2600 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2601 { 2602 struct request *rq; 2603 2604 if (rq_list_empty(plug->mq_list)) 2605 return; 2606 plug->rq_count = 0; 2607 2608 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2609 struct request_queue *q; 2610 2611 rq = rq_list_peek(&plug->mq_list); 2612 q = rq->q; 2613 2614 /* 2615 * Peek first request and see if we have a ->queue_rqs() hook. 2616 * If we do, we can dispatch the whole plug list in one go. We 2617 * already know at this point that all requests belong to the 2618 * same queue, caller must ensure that's the case. 2619 * 2620 * Since we pass off the full list to the driver at this point, 2621 * we do not increment the active request count for the queue. 2622 * Bypass shared tags for now because of that. 2623 */ 2624 if (q->mq_ops->queue_rqs && 2625 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2626 blk_mq_run_dispatch_ops(q, 2627 __blk_mq_flush_plug_list(q, plug)); 2628 if (rq_list_empty(plug->mq_list)) 2629 return; 2630 } 2631 2632 blk_mq_run_dispatch_ops(q, 2633 blk_mq_plug_issue_direct(plug, false)); 2634 if (rq_list_empty(plug->mq_list)) 2635 return; 2636 } 2637 2638 do { 2639 blk_mq_dispatch_plug_list(plug, from_schedule); 2640 } while (!rq_list_empty(plug->mq_list)); 2641 } 2642 2643 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2644 struct list_head *list) 2645 { 2646 int queued = 0; 2647 int errors = 0; 2648 2649 while (!list_empty(list)) { 2650 blk_status_t ret; 2651 struct request *rq = list_first_entry(list, struct request, 2652 queuelist); 2653 2654 list_del_init(&rq->queuelist); 2655 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2656 if (ret != BLK_STS_OK) { 2657 if (ret == BLK_STS_RESOURCE || 2658 ret == BLK_STS_DEV_RESOURCE) { 2659 blk_mq_request_bypass_insert(rq, false, 2660 list_empty(list)); 2661 break; 2662 } 2663 blk_mq_end_request(rq, ret); 2664 errors++; 2665 } else 2666 queued++; 2667 } 2668 2669 /* 2670 * If we didn't flush the entire list, we could have told 2671 * the driver there was more coming, but that turned out to 2672 * be a lie. 2673 */ 2674 if ((!list_empty(list) || errors) && 2675 hctx->queue->mq_ops->commit_rqs && queued) 2676 hctx->queue->mq_ops->commit_rqs(hctx); 2677 } 2678 2679 /* 2680 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 2681 * queues. This is important for md arrays to benefit from merging 2682 * requests. 2683 */ 2684 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 2685 { 2686 if (plug->multiple_queues) 2687 return BLK_MAX_REQUEST_COUNT * 2; 2688 return BLK_MAX_REQUEST_COUNT; 2689 } 2690 2691 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2692 { 2693 struct request *last = rq_list_peek(&plug->mq_list); 2694 2695 if (!plug->rq_count) { 2696 trace_block_plug(rq->q); 2697 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 2698 (!blk_queue_nomerges(rq->q) && 2699 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2700 blk_mq_flush_plug_list(plug, false); 2701 trace_block_plug(rq->q); 2702 } 2703 2704 if (!plug->multiple_queues && last && last->q != rq->q) 2705 plug->multiple_queues = true; 2706 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 2707 plug->has_elevator = true; 2708 rq->rq_next = NULL; 2709 rq_list_add(&plug->mq_list, rq); 2710 plug->rq_count++; 2711 } 2712 2713 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2714 struct bio *bio, unsigned int nr_segs) 2715 { 2716 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2717 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2718 return true; 2719 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2720 return true; 2721 } 2722 return false; 2723 } 2724 2725 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2726 struct blk_plug *plug, 2727 struct bio *bio, 2728 unsigned int nsegs) 2729 { 2730 struct blk_mq_alloc_data data = { 2731 .q = q, 2732 .nr_tags = 1, 2733 .cmd_flags = bio->bi_opf, 2734 }; 2735 struct request *rq; 2736 2737 if (unlikely(bio_queue_enter(bio))) 2738 return NULL; 2739 2740 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2741 goto queue_exit; 2742 2743 rq_qos_throttle(q, bio); 2744 2745 if (plug) { 2746 data.nr_tags = plug->nr_ios; 2747 plug->nr_ios = 1; 2748 data.cached_rq = &plug->cached_rq; 2749 } 2750 2751 rq = __blk_mq_alloc_requests(&data); 2752 if (rq) 2753 return rq; 2754 rq_qos_cleanup(q, bio); 2755 if (bio->bi_opf & REQ_NOWAIT) 2756 bio_wouldblock_error(bio); 2757 queue_exit: 2758 blk_queue_exit(q); 2759 return NULL; 2760 } 2761 2762 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2763 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2764 { 2765 struct request *rq; 2766 2767 if (!plug) 2768 return NULL; 2769 rq = rq_list_peek(&plug->cached_rq); 2770 if (!rq || rq->q != q) 2771 return NULL; 2772 2773 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2774 *bio = NULL; 2775 return NULL; 2776 } 2777 2778 rq_qos_throttle(q, *bio); 2779 2780 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) 2781 return NULL; 2782 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2783 return NULL; 2784 2785 rq->cmd_flags = (*bio)->bi_opf; 2786 plug->cached_rq = rq_list_next(rq); 2787 INIT_LIST_HEAD(&rq->queuelist); 2788 return rq; 2789 } 2790 2791 /** 2792 * blk_mq_submit_bio - Create and send a request to block device. 2793 * @bio: Bio pointer. 2794 * 2795 * Builds up a request structure from @q and @bio and send to the device. The 2796 * request may not be queued directly to hardware if: 2797 * * This request can be merged with another one 2798 * * We want to place request at plug queue for possible future merging 2799 * * There is an IO scheduler active at this queue 2800 * 2801 * It will not queue the request if there is an error with the bio, or at the 2802 * request creation. 2803 */ 2804 void blk_mq_submit_bio(struct bio *bio) 2805 { 2806 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2807 struct blk_plug *plug = blk_mq_plug(q, bio); 2808 const int is_sync = op_is_sync(bio->bi_opf); 2809 struct request *rq; 2810 unsigned int nr_segs = 1; 2811 blk_status_t ret; 2812 2813 blk_queue_bounce(q, &bio); 2814 if (blk_may_split(q, bio)) 2815 __blk_queue_split(q, &bio, &nr_segs); 2816 2817 if (!bio_integrity_prep(bio)) 2818 return; 2819 2820 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2821 if (!rq) { 2822 if (!bio) 2823 return; 2824 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2825 if (unlikely(!rq)) 2826 return; 2827 } 2828 2829 trace_block_getrq(bio); 2830 2831 rq_qos_track(q, rq, bio); 2832 2833 blk_mq_bio_to_request(rq, bio, nr_segs); 2834 2835 ret = blk_crypto_init_request(rq); 2836 if (ret != BLK_STS_OK) { 2837 bio->bi_status = ret; 2838 bio_endio(bio); 2839 blk_mq_free_request(rq); 2840 return; 2841 } 2842 2843 if (op_is_flush(bio->bi_opf)) { 2844 blk_insert_flush(rq); 2845 return; 2846 } 2847 2848 if (plug) 2849 blk_add_rq_to_plug(plug, rq); 2850 else if ((rq->rq_flags & RQF_ELV) || 2851 (rq->mq_hctx->dispatch_busy && 2852 (q->nr_hw_queues == 1 || !is_sync))) 2853 blk_mq_sched_insert_request(rq, false, true, true); 2854 else 2855 blk_mq_run_dispatch_ops(rq->q, 2856 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2857 } 2858 2859 #ifdef CONFIG_BLK_MQ_STACKING 2860 /** 2861 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2862 * @rq: the request being queued 2863 */ 2864 blk_status_t blk_insert_cloned_request(struct request *rq) 2865 { 2866 struct request_queue *q = rq->q; 2867 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 2868 blk_status_t ret; 2869 2870 if (blk_rq_sectors(rq) > max_sectors) { 2871 /* 2872 * SCSI device does not have a good way to return if 2873 * Write Same/Zero is actually supported. If a device rejects 2874 * a non-read/write command (discard, write same,etc.) the 2875 * low-level device driver will set the relevant queue limit to 2876 * 0 to prevent blk-lib from issuing more of the offending 2877 * operations. Commands queued prior to the queue limit being 2878 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 2879 * errors being propagated to upper layers. 2880 */ 2881 if (max_sectors == 0) 2882 return BLK_STS_NOTSUPP; 2883 2884 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 2885 __func__, blk_rq_sectors(rq), max_sectors); 2886 return BLK_STS_IOERR; 2887 } 2888 2889 /* 2890 * The queue settings related to segment counting may differ from the 2891 * original queue. 2892 */ 2893 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 2894 if (rq->nr_phys_segments > queue_max_segments(q)) { 2895 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 2896 __func__, rq->nr_phys_segments, queue_max_segments(q)); 2897 return BLK_STS_IOERR; 2898 } 2899 2900 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 2901 return BLK_STS_IOERR; 2902 2903 if (blk_crypto_insert_cloned_request(rq)) 2904 return BLK_STS_IOERR; 2905 2906 blk_account_io_start(rq); 2907 2908 /* 2909 * Since we have a scheduler attached on the top device, 2910 * bypass a potential scheduler on the bottom device for 2911 * insert. 2912 */ 2913 blk_mq_run_dispatch_ops(q, 2914 ret = blk_mq_request_issue_directly(rq, true)); 2915 if (ret) 2916 blk_account_io_done(rq, ktime_get_ns()); 2917 return ret; 2918 } 2919 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2920 2921 /** 2922 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2923 * @rq: the clone request to be cleaned up 2924 * 2925 * Description: 2926 * Free all bios in @rq for a cloned request. 2927 */ 2928 void blk_rq_unprep_clone(struct request *rq) 2929 { 2930 struct bio *bio; 2931 2932 while ((bio = rq->bio) != NULL) { 2933 rq->bio = bio->bi_next; 2934 2935 bio_put(bio); 2936 } 2937 } 2938 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2939 2940 /** 2941 * blk_rq_prep_clone - Helper function to setup clone request 2942 * @rq: the request to be setup 2943 * @rq_src: original request to be cloned 2944 * @bs: bio_set that bios for clone are allocated from 2945 * @gfp_mask: memory allocation mask for bio 2946 * @bio_ctr: setup function to be called for each clone bio. 2947 * Returns %0 for success, non %0 for failure. 2948 * @data: private data to be passed to @bio_ctr 2949 * 2950 * Description: 2951 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2952 * Also, pages which the original bios are pointing to are not copied 2953 * and the cloned bios just point same pages. 2954 * So cloned bios must be completed before original bios, which means 2955 * the caller must complete @rq before @rq_src. 2956 */ 2957 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2958 struct bio_set *bs, gfp_t gfp_mask, 2959 int (*bio_ctr)(struct bio *, struct bio *, void *), 2960 void *data) 2961 { 2962 struct bio *bio, *bio_src; 2963 2964 if (!bs) 2965 bs = &fs_bio_set; 2966 2967 __rq_for_each_bio(bio_src, rq_src) { 2968 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 2969 bs); 2970 if (!bio) 2971 goto free_and_out; 2972 2973 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2974 goto free_and_out; 2975 2976 if (rq->bio) { 2977 rq->biotail->bi_next = bio; 2978 rq->biotail = bio; 2979 } else { 2980 rq->bio = rq->biotail = bio; 2981 } 2982 bio = NULL; 2983 } 2984 2985 /* Copy attributes of the original request to the clone request. */ 2986 rq->__sector = blk_rq_pos(rq_src); 2987 rq->__data_len = blk_rq_bytes(rq_src); 2988 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 2989 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 2990 rq->special_vec = rq_src->special_vec; 2991 } 2992 rq->nr_phys_segments = rq_src->nr_phys_segments; 2993 rq->ioprio = rq_src->ioprio; 2994 2995 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 2996 goto free_and_out; 2997 2998 return 0; 2999 3000 free_and_out: 3001 if (bio) 3002 bio_put(bio); 3003 blk_rq_unprep_clone(rq); 3004 3005 return -ENOMEM; 3006 } 3007 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3008 #endif /* CONFIG_BLK_MQ_STACKING */ 3009 3010 /* 3011 * Steal bios from a request and add them to a bio list. 3012 * The request must not have been partially completed before. 3013 */ 3014 void blk_steal_bios(struct bio_list *list, struct request *rq) 3015 { 3016 if (rq->bio) { 3017 if (list->tail) 3018 list->tail->bi_next = rq->bio; 3019 else 3020 list->head = rq->bio; 3021 list->tail = rq->biotail; 3022 3023 rq->bio = NULL; 3024 rq->biotail = NULL; 3025 } 3026 3027 rq->__data_len = 0; 3028 } 3029 EXPORT_SYMBOL_GPL(blk_steal_bios); 3030 3031 static size_t order_to_size(unsigned int order) 3032 { 3033 return (size_t)PAGE_SIZE << order; 3034 } 3035 3036 /* called before freeing request pool in @tags */ 3037 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3038 struct blk_mq_tags *tags) 3039 { 3040 struct page *page; 3041 unsigned long flags; 3042 3043 /* There is no need to clear a driver tags own mapping */ 3044 if (drv_tags == tags) 3045 return; 3046 3047 list_for_each_entry(page, &tags->page_list, lru) { 3048 unsigned long start = (unsigned long)page_address(page); 3049 unsigned long end = start + order_to_size(page->private); 3050 int i; 3051 3052 for (i = 0; i < drv_tags->nr_tags; i++) { 3053 struct request *rq = drv_tags->rqs[i]; 3054 unsigned long rq_addr = (unsigned long)rq; 3055 3056 if (rq_addr >= start && rq_addr < end) { 3057 WARN_ON_ONCE(req_ref_read(rq) != 0); 3058 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3059 } 3060 } 3061 } 3062 3063 /* 3064 * Wait until all pending iteration is done. 3065 * 3066 * Request reference is cleared and it is guaranteed to be observed 3067 * after the ->lock is released. 3068 */ 3069 spin_lock_irqsave(&drv_tags->lock, flags); 3070 spin_unlock_irqrestore(&drv_tags->lock, flags); 3071 } 3072 3073 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3074 unsigned int hctx_idx) 3075 { 3076 struct blk_mq_tags *drv_tags; 3077 struct page *page; 3078 3079 if (list_empty(&tags->page_list)) 3080 return; 3081 3082 if (blk_mq_is_shared_tags(set->flags)) 3083 drv_tags = set->shared_tags; 3084 else 3085 drv_tags = set->tags[hctx_idx]; 3086 3087 if (tags->static_rqs && set->ops->exit_request) { 3088 int i; 3089 3090 for (i = 0; i < tags->nr_tags; i++) { 3091 struct request *rq = tags->static_rqs[i]; 3092 3093 if (!rq) 3094 continue; 3095 set->ops->exit_request(set, rq, hctx_idx); 3096 tags->static_rqs[i] = NULL; 3097 } 3098 } 3099 3100 blk_mq_clear_rq_mapping(drv_tags, tags); 3101 3102 while (!list_empty(&tags->page_list)) { 3103 page = list_first_entry(&tags->page_list, struct page, lru); 3104 list_del_init(&page->lru); 3105 /* 3106 * Remove kmemleak object previously allocated in 3107 * blk_mq_alloc_rqs(). 3108 */ 3109 kmemleak_free(page_address(page)); 3110 __free_pages(page, page->private); 3111 } 3112 } 3113 3114 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3115 { 3116 kfree(tags->rqs); 3117 tags->rqs = NULL; 3118 kfree(tags->static_rqs); 3119 tags->static_rqs = NULL; 3120 3121 blk_mq_free_tags(tags); 3122 } 3123 3124 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3125 unsigned int hctx_idx) 3126 { 3127 int i; 3128 3129 for (i = 0; i < set->nr_maps; i++) { 3130 unsigned int start = set->map[i].queue_offset; 3131 unsigned int end = start + set->map[i].nr_queues; 3132 3133 if (hctx_idx >= start && hctx_idx < end) 3134 break; 3135 } 3136 3137 if (i >= set->nr_maps) 3138 i = HCTX_TYPE_DEFAULT; 3139 3140 return i; 3141 } 3142 3143 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3144 unsigned int hctx_idx) 3145 { 3146 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3147 3148 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3149 } 3150 3151 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3152 unsigned int hctx_idx, 3153 unsigned int nr_tags, 3154 unsigned int reserved_tags) 3155 { 3156 int node = blk_mq_get_hctx_node(set, hctx_idx); 3157 struct blk_mq_tags *tags; 3158 3159 if (node == NUMA_NO_NODE) 3160 node = set->numa_node; 3161 3162 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3163 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3164 if (!tags) 3165 return NULL; 3166 3167 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3168 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3169 node); 3170 if (!tags->rqs) { 3171 blk_mq_free_tags(tags); 3172 return NULL; 3173 } 3174 3175 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3176 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3177 node); 3178 if (!tags->static_rqs) { 3179 kfree(tags->rqs); 3180 blk_mq_free_tags(tags); 3181 return NULL; 3182 } 3183 3184 return tags; 3185 } 3186 3187 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3188 unsigned int hctx_idx, int node) 3189 { 3190 int ret; 3191 3192 if (set->ops->init_request) { 3193 ret = set->ops->init_request(set, rq, hctx_idx, node); 3194 if (ret) 3195 return ret; 3196 } 3197 3198 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3199 return 0; 3200 } 3201 3202 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3203 struct blk_mq_tags *tags, 3204 unsigned int hctx_idx, unsigned int depth) 3205 { 3206 unsigned int i, j, entries_per_page, max_order = 4; 3207 int node = blk_mq_get_hctx_node(set, hctx_idx); 3208 size_t rq_size, left; 3209 3210 if (node == NUMA_NO_NODE) 3211 node = set->numa_node; 3212 3213 INIT_LIST_HEAD(&tags->page_list); 3214 3215 /* 3216 * rq_size is the size of the request plus driver payload, rounded 3217 * to the cacheline size 3218 */ 3219 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3220 cache_line_size()); 3221 left = rq_size * depth; 3222 3223 for (i = 0; i < depth; ) { 3224 int this_order = max_order; 3225 struct page *page; 3226 int to_do; 3227 void *p; 3228 3229 while (this_order && left < order_to_size(this_order - 1)) 3230 this_order--; 3231 3232 do { 3233 page = alloc_pages_node(node, 3234 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3235 this_order); 3236 if (page) 3237 break; 3238 if (!this_order--) 3239 break; 3240 if (order_to_size(this_order) < rq_size) 3241 break; 3242 } while (1); 3243 3244 if (!page) 3245 goto fail; 3246 3247 page->private = this_order; 3248 list_add_tail(&page->lru, &tags->page_list); 3249 3250 p = page_address(page); 3251 /* 3252 * Allow kmemleak to scan these pages as they contain pointers 3253 * to additional allocations like via ops->init_request(). 3254 */ 3255 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3256 entries_per_page = order_to_size(this_order) / rq_size; 3257 to_do = min(entries_per_page, depth - i); 3258 left -= to_do * rq_size; 3259 for (j = 0; j < to_do; j++) { 3260 struct request *rq = p; 3261 3262 tags->static_rqs[i] = rq; 3263 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3264 tags->static_rqs[i] = NULL; 3265 goto fail; 3266 } 3267 3268 p += rq_size; 3269 i++; 3270 } 3271 } 3272 return 0; 3273 3274 fail: 3275 blk_mq_free_rqs(set, tags, hctx_idx); 3276 return -ENOMEM; 3277 } 3278 3279 struct rq_iter_data { 3280 struct blk_mq_hw_ctx *hctx; 3281 bool has_rq; 3282 }; 3283 3284 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 3285 { 3286 struct rq_iter_data *iter_data = data; 3287 3288 if (rq->mq_hctx != iter_data->hctx) 3289 return true; 3290 iter_data->has_rq = true; 3291 return false; 3292 } 3293 3294 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3295 { 3296 struct blk_mq_tags *tags = hctx->sched_tags ? 3297 hctx->sched_tags : hctx->tags; 3298 struct rq_iter_data data = { 3299 .hctx = hctx, 3300 }; 3301 3302 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3303 return data.has_rq; 3304 } 3305 3306 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3307 struct blk_mq_hw_ctx *hctx) 3308 { 3309 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3310 return false; 3311 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3312 return false; 3313 return true; 3314 } 3315 3316 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3317 { 3318 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3319 struct blk_mq_hw_ctx, cpuhp_online); 3320 3321 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3322 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3323 return 0; 3324 3325 /* 3326 * Prevent new request from being allocated on the current hctx. 3327 * 3328 * The smp_mb__after_atomic() Pairs with the implied barrier in 3329 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3330 * seen once we return from the tag allocator. 3331 */ 3332 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3333 smp_mb__after_atomic(); 3334 3335 /* 3336 * Try to grab a reference to the queue and wait for any outstanding 3337 * requests. If we could not grab a reference the queue has been 3338 * frozen and there are no requests. 3339 */ 3340 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3341 while (blk_mq_hctx_has_requests(hctx)) 3342 msleep(5); 3343 percpu_ref_put(&hctx->queue->q_usage_counter); 3344 } 3345 3346 return 0; 3347 } 3348 3349 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3350 { 3351 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3352 struct blk_mq_hw_ctx, cpuhp_online); 3353 3354 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3355 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3356 return 0; 3357 } 3358 3359 /* 3360 * 'cpu' is going away. splice any existing rq_list entries from this 3361 * software queue to the hw queue dispatch list, and ensure that it 3362 * gets run. 3363 */ 3364 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3365 { 3366 struct blk_mq_hw_ctx *hctx; 3367 struct blk_mq_ctx *ctx; 3368 LIST_HEAD(tmp); 3369 enum hctx_type type; 3370 3371 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3372 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3373 return 0; 3374 3375 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3376 type = hctx->type; 3377 3378 spin_lock(&ctx->lock); 3379 if (!list_empty(&ctx->rq_lists[type])) { 3380 list_splice_init(&ctx->rq_lists[type], &tmp); 3381 blk_mq_hctx_clear_pending(hctx, ctx); 3382 } 3383 spin_unlock(&ctx->lock); 3384 3385 if (list_empty(&tmp)) 3386 return 0; 3387 3388 spin_lock(&hctx->lock); 3389 list_splice_tail_init(&tmp, &hctx->dispatch); 3390 spin_unlock(&hctx->lock); 3391 3392 blk_mq_run_hw_queue(hctx, true); 3393 return 0; 3394 } 3395 3396 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3397 { 3398 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3399 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3400 &hctx->cpuhp_online); 3401 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3402 &hctx->cpuhp_dead); 3403 } 3404 3405 /* 3406 * Before freeing hw queue, clearing the flush request reference in 3407 * tags->rqs[] for avoiding potential UAF. 3408 */ 3409 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3410 unsigned int queue_depth, struct request *flush_rq) 3411 { 3412 int i; 3413 unsigned long flags; 3414 3415 /* The hw queue may not be mapped yet */ 3416 if (!tags) 3417 return; 3418 3419 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3420 3421 for (i = 0; i < queue_depth; i++) 3422 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3423 3424 /* 3425 * Wait until all pending iteration is done. 3426 * 3427 * Request reference is cleared and it is guaranteed to be observed 3428 * after the ->lock is released. 3429 */ 3430 spin_lock_irqsave(&tags->lock, flags); 3431 spin_unlock_irqrestore(&tags->lock, flags); 3432 } 3433 3434 /* hctx->ctxs will be freed in queue's release handler */ 3435 static void blk_mq_exit_hctx(struct request_queue *q, 3436 struct blk_mq_tag_set *set, 3437 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3438 { 3439 struct request *flush_rq = hctx->fq->flush_rq; 3440 3441 if (blk_mq_hw_queue_mapped(hctx)) 3442 blk_mq_tag_idle(hctx); 3443 3444 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3445 set->queue_depth, flush_rq); 3446 if (set->ops->exit_request) 3447 set->ops->exit_request(set, flush_rq, hctx_idx); 3448 3449 if (set->ops->exit_hctx) 3450 set->ops->exit_hctx(hctx, hctx_idx); 3451 3452 blk_mq_remove_cpuhp(hctx); 3453 3454 xa_erase(&q->hctx_table, hctx_idx); 3455 3456 spin_lock(&q->unused_hctx_lock); 3457 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3458 spin_unlock(&q->unused_hctx_lock); 3459 } 3460 3461 static void blk_mq_exit_hw_queues(struct request_queue *q, 3462 struct blk_mq_tag_set *set, int nr_queue) 3463 { 3464 struct blk_mq_hw_ctx *hctx; 3465 unsigned long i; 3466 3467 queue_for_each_hw_ctx(q, hctx, i) { 3468 if (i == nr_queue) 3469 break; 3470 blk_mq_exit_hctx(q, set, hctx, i); 3471 } 3472 } 3473 3474 static int blk_mq_init_hctx(struct request_queue *q, 3475 struct blk_mq_tag_set *set, 3476 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3477 { 3478 hctx->queue_num = hctx_idx; 3479 3480 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3481 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3482 &hctx->cpuhp_online); 3483 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3484 3485 hctx->tags = set->tags[hctx_idx]; 3486 3487 if (set->ops->init_hctx && 3488 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3489 goto unregister_cpu_notifier; 3490 3491 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3492 hctx->numa_node)) 3493 goto exit_hctx; 3494 3495 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3496 goto exit_flush_rq; 3497 3498 return 0; 3499 3500 exit_flush_rq: 3501 if (set->ops->exit_request) 3502 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3503 exit_hctx: 3504 if (set->ops->exit_hctx) 3505 set->ops->exit_hctx(hctx, hctx_idx); 3506 unregister_cpu_notifier: 3507 blk_mq_remove_cpuhp(hctx); 3508 return -1; 3509 } 3510 3511 static struct blk_mq_hw_ctx * 3512 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3513 int node) 3514 { 3515 struct blk_mq_hw_ctx *hctx; 3516 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3517 3518 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3519 if (!hctx) 3520 goto fail_alloc_hctx; 3521 3522 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3523 goto free_hctx; 3524 3525 atomic_set(&hctx->nr_active, 0); 3526 if (node == NUMA_NO_NODE) 3527 node = set->numa_node; 3528 hctx->numa_node = node; 3529 3530 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3531 spin_lock_init(&hctx->lock); 3532 INIT_LIST_HEAD(&hctx->dispatch); 3533 hctx->queue = q; 3534 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3535 3536 INIT_LIST_HEAD(&hctx->hctx_list); 3537 3538 /* 3539 * Allocate space for all possible cpus to avoid allocation at 3540 * runtime 3541 */ 3542 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3543 gfp, node); 3544 if (!hctx->ctxs) 3545 goto free_cpumask; 3546 3547 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3548 gfp, node, false, false)) 3549 goto free_ctxs; 3550 hctx->nr_ctx = 0; 3551 3552 spin_lock_init(&hctx->dispatch_wait_lock); 3553 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3554 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3555 3556 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3557 if (!hctx->fq) 3558 goto free_bitmap; 3559 3560 blk_mq_hctx_kobj_init(hctx); 3561 3562 return hctx; 3563 3564 free_bitmap: 3565 sbitmap_free(&hctx->ctx_map); 3566 free_ctxs: 3567 kfree(hctx->ctxs); 3568 free_cpumask: 3569 free_cpumask_var(hctx->cpumask); 3570 free_hctx: 3571 kfree(hctx); 3572 fail_alloc_hctx: 3573 return NULL; 3574 } 3575 3576 static void blk_mq_init_cpu_queues(struct request_queue *q, 3577 unsigned int nr_hw_queues) 3578 { 3579 struct blk_mq_tag_set *set = q->tag_set; 3580 unsigned int i, j; 3581 3582 for_each_possible_cpu(i) { 3583 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3584 struct blk_mq_hw_ctx *hctx; 3585 int k; 3586 3587 __ctx->cpu = i; 3588 spin_lock_init(&__ctx->lock); 3589 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3590 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3591 3592 __ctx->queue = q; 3593 3594 /* 3595 * Set local node, IFF we have more than one hw queue. If 3596 * not, we remain on the home node of the device 3597 */ 3598 for (j = 0; j < set->nr_maps; j++) { 3599 hctx = blk_mq_map_queue_type(q, j, i); 3600 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3601 hctx->numa_node = cpu_to_node(i); 3602 } 3603 } 3604 } 3605 3606 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3607 unsigned int hctx_idx, 3608 unsigned int depth) 3609 { 3610 struct blk_mq_tags *tags; 3611 int ret; 3612 3613 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3614 if (!tags) 3615 return NULL; 3616 3617 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3618 if (ret) { 3619 blk_mq_free_rq_map(tags); 3620 return NULL; 3621 } 3622 3623 return tags; 3624 } 3625 3626 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3627 int hctx_idx) 3628 { 3629 if (blk_mq_is_shared_tags(set->flags)) { 3630 set->tags[hctx_idx] = set->shared_tags; 3631 3632 return true; 3633 } 3634 3635 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3636 set->queue_depth); 3637 3638 return set->tags[hctx_idx]; 3639 } 3640 3641 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3642 struct blk_mq_tags *tags, 3643 unsigned int hctx_idx) 3644 { 3645 if (tags) { 3646 blk_mq_free_rqs(set, tags, hctx_idx); 3647 blk_mq_free_rq_map(tags); 3648 } 3649 } 3650 3651 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3652 unsigned int hctx_idx) 3653 { 3654 if (!blk_mq_is_shared_tags(set->flags)) 3655 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3656 3657 set->tags[hctx_idx] = NULL; 3658 } 3659 3660 static void blk_mq_map_swqueue(struct request_queue *q) 3661 { 3662 unsigned int j, hctx_idx; 3663 unsigned long i; 3664 struct blk_mq_hw_ctx *hctx; 3665 struct blk_mq_ctx *ctx; 3666 struct blk_mq_tag_set *set = q->tag_set; 3667 3668 queue_for_each_hw_ctx(q, hctx, i) { 3669 cpumask_clear(hctx->cpumask); 3670 hctx->nr_ctx = 0; 3671 hctx->dispatch_from = NULL; 3672 } 3673 3674 /* 3675 * Map software to hardware queues. 3676 * 3677 * If the cpu isn't present, the cpu is mapped to first hctx. 3678 */ 3679 for_each_possible_cpu(i) { 3680 3681 ctx = per_cpu_ptr(q->queue_ctx, i); 3682 for (j = 0; j < set->nr_maps; j++) { 3683 if (!set->map[j].nr_queues) { 3684 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3685 HCTX_TYPE_DEFAULT, i); 3686 continue; 3687 } 3688 hctx_idx = set->map[j].mq_map[i]; 3689 /* unmapped hw queue can be remapped after CPU topo changed */ 3690 if (!set->tags[hctx_idx] && 3691 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3692 /* 3693 * If tags initialization fail for some hctx, 3694 * that hctx won't be brought online. In this 3695 * case, remap the current ctx to hctx[0] which 3696 * is guaranteed to always have tags allocated 3697 */ 3698 set->map[j].mq_map[i] = 0; 3699 } 3700 3701 hctx = blk_mq_map_queue_type(q, j, i); 3702 ctx->hctxs[j] = hctx; 3703 /* 3704 * If the CPU is already set in the mask, then we've 3705 * mapped this one already. This can happen if 3706 * devices share queues across queue maps. 3707 */ 3708 if (cpumask_test_cpu(i, hctx->cpumask)) 3709 continue; 3710 3711 cpumask_set_cpu(i, hctx->cpumask); 3712 hctx->type = j; 3713 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3714 hctx->ctxs[hctx->nr_ctx++] = ctx; 3715 3716 /* 3717 * If the nr_ctx type overflows, we have exceeded the 3718 * amount of sw queues we can support. 3719 */ 3720 BUG_ON(!hctx->nr_ctx); 3721 } 3722 3723 for (; j < HCTX_MAX_TYPES; j++) 3724 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3725 HCTX_TYPE_DEFAULT, i); 3726 } 3727 3728 queue_for_each_hw_ctx(q, hctx, i) { 3729 /* 3730 * If no software queues are mapped to this hardware queue, 3731 * disable it and free the request entries. 3732 */ 3733 if (!hctx->nr_ctx) { 3734 /* Never unmap queue 0. We need it as a 3735 * fallback in case of a new remap fails 3736 * allocation 3737 */ 3738 if (i) 3739 __blk_mq_free_map_and_rqs(set, i); 3740 3741 hctx->tags = NULL; 3742 continue; 3743 } 3744 3745 hctx->tags = set->tags[i]; 3746 WARN_ON(!hctx->tags); 3747 3748 /* 3749 * Set the map size to the number of mapped software queues. 3750 * This is more accurate and more efficient than looping 3751 * over all possibly mapped software queues. 3752 */ 3753 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3754 3755 /* 3756 * Initialize batch roundrobin counts 3757 */ 3758 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3759 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3760 } 3761 } 3762 3763 /* 3764 * Caller needs to ensure that we're either frozen/quiesced, or that 3765 * the queue isn't live yet. 3766 */ 3767 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3768 { 3769 struct blk_mq_hw_ctx *hctx; 3770 unsigned long i; 3771 3772 queue_for_each_hw_ctx(q, hctx, i) { 3773 if (shared) { 3774 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3775 } else { 3776 blk_mq_tag_idle(hctx); 3777 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3778 } 3779 } 3780 } 3781 3782 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3783 bool shared) 3784 { 3785 struct request_queue *q; 3786 3787 lockdep_assert_held(&set->tag_list_lock); 3788 3789 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3790 blk_mq_freeze_queue(q); 3791 queue_set_hctx_shared(q, shared); 3792 blk_mq_unfreeze_queue(q); 3793 } 3794 } 3795 3796 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3797 { 3798 struct blk_mq_tag_set *set = q->tag_set; 3799 3800 mutex_lock(&set->tag_list_lock); 3801 list_del(&q->tag_set_list); 3802 if (list_is_singular(&set->tag_list)) { 3803 /* just transitioned to unshared */ 3804 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3805 /* update existing queue */ 3806 blk_mq_update_tag_set_shared(set, false); 3807 } 3808 mutex_unlock(&set->tag_list_lock); 3809 INIT_LIST_HEAD(&q->tag_set_list); 3810 } 3811 3812 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3813 struct request_queue *q) 3814 { 3815 mutex_lock(&set->tag_list_lock); 3816 3817 /* 3818 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3819 */ 3820 if (!list_empty(&set->tag_list) && 3821 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3822 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3823 /* update existing queue */ 3824 blk_mq_update_tag_set_shared(set, true); 3825 } 3826 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3827 queue_set_hctx_shared(q, true); 3828 list_add_tail(&q->tag_set_list, &set->tag_list); 3829 3830 mutex_unlock(&set->tag_list_lock); 3831 } 3832 3833 /* All allocations will be freed in release handler of q->mq_kobj */ 3834 static int blk_mq_alloc_ctxs(struct request_queue *q) 3835 { 3836 struct blk_mq_ctxs *ctxs; 3837 int cpu; 3838 3839 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3840 if (!ctxs) 3841 return -ENOMEM; 3842 3843 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3844 if (!ctxs->queue_ctx) 3845 goto fail; 3846 3847 for_each_possible_cpu(cpu) { 3848 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3849 ctx->ctxs = ctxs; 3850 } 3851 3852 q->mq_kobj = &ctxs->kobj; 3853 q->queue_ctx = ctxs->queue_ctx; 3854 3855 return 0; 3856 fail: 3857 kfree(ctxs); 3858 return -ENOMEM; 3859 } 3860 3861 /* 3862 * It is the actual release handler for mq, but we do it from 3863 * request queue's release handler for avoiding use-after-free 3864 * and headache because q->mq_kobj shouldn't have been introduced, 3865 * but we can't group ctx/kctx kobj without it. 3866 */ 3867 void blk_mq_release(struct request_queue *q) 3868 { 3869 struct blk_mq_hw_ctx *hctx, *next; 3870 unsigned long i; 3871 3872 queue_for_each_hw_ctx(q, hctx, i) 3873 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3874 3875 /* all hctx are in .unused_hctx_list now */ 3876 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3877 list_del_init(&hctx->hctx_list); 3878 kobject_put(&hctx->kobj); 3879 } 3880 3881 xa_destroy(&q->hctx_table); 3882 3883 /* 3884 * release .mq_kobj and sw queue's kobject now because 3885 * both share lifetime with request queue. 3886 */ 3887 blk_mq_sysfs_deinit(q); 3888 } 3889 3890 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3891 void *queuedata) 3892 { 3893 struct request_queue *q; 3894 int ret; 3895 3896 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); 3897 if (!q) 3898 return ERR_PTR(-ENOMEM); 3899 q->queuedata = queuedata; 3900 ret = blk_mq_init_allocated_queue(set, q); 3901 if (ret) { 3902 blk_cleanup_queue(q); 3903 return ERR_PTR(ret); 3904 } 3905 return q; 3906 } 3907 3908 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3909 { 3910 return blk_mq_init_queue_data(set, NULL); 3911 } 3912 EXPORT_SYMBOL(blk_mq_init_queue); 3913 3914 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3915 struct lock_class_key *lkclass) 3916 { 3917 struct request_queue *q; 3918 struct gendisk *disk; 3919 3920 q = blk_mq_init_queue_data(set, queuedata); 3921 if (IS_ERR(q)) 3922 return ERR_CAST(q); 3923 3924 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3925 if (!disk) { 3926 blk_cleanup_queue(q); 3927 return ERR_PTR(-ENOMEM); 3928 } 3929 return disk; 3930 } 3931 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3932 3933 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3934 struct blk_mq_tag_set *set, struct request_queue *q, 3935 int hctx_idx, int node) 3936 { 3937 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3938 3939 /* reuse dead hctx first */ 3940 spin_lock(&q->unused_hctx_lock); 3941 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3942 if (tmp->numa_node == node) { 3943 hctx = tmp; 3944 break; 3945 } 3946 } 3947 if (hctx) 3948 list_del_init(&hctx->hctx_list); 3949 spin_unlock(&q->unused_hctx_lock); 3950 3951 if (!hctx) 3952 hctx = blk_mq_alloc_hctx(q, set, node); 3953 if (!hctx) 3954 goto fail; 3955 3956 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3957 goto free_hctx; 3958 3959 return hctx; 3960 3961 free_hctx: 3962 kobject_put(&hctx->kobj); 3963 fail: 3964 return NULL; 3965 } 3966 3967 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3968 struct request_queue *q) 3969 { 3970 struct blk_mq_hw_ctx *hctx; 3971 unsigned long i, j; 3972 3973 /* protect against switching io scheduler */ 3974 mutex_lock(&q->sysfs_lock); 3975 for (i = 0; i < set->nr_hw_queues; i++) { 3976 int old_node; 3977 int node = blk_mq_get_hctx_node(set, i); 3978 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 3979 3980 if (old_hctx) { 3981 old_node = old_hctx->numa_node; 3982 blk_mq_exit_hctx(q, set, old_hctx, i); 3983 } 3984 3985 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 3986 if (!old_hctx) 3987 break; 3988 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 3989 node, old_node); 3990 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 3991 WARN_ON_ONCE(!hctx); 3992 } 3993 } 3994 /* 3995 * Increasing nr_hw_queues fails. Free the newly allocated 3996 * hctxs and keep the previous q->nr_hw_queues. 3997 */ 3998 if (i != set->nr_hw_queues) { 3999 j = q->nr_hw_queues; 4000 } else { 4001 j = i; 4002 q->nr_hw_queues = set->nr_hw_queues; 4003 } 4004 4005 xa_for_each_start(&q->hctx_table, j, hctx, j) 4006 blk_mq_exit_hctx(q, set, hctx, j); 4007 mutex_unlock(&q->sysfs_lock); 4008 } 4009 4010 static void blk_mq_update_poll_flag(struct request_queue *q) 4011 { 4012 struct blk_mq_tag_set *set = q->tag_set; 4013 4014 if (set->nr_maps > HCTX_TYPE_POLL && 4015 set->map[HCTX_TYPE_POLL].nr_queues) 4016 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4017 else 4018 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4019 } 4020 4021 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4022 struct request_queue *q) 4023 { 4024 WARN_ON_ONCE(blk_queue_has_srcu(q) != 4025 !!(set->flags & BLK_MQ_F_BLOCKING)); 4026 4027 /* mark the queue as mq asap */ 4028 q->mq_ops = set->ops; 4029 4030 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4031 blk_mq_poll_stats_bkt, 4032 BLK_MQ_POLL_STATS_BKTS, q); 4033 if (!q->poll_cb) 4034 goto err_exit; 4035 4036 if (blk_mq_alloc_ctxs(q)) 4037 goto err_poll; 4038 4039 /* init q->mq_kobj and sw queues' kobjects */ 4040 blk_mq_sysfs_init(q); 4041 4042 INIT_LIST_HEAD(&q->unused_hctx_list); 4043 spin_lock_init(&q->unused_hctx_lock); 4044 4045 xa_init(&q->hctx_table); 4046 4047 blk_mq_realloc_hw_ctxs(set, q); 4048 if (!q->nr_hw_queues) 4049 goto err_hctxs; 4050 4051 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4052 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4053 4054 q->tag_set = set; 4055 4056 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4057 blk_mq_update_poll_flag(q); 4058 4059 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4060 INIT_LIST_HEAD(&q->requeue_list); 4061 spin_lock_init(&q->requeue_lock); 4062 4063 q->nr_requests = set->queue_depth; 4064 4065 /* 4066 * Default to classic polling 4067 */ 4068 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4069 4070 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4071 blk_mq_add_queue_tag_set(set, q); 4072 blk_mq_map_swqueue(q); 4073 return 0; 4074 4075 err_hctxs: 4076 xa_destroy(&q->hctx_table); 4077 q->nr_hw_queues = 0; 4078 blk_mq_sysfs_deinit(q); 4079 err_poll: 4080 blk_stat_free_callback(q->poll_cb); 4081 q->poll_cb = NULL; 4082 err_exit: 4083 q->mq_ops = NULL; 4084 return -ENOMEM; 4085 } 4086 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4087 4088 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4089 void blk_mq_exit_queue(struct request_queue *q) 4090 { 4091 struct blk_mq_tag_set *set = q->tag_set; 4092 4093 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4094 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4095 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4096 blk_mq_del_queue_tag_set(q); 4097 } 4098 4099 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4100 { 4101 int i; 4102 4103 if (blk_mq_is_shared_tags(set->flags)) { 4104 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4105 BLK_MQ_NO_HCTX_IDX, 4106 set->queue_depth); 4107 if (!set->shared_tags) 4108 return -ENOMEM; 4109 } 4110 4111 for (i = 0; i < set->nr_hw_queues; i++) { 4112 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4113 goto out_unwind; 4114 cond_resched(); 4115 } 4116 4117 return 0; 4118 4119 out_unwind: 4120 while (--i >= 0) 4121 __blk_mq_free_map_and_rqs(set, i); 4122 4123 if (blk_mq_is_shared_tags(set->flags)) { 4124 blk_mq_free_map_and_rqs(set, set->shared_tags, 4125 BLK_MQ_NO_HCTX_IDX); 4126 } 4127 4128 return -ENOMEM; 4129 } 4130 4131 /* 4132 * Allocate the request maps associated with this tag_set. Note that this 4133 * may reduce the depth asked for, if memory is tight. set->queue_depth 4134 * will be updated to reflect the allocated depth. 4135 */ 4136 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4137 { 4138 unsigned int depth; 4139 int err; 4140 4141 depth = set->queue_depth; 4142 do { 4143 err = __blk_mq_alloc_rq_maps(set); 4144 if (!err) 4145 break; 4146 4147 set->queue_depth >>= 1; 4148 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4149 err = -ENOMEM; 4150 break; 4151 } 4152 } while (set->queue_depth); 4153 4154 if (!set->queue_depth || err) { 4155 pr_err("blk-mq: failed to allocate request map\n"); 4156 return -ENOMEM; 4157 } 4158 4159 if (depth != set->queue_depth) 4160 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4161 depth, set->queue_depth); 4162 4163 return 0; 4164 } 4165 4166 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4167 { 4168 /* 4169 * blk_mq_map_queues() and multiple .map_queues() implementations 4170 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4171 * number of hardware queues. 4172 */ 4173 if (set->nr_maps == 1) 4174 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4175 4176 if (set->ops->map_queues && !is_kdump_kernel()) { 4177 int i; 4178 4179 /* 4180 * transport .map_queues is usually done in the following 4181 * way: 4182 * 4183 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4184 * mask = get_cpu_mask(queue) 4185 * for_each_cpu(cpu, mask) 4186 * set->map[x].mq_map[cpu] = queue; 4187 * } 4188 * 4189 * When we need to remap, the table has to be cleared for 4190 * killing stale mapping since one CPU may not be mapped 4191 * to any hw queue. 4192 */ 4193 for (i = 0; i < set->nr_maps; i++) 4194 blk_mq_clear_mq_map(&set->map[i]); 4195 4196 return set->ops->map_queues(set); 4197 } else { 4198 BUG_ON(set->nr_maps > 1); 4199 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4200 } 4201 } 4202 4203 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4204 int cur_nr_hw_queues, int new_nr_hw_queues) 4205 { 4206 struct blk_mq_tags **new_tags; 4207 4208 if (cur_nr_hw_queues >= new_nr_hw_queues) 4209 return 0; 4210 4211 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4212 GFP_KERNEL, set->numa_node); 4213 if (!new_tags) 4214 return -ENOMEM; 4215 4216 if (set->tags) 4217 memcpy(new_tags, set->tags, cur_nr_hw_queues * 4218 sizeof(*set->tags)); 4219 kfree(set->tags); 4220 set->tags = new_tags; 4221 set->nr_hw_queues = new_nr_hw_queues; 4222 4223 return 0; 4224 } 4225 4226 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 4227 int new_nr_hw_queues) 4228 { 4229 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 4230 } 4231 4232 /* 4233 * Alloc a tag set to be associated with one or more request queues. 4234 * May fail with EINVAL for various error conditions. May adjust the 4235 * requested depth down, if it's too large. In that case, the set 4236 * value will be stored in set->queue_depth. 4237 */ 4238 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4239 { 4240 int i, ret; 4241 4242 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4243 4244 if (!set->nr_hw_queues) 4245 return -EINVAL; 4246 if (!set->queue_depth) 4247 return -EINVAL; 4248 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4249 return -EINVAL; 4250 4251 if (!set->ops->queue_rq) 4252 return -EINVAL; 4253 4254 if (!set->ops->get_budget ^ !set->ops->put_budget) 4255 return -EINVAL; 4256 4257 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4258 pr_info("blk-mq: reduced tag depth to %u\n", 4259 BLK_MQ_MAX_DEPTH); 4260 set->queue_depth = BLK_MQ_MAX_DEPTH; 4261 } 4262 4263 if (!set->nr_maps) 4264 set->nr_maps = 1; 4265 else if (set->nr_maps > HCTX_MAX_TYPES) 4266 return -EINVAL; 4267 4268 /* 4269 * If a crashdump is active, then we are potentially in a very 4270 * memory constrained environment. Limit us to 1 queue and 4271 * 64 tags to prevent using too much memory. 4272 */ 4273 if (is_kdump_kernel()) { 4274 set->nr_hw_queues = 1; 4275 set->nr_maps = 1; 4276 set->queue_depth = min(64U, set->queue_depth); 4277 } 4278 /* 4279 * There is no use for more h/w queues than cpus if we just have 4280 * a single map 4281 */ 4282 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4283 set->nr_hw_queues = nr_cpu_ids; 4284 4285 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 4286 return -ENOMEM; 4287 4288 ret = -ENOMEM; 4289 for (i = 0; i < set->nr_maps; i++) { 4290 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4291 sizeof(set->map[i].mq_map[0]), 4292 GFP_KERNEL, set->numa_node); 4293 if (!set->map[i].mq_map) 4294 goto out_free_mq_map; 4295 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4296 } 4297 4298 ret = blk_mq_update_queue_map(set); 4299 if (ret) 4300 goto out_free_mq_map; 4301 4302 ret = blk_mq_alloc_set_map_and_rqs(set); 4303 if (ret) 4304 goto out_free_mq_map; 4305 4306 mutex_init(&set->tag_list_lock); 4307 INIT_LIST_HEAD(&set->tag_list); 4308 4309 return 0; 4310 4311 out_free_mq_map: 4312 for (i = 0; i < set->nr_maps; i++) { 4313 kfree(set->map[i].mq_map); 4314 set->map[i].mq_map = NULL; 4315 } 4316 kfree(set->tags); 4317 set->tags = NULL; 4318 return ret; 4319 } 4320 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4321 4322 /* allocate and initialize a tagset for a simple single-queue device */ 4323 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4324 const struct blk_mq_ops *ops, unsigned int queue_depth, 4325 unsigned int set_flags) 4326 { 4327 memset(set, 0, sizeof(*set)); 4328 set->ops = ops; 4329 set->nr_hw_queues = 1; 4330 set->nr_maps = 1; 4331 set->queue_depth = queue_depth; 4332 set->numa_node = NUMA_NO_NODE; 4333 set->flags = set_flags; 4334 return blk_mq_alloc_tag_set(set); 4335 } 4336 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4337 4338 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4339 { 4340 int i, j; 4341 4342 for (i = 0; i < set->nr_hw_queues; i++) 4343 __blk_mq_free_map_and_rqs(set, i); 4344 4345 if (blk_mq_is_shared_tags(set->flags)) { 4346 blk_mq_free_map_and_rqs(set, set->shared_tags, 4347 BLK_MQ_NO_HCTX_IDX); 4348 } 4349 4350 for (j = 0; j < set->nr_maps; j++) { 4351 kfree(set->map[j].mq_map); 4352 set->map[j].mq_map = NULL; 4353 } 4354 4355 kfree(set->tags); 4356 set->tags = NULL; 4357 } 4358 EXPORT_SYMBOL(blk_mq_free_tag_set); 4359 4360 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4361 { 4362 struct blk_mq_tag_set *set = q->tag_set; 4363 struct blk_mq_hw_ctx *hctx; 4364 int ret; 4365 unsigned long i; 4366 4367 if (!set) 4368 return -EINVAL; 4369 4370 if (q->nr_requests == nr) 4371 return 0; 4372 4373 blk_mq_freeze_queue(q); 4374 blk_mq_quiesce_queue(q); 4375 4376 ret = 0; 4377 queue_for_each_hw_ctx(q, hctx, i) { 4378 if (!hctx->tags) 4379 continue; 4380 /* 4381 * If we're using an MQ scheduler, just update the scheduler 4382 * queue depth. This is similar to what the old code would do. 4383 */ 4384 if (hctx->sched_tags) { 4385 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4386 nr, true); 4387 } else { 4388 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4389 false); 4390 } 4391 if (ret) 4392 break; 4393 if (q->elevator && q->elevator->type->ops.depth_updated) 4394 q->elevator->type->ops.depth_updated(hctx); 4395 } 4396 if (!ret) { 4397 q->nr_requests = nr; 4398 if (blk_mq_is_shared_tags(set->flags)) { 4399 if (q->elevator) 4400 blk_mq_tag_update_sched_shared_tags(q); 4401 else 4402 blk_mq_tag_resize_shared_tags(set, nr); 4403 } 4404 } 4405 4406 blk_mq_unquiesce_queue(q); 4407 blk_mq_unfreeze_queue(q); 4408 4409 return ret; 4410 } 4411 4412 /* 4413 * request_queue and elevator_type pair. 4414 * It is just used by __blk_mq_update_nr_hw_queues to cache 4415 * the elevator_type associated with a request_queue. 4416 */ 4417 struct blk_mq_qe_pair { 4418 struct list_head node; 4419 struct request_queue *q; 4420 struct elevator_type *type; 4421 }; 4422 4423 /* 4424 * Cache the elevator_type in qe pair list and switch the 4425 * io scheduler to 'none' 4426 */ 4427 static bool blk_mq_elv_switch_none(struct list_head *head, 4428 struct request_queue *q) 4429 { 4430 struct blk_mq_qe_pair *qe; 4431 4432 if (!q->elevator) 4433 return true; 4434 4435 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4436 if (!qe) 4437 return false; 4438 4439 INIT_LIST_HEAD(&qe->node); 4440 qe->q = q; 4441 qe->type = q->elevator->type; 4442 list_add(&qe->node, head); 4443 4444 mutex_lock(&q->sysfs_lock); 4445 /* 4446 * After elevator_switch_mq, the previous elevator_queue will be 4447 * released by elevator_release. The reference of the io scheduler 4448 * module get by elevator_get will also be put. So we need to get 4449 * a reference of the io scheduler module here to prevent it to be 4450 * removed. 4451 */ 4452 __module_get(qe->type->elevator_owner); 4453 elevator_switch_mq(q, NULL); 4454 mutex_unlock(&q->sysfs_lock); 4455 4456 return true; 4457 } 4458 4459 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4460 struct request_queue *q) 4461 { 4462 struct blk_mq_qe_pair *qe; 4463 4464 list_for_each_entry(qe, head, node) 4465 if (qe->q == q) 4466 return qe; 4467 4468 return NULL; 4469 } 4470 4471 static void blk_mq_elv_switch_back(struct list_head *head, 4472 struct request_queue *q) 4473 { 4474 struct blk_mq_qe_pair *qe; 4475 struct elevator_type *t; 4476 4477 qe = blk_lookup_qe_pair(head, q); 4478 if (!qe) 4479 return; 4480 t = qe->type; 4481 list_del(&qe->node); 4482 kfree(qe); 4483 4484 mutex_lock(&q->sysfs_lock); 4485 elevator_switch_mq(q, t); 4486 mutex_unlock(&q->sysfs_lock); 4487 } 4488 4489 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4490 int nr_hw_queues) 4491 { 4492 struct request_queue *q; 4493 LIST_HEAD(head); 4494 int prev_nr_hw_queues; 4495 4496 lockdep_assert_held(&set->tag_list_lock); 4497 4498 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4499 nr_hw_queues = nr_cpu_ids; 4500 if (nr_hw_queues < 1) 4501 return; 4502 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4503 return; 4504 4505 list_for_each_entry(q, &set->tag_list, tag_set_list) 4506 blk_mq_freeze_queue(q); 4507 /* 4508 * Switch IO scheduler to 'none', cleaning up the data associated 4509 * with the previous scheduler. We will switch back once we are done 4510 * updating the new sw to hw queue mappings. 4511 */ 4512 list_for_each_entry(q, &set->tag_list, tag_set_list) 4513 if (!blk_mq_elv_switch_none(&head, q)) 4514 goto switch_back; 4515 4516 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4517 blk_mq_debugfs_unregister_hctxs(q); 4518 blk_mq_sysfs_unregister(q); 4519 } 4520 4521 prev_nr_hw_queues = set->nr_hw_queues; 4522 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4523 0) 4524 goto reregister; 4525 4526 set->nr_hw_queues = nr_hw_queues; 4527 fallback: 4528 blk_mq_update_queue_map(set); 4529 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4530 blk_mq_realloc_hw_ctxs(set, q); 4531 blk_mq_update_poll_flag(q); 4532 if (q->nr_hw_queues != set->nr_hw_queues) { 4533 int i = prev_nr_hw_queues; 4534 4535 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4536 nr_hw_queues, prev_nr_hw_queues); 4537 for (; i < set->nr_hw_queues; i++) 4538 __blk_mq_free_map_and_rqs(set, i); 4539 4540 set->nr_hw_queues = prev_nr_hw_queues; 4541 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4542 goto fallback; 4543 } 4544 blk_mq_map_swqueue(q); 4545 } 4546 4547 reregister: 4548 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4549 blk_mq_sysfs_register(q); 4550 blk_mq_debugfs_register_hctxs(q); 4551 } 4552 4553 switch_back: 4554 list_for_each_entry(q, &set->tag_list, tag_set_list) 4555 blk_mq_elv_switch_back(&head, q); 4556 4557 list_for_each_entry(q, &set->tag_list, tag_set_list) 4558 blk_mq_unfreeze_queue(q); 4559 } 4560 4561 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4562 { 4563 mutex_lock(&set->tag_list_lock); 4564 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4565 mutex_unlock(&set->tag_list_lock); 4566 } 4567 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4568 4569 /* Enable polling stats and return whether they were already enabled. */ 4570 static bool blk_poll_stats_enable(struct request_queue *q) 4571 { 4572 if (q->poll_stat) 4573 return true; 4574 4575 return blk_stats_alloc_enable(q); 4576 } 4577 4578 static void blk_mq_poll_stats_start(struct request_queue *q) 4579 { 4580 /* 4581 * We don't arm the callback if polling stats are not enabled or the 4582 * callback is already active. 4583 */ 4584 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4585 return; 4586 4587 blk_stat_activate_msecs(q->poll_cb, 100); 4588 } 4589 4590 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4591 { 4592 struct request_queue *q = cb->data; 4593 int bucket; 4594 4595 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4596 if (cb->stat[bucket].nr_samples) 4597 q->poll_stat[bucket] = cb->stat[bucket]; 4598 } 4599 } 4600 4601 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4602 struct request *rq) 4603 { 4604 unsigned long ret = 0; 4605 int bucket; 4606 4607 /* 4608 * If stats collection isn't on, don't sleep but turn it on for 4609 * future users 4610 */ 4611 if (!blk_poll_stats_enable(q)) 4612 return 0; 4613 4614 /* 4615 * As an optimistic guess, use half of the mean service time 4616 * for this type of request. We can (and should) make this smarter. 4617 * For instance, if the completion latencies are tight, we can 4618 * get closer than just half the mean. This is especially 4619 * important on devices where the completion latencies are longer 4620 * than ~10 usec. We do use the stats for the relevant IO size 4621 * if available which does lead to better estimates. 4622 */ 4623 bucket = blk_mq_poll_stats_bkt(rq); 4624 if (bucket < 0) 4625 return ret; 4626 4627 if (q->poll_stat[bucket].nr_samples) 4628 ret = (q->poll_stat[bucket].mean + 1) / 2; 4629 4630 return ret; 4631 } 4632 4633 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4634 { 4635 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4636 struct request *rq = blk_qc_to_rq(hctx, qc); 4637 struct hrtimer_sleeper hs; 4638 enum hrtimer_mode mode; 4639 unsigned int nsecs; 4640 ktime_t kt; 4641 4642 /* 4643 * If a request has completed on queue that uses an I/O scheduler, we 4644 * won't get back a request from blk_qc_to_rq. 4645 */ 4646 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4647 return false; 4648 4649 /* 4650 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4651 * 4652 * 0: use half of prev avg 4653 * >0: use this specific value 4654 */ 4655 if (q->poll_nsec > 0) 4656 nsecs = q->poll_nsec; 4657 else 4658 nsecs = blk_mq_poll_nsecs(q, rq); 4659 4660 if (!nsecs) 4661 return false; 4662 4663 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4664 4665 /* 4666 * This will be replaced with the stats tracking code, using 4667 * 'avg_completion_time / 2' as the pre-sleep target. 4668 */ 4669 kt = nsecs; 4670 4671 mode = HRTIMER_MODE_REL; 4672 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4673 hrtimer_set_expires(&hs.timer, kt); 4674 4675 do { 4676 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4677 break; 4678 set_current_state(TASK_UNINTERRUPTIBLE); 4679 hrtimer_sleeper_start_expires(&hs, mode); 4680 if (hs.task) 4681 io_schedule(); 4682 hrtimer_cancel(&hs.timer); 4683 mode = HRTIMER_MODE_ABS; 4684 } while (hs.task && !signal_pending(current)); 4685 4686 __set_current_state(TASK_RUNNING); 4687 destroy_hrtimer_on_stack(&hs.timer); 4688 4689 /* 4690 * If we sleep, have the caller restart the poll loop to reset the 4691 * state. Like for the other success return cases, the caller is 4692 * responsible for checking if the IO completed. If the IO isn't 4693 * complete, we'll get called again and will go straight to the busy 4694 * poll loop. 4695 */ 4696 return true; 4697 } 4698 4699 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4700 struct io_comp_batch *iob, unsigned int flags) 4701 { 4702 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4703 long state = get_current_state(); 4704 int ret; 4705 4706 do { 4707 ret = q->mq_ops->poll(hctx, iob); 4708 if (ret > 0) { 4709 __set_current_state(TASK_RUNNING); 4710 return ret; 4711 } 4712 4713 if (signal_pending_state(state, current)) 4714 __set_current_state(TASK_RUNNING); 4715 if (task_is_running(current)) 4716 return 1; 4717 4718 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4719 break; 4720 cpu_relax(); 4721 } while (!need_resched()); 4722 4723 __set_current_state(TASK_RUNNING); 4724 return 0; 4725 } 4726 4727 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4728 unsigned int flags) 4729 { 4730 if (!(flags & BLK_POLL_NOSLEEP) && 4731 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4732 if (blk_mq_poll_hybrid(q, cookie)) 4733 return 1; 4734 } 4735 return blk_mq_poll_classic(q, cookie, iob, flags); 4736 } 4737 4738 unsigned int blk_mq_rq_cpu(struct request *rq) 4739 { 4740 return rq->mq_ctx->cpu; 4741 } 4742 EXPORT_SYMBOL(blk_mq_rq_cpu); 4743 4744 void blk_mq_cancel_work_sync(struct request_queue *q) 4745 { 4746 if (queue_is_mq(q)) { 4747 struct blk_mq_hw_ctx *hctx; 4748 unsigned long i; 4749 4750 cancel_delayed_work_sync(&q->requeue_work); 4751 4752 queue_for_each_hw_ctx(q, hctx, i) 4753 cancel_delayed_work_sync(&hctx->run_work); 4754 } 4755 } 4756 4757 static int __init blk_mq_init(void) 4758 { 4759 int i; 4760 4761 for_each_possible_cpu(i) 4762 init_llist_head(&per_cpu(blk_cpu_done, i)); 4763 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4764 4765 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4766 "block/softirq:dead", NULL, 4767 blk_softirq_cpu_dead); 4768 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4769 blk_mq_hctx_notify_dead); 4770 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4771 blk_mq_hctx_notify_online, 4772 blk_mq_hctx_notify_offline); 4773 return 0; 4774 } 4775 subsys_initcall(blk_mq_init); 4776