1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @set: tag_set to wait on 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started on or more of the request_queues of the tag_set. This 261 * function only waits for the quiesce on those request_queues that had 262 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 263 */ 264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 265 { 266 if (set->flags & BLK_MQ_F_BLOCKING) 267 synchronize_srcu(set->srcu); 268 else 269 synchronize_rcu(); 270 } 271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 272 273 /** 274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 275 * @q: request queue. 276 * 277 * Note: this function does not prevent that the struct request end_io() 278 * callback function is invoked. Once this function is returned, we make 279 * sure no dispatch can happen until the queue is unquiesced via 280 * blk_mq_unquiesce_queue(). 281 */ 282 void blk_mq_quiesce_queue(struct request_queue *q) 283 { 284 blk_mq_quiesce_queue_nowait(q); 285 /* nothing to wait for non-mq queues */ 286 if (queue_is_mq(q)) 287 blk_mq_wait_quiesce_done(q->tag_set); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 290 291 /* 292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 293 * @q: request queue. 294 * 295 * This function recovers queue into the state before quiescing 296 * which is done by blk_mq_quiesce_queue. 297 */ 298 void blk_mq_unquiesce_queue(struct request_queue *q) 299 { 300 unsigned long flags; 301 bool run_queue = false; 302 303 spin_lock_irqsave(&q->queue_lock, flags); 304 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 305 ; 306 } else if (!--q->quiesce_depth) { 307 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 308 run_queue = true; 309 } 310 spin_unlock_irqrestore(&q->queue_lock, flags); 311 312 /* dispatch requests which are inserted during quiescing */ 313 if (run_queue) 314 blk_mq_run_hw_queues(q, true); 315 } 316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 317 318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 319 { 320 struct request_queue *q; 321 322 mutex_lock(&set->tag_list_lock); 323 list_for_each_entry(q, &set->tag_list, tag_set_list) { 324 if (!blk_queue_skip_tagset_quiesce(q)) 325 blk_mq_quiesce_queue_nowait(q); 326 } 327 blk_mq_wait_quiesce_done(set); 328 mutex_unlock(&set->tag_list_lock); 329 } 330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 331 332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 333 { 334 struct request_queue *q; 335 336 mutex_lock(&set->tag_list_lock); 337 list_for_each_entry(q, &set->tag_list, tag_set_list) { 338 if (!blk_queue_skip_tagset_quiesce(q)) 339 blk_mq_unquiesce_queue(q); 340 } 341 mutex_unlock(&set->tag_list_lock); 342 } 343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 344 345 void blk_mq_wake_waiters(struct request_queue *q) 346 { 347 struct blk_mq_hw_ctx *hctx; 348 unsigned long i; 349 350 queue_for_each_hw_ctx(q, hctx, i) 351 if (blk_mq_hw_queue_mapped(hctx)) 352 blk_mq_tag_wakeup_all(hctx->tags, true); 353 } 354 355 void blk_rq_init(struct request_queue *q, struct request *rq) 356 { 357 memset(rq, 0, sizeof(*rq)); 358 359 INIT_LIST_HEAD(&rq->queuelist); 360 rq->q = q; 361 rq->__sector = (sector_t) -1; 362 INIT_HLIST_NODE(&rq->hash); 363 RB_CLEAR_NODE(&rq->rb_node); 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = BLK_MQ_NO_TAG; 366 rq->start_time_ns = ktime_get_ns(); 367 rq->part = NULL; 368 blk_crypto_rq_set_defaults(rq); 369 } 370 EXPORT_SYMBOL(blk_rq_init); 371 372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 373 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 374 { 375 struct blk_mq_ctx *ctx = data->ctx; 376 struct blk_mq_hw_ctx *hctx = data->hctx; 377 struct request_queue *q = data->q; 378 struct request *rq = tags->static_rqs[tag]; 379 380 rq->q = q; 381 rq->mq_ctx = ctx; 382 rq->mq_hctx = hctx; 383 rq->cmd_flags = data->cmd_flags; 384 385 if (data->flags & BLK_MQ_REQ_PM) 386 data->rq_flags |= RQF_PM; 387 if (blk_queue_io_stat(q)) 388 data->rq_flags |= RQF_IO_STAT; 389 rq->rq_flags = data->rq_flags; 390 391 if (!(data->rq_flags & RQF_ELV)) { 392 rq->tag = tag; 393 rq->internal_tag = BLK_MQ_NO_TAG; 394 } else { 395 rq->tag = BLK_MQ_NO_TAG; 396 rq->internal_tag = tag; 397 } 398 rq->timeout = 0; 399 400 if (blk_mq_need_time_stamp(rq)) 401 rq->start_time_ns = ktime_get_ns(); 402 else 403 rq->start_time_ns = 0; 404 rq->part = NULL; 405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 406 rq->alloc_time_ns = alloc_time_ns; 407 #endif 408 rq->io_start_time_ns = 0; 409 rq->stats_sectors = 0; 410 rq->nr_phys_segments = 0; 411 #if defined(CONFIG_BLK_DEV_INTEGRITY) 412 rq->nr_integrity_segments = 0; 413 #endif 414 rq->end_io = NULL; 415 rq->end_io_data = NULL; 416 417 blk_crypto_rq_set_defaults(rq); 418 INIT_LIST_HEAD(&rq->queuelist); 419 /* tag was already set */ 420 WRITE_ONCE(rq->deadline, 0); 421 req_ref_set(rq, 1); 422 423 if (rq->rq_flags & RQF_ELV) { 424 struct elevator_queue *e = data->q->elevator; 425 426 INIT_HLIST_NODE(&rq->hash); 427 RB_CLEAR_NODE(&rq->rb_node); 428 429 if (!op_is_flush(data->cmd_flags) && 430 e->type->ops.prepare_request) { 431 e->type->ops.prepare_request(rq); 432 rq->rq_flags |= RQF_ELVPRIV; 433 } 434 } 435 436 return rq; 437 } 438 439 static inline struct request * 440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 441 u64 alloc_time_ns) 442 { 443 unsigned int tag, tag_offset; 444 struct blk_mq_tags *tags; 445 struct request *rq; 446 unsigned long tag_mask; 447 int i, nr = 0; 448 449 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 450 if (unlikely(!tag_mask)) 451 return NULL; 452 453 tags = blk_mq_tags_from_data(data); 454 for (i = 0; tag_mask; i++) { 455 if (!(tag_mask & (1UL << i))) 456 continue; 457 tag = tag_offset + i; 458 prefetch(tags->static_rqs[tag]); 459 tag_mask &= ~(1UL << i); 460 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 461 rq_list_add(data->cached_rq, rq); 462 nr++; 463 } 464 /* caller already holds a reference, add for remainder */ 465 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 466 data->nr_tags -= nr; 467 468 return rq_list_pop(data->cached_rq); 469 } 470 471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 472 { 473 struct request_queue *q = data->q; 474 u64 alloc_time_ns = 0; 475 struct request *rq; 476 unsigned int tag; 477 478 /* alloc_time includes depth and tag waits */ 479 if (blk_queue_rq_alloc_time(q)) 480 alloc_time_ns = ktime_get_ns(); 481 482 if (data->cmd_flags & REQ_NOWAIT) 483 data->flags |= BLK_MQ_REQ_NOWAIT; 484 485 if (q->elevator) { 486 struct elevator_queue *e = q->elevator; 487 488 data->rq_flags |= RQF_ELV; 489 490 /* 491 * Flush/passthrough requests are special and go directly to the 492 * dispatch list. Don't include reserved tags in the 493 * limiting, as it isn't useful. 494 */ 495 if (!op_is_flush(data->cmd_flags) && 496 !blk_op_is_passthrough(data->cmd_flags) && 497 e->type->ops.limit_depth && 498 !(data->flags & BLK_MQ_REQ_RESERVED)) 499 e->type->ops.limit_depth(data->cmd_flags, data); 500 } 501 502 retry: 503 data->ctx = blk_mq_get_ctx(q); 504 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 505 if (!(data->rq_flags & RQF_ELV)) 506 blk_mq_tag_busy(data->hctx); 507 508 if (data->flags & BLK_MQ_REQ_RESERVED) 509 data->rq_flags |= RQF_RESV; 510 511 /* 512 * Try batched alloc if we want more than 1 tag. 513 */ 514 if (data->nr_tags > 1) { 515 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 516 if (rq) 517 return rq; 518 data->nr_tags = 1; 519 } 520 521 /* 522 * Waiting allocations only fail because of an inactive hctx. In that 523 * case just retry the hctx assignment and tag allocation as CPU hotplug 524 * should have migrated us to an online CPU by now. 525 */ 526 tag = blk_mq_get_tag(data); 527 if (tag == BLK_MQ_NO_TAG) { 528 if (data->flags & BLK_MQ_REQ_NOWAIT) 529 return NULL; 530 /* 531 * Give up the CPU and sleep for a random short time to 532 * ensure that thread using a realtime scheduling class 533 * are migrated off the CPU, and thus off the hctx that 534 * is going away. 535 */ 536 msleep(3); 537 goto retry; 538 } 539 540 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 541 alloc_time_ns); 542 } 543 544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 545 struct blk_plug *plug, 546 blk_opf_t opf, 547 blk_mq_req_flags_t flags) 548 { 549 struct blk_mq_alloc_data data = { 550 .q = q, 551 .flags = flags, 552 .cmd_flags = opf, 553 .nr_tags = plug->nr_ios, 554 .cached_rq = &plug->cached_rq, 555 }; 556 struct request *rq; 557 558 if (blk_queue_enter(q, flags)) 559 return NULL; 560 561 plug->nr_ios = 1; 562 563 rq = __blk_mq_alloc_requests(&data); 564 if (unlikely(!rq)) 565 blk_queue_exit(q); 566 return rq; 567 } 568 569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 570 blk_opf_t opf, 571 blk_mq_req_flags_t flags) 572 { 573 struct blk_plug *plug = current->plug; 574 struct request *rq; 575 576 if (!plug) 577 return NULL; 578 579 if (rq_list_empty(plug->cached_rq)) { 580 if (plug->nr_ios == 1) 581 return NULL; 582 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 583 if (!rq) 584 return NULL; 585 } else { 586 rq = rq_list_peek(&plug->cached_rq); 587 if (!rq || rq->q != q) 588 return NULL; 589 590 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 591 return NULL; 592 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 593 return NULL; 594 595 plug->cached_rq = rq_list_next(rq); 596 } 597 598 rq->cmd_flags = opf; 599 INIT_LIST_HEAD(&rq->queuelist); 600 return rq; 601 } 602 603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 604 blk_mq_req_flags_t flags) 605 { 606 struct request *rq; 607 608 rq = blk_mq_alloc_cached_request(q, opf, flags); 609 if (!rq) { 610 struct blk_mq_alloc_data data = { 611 .q = q, 612 .flags = flags, 613 .cmd_flags = opf, 614 .nr_tags = 1, 615 }; 616 int ret; 617 618 ret = blk_queue_enter(q, flags); 619 if (ret) 620 return ERR_PTR(ret); 621 622 rq = __blk_mq_alloc_requests(&data); 623 if (!rq) 624 goto out_queue_exit; 625 } 626 rq->__data_len = 0; 627 rq->__sector = (sector_t) -1; 628 rq->bio = rq->biotail = NULL; 629 return rq; 630 out_queue_exit: 631 blk_queue_exit(q); 632 return ERR_PTR(-EWOULDBLOCK); 633 } 634 EXPORT_SYMBOL(blk_mq_alloc_request); 635 636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 637 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 638 { 639 struct blk_mq_alloc_data data = { 640 .q = q, 641 .flags = flags, 642 .cmd_flags = opf, 643 .nr_tags = 1, 644 }; 645 u64 alloc_time_ns = 0; 646 struct request *rq; 647 unsigned int cpu; 648 unsigned int tag; 649 int ret; 650 651 /* alloc_time includes depth and tag waits */ 652 if (blk_queue_rq_alloc_time(q)) 653 alloc_time_ns = ktime_get_ns(); 654 655 /* 656 * If the tag allocator sleeps we could get an allocation for a 657 * different hardware context. No need to complicate the low level 658 * allocator for this for the rare use case of a command tied to 659 * a specific queue. 660 */ 661 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 662 return ERR_PTR(-EINVAL); 663 664 if (hctx_idx >= q->nr_hw_queues) 665 return ERR_PTR(-EIO); 666 667 ret = blk_queue_enter(q, flags); 668 if (ret) 669 return ERR_PTR(ret); 670 671 /* 672 * Check if the hardware context is actually mapped to anything. 673 * If not tell the caller that it should skip this queue. 674 */ 675 ret = -EXDEV; 676 data.hctx = xa_load(&q->hctx_table, hctx_idx); 677 if (!blk_mq_hw_queue_mapped(data.hctx)) 678 goto out_queue_exit; 679 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 680 if (cpu >= nr_cpu_ids) 681 goto out_queue_exit; 682 data.ctx = __blk_mq_get_ctx(q, cpu); 683 684 if (!q->elevator) 685 blk_mq_tag_busy(data.hctx); 686 else 687 data.rq_flags |= RQF_ELV; 688 689 if (flags & BLK_MQ_REQ_RESERVED) 690 data.rq_flags |= RQF_RESV; 691 692 ret = -EWOULDBLOCK; 693 tag = blk_mq_get_tag(&data); 694 if (tag == BLK_MQ_NO_TAG) 695 goto out_queue_exit; 696 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 697 alloc_time_ns); 698 rq->__data_len = 0; 699 rq->__sector = (sector_t) -1; 700 rq->bio = rq->biotail = NULL; 701 return rq; 702 703 out_queue_exit: 704 blk_queue_exit(q); 705 return ERR_PTR(ret); 706 } 707 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 708 709 static void __blk_mq_free_request(struct request *rq) 710 { 711 struct request_queue *q = rq->q; 712 struct blk_mq_ctx *ctx = rq->mq_ctx; 713 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 714 const int sched_tag = rq->internal_tag; 715 716 blk_crypto_free_request(rq); 717 blk_pm_mark_last_busy(rq); 718 rq->mq_hctx = NULL; 719 if (rq->tag != BLK_MQ_NO_TAG) 720 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 721 if (sched_tag != BLK_MQ_NO_TAG) 722 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 723 blk_mq_sched_restart(hctx); 724 blk_queue_exit(q); 725 } 726 727 void blk_mq_free_request(struct request *rq) 728 { 729 struct request_queue *q = rq->q; 730 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 731 732 if ((rq->rq_flags & RQF_ELVPRIV) && 733 q->elevator->type->ops.finish_request) 734 q->elevator->type->ops.finish_request(rq); 735 736 if (rq->rq_flags & RQF_MQ_INFLIGHT) 737 __blk_mq_dec_active_requests(hctx); 738 739 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 740 laptop_io_completion(q->disk->bdi); 741 742 rq_qos_done(q, rq); 743 744 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 745 if (req_ref_put_and_test(rq)) 746 __blk_mq_free_request(rq); 747 } 748 EXPORT_SYMBOL_GPL(blk_mq_free_request); 749 750 void blk_mq_free_plug_rqs(struct blk_plug *plug) 751 { 752 struct request *rq; 753 754 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 755 blk_mq_free_request(rq); 756 } 757 758 void blk_dump_rq_flags(struct request *rq, char *msg) 759 { 760 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 761 rq->q->disk ? rq->q->disk->disk_name : "?", 762 (__force unsigned long long) rq->cmd_flags); 763 764 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 765 (unsigned long long)blk_rq_pos(rq), 766 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 767 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 768 rq->bio, rq->biotail, blk_rq_bytes(rq)); 769 } 770 EXPORT_SYMBOL(blk_dump_rq_flags); 771 772 static void req_bio_endio(struct request *rq, struct bio *bio, 773 unsigned int nbytes, blk_status_t error) 774 { 775 if (unlikely(error)) { 776 bio->bi_status = error; 777 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 778 /* 779 * Partial zone append completions cannot be supported as the 780 * BIO fragments may end up not being written sequentially. 781 */ 782 if (bio->bi_iter.bi_size != nbytes) 783 bio->bi_status = BLK_STS_IOERR; 784 else 785 bio->bi_iter.bi_sector = rq->__sector; 786 } 787 788 bio_advance(bio, nbytes); 789 790 if (unlikely(rq->rq_flags & RQF_QUIET)) 791 bio_set_flag(bio, BIO_QUIET); 792 /* don't actually finish bio if it's part of flush sequence */ 793 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 794 bio_endio(bio); 795 } 796 797 static void blk_account_io_completion(struct request *req, unsigned int bytes) 798 { 799 if (req->part && blk_do_io_stat(req)) { 800 const int sgrp = op_stat_group(req_op(req)); 801 802 part_stat_lock(); 803 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 804 part_stat_unlock(); 805 } 806 } 807 808 static void blk_print_req_error(struct request *req, blk_status_t status) 809 { 810 printk_ratelimited(KERN_ERR 811 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 812 "phys_seg %u prio class %u\n", 813 blk_status_to_str(status), 814 req->q->disk ? req->q->disk->disk_name : "?", 815 blk_rq_pos(req), (__force u32)req_op(req), 816 blk_op_str(req_op(req)), 817 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 818 req->nr_phys_segments, 819 IOPRIO_PRIO_CLASS(req->ioprio)); 820 } 821 822 /* 823 * Fully end IO on a request. Does not support partial completions, or 824 * errors. 825 */ 826 static void blk_complete_request(struct request *req) 827 { 828 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 829 int total_bytes = blk_rq_bytes(req); 830 struct bio *bio = req->bio; 831 832 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 833 834 if (!bio) 835 return; 836 837 #ifdef CONFIG_BLK_DEV_INTEGRITY 838 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 839 req->q->integrity.profile->complete_fn(req, total_bytes); 840 #endif 841 842 blk_account_io_completion(req, total_bytes); 843 844 do { 845 struct bio *next = bio->bi_next; 846 847 /* Completion has already been traced */ 848 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 849 850 if (req_op(req) == REQ_OP_ZONE_APPEND) 851 bio->bi_iter.bi_sector = req->__sector; 852 853 if (!is_flush) 854 bio_endio(bio); 855 bio = next; 856 } while (bio); 857 858 /* 859 * Reset counters so that the request stacking driver 860 * can find how many bytes remain in the request 861 * later. 862 */ 863 if (!req->end_io) { 864 req->bio = NULL; 865 req->__data_len = 0; 866 } 867 } 868 869 /** 870 * blk_update_request - Complete multiple bytes without completing the request 871 * @req: the request being processed 872 * @error: block status code 873 * @nr_bytes: number of bytes to complete for @req 874 * 875 * Description: 876 * Ends I/O on a number of bytes attached to @req, but doesn't complete 877 * the request structure even if @req doesn't have leftover. 878 * If @req has leftover, sets it up for the next range of segments. 879 * 880 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 881 * %false return from this function. 882 * 883 * Note: 884 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 885 * except in the consistency check at the end of this function. 886 * 887 * Return: 888 * %false - this request doesn't have any more data 889 * %true - this request has more data 890 **/ 891 bool blk_update_request(struct request *req, blk_status_t error, 892 unsigned int nr_bytes) 893 { 894 int total_bytes; 895 896 trace_block_rq_complete(req, error, nr_bytes); 897 898 if (!req->bio) 899 return false; 900 901 #ifdef CONFIG_BLK_DEV_INTEGRITY 902 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 903 error == BLK_STS_OK) 904 req->q->integrity.profile->complete_fn(req, nr_bytes); 905 #endif 906 907 if (unlikely(error && !blk_rq_is_passthrough(req) && 908 !(req->rq_flags & RQF_QUIET)) && 909 !test_bit(GD_DEAD, &req->q->disk->state)) { 910 blk_print_req_error(req, error); 911 trace_block_rq_error(req, error, nr_bytes); 912 } 913 914 blk_account_io_completion(req, nr_bytes); 915 916 total_bytes = 0; 917 while (req->bio) { 918 struct bio *bio = req->bio; 919 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 920 921 if (bio_bytes == bio->bi_iter.bi_size) 922 req->bio = bio->bi_next; 923 924 /* Completion has already been traced */ 925 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 926 req_bio_endio(req, bio, bio_bytes, error); 927 928 total_bytes += bio_bytes; 929 nr_bytes -= bio_bytes; 930 931 if (!nr_bytes) 932 break; 933 } 934 935 /* 936 * completely done 937 */ 938 if (!req->bio) { 939 /* 940 * Reset counters so that the request stacking driver 941 * can find how many bytes remain in the request 942 * later. 943 */ 944 req->__data_len = 0; 945 return false; 946 } 947 948 req->__data_len -= total_bytes; 949 950 /* update sector only for requests with clear definition of sector */ 951 if (!blk_rq_is_passthrough(req)) 952 req->__sector += total_bytes >> 9; 953 954 /* mixed attributes always follow the first bio */ 955 if (req->rq_flags & RQF_MIXED_MERGE) { 956 req->cmd_flags &= ~REQ_FAILFAST_MASK; 957 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 958 } 959 960 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 961 /* 962 * If total number of sectors is less than the first segment 963 * size, something has gone terribly wrong. 964 */ 965 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 966 blk_dump_rq_flags(req, "request botched"); 967 req->__data_len = blk_rq_cur_bytes(req); 968 } 969 970 /* recalculate the number of segments */ 971 req->nr_phys_segments = blk_recalc_rq_segments(req); 972 } 973 974 return true; 975 } 976 EXPORT_SYMBOL_GPL(blk_update_request); 977 978 static void __blk_account_io_done(struct request *req, u64 now) 979 { 980 const int sgrp = op_stat_group(req_op(req)); 981 982 part_stat_lock(); 983 update_io_ticks(req->part, jiffies, true); 984 part_stat_inc(req->part, ios[sgrp]); 985 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 986 part_stat_unlock(); 987 } 988 989 static inline void blk_account_io_done(struct request *req, u64 now) 990 { 991 /* 992 * Account IO completion. flush_rq isn't accounted as a 993 * normal IO on queueing nor completion. Accounting the 994 * containing request is enough. 995 */ 996 if (blk_do_io_stat(req) && req->part && 997 !(req->rq_flags & RQF_FLUSH_SEQ)) 998 __blk_account_io_done(req, now); 999 } 1000 1001 static void __blk_account_io_start(struct request *rq) 1002 { 1003 /* 1004 * All non-passthrough requests are created from a bio with one 1005 * exception: when a flush command that is part of a flush sequence 1006 * generated by the state machine in blk-flush.c is cloned onto the 1007 * lower device by dm-multipath we can get here without a bio. 1008 */ 1009 if (rq->bio) 1010 rq->part = rq->bio->bi_bdev; 1011 else 1012 rq->part = rq->q->disk->part0; 1013 1014 part_stat_lock(); 1015 update_io_ticks(rq->part, jiffies, false); 1016 part_stat_unlock(); 1017 } 1018 1019 static inline void blk_account_io_start(struct request *req) 1020 { 1021 if (blk_do_io_stat(req)) 1022 __blk_account_io_start(req); 1023 } 1024 1025 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1026 { 1027 if (rq->rq_flags & RQF_STATS) { 1028 blk_mq_poll_stats_start(rq->q); 1029 blk_stat_add(rq, now); 1030 } 1031 1032 blk_mq_sched_completed_request(rq, now); 1033 blk_account_io_done(rq, now); 1034 } 1035 1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1037 { 1038 if (blk_mq_need_time_stamp(rq)) 1039 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1040 1041 if (rq->end_io) { 1042 rq_qos_done(rq->q, rq); 1043 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1044 blk_mq_free_request(rq); 1045 } else { 1046 blk_mq_free_request(rq); 1047 } 1048 } 1049 EXPORT_SYMBOL(__blk_mq_end_request); 1050 1051 void blk_mq_end_request(struct request *rq, blk_status_t error) 1052 { 1053 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1054 BUG(); 1055 __blk_mq_end_request(rq, error); 1056 } 1057 EXPORT_SYMBOL(blk_mq_end_request); 1058 1059 #define TAG_COMP_BATCH 32 1060 1061 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1062 int *tag_array, int nr_tags) 1063 { 1064 struct request_queue *q = hctx->queue; 1065 1066 /* 1067 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1068 * update hctx->nr_active in batch 1069 */ 1070 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1071 __blk_mq_sub_active_requests(hctx, nr_tags); 1072 1073 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1074 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1075 } 1076 1077 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1078 { 1079 int tags[TAG_COMP_BATCH], nr_tags = 0; 1080 struct blk_mq_hw_ctx *cur_hctx = NULL; 1081 struct request *rq; 1082 u64 now = 0; 1083 1084 if (iob->need_ts) 1085 now = ktime_get_ns(); 1086 1087 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1088 prefetch(rq->bio); 1089 prefetch(rq->rq_next); 1090 1091 blk_complete_request(rq); 1092 if (iob->need_ts) 1093 __blk_mq_end_request_acct(rq, now); 1094 1095 rq_qos_done(rq->q, rq); 1096 1097 /* 1098 * If end_io handler returns NONE, then it still has 1099 * ownership of the request. 1100 */ 1101 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1102 continue; 1103 1104 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1105 if (!req_ref_put_and_test(rq)) 1106 continue; 1107 1108 blk_crypto_free_request(rq); 1109 blk_pm_mark_last_busy(rq); 1110 1111 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1112 if (cur_hctx) 1113 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1114 nr_tags = 0; 1115 cur_hctx = rq->mq_hctx; 1116 } 1117 tags[nr_tags++] = rq->tag; 1118 } 1119 1120 if (nr_tags) 1121 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1122 } 1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1124 1125 static void blk_complete_reqs(struct llist_head *list) 1126 { 1127 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1128 struct request *rq, *next; 1129 1130 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1131 rq->q->mq_ops->complete(rq); 1132 } 1133 1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1135 { 1136 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1137 } 1138 1139 static int blk_softirq_cpu_dead(unsigned int cpu) 1140 { 1141 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1142 return 0; 1143 } 1144 1145 static void __blk_mq_complete_request_remote(void *data) 1146 { 1147 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1148 } 1149 1150 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1151 { 1152 int cpu = raw_smp_processor_id(); 1153 1154 if (!IS_ENABLED(CONFIG_SMP) || 1155 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1156 return false; 1157 /* 1158 * With force threaded interrupts enabled, raising softirq from an SMP 1159 * function call will always result in waking the ksoftirqd thread. 1160 * This is probably worse than completing the request on a different 1161 * cache domain. 1162 */ 1163 if (force_irqthreads()) 1164 return false; 1165 1166 /* same CPU or cache domain? Complete locally */ 1167 if (cpu == rq->mq_ctx->cpu || 1168 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1169 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1170 return false; 1171 1172 /* don't try to IPI to an offline CPU */ 1173 return cpu_online(rq->mq_ctx->cpu); 1174 } 1175 1176 static void blk_mq_complete_send_ipi(struct request *rq) 1177 { 1178 struct llist_head *list; 1179 unsigned int cpu; 1180 1181 cpu = rq->mq_ctx->cpu; 1182 list = &per_cpu(blk_cpu_done, cpu); 1183 if (llist_add(&rq->ipi_list, list)) { 1184 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1185 smp_call_function_single_async(cpu, &rq->csd); 1186 } 1187 } 1188 1189 static void blk_mq_raise_softirq(struct request *rq) 1190 { 1191 struct llist_head *list; 1192 1193 preempt_disable(); 1194 list = this_cpu_ptr(&blk_cpu_done); 1195 if (llist_add(&rq->ipi_list, list)) 1196 raise_softirq(BLOCK_SOFTIRQ); 1197 preempt_enable(); 1198 } 1199 1200 bool blk_mq_complete_request_remote(struct request *rq) 1201 { 1202 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1203 1204 /* 1205 * For request which hctx has only one ctx mapping, 1206 * or a polled request, always complete locally, 1207 * it's pointless to redirect the completion. 1208 */ 1209 if (rq->mq_hctx->nr_ctx == 1 || 1210 rq->cmd_flags & REQ_POLLED) 1211 return false; 1212 1213 if (blk_mq_complete_need_ipi(rq)) { 1214 blk_mq_complete_send_ipi(rq); 1215 return true; 1216 } 1217 1218 if (rq->q->nr_hw_queues == 1) { 1219 blk_mq_raise_softirq(rq); 1220 return true; 1221 } 1222 return false; 1223 } 1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1225 1226 /** 1227 * blk_mq_complete_request - end I/O on a request 1228 * @rq: the request being processed 1229 * 1230 * Description: 1231 * Complete a request by scheduling the ->complete_rq operation. 1232 **/ 1233 void blk_mq_complete_request(struct request *rq) 1234 { 1235 if (!blk_mq_complete_request_remote(rq)) 1236 rq->q->mq_ops->complete(rq); 1237 } 1238 EXPORT_SYMBOL(blk_mq_complete_request); 1239 1240 /** 1241 * blk_mq_start_request - Start processing a request 1242 * @rq: Pointer to request to be started 1243 * 1244 * Function used by device drivers to notify the block layer that a request 1245 * is going to be processed now, so blk layer can do proper initializations 1246 * such as starting the timeout timer. 1247 */ 1248 void blk_mq_start_request(struct request *rq) 1249 { 1250 struct request_queue *q = rq->q; 1251 1252 trace_block_rq_issue(rq); 1253 1254 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1255 rq->io_start_time_ns = ktime_get_ns(); 1256 rq->stats_sectors = blk_rq_sectors(rq); 1257 rq->rq_flags |= RQF_STATS; 1258 rq_qos_issue(q, rq); 1259 } 1260 1261 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1262 1263 blk_add_timer(rq); 1264 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1265 1266 #ifdef CONFIG_BLK_DEV_INTEGRITY 1267 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1268 q->integrity.profile->prepare_fn(rq); 1269 #endif 1270 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1271 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1272 } 1273 EXPORT_SYMBOL(blk_mq_start_request); 1274 1275 /* 1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1277 * queues. This is important for md arrays to benefit from merging 1278 * requests. 1279 */ 1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1281 { 1282 if (plug->multiple_queues) 1283 return BLK_MAX_REQUEST_COUNT * 2; 1284 return BLK_MAX_REQUEST_COUNT; 1285 } 1286 1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1288 { 1289 struct request *last = rq_list_peek(&plug->mq_list); 1290 1291 if (!plug->rq_count) { 1292 trace_block_plug(rq->q); 1293 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1294 (!blk_queue_nomerges(rq->q) && 1295 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1296 blk_mq_flush_plug_list(plug, false); 1297 last = NULL; 1298 trace_block_plug(rq->q); 1299 } 1300 1301 if (!plug->multiple_queues && last && last->q != rq->q) 1302 plug->multiple_queues = true; 1303 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1304 plug->has_elevator = true; 1305 rq->rq_next = NULL; 1306 rq_list_add(&plug->mq_list, rq); 1307 plug->rq_count++; 1308 } 1309 1310 /** 1311 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1312 * @rq: request to insert 1313 * @at_head: insert request at head or tail of queue 1314 * 1315 * Description: 1316 * Insert a fully prepared request at the back of the I/O scheduler queue 1317 * for execution. Don't wait for completion. 1318 * 1319 * Note: 1320 * This function will invoke @done directly if the queue is dead. 1321 */ 1322 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1323 { 1324 WARN_ON(irqs_disabled()); 1325 WARN_ON(!blk_rq_is_passthrough(rq)); 1326 1327 blk_account_io_start(rq); 1328 1329 /* 1330 * As plugging can be enabled for passthrough requests on a zoned 1331 * device, directly accessing the plug instead of using blk_mq_plug() 1332 * should not have any consequences. 1333 */ 1334 if (current->plug) 1335 blk_add_rq_to_plug(current->plug, rq); 1336 else 1337 blk_mq_sched_insert_request(rq, at_head, true, false); 1338 } 1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1340 1341 struct blk_rq_wait { 1342 struct completion done; 1343 blk_status_t ret; 1344 }; 1345 1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1347 { 1348 struct blk_rq_wait *wait = rq->end_io_data; 1349 1350 wait->ret = ret; 1351 complete(&wait->done); 1352 return RQ_END_IO_NONE; 1353 } 1354 1355 bool blk_rq_is_poll(struct request *rq) 1356 { 1357 if (!rq->mq_hctx) 1358 return false; 1359 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1360 return false; 1361 if (WARN_ON_ONCE(!rq->bio)) 1362 return false; 1363 return true; 1364 } 1365 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1366 1367 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1368 { 1369 do { 1370 bio_poll(rq->bio, NULL, 0); 1371 cond_resched(); 1372 } while (!completion_done(wait)); 1373 } 1374 1375 /** 1376 * blk_execute_rq - insert a request into queue for execution 1377 * @rq: request to insert 1378 * @at_head: insert request at head or tail of queue 1379 * 1380 * Description: 1381 * Insert a fully prepared request at the back of the I/O scheduler queue 1382 * for execution and wait for completion. 1383 * Return: The blk_status_t result provided to blk_mq_end_request(). 1384 */ 1385 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1386 { 1387 struct blk_rq_wait wait = { 1388 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1389 }; 1390 1391 WARN_ON(irqs_disabled()); 1392 WARN_ON(!blk_rq_is_passthrough(rq)); 1393 1394 rq->end_io_data = &wait; 1395 rq->end_io = blk_end_sync_rq; 1396 1397 blk_account_io_start(rq); 1398 blk_mq_sched_insert_request(rq, at_head, true, false); 1399 1400 if (blk_rq_is_poll(rq)) { 1401 blk_rq_poll_completion(rq, &wait.done); 1402 } else { 1403 /* 1404 * Prevent hang_check timer from firing at us during very long 1405 * I/O 1406 */ 1407 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1408 1409 if (hang_check) 1410 while (!wait_for_completion_io_timeout(&wait.done, 1411 hang_check * (HZ/2))) 1412 ; 1413 else 1414 wait_for_completion_io(&wait.done); 1415 } 1416 1417 return wait.ret; 1418 } 1419 EXPORT_SYMBOL(blk_execute_rq); 1420 1421 static void __blk_mq_requeue_request(struct request *rq) 1422 { 1423 struct request_queue *q = rq->q; 1424 1425 blk_mq_put_driver_tag(rq); 1426 1427 trace_block_rq_requeue(rq); 1428 rq_qos_requeue(q, rq); 1429 1430 if (blk_mq_request_started(rq)) { 1431 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1432 rq->rq_flags &= ~RQF_TIMED_OUT; 1433 } 1434 } 1435 1436 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1437 { 1438 __blk_mq_requeue_request(rq); 1439 1440 /* this request will be re-inserted to io scheduler queue */ 1441 blk_mq_sched_requeue_request(rq); 1442 1443 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1444 } 1445 EXPORT_SYMBOL(blk_mq_requeue_request); 1446 1447 static void blk_mq_requeue_work(struct work_struct *work) 1448 { 1449 struct request_queue *q = 1450 container_of(work, struct request_queue, requeue_work.work); 1451 LIST_HEAD(rq_list); 1452 struct request *rq, *next; 1453 1454 spin_lock_irq(&q->requeue_lock); 1455 list_splice_init(&q->requeue_list, &rq_list); 1456 spin_unlock_irq(&q->requeue_lock); 1457 1458 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1459 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1460 continue; 1461 1462 rq->rq_flags &= ~RQF_SOFTBARRIER; 1463 list_del_init(&rq->queuelist); 1464 /* 1465 * If RQF_DONTPREP, rq has contained some driver specific 1466 * data, so insert it to hctx dispatch list to avoid any 1467 * merge. 1468 */ 1469 if (rq->rq_flags & RQF_DONTPREP) 1470 blk_mq_request_bypass_insert(rq, false, false); 1471 else 1472 blk_mq_sched_insert_request(rq, true, false, false); 1473 } 1474 1475 while (!list_empty(&rq_list)) { 1476 rq = list_entry(rq_list.next, struct request, queuelist); 1477 list_del_init(&rq->queuelist); 1478 blk_mq_sched_insert_request(rq, false, false, false); 1479 } 1480 1481 blk_mq_run_hw_queues(q, false); 1482 } 1483 1484 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1485 bool kick_requeue_list) 1486 { 1487 struct request_queue *q = rq->q; 1488 unsigned long flags; 1489 1490 /* 1491 * We abuse this flag that is otherwise used by the I/O scheduler to 1492 * request head insertion from the workqueue. 1493 */ 1494 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1495 1496 spin_lock_irqsave(&q->requeue_lock, flags); 1497 if (at_head) { 1498 rq->rq_flags |= RQF_SOFTBARRIER; 1499 list_add(&rq->queuelist, &q->requeue_list); 1500 } else { 1501 list_add_tail(&rq->queuelist, &q->requeue_list); 1502 } 1503 spin_unlock_irqrestore(&q->requeue_lock, flags); 1504 1505 if (kick_requeue_list) 1506 blk_mq_kick_requeue_list(q); 1507 } 1508 1509 void blk_mq_kick_requeue_list(struct request_queue *q) 1510 { 1511 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1512 } 1513 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1514 1515 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1516 unsigned long msecs) 1517 { 1518 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1519 msecs_to_jiffies(msecs)); 1520 } 1521 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1522 1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1524 { 1525 /* 1526 * If we find a request that isn't idle we know the queue is busy 1527 * as it's checked in the iter. 1528 * Return false to stop the iteration. 1529 */ 1530 if (blk_mq_request_started(rq)) { 1531 bool *busy = priv; 1532 1533 *busy = true; 1534 return false; 1535 } 1536 1537 return true; 1538 } 1539 1540 bool blk_mq_queue_inflight(struct request_queue *q) 1541 { 1542 bool busy = false; 1543 1544 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1545 return busy; 1546 } 1547 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1548 1549 static void blk_mq_rq_timed_out(struct request *req) 1550 { 1551 req->rq_flags |= RQF_TIMED_OUT; 1552 if (req->q->mq_ops->timeout) { 1553 enum blk_eh_timer_return ret; 1554 1555 ret = req->q->mq_ops->timeout(req); 1556 if (ret == BLK_EH_DONE) 1557 return; 1558 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1559 } 1560 1561 blk_add_timer(req); 1562 } 1563 1564 struct blk_expired_data { 1565 bool has_timedout_rq; 1566 unsigned long next; 1567 unsigned long timeout_start; 1568 }; 1569 1570 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1571 { 1572 unsigned long deadline; 1573 1574 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1575 return false; 1576 if (rq->rq_flags & RQF_TIMED_OUT) 1577 return false; 1578 1579 deadline = READ_ONCE(rq->deadline); 1580 if (time_after_eq(expired->timeout_start, deadline)) 1581 return true; 1582 1583 if (expired->next == 0) 1584 expired->next = deadline; 1585 else if (time_after(expired->next, deadline)) 1586 expired->next = deadline; 1587 return false; 1588 } 1589 1590 void blk_mq_put_rq_ref(struct request *rq) 1591 { 1592 if (is_flush_rq(rq)) { 1593 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1594 blk_mq_free_request(rq); 1595 } else if (req_ref_put_and_test(rq)) { 1596 __blk_mq_free_request(rq); 1597 } 1598 } 1599 1600 static bool blk_mq_check_expired(struct request *rq, void *priv) 1601 { 1602 struct blk_expired_data *expired = priv; 1603 1604 /* 1605 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1606 * be reallocated underneath the timeout handler's processing, then 1607 * the expire check is reliable. If the request is not expired, then 1608 * it was completed and reallocated as a new request after returning 1609 * from blk_mq_check_expired(). 1610 */ 1611 if (blk_mq_req_expired(rq, expired)) { 1612 expired->has_timedout_rq = true; 1613 return false; 1614 } 1615 return true; 1616 } 1617 1618 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1619 { 1620 struct blk_expired_data *expired = priv; 1621 1622 if (blk_mq_req_expired(rq, expired)) 1623 blk_mq_rq_timed_out(rq); 1624 return true; 1625 } 1626 1627 static void blk_mq_timeout_work(struct work_struct *work) 1628 { 1629 struct request_queue *q = 1630 container_of(work, struct request_queue, timeout_work); 1631 struct blk_expired_data expired = { 1632 .timeout_start = jiffies, 1633 }; 1634 struct blk_mq_hw_ctx *hctx; 1635 unsigned long i; 1636 1637 /* A deadlock might occur if a request is stuck requiring a 1638 * timeout at the same time a queue freeze is waiting 1639 * completion, since the timeout code would not be able to 1640 * acquire the queue reference here. 1641 * 1642 * That's why we don't use blk_queue_enter here; instead, we use 1643 * percpu_ref_tryget directly, because we need to be able to 1644 * obtain a reference even in the short window between the queue 1645 * starting to freeze, by dropping the first reference in 1646 * blk_freeze_queue_start, and the moment the last request is 1647 * consumed, marked by the instant q_usage_counter reaches 1648 * zero. 1649 */ 1650 if (!percpu_ref_tryget(&q->q_usage_counter)) 1651 return; 1652 1653 /* check if there is any timed-out request */ 1654 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1655 if (expired.has_timedout_rq) { 1656 /* 1657 * Before walking tags, we must ensure any submit started 1658 * before the current time has finished. Since the submit 1659 * uses srcu or rcu, wait for a synchronization point to 1660 * ensure all running submits have finished 1661 */ 1662 blk_mq_wait_quiesce_done(q->tag_set); 1663 1664 expired.next = 0; 1665 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1666 } 1667 1668 if (expired.next != 0) { 1669 mod_timer(&q->timeout, expired.next); 1670 } else { 1671 /* 1672 * Request timeouts are handled as a forward rolling timer. If 1673 * we end up here it means that no requests are pending and 1674 * also that no request has been pending for a while. Mark 1675 * each hctx as idle. 1676 */ 1677 queue_for_each_hw_ctx(q, hctx, i) { 1678 /* the hctx may be unmapped, so check it here */ 1679 if (blk_mq_hw_queue_mapped(hctx)) 1680 blk_mq_tag_idle(hctx); 1681 } 1682 } 1683 blk_queue_exit(q); 1684 } 1685 1686 struct flush_busy_ctx_data { 1687 struct blk_mq_hw_ctx *hctx; 1688 struct list_head *list; 1689 }; 1690 1691 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1692 { 1693 struct flush_busy_ctx_data *flush_data = data; 1694 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1695 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1696 enum hctx_type type = hctx->type; 1697 1698 spin_lock(&ctx->lock); 1699 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1700 sbitmap_clear_bit(sb, bitnr); 1701 spin_unlock(&ctx->lock); 1702 return true; 1703 } 1704 1705 /* 1706 * Process software queues that have been marked busy, splicing them 1707 * to the for-dispatch 1708 */ 1709 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1710 { 1711 struct flush_busy_ctx_data data = { 1712 .hctx = hctx, 1713 .list = list, 1714 }; 1715 1716 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1717 } 1718 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1719 1720 struct dispatch_rq_data { 1721 struct blk_mq_hw_ctx *hctx; 1722 struct request *rq; 1723 }; 1724 1725 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1726 void *data) 1727 { 1728 struct dispatch_rq_data *dispatch_data = data; 1729 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1730 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1731 enum hctx_type type = hctx->type; 1732 1733 spin_lock(&ctx->lock); 1734 if (!list_empty(&ctx->rq_lists[type])) { 1735 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1736 list_del_init(&dispatch_data->rq->queuelist); 1737 if (list_empty(&ctx->rq_lists[type])) 1738 sbitmap_clear_bit(sb, bitnr); 1739 } 1740 spin_unlock(&ctx->lock); 1741 1742 return !dispatch_data->rq; 1743 } 1744 1745 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1746 struct blk_mq_ctx *start) 1747 { 1748 unsigned off = start ? start->index_hw[hctx->type] : 0; 1749 struct dispatch_rq_data data = { 1750 .hctx = hctx, 1751 .rq = NULL, 1752 }; 1753 1754 __sbitmap_for_each_set(&hctx->ctx_map, off, 1755 dispatch_rq_from_ctx, &data); 1756 1757 return data.rq; 1758 } 1759 1760 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1761 { 1762 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1763 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1764 int tag; 1765 1766 blk_mq_tag_busy(rq->mq_hctx); 1767 1768 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1769 bt = &rq->mq_hctx->tags->breserved_tags; 1770 tag_offset = 0; 1771 } else { 1772 if (!hctx_may_queue(rq->mq_hctx, bt)) 1773 return false; 1774 } 1775 1776 tag = __sbitmap_queue_get(bt); 1777 if (tag == BLK_MQ_NO_TAG) 1778 return false; 1779 1780 rq->tag = tag + tag_offset; 1781 return true; 1782 } 1783 1784 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1785 { 1786 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1787 return false; 1788 1789 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1790 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1791 rq->rq_flags |= RQF_MQ_INFLIGHT; 1792 __blk_mq_inc_active_requests(hctx); 1793 } 1794 hctx->tags->rqs[rq->tag] = rq; 1795 return true; 1796 } 1797 1798 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1799 int flags, void *key) 1800 { 1801 struct blk_mq_hw_ctx *hctx; 1802 1803 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1804 1805 spin_lock(&hctx->dispatch_wait_lock); 1806 if (!list_empty(&wait->entry)) { 1807 struct sbitmap_queue *sbq; 1808 1809 list_del_init(&wait->entry); 1810 sbq = &hctx->tags->bitmap_tags; 1811 atomic_dec(&sbq->ws_active); 1812 } 1813 spin_unlock(&hctx->dispatch_wait_lock); 1814 1815 blk_mq_run_hw_queue(hctx, true); 1816 return 1; 1817 } 1818 1819 /* 1820 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1821 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1822 * restart. For both cases, take care to check the condition again after 1823 * marking us as waiting. 1824 */ 1825 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1826 struct request *rq) 1827 { 1828 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1829 struct wait_queue_head *wq; 1830 wait_queue_entry_t *wait; 1831 bool ret; 1832 1833 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1834 blk_mq_sched_mark_restart_hctx(hctx); 1835 1836 /* 1837 * It's possible that a tag was freed in the window between the 1838 * allocation failure and adding the hardware queue to the wait 1839 * queue. 1840 * 1841 * Don't clear RESTART here, someone else could have set it. 1842 * At most this will cost an extra queue run. 1843 */ 1844 return blk_mq_get_driver_tag(rq); 1845 } 1846 1847 wait = &hctx->dispatch_wait; 1848 if (!list_empty_careful(&wait->entry)) 1849 return false; 1850 1851 wq = &bt_wait_ptr(sbq, hctx)->wait; 1852 1853 spin_lock_irq(&wq->lock); 1854 spin_lock(&hctx->dispatch_wait_lock); 1855 if (!list_empty(&wait->entry)) { 1856 spin_unlock(&hctx->dispatch_wait_lock); 1857 spin_unlock_irq(&wq->lock); 1858 return false; 1859 } 1860 1861 atomic_inc(&sbq->ws_active); 1862 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1863 __add_wait_queue(wq, wait); 1864 1865 /* 1866 * It's possible that a tag was freed in the window between the 1867 * allocation failure and adding the hardware queue to the wait 1868 * queue. 1869 */ 1870 ret = blk_mq_get_driver_tag(rq); 1871 if (!ret) { 1872 spin_unlock(&hctx->dispatch_wait_lock); 1873 spin_unlock_irq(&wq->lock); 1874 return false; 1875 } 1876 1877 /* 1878 * We got a tag, remove ourselves from the wait queue to ensure 1879 * someone else gets the wakeup. 1880 */ 1881 list_del_init(&wait->entry); 1882 atomic_dec(&sbq->ws_active); 1883 spin_unlock(&hctx->dispatch_wait_lock); 1884 spin_unlock_irq(&wq->lock); 1885 1886 return true; 1887 } 1888 1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1891 /* 1892 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1893 * - EWMA is one simple way to compute running average value 1894 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1895 * - take 4 as factor for avoiding to get too small(0) result, and this 1896 * factor doesn't matter because EWMA decreases exponentially 1897 */ 1898 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1899 { 1900 unsigned int ewma; 1901 1902 ewma = hctx->dispatch_busy; 1903 1904 if (!ewma && !busy) 1905 return; 1906 1907 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1908 if (busy) 1909 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1910 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1911 1912 hctx->dispatch_busy = ewma; 1913 } 1914 1915 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1916 1917 static void blk_mq_handle_dev_resource(struct request *rq, 1918 struct list_head *list) 1919 { 1920 struct request *next = 1921 list_first_entry_or_null(list, struct request, queuelist); 1922 1923 /* 1924 * If an I/O scheduler has been configured and we got a driver tag for 1925 * the next request already, free it. 1926 */ 1927 if (next) 1928 blk_mq_put_driver_tag(next); 1929 1930 list_add(&rq->queuelist, list); 1931 __blk_mq_requeue_request(rq); 1932 } 1933 1934 static void blk_mq_handle_zone_resource(struct request *rq, 1935 struct list_head *zone_list) 1936 { 1937 /* 1938 * If we end up here it is because we cannot dispatch a request to a 1939 * specific zone due to LLD level zone-write locking or other zone 1940 * related resource not being available. In this case, set the request 1941 * aside in zone_list for retrying it later. 1942 */ 1943 list_add(&rq->queuelist, zone_list); 1944 __blk_mq_requeue_request(rq); 1945 } 1946 1947 enum prep_dispatch { 1948 PREP_DISPATCH_OK, 1949 PREP_DISPATCH_NO_TAG, 1950 PREP_DISPATCH_NO_BUDGET, 1951 }; 1952 1953 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1954 bool need_budget) 1955 { 1956 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1957 int budget_token = -1; 1958 1959 if (need_budget) { 1960 budget_token = blk_mq_get_dispatch_budget(rq->q); 1961 if (budget_token < 0) { 1962 blk_mq_put_driver_tag(rq); 1963 return PREP_DISPATCH_NO_BUDGET; 1964 } 1965 blk_mq_set_rq_budget_token(rq, budget_token); 1966 } 1967 1968 if (!blk_mq_get_driver_tag(rq)) { 1969 /* 1970 * The initial allocation attempt failed, so we need to 1971 * rerun the hardware queue when a tag is freed. The 1972 * waitqueue takes care of that. If the queue is run 1973 * before we add this entry back on the dispatch list, 1974 * we'll re-run it below. 1975 */ 1976 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1977 /* 1978 * All budgets not got from this function will be put 1979 * together during handling partial dispatch 1980 */ 1981 if (need_budget) 1982 blk_mq_put_dispatch_budget(rq->q, budget_token); 1983 return PREP_DISPATCH_NO_TAG; 1984 } 1985 } 1986 1987 return PREP_DISPATCH_OK; 1988 } 1989 1990 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1991 static void blk_mq_release_budgets(struct request_queue *q, 1992 struct list_head *list) 1993 { 1994 struct request *rq; 1995 1996 list_for_each_entry(rq, list, queuelist) { 1997 int budget_token = blk_mq_get_rq_budget_token(rq); 1998 1999 if (budget_token >= 0) 2000 blk_mq_put_dispatch_budget(q, budget_token); 2001 } 2002 } 2003 2004 /* 2005 * Returns true if we did some work AND can potentially do more. 2006 */ 2007 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2008 unsigned int nr_budgets) 2009 { 2010 enum prep_dispatch prep; 2011 struct request_queue *q = hctx->queue; 2012 struct request *rq, *nxt; 2013 int errors, queued; 2014 blk_status_t ret = BLK_STS_OK; 2015 LIST_HEAD(zone_list); 2016 bool needs_resource = false; 2017 2018 if (list_empty(list)) 2019 return false; 2020 2021 /* 2022 * Now process all the entries, sending them to the driver. 2023 */ 2024 errors = queued = 0; 2025 do { 2026 struct blk_mq_queue_data bd; 2027 2028 rq = list_first_entry(list, struct request, queuelist); 2029 2030 WARN_ON_ONCE(hctx != rq->mq_hctx); 2031 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2032 if (prep != PREP_DISPATCH_OK) 2033 break; 2034 2035 list_del_init(&rq->queuelist); 2036 2037 bd.rq = rq; 2038 2039 /* 2040 * Flag last if we have no more requests, or if we have more 2041 * but can't assign a driver tag to it. 2042 */ 2043 if (list_empty(list)) 2044 bd.last = true; 2045 else { 2046 nxt = list_first_entry(list, struct request, queuelist); 2047 bd.last = !blk_mq_get_driver_tag(nxt); 2048 } 2049 2050 /* 2051 * once the request is queued to lld, no need to cover the 2052 * budget any more 2053 */ 2054 if (nr_budgets) 2055 nr_budgets--; 2056 ret = q->mq_ops->queue_rq(hctx, &bd); 2057 switch (ret) { 2058 case BLK_STS_OK: 2059 queued++; 2060 break; 2061 case BLK_STS_RESOURCE: 2062 needs_resource = true; 2063 fallthrough; 2064 case BLK_STS_DEV_RESOURCE: 2065 blk_mq_handle_dev_resource(rq, list); 2066 goto out; 2067 case BLK_STS_ZONE_RESOURCE: 2068 /* 2069 * Move the request to zone_list and keep going through 2070 * the dispatch list to find more requests the drive can 2071 * accept. 2072 */ 2073 blk_mq_handle_zone_resource(rq, &zone_list); 2074 needs_resource = true; 2075 break; 2076 default: 2077 errors++; 2078 blk_mq_end_request(rq, ret); 2079 } 2080 } while (!list_empty(list)); 2081 out: 2082 if (!list_empty(&zone_list)) 2083 list_splice_tail_init(&zone_list, list); 2084 2085 /* If we didn't flush the entire list, we could have told the driver 2086 * there was more coming, but that turned out to be a lie. 2087 */ 2088 if ((!list_empty(list) || errors || needs_resource || 2089 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued) 2090 q->mq_ops->commit_rqs(hctx); 2091 /* 2092 * Any items that need requeuing? Stuff them into hctx->dispatch, 2093 * that is where we will continue on next queue run. 2094 */ 2095 if (!list_empty(list)) { 2096 bool needs_restart; 2097 /* For non-shared tags, the RESTART check will suffice */ 2098 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2099 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 2100 2101 if (nr_budgets) 2102 blk_mq_release_budgets(q, list); 2103 2104 spin_lock(&hctx->lock); 2105 list_splice_tail_init(list, &hctx->dispatch); 2106 spin_unlock(&hctx->lock); 2107 2108 /* 2109 * Order adding requests to hctx->dispatch and checking 2110 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2111 * in blk_mq_sched_restart(). Avoid restart code path to 2112 * miss the new added requests to hctx->dispatch, meantime 2113 * SCHED_RESTART is observed here. 2114 */ 2115 smp_mb(); 2116 2117 /* 2118 * If SCHED_RESTART was set by the caller of this function and 2119 * it is no longer set that means that it was cleared by another 2120 * thread and hence that a queue rerun is needed. 2121 * 2122 * If 'no_tag' is set, that means that we failed getting 2123 * a driver tag with an I/O scheduler attached. If our dispatch 2124 * waitqueue is no longer active, ensure that we run the queue 2125 * AFTER adding our entries back to the list. 2126 * 2127 * If no I/O scheduler has been configured it is possible that 2128 * the hardware queue got stopped and restarted before requests 2129 * were pushed back onto the dispatch list. Rerun the queue to 2130 * avoid starvation. Notes: 2131 * - blk_mq_run_hw_queue() checks whether or not a queue has 2132 * been stopped before rerunning a queue. 2133 * - Some but not all block drivers stop a queue before 2134 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2135 * and dm-rq. 2136 * 2137 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2138 * bit is set, run queue after a delay to avoid IO stalls 2139 * that could otherwise occur if the queue is idle. We'll do 2140 * similar if we couldn't get budget or couldn't lock a zone 2141 * and SCHED_RESTART is set. 2142 */ 2143 needs_restart = blk_mq_sched_needs_restart(hctx); 2144 if (prep == PREP_DISPATCH_NO_BUDGET) 2145 needs_resource = true; 2146 if (!needs_restart || 2147 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2148 blk_mq_run_hw_queue(hctx, true); 2149 else if (needs_resource) 2150 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2151 2152 blk_mq_update_dispatch_busy(hctx, true); 2153 return false; 2154 } else 2155 blk_mq_update_dispatch_busy(hctx, false); 2156 2157 return (queued + errors) != 0; 2158 } 2159 2160 /** 2161 * __blk_mq_run_hw_queue - Run a hardware queue. 2162 * @hctx: Pointer to the hardware queue to run. 2163 * 2164 * Send pending requests to the hardware. 2165 */ 2166 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2167 { 2168 /* 2169 * We can't run the queue inline with ints disabled. Ensure that 2170 * we catch bad users of this early. 2171 */ 2172 WARN_ON_ONCE(in_interrupt()); 2173 2174 blk_mq_run_dispatch_ops(hctx->queue, 2175 blk_mq_sched_dispatch_requests(hctx)); 2176 } 2177 2178 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2179 { 2180 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2181 2182 if (cpu >= nr_cpu_ids) 2183 cpu = cpumask_first(hctx->cpumask); 2184 return cpu; 2185 } 2186 2187 /* 2188 * It'd be great if the workqueue API had a way to pass 2189 * in a mask and had some smarts for more clever placement. 2190 * For now we just round-robin here, switching for every 2191 * BLK_MQ_CPU_WORK_BATCH queued items. 2192 */ 2193 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2194 { 2195 bool tried = false; 2196 int next_cpu = hctx->next_cpu; 2197 2198 if (hctx->queue->nr_hw_queues == 1) 2199 return WORK_CPU_UNBOUND; 2200 2201 if (--hctx->next_cpu_batch <= 0) { 2202 select_cpu: 2203 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2204 cpu_online_mask); 2205 if (next_cpu >= nr_cpu_ids) 2206 next_cpu = blk_mq_first_mapped_cpu(hctx); 2207 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2208 } 2209 2210 /* 2211 * Do unbound schedule if we can't find a online CPU for this hctx, 2212 * and it should only happen in the path of handling CPU DEAD. 2213 */ 2214 if (!cpu_online(next_cpu)) { 2215 if (!tried) { 2216 tried = true; 2217 goto select_cpu; 2218 } 2219 2220 /* 2221 * Make sure to re-select CPU next time once after CPUs 2222 * in hctx->cpumask become online again. 2223 */ 2224 hctx->next_cpu = next_cpu; 2225 hctx->next_cpu_batch = 1; 2226 return WORK_CPU_UNBOUND; 2227 } 2228 2229 hctx->next_cpu = next_cpu; 2230 return next_cpu; 2231 } 2232 2233 /** 2234 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2235 * @hctx: Pointer to the hardware queue to run. 2236 * @async: If we want to run the queue asynchronously. 2237 * @msecs: Milliseconds of delay to wait before running the queue. 2238 * 2239 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2240 * with a delay of @msecs. 2241 */ 2242 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2243 unsigned long msecs) 2244 { 2245 if (unlikely(blk_mq_hctx_stopped(hctx))) 2246 return; 2247 2248 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2249 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2250 __blk_mq_run_hw_queue(hctx); 2251 return; 2252 } 2253 } 2254 2255 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2256 msecs_to_jiffies(msecs)); 2257 } 2258 2259 /** 2260 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2261 * @hctx: Pointer to the hardware queue to run. 2262 * @msecs: Milliseconds of delay to wait before running the queue. 2263 * 2264 * Run a hardware queue asynchronously with a delay of @msecs. 2265 */ 2266 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2267 { 2268 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2269 } 2270 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2271 2272 /** 2273 * blk_mq_run_hw_queue - Start to run a hardware queue. 2274 * @hctx: Pointer to the hardware queue to run. 2275 * @async: If we want to run the queue asynchronously. 2276 * 2277 * Check if the request queue is not in a quiesced state and if there are 2278 * pending requests to be sent. If this is true, run the queue to send requests 2279 * to hardware. 2280 */ 2281 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2282 { 2283 bool need_run; 2284 2285 /* 2286 * When queue is quiesced, we may be switching io scheduler, or 2287 * updating nr_hw_queues, or other things, and we can't run queue 2288 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2289 * 2290 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2291 * quiesced. 2292 */ 2293 __blk_mq_run_dispatch_ops(hctx->queue, false, 2294 need_run = !blk_queue_quiesced(hctx->queue) && 2295 blk_mq_hctx_has_pending(hctx)); 2296 2297 if (need_run) 2298 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2299 } 2300 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2301 2302 /* 2303 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2304 * scheduler. 2305 */ 2306 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2307 { 2308 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2309 /* 2310 * If the IO scheduler does not respect hardware queues when 2311 * dispatching, we just don't bother with multiple HW queues and 2312 * dispatch from hctx for the current CPU since running multiple queues 2313 * just causes lock contention inside the scheduler and pointless cache 2314 * bouncing. 2315 */ 2316 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2317 2318 if (!blk_mq_hctx_stopped(hctx)) 2319 return hctx; 2320 return NULL; 2321 } 2322 2323 /** 2324 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2325 * @q: Pointer to the request queue to run. 2326 * @async: If we want to run the queue asynchronously. 2327 */ 2328 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2329 { 2330 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2331 unsigned long i; 2332 2333 sq_hctx = NULL; 2334 if (blk_queue_sq_sched(q)) 2335 sq_hctx = blk_mq_get_sq_hctx(q); 2336 queue_for_each_hw_ctx(q, hctx, i) { 2337 if (blk_mq_hctx_stopped(hctx)) 2338 continue; 2339 /* 2340 * Dispatch from this hctx either if there's no hctx preferred 2341 * by IO scheduler or if it has requests that bypass the 2342 * scheduler. 2343 */ 2344 if (!sq_hctx || sq_hctx == hctx || 2345 !list_empty_careful(&hctx->dispatch)) 2346 blk_mq_run_hw_queue(hctx, async); 2347 } 2348 } 2349 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2350 2351 /** 2352 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2353 * @q: Pointer to the request queue to run. 2354 * @msecs: Milliseconds of delay to wait before running the queues. 2355 */ 2356 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2357 { 2358 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2359 unsigned long i; 2360 2361 sq_hctx = NULL; 2362 if (blk_queue_sq_sched(q)) 2363 sq_hctx = blk_mq_get_sq_hctx(q); 2364 queue_for_each_hw_ctx(q, hctx, i) { 2365 if (blk_mq_hctx_stopped(hctx)) 2366 continue; 2367 /* 2368 * If there is already a run_work pending, leave the 2369 * pending delay untouched. Otherwise, a hctx can stall 2370 * if another hctx is re-delaying the other's work 2371 * before the work executes. 2372 */ 2373 if (delayed_work_pending(&hctx->run_work)) 2374 continue; 2375 /* 2376 * Dispatch from this hctx either if there's no hctx preferred 2377 * by IO scheduler or if it has requests that bypass the 2378 * scheduler. 2379 */ 2380 if (!sq_hctx || sq_hctx == hctx || 2381 !list_empty_careful(&hctx->dispatch)) 2382 blk_mq_delay_run_hw_queue(hctx, msecs); 2383 } 2384 } 2385 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2386 2387 /* 2388 * This function is often used for pausing .queue_rq() by driver when 2389 * there isn't enough resource or some conditions aren't satisfied, and 2390 * BLK_STS_RESOURCE is usually returned. 2391 * 2392 * We do not guarantee that dispatch can be drained or blocked 2393 * after blk_mq_stop_hw_queue() returns. Please use 2394 * blk_mq_quiesce_queue() for that requirement. 2395 */ 2396 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2397 { 2398 cancel_delayed_work(&hctx->run_work); 2399 2400 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2401 } 2402 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2403 2404 /* 2405 * This function is often used for pausing .queue_rq() by driver when 2406 * there isn't enough resource or some conditions aren't satisfied, and 2407 * BLK_STS_RESOURCE is usually returned. 2408 * 2409 * We do not guarantee that dispatch can be drained or blocked 2410 * after blk_mq_stop_hw_queues() returns. Please use 2411 * blk_mq_quiesce_queue() for that requirement. 2412 */ 2413 void blk_mq_stop_hw_queues(struct request_queue *q) 2414 { 2415 struct blk_mq_hw_ctx *hctx; 2416 unsigned long i; 2417 2418 queue_for_each_hw_ctx(q, hctx, i) 2419 blk_mq_stop_hw_queue(hctx); 2420 } 2421 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2422 2423 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2424 { 2425 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2426 2427 blk_mq_run_hw_queue(hctx, false); 2428 } 2429 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2430 2431 void blk_mq_start_hw_queues(struct request_queue *q) 2432 { 2433 struct blk_mq_hw_ctx *hctx; 2434 unsigned long i; 2435 2436 queue_for_each_hw_ctx(q, hctx, i) 2437 blk_mq_start_hw_queue(hctx); 2438 } 2439 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2440 2441 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2442 { 2443 if (!blk_mq_hctx_stopped(hctx)) 2444 return; 2445 2446 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2447 blk_mq_run_hw_queue(hctx, async); 2448 } 2449 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2450 2451 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2452 { 2453 struct blk_mq_hw_ctx *hctx; 2454 unsigned long i; 2455 2456 queue_for_each_hw_ctx(q, hctx, i) 2457 blk_mq_start_stopped_hw_queue(hctx, async); 2458 } 2459 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2460 2461 static void blk_mq_run_work_fn(struct work_struct *work) 2462 { 2463 struct blk_mq_hw_ctx *hctx; 2464 2465 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2466 2467 /* 2468 * If we are stopped, don't run the queue. 2469 */ 2470 if (blk_mq_hctx_stopped(hctx)) 2471 return; 2472 2473 __blk_mq_run_hw_queue(hctx); 2474 } 2475 2476 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2477 struct request *rq, 2478 bool at_head) 2479 { 2480 struct blk_mq_ctx *ctx = rq->mq_ctx; 2481 enum hctx_type type = hctx->type; 2482 2483 lockdep_assert_held(&ctx->lock); 2484 2485 trace_block_rq_insert(rq); 2486 2487 if (at_head) 2488 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2489 else 2490 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2491 } 2492 2493 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2494 bool at_head) 2495 { 2496 struct blk_mq_ctx *ctx = rq->mq_ctx; 2497 2498 lockdep_assert_held(&ctx->lock); 2499 2500 __blk_mq_insert_req_list(hctx, rq, at_head); 2501 blk_mq_hctx_mark_pending(hctx, ctx); 2502 } 2503 2504 /** 2505 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2506 * @rq: Pointer to request to be inserted. 2507 * @at_head: true if the request should be inserted at the head of the list. 2508 * @run_queue: If we should run the hardware queue after inserting the request. 2509 * 2510 * Should only be used carefully, when the caller knows we want to 2511 * bypass a potential IO scheduler on the target device. 2512 */ 2513 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2514 bool run_queue) 2515 { 2516 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2517 2518 spin_lock(&hctx->lock); 2519 if (at_head) 2520 list_add(&rq->queuelist, &hctx->dispatch); 2521 else 2522 list_add_tail(&rq->queuelist, &hctx->dispatch); 2523 spin_unlock(&hctx->lock); 2524 2525 if (run_queue) 2526 blk_mq_run_hw_queue(hctx, false); 2527 } 2528 2529 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2530 struct list_head *list) 2531 2532 { 2533 struct request *rq; 2534 enum hctx_type type = hctx->type; 2535 2536 /* 2537 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2538 * offline now 2539 */ 2540 list_for_each_entry(rq, list, queuelist) { 2541 BUG_ON(rq->mq_ctx != ctx); 2542 trace_block_rq_insert(rq); 2543 } 2544 2545 spin_lock(&ctx->lock); 2546 list_splice_tail_init(list, &ctx->rq_lists[type]); 2547 blk_mq_hctx_mark_pending(hctx, ctx); 2548 spin_unlock(&ctx->lock); 2549 } 2550 2551 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2552 bool from_schedule) 2553 { 2554 if (hctx->queue->mq_ops->commit_rqs) { 2555 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2556 hctx->queue->mq_ops->commit_rqs(hctx); 2557 } 2558 *queued = 0; 2559 } 2560 2561 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2562 unsigned int nr_segs) 2563 { 2564 int err; 2565 2566 if (bio->bi_opf & REQ_RAHEAD) 2567 rq->cmd_flags |= REQ_FAILFAST_MASK; 2568 2569 rq->__sector = bio->bi_iter.bi_sector; 2570 blk_rq_bio_prep(rq, bio, nr_segs); 2571 2572 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2573 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2574 WARN_ON_ONCE(err); 2575 2576 blk_account_io_start(rq); 2577 } 2578 2579 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2580 struct request *rq, bool last) 2581 { 2582 struct request_queue *q = rq->q; 2583 struct blk_mq_queue_data bd = { 2584 .rq = rq, 2585 .last = last, 2586 }; 2587 blk_status_t ret; 2588 2589 /* 2590 * For OK queue, we are done. For error, caller may kill it. 2591 * Any other error (busy), just add it to our list as we 2592 * previously would have done. 2593 */ 2594 ret = q->mq_ops->queue_rq(hctx, &bd); 2595 switch (ret) { 2596 case BLK_STS_OK: 2597 blk_mq_update_dispatch_busy(hctx, false); 2598 break; 2599 case BLK_STS_RESOURCE: 2600 case BLK_STS_DEV_RESOURCE: 2601 blk_mq_update_dispatch_busy(hctx, true); 2602 __blk_mq_requeue_request(rq); 2603 break; 2604 default: 2605 blk_mq_update_dispatch_busy(hctx, false); 2606 break; 2607 } 2608 2609 return ret; 2610 } 2611 2612 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2613 struct request *rq, 2614 bool bypass_insert, bool last) 2615 { 2616 struct request_queue *q = rq->q; 2617 bool run_queue = true; 2618 int budget_token; 2619 2620 /* 2621 * RCU or SRCU read lock is needed before checking quiesced flag. 2622 * 2623 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2624 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2625 * and avoid driver to try to dispatch again. 2626 */ 2627 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2628 run_queue = false; 2629 bypass_insert = false; 2630 goto insert; 2631 } 2632 2633 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2634 goto insert; 2635 2636 budget_token = blk_mq_get_dispatch_budget(q); 2637 if (budget_token < 0) 2638 goto insert; 2639 2640 blk_mq_set_rq_budget_token(rq, budget_token); 2641 2642 if (!blk_mq_get_driver_tag(rq)) { 2643 blk_mq_put_dispatch_budget(q, budget_token); 2644 goto insert; 2645 } 2646 2647 return __blk_mq_issue_directly(hctx, rq, last); 2648 insert: 2649 if (bypass_insert) 2650 return BLK_STS_RESOURCE; 2651 2652 blk_mq_sched_insert_request(rq, false, run_queue, false); 2653 2654 return BLK_STS_OK; 2655 } 2656 2657 /** 2658 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2659 * @hctx: Pointer of the associated hardware queue. 2660 * @rq: Pointer to request to be sent. 2661 * 2662 * If the device has enough resources to accept a new request now, send the 2663 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2664 * we can try send it another time in the future. Requests inserted at this 2665 * queue have higher priority. 2666 */ 2667 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2668 struct request *rq) 2669 { 2670 blk_status_t ret = 2671 __blk_mq_try_issue_directly(hctx, rq, false, true); 2672 2673 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2674 blk_mq_request_bypass_insert(rq, false, true); 2675 else if (ret != BLK_STS_OK) 2676 blk_mq_end_request(rq, ret); 2677 } 2678 2679 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2680 { 2681 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2682 } 2683 2684 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2685 { 2686 struct blk_mq_hw_ctx *hctx = NULL; 2687 struct request *rq; 2688 int queued = 0; 2689 int errors = 0; 2690 2691 while ((rq = rq_list_pop(&plug->mq_list))) { 2692 bool last = rq_list_empty(plug->mq_list); 2693 blk_status_t ret; 2694 2695 if (hctx != rq->mq_hctx) { 2696 if (hctx) 2697 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2698 hctx = rq->mq_hctx; 2699 } 2700 2701 ret = blk_mq_request_issue_directly(rq, last); 2702 switch (ret) { 2703 case BLK_STS_OK: 2704 queued++; 2705 break; 2706 case BLK_STS_RESOURCE: 2707 case BLK_STS_DEV_RESOURCE: 2708 blk_mq_request_bypass_insert(rq, false, true); 2709 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2710 return; 2711 default: 2712 blk_mq_end_request(rq, ret); 2713 errors++; 2714 break; 2715 } 2716 } 2717 2718 /* 2719 * If we didn't flush the entire list, we could have told the driver 2720 * there was more coming, but that turned out to be a lie. 2721 */ 2722 if (errors) 2723 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2724 } 2725 2726 static void __blk_mq_flush_plug_list(struct request_queue *q, 2727 struct blk_plug *plug) 2728 { 2729 if (blk_queue_quiesced(q)) 2730 return; 2731 q->mq_ops->queue_rqs(&plug->mq_list); 2732 } 2733 2734 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2735 { 2736 struct blk_mq_hw_ctx *this_hctx = NULL; 2737 struct blk_mq_ctx *this_ctx = NULL; 2738 struct request *requeue_list = NULL; 2739 unsigned int depth = 0; 2740 LIST_HEAD(list); 2741 2742 do { 2743 struct request *rq = rq_list_pop(&plug->mq_list); 2744 2745 if (!this_hctx) { 2746 this_hctx = rq->mq_hctx; 2747 this_ctx = rq->mq_ctx; 2748 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2749 rq_list_add(&requeue_list, rq); 2750 continue; 2751 } 2752 list_add_tail(&rq->queuelist, &list); 2753 depth++; 2754 } while (!rq_list_empty(plug->mq_list)); 2755 2756 plug->mq_list = requeue_list; 2757 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2758 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2759 } 2760 2761 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2762 { 2763 struct request *rq; 2764 2765 if (rq_list_empty(plug->mq_list)) 2766 return; 2767 plug->rq_count = 0; 2768 2769 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2770 struct request_queue *q; 2771 2772 rq = rq_list_peek(&plug->mq_list); 2773 q = rq->q; 2774 2775 /* 2776 * Peek first request and see if we have a ->queue_rqs() hook. 2777 * If we do, we can dispatch the whole plug list in one go. We 2778 * already know at this point that all requests belong to the 2779 * same queue, caller must ensure that's the case. 2780 * 2781 * Since we pass off the full list to the driver at this point, 2782 * we do not increment the active request count for the queue. 2783 * Bypass shared tags for now because of that. 2784 */ 2785 if (q->mq_ops->queue_rqs && 2786 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2787 blk_mq_run_dispatch_ops(q, 2788 __blk_mq_flush_plug_list(q, plug)); 2789 if (rq_list_empty(plug->mq_list)) 2790 return; 2791 } 2792 2793 blk_mq_run_dispatch_ops(q, 2794 blk_mq_plug_issue_direct(plug, false)); 2795 if (rq_list_empty(plug->mq_list)) 2796 return; 2797 } 2798 2799 do { 2800 blk_mq_dispatch_plug_list(plug, from_schedule); 2801 } while (!rq_list_empty(plug->mq_list)); 2802 } 2803 2804 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2805 struct list_head *list) 2806 { 2807 int queued = 0; 2808 int errors = 0; 2809 2810 while (!list_empty(list)) { 2811 blk_status_t ret; 2812 struct request *rq = list_first_entry(list, struct request, 2813 queuelist); 2814 2815 list_del_init(&rq->queuelist); 2816 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2817 if (ret != BLK_STS_OK) { 2818 errors++; 2819 if (ret == BLK_STS_RESOURCE || 2820 ret == BLK_STS_DEV_RESOURCE) { 2821 blk_mq_request_bypass_insert(rq, false, 2822 list_empty(list)); 2823 break; 2824 } 2825 blk_mq_end_request(rq, ret); 2826 } else 2827 queued++; 2828 } 2829 2830 /* 2831 * If we didn't flush the entire list, we could have told 2832 * the driver there was more coming, but that turned out to 2833 * be a lie. 2834 */ 2835 if ((!list_empty(list) || errors) && 2836 hctx->queue->mq_ops->commit_rqs && queued) 2837 hctx->queue->mq_ops->commit_rqs(hctx); 2838 } 2839 2840 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2841 struct bio *bio, unsigned int nr_segs) 2842 { 2843 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2844 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2845 return true; 2846 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2847 return true; 2848 } 2849 return false; 2850 } 2851 2852 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2853 struct blk_plug *plug, 2854 struct bio *bio, 2855 unsigned int nsegs) 2856 { 2857 struct blk_mq_alloc_data data = { 2858 .q = q, 2859 .nr_tags = 1, 2860 .cmd_flags = bio->bi_opf, 2861 }; 2862 struct request *rq; 2863 2864 if (unlikely(bio_queue_enter(bio))) 2865 return NULL; 2866 2867 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2868 goto queue_exit; 2869 2870 rq_qos_throttle(q, bio); 2871 2872 if (plug) { 2873 data.nr_tags = plug->nr_ios; 2874 plug->nr_ios = 1; 2875 data.cached_rq = &plug->cached_rq; 2876 } 2877 2878 rq = __blk_mq_alloc_requests(&data); 2879 if (rq) 2880 return rq; 2881 rq_qos_cleanup(q, bio); 2882 if (bio->bi_opf & REQ_NOWAIT) 2883 bio_wouldblock_error(bio); 2884 queue_exit: 2885 blk_queue_exit(q); 2886 return NULL; 2887 } 2888 2889 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2890 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2891 { 2892 struct request *rq; 2893 enum hctx_type type, hctx_type; 2894 2895 if (!plug) 2896 return NULL; 2897 rq = rq_list_peek(&plug->cached_rq); 2898 if (!rq || rq->q != q) 2899 return NULL; 2900 2901 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2902 *bio = NULL; 2903 return NULL; 2904 } 2905 2906 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2907 hctx_type = rq->mq_hctx->type; 2908 if (type != hctx_type && 2909 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2910 return NULL; 2911 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2912 return NULL; 2913 2914 /* 2915 * If any qos ->throttle() end up blocking, we will have flushed the 2916 * plug and hence killed the cached_rq list as well. Pop this entry 2917 * before we throttle. 2918 */ 2919 plug->cached_rq = rq_list_next(rq); 2920 rq_qos_throttle(q, *bio); 2921 2922 rq->cmd_flags = (*bio)->bi_opf; 2923 INIT_LIST_HEAD(&rq->queuelist); 2924 return rq; 2925 } 2926 2927 static void bio_set_ioprio(struct bio *bio) 2928 { 2929 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2930 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2931 bio->bi_ioprio = get_current_ioprio(); 2932 blkcg_set_ioprio(bio); 2933 } 2934 2935 /** 2936 * blk_mq_submit_bio - Create and send a request to block device. 2937 * @bio: Bio pointer. 2938 * 2939 * Builds up a request structure from @q and @bio and send to the device. The 2940 * request may not be queued directly to hardware if: 2941 * * This request can be merged with another one 2942 * * We want to place request at plug queue for possible future merging 2943 * * There is an IO scheduler active at this queue 2944 * 2945 * It will not queue the request if there is an error with the bio, or at the 2946 * request creation. 2947 */ 2948 void blk_mq_submit_bio(struct bio *bio) 2949 { 2950 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2951 struct blk_plug *plug = blk_mq_plug(bio); 2952 const int is_sync = op_is_sync(bio->bi_opf); 2953 struct request *rq; 2954 unsigned int nr_segs = 1; 2955 blk_status_t ret; 2956 2957 bio = blk_queue_bounce(bio, q); 2958 if (bio_may_exceed_limits(bio, &q->limits)) { 2959 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2960 if (!bio) 2961 return; 2962 } 2963 2964 if (!bio_integrity_prep(bio)) 2965 return; 2966 2967 bio_set_ioprio(bio); 2968 2969 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2970 if (!rq) { 2971 if (!bio) 2972 return; 2973 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2974 if (unlikely(!rq)) 2975 return; 2976 } 2977 2978 trace_block_getrq(bio); 2979 2980 rq_qos_track(q, rq, bio); 2981 2982 blk_mq_bio_to_request(rq, bio, nr_segs); 2983 2984 ret = blk_crypto_init_request(rq); 2985 if (ret != BLK_STS_OK) { 2986 bio->bi_status = ret; 2987 bio_endio(bio); 2988 blk_mq_free_request(rq); 2989 return; 2990 } 2991 2992 if (op_is_flush(bio->bi_opf)) { 2993 blk_insert_flush(rq); 2994 return; 2995 } 2996 2997 if (plug) 2998 blk_add_rq_to_plug(plug, rq); 2999 else if ((rq->rq_flags & RQF_ELV) || 3000 (rq->mq_hctx->dispatch_busy && 3001 (q->nr_hw_queues == 1 || !is_sync))) 3002 blk_mq_sched_insert_request(rq, false, true, true); 3003 else 3004 blk_mq_run_dispatch_ops(rq->q, 3005 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 3006 } 3007 3008 #ifdef CONFIG_BLK_MQ_STACKING 3009 /** 3010 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3011 * @rq: the request being queued 3012 */ 3013 blk_status_t blk_insert_cloned_request(struct request *rq) 3014 { 3015 struct request_queue *q = rq->q; 3016 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3017 blk_status_t ret; 3018 3019 if (blk_rq_sectors(rq) > max_sectors) { 3020 /* 3021 * SCSI device does not have a good way to return if 3022 * Write Same/Zero is actually supported. If a device rejects 3023 * a non-read/write command (discard, write same,etc.) the 3024 * low-level device driver will set the relevant queue limit to 3025 * 0 to prevent blk-lib from issuing more of the offending 3026 * operations. Commands queued prior to the queue limit being 3027 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3028 * errors being propagated to upper layers. 3029 */ 3030 if (max_sectors == 0) 3031 return BLK_STS_NOTSUPP; 3032 3033 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3034 __func__, blk_rq_sectors(rq), max_sectors); 3035 return BLK_STS_IOERR; 3036 } 3037 3038 /* 3039 * The queue settings related to segment counting may differ from the 3040 * original queue. 3041 */ 3042 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3043 if (rq->nr_phys_segments > queue_max_segments(q)) { 3044 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 3045 __func__, rq->nr_phys_segments, queue_max_segments(q)); 3046 return BLK_STS_IOERR; 3047 } 3048 3049 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3050 return BLK_STS_IOERR; 3051 3052 if (blk_crypto_insert_cloned_request(rq)) 3053 return BLK_STS_IOERR; 3054 3055 blk_account_io_start(rq); 3056 3057 /* 3058 * Since we have a scheduler attached on the top device, 3059 * bypass a potential scheduler on the bottom device for 3060 * insert. 3061 */ 3062 blk_mq_run_dispatch_ops(q, 3063 ret = blk_mq_request_issue_directly(rq, true)); 3064 if (ret) 3065 blk_account_io_done(rq, ktime_get_ns()); 3066 return ret; 3067 } 3068 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3069 3070 /** 3071 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3072 * @rq: the clone request to be cleaned up 3073 * 3074 * Description: 3075 * Free all bios in @rq for a cloned request. 3076 */ 3077 void blk_rq_unprep_clone(struct request *rq) 3078 { 3079 struct bio *bio; 3080 3081 while ((bio = rq->bio) != NULL) { 3082 rq->bio = bio->bi_next; 3083 3084 bio_put(bio); 3085 } 3086 } 3087 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3088 3089 /** 3090 * blk_rq_prep_clone - Helper function to setup clone request 3091 * @rq: the request to be setup 3092 * @rq_src: original request to be cloned 3093 * @bs: bio_set that bios for clone are allocated from 3094 * @gfp_mask: memory allocation mask for bio 3095 * @bio_ctr: setup function to be called for each clone bio. 3096 * Returns %0 for success, non %0 for failure. 3097 * @data: private data to be passed to @bio_ctr 3098 * 3099 * Description: 3100 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3101 * Also, pages which the original bios are pointing to are not copied 3102 * and the cloned bios just point same pages. 3103 * So cloned bios must be completed before original bios, which means 3104 * the caller must complete @rq before @rq_src. 3105 */ 3106 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3107 struct bio_set *bs, gfp_t gfp_mask, 3108 int (*bio_ctr)(struct bio *, struct bio *, void *), 3109 void *data) 3110 { 3111 struct bio *bio, *bio_src; 3112 3113 if (!bs) 3114 bs = &fs_bio_set; 3115 3116 __rq_for_each_bio(bio_src, rq_src) { 3117 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3118 bs); 3119 if (!bio) 3120 goto free_and_out; 3121 3122 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3123 goto free_and_out; 3124 3125 if (rq->bio) { 3126 rq->biotail->bi_next = bio; 3127 rq->biotail = bio; 3128 } else { 3129 rq->bio = rq->biotail = bio; 3130 } 3131 bio = NULL; 3132 } 3133 3134 /* Copy attributes of the original request to the clone request. */ 3135 rq->__sector = blk_rq_pos(rq_src); 3136 rq->__data_len = blk_rq_bytes(rq_src); 3137 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3138 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3139 rq->special_vec = rq_src->special_vec; 3140 } 3141 rq->nr_phys_segments = rq_src->nr_phys_segments; 3142 rq->ioprio = rq_src->ioprio; 3143 3144 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3145 goto free_and_out; 3146 3147 return 0; 3148 3149 free_and_out: 3150 if (bio) 3151 bio_put(bio); 3152 blk_rq_unprep_clone(rq); 3153 3154 return -ENOMEM; 3155 } 3156 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3157 #endif /* CONFIG_BLK_MQ_STACKING */ 3158 3159 /* 3160 * Steal bios from a request and add them to a bio list. 3161 * The request must not have been partially completed before. 3162 */ 3163 void blk_steal_bios(struct bio_list *list, struct request *rq) 3164 { 3165 if (rq->bio) { 3166 if (list->tail) 3167 list->tail->bi_next = rq->bio; 3168 else 3169 list->head = rq->bio; 3170 list->tail = rq->biotail; 3171 3172 rq->bio = NULL; 3173 rq->biotail = NULL; 3174 } 3175 3176 rq->__data_len = 0; 3177 } 3178 EXPORT_SYMBOL_GPL(blk_steal_bios); 3179 3180 static size_t order_to_size(unsigned int order) 3181 { 3182 return (size_t)PAGE_SIZE << order; 3183 } 3184 3185 /* called before freeing request pool in @tags */ 3186 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3187 struct blk_mq_tags *tags) 3188 { 3189 struct page *page; 3190 unsigned long flags; 3191 3192 /* 3193 * There is no need to clear mapping if driver tags is not initialized 3194 * or the mapping belongs to the driver tags. 3195 */ 3196 if (!drv_tags || drv_tags == tags) 3197 return; 3198 3199 list_for_each_entry(page, &tags->page_list, lru) { 3200 unsigned long start = (unsigned long)page_address(page); 3201 unsigned long end = start + order_to_size(page->private); 3202 int i; 3203 3204 for (i = 0; i < drv_tags->nr_tags; i++) { 3205 struct request *rq = drv_tags->rqs[i]; 3206 unsigned long rq_addr = (unsigned long)rq; 3207 3208 if (rq_addr >= start && rq_addr < end) { 3209 WARN_ON_ONCE(req_ref_read(rq) != 0); 3210 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3211 } 3212 } 3213 } 3214 3215 /* 3216 * Wait until all pending iteration is done. 3217 * 3218 * Request reference is cleared and it is guaranteed to be observed 3219 * after the ->lock is released. 3220 */ 3221 spin_lock_irqsave(&drv_tags->lock, flags); 3222 spin_unlock_irqrestore(&drv_tags->lock, flags); 3223 } 3224 3225 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3226 unsigned int hctx_idx) 3227 { 3228 struct blk_mq_tags *drv_tags; 3229 struct page *page; 3230 3231 if (list_empty(&tags->page_list)) 3232 return; 3233 3234 if (blk_mq_is_shared_tags(set->flags)) 3235 drv_tags = set->shared_tags; 3236 else 3237 drv_tags = set->tags[hctx_idx]; 3238 3239 if (tags->static_rqs && set->ops->exit_request) { 3240 int i; 3241 3242 for (i = 0; i < tags->nr_tags; i++) { 3243 struct request *rq = tags->static_rqs[i]; 3244 3245 if (!rq) 3246 continue; 3247 set->ops->exit_request(set, rq, hctx_idx); 3248 tags->static_rqs[i] = NULL; 3249 } 3250 } 3251 3252 blk_mq_clear_rq_mapping(drv_tags, tags); 3253 3254 while (!list_empty(&tags->page_list)) { 3255 page = list_first_entry(&tags->page_list, struct page, lru); 3256 list_del_init(&page->lru); 3257 /* 3258 * Remove kmemleak object previously allocated in 3259 * blk_mq_alloc_rqs(). 3260 */ 3261 kmemleak_free(page_address(page)); 3262 __free_pages(page, page->private); 3263 } 3264 } 3265 3266 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3267 { 3268 kfree(tags->rqs); 3269 tags->rqs = NULL; 3270 kfree(tags->static_rqs); 3271 tags->static_rqs = NULL; 3272 3273 blk_mq_free_tags(tags); 3274 } 3275 3276 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3277 unsigned int hctx_idx) 3278 { 3279 int i; 3280 3281 for (i = 0; i < set->nr_maps; i++) { 3282 unsigned int start = set->map[i].queue_offset; 3283 unsigned int end = start + set->map[i].nr_queues; 3284 3285 if (hctx_idx >= start && hctx_idx < end) 3286 break; 3287 } 3288 3289 if (i >= set->nr_maps) 3290 i = HCTX_TYPE_DEFAULT; 3291 3292 return i; 3293 } 3294 3295 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3296 unsigned int hctx_idx) 3297 { 3298 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3299 3300 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3301 } 3302 3303 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3304 unsigned int hctx_idx, 3305 unsigned int nr_tags, 3306 unsigned int reserved_tags) 3307 { 3308 int node = blk_mq_get_hctx_node(set, hctx_idx); 3309 struct blk_mq_tags *tags; 3310 3311 if (node == NUMA_NO_NODE) 3312 node = set->numa_node; 3313 3314 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3315 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3316 if (!tags) 3317 return NULL; 3318 3319 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3320 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3321 node); 3322 if (!tags->rqs) 3323 goto err_free_tags; 3324 3325 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3326 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3327 node); 3328 if (!tags->static_rqs) 3329 goto err_free_rqs; 3330 3331 return tags; 3332 3333 err_free_rqs: 3334 kfree(tags->rqs); 3335 err_free_tags: 3336 blk_mq_free_tags(tags); 3337 return NULL; 3338 } 3339 3340 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3341 unsigned int hctx_idx, int node) 3342 { 3343 int ret; 3344 3345 if (set->ops->init_request) { 3346 ret = set->ops->init_request(set, rq, hctx_idx, node); 3347 if (ret) 3348 return ret; 3349 } 3350 3351 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3352 return 0; 3353 } 3354 3355 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3356 struct blk_mq_tags *tags, 3357 unsigned int hctx_idx, unsigned int depth) 3358 { 3359 unsigned int i, j, entries_per_page, max_order = 4; 3360 int node = blk_mq_get_hctx_node(set, hctx_idx); 3361 size_t rq_size, left; 3362 3363 if (node == NUMA_NO_NODE) 3364 node = set->numa_node; 3365 3366 INIT_LIST_HEAD(&tags->page_list); 3367 3368 /* 3369 * rq_size is the size of the request plus driver payload, rounded 3370 * to the cacheline size 3371 */ 3372 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3373 cache_line_size()); 3374 left = rq_size * depth; 3375 3376 for (i = 0; i < depth; ) { 3377 int this_order = max_order; 3378 struct page *page; 3379 int to_do; 3380 void *p; 3381 3382 while (this_order && left < order_to_size(this_order - 1)) 3383 this_order--; 3384 3385 do { 3386 page = alloc_pages_node(node, 3387 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3388 this_order); 3389 if (page) 3390 break; 3391 if (!this_order--) 3392 break; 3393 if (order_to_size(this_order) < rq_size) 3394 break; 3395 } while (1); 3396 3397 if (!page) 3398 goto fail; 3399 3400 page->private = this_order; 3401 list_add_tail(&page->lru, &tags->page_list); 3402 3403 p = page_address(page); 3404 /* 3405 * Allow kmemleak to scan these pages as they contain pointers 3406 * to additional allocations like via ops->init_request(). 3407 */ 3408 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3409 entries_per_page = order_to_size(this_order) / rq_size; 3410 to_do = min(entries_per_page, depth - i); 3411 left -= to_do * rq_size; 3412 for (j = 0; j < to_do; j++) { 3413 struct request *rq = p; 3414 3415 tags->static_rqs[i] = rq; 3416 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3417 tags->static_rqs[i] = NULL; 3418 goto fail; 3419 } 3420 3421 p += rq_size; 3422 i++; 3423 } 3424 } 3425 return 0; 3426 3427 fail: 3428 blk_mq_free_rqs(set, tags, hctx_idx); 3429 return -ENOMEM; 3430 } 3431 3432 struct rq_iter_data { 3433 struct blk_mq_hw_ctx *hctx; 3434 bool has_rq; 3435 }; 3436 3437 static bool blk_mq_has_request(struct request *rq, void *data) 3438 { 3439 struct rq_iter_data *iter_data = data; 3440 3441 if (rq->mq_hctx != iter_data->hctx) 3442 return true; 3443 iter_data->has_rq = true; 3444 return false; 3445 } 3446 3447 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3448 { 3449 struct blk_mq_tags *tags = hctx->sched_tags ? 3450 hctx->sched_tags : hctx->tags; 3451 struct rq_iter_data data = { 3452 .hctx = hctx, 3453 }; 3454 3455 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3456 return data.has_rq; 3457 } 3458 3459 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3460 struct blk_mq_hw_ctx *hctx) 3461 { 3462 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3463 return false; 3464 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3465 return false; 3466 return true; 3467 } 3468 3469 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3470 { 3471 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3472 struct blk_mq_hw_ctx, cpuhp_online); 3473 3474 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3475 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3476 return 0; 3477 3478 /* 3479 * Prevent new request from being allocated on the current hctx. 3480 * 3481 * The smp_mb__after_atomic() Pairs with the implied barrier in 3482 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3483 * seen once we return from the tag allocator. 3484 */ 3485 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3486 smp_mb__after_atomic(); 3487 3488 /* 3489 * Try to grab a reference to the queue and wait for any outstanding 3490 * requests. If we could not grab a reference the queue has been 3491 * frozen and there are no requests. 3492 */ 3493 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3494 while (blk_mq_hctx_has_requests(hctx)) 3495 msleep(5); 3496 percpu_ref_put(&hctx->queue->q_usage_counter); 3497 } 3498 3499 return 0; 3500 } 3501 3502 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3503 { 3504 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3505 struct blk_mq_hw_ctx, cpuhp_online); 3506 3507 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3508 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3509 return 0; 3510 } 3511 3512 /* 3513 * 'cpu' is going away. splice any existing rq_list entries from this 3514 * software queue to the hw queue dispatch list, and ensure that it 3515 * gets run. 3516 */ 3517 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3518 { 3519 struct blk_mq_hw_ctx *hctx; 3520 struct blk_mq_ctx *ctx; 3521 LIST_HEAD(tmp); 3522 enum hctx_type type; 3523 3524 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3525 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3526 return 0; 3527 3528 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3529 type = hctx->type; 3530 3531 spin_lock(&ctx->lock); 3532 if (!list_empty(&ctx->rq_lists[type])) { 3533 list_splice_init(&ctx->rq_lists[type], &tmp); 3534 blk_mq_hctx_clear_pending(hctx, ctx); 3535 } 3536 spin_unlock(&ctx->lock); 3537 3538 if (list_empty(&tmp)) 3539 return 0; 3540 3541 spin_lock(&hctx->lock); 3542 list_splice_tail_init(&tmp, &hctx->dispatch); 3543 spin_unlock(&hctx->lock); 3544 3545 blk_mq_run_hw_queue(hctx, true); 3546 return 0; 3547 } 3548 3549 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3550 { 3551 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3552 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3553 &hctx->cpuhp_online); 3554 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3555 &hctx->cpuhp_dead); 3556 } 3557 3558 /* 3559 * Before freeing hw queue, clearing the flush request reference in 3560 * tags->rqs[] for avoiding potential UAF. 3561 */ 3562 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3563 unsigned int queue_depth, struct request *flush_rq) 3564 { 3565 int i; 3566 unsigned long flags; 3567 3568 /* The hw queue may not be mapped yet */ 3569 if (!tags) 3570 return; 3571 3572 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3573 3574 for (i = 0; i < queue_depth; i++) 3575 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3576 3577 /* 3578 * Wait until all pending iteration is done. 3579 * 3580 * Request reference is cleared and it is guaranteed to be observed 3581 * after the ->lock is released. 3582 */ 3583 spin_lock_irqsave(&tags->lock, flags); 3584 spin_unlock_irqrestore(&tags->lock, flags); 3585 } 3586 3587 /* hctx->ctxs will be freed in queue's release handler */ 3588 static void blk_mq_exit_hctx(struct request_queue *q, 3589 struct blk_mq_tag_set *set, 3590 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3591 { 3592 struct request *flush_rq = hctx->fq->flush_rq; 3593 3594 if (blk_mq_hw_queue_mapped(hctx)) 3595 blk_mq_tag_idle(hctx); 3596 3597 if (blk_queue_init_done(q)) 3598 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3599 set->queue_depth, flush_rq); 3600 if (set->ops->exit_request) 3601 set->ops->exit_request(set, flush_rq, hctx_idx); 3602 3603 if (set->ops->exit_hctx) 3604 set->ops->exit_hctx(hctx, hctx_idx); 3605 3606 blk_mq_remove_cpuhp(hctx); 3607 3608 xa_erase(&q->hctx_table, hctx_idx); 3609 3610 spin_lock(&q->unused_hctx_lock); 3611 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3612 spin_unlock(&q->unused_hctx_lock); 3613 } 3614 3615 static void blk_mq_exit_hw_queues(struct request_queue *q, 3616 struct blk_mq_tag_set *set, int nr_queue) 3617 { 3618 struct blk_mq_hw_ctx *hctx; 3619 unsigned long i; 3620 3621 queue_for_each_hw_ctx(q, hctx, i) { 3622 if (i == nr_queue) 3623 break; 3624 blk_mq_exit_hctx(q, set, hctx, i); 3625 } 3626 } 3627 3628 static int blk_mq_init_hctx(struct request_queue *q, 3629 struct blk_mq_tag_set *set, 3630 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3631 { 3632 hctx->queue_num = hctx_idx; 3633 3634 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3635 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3636 &hctx->cpuhp_online); 3637 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3638 3639 hctx->tags = set->tags[hctx_idx]; 3640 3641 if (set->ops->init_hctx && 3642 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3643 goto unregister_cpu_notifier; 3644 3645 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3646 hctx->numa_node)) 3647 goto exit_hctx; 3648 3649 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3650 goto exit_flush_rq; 3651 3652 return 0; 3653 3654 exit_flush_rq: 3655 if (set->ops->exit_request) 3656 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3657 exit_hctx: 3658 if (set->ops->exit_hctx) 3659 set->ops->exit_hctx(hctx, hctx_idx); 3660 unregister_cpu_notifier: 3661 blk_mq_remove_cpuhp(hctx); 3662 return -1; 3663 } 3664 3665 static struct blk_mq_hw_ctx * 3666 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3667 int node) 3668 { 3669 struct blk_mq_hw_ctx *hctx; 3670 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3671 3672 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3673 if (!hctx) 3674 goto fail_alloc_hctx; 3675 3676 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3677 goto free_hctx; 3678 3679 atomic_set(&hctx->nr_active, 0); 3680 if (node == NUMA_NO_NODE) 3681 node = set->numa_node; 3682 hctx->numa_node = node; 3683 3684 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3685 spin_lock_init(&hctx->lock); 3686 INIT_LIST_HEAD(&hctx->dispatch); 3687 hctx->queue = q; 3688 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3689 3690 INIT_LIST_HEAD(&hctx->hctx_list); 3691 3692 /* 3693 * Allocate space for all possible cpus to avoid allocation at 3694 * runtime 3695 */ 3696 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3697 gfp, node); 3698 if (!hctx->ctxs) 3699 goto free_cpumask; 3700 3701 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3702 gfp, node, false, false)) 3703 goto free_ctxs; 3704 hctx->nr_ctx = 0; 3705 3706 spin_lock_init(&hctx->dispatch_wait_lock); 3707 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3708 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3709 3710 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3711 if (!hctx->fq) 3712 goto free_bitmap; 3713 3714 blk_mq_hctx_kobj_init(hctx); 3715 3716 return hctx; 3717 3718 free_bitmap: 3719 sbitmap_free(&hctx->ctx_map); 3720 free_ctxs: 3721 kfree(hctx->ctxs); 3722 free_cpumask: 3723 free_cpumask_var(hctx->cpumask); 3724 free_hctx: 3725 kfree(hctx); 3726 fail_alloc_hctx: 3727 return NULL; 3728 } 3729 3730 static void blk_mq_init_cpu_queues(struct request_queue *q, 3731 unsigned int nr_hw_queues) 3732 { 3733 struct blk_mq_tag_set *set = q->tag_set; 3734 unsigned int i, j; 3735 3736 for_each_possible_cpu(i) { 3737 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3738 struct blk_mq_hw_ctx *hctx; 3739 int k; 3740 3741 __ctx->cpu = i; 3742 spin_lock_init(&__ctx->lock); 3743 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3744 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3745 3746 __ctx->queue = q; 3747 3748 /* 3749 * Set local node, IFF we have more than one hw queue. If 3750 * not, we remain on the home node of the device 3751 */ 3752 for (j = 0; j < set->nr_maps; j++) { 3753 hctx = blk_mq_map_queue_type(q, j, i); 3754 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3755 hctx->numa_node = cpu_to_node(i); 3756 } 3757 } 3758 } 3759 3760 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3761 unsigned int hctx_idx, 3762 unsigned int depth) 3763 { 3764 struct blk_mq_tags *tags; 3765 int ret; 3766 3767 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3768 if (!tags) 3769 return NULL; 3770 3771 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3772 if (ret) { 3773 blk_mq_free_rq_map(tags); 3774 return NULL; 3775 } 3776 3777 return tags; 3778 } 3779 3780 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3781 int hctx_idx) 3782 { 3783 if (blk_mq_is_shared_tags(set->flags)) { 3784 set->tags[hctx_idx] = set->shared_tags; 3785 3786 return true; 3787 } 3788 3789 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3790 set->queue_depth); 3791 3792 return set->tags[hctx_idx]; 3793 } 3794 3795 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3796 struct blk_mq_tags *tags, 3797 unsigned int hctx_idx) 3798 { 3799 if (tags) { 3800 blk_mq_free_rqs(set, tags, hctx_idx); 3801 blk_mq_free_rq_map(tags); 3802 } 3803 } 3804 3805 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3806 unsigned int hctx_idx) 3807 { 3808 if (!blk_mq_is_shared_tags(set->flags)) 3809 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3810 3811 set->tags[hctx_idx] = NULL; 3812 } 3813 3814 static void blk_mq_map_swqueue(struct request_queue *q) 3815 { 3816 unsigned int j, hctx_idx; 3817 unsigned long i; 3818 struct blk_mq_hw_ctx *hctx; 3819 struct blk_mq_ctx *ctx; 3820 struct blk_mq_tag_set *set = q->tag_set; 3821 3822 queue_for_each_hw_ctx(q, hctx, i) { 3823 cpumask_clear(hctx->cpumask); 3824 hctx->nr_ctx = 0; 3825 hctx->dispatch_from = NULL; 3826 } 3827 3828 /* 3829 * Map software to hardware queues. 3830 * 3831 * If the cpu isn't present, the cpu is mapped to first hctx. 3832 */ 3833 for_each_possible_cpu(i) { 3834 3835 ctx = per_cpu_ptr(q->queue_ctx, i); 3836 for (j = 0; j < set->nr_maps; j++) { 3837 if (!set->map[j].nr_queues) { 3838 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3839 HCTX_TYPE_DEFAULT, i); 3840 continue; 3841 } 3842 hctx_idx = set->map[j].mq_map[i]; 3843 /* unmapped hw queue can be remapped after CPU topo changed */ 3844 if (!set->tags[hctx_idx] && 3845 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3846 /* 3847 * If tags initialization fail for some hctx, 3848 * that hctx won't be brought online. In this 3849 * case, remap the current ctx to hctx[0] which 3850 * is guaranteed to always have tags allocated 3851 */ 3852 set->map[j].mq_map[i] = 0; 3853 } 3854 3855 hctx = blk_mq_map_queue_type(q, j, i); 3856 ctx->hctxs[j] = hctx; 3857 /* 3858 * If the CPU is already set in the mask, then we've 3859 * mapped this one already. This can happen if 3860 * devices share queues across queue maps. 3861 */ 3862 if (cpumask_test_cpu(i, hctx->cpumask)) 3863 continue; 3864 3865 cpumask_set_cpu(i, hctx->cpumask); 3866 hctx->type = j; 3867 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3868 hctx->ctxs[hctx->nr_ctx++] = ctx; 3869 3870 /* 3871 * If the nr_ctx type overflows, we have exceeded the 3872 * amount of sw queues we can support. 3873 */ 3874 BUG_ON(!hctx->nr_ctx); 3875 } 3876 3877 for (; j < HCTX_MAX_TYPES; j++) 3878 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3879 HCTX_TYPE_DEFAULT, i); 3880 } 3881 3882 queue_for_each_hw_ctx(q, hctx, i) { 3883 /* 3884 * If no software queues are mapped to this hardware queue, 3885 * disable it and free the request entries. 3886 */ 3887 if (!hctx->nr_ctx) { 3888 /* Never unmap queue 0. We need it as a 3889 * fallback in case of a new remap fails 3890 * allocation 3891 */ 3892 if (i) 3893 __blk_mq_free_map_and_rqs(set, i); 3894 3895 hctx->tags = NULL; 3896 continue; 3897 } 3898 3899 hctx->tags = set->tags[i]; 3900 WARN_ON(!hctx->tags); 3901 3902 /* 3903 * Set the map size to the number of mapped software queues. 3904 * This is more accurate and more efficient than looping 3905 * over all possibly mapped software queues. 3906 */ 3907 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3908 3909 /* 3910 * Initialize batch roundrobin counts 3911 */ 3912 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3913 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3914 } 3915 } 3916 3917 /* 3918 * Caller needs to ensure that we're either frozen/quiesced, or that 3919 * the queue isn't live yet. 3920 */ 3921 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3922 { 3923 struct blk_mq_hw_ctx *hctx; 3924 unsigned long i; 3925 3926 queue_for_each_hw_ctx(q, hctx, i) { 3927 if (shared) { 3928 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3929 } else { 3930 blk_mq_tag_idle(hctx); 3931 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3932 } 3933 } 3934 } 3935 3936 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3937 bool shared) 3938 { 3939 struct request_queue *q; 3940 3941 lockdep_assert_held(&set->tag_list_lock); 3942 3943 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3944 blk_mq_freeze_queue(q); 3945 queue_set_hctx_shared(q, shared); 3946 blk_mq_unfreeze_queue(q); 3947 } 3948 } 3949 3950 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3951 { 3952 struct blk_mq_tag_set *set = q->tag_set; 3953 3954 mutex_lock(&set->tag_list_lock); 3955 list_del(&q->tag_set_list); 3956 if (list_is_singular(&set->tag_list)) { 3957 /* just transitioned to unshared */ 3958 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3959 /* update existing queue */ 3960 blk_mq_update_tag_set_shared(set, false); 3961 } 3962 mutex_unlock(&set->tag_list_lock); 3963 INIT_LIST_HEAD(&q->tag_set_list); 3964 } 3965 3966 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3967 struct request_queue *q) 3968 { 3969 mutex_lock(&set->tag_list_lock); 3970 3971 /* 3972 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3973 */ 3974 if (!list_empty(&set->tag_list) && 3975 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3976 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3977 /* update existing queue */ 3978 blk_mq_update_tag_set_shared(set, true); 3979 } 3980 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3981 queue_set_hctx_shared(q, true); 3982 list_add_tail(&q->tag_set_list, &set->tag_list); 3983 3984 mutex_unlock(&set->tag_list_lock); 3985 } 3986 3987 /* All allocations will be freed in release handler of q->mq_kobj */ 3988 static int blk_mq_alloc_ctxs(struct request_queue *q) 3989 { 3990 struct blk_mq_ctxs *ctxs; 3991 int cpu; 3992 3993 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3994 if (!ctxs) 3995 return -ENOMEM; 3996 3997 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3998 if (!ctxs->queue_ctx) 3999 goto fail; 4000 4001 for_each_possible_cpu(cpu) { 4002 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4003 ctx->ctxs = ctxs; 4004 } 4005 4006 q->mq_kobj = &ctxs->kobj; 4007 q->queue_ctx = ctxs->queue_ctx; 4008 4009 return 0; 4010 fail: 4011 kfree(ctxs); 4012 return -ENOMEM; 4013 } 4014 4015 /* 4016 * It is the actual release handler for mq, but we do it from 4017 * request queue's release handler for avoiding use-after-free 4018 * and headache because q->mq_kobj shouldn't have been introduced, 4019 * but we can't group ctx/kctx kobj without it. 4020 */ 4021 void blk_mq_release(struct request_queue *q) 4022 { 4023 struct blk_mq_hw_ctx *hctx, *next; 4024 unsigned long i; 4025 4026 queue_for_each_hw_ctx(q, hctx, i) 4027 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4028 4029 /* all hctx are in .unused_hctx_list now */ 4030 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4031 list_del_init(&hctx->hctx_list); 4032 kobject_put(&hctx->kobj); 4033 } 4034 4035 xa_destroy(&q->hctx_table); 4036 4037 /* 4038 * release .mq_kobj and sw queue's kobject now because 4039 * both share lifetime with request queue. 4040 */ 4041 blk_mq_sysfs_deinit(q); 4042 } 4043 4044 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4045 void *queuedata) 4046 { 4047 struct request_queue *q; 4048 int ret; 4049 4050 q = blk_alloc_queue(set->numa_node); 4051 if (!q) 4052 return ERR_PTR(-ENOMEM); 4053 q->queuedata = queuedata; 4054 ret = blk_mq_init_allocated_queue(set, q); 4055 if (ret) { 4056 blk_put_queue(q); 4057 return ERR_PTR(ret); 4058 } 4059 return q; 4060 } 4061 4062 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4063 { 4064 return blk_mq_init_queue_data(set, NULL); 4065 } 4066 EXPORT_SYMBOL(blk_mq_init_queue); 4067 4068 /** 4069 * blk_mq_destroy_queue - shutdown a request queue 4070 * @q: request queue to shutdown 4071 * 4072 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4073 * requests will be failed with -ENODEV. The caller is responsible for dropping 4074 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4075 * 4076 * Context: can sleep 4077 */ 4078 void blk_mq_destroy_queue(struct request_queue *q) 4079 { 4080 WARN_ON_ONCE(!queue_is_mq(q)); 4081 WARN_ON_ONCE(blk_queue_registered(q)); 4082 4083 might_sleep(); 4084 4085 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4086 blk_queue_start_drain(q); 4087 blk_mq_freeze_queue_wait(q); 4088 4089 blk_sync_queue(q); 4090 blk_mq_cancel_work_sync(q); 4091 blk_mq_exit_queue(q); 4092 } 4093 EXPORT_SYMBOL(blk_mq_destroy_queue); 4094 4095 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4096 struct lock_class_key *lkclass) 4097 { 4098 struct request_queue *q; 4099 struct gendisk *disk; 4100 4101 q = blk_mq_init_queue_data(set, queuedata); 4102 if (IS_ERR(q)) 4103 return ERR_CAST(q); 4104 4105 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4106 if (!disk) { 4107 blk_mq_destroy_queue(q); 4108 blk_put_queue(q); 4109 return ERR_PTR(-ENOMEM); 4110 } 4111 set_bit(GD_OWNS_QUEUE, &disk->state); 4112 return disk; 4113 } 4114 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4115 4116 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4117 struct lock_class_key *lkclass) 4118 { 4119 struct gendisk *disk; 4120 4121 if (!blk_get_queue(q)) 4122 return NULL; 4123 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4124 if (!disk) 4125 blk_put_queue(q); 4126 return disk; 4127 } 4128 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4129 4130 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4131 struct blk_mq_tag_set *set, struct request_queue *q, 4132 int hctx_idx, int node) 4133 { 4134 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4135 4136 /* reuse dead hctx first */ 4137 spin_lock(&q->unused_hctx_lock); 4138 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4139 if (tmp->numa_node == node) { 4140 hctx = tmp; 4141 break; 4142 } 4143 } 4144 if (hctx) 4145 list_del_init(&hctx->hctx_list); 4146 spin_unlock(&q->unused_hctx_lock); 4147 4148 if (!hctx) 4149 hctx = blk_mq_alloc_hctx(q, set, node); 4150 if (!hctx) 4151 goto fail; 4152 4153 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4154 goto free_hctx; 4155 4156 return hctx; 4157 4158 free_hctx: 4159 kobject_put(&hctx->kobj); 4160 fail: 4161 return NULL; 4162 } 4163 4164 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4165 struct request_queue *q) 4166 { 4167 struct blk_mq_hw_ctx *hctx; 4168 unsigned long i, j; 4169 4170 /* protect against switching io scheduler */ 4171 mutex_lock(&q->sysfs_lock); 4172 for (i = 0; i < set->nr_hw_queues; i++) { 4173 int old_node; 4174 int node = blk_mq_get_hctx_node(set, i); 4175 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4176 4177 if (old_hctx) { 4178 old_node = old_hctx->numa_node; 4179 blk_mq_exit_hctx(q, set, old_hctx, i); 4180 } 4181 4182 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4183 if (!old_hctx) 4184 break; 4185 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4186 node, old_node); 4187 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4188 WARN_ON_ONCE(!hctx); 4189 } 4190 } 4191 /* 4192 * Increasing nr_hw_queues fails. Free the newly allocated 4193 * hctxs and keep the previous q->nr_hw_queues. 4194 */ 4195 if (i != set->nr_hw_queues) { 4196 j = q->nr_hw_queues; 4197 } else { 4198 j = i; 4199 q->nr_hw_queues = set->nr_hw_queues; 4200 } 4201 4202 xa_for_each_start(&q->hctx_table, j, hctx, j) 4203 blk_mq_exit_hctx(q, set, hctx, j); 4204 mutex_unlock(&q->sysfs_lock); 4205 } 4206 4207 static void blk_mq_update_poll_flag(struct request_queue *q) 4208 { 4209 struct blk_mq_tag_set *set = q->tag_set; 4210 4211 if (set->nr_maps > HCTX_TYPE_POLL && 4212 set->map[HCTX_TYPE_POLL].nr_queues) 4213 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4214 else 4215 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4216 } 4217 4218 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4219 struct request_queue *q) 4220 { 4221 /* mark the queue as mq asap */ 4222 q->mq_ops = set->ops; 4223 4224 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4225 blk_mq_poll_stats_bkt, 4226 BLK_MQ_POLL_STATS_BKTS, q); 4227 if (!q->poll_cb) 4228 goto err_exit; 4229 4230 if (blk_mq_alloc_ctxs(q)) 4231 goto err_poll; 4232 4233 /* init q->mq_kobj and sw queues' kobjects */ 4234 blk_mq_sysfs_init(q); 4235 4236 INIT_LIST_HEAD(&q->unused_hctx_list); 4237 spin_lock_init(&q->unused_hctx_lock); 4238 4239 xa_init(&q->hctx_table); 4240 4241 blk_mq_realloc_hw_ctxs(set, q); 4242 if (!q->nr_hw_queues) 4243 goto err_hctxs; 4244 4245 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4246 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4247 4248 q->tag_set = set; 4249 4250 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4251 blk_mq_update_poll_flag(q); 4252 4253 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4254 INIT_LIST_HEAD(&q->requeue_list); 4255 spin_lock_init(&q->requeue_lock); 4256 4257 q->nr_requests = set->queue_depth; 4258 4259 /* 4260 * Default to classic polling 4261 */ 4262 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4263 4264 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4265 blk_mq_add_queue_tag_set(set, q); 4266 blk_mq_map_swqueue(q); 4267 return 0; 4268 4269 err_hctxs: 4270 blk_mq_release(q); 4271 err_poll: 4272 blk_stat_free_callback(q->poll_cb); 4273 q->poll_cb = NULL; 4274 err_exit: 4275 q->mq_ops = NULL; 4276 return -ENOMEM; 4277 } 4278 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4279 4280 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4281 void blk_mq_exit_queue(struct request_queue *q) 4282 { 4283 struct blk_mq_tag_set *set = q->tag_set; 4284 4285 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4286 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4287 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4288 blk_mq_del_queue_tag_set(q); 4289 } 4290 4291 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4292 { 4293 int i; 4294 4295 if (blk_mq_is_shared_tags(set->flags)) { 4296 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4297 BLK_MQ_NO_HCTX_IDX, 4298 set->queue_depth); 4299 if (!set->shared_tags) 4300 return -ENOMEM; 4301 } 4302 4303 for (i = 0; i < set->nr_hw_queues; i++) { 4304 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4305 goto out_unwind; 4306 cond_resched(); 4307 } 4308 4309 return 0; 4310 4311 out_unwind: 4312 while (--i >= 0) 4313 __blk_mq_free_map_and_rqs(set, i); 4314 4315 if (blk_mq_is_shared_tags(set->flags)) { 4316 blk_mq_free_map_and_rqs(set, set->shared_tags, 4317 BLK_MQ_NO_HCTX_IDX); 4318 } 4319 4320 return -ENOMEM; 4321 } 4322 4323 /* 4324 * Allocate the request maps associated with this tag_set. Note that this 4325 * may reduce the depth asked for, if memory is tight. set->queue_depth 4326 * will be updated to reflect the allocated depth. 4327 */ 4328 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4329 { 4330 unsigned int depth; 4331 int err; 4332 4333 depth = set->queue_depth; 4334 do { 4335 err = __blk_mq_alloc_rq_maps(set); 4336 if (!err) 4337 break; 4338 4339 set->queue_depth >>= 1; 4340 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4341 err = -ENOMEM; 4342 break; 4343 } 4344 } while (set->queue_depth); 4345 4346 if (!set->queue_depth || err) { 4347 pr_err("blk-mq: failed to allocate request map\n"); 4348 return -ENOMEM; 4349 } 4350 4351 if (depth != set->queue_depth) 4352 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4353 depth, set->queue_depth); 4354 4355 return 0; 4356 } 4357 4358 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4359 { 4360 /* 4361 * blk_mq_map_queues() and multiple .map_queues() implementations 4362 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4363 * number of hardware queues. 4364 */ 4365 if (set->nr_maps == 1) 4366 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4367 4368 if (set->ops->map_queues && !is_kdump_kernel()) { 4369 int i; 4370 4371 /* 4372 * transport .map_queues is usually done in the following 4373 * way: 4374 * 4375 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4376 * mask = get_cpu_mask(queue) 4377 * for_each_cpu(cpu, mask) 4378 * set->map[x].mq_map[cpu] = queue; 4379 * } 4380 * 4381 * When we need to remap, the table has to be cleared for 4382 * killing stale mapping since one CPU may not be mapped 4383 * to any hw queue. 4384 */ 4385 for (i = 0; i < set->nr_maps; i++) 4386 blk_mq_clear_mq_map(&set->map[i]); 4387 4388 set->ops->map_queues(set); 4389 } else { 4390 BUG_ON(set->nr_maps > 1); 4391 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4392 } 4393 } 4394 4395 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4396 int new_nr_hw_queues) 4397 { 4398 struct blk_mq_tags **new_tags; 4399 4400 if (set->nr_hw_queues >= new_nr_hw_queues) 4401 goto done; 4402 4403 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4404 GFP_KERNEL, set->numa_node); 4405 if (!new_tags) 4406 return -ENOMEM; 4407 4408 if (set->tags) 4409 memcpy(new_tags, set->tags, set->nr_hw_queues * 4410 sizeof(*set->tags)); 4411 kfree(set->tags); 4412 set->tags = new_tags; 4413 done: 4414 set->nr_hw_queues = new_nr_hw_queues; 4415 return 0; 4416 } 4417 4418 /* 4419 * Alloc a tag set to be associated with one or more request queues. 4420 * May fail with EINVAL for various error conditions. May adjust the 4421 * requested depth down, if it's too large. In that case, the set 4422 * value will be stored in set->queue_depth. 4423 */ 4424 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4425 { 4426 int i, ret; 4427 4428 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4429 4430 if (!set->nr_hw_queues) 4431 return -EINVAL; 4432 if (!set->queue_depth) 4433 return -EINVAL; 4434 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4435 return -EINVAL; 4436 4437 if (!set->ops->queue_rq) 4438 return -EINVAL; 4439 4440 if (!set->ops->get_budget ^ !set->ops->put_budget) 4441 return -EINVAL; 4442 4443 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4444 pr_info("blk-mq: reduced tag depth to %u\n", 4445 BLK_MQ_MAX_DEPTH); 4446 set->queue_depth = BLK_MQ_MAX_DEPTH; 4447 } 4448 4449 if (!set->nr_maps) 4450 set->nr_maps = 1; 4451 else if (set->nr_maps > HCTX_MAX_TYPES) 4452 return -EINVAL; 4453 4454 /* 4455 * If a crashdump is active, then we are potentially in a very 4456 * memory constrained environment. Limit us to 1 queue and 4457 * 64 tags to prevent using too much memory. 4458 */ 4459 if (is_kdump_kernel()) { 4460 set->nr_hw_queues = 1; 4461 set->nr_maps = 1; 4462 set->queue_depth = min(64U, set->queue_depth); 4463 } 4464 /* 4465 * There is no use for more h/w queues than cpus if we just have 4466 * a single map 4467 */ 4468 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4469 set->nr_hw_queues = nr_cpu_ids; 4470 4471 if (set->flags & BLK_MQ_F_BLOCKING) { 4472 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4473 if (!set->srcu) 4474 return -ENOMEM; 4475 ret = init_srcu_struct(set->srcu); 4476 if (ret) 4477 goto out_free_srcu; 4478 } 4479 4480 ret = -ENOMEM; 4481 set->tags = kcalloc_node(set->nr_hw_queues, 4482 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4483 set->numa_node); 4484 if (!set->tags) 4485 goto out_cleanup_srcu; 4486 4487 for (i = 0; i < set->nr_maps; i++) { 4488 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4489 sizeof(set->map[i].mq_map[0]), 4490 GFP_KERNEL, set->numa_node); 4491 if (!set->map[i].mq_map) 4492 goto out_free_mq_map; 4493 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4494 } 4495 4496 blk_mq_update_queue_map(set); 4497 4498 ret = blk_mq_alloc_set_map_and_rqs(set); 4499 if (ret) 4500 goto out_free_mq_map; 4501 4502 mutex_init(&set->tag_list_lock); 4503 INIT_LIST_HEAD(&set->tag_list); 4504 4505 return 0; 4506 4507 out_free_mq_map: 4508 for (i = 0; i < set->nr_maps; i++) { 4509 kfree(set->map[i].mq_map); 4510 set->map[i].mq_map = NULL; 4511 } 4512 kfree(set->tags); 4513 set->tags = NULL; 4514 out_cleanup_srcu: 4515 if (set->flags & BLK_MQ_F_BLOCKING) 4516 cleanup_srcu_struct(set->srcu); 4517 out_free_srcu: 4518 if (set->flags & BLK_MQ_F_BLOCKING) 4519 kfree(set->srcu); 4520 return ret; 4521 } 4522 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4523 4524 /* allocate and initialize a tagset for a simple single-queue device */ 4525 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4526 const struct blk_mq_ops *ops, unsigned int queue_depth, 4527 unsigned int set_flags) 4528 { 4529 memset(set, 0, sizeof(*set)); 4530 set->ops = ops; 4531 set->nr_hw_queues = 1; 4532 set->nr_maps = 1; 4533 set->queue_depth = queue_depth; 4534 set->numa_node = NUMA_NO_NODE; 4535 set->flags = set_flags; 4536 return blk_mq_alloc_tag_set(set); 4537 } 4538 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4539 4540 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4541 { 4542 int i, j; 4543 4544 for (i = 0; i < set->nr_hw_queues; i++) 4545 __blk_mq_free_map_and_rqs(set, i); 4546 4547 if (blk_mq_is_shared_tags(set->flags)) { 4548 blk_mq_free_map_and_rqs(set, set->shared_tags, 4549 BLK_MQ_NO_HCTX_IDX); 4550 } 4551 4552 for (j = 0; j < set->nr_maps; j++) { 4553 kfree(set->map[j].mq_map); 4554 set->map[j].mq_map = NULL; 4555 } 4556 4557 kfree(set->tags); 4558 set->tags = NULL; 4559 if (set->flags & BLK_MQ_F_BLOCKING) { 4560 cleanup_srcu_struct(set->srcu); 4561 kfree(set->srcu); 4562 } 4563 } 4564 EXPORT_SYMBOL(blk_mq_free_tag_set); 4565 4566 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4567 { 4568 struct blk_mq_tag_set *set = q->tag_set; 4569 struct blk_mq_hw_ctx *hctx; 4570 int ret; 4571 unsigned long i; 4572 4573 if (!set) 4574 return -EINVAL; 4575 4576 if (q->nr_requests == nr) 4577 return 0; 4578 4579 blk_mq_freeze_queue(q); 4580 blk_mq_quiesce_queue(q); 4581 4582 ret = 0; 4583 queue_for_each_hw_ctx(q, hctx, i) { 4584 if (!hctx->tags) 4585 continue; 4586 /* 4587 * If we're using an MQ scheduler, just update the scheduler 4588 * queue depth. This is similar to what the old code would do. 4589 */ 4590 if (hctx->sched_tags) { 4591 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4592 nr, true); 4593 } else { 4594 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4595 false); 4596 } 4597 if (ret) 4598 break; 4599 if (q->elevator && q->elevator->type->ops.depth_updated) 4600 q->elevator->type->ops.depth_updated(hctx); 4601 } 4602 if (!ret) { 4603 q->nr_requests = nr; 4604 if (blk_mq_is_shared_tags(set->flags)) { 4605 if (q->elevator) 4606 blk_mq_tag_update_sched_shared_tags(q); 4607 else 4608 blk_mq_tag_resize_shared_tags(set, nr); 4609 } 4610 } 4611 4612 blk_mq_unquiesce_queue(q); 4613 blk_mq_unfreeze_queue(q); 4614 4615 return ret; 4616 } 4617 4618 /* 4619 * request_queue and elevator_type pair. 4620 * It is just used by __blk_mq_update_nr_hw_queues to cache 4621 * the elevator_type associated with a request_queue. 4622 */ 4623 struct blk_mq_qe_pair { 4624 struct list_head node; 4625 struct request_queue *q; 4626 struct elevator_type *type; 4627 }; 4628 4629 /* 4630 * Cache the elevator_type in qe pair list and switch the 4631 * io scheduler to 'none' 4632 */ 4633 static bool blk_mq_elv_switch_none(struct list_head *head, 4634 struct request_queue *q) 4635 { 4636 struct blk_mq_qe_pair *qe; 4637 4638 if (!q->elevator) 4639 return true; 4640 4641 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4642 if (!qe) 4643 return false; 4644 4645 /* q->elevator needs protection from ->sysfs_lock */ 4646 mutex_lock(&q->sysfs_lock); 4647 4648 INIT_LIST_HEAD(&qe->node); 4649 qe->q = q; 4650 qe->type = q->elevator->type; 4651 /* keep a reference to the elevator module as we'll switch back */ 4652 __elevator_get(qe->type); 4653 list_add(&qe->node, head); 4654 elevator_disable(q); 4655 mutex_unlock(&q->sysfs_lock); 4656 4657 return true; 4658 } 4659 4660 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4661 struct request_queue *q) 4662 { 4663 struct blk_mq_qe_pair *qe; 4664 4665 list_for_each_entry(qe, head, node) 4666 if (qe->q == q) 4667 return qe; 4668 4669 return NULL; 4670 } 4671 4672 static void blk_mq_elv_switch_back(struct list_head *head, 4673 struct request_queue *q) 4674 { 4675 struct blk_mq_qe_pair *qe; 4676 struct elevator_type *t; 4677 4678 qe = blk_lookup_qe_pair(head, q); 4679 if (!qe) 4680 return; 4681 t = qe->type; 4682 list_del(&qe->node); 4683 kfree(qe); 4684 4685 mutex_lock(&q->sysfs_lock); 4686 elevator_switch(q, t); 4687 /* drop the reference acquired in blk_mq_elv_switch_none */ 4688 elevator_put(t); 4689 mutex_unlock(&q->sysfs_lock); 4690 } 4691 4692 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4693 int nr_hw_queues) 4694 { 4695 struct request_queue *q; 4696 LIST_HEAD(head); 4697 int prev_nr_hw_queues; 4698 4699 lockdep_assert_held(&set->tag_list_lock); 4700 4701 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4702 nr_hw_queues = nr_cpu_ids; 4703 if (nr_hw_queues < 1) 4704 return; 4705 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4706 return; 4707 4708 list_for_each_entry(q, &set->tag_list, tag_set_list) 4709 blk_mq_freeze_queue(q); 4710 /* 4711 * Switch IO scheduler to 'none', cleaning up the data associated 4712 * with the previous scheduler. We will switch back once we are done 4713 * updating the new sw to hw queue mappings. 4714 */ 4715 list_for_each_entry(q, &set->tag_list, tag_set_list) 4716 if (!blk_mq_elv_switch_none(&head, q)) 4717 goto switch_back; 4718 4719 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4720 blk_mq_debugfs_unregister_hctxs(q); 4721 blk_mq_sysfs_unregister_hctxs(q); 4722 } 4723 4724 prev_nr_hw_queues = set->nr_hw_queues; 4725 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4726 goto reregister; 4727 4728 fallback: 4729 blk_mq_update_queue_map(set); 4730 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4731 blk_mq_realloc_hw_ctxs(set, q); 4732 blk_mq_update_poll_flag(q); 4733 if (q->nr_hw_queues != set->nr_hw_queues) { 4734 int i = prev_nr_hw_queues; 4735 4736 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4737 nr_hw_queues, prev_nr_hw_queues); 4738 for (; i < set->nr_hw_queues; i++) 4739 __blk_mq_free_map_and_rqs(set, i); 4740 4741 set->nr_hw_queues = prev_nr_hw_queues; 4742 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4743 goto fallback; 4744 } 4745 blk_mq_map_swqueue(q); 4746 } 4747 4748 reregister: 4749 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4750 blk_mq_sysfs_register_hctxs(q); 4751 blk_mq_debugfs_register_hctxs(q); 4752 } 4753 4754 switch_back: 4755 list_for_each_entry(q, &set->tag_list, tag_set_list) 4756 blk_mq_elv_switch_back(&head, q); 4757 4758 list_for_each_entry(q, &set->tag_list, tag_set_list) 4759 blk_mq_unfreeze_queue(q); 4760 } 4761 4762 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4763 { 4764 mutex_lock(&set->tag_list_lock); 4765 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4766 mutex_unlock(&set->tag_list_lock); 4767 } 4768 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4769 4770 /* Enable polling stats and return whether they were already enabled. */ 4771 static bool blk_poll_stats_enable(struct request_queue *q) 4772 { 4773 if (q->poll_stat) 4774 return true; 4775 4776 return blk_stats_alloc_enable(q); 4777 } 4778 4779 static void blk_mq_poll_stats_start(struct request_queue *q) 4780 { 4781 /* 4782 * We don't arm the callback if polling stats are not enabled or the 4783 * callback is already active. 4784 */ 4785 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4786 return; 4787 4788 blk_stat_activate_msecs(q->poll_cb, 100); 4789 } 4790 4791 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4792 { 4793 struct request_queue *q = cb->data; 4794 int bucket; 4795 4796 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4797 if (cb->stat[bucket].nr_samples) 4798 q->poll_stat[bucket] = cb->stat[bucket]; 4799 } 4800 } 4801 4802 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4803 struct request *rq) 4804 { 4805 unsigned long ret = 0; 4806 int bucket; 4807 4808 /* 4809 * If stats collection isn't on, don't sleep but turn it on for 4810 * future users 4811 */ 4812 if (!blk_poll_stats_enable(q)) 4813 return 0; 4814 4815 /* 4816 * As an optimistic guess, use half of the mean service time 4817 * for this type of request. We can (and should) make this smarter. 4818 * For instance, if the completion latencies are tight, we can 4819 * get closer than just half the mean. This is especially 4820 * important on devices where the completion latencies are longer 4821 * than ~10 usec. We do use the stats for the relevant IO size 4822 * if available which does lead to better estimates. 4823 */ 4824 bucket = blk_mq_poll_stats_bkt(rq); 4825 if (bucket < 0) 4826 return ret; 4827 4828 if (q->poll_stat[bucket].nr_samples) 4829 ret = (q->poll_stat[bucket].mean + 1) / 2; 4830 4831 return ret; 4832 } 4833 4834 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4835 { 4836 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4837 struct request *rq = blk_qc_to_rq(hctx, qc); 4838 struct hrtimer_sleeper hs; 4839 enum hrtimer_mode mode; 4840 unsigned int nsecs; 4841 ktime_t kt; 4842 4843 /* 4844 * If a request has completed on queue that uses an I/O scheduler, we 4845 * won't get back a request from blk_qc_to_rq. 4846 */ 4847 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4848 return false; 4849 4850 /* 4851 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4852 * 4853 * 0: use half of prev avg 4854 * >0: use this specific value 4855 */ 4856 if (q->poll_nsec > 0) 4857 nsecs = q->poll_nsec; 4858 else 4859 nsecs = blk_mq_poll_nsecs(q, rq); 4860 4861 if (!nsecs) 4862 return false; 4863 4864 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4865 4866 /* 4867 * This will be replaced with the stats tracking code, using 4868 * 'avg_completion_time / 2' as the pre-sleep target. 4869 */ 4870 kt = nsecs; 4871 4872 mode = HRTIMER_MODE_REL; 4873 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4874 hrtimer_set_expires(&hs.timer, kt); 4875 4876 do { 4877 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4878 break; 4879 set_current_state(TASK_UNINTERRUPTIBLE); 4880 hrtimer_sleeper_start_expires(&hs, mode); 4881 if (hs.task) 4882 io_schedule(); 4883 hrtimer_cancel(&hs.timer); 4884 mode = HRTIMER_MODE_ABS; 4885 } while (hs.task && !signal_pending(current)); 4886 4887 __set_current_state(TASK_RUNNING); 4888 destroy_hrtimer_on_stack(&hs.timer); 4889 4890 /* 4891 * If we sleep, have the caller restart the poll loop to reset the 4892 * state. Like for the other success return cases, the caller is 4893 * responsible for checking if the IO completed. If the IO isn't 4894 * complete, we'll get called again and will go straight to the busy 4895 * poll loop. 4896 */ 4897 return true; 4898 } 4899 4900 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4901 struct io_comp_batch *iob, unsigned int flags) 4902 { 4903 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4904 long state = get_current_state(); 4905 int ret; 4906 4907 do { 4908 ret = q->mq_ops->poll(hctx, iob); 4909 if (ret > 0) { 4910 __set_current_state(TASK_RUNNING); 4911 return ret; 4912 } 4913 4914 if (signal_pending_state(state, current)) 4915 __set_current_state(TASK_RUNNING); 4916 if (task_is_running(current)) 4917 return 1; 4918 4919 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4920 break; 4921 cpu_relax(); 4922 } while (!need_resched()); 4923 4924 __set_current_state(TASK_RUNNING); 4925 return 0; 4926 } 4927 4928 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4929 unsigned int flags) 4930 { 4931 if (!(flags & BLK_POLL_NOSLEEP) && 4932 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4933 if (blk_mq_poll_hybrid(q, cookie)) 4934 return 1; 4935 } 4936 return blk_mq_poll_classic(q, cookie, iob, flags); 4937 } 4938 4939 unsigned int blk_mq_rq_cpu(struct request *rq) 4940 { 4941 return rq->mq_ctx->cpu; 4942 } 4943 EXPORT_SYMBOL(blk_mq_rq_cpu); 4944 4945 void blk_mq_cancel_work_sync(struct request_queue *q) 4946 { 4947 struct blk_mq_hw_ctx *hctx; 4948 unsigned long i; 4949 4950 cancel_delayed_work_sync(&q->requeue_work); 4951 4952 queue_for_each_hw_ctx(q, hctx, i) 4953 cancel_delayed_work_sync(&hctx->run_work); 4954 } 4955 4956 static int __init blk_mq_init(void) 4957 { 4958 int i; 4959 4960 for_each_possible_cpu(i) 4961 init_llist_head(&per_cpu(blk_cpu_done, i)); 4962 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4963 4964 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4965 "block/softirq:dead", NULL, 4966 blk_softirq_cpu_dead); 4967 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4968 blk_mq_hctx_notify_dead); 4969 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4970 blk_mq_hctx_notify_online, 4971 blk_mq_hctx_notify_offline); 4972 return 0; 4973 } 4974 subsys_initcall(blk_mq_init); 4975