xref: /openbmc/linux/block/blk-mq.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 	if (blk_queue_has_srcu(q))
265 		synchronize_srcu(q->srcu);
266 	else
267 		synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270 
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 	blk_mq_quiesce_queue_nowait(q);
283 	blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286 
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 	unsigned long flags;
297 	bool run_queue = false;
298 
299 	spin_lock_irqsave(&q->queue_lock, flags);
300 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 		;
302 	} else if (!--q->quiesce_depth) {
303 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 		run_queue = true;
305 	}
306 	spin_unlock_irqrestore(&q->queue_lock, flags);
307 
308 	/* dispatch requests which are inserted during quiescing */
309 	if (run_queue)
310 		blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313 
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 	struct blk_mq_hw_ctx *hctx;
317 	unsigned long i;
318 
319 	queue_for_each_hw_ctx(q, hctx, i)
320 		if (blk_mq_hw_queue_mapped(hctx))
321 			blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323 
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 	memset(rq, 0, sizeof(*rq));
327 
328 	INIT_LIST_HEAD(&rq->queuelist);
329 	rq->q = q;
330 	rq->__sector = (sector_t) -1;
331 	INIT_HLIST_NODE(&rq->hash);
332 	RB_CLEAR_NODE(&rq->rb_node);
333 	rq->tag = BLK_MQ_NO_TAG;
334 	rq->internal_tag = BLK_MQ_NO_TAG;
335 	rq->start_time_ns = ktime_get_ns();
336 	rq->part = NULL;
337 	blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340 
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 	struct blk_mq_ctx *ctx = data->ctx;
345 	struct blk_mq_hw_ctx *hctx = data->hctx;
346 	struct request_queue *q = data->q;
347 	struct request *rq = tags->static_rqs[tag];
348 
349 	rq->q = q;
350 	rq->mq_ctx = ctx;
351 	rq->mq_hctx = hctx;
352 	rq->cmd_flags = data->cmd_flags;
353 
354 	if (data->flags & BLK_MQ_REQ_PM)
355 		data->rq_flags |= RQF_PM;
356 	if (blk_queue_io_stat(q))
357 		data->rq_flags |= RQF_IO_STAT;
358 	rq->rq_flags = data->rq_flags;
359 
360 	if (!(data->rq_flags & RQF_ELV)) {
361 		rq->tag = tag;
362 		rq->internal_tag = BLK_MQ_NO_TAG;
363 	} else {
364 		rq->tag = BLK_MQ_NO_TAG;
365 		rq->internal_tag = tag;
366 	}
367 	rq->timeout = 0;
368 
369 	if (blk_mq_need_time_stamp(rq))
370 		rq->start_time_ns = ktime_get_ns();
371 	else
372 		rq->start_time_ns = 0;
373 	rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 	rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_ELV) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (!op_is_flush(data->cmd_flags) &&
399 		    e->type->ops.prepare_request) {
400 			e->type->ops.prepare_request(rq);
401 			rq->rq_flags |= RQF_ELVPRIV;
402 		}
403 	}
404 
405 	return rq;
406 }
407 
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 		u64 alloc_time_ns)
411 {
412 	unsigned int tag, tag_offset;
413 	struct blk_mq_tags *tags;
414 	struct request *rq;
415 	unsigned long tag_mask;
416 	int i, nr = 0;
417 
418 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 	if (unlikely(!tag_mask))
420 		return NULL;
421 
422 	tags = blk_mq_tags_from_data(data);
423 	for (i = 0; tag_mask; i++) {
424 		if (!(tag_mask & (1UL << i)))
425 			continue;
426 		tag = tag_offset + i;
427 		prefetch(tags->static_rqs[tag]);
428 		tag_mask &= ~(1UL << i);
429 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 		rq_list_add(data->cached_rq, rq);
431 		nr++;
432 	}
433 	/* caller already holds a reference, add for remainder */
434 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 	data->nr_tags -= nr;
436 
437 	return rq_list_pop(data->cached_rq);
438 }
439 
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 	struct request_queue *q = data->q;
443 	u64 alloc_time_ns = 0;
444 	struct request *rq;
445 	unsigned int tag;
446 
447 	/* alloc_time includes depth and tag waits */
448 	if (blk_queue_rq_alloc_time(q))
449 		alloc_time_ns = ktime_get_ns();
450 
451 	if (data->cmd_flags & REQ_NOWAIT)
452 		data->flags |= BLK_MQ_REQ_NOWAIT;
453 
454 	if (q->elevator) {
455 		struct elevator_queue *e = q->elevator;
456 
457 		data->rq_flags |= RQF_ELV;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list. Don't include reserved tags in the
462 		 * limiting, as it isn't useful.
463 		 */
464 		if (!op_is_flush(data->cmd_flags) &&
465 		    !blk_op_is_passthrough(data->cmd_flags) &&
466 		    e->type->ops.limit_depth &&
467 		    !(data->flags & BLK_MQ_REQ_RESERVED))
468 			e->type->ops.limit_depth(data->cmd_flags, data);
469 	}
470 
471 retry:
472 	data->ctx = blk_mq_get_ctx(q);
473 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 	if (!(data->rq_flags & RQF_ELV))
475 		blk_mq_tag_busy(data->hctx);
476 
477 	if (data->flags & BLK_MQ_REQ_RESERVED)
478 		data->rq_flags |= RQF_RESV;
479 
480 	/*
481 	 * Try batched alloc if we want more than 1 tag.
482 	 */
483 	if (data->nr_tags > 1) {
484 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485 		if (rq)
486 			return rq;
487 		data->nr_tags = 1;
488 	}
489 
490 	/*
491 	 * Waiting allocations only fail because of an inactive hctx.  In that
492 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
493 	 * should have migrated us to an online CPU by now.
494 	 */
495 	tag = blk_mq_get_tag(data);
496 	if (tag == BLK_MQ_NO_TAG) {
497 		if (data->flags & BLK_MQ_REQ_NOWAIT)
498 			return NULL;
499 		/*
500 		 * Give up the CPU and sleep for a random short time to
501 		 * ensure that thread using a realtime scheduling class
502 		 * are migrated off the CPU, and thus off the hctx that
503 		 * is going away.
504 		 */
505 		msleep(3);
506 		goto retry;
507 	}
508 
509 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510 					alloc_time_ns);
511 }
512 
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514 					    struct blk_plug *plug,
515 					    blk_opf_t opf,
516 					    blk_mq_req_flags_t flags)
517 {
518 	struct blk_mq_alloc_data data = {
519 		.q		= q,
520 		.flags		= flags,
521 		.cmd_flags	= opf,
522 		.nr_tags	= plug->nr_ios,
523 		.cached_rq	= &plug->cached_rq,
524 	};
525 	struct request *rq;
526 
527 	if (blk_queue_enter(q, flags))
528 		return NULL;
529 
530 	plug->nr_ios = 1;
531 
532 	rq = __blk_mq_alloc_requests(&data);
533 	if (unlikely(!rq))
534 		blk_queue_exit(q);
535 	return rq;
536 }
537 
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539 						   blk_opf_t opf,
540 						   blk_mq_req_flags_t flags)
541 {
542 	struct blk_plug *plug = current->plug;
543 	struct request *rq;
544 
545 	if (!plug)
546 		return NULL;
547 	if (rq_list_empty(plug->cached_rq)) {
548 		if (plug->nr_ios == 1)
549 			return NULL;
550 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551 		if (rq)
552 			goto got_it;
553 		return NULL;
554 	}
555 	rq = rq_list_peek(&plug->cached_rq);
556 	if (!rq || rq->q != q)
557 		return NULL;
558 
559 	if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560 		return NULL;
561 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562 		return NULL;
563 
564 	plug->cached_rq = rq_list_next(rq);
565 got_it:
566 	rq->cmd_flags = opf;
567 	INIT_LIST_HEAD(&rq->queuelist);
568 	return rq;
569 }
570 
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572 		blk_mq_req_flags_t flags)
573 {
574 	struct request *rq;
575 
576 	rq = blk_mq_alloc_cached_request(q, opf, flags);
577 	if (!rq) {
578 		struct blk_mq_alloc_data data = {
579 			.q		= q,
580 			.flags		= flags,
581 			.cmd_flags	= opf,
582 			.nr_tags	= 1,
583 		};
584 		int ret;
585 
586 		ret = blk_queue_enter(q, flags);
587 		if (ret)
588 			return ERR_PTR(ret);
589 
590 		rq = __blk_mq_alloc_requests(&data);
591 		if (!rq)
592 			goto out_queue_exit;
593 	}
594 	rq->__data_len = 0;
595 	rq->__sector = (sector_t) -1;
596 	rq->bio = rq->biotail = NULL;
597 	return rq;
598 out_queue_exit:
599 	blk_queue_exit(q);
600 	return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603 
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607 	struct blk_mq_alloc_data data = {
608 		.q		= q,
609 		.flags		= flags,
610 		.cmd_flags	= opf,
611 		.nr_tags	= 1,
612 	};
613 	u64 alloc_time_ns = 0;
614 	unsigned int cpu;
615 	unsigned int tag;
616 	int ret;
617 
618 	/* alloc_time includes depth and tag waits */
619 	if (blk_queue_rq_alloc_time(q))
620 		alloc_time_ns = ktime_get_ns();
621 
622 	/*
623 	 * If the tag allocator sleeps we could get an allocation for a
624 	 * different hardware context.  No need to complicate the low level
625 	 * allocator for this for the rare use case of a command tied to
626 	 * a specific queue.
627 	 */
628 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
629 		return ERR_PTR(-EINVAL);
630 
631 	if (hctx_idx >= q->nr_hw_queues)
632 		return ERR_PTR(-EIO);
633 
634 	ret = blk_queue_enter(q, flags);
635 	if (ret)
636 		return ERR_PTR(ret);
637 
638 	/*
639 	 * Check if the hardware context is actually mapped to anything.
640 	 * If not tell the caller that it should skip this queue.
641 	 */
642 	ret = -EXDEV;
643 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
644 	if (!blk_mq_hw_queue_mapped(data.hctx))
645 		goto out_queue_exit;
646 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
647 	if (cpu >= nr_cpu_ids)
648 		goto out_queue_exit;
649 	data.ctx = __blk_mq_get_ctx(q, cpu);
650 
651 	if (!q->elevator)
652 		blk_mq_tag_busy(data.hctx);
653 	else
654 		data.rq_flags |= RQF_ELV;
655 
656 	if (flags & BLK_MQ_REQ_RESERVED)
657 		data.rq_flags |= RQF_RESV;
658 
659 	ret = -EWOULDBLOCK;
660 	tag = blk_mq_get_tag(&data);
661 	if (tag == BLK_MQ_NO_TAG)
662 		goto out_queue_exit;
663 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
664 					alloc_time_ns);
665 
666 out_queue_exit:
667 	blk_queue_exit(q);
668 	return ERR_PTR(ret);
669 }
670 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
671 
672 static void __blk_mq_free_request(struct request *rq)
673 {
674 	struct request_queue *q = rq->q;
675 	struct blk_mq_ctx *ctx = rq->mq_ctx;
676 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
677 	const int sched_tag = rq->internal_tag;
678 
679 	blk_crypto_free_request(rq);
680 	blk_pm_mark_last_busy(rq);
681 	rq->mq_hctx = NULL;
682 	if (rq->tag != BLK_MQ_NO_TAG)
683 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
684 	if (sched_tag != BLK_MQ_NO_TAG)
685 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
686 	blk_mq_sched_restart(hctx);
687 	blk_queue_exit(q);
688 }
689 
690 void blk_mq_free_request(struct request *rq)
691 {
692 	struct request_queue *q = rq->q;
693 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
694 
695 	if ((rq->rq_flags & RQF_ELVPRIV) &&
696 	    q->elevator->type->ops.finish_request)
697 		q->elevator->type->ops.finish_request(rq);
698 
699 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
700 		__blk_mq_dec_active_requests(hctx);
701 
702 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
703 		laptop_io_completion(q->disk->bdi);
704 
705 	rq_qos_done(q, rq);
706 
707 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
708 	if (req_ref_put_and_test(rq))
709 		__blk_mq_free_request(rq);
710 }
711 EXPORT_SYMBOL_GPL(blk_mq_free_request);
712 
713 void blk_mq_free_plug_rqs(struct blk_plug *plug)
714 {
715 	struct request *rq;
716 
717 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
718 		blk_mq_free_request(rq);
719 }
720 
721 void blk_dump_rq_flags(struct request *rq, char *msg)
722 {
723 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
724 		rq->q->disk ? rq->q->disk->disk_name : "?",
725 		(__force unsigned long long) rq->cmd_flags);
726 
727 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
728 	       (unsigned long long)blk_rq_pos(rq),
729 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
730 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
731 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
732 }
733 EXPORT_SYMBOL(blk_dump_rq_flags);
734 
735 static void req_bio_endio(struct request *rq, struct bio *bio,
736 			  unsigned int nbytes, blk_status_t error)
737 {
738 	if (unlikely(error)) {
739 		bio->bi_status = error;
740 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
741 		/*
742 		 * Partial zone append completions cannot be supported as the
743 		 * BIO fragments may end up not being written sequentially.
744 		 */
745 		if (bio->bi_iter.bi_size != nbytes)
746 			bio->bi_status = BLK_STS_IOERR;
747 		else
748 			bio->bi_iter.bi_sector = rq->__sector;
749 	}
750 
751 	bio_advance(bio, nbytes);
752 
753 	if (unlikely(rq->rq_flags & RQF_QUIET))
754 		bio_set_flag(bio, BIO_QUIET);
755 	/* don't actually finish bio if it's part of flush sequence */
756 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
757 		bio_endio(bio);
758 }
759 
760 static void blk_account_io_completion(struct request *req, unsigned int bytes)
761 {
762 	if (req->part && blk_do_io_stat(req)) {
763 		const int sgrp = op_stat_group(req_op(req));
764 
765 		part_stat_lock();
766 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
767 		part_stat_unlock();
768 	}
769 }
770 
771 static void blk_print_req_error(struct request *req, blk_status_t status)
772 {
773 	printk_ratelimited(KERN_ERR
774 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
775 		"phys_seg %u prio class %u\n",
776 		blk_status_to_str(status),
777 		req->q->disk ? req->q->disk->disk_name : "?",
778 		blk_rq_pos(req), (__force u32)req_op(req),
779 		blk_op_str(req_op(req)),
780 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
781 		req->nr_phys_segments,
782 		IOPRIO_PRIO_CLASS(req->ioprio));
783 }
784 
785 /*
786  * Fully end IO on a request. Does not support partial completions, or
787  * errors.
788  */
789 static void blk_complete_request(struct request *req)
790 {
791 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
792 	int total_bytes = blk_rq_bytes(req);
793 	struct bio *bio = req->bio;
794 
795 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
796 
797 	if (!bio)
798 		return;
799 
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
802 		req->q->integrity.profile->complete_fn(req, total_bytes);
803 #endif
804 
805 	blk_account_io_completion(req, total_bytes);
806 
807 	do {
808 		struct bio *next = bio->bi_next;
809 
810 		/* Completion has already been traced */
811 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
812 
813 		if (req_op(req) == REQ_OP_ZONE_APPEND)
814 			bio->bi_iter.bi_sector = req->__sector;
815 
816 		if (!is_flush)
817 			bio_endio(bio);
818 		bio = next;
819 	} while (bio);
820 
821 	/*
822 	 * Reset counters so that the request stacking driver
823 	 * can find how many bytes remain in the request
824 	 * later.
825 	 */
826 	if (!req->end_io) {
827 		req->bio = NULL;
828 		req->__data_len = 0;
829 	}
830 }
831 
832 /**
833  * blk_update_request - Complete multiple bytes without completing the request
834  * @req:      the request being processed
835  * @error:    block status code
836  * @nr_bytes: number of bytes to complete for @req
837  *
838  * Description:
839  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
840  *     the request structure even if @req doesn't have leftover.
841  *     If @req has leftover, sets it up for the next range of segments.
842  *
843  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
844  *     %false return from this function.
845  *
846  * Note:
847  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
848  *      except in the consistency check at the end of this function.
849  *
850  * Return:
851  *     %false - this request doesn't have any more data
852  *     %true  - this request has more data
853  **/
854 bool blk_update_request(struct request *req, blk_status_t error,
855 		unsigned int nr_bytes)
856 {
857 	int total_bytes;
858 
859 	trace_block_rq_complete(req, error, nr_bytes);
860 
861 	if (!req->bio)
862 		return false;
863 
864 #ifdef CONFIG_BLK_DEV_INTEGRITY
865 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
866 	    error == BLK_STS_OK)
867 		req->q->integrity.profile->complete_fn(req, nr_bytes);
868 #endif
869 
870 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
871 		     !(req->rq_flags & RQF_QUIET)) &&
872 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
873 		blk_print_req_error(req, error);
874 		trace_block_rq_error(req, error, nr_bytes);
875 	}
876 
877 	blk_account_io_completion(req, nr_bytes);
878 
879 	total_bytes = 0;
880 	while (req->bio) {
881 		struct bio *bio = req->bio;
882 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
883 
884 		if (bio_bytes == bio->bi_iter.bi_size)
885 			req->bio = bio->bi_next;
886 
887 		/* Completion has already been traced */
888 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
889 		req_bio_endio(req, bio, bio_bytes, error);
890 
891 		total_bytes += bio_bytes;
892 		nr_bytes -= bio_bytes;
893 
894 		if (!nr_bytes)
895 			break;
896 	}
897 
898 	/*
899 	 * completely done
900 	 */
901 	if (!req->bio) {
902 		/*
903 		 * Reset counters so that the request stacking driver
904 		 * can find how many bytes remain in the request
905 		 * later.
906 		 */
907 		req->__data_len = 0;
908 		return false;
909 	}
910 
911 	req->__data_len -= total_bytes;
912 
913 	/* update sector only for requests with clear definition of sector */
914 	if (!blk_rq_is_passthrough(req))
915 		req->__sector += total_bytes >> 9;
916 
917 	/* mixed attributes always follow the first bio */
918 	if (req->rq_flags & RQF_MIXED_MERGE) {
919 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
920 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
921 	}
922 
923 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
924 		/*
925 		 * If total number of sectors is less than the first segment
926 		 * size, something has gone terribly wrong.
927 		 */
928 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
929 			blk_dump_rq_flags(req, "request botched");
930 			req->__data_len = blk_rq_cur_bytes(req);
931 		}
932 
933 		/* recalculate the number of segments */
934 		req->nr_phys_segments = blk_recalc_rq_segments(req);
935 	}
936 
937 	return true;
938 }
939 EXPORT_SYMBOL_GPL(blk_update_request);
940 
941 static void __blk_account_io_done(struct request *req, u64 now)
942 {
943 	const int sgrp = op_stat_group(req_op(req));
944 
945 	part_stat_lock();
946 	update_io_ticks(req->part, jiffies, true);
947 	part_stat_inc(req->part, ios[sgrp]);
948 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
949 	part_stat_unlock();
950 }
951 
952 static inline void blk_account_io_done(struct request *req, u64 now)
953 {
954 	/*
955 	 * Account IO completion.  flush_rq isn't accounted as a
956 	 * normal IO on queueing nor completion.  Accounting the
957 	 * containing request is enough.
958 	 */
959 	if (blk_do_io_stat(req) && req->part &&
960 	    !(req->rq_flags & RQF_FLUSH_SEQ))
961 		__blk_account_io_done(req, now);
962 }
963 
964 static void __blk_account_io_start(struct request *rq)
965 {
966 	/*
967 	 * All non-passthrough requests are created from a bio with one
968 	 * exception: when a flush command that is part of a flush sequence
969 	 * generated by the state machine in blk-flush.c is cloned onto the
970 	 * lower device by dm-multipath we can get here without a bio.
971 	 */
972 	if (rq->bio)
973 		rq->part = rq->bio->bi_bdev;
974 	else
975 		rq->part = rq->q->disk->part0;
976 
977 	part_stat_lock();
978 	update_io_ticks(rq->part, jiffies, false);
979 	part_stat_unlock();
980 }
981 
982 static inline void blk_account_io_start(struct request *req)
983 {
984 	if (blk_do_io_stat(req))
985 		__blk_account_io_start(req);
986 }
987 
988 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
989 {
990 	if (rq->rq_flags & RQF_STATS) {
991 		blk_mq_poll_stats_start(rq->q);
992 		blk_stat_add(rq, now);
993 	}
994 
995 	blk_mq_sched_completed_request(rq, now);
996 	blk_account_io_done(rq, now);
997 }
998 
999 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1000 {
1001 	if (blk_mq_need_time_stamp(rq))
1002 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1003 
1004 	if (rq->end_io) {
1005 		rq_qos_done(rq->q, rq);
1006 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1007 			blk_mq_free_request(rq);
1008 	} else {
1009 		blk_mq_free_request(rq);
1010 	}
1011 }
1012 EXPORT_SYMBOL(__blk_mq_end_request);
1013 
1014 void blk_mq_end_request(struct request *rq, blk_status_t error)
1015 {
1016 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1017 		BUG();
1018 	__blk_mq_end_request(rq, error);
1019 }
1020 EXPORT_SYMBOL(blk_mq_end_request);
1021 
1022 #define TAG_COMP_BATCH		32
1023 
1024 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1025 					  int *tag_array, int nr_tags)
1026 {
1027 	struct request_queue *q = hctx->queue;
1028 
1029 	/*
1030 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1031 	 * update hctx->nr_active in batch
1032 	 */
1033 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1034 		__blk_mq_sub_active_requests(hctx, nr_tags);
1035 
1036 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1037 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1038 }
1039 
1040 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1041 {
1042 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1043 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1044 	struct request *rq;
1045 	u64 now = 0;
1046 
1047 	if (iob->need_ts)
1048 		now = ktime_get_ns();
1049 
1050 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1051 		prefetch(rq->bio);
1052 		prefetch(rq->rq_next);
1053 
1054 		blk_complete_request(rq);
1055 		if (iob->need_ts)
1056 			__blk_mq_end_request_acct(rq, now);
1057 
1058 		rq_qos_done(rq->q, rq);
1059 
1060 		/*
1061 		 * If end_io handler returns NONE, then it still has
1062 		 * ownership of the request.
1063 		 */
1064 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1065 			continue;
1066 
1067 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1068 		if (!req_ref_put_and_test(rq))
1069 			continue;
1070 
1071 		blk_crypto_free_request(rq);
1072 		blk_pm_mark_last_busy(rq);
1073 
1074 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1075 			if (cur_hctx)
1076 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1077 			nr_tags = 0;
1078 			cur_hctx = rq->mq_hctx;
1079 		}
1080 		tags[nr_tags++] = rq->tag;
1081 	}
1082 
1083 	if (nr_tags)
1084 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1085 }
1086 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1087 
1088 static void blk_complete_reqs(struct llist_head *list)
1089 {
1090 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1091 	struct request *rq, *next;
1092 
1093 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1094 		rq->q->mq_ops->complete(rq);
1095 }
1096 
1097 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1098 {
1099 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1100 }
1101 
1102 static int blk_softirq_cpu_dead(unsigned int cpu)
1103 {
1104 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1105 	return 0;
1106 }
1107 
1108 static void __blk_mq_complete_request_remote(void *data)
1109 {
1110 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1111 }
1112 
1113 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1114 {
1115 	int cpu = raw_smp_processor_id();
1116 
1117 	if (!IS_ENABLED(CONFIG_SMP) ||
1118 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1119 		return false;
1120 	/*
1121 	 * With force threaded interrupts enabled, raising softirq from an SMP
1122 	 * function call will always result in waking the ksoftirqd thread.
1123 	 * This is probably worse than completing the request on a different
1124 	 * cache domain.
1125 	 */
1126 	if (force_irqthreads())
1127 		return false;
1128 
1129 	/* same CPU or cache domain?  Complete locally */
1130 	if (cpu == rq->mq_ctx->cpu ||
1131 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1132 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1133 		return false;
1134 
1135 	/* don't try to IPI to an offline CPU */
1136 	return cpu_online(rq->mq_ctx->cpu);
1137 }
1138 
1139 static void blk_mq_complete_send_ipi(struct request *rq)
1140 {
1141 	struct llist_head *list;
1142 	unsigned int cpu;
1143 
1144 	cpu = rq->mq_ctx->cpu;
1145 	list = &per_cpu(blk_cpu_done, cpu);
1146 	if (llist_add(&rq->ipi_list, list)) {
1147 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1148 		smp_call_function_single_async(cpu, &rq->csd);
1149 	}
1150 }
1151 
1152 static void blk_mq_raise_softirq(struct request *rq)
1153 {
1154 	struct llist_head *list;
1155 
1156 	preempt_disable();
1157 	list = this_cpu_ptr(&blk_cpu_done);
1158 	if (llist_add(&rq->ipi_list, list))
1159 		raise_softirq(BLOCK_SOFTIRQ);
1160 	preempt_enable();
1161 }
1162 
1163 bool blk_mq_complete_request_remote(struct request *rq)
1164 {
1165 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1166 
1167 	/*
1168 	 * For request which hctx has only one ctx mapping,
1169 	 * or a polled request, always complete locally,
1170 	 * it's pointless to redirect the completion.
1171 	 */
1172 	if (rq->mq_hctx->nr_ctx == 1 ||
1173 		rq->cmd_flags & REQ_POLLED)
1174 		return false;
1175 
1176 	if (blk_mq_complete_need_ipi(rq)) {
1177 		blk_mq_complete_send_ipi(rq);
1178 		return true;
1179 	}
1180 
1181 	if (rq->q->nr_hw_queues == 1) {
1182 		blk_mq_raise_softirq(rq);
1183 		return true;
1184 	}
1185 	return false;
1186 }
1187 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1188 
1189 /**
1190  * blk_mq_complete_request - end I/O on a request
1191  * @rq:		the request being processed
1192  *
1193  * Description:
1194  *	Complete a request by scheduling the ->complete_rq operation.
1195  **/
1196 void blk_mq_complete_request(struct request *rq)
1197 {
1198 	if (!blk_mq_complete_request_remote(rq))
1199 		rq->q->mq_ops->complete(rq);
1200 }
1201 EXPORT_SYMBOL(blk_mq_complete_request);
1202 
1203 /**
1204  * blk_mq_start_request - Start processing a request
1205  * @rq: Pointer to request to be started
1206  *
1207  * Function used by device drivers to notify the block layer that a request
1208  * is going to be processed now, so blk layer can do proper initializations
1209  * such as starting the timeout timer.
1210  */
1211 void blk_mq_start_request(struct request *rq)
1212 {
1213 	struct request_queue *q = rq->q;
1214 
1215 	trace_block_rq_issue(rq);
1216 
1217 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1218 		rq->io_start_time_ns = ktime_get_ns();
1219 		rq->stats_sectors = blk_rq_sectors(rq);
1220 		rq->rq_flags |= RQF_STATS;
1221 		rq_qos_issue(q, rq);
1222 	}
1223 
1224 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1225 
1226 	blk_add_timer(rq);
1227 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1228 
1229 #ifdef CONFIG_BLK_DEV_INTEGRITY
1230 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1231 		q->integrity.profile->prepare_fn(rq);
1232 #endif
1233 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1234 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1235 }
1236 EXPORT_SYMBOL(blk_mq_start_request);
1237 
1238 /*
1239  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1240  * queues. This is important for md arrays to benefit from merging
1241  * requests.
1242  */
1243 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1244 {
1245 	if (plug->multiple_queues)
1246 		return BLK_MAX_REQUEST_COUNT * 2;
1247 	return BLK_MAX_REQUEST_COUNT;
1248 }
1249 
1250 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1251 {
1252 	struct request *last = rq_list_peek(&plug->mq_list);
1253 
1254 	if (!plug->rq_count) {
1255 		trace_block_plug(rq->q);
1256 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1257 		   (!blk_queue_nomerges(rq->q) &&
1258 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1259 		blk_mq_flush_plug_list(plug, false);
1260 		trace_block_plug(rq->q);
1261 	}
1262 
1263 	if (!plug->multiple_queues && last && last->q != rq->q)
1264 		plug->multiple_queues = true;
1265 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1266 		plug->has_elevator = true;
1267 	rq->rq_next = NULL;
1268 	rq_list_add(&plug->mq_list, rq);
1269 	plug->rq_count++;
1270 }
1271 
1272 /**
1273  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1274  * @rq:		request to insert
1275  * @at_head:    insert request at head or tail of queue
1276  *
1277  * Description:
1278  *    Insert a fully prepared request at the back of the I/O scheduler queue
1279  *    for execution.  Don't wait for completion.
1280  *
1281  * Note:
1282  *    This function will invoke @done directly if the queue is dead.
1283  */
1284 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1285 {
1286 	WARN_ON(irqs_disabled());
1287 	WARN_ON(!blk_rq_is_passthrough(rq));
1288 
1289 	blk_account_io_start(rq);
1290 
1291 	/*
1292 	 * As plugging can be enabled for passthrough requests on a zoned
1293 	 * device, directly accessing the plug instead of using blk_mq_plug()
1294 	 * should not have any consequences.
1295 	 */
1296 	if (current->plug)
1297 		blk_add_rq_to_plug(current->plug, rq);
1298 	else
1299 		blk_mq_sched_insert_request(rq, at_head, true, false);
1300 }
1301 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1302 
1303 struct blk_rq_wait {
1304 	struct completion done;
1305 	blk_status_t ret;
1306 };
1307 
1308 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1309 {
1310 	struct blk_rq_wait *wait = rq->end_io_data;
1311 
1312 	wait->ret = ret;
1313 	complete(&wait->done);
1314 	return RQ_END_IO_NONE;
1315 }
1316 
1317 bool blk_rq_is_poll(struct request *rq)
1318 {
1319 	if (!rq->mq_hctx)
1320 		return false;
1321 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1322 		return false;
1323 	if (WARN_ON_ONCE(!rq->bio))
1324 		return false;
1325 	return true;
1326 }
1327 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1328 
1329 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1330 {
1331 	do {
1332 		bio_poll(rq->bio, NULL, 0);
1333 		cond_resched();
1334 	} while (!completion_done(wait));
1335 }
1336 
1337 /**
1338  * blk_execute_rq - insert a request into queue for execution
1339  * @rq:		request to insert
1340  * @at_head:    insert request at head or tail of queue
1341  *
1342  * Description:
1343  *    Insert a fully prepared request at the back of the I/O scheduler queue
1344  *    for execution and wait for completion.
1345  * Return: The blk_status_t result provided to blk_mq_end_request().
1346  */
1347 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1348 {
1349 	struct blk_rq_wait wait = {
1350 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1351 	};
1352 
1353 	WARN_ON(irqs_disabled());
1354 	WARN_ON(!blk_rq_is_passthrough(rq));
1355 
1356 	rq->end_io_data = &wait;
1357 	rq->end_io = blk_end_sync_rq;
1358 
1359 	blk_account_io_start(rq);
1360 	blk_mq_sched_insert_request(rq, at_head, true, false);
1361 
1362 	if (blk_rq_is_poll(rq)) {
1363 		blk_rq_poll_completion(rq, &wait.done);
1364 	} else {
1365 		/*
1366 		 * Prevent hang_check timer from firing at us during very long
1367 		 * I/O
1368 		 */
1369 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1370 
1371 		if (hang_check)
1372 			while (!wait_for_completion_io_timeout(&wait.done,
1373 					hang_check * (HZ/2)))
1374 				;
1375 		else
1376 			wait_for_completion_io(&wait.done);
1377 	}
1378 
1379 	return wait.ret;
1380 }
1381 EXPORT_SYMBOL(blk_execute_rq);
1382 
1383 static void __blk_mq_requeue_request(struct request *rq)
1384 {
1385 	struct request_queue *q = rq->q;
1386 
1387 	blk_mq_put_driver_tag(rq);
1388 
1389 	trace_block_rq_requeue(rq);
1390 	rq_qos_requeue(q, rq);
1391 
1392 	if (blk_mq_request_started(rq)) {
1393 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1394 		rq->rq_flags &= ~RQF_TIMED_OUT;
1395 	}
1396 }
1397 
1398 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1399 {
1400 	__blk_mq_requeue_request(rq);
1401 
1402 	/* this request will be re-inserted to io scheduler queue */
1403 	blk_mq_sched_requeue_request(rq);
1404 
1405 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1406 }
1407 EXPORT_SYMBOL(blk_mq_requeue_request);
1408 
1409 static void blk_mq_requeue_work(struct work_struct *work)
1410 {
1411 	struct request_queue *q =
1412 		container_of(work, struct request_queue, requeue_work.work);
1413 	LIST_HEAD(rq_list);
1414 	struct request *rq, *next;
1415 
1416 	spin_lock_irq(&q->requeue_lock);
1417 	list_splice_init(&q->requeue_list, &rq_list);
1418 	spin_unlock_irq(&q->requeue_lock);
1419 
1420 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1421 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1422 			continue;
1423 
1424 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1425 		list_del_init(&rq->queuelist);
1426 		/*
1427 		 * If RQF_DONTPREP, rq has contained some driver specific
1428 		 * data, so insert it to hctx dispatch list to avoid any
1429 		 * merge.
1430 		 */
1431 		if (rq->rq_flags & RQF_DONTPREP)
1432 			blk_mq_request_bypass_insert(rq, false, false);
1433 		else
1434 			blk_mq_sched_insert_request(rq, true, false, false);
1435 	}
1436 
1437 	while (!list_empty(&rq_list)) {
1438 		rq = list_entry(rq_list.next, struct request, queuelist);
1439 		list_del_init(&rq->queuelist);
1440 		blk_mq_sched_insert_request(rq, false, false, false);
1441 	}
1442 
1443 	blk_mq_run_hw_queues(q, false);
1444 }
1445 
1446 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1447 				bool kick_requeue_list)
1448 {
1449 	struct request_queue *q = rq->q;
1450 	unsigned long flags;
1451 
1452 	/*
1453 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1454 	 * request head insertion from the workqueue.
1455 	 */
1456 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1457 
1458 	spin_lock_irqsave(&q->requeue_lock, flags);
1459 	if (at_head) {
1460 		rq->rq_flags |= RQF_SOFTBARRIER;
1461 		list_add(&rq->queuelist, &q->requeue_list);
1462 	} else {
1463 		list_add_tail(&rq->queuelist, &q->requeue_list);
1464 	}
1465 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1466 
1467 	if (kick_requeue_list)
1468 		blk_mq_kick_requeue_list(q);
1469 }
1470 
1471 void blk_mq_kick_requeue_list(struct request_queue *q)
1472 {
1473 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1474 }
1475 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1476 
1477 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1478 				    unsigned long msecs)
1479 {
1480 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1481 				    msecs_to_jiffies(msecs));
1482 }
1483 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1484 
1485 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1486 {
1487 	/*
1488 	 * If we find a request that isn't idle we know the queue is busy
1489 	 * as it's checked in the iter.
1490 	 * Return false to stop the iteration.
1491 	 */
1492 	if (blk_mq_request_started(rq)) {
1493 		bool *busy = priv;
1494 
1495 		*busy = true;
1496 		return false;
1497 	}
1498 
1499 	return true;
1500 }
1501 
1502 bool blk_mq_queue_inflight(struct request_queue *q)
1503 {
1504 	bool busy = false;
1505 
1506 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1507 	return busy;
1508 }
1509 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1510 
1511 static void blk_mq_rq_timed_out(struct request *req)
1512 {
1513 	req->rq_flags |= RQF_TIMED_OUT;
1514 	if (req->q->mq_ops->timeout) {
1515 		enum blk_eh_timer_return ret;
1516 
1517 		ret = req->q->mq_ops->timeout(req);
1518 		if (ret == BLK_EH_DONE)
1519 			return;
1520 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1521 	}
1522 
1523 	blk_add_timer(req);
1524 }
1525 
1526 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1527 {
1528 	unsigned long deadline;
1529 
1530 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1531 		return false;
1532 	if (rq->rq_flags & RQF_TIMED_OUT)
1533 		return false;
1534 
1535 	deadline = READ_ONCE(rq->deadline);
1536 	if (time_after_eq(jiffies, deadline))
1537 		return true;
1538 
1539 	if (*next == 0)
1540 		*next = deadline;
1541 	else if (time_after(*next, deadline))
1542 		*next = deadline;
1543 	return false;
1544 }
1545 
1546 void blk_mq_put_rq_ref(struct request *rq)
1547 {
1548 	if (is_flush_rq(rq)) {
1549 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1550 			blk_mq_free_request(rq);
1551 	} else if (req_ref_put_and_test(rq)) {
1552 		__blk_mq_free_request(rq);
1553 	}
1554 }
1555 
1556 static bool blk_mq_check_expired(struct request *rq, void *priv)
1557 {
1558 	unsigned long *next = priv;
1559 
1560 	/*
1561 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1562 	 * be reallocated underneath the timeout handler's processing, then
1563 	 * the expire check is reliable. If the request is not expired, then
1564 	 * it was completed and reallocated as a new request after returning
1565 	 * from blk_mq_check_expired().
1566 	 */
1567 	if (blk_mq_req_expired(rq, next))
1568 		blk_mq_rq_timed_out(rq);
1569 	return true;
1570 }
1571 
1572 static void blk_mq_timeout_work(struct work_struct *work)
1573 {
1574 	struct request_queue *q =
1575 		container_of(work, struct request_queue, timeout_work);
1576 	unsigned long next = 0;
1577 	struct blk_mq_hw_ctx *hctx;
1578 	unsigned long i;
1579 
1580 	/* A deadlock might occur if a request is stuck requiring a
1581 	 * timeout at the same time a queue freeze is waiting
1582 	 * completion, since the timeout code would not be able to
1583 	 * acquire the queue reference here.
1584 	 *
1585 	 * That's why we don't use blk_queue_enter here; instead, we use
1586 	 * percpu_ref_tryget directly, because we need to be able to
1587 	 * obtain a reference even in the short window between the queue
1588 	 * starting to freeze, by dropping the first reference in
1589 	 * blk_freeze_queue_start, and the moment the last request is
1590 	 * consumed, marked by the instant q_usage_counter reaches
1591 	 * zero.
1592 	 */
1593 	if (!percpu_ref_tryget(&q->q_usage_counter))
1594 		return;
1595 
1596 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1597 
1598 	if (next != 0) {
1599 		mod_timer(&q->timeout, next);
1600 	} else {
1601 		/*
1602 		 * Request timeouts are handled as a forward rolling timer. If
1603 		 * we end up here it means that no requests are pending and
1604 		 * also that no request has been pending for a while. Mark
1605 		 * each hctx as idle.
1606 		 */
1607 		queue_for_each_hw_ctx(q, hctx, i) {
1608 			/* the hctx may be unmapped, so check it here */
1609 			if (blk_mq_hw_queue_mapped(hctx))
1610 				blk_mq_tag_idle(hctx);
1611 		}
1612 	}
1613 	blk_queue_exit(q);
1614 }
1615 
1616 struct flush_busy_ctx_data {
1617 	struct blk_mq_hw_ctx *hctx;
1618 	struct list_head *list;
1619 };
1620 
1621 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1622 {
1623 	struct flush_busy_ctx_data *flush_data = data;
1624 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1625 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1626 	enum hctx_type type = hctx->type;
1627 
1628 	spin_lock(&ctx->lock);
1629 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1630 	sbitmap_clear_bit(sb, bitnr);
1631 	spin_unlock(&ctx->lock);
1632 	return true;
1633 }
1634 
1635 /*
1636  * Process software queues that have been marked busy, splicing them
1637  * to the for-dispatch
1638  */
1639 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1640 {
1641 	struct flush_busy_ctx_data data = {
1642 		.hctx = hctx,
1643 		.list = list,
1644 	};
1645 
1646 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1647 }
1648 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1649 
1650 struct dispatch_rq_data {
1651 	struct blk_mq_hw_ctx *hctx;
1652 	struct request *rq;
1653 };
1654 
1655 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1656 		void *data)
1657 {
1658 	struct dispatch_rq_data *dispatch_data = data;
1659 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1660 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1661 	enum hctx_type type = hctx->type;
1662 
1663 	spin_lock(&ctx->lock);
1664 	if (!list_empty(&ctx->rq_lists[type])) {
1665 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1666 		list_del_init(&dispatch_data->rq->queuelist);
1667 		if (list_empty(&ctx->rq_lists[type]))
1668 			sbitmap_clear_bit(sb, bitnr);
1669 	}
1670 	spin_unlock(&ctx->lock);
1671 
1672 	return !dispatch_data->rq;
1673 }
1674 
1675 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1676 					struct blk_mq_ctx *start)
1677 {
1678 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1679 	struct dispatch_rq_data data = {
1680 		.hctx = hctx,
1681 		.rq   = NULL,
1682 	};
1683 
1684 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1685 			       dispatch_rq_from_ctx, &data);
1686 
1687 	return data.rq;
1688 }
1689 
1690 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1691 {
1692 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1693 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1694 	int tag;
1695 
1696 	blk_mq_tag_busy(rq->mq_hctx);
1697 
1698 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1699 		bt = &rq->mq_hctx->tags->breserved_tags;
1700 		tag_offset = 0;
1701 	} else {
1702 		if (!hctx_may_queue(rq->mq_hctx, bt))
1703 			return false;
1704 	}
1705 
1706 	tag = __sbitmap_queue_get(bt);
1707 	if (tag == BLK_MQ_NO_TAG)
1708 		return false;
1709 
1710 	rq->tag = tag + tag_offset;
1711 	return true;
1712 }
1713 
1714 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1715 {
1716 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1717 		return false;
1718 
1719 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1720 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1721 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1722 		__blk_mq_inc_active_requests(hctx);
1723 	}
1724 	hctx->tags->rqs[rq->tag] = rq;
1725 	return true;
1726 }
1727 
1728 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1729 				int flags, void *key)
1730 {
1731 	struct blk_mq_hw_ctx *hctx;
1732 
1733 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1734 
1735 	spin_lock(&hctx->dispatch_wait_lock);
1736 	if (!list_empty(&wait->entry)) {
1737 		struct sbitmap_queue *sbq;
1738 
1739 		list_del_init(&wait->entry);
1740 		sbq = &hctx->tags->bitmap_tags;
1741 		atomic_dec(&sbq->ws_active);
1742 	}
1743 	spin_unlock(&hctx->dispatch_wait_lock);
1744 
1745 	blk_mq_run_hw_queue(hctx, true);
1746 	return 1;
1747 }
1748 
1749 /*
1750  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1751  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1752  * restart. For both cases, take care to check the condition again after
1753  * marking us as waiting.
1754  */
1755 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1756 				 struct request *rq)
1757 {
1758 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1759 	struct wait_queue_head *wq;
1760 	wait_queue_entry_t *wait;
1761 	bool ret;
1762 
1763 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1764 		blk_mq_sched_mark_restart_hctx(hctx);
1765 
1766 		/*
1767 		 * It's possible that a tag was freed in the window between the
1768 		 * allocation failure and adding the hardware queue to the wait
1769 		 * queue.
1770 		 *
1771 		 * Don't clear RESTART here, someone else could have set it.
1772 		 * At most this will cost an extra queue run.
1773 		 */
1774 		return blk_mq_get_driver_tag(rq);
1775 	}
1776 
1777 	wait = &hctx->dispatch_wait;
1778 	if (!list_empty_careful(&wait->entry))
1779 		return false;
1780 
1781 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1782 
1783 	spin_lock_irq(&wq->lock);
1784 	spin_lock(&hctx->dispatch_wait_lock);
1785 	if (!list_empty(&wait->entry)) {
1786 		spin_unlock(&hctx->dispatch_wait_lock);
1787 		spin_unlock_irq(&wq->lock);
1788 		return false;
1789 	}
1790 
1791 	atomic_inc(&sbq->ws_active);
1792 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1793 	__add_wait_queue(wq, wait);
1794 
1795 	/*
1796 	 * It's possible that a tag was freed in the window between the
1797 	 * allocation failure and adding the hardware queue to the wait
1798 	 * queue.
1799 	 */
1800 	ret = blk_mq_get_driver_tag(rq);
1801 	if (!ret) {
1802 		spin_unlock(&hctx->dispatch_wait_lock);
1803 		spin_unlock_irq(&wq->lock);
1804 		return false;
1805 	}
1806 
1807 	/*
1808 	 * We got a tag, remove ourselves from the wait queue to ensure
1809 	 * someone else gets the wakeup.
1810 	 */
1811 	list_del_init(&wait->entry);
1812 	atomic_dec(&sbq->ws_active);
1813 	spin_unlock(&hctx->dispatch_wait_lock);
1814 	spin_unlock_irq(&wq->lock);
1815 
1816 	return true;
1817 }
1818 
1819 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1820 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1821 /*
1822  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1823  * - EWMA is one simple way to compute running average value
1824  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1825  * - take 4 as factor for avoiding to get too small(0) result, and this
1826  *   factor doesn't matter because EWMA decreases exponentially
1827  */
1828 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1829 {
1830 	unsigned int ewma;
1831 
1832 	ewma = hctx->dispatch_busy;
1833 
1834 	if (!ewma && !busy)
1835 		return;
1836 
1837 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1838 	if (busy)
1839 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1840 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1841 
1842 	hctx->dispatch_busy = ewma;
1843 }
1844 
1845 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1846 
1847 static void blk_mq_handle_dev_resource(struct request *rq,
1848 				       struct list_head *list)
1849 {
1850 	struct request *next =
1851 		list_first_entry_or_null(list, struct request, queuelist);
1852 
1853 	/*
1854 	 * If an I/O scheduler has been configured and we got a driver tag for
1855 	 * the next request already, free it.
1856 	 */
1857 	if (next)
1858 		blk_mq_put_driver_tag(next);
1859 
1860 	list_add(&rq->queuelist, list);
1861 	__blk_mq_requeue_request(rq);
1862 }
1863 
1864 static void blk_mq_handle_zone_resource(struct request *rq,
1865 					struct list_head *zone_list)
1866 {
1867 	/*
1868 	 * If we end up here it is because we cannot dispatch a request to a
1869 	 * specific zone due to LLD level zone-write locking or other zone
1870 	 * related resource not being available. In this case, set the request
1871 	 * aside in zone_list for retrying it later.
1872 	 */
1873 	list_add(&rq->queuelist, zone_list);
1874 	__blk_mq_requeue_request(rq);
1875 }
1876 
1877 enum prep_dispatch {
1878 	PREP_DISPATCH_OK,
1879 	PREP_DISPATCH_NO_TAG,
1880 	PREP_DISPATCH_NO_BUDGET,
1881 };
1882 
1883 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1884 						  bool need_budget)
1885 {
1886 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1887 	int budget_token = -1;
1888 
1889 	if (need_budget) {
1890 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1891 		if (budget_token < 0) {
1892 			blk_mq_put_driver_tag(rq);
1893 			return PREP_DISPATCH_NO_BUDGET;
1894 		}
1895 		blk_mq_set_rq_budget_token(rq, budget_token);
1896 	}
1897 
1898 	if (!blk_mq_get_driver_tag(rq)) {
1899 		/*
1900 		 * The initial allocation attempt failed, so we need to
1901 		 * rerun the hardware queue when a tag is freed. The
1902 		 * waitqueue takes care of that. If the queue is run
1903 		 * before we add this entry back on the dispatch list,
1904 		 * we'll re-run it below.
1905 		 */
1906 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1907 			/*
1908 			 * All budgets not got from this function will be put
1909 			 * together during handling partial dispatch
1910 			 */
1911 			if (need_budget)
1912 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1913 			return PREP_DISPATCH_NO_TAG;
1914 		}
1915 	}
1916 
1917 	return PREP_DISPATCH_OK;
1918 }
1919 
1920 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1921 static void blk_mq_release_budgets(struct request_queue *q,
1922 		struct list_head *list)
1923 {
1924 	struct request *rq;
1925 
1926 	list_for_each_entry(rq, list, queuelist) {
1927 		int budget_token = blk_mq_get_rq_budget_token(rq);
1928 
1929 		if (budget_token >= 0)
1930 			blk_mq_put_dispatch_budget(q, budget_token);
1931 	}
1932 }
1933 
1934 /*
1935  * Returns true if we did some work AND can potentially do more.
1936  */
1937 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1938 			     unsigned int nr_budgets)
1939 {
1940 	enum prep_dispatch prep;
1941 	struct request_queue *q = hctx->queue;
1942 	struct request *rq, *nxt;
1943 	int errors, queued;
1944 	blk_status_t ret = BLK_STS_OK;
1945 	LIST_HEAD(zone_list);
1946 	bool needs_resource = false;
1947 
1948 	if (list_empty(list))
1949 		return false;
1950 
1951 	/*
1952 	 * Now process all the entries, sending them to the driver.
1953 	 */
1954 	errors = queued = 0;
1955 	do {
1956 		struct blk_mq_queue_data bd;
1957 
1958 		rq = list_first_entry(list, struct request, queuelist);
1959 
1960 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1961 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1962 		if (prep != PREP_DISPATCH_OK)
1963 			break;
1964 
1965 		list_del_init(&rq->queuelist);
1966 
1967 		bd.rq = rq;
1968 
1969 		/*
1970 		 * Flag last if we have no more requests, or if we have more
1971 		 * but can't assign a driver tag to it.
1972 		 */
1973 		if (list_empty(list))
1974 			bd.last = true;
1975 		else {
1976 			nxt = list_first_entry(list, struct request, queuelist);
1977 			bd.last = !blk_mq_get_driver_tag(nxt);
1978 		}
1979 
1980 		/*
1981 		 * once the request is queued to lld, no need to cover the
1982 		 * budget any more
1983 		 */
1984 		if (nr_budgets)
1985 			nr_budgets--;
1986 		ret = q->mq_ops->queue_rq(hctx, &bd);
1987 		switch (ret) {
1988 		case BLK_STS_OK:
1989 			queued++;
1990 			break;
1991 		case BLK_STS_RESOURCE:
1992 			needs_resource = true;
1993 			fallthrough;
1994 		case BLK_STS_DEV_RESOURCE:
1995 			blk_mq_handle_dev_resource(rq, list);
1996 			goto out;
1997 		case BLK_STS_ZONE_RESOURCE:
1998 			/*
1999 			 * Move the request to zone_list and keep going through
2000 			 * the dispatch list to find more requests the drive can
2001 			 * accept.
2002 			 */
2003 			blk_mq_handle_zone_resource(rq, &zone_list);
2004 			needs_resource = true;
2005 			break;
2006 		default:
2007 			errors++;
2008 			blk_mq_end_request(rq, ret);
2009 		}
2010 	} while (!list_empty(list));
2011 out:
2012 	if (!list_empty(&zone_list))
2013 		list_splice_tail_init(&zone_list, list);
2014 
2015 	/* If we didn't flush the entire list, we could have told the driver
2016 	 * there was more coming, but that turned out to be a lie.
2017 	 */
2018 	if ((!list_empty(list) || errors || needs_resource ||
2019 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2020 		q->mq_ops->commit_rqs(hctx);
2021 	/*
2022 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2023 	 * that is where we will continue on next queue run.
2024 	 */
2025 	if (!list_empty(list)) {
2026 		bool needs_restart;
2027 		/* For non-shared tags, the RESTART check will suffice */
2028 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2029 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2030 
2031 		if (nr_budgets)
2032 			blk_mq_release_budgets(q, list);
2033 
2034 		spin_lock(&hctx->lock);
2035 		list_splice_tail_init(list, &hctx->dispatch);
2036 		spin_unlock(&hctx->lock);
2037 
2038 		/*
2039 		 * Order adding requests to hctx->dispatch and checking
2040 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2041 		 * in blk_mq_sched_restart(). Avoid restart code path to
2042 		 * miss the new added requests to hctx->dispatch, meantime
2043 		 * SCHED_RESTART is observed here.
2044 		 */
2045 		smp_mb();
2046 
2047 		/*
2048 		 * If SCHED_RESTART was set by the caller of this function and
2049 		 * it is no longer set that means that it was cleared by another
2050 		 * thread and hence that a queue rerun is needed.
2051 		 *
2052 		 * If 'no_tag' is set, that means that we failed getting
2053 		 * a driver tag with an I/O scheduler attached. If our dispatch
2054 		 * waitqueue is no longer active, ensure that we run the queue
2055 		 * AFTER adding our entries back to the list.
2056 		 *
2057 		 * If no I/O scheduler has been configured it is possible that
2058 		 * the hardware queue got stopped and restarted before requests
2059 		 * were pushed back onto the dispatch list. Rerun the queue to
2060 		 * avoid starvation. Notes:
2061 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2062 		 *   been stopped before rerunning a queue.
2063 		 * - Some but not all block drivers stop a queue before
2064 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2065 		 *   and dm-rq.
2066 		 *
2067 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2068 		 * bit is set, run queue after a delay to avoid IO stalls
2069 		 * that could otherwise occur if the queue is idle.  We'll do
2070 		 * similar if we couldn't get budget or couldn't lock a zone
2071 		 * and SCHED_RESTART is set.
2072 		 */
2073 		needs_restart = blk_mq_sched_needs_restart(hctx);
2074 		if (prep == PREP_DISPATCH_NO_BUDGET)
2075 			needs_resource = true;
2076 		if (!needs_restart ||
2077 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2078 			blk_mq_run_hw_queue(hctx, true);
2079 		else if (needs_resource)
2080 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2081 
2082 		blk_mq_update_dispatch_busy(hctx, true);
2083 		return false;
2084 	} else
2085 		blk_mq_update_dispatch_busy(hctx, false);
2086 
2087 	return (queued + errors) != 0;
2088 }
2089 
2090 /**
2091  * __blk_mq_run_hw_queue - Run a hardware queue.
2092  * @hctx: Pointer to the hardware queue to run.
2093  *
2094  * Send pending requests to the hardware.
2095  */
2096 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2097 {
2098 	/*
2099 	 * We can't run the queue inline with ints disabled. Ensure that
2100 	 * we catch bad users of this early.
2101 	 */
2102 	WARN_ON_ONCE(in_interrupt());
2103 
2104 	blk_mq_run_dispatch_ops(hctx->queue,
2105 			blk_mq_sched_dispatch_requests(hctx));
2106 }
2107 
2108 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2109 {
2110 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2111 
2112 	if (cpu >= nr_cpu_ids)
2113 		cpu = cpumask_first(hctx->cpumask);
2114 	return cpu;
2115 }
2116 
2117 /*
2118  * It'd be great if the workqueue API had a way to pass
2119  * in a mask and had some smarts for more clever placement.
2120  * For now we just round-robin here, switching for every
2121  * BLK_MQ_CPU_WORK_BATCH queued items.
2122  */
2123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2124 {
2125 	bool tried = false;
2126 	int next_cpu = hctx->next_cpu;
2127 
2128 	if (hctx->queue->nr_hw_queues == 1)
2129 		return WORK_CPU_UNBOUND;
2130 
2131 	if (--hctx->next_cpu_batch <= 0) {
2132 select_cpu:
2133 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2134 				cpu_online_mask);
2135 		if (next_cpu >= nr_cpu_ids)
2136 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2137 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2138 	}
2139 
2140 	/*
2141 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2142 	 * and it should only happen in the path of handling CPU DEAD.
2143 	 */
2144 	if (!cpu_online(next_cpu)) {
2145 		if (!tried) {
2146 			tried = true;
2147 			goto select_cpu;
2148 		}
2149 
2150 		/*
2151 		 * Make sure to re-select CPU next time once after CPUs
2152 		 * in hctx->cpumask become online again.
2153 		 */
2154 		hctx->next_cpu = next_cpu;
2155 		hctx->next_cpu_batch = 1;
2156 		return WORK_CPU_UNBOUND;
2157 	}
2158 
2159 	hctx->next_cpu = next_cpu;
2160 	return next_cpu;
2161 }
2162 
2163 /**
2164  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2165  * @hctx: Pointer to the hardware queue to run.
2166  * @async: If we want to run the queue asynchronously.
2167  * @msecs: Milliseconds of delay to wait before running the queue.
2168  *
2169  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2170  * with a delay of @msecs.
2171  */
2172 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2173 					unsigned long msecs)
2174 {
2175 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2176 		return;
2177 
2178 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2179 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2180 			__blk_mq_run_hw_queue(hctx);
2181 			return;
2182 		}
2183 	}
2184 
2185 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2186 				    msecs_to_jiffies(msecs));
2187 }
2188 
2189 /**
2190  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2191  * @hctx: Pointer to the hardware queue to run.
2192  * @msecs: Milliseconds of delay to wait before running the queue.
2193  *
2194  * Run a hardware queue asynchronously with a delay of @msecs.
2195  */
2196 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2197 {
2198 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2199 }
2200 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2201 
2202 /**
2203  * blk_mq_run_hw_queue - Start to run a hardware queue.
2204  * @hctx: Pointer to the hardware queue to run.
2205  * @async: If we want to run the queue asynchronously.
2206  *
2207  * Check if the request queue is not in a quiesced state and if there are
2208  * pending requests to be sent. If this is true, run the queue to send requests
2209  * to hardware.
2210  */
2211 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2212 {
2213 	bool need_run;
2214 
2215 	/*
2216 	 * When queue is quiesced, we may be switching io scheduler, or
2217 	 * updating nr_hw_queues, or other things, and we can't run queue
2218 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2219 	 *
2220 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2221 	 * quiesced.
2222 	 */
2223 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2224 		need_run = !blk_queue_quiesced(hctx->queue) &&
2225 		blk_mq_hctx_has_pending(hctx));
2226 
2227 	if (need_run)
2228 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2229 }
2230 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2231 
2232 /*
2233  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2234  * scheduler.
2235  */
2236 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2237 {
2238 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2239 	/*
2240 	 * If the IO scheduler does not respect hardware queues when
2241 	 * dispatching, we just don't bother with multiple HW queues and
2242 	 * dispatch from hctx for the current CPU since running multiple queues
2243 	 * just causes lock contention inside the scheduler and pointless cache
2244 	 * bouncing.
2245 	 */
2246 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2247 
2248 	if (!blk_mq_hctx_stopped(hctx))
2249 		return hctx;
2250 	return NULL;
2251 }
2252 
2253 /**
2254  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2255  * @q: Pointer to the request queue to run.
2256  * @async: If we want to run the queue asynchronously.
2257  */
2258 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2259 {
2260 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2261 	unsigned long i;
2262 
2263 	sq_hctx = NULL;
2264 	if (blk_queue_sq_sched(q))
2265 		sq_hctx = blk_mq_get_sq_hctx(q);
2266 	queue_for_each_hw_ctx(q, hctx, i) {
2267 		if (blk_mq_hctx_stopped(hctx))
2268 			continue;
2269 		/*
2270 		 * Dispatch from this hctx either if there's no hctx preferred
2271 		 * by IO scheduler or if it has requests that bypass the
2272 		 * scheduler.
2273 		 */
2274 		if (!sq_hctx || sq_hctx == hctx ||
2275 		    !list_empty_careful(&hctx->dispatch))
2276 			blk_mq_run_hw_queue(hctx, async);
2277 	}
2278 }
2279 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2280 
2281 /**
2282  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2283  * @q: Pointer to the request queue to run.
2284  * @msecs: Milliseconds of delay to wait before running the queues.
2285  */
2286 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2287 {
2288 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2289 	unsigned long i;
2290 
2291 	sq_hctx = NULL;
2292 	if (blk_queue_sq_sched(q))
2293 		sq_hctx = blk_mq_get_sq_hctx(q);
2294 	queue_for_each_hw_ctx(q, hctx, i) {
2295 		if (blk_mq_hctx_stopped(hctx))
2296 			continue;
2297 		/*
2298 		 * If there is already a run_work pending, leave the
2299 		 * pending delay untouched. Otherwise, a hctx can stall
2300 		 * if another hctx is re-delaying the other's work
2301 		 * before the work executes.
2302 		 */
2303 		if (delayed_work_pending(&hctx->run_work))
2304 			continue;
2305 		/*
2306 		 * Dispatch from this hctx either if there's no hctx preferred
2307 		 * by IO scheduler or if it has requests that bypass the
2308 		 * scheduler.
2309 		 */
2310 		if (!sq_hctx || sq_hctx == hctx ||
2311 		    !list_empty_careful(&hctx->dispatch))
2312 			blk_mq_delay_run_hw_queue(hctx, msecs);
2313 	}
2314 }
2315 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2316 
2317 /*
2318  * This function is often used for pausing .queue_rq() by driver when
2319  * there isn't enough resource or some conditions aren't satisfied, and
2320  * BLK_STS_RESOURCE is usually returned.
2321  *
2322  * We do not guarantee that dispatch can be drained or blocked
2323  * after blk_mq_stop_hw_queue() returns. Please use
2324  * blk_mq_quiesce_queue() for that requirement.
2325  */
2326 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2327 {
2328 	cancel_delayed_work(&hctx->run_work);
2329 
2330 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2331 }
2332 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2333 
2334 /*
2335  * This function is often used for pausing .queue_rq() by driver when
2336  * there isn't enough resource or some conditions aren't satisfied, and
2337  * BLK_STS_RESOURCE is usually returned.
2338  *
2339  * We do not guarantee that dispatch can be drained or blocked
2340  * after blk_mq_stop_hw_queues() returns. Please use
2341  * blk_mq_quiesce_queue() for that requirement.
2342  */
2343 void blk_mq_stop_hw_queues(struct request_queue *q)
2344 {
2345 	struct blk_mq_hw_ctx *hctx;
2346 	unsigned long i;
2347 
2348 	queue_for_each_hw_ctx(q, hctx, i)
2349 		blk_mq_stop_hw_queue(hctx);
2350 }
2351 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2352 
2353 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2354 {
2355 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2356 
2357 	blk_mq_run_hw_queue(hctx, false);
2358 }
2359 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2360 
2361 void blk_mq_start_hw_queues(struct request_queue *q)
2362 {
2363 	struct blk_mq_hw_ctx *hctx;
2364 	unsigned long i;
2365 
2366 	queue_for_each_hw_ctx(q, hctx, i)
2367 		blk_mq_start_hw_queue(hctx);
2368 }
2369 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2370 
2371 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2372 {
2373 	if (!blk_mq_hctx_stopped(hctx))
2374 		return;
2375 
2376 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2377 	blk_mq_run_hw_queue(hctx, async);
2378 }
2379 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2380 
2381 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2382 {
2383 	struct blk_mq_hw_ctx *hctx;
2384 	unsigned long i;
2385 
2386 	queue_for_each_hw_ctx(q, hctx, i)
2387 		blk_mq_start_stopped_hw_queue(hctx, async);
2388 }
2389 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2390 
2391 static void blk_mq_run_work_fn(struct work_struct *work)
2392 {
2393 	struct blk_mq_hw_ctx *hctx;
2394 
2395 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2396 
2397 	/*
2398 	 * If we are stopped, don't run the queue.
2399 	 */
2400 	if (blk_mq_hctx_stopped(hctx))
2401 		return;
2402 
2403 	__blk_mq_run_hw_queue(hctx);
2404 }
2405 
2406 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2407 					    struct request *rq,
2408 					    bool at_head)
2409 {
2410 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2411 	enum hctx_type type = hctx->type;
2412 
2413 	lockdep_assert_held(&ctx->lock);
2414 
2415 	trace_block_rq_insert(rq);
2416 
2417 	if (at_head)
2418 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2419 	else
2420 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2421 }
2422 
2423 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2424 			     bool at_head)
2425 {
2426 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2427 
2428 	lockdep_assert_held(&ctx->lock);
2429 
2430 	__blk_mq_insert_req_list(hctx, rq, at_head);
2431 	blk_mq_hctx_mark_pending(hctx, ctx);
2432 }
2433 
2434 /**
2435  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2436  * @rq: Pointer to request to be inserted.
2437  * @at_head: true if the request should be inserted at the head of the list.
2438  * @run_queue: If we should run the hardware queue after inserting the request.
2439  *
2440  * Should only be used carefully, when the caller knows we want to
2441  * bypass a potential IO scheduler on the target device.
2442  */
2443 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2444 				  bool run_queue)
2445 {
2446 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2447 
2448 	spin_lock(&hctx->lock);
2449 	if (at_head)
2450 		list_add(&rq->queuelist, &hctx->dispatch);
2451 	else
2452 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2453 	spin_unlock(&hctx->lock);
2454 
2455 	if (run_queue)
2456 		blk_mq_run_hw_queue(hctx, false);
2457 }
2458 
2459 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2460 			    struct list_head *list)
2461 
2462 {
2463 	struct request *rq;
2464 	enum hctx_type type = hctx->type;
2465 
2466 	/*
2467 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2468 	 * offline now
2469 	 */
2470 	list_for_each_entry(rq, list, queuelist) {
2471 		BUG_ON(rq->mq_ctx != ctx);
2472 		trace_block_rq_insert(rq);
2473 	}
2474 
2475 	spin_lock(&ctx->lock);
2476 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2477 	blk_mq_hctx_mark_pending(hctx, ctx);
2478 	spin_unlock(&ctx->lock);
2479 }
2480 
2481 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2482 			      bool from_schedule)
2483 {
2484 	if (hctx->queue->mq_ops->commit_rqs) {
2485 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2486 		hctx->queue->mq_ops->commit_rqs(hctx);
2487 	}
2488 	*queued = 0;
2489 }
2490 
2491 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2492 		unsigned int nr_segs)
2493 {
2494 	int err;
2495 
2496 	if (bio->bi_opf & REQ_RAHEAD)
2497 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2498 
2499 	rq->__sector = bio->bi_iter.bi_sector;
2500 	blk_rq_bio_prep(rq, bio, nr_segs);
2501 
2502 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2503 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2504 	WARN_ON_ONCE(err);
2505 
2506 	blk_account_io_start(rq);
2507 }
2508 
2509 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2510 					    struct request *rq, bool last)
2511 {
2512 	struct request_queue *q = rq->q;
2513 	struct blk_mq_queue_data bd = {
2514 		.rq = rq,
2515 		.last = last,
2516 	};
2517 	blk_status_t ret;
2518 
2519 	/*
2520 	 * For OK queue, we are done. For error, caller may kill it.
2521 	 * Any other error (busy), just add it to our list as we
2522 	 * previously would have done.
2523 	 */
2524 	ret = q->mq_ops->queue_rq(hctx, &bd);
2525 	switch (ret) {
2526 	case BLK_STS_OK:
2527 		blk_mq_update_dispatch_busy(hctx, false);
2528 		break;
2529 	case BLK_STS_RESOURCE:
2530 	case BLK_STS_DEV_RESOURCE:
2531 		blk_mq_update_dispatch_busy(hctx, true);
2532 		__blk_mq_requeue_request(rq);
2533 		break;
2534 	default:
2535 		blk_mq_update_dispatch_busy(hctx, false);
2536 		break;
2537 	}
2538 
2539 	return ret;
2540 }
2541 
2542 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2543 						struct request *rq,
2544 						bool bypass_insert, bool last)
2545 {
2546 	struct request_queue *q = rq->q;
2547 	bool run_queue = true;
2548 	int budget_token;
2549 
2550 	/*
2551 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2552 	 *
2553 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2554 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2555 	 * and avoid driver to try to dispatch again.
2556 	 */
2557 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2558 		run_queue = false;
2559 		bypass_insert = false;
2560 		goto insert;
2561 	}
2562 
2563 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2564 		goto insert;
2565 
2566 	budget_token = blk_mq_get_dispatch_budget(q);
2567 	if (budget_token < 0)
2568 		goto insert;
2569 
2570 	blk_mq_set_rq_budget_token(rq, budget_token);
2571 
2572 	if (!blk_mq_get_driver_tag(rq)) {
2573 		blk_mq_put_dispatch_budget(q, budget_token);
2574 		goto insert;
2575 	}
2576 
2577 	return __blk_mq_issue_directly(hctx, rq, last);
2578 insert:
2579 	if (bypass_insert)
2580 		return BLK_STS_RESOURCE;
2581 
2582 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2583 
2584 	return BLK_STS_OK;
2585 }
2586 
2587 /**
2588  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2589  * @hctx: Pointer of the associated hardware queue.
2590  * @rq: Pointer to request to be sent.
2591  *
2592  * If the device has enough resources to accept a new request now, send the
2593  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2594  * we can try send it another time in the future. Requests inserted at this
2595  * queue have higher priority.
2596  */
2597 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2598 		struct request *rq)
2599 {
2600 	blk_status_t ret =
2601 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2602 
2603 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2604 		blk_mq_request_bypass_insert(rq, false, true);
2605 	else if (ret != BLK_STS_OK)
2606 		blk_mq_end_request(rq, ret);
2607 }
2608 
2609 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2610 {
2611 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2612 }
2613 
2614 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2615 {
2616 	struct blk_mq_hw_ctx *hctx = NULL;
2617 	struct request *rq;
2618 	int queued = 0;
2619 	int errors = 0;
2620 
2621 	while ((rq = rq_list_pop(&plug->mq_list))) {
2622 		bool last = rq_list_empty(plug->mq_list);
2623 		blk_status_t ret;
2624 
2625 		if (hctx != rq->mq_hctx) {
2626 			if (hctx)
2627 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2628 			hctx = rq->mq_hctx;
2629 		}
2630 
2631 		ret = blk_mq_request_issue_directly(rq, last);
2632 		switch (ret) {
2633 		case BLK_STS_OK:
2634 			queued++;
2635 			break;
2636 		case BLK_STS_RESOURCE:
2637 		case BLK_STS_DEV_RESOURCE:
2638 			blk_mq_request_bypass_insert(rq, false, true);
2639 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2640 			return;
2641 		default:
2642 			blk_mq_end_request(rq, ret);
2643 			errors++;
2644 			break;
2645 		}
2646 	}
2647 
2648 	/*
2649 	 * If we didn't flush the entire list, we could have told the driver
2650 	 * there was more coming, but that turned out to be a lie.
2651 	 */
2652 	if (errors)
2653 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2654 }
2655 
2656 static void __blk_mq_flush_plug_list(struct request_queue *q,
2657 				     struct blk_plug *plug)
2658 {
2659 	if (blk_queue_quiesced(q))
2660 		return;
2661 	q->mq_ops->queue_rqs(&plug->mq_list);
2662 }
2663 
2664 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2665 {
2666 	struct blk_mq_hw_ctx *this_hctx = NULL;
2667 	struct blk_mq_ctx *this_ctx = NULL;
2668 	struct request *requeue_list = NULL;
2669 	unsigned int depth = 0;
2670 	LIST_HEAD(list);
2671 
2672 	do {
2673 		struct request *rq = rq_list_pop(&plug->mq_list);
2674 
2675 		if (!this_hctx) {
2676 			this_hctx = rq->mq_hctx;
2677 			this_ctx = rq->mq_ctx;
2678 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2679 			rq_list_add(&requeue_list, rq);
2680 			continue;
2681 		}
2682 		list_add_tail(&rq->queuelist, &list);
2683 		depth++;
2684 	} while (!rq_list_empty(plug->mq_list));
2685 
2686 	plug->mq_list = requeue_list;
2687 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2688 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2689 }
2690 
2691 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2692 {
2693 	struct request *rq;
2694 
2695 	if (rq_list_empty(plug->mq_list))
2696 		return;
2697 	plug->rq_count = 0;
2698 
2699 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2700 		struct request_queue *q;
2701 
2702 		rq = rq_list_peek(&plug->mq_list);
2703 		q = rq->q;
2704 
2705 		/*
2706 		 * Peek first request and see if we have a ->queue_rqs() hook.
2707 		 * If we do, we can dispatch the whole plug list in one go. We
2708 		 * already know at this point that all requests belong to the
2709 		 * same queue, caller must ensure that's the case.
2710 		 *
2711 		 * Since we pass off the full list to the driver at this point,
2712 		 * we do not increment the active request count for the queue.
2713 		 * Bypass shared tags for now because of that.
2714 		 */
2715 		if (q->mq_ops->queue_rqs &&
2716 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2717 			blk_mq_run_dispatch_ops(q,
2718 				__blk_mq_flush_plug_list(q, plug));
2719 			if (rq_list_empty(plug->mq_list))
2720 				return;
2721 		}
2722 
2723 		blk_mq_run_dispatch_ops(q,
2724 				blk_mq_plug_issue_direct(plug, false));
2725 		if (rq_list_empty(plug->mq_list))
2726 			return;
2727 	}
2728 
2729 	do {
2730 		blk_mq_dispatch_plug_list(plug, from_schedule);
2731 	} while (!rq_list_empty(plug->mq_list));
2732 }
2733 
2734 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2735 		struct list_head *list)
2736 {
2737 	int queued = 0;
2738 	int errors = 0;
2739 
2740 	while (!list_empty(list)) {
2741 		blk_status_t ret;
2742 		struct request *rq = list_first_entry(list, struct request,
2743 				queuelist);
2744 
2745 		list_del_init(&rq->queuelist);
2746 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2747 		if (ret != BLK_STS_OK) {
2748 			errors++;
2749 			if (ret == BLK_STS_RESOURCE ||
2750 					ret == BLK_STS_DEV_RESOURCE) {
2751 				blk_mq_request_bypass_insert(rq, false,
2752 							list_empty(list));
2753 				break;
2754 			}
2755 			blk_mq_end_request(rq, ret);
2756 		} else
2757 			queued++;
2758 	}
2759 
2760 	/*
2761 	 * If we didn't flush the entire list, we could have told
2762 	 * the driver there was more coming, but that turned out to
2763 	 * be a lie.
2764 	 */
2765 	if ((!list_empty(list) || errors) &&
2766 	     hctx->queue->mq_ops->commit_rqs && queued)
2767 		hctx->queue->mq_ops->commit_rqs(hctx);
2768 }
2769 
2770 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2771 				     struct bio *bio, unsigned int nr_segs)
2772 {
2773 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2774 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2775 			return true;
2776 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2777 			return true;
2778 	}
2779 	return false;
2780 }
2781 
2782 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2783 					       struct blk_plug *plug,
2784 					       struct bio *bio,
2785 					       unsigned int nsegs)
2786 {
2787 	struct blk_mq_alloc_data data = {
2788 		.q		= q,
2789 		.nr_tags	= 1,
2790 		.cmd_flags	= bio->bi_opf,
2791 	};
2792 	struct request *rq;
2793 
2794 	if (unlikely(bio_queue_enter(bio)))
2795 		return NULL;
2796 
2797 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2798 		goto queue_exit;
2799 
2800 	rq_qos_throttle(q, bio);
2801 
2802 	if (plug) {
2803 		data.nr_tags = plug->nr_ios;
2804 		plug->nr_ios = 1;
2805 		data.cached_rq = &plug->cached_rq;
2806 	}
2807 
2808 	rq = __blk_mq_alloc_requests(&data);
2809 	if (rq)
2810 		return rq;
2811 	rq_qos_cleanup(q, bio);
2812 	if (bio->bi_opf & REQ_NOWAIT)
2813 		bio_wouldblock_error(bio);
2814 queue_exit:
2815 	blk_queue_exit(q);
2816 	return NULL;
2817 }
2818 
2819 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2820 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2821 {
2822 	struct request *rq;
2823 
2824 	if (!plug)
2825 		return NULL;
2826 	rq = rq_list_peek(&plug->cached_rq);
2827 	if (!rq || rq->q != q)
2828 		return NULL;
2829 
2830 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2831 		*bio = NULL;
2832 		return NULL;
2833 	}
2834 
2835 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2836 		return NULL;
2837 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2838 		return NULL;
2839 
2840 	/*
2841 	 * If any qos ->throttle() end up blocking, we will have flushed the
2842 	 * plug and hence killed the cached_rq list as well. Pop this entry
2843 	 * before we throttle.
2844 	 */
2845 	plug->cached_rq = rq_list_next(rq);
2846 	rq_qos_throttle(q, *bio);
2847 
2848 	rq->cmd_flags = (*bio)->bi_opf;
2849 	INIT_LIST_HEAD(&rq->queuelist);
2850 	return rq;
2851 }
2852 
2853 static void bio_set_ioprio(struct bio *bio)
2854 {
2855 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2856 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2857 		bio->bi_ioprio = get_current_ioprio();
2858 	blkcg_set_ioprio(bio);
2859 }
2860 
2861 /**
2862  * blk_mq_submit_bio - Create and send a request to block device.
2863  * @bio: Bio pointer.
2864  *
2865  * Builds up a request structure from @q and @bio and send to the device. The
2866  * request may not be queued directly to hardware if:
2867  * * This request can be merged with another one
2868  * * We want to place request at plug queue for possible future merging
2869  * * There is an IO scheduler active at this queue
2870  *
2871  * It will not queue the request if there is an error with the bio, or at the
2872  * request creation.
2873  */
2874 void blk_mq_submit_bio(struct bio *bio)
2875 {
2876 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2877 	struct blk_plug *plug = blk_mq_plug(bio);
2878 	const int is_sync = op_is_sync(bio->bi_opf);
2879 	struct request *rq;
2880 	unsigned int nr_segs = 1;
2881 	blk_status_t ret;
2882 
2883 	bio = blk_queue_bounce(bio, q);
2884 	if (bio_may_exceed_limits(bio, &q->limits))
2885 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2886 
2887 	if (!bio_integrity_prep(bio))
2888 		return;
2889 
2890 	bio_set_ioprio(bio);
2891 
2892 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2893 	if (!rq) {
2894 		if (!bio)
2895 			return;
2896 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2897 		if (unlikely(!rq))
2898 			return;
2899 	}
2900 
2901 	trace_block_getrq(bio);
2902 
2903 	rq_qos_track(q, rq, bio);
2904 
2905 	blk_mq_bio_to_request(rq, bio, nr_segs);
2906 
2907 	ret = blk_crypto_init_request(rq);
2908 	if (ret != BLK_STS_OK) {
2909 		bio->bi_status = ret;
2910 		bio_endio(bio);
2911 		blk_mq_free_request(rq);
2912 		return;
2913 	}
2914 
2915 	if (op_is_flush(bio->bi_opf)) {
2916 		blk_insert_flush(rq);
2917 		return;
2918 	}
2919 
2920 	if (plug)
2921 		blk_add_rq_to_plug(plug, rq);
2922 	else if ((rq->rq_flags & RQF_ELV) ||
2923 		 (rq->mq_hctx->dispatch_busy &&
2924 		  (q->nr_hw_queues == 1 || !is_sync)))
2925 		blk_mq_sched_insert_request(rq, false, true, true);
2926 	else
2927 		blk_mq_run_dispatch_ops(rq->q,
2928 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2929 }
2930 
2931 #ifdef CONFIG_BLK_MQ_STACKING
2932 /**
2933  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2934  * @rq: the request being queued
2935  */
2936 blk_status_t blk_insert_cloned_request(struct request *rq)
2937 {
2938 	struct request_queue *q = rq->q;
2939 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2940 	blk_status_t ret;
2941 
2942 	if (blk_rq_sectors(rq) > max_sectors) {
2943 		/*
2944 		 * SCSI device does not have a good way to return if
2945 		 * Write Same/Zero is actually supported. If a device rejects
2946 		 * a non-read/write command (discard, write same,etc.) the
2947 		 * low-level device driver will set the relevant queue limit to
2948 		 * 0 to prevent blk-lib from issuing more of the offending
2949 		 * operations. Commands queued prior to the queue limit being
2950 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2951 		 * errors being propagated to upper layers.
2952 		 */
2953 		if (max_sectors == 0)
2954 			return BLK_STS_NOTSUPP;
2955 
2956 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2957 			__func__, blk_rq_sectors(rq), max_sectors);
2958 		return BLK_STS_IOERR;
2959 	}
2960 
2961 	/*
2962 	 * The queue settings related to segment counting may differ from the
2963 	 * original queue.
2964 	 */
2965 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2966 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2967 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2968 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2969 		return BLK_STS_IOERR;
2970 	}
2971 
2972 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2973 		return BLK_STS_IOERR;
2974 
2975 	if (blk_crypto_insert_cloned_request(rq))
2976 		return BLK_STS_IOERR;
2977 
2978 	blk_account_io_start(rq);
2979 
2980 	/*
2981 	 * Since we have a scheduler attached on the top device,
2982 	 * bypass a potential scheduler on the bottom device for
2983 	 * insert.
2984 	 */
2985 	blk_mq_run_dispatch_ops(q,
2986 			ret = blk_mq_request_issue_directly(rq, true));
2987 	if (ret)
2988 		blk_account_io_done(rq, ktime_get_ns());
2989 	return ret;
2990 }
2991 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2992 
2993 /**
2994  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2995  * @rq: the clone request to be cleaned up
2996  *
2997  * Description:
2998  *     Free all bios in @rq for a cloned request.
2999  */
3000 void blk_rq_unprep_clone(struct request *rq)
3001 {
3002 	struct bio *bio;
3003 
3004 	while ((bio = rq->bio) != NULL) {
3005 		rq->bio = bio->bi_next;
3006 
3007 		bio_put(bio);
3008 	}
3009 }
3010 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3011 
3012 /**
3013  * blk_rq_prep_clone - Helper function to setup clone request
3014  * @rq: the request to be setup
3015  * @rq_src: original request to be cloned
3016  * @bs: bio_set that bios for clone are allocated from
3017  * @gfp_mask: memory allocation mask for bio
3018  * @bio_ctr: setup function to be called for each clone bio.
3019  *           Returns %0 for success, non %0 for failure.
3020  * @data: private data to be passed to @bio_ctr
3021  *
3022  * Description:
3023  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3024  *     Also, pages which the original bios are pointing to are not copied
3025  *     and the cloned bios just point same pages.
3026  *     So cloned bios must be completed before original bios, which means
3027  *     the caller must complete @rq before @rq_src.
3028  */
3029 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3030 		      struct bio_set *bs, gfp_t gfp_mask,
3031 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3032 		      void *data)
3033 {
3034 	struct bio *bio, *bio_src;
3035 
3036 	if (!bs)
3037 		bs = &fs_bio_set;
3038 
3039 	__rq_for_each_bio(bio_src, rq_src) {
3040 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3041 				      bs);
3042 		if (!bio)
3043 			goto free_and_out;
3044 
3045 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3046 			goto free_and_out;
3047 
3048 		if (rq->bio) {
3049 			rq->biotail->bi_next = bio;
3050 			rq->biotail = bio;
3051 		} else {
3052 			rq->bio = rq->biotail = bio;
3053 		}
3054 		bio = NULL;
3055 	}
3056 
3057 	/* Copy attributes of the original request to the clone request. */
3058 	rq->__sector = blk_rq_pos(rq_src);
3059 	rq->__data_len = blk_rq_bytes(rq_src);
3060 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3061 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3062 		rq->special_vec = rq_src->special_vec;
3063 	}
3064 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3065 	rq->ioprio = rq_src->ioprio;
3066 
3067 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3068 		goto free_and_out;
3069 
3070 	return 0;
3071 
3072 free_and_out:
3073 	if (bio)
3074 		bio_put(bio);
3075 	blk_rq_unprep_clone(rq);
3076 
3077 	return -ENOMEM;
3078 }
3079 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3080 #endif /* CONFIG_BLK_MQ_STACKING */
3081 
3082 /*
3083  * Steal bios from a request and add them to a bio list.
3084  * The request must not have been partially completed before.
3085  */
3086 void blk_steal_bios(struct bio_list *list, struct request *rq)
3087 {
3088 	if (rq->bio) {
3089 		if (list->tail)
3090 			list->tail->bi_next = rq->bio;
3091 		else
3092 			list->head = rq->bio;
3093 		list->tail = rq->biotail;
3094 
3095 		rq->bio = NULL;
3096 		rq->biotail = NULL;
3097 	}
3098 
3099 	rq->__data_len = 0;
3100 }
3101 EXPORT_SYMBOL_GPL(blk_steal_bios);
3102 
3103 static size_t order_to_size(unsigned int order)
3104 {
3105 	return (size_t)PAGE_SIZE << order;
3106 }
3107 
3108 /* called before freeing request pool in @tags */
3109 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3110 				    struct blk_mq_tags *tags)
3111 {
3112 	struct page *page;
3113 	unsigned long flags;
3114 
3115 	/* There is no need to clear a driver tags own mapping */
3116 	if (drv_tags == tags)
3117 		return;
3118 
3119 	list_for_each_entry(page, &tags->page_list, lru) {
3120 		unsigned long start = (unsigned long)page_address(page);
3121 		unsigned long end = start + order_to_size(page->private);
3122 		int i;
3123 
3124 		for (i = 0; i < drv_tags->nr_tags; i++) {
3125 			struct request *rq = drv_tags->rqs[i];
3126 			unsigned long rq_addr = (unsigned long)rq;
3127 
3128 			if (rq_addr >= start && rq_addr < end) {
3129 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3130 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3131 			}
3132 		}
3133 	}
3134 
3135 	/*
3136 	 * Wait until all pending iteration is done.
3137 	 *
3138 	 * Request reference is cleared and it is guaranteed to be observed
3139 	 * after the ->lock is released.
3140 	 */
3141 	spin_lock_irqsave(&drv_tags->lock, flags);
3142 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3143 }
3144 
3145 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3146 		     unsigned int hctx_idx)
3147 {
3148 	struct blk_mq_tags *drv_tags;
3149 	struct page *page;
3150 
3151 	if (list_empty(&tags->page_list))
3152 		return;
3153 
3154 	if (blk_mq_is_shared_tags(set->flags))
3155 		drv_tags = set->shared_tags;
3156 	else
3157 		drv_tags = set->tags[hctx_idx];
3158 
3159 	if (tags->static_rqs && set->ops->exit_request) {
3160 		int i;
3161 
3162 		for (i = 0; i < tags->nr_tags; i++) {
3163 			struct request *rq = tags->static_rqs[i];
3164 
3165 			if (!rq)
3166 				continue;
3167 			set->ops->exit_request(set, rq, hctx_idx);
3168 			tags->static_rqs[i] = NULL;
3169 		}
3170 	}
3171 
3172 	blk_mq_clear_rq_mapping(drv_tags, tags);
3173 
3174 	while (!list_empty(&tags->page_list)) {
3175 		page = list_first_entry(&tags->page_list, struct page, lru);
3176 		list_del_init(&page->lru);
3177 		/*
3178 		 * Remove kmemleak object previously allocated in
3179 		 * blk_mq_alloc_rqs().
3180 		 */
3181 		kmemleak_free(page_address(page));
3182 		__free_pages(page, page->private);
3183 	}
3184 }
3185 
3186 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3187 {
3188 	kfree(tags->rqs);
3189 	tags->rqs = NULL;
3190 	kfree(tags->static_rqs);
3191 	tags->static_rqs = NULL;
3192 
3193 	blk_mq_free_tags(tags);
3194 }
3195 
3196 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3197 		unsigned int hctx_idx)
3198 {
3199 	int i;
3200 
3201 	for (i = 0; i < set->nr_maps; i++) {
3202 		unsigned int start = set->map[i].queue_offset;
3203 		unsigned int end = start + set->map[i].nr_queues;
3204 
3205 		if (hctx_idx >= start && hctx_idx < end)
3206 			break;
3207 	}
3208 
3209 	if (i >= set->nr_maps)
3210 		i = HCTX_TYPE_DEFAULT;
3211 
3212 	return i;
3213 }
3214 
3215 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3216 		unsigned int hctx_idx)
3217 {
3218 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3219 
3220 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3221 }
3222 
3223 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3224 					       unsigned int hctx_idx,
3225 					       unsigned int nr_tags,
3226 					       unsigned int reserved_tags)
3227 {
3228 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3229 	struct blk_mq_tags *tags;
3230 
3231 	if (node == NUMA_NO_NODE)
3232 		node = set->numa_node;
3233 
3234 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3235 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3236 	if (!tags)
3237 		return NULL;
3238 
3239 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3240 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3241 				 node);
3242 	if (!tags->rqs) {
3243 		blk_mq_free_tags(tags);
3244 		return NULL;
3245 	}
3246 
3247 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3248 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3249 					node);
3250 	if (!tags->static_rqs) {
3251 		kfree(tags->rqs);
3252 		blk_mq_free_tags(tags);
3253 		return NULL;
3254 	}
3255 
3256 	return tags;
3257 }
3258 
3259 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3260 			       unsigned int hctx_idx, int node)
3261 {
3262 	int ret;
3263 
3264 	if (set->ops->init_request) {
3265 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3266 		if (ret)
3267 			return ret;
3268 	}
3269 
3270 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3271 	return 0;
3272 }
3273 
3274 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3275 			    struct blk_mq_tags *tags,
3276 			    unsigned int hctx_idx, unsigned int depth)
3277 {
3278 	unsigned int i, j, entries_per_page, max_order = 4;
3279 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3280 	size_t rq_size, left;
3281 
3282 	if (node == NUMA_NO_NODE)
3283 		node = set->numa_node;
3284 
3285 	INIT_LIST_HEAD(&tags->page_list);
3286 
3287 	/*
3288 	 * rq_size is the size of the request plus driver payload, rounded
3289 	 * to the cacheline size
3290 	 */
3291 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3292 				cache_line_size());
3293 	left = rq_size * depth;
3294 
3295 	for (i = 0; i < depth; ) {
3296 		int this_order = max_order;
3297 		struct page *page;
3298 		int to_do;
3299 		void *p;
3300 
3301 		while (this_order && left < order_to_size(this_order - 1))
3302 			this_order--;
3303 
3304 		do {
3305 			page = alloc_pages_node(node,
3306 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3307 				this_order);
3308 			if (page)
3309 				break;
3310 			if (!this_order--)
3311 				break;
3312 			if (order_to_size(this_order) < rq_size)
3313 				break;
3314 		} while (1);
3315 
3316 		if (!page)
3317 			goto fail;
3318 
3319 		page->private = this_order;
3320 		list_add_tail(&page->lru, &tags->page_list);
3321 
3322 		p = page_address(page);
3323 		/*
3324 		 * Allow kmemleak to scan these pages as they contain pointers
3325 		 * to additional allocations like via ops->init_request().
3326 		 */
3327 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3328 		entries_per_page = order_to_size(this_order) / rq_size;
3329 		to_do = min(entries_per_page, depth - i);
3330 		left -= to_do * rq_size;
3331 		for (j = 0; j < to_do; j++) {
3332 			struct request *rq = p;
3333 
3334 			tags->static_rqs[i] = rq;
3335 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3336 				tags->static_rqs[i] = NULL;
3337 				goto fail;
3338 			}
3339 
3340 			p += rq_size;
3341 			i++;
3342 		}
3343 	}
3344 	return 0;
3345 
3346 fail:
3347 	blk_mq_free_rqs(set, tags, hctx_idx);
3348 	return -ENOMEM;
3349 }
3350 
3351 struct rq_iter_data {
3352 	struct blk_mq_hw_ctx *hctx;
3353 	bool has_rq;
3354 };
3355 
3356 static bool blk_mq_has_request(struct request *rq, void *data)
3357 {
3358 	struct rq_iter_data *iter_data = data;
3359 
3360 	if (rq->mq_hctx != iter_data->hctx)
3361 		return true;
3362 	iter_data->has_rq = true;
3363 	return false;
3364 }
3365 
3366 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3367 {
3368 	struct blk_mq_tags *tags = hctx->sched_tags ?
3369 			hctx->sched_tags : hctx->tags;
3370 	struct rq_iter_data data = {
3371 		.hctx	= hctx,
3372 	};
3373 
3374 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3375 	return data.has_rq;
3376 }
3377 
3378 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3379 		struct blk_mq_hw_ctx *hctx)
3380 {
3381 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3382 		return false;
3383 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3384 		return false;
3385 	return true;
3386 }
3387 
3388 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3389 {
3390 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3391 			struct blk_mq_hw_ctx, cpuhp_online);
3392 
3393 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3394 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3395 		return 0;
3396 
3397 	/*
3398 	 * Prevent new request from being allocated on the current hctx.
3399 	 *
3400 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3401 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3402 	 * seen once we return from the tag allocator.
3403 	 */
3404 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3405 	smp_mb__after_atomic();
3406 
3407 	/*
3408 	 * Try to grab a reference to the queue and wait for any outstanding
3409 	 * requests.  If we could not grab a reference the queue has been
3410 	 * frozen and there are no requests.
3411 	 */
3412 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3413 		while (blk_mq_hctx_has_requests(hctx))
3414 			msleep(5);
3415 		percpu_ref_put(&hctx->queue->q_usage_counter);
3416 	}
3417 
3418 	return 0;
3419 }
3420 
3421 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3422 {
3423 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3424 			struct blk_mq_hw_ctx, cpuhp_online);
3425 
3426 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3427 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3428 	return 0;
3429 }
3430 
3431 /*
3432  * 'cpu' is going away. splice any existing rq_list entries from this
3433  * software queue to the hw queue dispatch list, and ensure that it
3434  * gets run.
3435  */
3436 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3437 {
3438 	struct blk_mq_hw_ctx *hctx;
3439 	struct blk_mq_ctx *ctx;
3440 	LIST_HEAD(tmp);
3441 	enum hctx_type type;
3442 
3443 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3444 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3445 		return 0;
3446 
3447 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3448 	type = hctx->type;
3449 
3450 	spin_lock(&ctx->lock);
3451 	if (!list_empty(&ctx->rq_lists[type])) {
3452 		list_splice_init(&ctx->rq_lists[type], &tmp);
3453 		blk_mq_hctx_clear_pending(hctx, ctx);
3454 	}
3455 	spin_unlock(&ctx->lock);
3456 
3457 	if (list_empty(&tmp))
3458 		return 0;
3459 
3460 	spin_lock(&hctx->lock);
3461 	list_splice_tail_init(&tmp, &hctx->dispatch);
3462 	spin_unlock(&hctx->lock);
3463 
3464 	blk_mq_run_hw_queue(hctx, true);
3465 	return 0;
3466 }
3467 
3468 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3469 {
3470 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3471 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3472 						    &hctx->cpuhp_online);
3473 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3474 					    &hctx->cpuhp_dead);
3475 }
3476 
3477 /*
3478  * Before freeing hw queue, clearing the flush request reference in
3479  * tags->rqs[] for avoiding potential UAF.
3480  */
3481 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3482 		unsigned int queue_depth, struct request *flush_rq)
3483 {
3484 	int i;
3485 	unsigned long flags;
3486 
3487 	/* The hw queue may not be mapped yet */
3488 	if (!tags)
3489 		return;
3490 
3491 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3492 
3493 	for (i = 0; i < queue_depth; i++)
3494 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3495 
3496 	/*
3497 	 * Wait until all pending iteration is done.
3498 	 *
3499 	 * Request reference is cleared and it is guaranteed to be observed
3500 	 * after the ->lock is released.
3501 	 */
3502 	spin_lock_irqsave(&tags->lock, flags);
3503 	spin_unlock_irqrestore(&tags->lock, flags);
3504 }
3505 
3506 /* hctx->ctxs will be freed in queue's release handler */
3507 static void blk_mq_exit_hctx(struct request_queue *q,
3508 		struct blk_mq_tag_set *set,
3509 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3510 {
3511 	struct request *flush_rq = hctx->fq->flush_rq;
3512 
3513 	if (blk_mq_hw_queue_mapped(hctx))
3514 		blk_mq_tag_idle(hctx);
3515 
3516 	if (blk_queue_init_done(q))
3517 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3518 				set->queue_depth, flush_rq);
3519 	if (set->ops->exit_request)
3520 		set->ops->exit_request(set, flush_rq, hctx_idx);
3521 
3522 	if (set->ops->exit_hctx)
3523 		set->ops->exit_hctx(hctx, hctx_idx);
3524 
3525 	blk_mq_remove_cpuhp(hctx);
3526 
3527 	xa_erase(&q->hctx_table, hctx_idx);
3528 
3529 	spin_lock(&q->unused_hctx_lock);
3530 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3531 	spin_unlock(&q->unused_hctx_lock);
3532 }
3533 
3534 static void blk_mq_exit_hw_queues(struct request_queue *q,
3535 		struct blk_mq_tag_set *set, int nr_queue)
3536 {
3537 	struct blk_mq_hw_ctx *hctx;
3538 	unsigned long i;
3539 
3540 	queue_for_each_hw_ctx(q, hctx, i) {
3541 		if (i == nr_queue)
3542 			break;
3543 		blk_mq_exit_hctx(q, set, hctx, i);
3544 	}
3545 }
3546 
3547 static int blk_mq_init_hctx(struct request_queue *q,
3548 		struct blk_mq_tag_set *set,
3549 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3550 {
3551 	hctx->queue_num = hctx_idx;
3552 
3553 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3554 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3555 				&hctx->cpuhp_online);
3556 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3557 
3558 	hctx->tags = set->tags[hctx_idx];
3559 
3560 	if (set->ops->init_hctx &&
3561 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3562 		goto unregister_cpu_notifier;
3563 
3564 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3565 				hctx->numa_node))
3566 		goto exit_hctx;
3567 
3568 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3569 		goto exit_flush_rq;
3570 
3571 	return 0;
3572 
3573  exit_flush_rq:
3574 	if (set->ops->exit_request)
3575 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3576  exit_hctx:
3577 	if (set->ops->exit_hctx)
3578 		set->ops->exit_hctx(hctx, hctx_idx);
3579  unregister_cpu_notifier:
3580 	blk_mq_remove_cpuhp(hctx);
3581 	return -1;
3582 }
3583 
3584 static struct blk_mq_hw_ctx *
3585 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3586 		int node)
3587 {
3588 	struct blk_mq_hw_ctx *hctx;
3589 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3590 
3591 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3592 	if (!hctx)
3593 		goto fail_alloc_hctx;
3594 
3595 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3596 		goto free_hctx;
3597 
3598 	atomic_set(&hctx->nr_active, 0);
3599 	if (node == NUMA_NO_NODE)
3600 		node = set->numa_node;
3601 	hctx->numa_node = node;
3602 
3603 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3604 	spin_lock_init(&hctx->lock);
3605 	INIT_LIST_HEAD(&hctx->dispatch);
3606 	hctx->queue = q;
3607 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3608 
3609 	INIT_LIST_HEAD(&hctx->hctx_list);
3610 
3611 	/*
3612 	 * Allocate space for all possible cpus to avoid allocation at
3613 	 * runtime
3614 	 */
3615 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3616 			gfp, node);
3617 	if (!hctx->ctxs)
3618 		goto free_cpumask;
3619 
3620 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3621 				gfp, node, false, false))
3622 		goto free_ctxs;
3623 	hctx->nr_ctx = 0;
3624 
3625 	spin_lock_init(&hctx->dispatch_wait_lock);
3626 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3627 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3628 
3629 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3630 	if (!hctx->fq)
3631 		goto free_bitmap;
3632 
3633 	blk_mq_hctx_kobj_init(hctx);
3634 
3635 	return hctx;
3636 
3637  free_bitmap:
3638 	sbitmap_free(&hctx->ctx_map);
3639  free_ctxs:
3640 	kfree(hctx->ctxs);
3641  free_cpumask:
3642 	free_cpumask_var(hctx->cpumask);
3643  free_hctx:
3644 	kfree(hctx);
3645  fail_alloc_hctx:
3646 	return NULL;
3647 }
3648 
3649 static void blk_mq_init_cpu_queues(struct request_queue *q,
3650 				   unsigned int nr_hw_queues)
3651 {
3652 	struct blk_mq_tag_set *set = q->tag_set;
3653 	unsigned int i, j;
3654 
3655 	for_each_possible_cpu(i) {
3656 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3657 		struct blk_mq_hw_ctx *hctx;
3658 		int k;
3659 
3660 		__ctx->cpu = i;
3661 		spin_lock_init(&__ctx->lock);
3662 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3663 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3664 
3665 		__ctx->queue = q;
3666 
3667 		/*
3668 		 * Set local node, IFF we have more than one hw queue. If
3669 		 * not, we remain on the home node of the device
3670 		 */
3671 		for (j = 0; j < set->nr_maps; j++) {
3672 			hctx = blk_mq_map_queue_type(q, j, i);
3673 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3674 				hctx->numa_node = cpu_to_node(i);
3675 		}
3676 	}
3677 }
3678 
3679 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3680 					     unsigned int hctx_idx,
3681 					     unsigned int depth)
3682 {
3683 	struct blk_mq_tags *tags;
3684 	int ret;
3685 
3686 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3687 	if (!tags)
3688 		return NULL;
3689 
3690 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3691 	if (ret) {
3692 		blk_mq_free_rq_map(tags);
3693 		return NULL;
3694 	}
3695 
3696 	return tags;
3697 }
3698 
3699 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3700 				       int hctx_idx)
3701 {
3702 	if (blk_mq_is_shared_tags(set->flags)) {
3703 		set->tags[hctx_idx] = set->shared_tags;
3704 
3705 		return true;
3706 	}
3707 
3708 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3709 						       set->queue_depth);
3710 
3711 	return set->tags[hctx_idx];
3712 }
3713 
3714 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3715 			     struct blk_mq_tags *tags,
3716 			     unsigned int hctx_idx)
3717 {
3718 	if (tags) {
3719 		blk_mq_free_rqs(set, tags, hctx_idx);
3720 		blk_mq_free_rq_map(tags);
3721 	}
3722 }
3723 
3724 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3725 				      unsigned int hctx_idx)
3726 {
3727 	if (!blk_mq_is_shared_tags(set->flags))
3728 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3729 
3730 	set->tags[hctx_idx] = NULL;
3731 }
3732 
3733 static void blk_mq_map_swqueue(struct request_queue *q)
3734 {
3735 	unsigned int j, hctx_idx;
3736 	unsigned long i;
3737 	struct blk_mq_hw_ctx *hctx;
3738 	struct blk_mq_ctx *ctx;
3739 	struct blk_mq_tag_set *set = q->tag_set;
3740 
3741 	queue_for_each_hw_ctx(q, hctx, i) {
3742 		cpumask_clear(hctx->cpumask);
3743 		hctx->nr_ctx = 0;
3744 		hctx->dispatch_from = NULL;
3745 	}
3746 
3747 	/*
3748 	 * Map software to hardware queues.
3749 	 *
3750 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3751 	 */
3752 	for_each_possible_cpu(i) {
3753 
3754 		ctx = per_cpu_ptr(q->queue_ctx, i);
3755 		for (j = 0; j < set->nr_maps; j++) {
3756 			if (!set->map[j].nr_queues) {
3757 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3758 						HCTX_TYPE_DEFAULT, i);
3759 				continue;
3760 			}
3761 			hctx_idx = set->map[j].mq_map[i];
3762 			/* unmapped hw queue can be remapped after CPU topo changed */
3763 			if (!set->tags[hctx_idx] &&
3764 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3765 				/*
3766 				 * If tags initialization fail for some hctx,
3767 				 * that hctx won't be brought online.  In this
3768 				 * case, remap the current ctx to hctx[0] which
3769 				 * is guaranteed to always have tags allocated
3770 				 */
3771 				set->map[j].mq_map[i] = 0;
3772 			}
3773 
3774 			hctx = blk_mq_map_queue_type(q, j, i);
3775 			ctx->hctxs[j] = hctx;
3776 			/*
3777 			 * If the CPU is already set in the mask, then we've
3778 			 * mapped this one already. This can happen if
3779 			 * devices share queues across queue maps.
3780 			 */
3781 			if (cpumask_test_cpu(i, hctx->cpumask))
3782 				continue;
3783 
3784 			cpumask_set_cpu(i, hctx->cpumask);
3785 			hctx->type = j;
3786 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3787 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3788 
3789 			/*
3790 			 * If the nr_ctx type overflows, we have exceeded the
3791 			 * amount of sw queues we can support.
3792 			 */
3793 			BUG_ON(!hctx->nr_ctx);
3794 		}
3795 
3796 		for (; j < HCTX_MAX_TYPES; j++)
3797 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3798 					HCTX_TYPE_DEFAULT, i);
3799 	}
3800 
3801 	queue_for_each_hw_ctx(q, hctx, i) {
3802 		/*
3803 		 * If no software queues are mapped to this hardware queue,
3804 		 * disable it and free the request entries.
3805 		 */
3806 		if (!hctx->nr_ctx) {
3807 			/* Never unmap queue 0.  We need it as a
3808 			 * fallback in case of a new remap fails
3809 			 * allocation
3810 			 */
3811 			if (i)
3812 				__blk_mq_free_map_and_rqs(set, i);
3813 
3814 			hctx->tags = NULL;
3815 			continue;
3816 		}
3817 
3818 		hctx->tags = set->tags[i];
3819 		WARN_ON(!hctx->tags);
3820 
3821 		/*
3822 		 * Set the map size to the number of mapped software queues.
3823 		 * This is more accurate and more efficient than looping
3824 		 * over all possibly mapped software queues.
3825 		 */
3826 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3827 
3828 		/*
3829 		 * Initialize batch roundrobin counts
3830 		 */
3831 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3832 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3833 	}
3834 }
3835 
3836 /*
3837  * Caller needs to ensure that we're either frozen/quiesced, or that
3838  * the queue isn't live yet.
3839  */
3840 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3841 {
3842 	struct blk_mq_hw_ctx *hctx;
3843 	unsigned long i;
3844 
3845 	queue_for_each_hw_ctx(q, hctx, i) {
3846 		if (shared) {
3847 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3848 		} else {
3849 			blk_mq_tag_idle(hctx);
3850 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3851 		}
3852 	}
3853 }
3854 
3855 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3856 					 bool shared)
3857 {
3858 	struct request_queue *q;
3859 
3860 	lockdep_assert_held(&set->tag_list_lock);
3861 
3862 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3863 		blk_mq_freeze_queue(q);
3864 		queue_set_hctx_shared(q, shared);
3865 		blk_mq_unfreeze_queue(q);
3866 	}
3867 }
3868 
3869 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3870 {
3871 	struct blk_mq_tag_set *set = q->tag_set;
3872 
3873 	mutex_lock(&set->tag_list_lock);
3874 	list_del(&q->tag_set_list);
3875 	if (list_is_singular(&set->tag_list)) {
3876 		/* just transitioned to unshared */
3877 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3878 		/* update existing queue */
3879 		blk_mq_update_tag_set_shared(set, false);
3880 	}
3881 	mutex_unlock(&set->tag_list_lock);
3882 	INIT_LIST_HEAD(&q->tag_set_list);
3883 }
3884 
3885 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3886 				     struct request_queue *q)
3887 {
3888 	mutex_lock(&set->tag_list_lock);
3889 
3890 	/*
3891 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3892 	 */
3893 	if (!list_empty(&set->tag_list) &&
3894 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3895 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3896 		/* update existing queue */
3897 		blk_mq_update_tag_set_shared(set, true);
3898 	}
3899 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3900 		queue_set_hctx_shared(q, true);
3901 	list_add_tail(&q->tag_set_list, &set->tag_list);
3902 
3903 	mutex_unlock(&set->tag_list_lock);
3904 }
3905 
3906 /* All allocations will be freed in release handler of q->mq_kobj */
3907 static int blk_mq_alloc_ctxs(struct request_queue *q)
3908 {
3909 	struct blk_mq_ctxs *ctxs;
3910 	int cpu;
3911 
3912 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3913 	if (!ctxs)
3914 		return -ENOMEM;
3915 
3916 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3917 	if (!ctxs->queue_ctx)
3918 		goto fail;
3919 
3920 	for_each_possible_cpu(cpu) {
3921 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3922 		ctx->ctxs = ctxs;
3923 	}
3924 
3925 	q->mq_kobj = &ctxs->kobj;
3926 	q->queue_ctx = ctxs->queue_ctx;
3927 
3928 	return 0;
3929  fail:
3930 	kfree(ctxs);
3931 	return -ENOMEM;
3932 }
3933 
3934 /*
3935  * It is the actual release handler for mq, but we do it from
3936  * request queue's release handler for avoiding use-after-free
3937  * and headache because q->mq_kobj shouldn't have been introduced,
3938  * but we can't group ctx/kctx kobj without it.
3939  */
3940 void blk_mq_release(struct request_queue *q)
3941 {
3942 	struct blk_mq_hw_ctx *hctx, *next;
3943 	unsigned long i;
3944 
3945 	queue_for_each_hw_ctx(q, hctx, i)
3946 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3947 
3948 	/* all hctx are in .unused_hctx_list now */
3949 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3950 		list_del_init(&hctx->hctx_list);
3951 		kobject_put(&hctx->kobj);
3952 	}
3953 
3954 	xa_destroy(&q->hctx_table);
3955 
3956 	/*
3957 	 * release .mq_kobj and sw queue's kobject now because
3958 	 * both share lifetime with request queue.
3959 	 */
3960 	blk_mq_sysfs_deinit(q);
3961 }
3962 
3963 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3964 		void *queuedata)
3965 {
3966 	struct request_queue *q;
3967 	int ret;
3968 
3969 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3970 	if (!q)
3971 		return ERR_PTR(-ENOMEM);
3972 	q->queuedata = queuedata;
3973 	ret = blk_mq_init_allocated_queue(set, q);
3974 	if (ret) {
3975 		blk_put_queue(q);
3976 		return ERR_PTR(ret);
3977 	}
3978 	return q;
3979 }
3980 
3981 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3982 {
3983 	return blk_mq_init_queue_data(set, NULL);
3984 }
3985 EXPORT_SYMBOL(blk_mq_init_queue);
3986 
3987 /**
3988  * blk_mq_destroy_queue - shutdown a request queue
3989  * @q: request queue to shutdown
3990  *
3991  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3992  * the initial reference.  All future requests will failed with -ENODEV.
3993  *
3994  * Context: can sleep
3995  */
3996 void blk_mq_destroy_queue(struct request_queue *q)
3997 {
3998 	WARN_ON_ONCE(!queue_is_mq(q));
3999 	WARN_ON_ONCE(blk_queue_registered(q));
4000 
4001 	might_sleep();
4002 
4003 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4004 	blk_queue_start_drain(q);
4005 	blk_freeze_queue(q);
4006 
4007 	blk_sync_queue(q);
4008 	blk_mq_cancel_work_sync(q);
4009 	blk_mq_exit_queue(q);
4010 
4011 	/* @q is and will stay empty, shutdown and put */
4012 	blk_put_queue(q);
4013 }
4014 EXPORT_SYMBOL(blk_mq_destroy_queue);
4015 
4016 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4017 		struct lock_class_key *lkclass)
4018 {
4019 	struct request_queue *q;
4020 	struct gendisk *disk;
4021 
4022 	q = blk_mq_init_queue_data(set, queuedata);
4023 	if (IS_ERR(q))
4024 		return ERR_CAST(q);
4025 
4026 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4027 	if (!disk) {
4028 		blk_mq_destroy_queue(q);
4029 		return ERR_PTR(-ENOMEM);
4030 	}
4031 	set_bit(GD_OWNS_QUEUE, &disk->state);
4032 	return disk;
4033 }
4034 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4035 
4036 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4037 		struct lock_class_key *lkclass)
4038 {
4039 	if (!blk_get_queue(q))
4040 		return NULL;
4041 	return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4042 }
4043 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4044 
4045 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4046 		struct blk_mq_tag_set *set, struct request_queue *q,
4047 		int hctx_idx, int node)
4048 {
4049 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4050 
4051 	/* reuse dead hctx first */
4052 	spin_lock(&q->unused_hctx_lock);
4053 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4054 		if (tmp->numa_node == node) {
4055 			hctx = tmp;
4056 			break;
4057 		}
4058 	}
4059 	if (hctx)
4060 		list_del_init(&hctx->hctx_list);
4061 	spin_unlock(&q->unused_hctx_lock);
4062 
4063 	if (!hctx)
4064 		hctx = blk_mq_alloc_hctx(q, set, node);
4065 	if (!hctx)
4066 		goto fail;
4067 
4068 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4069 		goto free_hctx;
4070 
4071 	return hctx;
4072 
4073  free_hctx:
4074 	kobject_put(&hctx->kobj);
4075  fail:
4076 	return NULL;
4077 }
4078 
4079 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4080 						struct request_queue *q)
4081 {
4082 	struct blk_mq_hw_ctx *hctx;
4083 	unsigned long i, j;
4084 
4085 	/* protect against switching io scheduler  */
4086 	mutex_lock(&q->sysfs_lock);
4087 	for (i = 0; i < set->nr_hw_queues; i++) {
4088 		int old_node;
4089 		int node = blk_mq_get_hctx_node(set, i);
4090 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4091 
4092 		if (old_hctx) {
4093 			old_node = old_hctx->numa_node;
4094 			blk_mq_exit_hctx(q, set, old_hctx, i);
4095 		}
4096 
4097 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4098 			if (!old_hctx)
4099 				break;
4100 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4101 					node, old_node);
4102 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4103 			WARN_ON_ONCE(!hctx);
4104 		}
4105 	}
4106 	/*
4107 	 * Increasing nr_hw_queues fails. Free the newly allocated
4108 	 * hctxs and keep the previous q->nr_hw_queues.
4109 	 */
4110 	if (i != set->nr_hw_queues) {
4111 		j = q->nr_hw_queues;
4112 	} else {
4113 		j = i;
4114 		q->nr_hw_queues = set->nr_hw_queues;
4115 	}
4116 
4117 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4118 		blk_mq_exit_hctx(q, set, hctx, j);
4119 	mutex_unlock(&q->sysfs_lock);
4120 }
4121 
4122 static void blk_mq_update_poll_flag(struct request_queue *q)
4123 {
4124 	struct blk_mq_tag_set *set = q->tag_set;
4125 
4126 	if (set->nr_maps > HCTX_TYPE_POLL &&
4127 	    set->map[HCTX_TYPE_POLL].nr_queues)
4128 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4129 	else
4130 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4131 }
4132 
4133 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4134 		struct request_queue *q)
4135 {
4136 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4137 			!!(set->flags & BLK_MQ_F_BLOCKING));
4138 
4139 	/* mark the queue as mq asap */
4140 	q->mq_ops = set->ops;
4141 
4142 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4143 					     blk_mq_poll_stats_bkt,
4144 					     BLK_MQ_POLL_STATS_BKTS, q);
4145 	if (!q->poll_cb)
4146 		goto err_exit;
4147 
4148 	if (blk_mq_alloc_ctxs(q))
4149 		goto err_poll;
4150 
4151 	/* init q->mq_kobj and sw queues' kobjects */
4152 	blk_mq_sysfs_init(q);
4153 
4154 	INIT_LIST_HEAD(&q->unused_hctx_list);
4155 	spin_lock_init(&q->unused_hctx_lock);
4156 
4157 	xa_init(&q->hctx_table);
4158 
4159 	blk_mq_realloc_hw_ctxs(set, q);
4160 	if (!q->nr_hw_queues)
4161 		goto err_hctxs;
4162 
4163 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4164 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4165 
4166 	q->tag_set = set;
4167 
4168 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4169 	blk_mq_update_poll_flag(q);
4170 
4171 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4172 	INIT_LIST_HEAD(&q->requeue_list);
4173 	spin_lock_init(&q->requeue_lock);
4174 
4175 	q->nr_requests = set->queue_depth;
4176 
4177 	/*
4178 	 * Default to classic polling
4179 	 */
4180 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4181 
4182 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4183 	blk_mq_add_queue_tag_set(set, q);
4184 	blk_mq_map_swqueue(q);
4185 	return 0;
4186 
4187 err_hctxs:
4188 	xa_destroy(&q->hctx_table);
4189 	q->nr_hw_queues = 0;
4190 	blk_mq_sysfs_deinit(q);
4191 err_poll:
4192 	blk_stat_free_callback(q->poll_cb);
4193 	q->poll_cb = NULL;
4194 err_exit:
4195 	q->mq_ops = NULL;
4196 	return -ENOMEM;
4197 }
4198 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4199 
4200 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4201 void blk_mq_exit_queue(struct request_queue *q)
4202 {
4203 	struct blk_mq_tag_set *set = q->tag_set;
4204 
4205 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4206 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4207 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4208 	blk_mq_del_queue_tag_set(q);
4209 }
4210 
4211 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4212 {
4213 	int i;
4214 
4215 	if (blk_mq_is_shared_tags(set->flags)) {
4216 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4217 						BLK_MQ_NO_HCTX_IDX,
4218 						set->queue_depth);
4219 		if (!set->shared_tags)
4220 			return -ENOMEM;
4221 	}
4222 
4223 	for (i = 0; i < set->nr_hw_queues; i++) {
4224 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4225 			goto out_unwind;
4226 		cond_resched();
4227 	}
4228 
4229 	return 0;
4230 
4231 out_unwind:
4232 	while (--i >= 0)
4233 		__blk_mq_free_map_and_rqs(set, i);
4234 
4235 	if (blk_mq_is_shared_tags(set->flags)) {
4236 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4237 					BLK_MQ_NO_HCTX_IDX);
4238 	}
4239 
4240 	return -ENOMEM;
4241 }
4242 
4243 /*
4244  * Allocate the request maps associated with this tag_set. Note that this
4245  * may reduce the depth asked for, if memory is tight. set->queue_depth
4246  * will be updated to reflect the allocated depth.
4247  */
4248 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4249 {
4250 	unsigned int depth;
4251 	int err;
4252 
4253 	depth = set->queue_depth;
4254 	do {
4255 		err = __blk_mq_alloc_rq_maps(set);
4256 		if (!err)
4257 			break;
4258 
4259 		set->queue_depth >>= 1;
4260 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4261 			err = -ENOMEM;
4262 			break;
4263 		}
4264 	} while (set->queue_depth);
4265 
4266 	if (!set->queue_depth || err) {
4267 		pr_err("blk-mq: failed to allocate request map\n");
4268 		return -ENOMEM;
4269 	}
4270 
4271 	if (depth != set->queue_depth)
4272 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4273 						depth, set->queue_depth);
4274 
4275 	return 0;
4276 }
4277 
4278 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4279 {
4280 	/*
4281 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4282 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4283 	 * number of hardware queues.
4284 	 */
4285 	if (set->nr_maps == 1)
4286 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4287 
4288 	if (set->ops->map_queues && !is_kdump_kernel()) {
4289 		int i;
4290 
4291 		/*
4292 		 * transport .map_queues is usually done in the following
4293 		 * way:
4294 		 *
4295 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4296 		 * 	mask = get_cpu_mask(queue)
4297 		 * 	for_each_cpu(cpu, mask)
4298 		 * 		set->map[x].mq_map[cpu] = queue;
4299 		 * }
4300 		 *
4301 		 * When we need to remap, the table has to be cleared for
4302 		 * killing stale mapping since one CPU may not be mapped
4303 		 * to any hw queue.
4304 		 */
4305 		for (i = 0; i < set->nr_maps; i++)
4306 			blk_mq_clear_mq_map(&set->map[i]);
4307 
4308 		set->ops->map_queues(set);
4309 	} else {
4310 		BUG_ON(set->nr_maps > 1);
4311 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4312 	}
4313 }
4314 
4315 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4316 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4317 {
4318 	struct blk_mq_tags **new_tags;
4319 
4320 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4321 		return 0;
4322 
4323 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4324 				GFP_KERNEL, set->numa_node);
4325 	if (!new_tags)
4326 		return -ENOMEM;
4327 
4328 	if (set->tags)
4329 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4330 		       sizeof(*set->tags));
4331 	kfree(set->tags);
4332 	set->tags = new_tags;
4333 	set->nr_hw_queues = new_nr_hw_queues;
4334 
4335 	return 0;
4336 }
4337 
4338 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4339 				int new_nr_hw_queues)
4340 {
4341 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4342 }
4343 
4344 /*
4345  * Alloc a tag set to be associated with one or more request queues.
4346  * May fail with EINVAL for various error conditions. May adjust the
4347  * requested depth down, if it's too large. In that case, the set
4348  * value will be stored in set->queue_depth.
4349  */
4350 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4351 {
4352 	int i, ret;
4353 
4354 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4355 
4356 	if (!set->nr_hw_queues)
4357 		return -EINVAL;
4358 	if (!set->queue_depth)
4359 		return -EINVAL;
4360 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4361 		return -EINVAL;
4362 
4363 	if (!set->ops->queue_rq)
4364 		return -EINVAL;
4365 
4366 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4367 		return -EINVAL;
4368 
4369 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4370 		pr_info("blk-mq: reduced tag depth to %u\n",
4371 			BLK_MQ_MAX_DEPTH);
4372 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4373 	}
4374 
4375 	if (!set->nr_maps)
4376 		set->nr_maps = 1;
4377 	else if (set->nr_maps > HCTX_MAX_TYPES)
4378 		return -EINVAL;
4379 
4380 	/*
4381 	 * If a crashdump is active, then we are potentially in a very
4382 	 * memory constrained environment. Limit us to 1 queue and
4383 	 * 64 tags to prevent using too much memory.
4384 	 */
4385 	if (is_kdump_kernel()) {
4386 		set->nr_hw_queues = 1;
4387 		set->nr_maps = 1;
4388 		set->queue_depth = min(64U, set->queue_depth);
4389 	}
4390 	/*
4391 	 * There is no use for more h/w queues than cpus if we just have
4392 	 * a single map
4393 	 */
4394 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4395 		set->nr_hw_queues = nr_cpu_ids;
4396 
4397 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4398 		return -ENOMEM;
4399 
4400 	ret = -ENOMEM;
4401 	for (i = 0; i < set->nr_maps; i++) {
4402 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4403 						  sizeof(set->map[i].mq_map[0]),
4404 						  GFP_KERNEL, set->numa_node);
4405 		if (!set->map[i].mq_map)
4406 			goto out_free_mq_map;
4407 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4408 	}
4409 
4410 	blk_mq_update_queue_map(set);
4411 
4412 	ret = blk_mq_alloc_set_map_and_rqs(set);
4413 	if (ret)
4414 		goto out_free_mq_map;
4415 
4416 	mutex_init(&set->tag_list_lock);
4417 	INIT_LIST_HEAD(&set->tag_list);
4418 
4419 	return 0;
4420 
4421 out_free_mq_map:
4422 	for (i = 0; i < set->nr_maps; i++) {
4423 		kfree(set->map[i].mq_map);
4424 		set->map[i].mq_map = NULL;
4425 	}
4426 	kfree(set->tags);
4427 	set->tags = NULL;
4428 	return ret;
4429 }
4430 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4431 
4432 /* allocate and initialize a tagset for a simple single-queue device */
4433 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4434 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4435 		unsigned int set_flags)
4436 {
4437 	memset(set, 0, sizeof(*set));
4438 	set->ops = ops;
4439 	set->nr_hw_queues = 1;
4440 	set->nr_maps = 1;
4441 	set->queue_depth = queue_depth;
4442 	set->numa_node = NUMA_NO_NODE;
4443 	set->flags = set_flags;
4444 	return blk_mq_alloc_tag_set(set);
4445 }
4446 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4447 
4448 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4449 {
4450 	int i, j;
4451 
4452 	for (i = 0; i < set->nr_hw_queues; i++)
4453 		__blk_mq_free_map_and_rqs(set, i);
4454 
4455 	if (blk_mq_is_shared_tags(set->flags)) {
4456 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4457 					BLK_MQ_NO_HCTX_IDX);
4458 	}
4459 
4460 	for (j = 0; j < set->nr_maps; j++) {
4461 		kfree(set->map[j].mq_map);
4462 		set->map[j].mq_map = NULL;
4463 	}
4464 
4465 	kfree(set->tags);
4466 	set->tags = NULL;
4467 }
4468 EXPORT_SYMBOL(blk_mq_free_tag_set);
4469 
4470 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4471 {
4472 	struct blk_mq_tag_set *set = q->tag_set;
4473 	struct blk_mq_hw_ctx *hctx;
4474 	int ret;
4475 	unsigned long i;
4476 
4477 	if (!set)
4478 		return -EINVAL;
4479 
4480 	if (q->nr_requests == nr)
4481 		return 0;
4482 
4483 	blk_mq_freeze_queue(q);
4484 	blk_mq_quiesce_queue(q);
4485 
4486 	ret = 0;
4487 	queue_for_each_hw_ctx(q, hctx, i) {
4488 		if (!hctx->tags)
4489 			continue;
4490 		/*
4491 		 * If we're using an MQ scheduler, just update the scheduler
4492 		 * queue depth. This is similar to what the old code would do.
4493 		 */
4494 		if (hctx->sched_tags) {
4495 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4496 						      nr, true);
4497 		} else {
4498 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4499 						      false);
4500 		}
4501 		if (ret)
4502 			break;
4503 		if (q->elevator && q->elevator->type->ops.depth_updated)
4504 			q->elevator->type->ops.depth_updated(hctx);
4505 	}
4506 	if (!ret) {
4507 		q->nr_requests = nr;
4508 		if (blk_mq_is_shared_tags(set->flags)) {
4509 			if (q->elevator)
4510 				blk_mq_tag_update_sched_shared_tags(q);
4511 			else
4512 				blk_mq_tag_resize_shared_tags(set, nr);
4513 		}
4514 	}
4515 
4516 	blk_mq_unquiesce_queue(q);
4517 	blk_mq_unfreeze_queue(q);
4518 
4519 	return ret;
4520 }
4521 
4522 /*
4523  * request_queue and elevator_type pair.
4524  * It is just used by __blk_mq_update_nr_hw_queues to cache
4525  * the elevator_type associated with a request_queue.
4526  */
4527 struct blk_mq_qe_pair {
4528 	struct list_head node;
4529 	struct request_queue *q;
4530 	struct elevator_type *type;
4531 };
4532 
4533 /*
4534  * Cache the elevator_type in qe pair list and switch the
4535  * io scheduler to 'none'
4536  */
4537 static bool blk_mq_elv_switch_none(struct list_head *head,
4538 		struct request_queue *q)
4539 {
4540 	struct blk_mq_qe_pair *qe;
4541 
4542 	if (!q->elevator)
4543 		return true;
4544 
4545 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4546 	if (!qe)
4547 		return false;
4548 
4549 	/* q->elevator needs protection from ->sysfs_lock */
4550 	mutex_lock(&q->sysfs_lock);
4551 
4552 	INIT_LIST_HEAD(&qe->node);
4553 	qe->q = q;
4554 	qe->type = q->elevator->type;
4555 	list_add(&qe->node, head);
4556 
4557 	/*
4558 	 * After elevator_switch, the previous elevator_queue will be
4559 	 * released by elevator_release. The reference of the io scheduler
4560 	 * module get by elevator_get will also be put. So we need to get
4561 	 * a reference of the io scheduler module here to prevent it to be
4562 	 * removed.
4563 	 */
4564 	__module_get(qe->type->elevator_owner);
4565 	elevator_switch(q, NULL);
4566 	mutex_unlock(&q->sysfs_lock);
4567 
4568 	return true;
4569 }
4570 
4571 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4572 						struct request_queue *q)
4573 {
4574 	struct blk_mq_qe_pair *qe;
4575 
4576 	list_for_each_entry(qe, head, node)
4577 		if (qe->q == q)
4578 			return qe;
4579 
4580 	return NULL;
4581 }
4582 
4583 static void blk_mq_elv_switch_back(struct list_head *head,
4584 				  struct request_queue *q)
4585 {
4586 	struct blk_mq_qe_pair *qe;
4587 	struct elevator_type *t;
4588 
4589 	qe = blk_lookup_qe_pair(head, q);
4590 	if (!qe)
4591 		return;
4592 	t = qe->type;
4593 	list_del(&qe->node);
4594 	kfree(qe);
4595 
4596 	mutex_lock(&q->sysfs_lock);
4597 	elevator_switch(q, t);
4598 	mutex_unlock(&q->sysfs_lock);
4599 }
4600 
4601 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4602 							int nr_hw_queues)
4603 {
4604 	struct request_queue *q;
4605 	LIST_HEAD(head);
4606 	int prev_nr_hw_queues;
4607 
4608 	lockdep_assert_held(&set->tag_list_lock);
4609 
4610 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4611 		nr_hw_queues = nr_cpu_ids;
4612 	if (nr_hw_queues < 1)
4613 		return;
4614 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4615 		return;
4616 
4617 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4618 		blk_mq_freeze_queue(q);
4619 	/*
4620 	 * Switch IO scheduler to 'none', cleaning up the data associated
4621 	 * with the previous scheduler. We will switch back once we are done
4622 	 * updating the new sw to hw queue mappings.
4623 	 */
4624 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4625 		if (!blk_mq_elv_switch_none(&head, q))
4626 			goto switch_back;
4627 
4628 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4629 		blk_mq_debugfs_unregister_hctxs(q);
4630 		blk_mq_sysfs_unregister_hctxs(q);
4631 	}
4632 
4633 	prev_nr_hw_queues = set->nr_hw_queues;
4634 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4635 	    0)
4636 		goto reregister;
4637 
4638 	set->nr_hw_queues = nr_hw_queues;
4639 fallback:
4640 	blk_mq_update_queue_map(set);
4641 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4642 		blk_mq_realloc_hw_ctxs(set, q);
4643 		blk_mq_update_poll_flag(q);
4644 		if (q->nr_hw_queues != set->nr_hw_queues) {
4645 			int i = prev_nr_hw_queues;
4646 
4647 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4648 					nr_hw_queues, prev_nr_hw_queues);
4649 			for (; i < set->nr_hw_queues; i++)
4650 				__blk_mq_free_map_and_rqs(set, i);
4651 
4652 			set->nr_hw_queues = prev_nr_hw_queues;
4653 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4654 			goto fallback;
4655 		}
4656 		blk_mq_map_swqueue(q);
4657 	}
4658 
4659 reregister:
4660 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4661 		blk_mq_sysfs_register_hctxs(q);
4662 		blk_mq_debugfs_register_hctxs(q);
4663 	}
4664 
4665 switch_back:
4666 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4667 		blk_mq_elv_switch_back(&head, q);
4668 
4669 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4670 		blk_mq_unfreeze_queue(q);
4671 }
4672 
4673 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4674 {
4675 	mutex_lock(&set->tag_list_lock);
4676 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4677 	mutex_unlock(&set->tag_list_lock);
4678 }
4679 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4680 
4681 /* Enable polling stats and return whether they were already enabled. */
4682 static bool blk_poll_stats_enable(struct request_queue *q)
4683 {
4684 	if (q->poll_stat)
4685 		return true;
4686 
4687 	return blk_stats_alloc_enable(q);
4688 }
4689 
4690 static void blk_mq_poll_stats_start(struct request_queue *q)
4691 {
4692 	/*
4693 	 * We don't arm the callback if polling stats are not enabled or the
4694 	 * callback is already active.
4695 	 */
4696 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4697 		return;
4698 
4699 	blk_stat_activate_msecs(q->poll_cb, 100);
4700 }
4701 
4702 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4703 {
4704 	struct request_queue *q = cb->data;
4705 	int bucket;
4706 
4707 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4708 		if (cb->stat[bucket].nr_samples)
4709 			q->poll_stat[bucket] = cb->stat[bucket];
4710 	}
4711 }
4712 
4713 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4714 				       struct request *rq)
4715 {
4716 	unsigned long ret = 0;
4717 	int bucket;
4718 
4719 	/*
4720 	 * If stats collection isn't on, don't sleep but turn it on for
4721 	 * future users
4722 	 */
4723 	if (!blk_poll_stats_enable(q))
4724 		return 0;
4725 
4726 	/*
4727 	 * As an optimistic guess, use half of the mean service time
4728 	 * for this type of request. We can (and should) make this smarter.
4729 	 * For instance, if the completion latencies are tight, we can
4730 	 * get closer than just half the mean. This is especially
4731 	 * important on devices where the completion latencies are longer
4732 	 * than ~10 usec. We do use the stats for the relevant IO size
4733 	 * if available which does lead to better estimates.
4734 	 */
4735 	bucket = blk_mq_poll_stats_bkt(rq);
4736 	if (bucket < 0)
4737 		return ret;
4738 
4739 	if (q->poll_stat[bucket].nr_samples)
4740 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4741 
4742 	return ret;
4743 }
4744 
4745 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4746 {
4747 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4748 	struct request *rq = blk_qc_to_rq(hctx, qc);
4749 	struct hrtimer_sleeper hs;
4750 	enum hrtimer_mode mode;
4751 	unsigned int nsecs;
4752 	ktime_t kt;
4753 
4754 	/*
4755 	 * If a request has completed on queue that uses an I/O scheduler, we
4756 	 * won't get back a request from blk_qc_to_rq.
4757 	 */
4758 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4759 		return false;
4760 
4761 	/*
4762 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4763 	 *
4764 	 *  0:	use half of prev avg
4765 	 * >0:	use this specific value
4766 	 */
4767 	if (q->poll_nsec > 0)
4768 		nsecs = q->poll_nsec;
4769 	else
4770 		nsecs = blk_mq_poll_nsecs(q, rq);
4771 
4772 	if (!nsecs)
4773 		return false;
4774 
4775 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4776 
4777 	/*
4778 	 * This will be replaced with the stats tracking code, using
4779 	 * 'avg_completion_time / 2' as the pre-sleep target.
4780 	 */
4781 	kt = nsecs;
4782 
4783 	mode = HRTIMER_MODE_REL;
4784 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4785 	hrtimer_set_expires(&hs.timer, kt);
4786 
4787 	do {
4788 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4789 			break;
4790 		set_current_state(TASK_UNINTERRUPTIBLE);
4791 		hrtimer_sleeper_start_expires(&hs, mode);
4792 		if (hs.task)
4793 			io_schedule();
4794 		hrtimer_cancel(&hs.timer);
4795 		mode = HRTIMER_MODE_ABS;
4796 	} while (hs.task && !signal_pending(current));
4797 
4798 	__set_current_state(TASK_RUNNING);
4799 	destroy_hrtimer_on_stack(&hs.timer);
4800 
4801 	/*
4802 	 * If we sleep, have the caller restart the poll loop to reset the
4803 	 * state.  Like for the other success return cases, the caller is
4804 	 * responsible for checking if the IO completed.  If the IO isn't
4805 	 * complete, we'll get called again and will go straight to the busy
4806 	 * poll loop.
4807 	 */
4808 	return true;
4809 }
4810 
4811 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4812 			       struct io_comp_batch *iob, unsigned int flags)
4813 {
4814 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4815 	long state = get_current_state();
4816 	int ret;
4817 
4818 	do {
4819 		ret = q->mq_ops->poll(hctx, iob);
4820 		if (ret > 0) {
4821 			__set_current_state(TASK_RUNNING);
4822 			return ret;
4823 		}
4824 
4825 		if (signal_pending_state(state, current))
4826 			__set_current_state(TASK_RUNNING);
4827 		if (task_is_running(current))
4828 			return 1;
4829 
4830 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4831 			break;
4832 		cpu_relax();
4833 	} while (!need_resched());
4834 
4835 	__set_current_state(TASK_RUNNING);
4836 	return 0;
4837 }
4838 
4839 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4840 		unsigned int flags)
4841 {
4842 	if (!(flags & BLK_POLL_NOSLEEP) &&
4843 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4844 		if (blk_mq_poll_hybrid(q, cookie))
4845 			return 1;
4846 	}
4847 	return blk_mq_poll_classic(q, cookie, iob, flags);
4848 }
4849 
4850 unsigned int blk_mq_rq_cpu(struct request *rq)
4851 {
4852 	return rq->mq_ctx->cpu;
4853 }
4854 EXPORT_SYMBOL(blk_mq_rq_cpu);
4855 
4856 void blk_mq_cancel_work_sync(struct request_queue *q)
4857 {
4858 	if (queue_is_mq(q)) {
4859 		struct blk_mq_hw_ctx *hctx;
4860 		unsigned long i;
4861 
4862 		cancel_delayed_work_sync(&q->requeue_work);
4863 
4864 		queue_for_each_hw_ctx(q, hctx, i)
4865 			cancel_delayed_work_sync(&hctx->run_work);
4866 	}
4867 }
4868 
4869 static int __init blk_mq_init(void)
4870 {
4871 	int i;
4872 
4873 	for_each_possible_cpu(i)
4874 		init_llist_head(&per_cpu(blk_cpu_done, i));
4875 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4876 
4877 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4878 				  "block/softirq:dead", NULL,
4879 				  blk_softirq_cpu_dead);
4880 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4881 				blk_mq_hctx_notify_dead);
4882 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4883 				blk_mq_hctx_notify_online,
4884 				blk_mq_hctx_notify_offline);
4885 	return 0;
4886 }
4887 subsys_initcall(blk_mq_init);
4888