1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->part && blk_do_io_stat(rq) && 96 (!mi->part->bd_partno || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 void blk_freeze_queue_start(struct request_queue *q) 124 { 125 mutex_lock(&q->mq_freeze_lock); 126 if (++q->mq_freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 mutex_unlock(&q->mq_freeze_lock); 129 if (queue_is_mq(q)) 130 blk_mq_run_hw_queues(q, false); 131 } else { 132 mutex_unlock(&q->mq_freeze_lock); 133 } 134 } 135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 136 137 void blk_mq_freeze_queue_wait(struct request_queue *q) 138 { 139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 140 } 141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 142 143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 144 unsigned long timeout) 145 { 146 return wait_event_timeout(q->mq_freeze_wq, 147 percpu_ref_is_zero(&q->q_usage_counter), 148 timeout); 149 } 150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 151 152 /* 153 * Guarantee no request is in use, so we can change any data structure of 154 * the queue afterward. 155 */ 156 void blk_freeze_queue(struct request_queue *q) 157 { 158 /* 159 * In the !blk_mq case we are only calling this to kill the 160 * q_usage_counter, otherwise this increases the freeze depth 161 * and waits for it to return to zero. For this reason there is 162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 163 * exported to drivers as the only user for unfreeze is blk_mq. 164 */ 165 blk_freeze_queue_start(q); 166 blk_mq_freeze_queue_wait(q); 167 } 168 169 void blk_mq_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * ...just an alias to keep freeze and unfreeze actions balanced 173 * in the blk_mq_* namespace 174 */ 175 blk_freeze_queue(q); 176 } 177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 178 179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 180 { 181 mutex_lock(&q->mq_freeze_lock); 182 if (force_atomic) 183 q->q_usage_counter.data->force_atomic = true; 184 q->mq_freeze_depth--; 185 WARN_ON_ONCE(q->mq_freeze_depth < 0); 186 if (!q->mq_freeze_depth) { 187 percpu_ref_resurrect(&q->q_usage_counter); 188 wake_up_all(&q->mq_freeze_wq); 189 } 190 mutex_unlock(&q->mq_freeze_lock); 191 } 192 193 void blk_mq_unfreeze_queue(struct request_queue *q) 194 { 195 __blk_mq_unfreeze_queue(q, false); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 unsigned long flags; 206 207 spin_lock_irqsave(&q->queue_lock, flags); 208 if (!q->quiesce_depth++) 209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 210 spin_unlock_irqrestore(&q->queue_lock, flags); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 216 * @set: tag_set to wait on 217 * 218 * Note: it is driver's responsibility for making sure that quiesce has 219 * been started on or more of the request_queues of the tag_set. This 220 * function only waits for the quiesce on those request_queues that had 221 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 222 */ 223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 224 { 225 if (set->flags & BLK_MQ_F_BLOCKING) 226 synchronize_srcu(set->srcu); 227 else 228 synchronize_rcu(); 229 } 230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 231 232 /** 233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 234 * @q: request queue. 235 * 236 * Note: this function does not prevent that the struct request end_io() 237 * callback function is invoked. Once this function is returned, we make 238 * sure no dispatch can happen until the queue is unquiesced via 239 * blk_mq_unquiesce_queue(). 240 */ 241 void blk_mq_quiesce_queue(struct request_queue *q) 242 { 243 blk_mq_quiesce_queue_nowait(q); 244 /* nothing to wait for non-mq queues */ 245 if (queue_is_mq(q)) 246 blk_mq_wait_quiesce_done(q->tag_set); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 unsigned long flags; 260 bool run_queue = false; 261 262 spin_lock_irqsave(&q->queue_lock, flags); 263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 264 ; 265 } else if (!--q->quiesce_depth) { 266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 267 run_queue = true; 268 } 269 spin_unlock_irqrestore(&q->queue_lock, flags); 270 271 /* dispatch requests which are inserted during quiescing */ 272 if (run_queue) 273 blk_mq_run_hw_queues(q, true); 274 } 275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 276 277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 278 { 279 struct request_queue *q; 280 281 mutex_lock(&set->tag_list_lock); 282 list_for_each_entry(q, &set->tag_list, tag_set_list) { 283 if (!blk_queue_skip_tagset_quiesce(q)) 284 blk_mq_quiesce_queue_nowait(q); 285 } 286 blk_mq_wait_quiesce_done(set); 287 mutex_unlock(&set->tag_list_lock); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 290 291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 292 { 293 struct request_queue *q; 294 295 mutex_lock(&set->tag_list_lock); 296 list_for_each_entry(q, &set->tag_list, tag_set_list) { 297 if (!blk_queue_skip_tagset_quiesce(q)) 298 blk_mq_unquiesce_queue(q); 299 } 300 mutex_unlock(&set->tag_list_lock); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 303 304 void blk_mq_wake_waiters(struct request_queue *q) 305 { 306 struct blk_mq_hw_ctx *hctx; 307 unsigned long i; 308 309 queue_for_each_hw_ctx(q, hctx, i) 310 if (blk_mq_hw_queue_mapped(hctx)) 311 blk_mq_tag_wakeup_all(hctx->tags, true); 312 } 313 314 void blk_rq_init(struct request_queue *q, struct request *rq) 315 { 316 memset(rq, 0, sizeof(*rq)); 317 318 INIT_LIST_HEAD(&rq->queuelist); 319 rq->q = q; 320 rq->__sector = (sector_t) -1; 321 INIT_HLIST_NODE(&rq->hash); 322 RB_CLEAR_NODE(&rq->rb_node); 323 rq->tag = BLK_MQ_NO_TAG; 324 rq->internal_tag = BLK_MQ_NO_TAG; 325 rq->start_time_ns = ktime_get_ns(); 326 rq->part = NULL; 327 blk_crypto_rq_set_defaults(rq); 328 } 329 EXPORT_SYMBOL(blk_rq_init); 330 331 /* Set start and alloc time when the allocated request is actually used */ 332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 333 { 334 if (blk_mq_need_time_stamp(rq)) 335 rq->start_time_ns = ktime_get_ns(); 336 else 337 rq->start_time_ns = 0; 338 339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 340 if (blk_queue_rq_alloc_time(rq->q)) 341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 342 else 343 rq->alloc_time_ns = 0; 344 #endif 345 } 346 347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 348 struct blk_mq_tags *tags, unsigned int tag) 349 { 350 struct blk_mq_ctx *ctx = data->ctx; 351 struct blk_mq_hw_ctx *hctx = data->hctx; 352 struct request_queue *q = data->q; 353 struct request *rq = tags->static_rqs[tag]; 354 355 rq->q = q; 356 rq->mq_ctx = ctx; 357 rq->mq_hctx = hctx; 358 rq->cmd_flags = data->cmd_flags; 359 360 if (data->flags & BLK_MQ_REQ_PM) 361 data->rq_flags |= RQF_PM; 362 if (blk_queue_io_stat(q)) 363 data->rq_flags |= RQF_IO_STAT; 364 rq->rq_flags = data->rq_flags; 365 366 if (data->rq_flags & RQF_SCHED_TAGS) { 367 rq->tag = BLK_MQ_NO_TAG; 368 rq->internal_tag = tag; 369 } else { 370 rq->tag = tag; 371 rq->internal_tag = BLK_MQ_NO_TAG; 372 } 373 rq->timeout = 0; 374 375 rq->part = NULL; 376 rq->io_start_time_ns = 0; 377 rq->stats_sectors = 0; 378 rq->nr_phys_segments = 0; 379 #if defined(CONFIG_BLK_DEV_INTEGRITY) 380 rq->nr_integrity_segments = 0; 381 #endif 382 rq->end_io = NULL; 383 rq->end_io_data = NULL; 384 385 blk_crypto_rq_set_defaults(rq); 386 INIT_LIST_HEAD(&rq->queuelist); 387 /* tag was already set */ 388 WRITE_ONCE(rq->deadline, 0); 389 req_ref_set(rq, 1); 390 391 if (rq->rq_flags & RQF_USE_SCHED) { 392 struct elevator_queue *e = data->q->elevator; 393 394 INIT_HLIST_NODE(&rq->hash); 395 RB_CLEAR_NODE(&rq->rb_node); 396 397 if (e->type->ops.prepare_request) 398 e->type->ops.prepare_request(rq); 399 } 400 401 return rq; 402 } 403 404 static inline struct request * 405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 406 { 407 unsigned int tag, tag_offset; 408 struct blk_mq_tags *tags; 409 struct request *rq; 410 unsigned long tag_mask; 411 int i, nr = 0; 412 413 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 414 if (unlikely(!tag_mask)) 415 return NULL; 416 417 tags = blk_mq_tags_from_data(data); 418 for (i = 0; tag_mask; i++) { 419 if (!(tag_mask & (1UL << i))) 420 continue; 421 tag = tag_offset + i; 422 prefetch(tags->static_rqs[tag]); 423 tag_mask &= ~(1UL << i); 424 rq = blk_mq_rq_ctx_init(data, tags, tag); 425 rq_list_add(data->cached_rq, rq); 426 nr++; 427 } 428 /* caller already holds a reference, add for remainder */ 429 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 430 data->nr_tags -= nr; 431 432 return rq_list_pop(data->cached_rq); 433 } 434 435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 436 { 437 struct request_queue *q = data->q; 438 u64 alloc_time_ns = 0; 439 struct request *rq; 440 unsigned int tag; 441 442 /* alloc_time includes depth and tag waits */ 443 if (blk_queue_rq_alloc_time(q)) 444 alloc_time_ns = ktime_get_ns(); 445 446 if (data->cmd_flags & REQ_NOWAIT) 447 data->flags |= BLK_MQ_REQ_NOWAIT; 448 449 retry: 450 data->ctx = blk_mq_get_ctx(q); 451 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 452 453 if (q->elevator) { 454 /* 455 * All requests use scheduler tags when an I/O scheduler is 456 * enabled for the queue. 457 */ 458 data->rq_flags |= RQF_SCHED_TAGS; 459 460 /* 461 * Flush/passthrough requests are special and go directly to the 462 * dispatch list. 463 */ 464 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 465 !blk_op_is_passthrough(data->cmd_flags)) { 466 struct elevator_mq_ops *ops = &q->elevator->type->ops; 467 468 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 469 470 data->rq_flags |= RQF_USE_SCHED; 471 if (ops->limit_depth) 472 ops->limit_depth(data->cmd_flags, data); 473 } 474 } else { 475 blk_mq_tag_busy(data->hctx); 476 } 477 478 if (data->flags & BLK_MQ_REQ_RESERVED) 479 data->rq_flags |= RQF_RESV; 480 481 /* 482 * Try batched alloc if we want more than 1 tag. 483 */ 484 if (data->nr_tags > 1) { 485 rq = __blk_mq_alloc_requests_batch(data); 486 if (rq) { 487 blk_mq_rq_time_init(rq, alloc_time_ns); 488 return rq; 489 } 490 data->nr_tags = 1; 491 } 492 493 /* 494 * Waiting allocations only fail because of an inactive hctx. In that 495 * case just retry the hctx assignment and tag allocation as CPU hotplug 496 * should have migrated us to an online CPU by now. 497 */ 498 tag = blk_mq_get_tag(data); 499 if (tag == BLK_MQ_NO_TAG) { 500 if (data->flags & BLK_MQ_REQ_NOWAIT) 501 return NULL; 502 /* 503 * Give up the CPU and sleep for a random short time to 504 * ensure that thread using a realtime scheduling class 505 * are migrated off the CPU, and thus off the hctx that 506 * is going away. 507 */ 508 msleep(3); 509 goto retry; 510 } 511 512 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 513 blk_mq_rq_time_init(rq, alloc_time_ns); 514 return rq; 515 } 516 517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 518 struct blk_plug *plug, 519 blk_opf_t opf, 520 blk_mq_req_flags_t flags) 521 { 522 struct blk_mq_alloc_data data = { 523 .q = q, 524 .flags = flags, 525 .cmd_flags = opf, 526 .nr_tags = plug->nr_ios, 527 .cached_rq = &plug->cached_rq, 528 }; 529 struct request *rq; 530 531 if (blk_queue_enter(q, flags)) 532 return NULL; 533 534 plug->nr_ios = 1; 535 536 rq = __blk_mq_alloc_requests(&data); 537 if (unlikely(!rq)) 538 blk_queue_exit(q); 539 return rq; 540 } 541 542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 543 blk_opf_t opf, 544 blk_mq_req_flags_t flags) 545 { 546 struct blk_plug *plug = current->plug; 547 struct request *rq; 548 549 if (!plug) 550 return NULL; 551 552 if (rq_list_empty(plug->cached_rq)) { 553 if (plug->nr_ios == 1) 554 return NULL; 555 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 556 if (!rq) 557 return NULL; 558 } else { 559 rq = rq_list_peek(&plug->cached_rq); 560 if (!rq || rq->q != q) 561 return NULL; 562 563 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 564 return NULL; 565 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 566 return NULL; 567 568 plug->cached_rq = rq_list_next(rq); 569 blk_mq_rq_time_init(rq, 0); 570 } 571 572 rq->cmd_flags = opf; 573 INIT_LIST_HEAD(&rq->queuelist); 574 return rq; 575 } 576 577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 578 blk_mq_req_flags_t flags) 579 { 580 struct request *rq; 581 582 rq = blk_mq_alloc_cached_request(q, opf, flags); 583 if (!rq) { 584 struct blk_mq_alloc_data data = { 585 .q = q, 586 .flags = flags, 587 .cmd_flags = opf, 588 .nr_tags = 1, 589 }; 590 int ret; 591 592 ret = blk_queue_enter(q, flags); 593 if (ret) 594 return ERR_PTR(ret); 595 596 rq = __blk_mq_alloc_requests(&data); 597 if (!rq) 598 goto out_queue_exit; 599 } 600 rq->__data_len = 0; 601 rq->__sector = (sector_t) -1; 602 rq->bio = rq->biotail = NULL; 603 return rq; 604 out_queue_exit: 605 blk_queue_exit(q); 606 return ERR_PTR(-EWOULDBLOCK); 607 } 608 EXPORT_SYMBOL(blk_mq_alloc_request); 609 610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 611 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 612 { 613 struct blk_mq_alloc_data data = { 614 .q = q, 615 .flags = flags, 616 .cmd_flags = opf, 617 .nr_tags = 1, 618 }; 619 u64 alloc_time_ns = 0; 620 struct request *rq; 621 unsigned int cpu; 622 unsigned int tag; 623 int ret; 624 625 /* alloc_time includes depth and tag waits */ 626 if (blk_queue_rq_alloc_time(q)) 627 alloc_time_ns = ktime_get_ns(); 628 629 /* 630 * If the tag allocator sleeps we could get an allocation for a 631 * different hardware context. No need to complicate the low level 632 * allocator for this for the rare use case of a command tied to 633 * a specific queue. 634 */ 635 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 636 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 637 return ERR_PTR(-EINVAL); 638 639 if (hctx_idx >= q->nr_hw_queues) 640 return ERR_PTR(-EIO); 641 642 ret = blk_queue_enter(q, flags); 643 if (ret) 644 return ERR_PTR(ret); 645 646 /* 647 * Check if the hardware context is actually mapped to anything. 648 * If not tell the caller that it should skip this queue. 649 */ 650 ret = -EXDEV; 651 data.hctx = xa_load(&q->hctx_table, hctx_idx); 652 if (!blk_mq_hw_queue_mapped(data.hctx)) 653 goto out_queue_exit; 654 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 655 if (cpu >= nr_cpu_ids) 656 goto out_queue_exit; 657 data.ctx = __blk_mq_get_ctx(q, cpu); 658 659 if (q->elevator) 660 data.rq_flags |= RQF_SCHED_TAGS; 661 else 662 blk_mq_tag_busy(data.hctx); 663 664 if (flags & BLK_MQ_REQ_RESERVED) 665 data.rq_flags |= RQF_RESV; 666 667 ret = -EWOULDBLOCK; 668 tag = blk_mq_get_tag(&data); 669 if (tag == BLK_MQ_NO_TAG) 670 goto out_queue_exit; 671 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 672 blk_mq_rq_time_init(rq, alloc_time_ns); 673 rq->__data_len = 0; 674 rq->__sector = (sector_t) -1; 675 rq->bio = rq->biotail = NULL; 676 return rq; 677 678 out_queue_exit: 679 blk_queue_exit(q); 680 return ERR_PTR(ret); 681 } 682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 683 684 static void blk_mq_finish_request(struct request *rq) 685 { 686 struct request_queue *q = rq->q; 687 688 if (rq->rq_flags & RQF_USE_SCHED) { 689 q->elevator->type->ops.finish_request(rq); 690 /* 691 * For postflush request that may need to be 692 * completed twice, we should clear this flag 693 * to avoid double finish_request() on the rq. 694 */ 695 rq->rq_flags &= ~RQF_USE_SCHED; 696 } 697 } 698 699 static void __blk_mq_free_request(struct request *rq) 700 { 701 struct request_queue *q = rq->q; 702 struct blk_mq_ctx *ctx = rq->mq_ctx; 703 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 704 const int sched_tag = rq->internal_tag; 705 706 blk_crypto_free_request(rq); 707 blk_pm_mark_last_busy(rq); 708 rq->mq_hctx = NULL; 709 710 if (rq->rq_flags & RQF_MQ_INFLIGHT) 711 __blk_mq_dec_active_requests(hctx); 712 713 if (rq->tag != BLK_MQ_NO_TAG) 714 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 715 if (sched_tag != BLK_MQ_NO_TAG) 716 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 717 blk_mq_sched_restart(hctx); 718 blk_queue_exit(q); 719 } 720 721 void blk_mq_free_request(struct request *rq) 722 { 723 struct request_queue *q = rq->q; 724 725 blk_mq_finish_request(rq); 726 727 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 728 laptop_io_completion(q->disk->bdi); 729 730 rq_qos_done(q, rq); 731 732 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 733 if (req_ref_put_and_test(rq)) 734 __blk_mq_free_request(rq); 735 } 736 EXPORT_SYMBOL_GPL(blk_mq_free_request); 737 738 void blk_mq_free_plug_rqs(struct blk_plug *plug) 739 { 740 struct request *rq; 741 742 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 743 blk_mq_free_request(rq); 744 } 745 746 void blk_dump_rq_flags(struct request *rq, char *msg) 747 { 748 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 749 rq->q->disk ? rq->q->disk->disk_name : "?", 750 (__force unsigned long long) rq->cmd_flags); 751 752 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 753 (unsigned long long)blk_rq_pos(rq), 754 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 755 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 756 rq->bio, rq->biotail, blk_rq_bytes(rq)); 757 } 758 EXPORT_SYMBOL(blk_dump_rq_flags); 759 760 static void req_bio_endio(struct request *rq, struct bio *bio, 761 unsigned int nbytes, blk_status_t error) 762 { 763 if (unlikely(error)) { 764 bio->bi_status = error; 765 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 766 /* 767 * Partial zone append completions cannot be supported as the 768 * BIO fragments may end up not being written sequentially. 769 */ 770 if (bio->bi_iter.bi_size != nbytes) 771 bio->bi_status = BLK_STS_IOERR; 772 else 773 bio->bi_iter.bi_sector = rq->__sector; 774 } 775 776 bio_advance(bio, nbytes); 777 778 if (unlikely(rq->rq_flags & RQF_QUIET)) 779 bio_set_flag(bio, BIO_QUIET); 780 /* don't actually finish bio if it's part of flush sequence */ 781 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 782 bio_endio(bio); 783 } 784 785 static void blk_account_io_completion(struct request *req, unsigned int bytes) 786 { 787 if (req->part && blk_do_io_stat(req)) { 788 const int sgrp = op_stat_group(req_op(req)); 789 790 part_stat_lock(); 791 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 792 part_stat_unlock(); 793 } 794 } 795 796 static void blk_print_req_error(struct request *req, blk_status_t status) 797 { 798 printk_ratelimited(KERN_ERR 799 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 800 "phys_seg %u prio class %u\n", 801 blk_status_to_str(status), 802 req->q->disk ? req->q->disk->disk_name : "?", 803 blk_rq_pos(req), (__force u32)req_op(req), 804 blk_op_str(req_op(req)), 805 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 806 req->nr_phys_segments, 807 IOPRIO_PRIO_CLASS(req->ioprio)); 808 } 809 810 /* 811 * Fully end IO on a request. Does not support partial completions, or 812 * errors. 813 */ 814 static void blk_complete_request(struct request *req) 815 { 816 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 817 int total_bytes = blk_rq_bytes(req); 818 struct bio *bio = req->bio; 819 820 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 821 822 if (!bio) 823 return; 824 825 #ifdef CONFIG_BLK_DEV_INTEGRITY 826 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 827 req->q->integrity.profile->complete_fn(req, total_bytes); 828 #endif 829 830 /* 831 * Upper layers may call blk_crypto_evict_key() anytime after the last 832 * bio_endio(). Therefore, the keyslot must be released before that. 833 */ 834 blk_crypto_rq_put_keyslot(req); 835 836 blk_account_io_completion(req, total_bytes); 837 838 do { 839 struct bio *next = bio->bi_next; 840 841 /* Completion has already been traced */ 842 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 843 844 if (req_op(req) == REQ_OP_ZONE_APPEND) 845 bio->bi_iter.bi_sector = req->__sector; 846 847 if (!is_flush) 848 bio_endio(bio); 849 bio = next; 850 } while (bio); 851 852 /* 853 * Reset counters so that the request stacking driver 854 * can find how many bytes remain in the request 855 * later. 856 */ 857 if (!req->end_io) { 858 req->bio = NULL; 859 req->__data_len = 0; 860 } 861 } 862 863 /** 864 * blk_update_request - Complete multiple bytes without completing the request 865 * @req: the request being processed 866 * @error: block status code 867 * @nr_bytes: number of bytes to complete for @req 868 * 869 * Description: 870 * Ends I/O on a number of bytes attached to @req, but doesn't complete 871 * the request structure even if @req doesn't have leftover. 872 * If @req has leftover, sets it up for the next range of segments. 873 * 874 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 875 * %false return from this function. 876 * 877 * Note: 878 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 879 * except in the consistency check at the end of this function. 880 * 881 * Return: 882 * %false - this request doesn't have any more data 883 * %true - this request has more data 884 **/ 885 bool blk_update_request(struct request *req, blk_status_t error, 886 unsigned int nr_bytes) 887 { 888 int total_bytes; 889 890 trace_block_rq_complete(req, error, nr_bytes); 891 892 if (!req->bio) 893 return false; 894 895 #ifdef CONFIG_BLK_DEV_INTEGRITY 896 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 897 error == BLK_STS_OK) 898 req->q->integrity.profile->complete_fn(req, nr_bytes); 899 #endif 900 901 /* 902 * Upper layers may call blk_crypto_evict_key() anytime after the last 903 * bio_endio(). Therefore, the keyslot must be released before that. 904 */ 905 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 906 __blk_crypto_rq_put_keyslot(req); 907 908 if (unlikely(error && !blk_rq_is_passthrough(req) && 909 !(req->rq_flags & RQF_QUIET)) && 910 !test_bit(GD_DEAD, &req->q->disk->state)) { 911 blk_print_req_error(req, error); 912 trace_block_rq_error(req, error, nr_bytes); 913 } 914 915 blk_account_io_completion(req, nr_bytes); 916 917 total_bytes = 0; 918 while (req->bio) { 919 struct bio *bio = req->bio; 920 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 921 922 if (bio_bytes == bio->bi_iter.bi_size) 923 req->bio = bio->bi_next; 924 925 /* Completion has already been traced */ 926 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 927 req_bio_endio(req, bio, bio_bytes, error); 928 929 total_bytes += bio_bytes; 930 nr_bytes -= bio_bytes; 931 932 if (!nr_bytes) 933 break; 934 } 935 936 /* 937 * completely done 938 */ 939 if (!req->bio) { 940 /* 941 * Reset counters so that the request stacking driver 942 * can find how many bytes remain in the request 943 * later. 944 */ 945 req->__data_len = 0; 946 return false; 947 } 948 949 req->__data_len -= total_bytes; 950 951 /* update sector only for requests with clear definition of sector */ 952 if (!blk_rq_is_passthrough(req)) 953 req->__sector += total_bytes >> 9; 954 955 /* mixed attributes always follow the first bio */ 956 if (req->rq_flags & RQF_MIXED_MERGE) { 957 req->cmd_flags &= ~REQ_FAILFAST_MASK; 958 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 959 } 960 961 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 962 /* 963 * If total number of sectors is less than the first segment 964 * size, something has gone terribly wrong. 965 */ 966 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 967 blk_dump_rq_flags(req, "request botched"); 968 req->__data_len = blk_rq_cur_bytes(req); 969 } 970 971 /* recalculate the number of segments */ 972 req->nr_phys_segments = blk_recalc_rq_segments(req); 973 } 974 975 return true; 976 } 977 EXPORT_SYMBOL_GPL(blk_update_request); 978 979 static inline void blk_account_io_done(struct request *req, u64 now) 980 { 981 trace_block_io_done(req); 982 983 /* 984 * Account IO completion. flush_rq isn't accounted as a 985 * normal IO on queueing nor completion. Accounting the 986 * containing request is enough. 987 */ 988 if (blk_do_io_stat(req) && req->part && 989 !(req->rq_flags & RQF_FLUSH_SEQ)) { 990 const int sgrp = op_stat_group(req_op(req)); 991 992 part_stat_lock(); 993 update_io_ticks(req->part, jiffies, true); 994 part_stat_inc(req->part, ios[sgrp]); 995 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 996 part_stat_local_dec(req->part, 997 in_flight[op_is_write(req_op(req))]); 998 part_stat_unlock(); 999 } 1000 } 1001 1002 static inline void blk_account_io_start(struct request *req) 1003 { 1004 trace_block_io_start(req); 1005 1006 if (blk_do_io_stat(req)) { 1007 /* 1008 * All non-passthrough requests are created from a bio with one 1009 * exception: when a flush command that is part of a flush sequence 1010 * generated by the state machine in blk-flush.c is cloned onto the 1011 * lower device by dm-multipath we can get here without a bio. 1012 */ 1013 if (req->bio) 1014 req->part = req->bio->bi_bdev; 1015 else 1016 req->part = req->q->disk->part0; 1017 1018 part_stat_lock(); 1019 update_io_ticks(req->part, jiffies, false); 1020 part_stat_local_inc(req->part, 1021 in_flight[op_is_write(req_op(req))]); 1022 part_stat_unlock(); 1023 } 1024 } 1025 1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1027 { 1028 if (rq->rq_flags & RQF_STATS) 1029 blk_stat_add(rq, now); 1030 1031 blk_mq_sched_completed_request(rq, now); 1032 blk_account_io_done(rq, now); 1033 } 1034 1035 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1036 { 1037 if (blk_mq_need_time_stamp(rq)) 1038 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1039 1040 blk_mq_finish_request(rq); 1041 1042 if (rq->end_io) { 1043 rq_qos_done(rq->q, rq); 1044 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1045 blk_mq_free_request(rq); 1046 } else { 1047 blk_mq_free_request(rq); 1048 } 1049 } 1050 EXPORT_SYMBOL(__blk_mq_end_request); 1051 1052 void blk_mq_end_request(struct request *rq, blk_status_t error) 1053 { 1054 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1055 BUG(); 1056 __blk_mq_end_request(rq, error); 1057 } 1058 EXPORT_SYMBOL(blk_mq_end_request); 1059 1060 #define TAG_COMP_BATCH 32 1061 1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1063 int *tag_array, int nr_tags) 1064 { 1065 struct request_queue *q = hctx->queue; 1066 1067 /* 1068 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1069 * update hctx->nr_active in batch 1070 */ 1071 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1072 __blk_mq_sub_active_requests(hctx, nr_tags); 1073 1074 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1075 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1076 } 1077 1078 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1079 { 1080 int tags[TAG_COMP_BATCH], nr_tags = 0; 1081 struct blk_mq_hw_ctx *cur_hctx = NULL; 1082 struct request *rq; 1083 u64 now = 0; 1084 1085 if (iob->need_ts) 1086 now = ktime_get_ns(); 1087 1088 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1089 prefetch(rq->bio); 1090 prefetch(rq->rq_next); 1091 1092 blk_complete_request(rq); 1093 if (iob->need_ts) 1094 __blk_mq_end_request_acct(rq, now); 1095 1096 blk_mq_finish_request(rq); 1097 1098 rq_qos_done(rq->q, rq); 1099 1100 /* 1101 * If end_io handler returns NONE, then it still has 1102 * ownership of the request. 1103 */ 1104 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1105 continue; 1106 1107 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1108 if (!req_ref_put_and_test(rq)) 1109 continue; 1110 1111 blk_crypto_free_request(rq); 1112 blk_pm_mark_last_busy(rq); 1113 1114 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1115 if (cur_hctx) 1116 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1117 nr_tags = 0; 1118 cur_hctx = rq->mq_hctx; 1119 } 1120 tags[nr_tags++] = rq->tag; 1121 } 1122 1123 if (nr_tags) 1124 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1125 } 1126 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1127 1128 static void blk_complete_reqs(struct llist_head *list) 1129 { 1130 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1131 struct request *rq, *next; 1132 1133 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1134 rq->q->mq_ops->complete(rq); 1135 } 1136 1137 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1138 { 1139 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1140 } 1141 1142 static int blk_softirq_cpu_dead(unsigned int cpu) 1143 { 1144 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1145 return 0; 1146 } 1147 1148 static void __blk_mq_complete_request_remote(void *data) 1149 { 1150 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1151 } 1152 1153 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1154 { 1155 int cpu = raw_smp_processor_id(); 1156 1157 if (!IS_ENABLED(CONFIG_SMP) || 1158 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1159 return false; 1160 /* 1161 * With force threaded interrupts enabled, raising softirq from an SMP 1162 * function call will always result in waking the ksoftirqd thread. 1163 * This is probably worse than completing the request on a different 1164 * cache domain. 1165 */ 1166 if (force_irqthreads()) 1167 return false; 1168 1169 /* same CPU or cache domain? Complete locally */ 1170 if (cpu == rq->mq_ctx->cpu || 1171 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1172 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1173 return false; 1174 1175 /* don't try to IPI to an offline CPU */ 1176 return cpu_online(rq->mq_ctx->cpu); 1177 } 1178 1179 static void blk_mq_complete_send_ipi(struct request *rq) 1180 { 1181 unsigned int cpu; 1182 1183 cpu = rq->mq_ctx->cpu; 1184 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1185 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1186 } 1187 1188 static void blk_mq_raise_softirq(struct request *rq) 1189 { 1190 struct llist_head *list; 1191 1192 preempt_disable(); 1193 list = this_cpu_ptr(&blk_cpu_done); 1194 if (llist_add(&rq->ipi_list, list)) 1195 raise_softirq(BLOCK_SOFTIRQ); 1196 preempt_enable(); 1197 } 1198 1199 bool blk_mq_complete_request_remote(struct request *rq) 1200 { 1201 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1202 1203 /* 1204 * For request which hctx has only one ctx mapping, 1205 * or a polled request, always complete locally, 1206 * it's pointless to redirect the completion. 1207 */ 1208 if ((rq->mq_hctx->nr_ctx == 1 && 1209 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1210 rq->cmd_flags & REQ_POLLED) 1211 return false; 1212 1213 if (blk_mq_complete_need_ipi(rq)) { 1214 blk_mq_complete_send_ipi(rq); 1215 return true; 1216 } 1217 1218 if (rq->q->nr_hw_queues == 1) { 1219 blk_mq_raise_softirq(rq); 1220 return true; 1221 } 1222 return false; 1223 } 1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1225 1226 /** 1227 * blk_mq_complete_request - end I/O on a request 1228 * @rq: the request being processed 1229 * 1230 * Description: 1231 * Complete a request by scheduling the ->complete_rq operation. 1232 **/ 1233 void blk_mq_complete_request(struct request *rq) 1234 { 1235 if (!blk_mq_complete_request_remote(rq)) 1236 rq->q->mq_ops->complete(rq); 1237 } 1238 EXPORT_SYMBOL(blk_mq_complete_request); 1239 1240 /** 1241 * blk_mq_start_request - Start processing a request 1242 * @rq: Pointer to request to be started 1243 * 1244 * Function used by device drivers to notify the block layer that a request 1245 * is going to be processed now, so blk layer can do proper initializations 1246 * such as starting the timeout timer. 1247 */ 1248 void blk_mq_start_request(struct request *rq) 1249 { 1250 struct request_queue *q = rq->q; 1251 1252 trace_block_rq_issue(rq); 1253 1254 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1255 rq->io_start_time_ns = ktime_get_ns(); 1256 rq->stats_sectors = blk_rq_sectors(rq); 1257 rq->rq_flags |= RQF_STATS; 1258 rq_qos_issue(q, rq); 1259 } 1260 1261 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1262 1263 blk_add_timer(rq); 1264 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1265 1266 #ifdef CONFIG_BLK_DEV_INTEGRITY 1267 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1268 q->integrity.profile->prepare_fn(rq); 1269 #endif 1270 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1271 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1272 } 1273 EXPORT_SYMBOL(blk_mq_start_request); 1274 1275 /* 1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1277 * queues. This is important for md arrays to benefit from merging 1278 * requests. 1279 */ 1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1281 { 1282 if (plug->multiple_queues) 1283 return BLK_MAX_REQUEST_COUNT * 2; 1284 return BLK_MAX_REQUEST_COUNT; 1285 } 1286 1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1288 { 1289 struct request *last = rq_list_peek(&plug->mq_list); 1290 1291 if (!plug->rq_count) { 1292 trace_block_plug(rq->q); 1293 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1294 (!blk_queue_nomerges(rq->q) && 1295 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1296 blk_mq_flush_plug_list(plug, false); 1297 last = NULL; 1298 trace_block_plug(rq->q); 1299 } 1300 1301 if (!plug->multiple_queues && last && last->q != rq->q) 1302 plug->multiple_queues = true; 1303 /* 1304 * Any request allocated from sched tags can't be issued to 1305 * ->queue_rqs() directly 1306 */ 1307 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1308 plug->has_elevator = true; 1309 rq->rq_next = NULL; 1310 rq_list_add(&plug->mq_list, rq); 1311 plug->rq_count++; 1312 } 1313 1314 /** 1315 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1316 * @rq: request to insert 1317 * @at_head: insert request at head or tail of queue 1318 * 1319 * Description: 1320 * Insert a fully prepared request at the back of the I/O scheduler queue 1321 * for execution. Don't wait for completion. 1322 * 1323 * Note: 1324 * This function will invoke @done directly if the queue is dead. 1325 */ 1326 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1327 { 1328 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1329 1330 WARN_ON(irqs_disabled()); 1331 WARN_ON(!blk_rq_is_passthrough(rq)); 1332 1333 blk_account_io_start(rq); 1334 1335 /* 1336 * As plugging can be enabled for passthrough requests on a zoned 1337 * device, directly accessing the plug instead of using blk_mq_plug() 1338 * should not have any consequences. 1339 */ 1340 if (current->plug && !at_head) { 1341 blk_add_rq_to_plug(current->plug, rq); 1342 return; 1343 } 1344 1345 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1346 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1347 } 1348 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1349 1350 struct blk_rq_wait { 1351 struct completion done; 1352 blk_status_t ret; 1353 }; 1354 1355 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1356 { 1357 struct blk_rq_wait *wait = rq->end_io_data; 1358 1359 wait->ret = ret; 1360 complete(&wait->done); 1361 return RQ_END_IO_NONE; 1362 } 1363 1364 bool blk_rq_is_poll(struct request *rq) 1365 { 1366 if (!rq->mq_hctx) 1367 return false; 1368 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1369 return false; 1370 return true; 1371 } 1372 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1373 1374 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1375 { 1376 do { 1377 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1378 cond_resched(); 1379 } while (!completion_done(wait)); 1380 } 1381 1382 /** 1383 * blk_execute_rq - insert a request into queue for execution 1384 * @rq: request to insert 1385 * @at_head: insert request at head or tail of queue 1386 * 1387 * Description: 1388 * Insert a fully prepared request at the back of the I/O scheduler queue 1389 * for execution and wait for completion. 1390 * Return: The blk_status_t result provided to blk_mq_end_request(). 1391 */ 1392 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1393 { 1394 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1395 struct blk_rq_wait wait = { 1396 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1397 }; 1398 1399 WARN_ON(irqs_disabled()); 1400 WARN_ON(!blk_rq_is_passthrough(rq)); 1401 1402 rq->end_io_data = &wait; 1403 rq->end_io = blk_end_sync_rq; 1404 1405 blk_account_io_start(rq); 1406 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1407 blk_mq_run_hw_queue(hctx, false); 1408 1409 if (blk_rq_is_poll(rq)) { 1410 blk_rq_poll_completion(rq, &wait.done); 1411 } else { 1412 /* 1413 * Prevent hang_check timer from firing at us during very long 1414 * I/O 1415 */ 1416 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1417 1418 if (hang_check) 1419 while (!wait_for_completion_io_timeout(&wait.done, 1420 hang_check * (HZ/2))) 1421 ; 1422 else 1423 wait_for_completion_io(&wait.done); 1424 } 1425 1426 return wait.ret; 1427 } 1428 EXPORT_SYMBOL(blk_execute_rq); 1429 1430 static void __blk_mq_requeue_request(struct request *rq) 1431 { 1432 struct request_queue *q = rq->q; 1433 1434 blk_mq_put_driver_tag(rq); 1435 1436 trace_block_rq_requeue(rq); 1437 rq_qos_requeue(q, rq); 1438 1439 if (blk_mq_request_started(rq)) { 1440 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1441 rq->rq_flags &= ~RQF_TIMED_OUT; 1442 } 1443 } 1444 1445 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1446 { 1447 struct request_queue *q = rq->q; 1448 unsigned long flags; 1449 1450 __blk_mq_requeue_request(rq); 1451 1452 /* this request will be re-inserted to io scheduler queue */ 1453 blk_mq_sched_requeue_request(rq); 1454 1455 spin_lock_irqsave(&q->requeue_lock, flags); 1456 list_add_tail(&rq->queuelist, &q->requeue_list); 1457 spin_unlock_irqrestore(&q->requeue_lock, flags); 1458 1459 if (kick_requeue_list) 1460 blk_mq_kick_requeue_list(q); 1461 } 1462 EXPORT_SYMBOL(blk_mq_requeue_request); 1463 1464 static void blk_mq_requeue_work(struct work_struct *work) 1465 { 1466 struct request_queue *q = 1467 container_of(work, struct request_queue, requeue_work.work); 1468 LIST_HEAD(rq_list); 1469 LIST_HEAD(flush_list); 1470 struct request *rq; 1471 1472 spin_lock_irq(&q->requeue_lock); 1473 list_splice_init(&q->requeue_list, &rq_list); 1474 list_splice_init(&q->flush_list, &flush_list); 1475 spin_unlock_irq(&q->requeue_lock); 1476 1477 while (!list_empty(&rq_list)) { 1478 rq = list_entry(rq_list.next, struct request, queuelist); 1479 /* 1480 * If RQF_DONTPREP ist set, the request has been started by the 1481 * driver already and might have driver-specific data allocated 1482 * already. Insert it into the hctx dispatch list to avoid 1483 * block layer merges for the request. 1484 */ 1485 if (rq->rq_flags & RQF_DONTPREP) { 1486 list_del_init(&rq->queuelist); 1487 blk_mq_request_bypass_insert(rq, 0); 1488 } else { 1489 list_del_init(&rq->queuelist); 1490 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1491 } 1492 } 1493 1494 while (!list_empty(&flush_list)) { 1495 rq = list_entry(flush_list.next, struct request, queuelist); 1496 list_del_init(&rq->queuelist); 1497 blk_mq_insert_request(rq, 0); 1498 } 1499 1500 blk_mq_run_hw_queues(q, false); 1501 } 1502 1503 void blk_mq_kick_requeue_list(struct request_queue *q) 1504 { 1505 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1506 } 1507 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1508 1509 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1510 unsigned long msecs) 1511 { 1512 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1513 msecs_to_jiffies(msecs)); 1514 } 1515 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1516 1517 static bool blk_is_flush_data_rq(struct request *rq) 1518 { 1519 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1520 } 1521 1522 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1523 { 1524 /* 1525 * If we find a request that isn't idle we know the queue is busy 1526 * as it's checked in the iter. 1527 * Return false to stop the iteration. 1528 * 1529 * In case of queue quiesce, if one flush data request is completed, 1530 * don't count it as inflight given the flush sequence is suspended, 1531 * and the original flush data request is invisible to driver, just 1532 * like other pending requests because of quiesce 1533 */ 1534 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1535 blk_is_flush_data_rq(rq) && 1536 blk_mq_request_completed(rq))) { 1537 bool *busy = priv; 1538 1539 *busy = true; 1540 return false; 1541 } 1542 1543 return true; 1544 } 1545 1546 bool blk_mq_queue_inflight(struct request_queue *q) 1547 { 1548 bool busy = false; 1549 1550 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1551 return busy; 1552 } 1553 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1554 1555 static void blk_mq_rq_timed_out(struct request *req) 1556 { 1557 req->rq_flags |= RQF_TIMED_OUT; 1558 if (req->q->mq_ops->timeout) { 1559 enum blk_eh_timer_return ret; 1560 1561 ret = req->q->mq_ops->timeout(req); 1562 if (ret == BLK_EH_DONE) 1563 return; 1564 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1565 } 1566 1567 blk_add_timer(req); 1568 } 1569 1570 struct blk_expired_data { 1571 bool has_timedout_rq; 1572 unsigned long next; 1573 unsigned long timeout_start; 1574 }; 1575 1576 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1577 { 1578 unsigned long deadline; 1579 1580 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1581 return false; 1582 if (rq->rq_flags & RQF_TIMED_OUT) 1583 return false; 1584 1585 deadline = READ_ONCE(rq->deadline); 1586 if (time_after_eq(expired->timeout_start, deadline)) 1587 return true; 1588 1589 if (expired->next == 0) 1590 expired->next = deadline; 1591 else if (time_after(expired->next, deadline)) 1592 expired->next = deadline; 1593 return false; 1594 } 1595 1596 void blk_mq_put_rq_ref(struct request *rq) 1597 { 1598 if (is_flush_rq(rq)) { 1599 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1600 blk_mq_free_request(rq); 1601 } else if (req_ref_put_and_test(rq)) { 1602 __blk_mq_free_request(rq); 1603 } 1604 } 1605 1606 static bool blk_mq_check_expired(struct request *rq, void *priv) 1607 { 1608 struct blk_expired_data *expired = priv; 1609 1610 /* 1611 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1612 * be reallocated underneath the timeout handler's processing, then 1613 * the expire check is reliable. If the request is not expired, then 1614 * it was completed and reallocated as a new request after returning 1615 * from blk_mq_check_expired(). 1616 */ 1617 if (blk_mq_req_expired(rq, expired)) { 1618 expired->has_timedout_rq = true; 1619 return false; 1620 } 1621 return true; 1622 } 1623 1624 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1625 { 1626 struct blk_expired_data *expired = priv; 1627 1628 if (blk_mq_req_expired(rq, expired)) 1629 blk_mq_rq_timed_out(rq); 1630 return true; 1631 } 1632 1633 static void blk_mq_timeout_work(struct work_struct *work) 1634 { 1635 struct request_queue *q = 1636 container_of(work, struct request_queue, timeout_work); 1637 struct blk_expired_data expired = { 1638 .timeout_start = jiffies, 1639 }; 1640 struct blk_mq_hw_ctx *hctx; 1641 unsigned long i; 1642 1643 /* A deadlock might occur if a request is stuck requiring a 1644 * timeout at the same time a queue freeze is waiting 1645 * completion, since the timeout code would not be able to 1646 * acquire the queue reference here. 1647 * 1648 * That's why we don't use blk_queue_enter here; instead, we use 1649 * percpu_ref_tryget directly, because we need to be able to 1650 * obtain a reference even in the short window between the queue 1651 * starting to freeze, by dropping the first reference in 1652 * blk_freeze_queue_start, and the moment the last request is 1653 * consumed, marked by the instant q_usage_counter reaches 1654 * zero. 1655 */ 1656 if (!percpu_ref_tryget(&q->q_usage_counter)) 1657 return; 1658 1659 /* check if there is any timed-out request */ 1660 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1661 if (expired.has_timedout_rq) { 1662 /* 1663 * Before walking tags, we must ensure any submit started 1664 * before the current time has finished. Since the submit 1665 * uses srcu or rcu, wait for a synchronization point to 1666 * ensure all running submits have finished 1667 */ 1668 blk_mq_wait_quiesce_done(q->tag_set); 1669 1670 expired.next = 0; 1671 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1672 } 1673 1674 if (expired.next != 0) { 1675 mod_timer(&q->timeout, expired.next); 1676 } else { 1677 /* 1678 * Request timeouts are handled as a forward rolling timer. If 1679 * we end up here it means that no requests are pending and 1680 * also that no request has been pending for a while. Mark 1681 * each hctx as idle. 1682 */ 1683 queue_for_each_hw_ctx(q, hctx, i) { 1684 /* the hctx may be unmapped, so check it here */ 1685 if (blk_mq_hw_queue_mapped(hctx)) 1686 blk_mq_tag_idle(hctx); 1687 } 1688 } 1689 blk_queue_exit(q); 1690 } 1691 1692 struct flush_busy_ctx_data { 1693 struct blk_mq_hw_ctx *hctx; 1694 struct list_head *list; 1695 }; 1696 1697 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1698 { 1699 struct flush_busy_ctx_data *flush_data = data; 1700 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1701 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1702 enum hctx_type type = hctx->type; 1703 1704 spin_lock(&ctx->lock); 1705 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1706 sbitmap_clear_bit(sb, bitnr); 1707 spin_unlock(&ctx->lock); 1708 return true; 1709 } 1710 1711 /* 1712 * Process software queues that have been marked busy, splicing them 1713 * to the for-dispatch 1714 */ 1715 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1716 { 1717 struct flush_busy_ctx_data data = { 1718 .hctx = hctx, 1719 .list = list, 1720 }; 1721 1722 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1723 } 1724 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1725 1726 struct dispatch_rq_data { 1727 struct blk_mq_hw_ctx *hctx; 1728 struct request *rq; 1729 }; 1730 1731 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1732 void *data) 1733 { 1734 struct dispatch_rq_data *dispatch_data = data; 1735 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1736 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1737 enum hctx_type type = hctx->type; 1738 1739 spin_lock(&ctx->lock); 1740 if (!list_empty(&ctx->rq_lists[type])) { 1741 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1742 list_del_init(&dispatch_data->rq->queuelist); 1743 if (list_empty(&ctx->rq_lists[type])) 1744 sbitmap_clear_bit(sb, bitnr); 1745 } 1746 spin_unlock(&ctx->lock); 1747 1748 return !dispatch_data->rq; 1749 } 1750 1751 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1752 struct blk_mq_ctx *start) 1753 { 1754 unsigned off = start ? start->index_hw[hctx->type] : 0; 1755 struct dispatch_rq_data data = { 1756 .hctx = hctx, 1757 .rq = NULL, 1758 }; 1759 1760 __sbitmap_for_each_set(&hctx->ctx_map, off, 1761 dispatch_rq_from_ctx, &data); 1762 1763 return data.rq; 1764 } 1765 1766 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1767 { 1768 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1769 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1770 int tag; 1771 1772 blk_mq_tag_busy(rq->mq_hctx); 1773 1774 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1775 bt = &rq->mq_hctx->tags->breserved_tags; 1776 tag_offset = 0; 1777 } else { 1778 if (!hctx_may_queue(rq->mq_hctx, bt)) 1779 return false; 1780 } 1781 1782 tag = __sbitmap_queue_get(bt); 1783 if (tag == BLK_MQ_NO_TAG) 1784 return false; 1785 1786 rq->tag = tag + tag_offset; 1787 return true; 1788 } 1789 1790 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1791 { 1792 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1793 return false; 1794 1795 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1796 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1797 rq->rq_flags |= RQF_MQ_INFLIGHT; 1798 __blk_mq_inc_active_requests(hctx); 1799 } 1800 hctx->tags->rqs[rq->tag] = rq; 1801 return true; 1802 } 1803 1804 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1805 int flags, void *key) 1806 { 1807 struct blk_mq_hw_ctx *hctx; 1808 1809 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1810 1811 spin_lock(&hctx->dispatch_wait_lock); 1812 if (!list_empty(&wait->entry)) { 1813 struct sbitmap_queue *sbq; 1814 1815 list_del_init(&wait->entry); 1816 sbq = &hctx->tags->bitmap_tags; 1817 atomic_dec(&sbq->ws_active); 1818 } 1819 spin_unlock(&hctx->dispatch_wait_lock); 1820 1821 blk_mq_run_hw_queue(hctx, true); 1822 return 1; 1823 } 1824 1825 /* 1826 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1827 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1828 * restart. For both cases, take care to check the condition again after 1829 * marking us as waiting. 1830 */ 1831 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1832 struct request *rq) 1833 { 1834 struct sbitmap_queue *sbq; 1835 struct wait_queue_head *wq; 1836 wait_queue_entry_t *wait; 1837 bool ret; 1838 1839 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1840 !(blk_mq_is_shared_tags(hctx->flags))) { 1841 blk_mq_sched_mark_restart_hctx(hctx); 1842 1843 /* 1844 * It's possible that a tag was freed in the window between the 1845 * allocation failure and adding the hardware queue to the wait 1846 * queue. 1847 * 1848 * Don't clear RESTART here, someone else could have set it. 1849 * At most this will cost an extra queue run. 1850 */ 1851 return blk_mq_get_driver_tag(rq); 1852 } 1853 1854 wait = &hctx->dispatch_wait; 1855 if (!list_empty_careful(&wait->entry)) 1856 return false; 1857 1858 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1859 sbq = &hctx->tags->breserved_tags; 1860 else 1861 sbq = &hctx->tags->bitmap_tags; 1862 wq = &bt_wait_ptr(sbq, hctx)->wait; 1863 1864 spin_lock_irq(&wq->lock); 1865 spin_lock(&hctx->dispatch_wait_lock); 1866 if (!list_empty(&wait->entry)) { 1867 spin_unlock(&hctx->dispatch_wait_lock); 1868 spin_unlock_irq(&wq->lock); 1869 return false; 1870 } 1871 1872 atomic_inc(&sbq->ws_active); 1873 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1874 __add_wait_queue(wq, wait); 1875 1876 /* 1877 * Add one explicit barrier since blk_mq_get_driver_tag() may 1878 * not imply barrier in case of failure. 1879 * 1880 * Order adding us to wait queue and allocating driver tag. 1881 * 1882 * The pair is the one implied in sbitmap_queue_wake_up() which 1883 * orders clearing sbitmap tag bits and waitqueue_active() in 1884 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1885 * 1886 * Otherwise, re-order of adding wait queue and getting driver tag 1887 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1888 * the waitqueue_active() may not observe us in wait queue. 1889 */ 1890 smp_mb(); 1891 1892 /* 1893 * It's possible that a tag was freed in the window between the 1894 * allocation failure and adding the hardware queue to the wait 1895 * queue. 1896 */ 1897 ret = blk_mq_get_driver_tag(rq); 1898 if (!ret) { 1899 spin_unlock(&hctx->dispatch_wait_lock); 1900 spin_unlock_irq(&wq->lock); 1901 return false; 1902 } 1903 1904 /* 1905 * We got a tag, remove ourselves from the wait queue to ensure 1906 * someone else gets the wakeup. 1907 */ 1908 list_del_init(&wait->entry); 1909 atomic_dec(&sbq->ws_active); 1910 spin_unlock(&hctx->dispatch_wait_lock); 1911 spin_unlock_irq(&wq->lock); 1912 1913 return true; 1914 } 1915 1916 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1917 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1918 /* 1919 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1920 * - EWMA is one simple way to compute running average value 1921 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1922 * - take 4 as factor for avoiding to get too small(0) result, and this 1923 * factor doesn't matter because EWMA decreases exponentially 1924 */ 1925 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1926 { 1927 unsigned int ewma; 1928 1929 ewma = hctx->dispatch_busy; 1930 1931 if (!ewma && !busy) 1932 return; 1933 1934 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1935 if (busy) 1936 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1937 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1938 1939 hctx->dispatch_busy = ewma; 1940 } 1941 1942 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1943 1944 static void blk_mq_handle_dev_resource(struct request *rq, 1945 struct list_head *list) 1946 { 1947 list_add(&rq->queuelist, list); 1948 __blk_mq_requeue_request(rq); 1949 } 1950 1951 static void blk_mq_handle_zone_resource(struct request *rq, 1952 struct list_head *zone_list) 1953 { 1954 /* 1955 * If we end up here it is because we cannot dispatch a request to a 1956 * specific zone due to LLD level zone-write locking or other zone 1957 * related resource not being available. In this case, set the request 1958 * aside in zone_list for retrying it later. 1959 */ 1960 list_add(&rq->queuelist, zone_list); 1961 __blk_mq_requeue_request(rq); 1962 } 1963 1964 enum prep_dispatch { 1965 PREP_DISPATCH_OK, 1966 PREP_DISPATCH_NO_TAG, 1967 PREP_DISPATCH_NO_BUDGET, 1968 }; 1969 1970 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1971 bool need_budget) 1972 { 1973 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1974 int budget_token = -1; 1975 1976 if (need_budget) { 1977 budget_token = blk_mq_get_dispatch_budget(rq->q); 1978 if (budget_token < 0) { 1979 blk_mq_put_driver_tag(rq); 1980 return PREP_DISPATCH_NO_BUDGET; 1981 } 1982 blk_mq_set_rq_budget_token(rq, budget_token); 1983 } 1984 1985 if (!blk_mq_get_driver_tag(rq)) { 1986 /* 1987 * The initial allocation attempt failed, so we need to 1988 * rerun the hardware queue when a tag is freed. The 1989 * waitqueue takes care of that. If the queue is run 1990 * before we add this entry back on the dispatch list, 1991 * we'll re-run it below. 1992 */ 1993 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1994 /* 1995 * All budgets not got from this function will be put 1996 * together during handling partial dispatch 1997 */ 1998 if (need_budget) 1999 blk_mq_put_dispatch_budget(rq->q, budget_token); 2000 return PREP_DISPATCH_NO_TAG; 2001 } 2002 } 2003 2004 return PREP_DISPATCH_OK; 2005 } 2006 2007 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2008 static void blk_mq_release_budgets(struct request_queue *q, 2009 struct list_head *list) 2010 { 2011 struct request *rq; 2012 2013 list_for_each_entry(rq, list, queuelist) { 2014 int budget_token = blk_mq_get_rq_budget_token(rq); 2015 2016 if (budget_token >= 0) 2017 blk_mq_put_dispatch_budget(q, budget_token); 2018 } 2019 } 2020 2021 /* 2022 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2023 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2024 * details) 2025 * Attention, we should explicitly call this in unusual cases: 2026 * 1) did not queue everything initially scheduled to queue 2027 * 2) the last attempt to queue a request failed 2028 */ 2029 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2030 bool from_schedule) 2031 { 2032 if (hctx->queue->mq_ops->commit_rqs && queued) { 2033 trace_block_unplug(hctx->queue, queued, !from_schedule); 2034 hctx->queue->mq_ops->commit_rqs(hctx); 2035 } 2036 } 2037 2038 /* 2039 * Returns true if we did some work AND can potentially do more. 2040 */ 2041 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2042 unsigned int nr_budgets) 2043 { 2044 enum prep_dispatch prep; 2045 struct request_queue *q = hctx->queue; 2046 struct request *rq; 2047 int queued; 2048 blk_status_t ret = BLK_STS_OK; 2049 LIST_HEAD(zone_list); 2050 bool needs_resource = false; 2051 2052 if (list_empty(list)) 2053 return false; 2054 2055 /* 2056 * Now process all the entries, sending them to the driver. 2057 */ 2058 queued = 0; 2059 do { 2060 struct blk_mq_queue_data bd; 2061 2062 rq = list_first_entry(list, struct request, queuelist); 2063 2064 WARN_ON_ONCE(hctx != rq->mq_hctx); 2065 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2066 if (prep != PREP_DISPATCH_OK) 2067 break; 2068 2069 list_del_init(&rq->queuelist); 2070 2071 bd.rq = rq; 2072 bd.last = list_empty(list); 2073 2074 /* 2075 * once the request is queued to lld, no need to cover the 2076 * budget any more 2077 */ 2078 if (nr_budgets) 2079 nr_budgets--; 2080 ret = q->mq_ops->queue_rq(hctx, &bd); 2081 switch (ret) { 2082 case BLK_STS_OK: 2083 queued++; 2084 break; 2085 case BLK_STS_RESOURCE: 2086 needs_resource = true; 2087 fallthrough; 2088 case BLK_STS_DEV_RESOURCE: 2089 blk_mq_handle_dev_resource(rq, list); 2090 goto out; 2091 case BLK_STS_ZONE_RESOURCE: 2092 /* 2093 * Move the request to zone_list and keep going through 2094 * the dispatch list to find more requests the drive can 2095 * accept. 2096 */ 2097 blk_mq_handle_zone_resource(rq, &zone_list); 2098 needs_resource = true; 2099 break; 2100 default: 2101 blk_mq_end_request(rq, ret); 2102 } 2103 } while (!list_empty(list)); 2104 out: 2105 if (!list_empty(&zone_list)) 2106 list_splice_tail_init(&zone_list, list); 2107 2108 /* If we didn't flush the entire list, we could have told the driver 2109 * there was more coming, but that turned out to be a lie. 2110 */ 2111 if (!list_empty(list) || ret != BLK_STS_OK) 2112 blk_mq_commit_rqs(hctx, queued, false); 2113 2114 /* 2115 * Any items that need requeuing? Stuff them into hctx->dispatch, 2116 * that is where we will continue on next queue run. 2117 */ 2118 if (!list_empty(list)) { 2119 bool needs_restart; 2120 /* For non-shared tags, the RESTART check will suffice */ 2121 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2122 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2123 blk_mq_is_shared_tags(hctx->flags)); 2124 2125 if (nr_budgets) 2126 blk_mq_release_budgets(q, list); 2127 2128 spin_lock(&hctx->lock); 2129 list_splice_tail_init(list, &hctx->dispatch); 2130 spin_unlock(&hctx->lock); 2131 2132 /* 2133 * Order adding requests to hctx->dispatch and checking 2134 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2135 * in blk_mq_sched_restart(). Avoid restart code path to 2136 * miss the new added requests to hctx->dispatch, meantime 2137 * SCHED_RESTART is observed here. 2138 */ 2139 smp_mb(); 2140 2141 /* 2142 * If SCHED_RESTART was set by the caller of this function and 2143 * it is no longer set that means that it was cleared by another 2144 * thread and hence that a queue rerun is needed. 2145 * 2146 * If 'no_tag' is set, that means that we failed getting 2147 * a driver tag with an I/O scheduler attached. If our dispatch 2148 * waitqueue is no longer active, ensure that we run the queue 2149 * AFTER adding our entries back to the list. 2150 * 2151 * If no I/O scheduler has been configured it is possible that 2152 * the hardware queue got stopped and restarted before requests 2153 * were pushed back onto the dispatch list. Rerun the queue to 2154 * avoid starvation. Notes: 2155 * - blk_mq_run_hw_queue() checks whether or not a queue has 2156 * been stopped before rerunning a queue. 2157 * - Some but not all block drivers stop a queue before 2158 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2159 * and dm-rq. 2160 * 2161 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2162 * bit is set, run queue after a delay to avoid IO stalls 2163 * that could otherwise occur if the queue is idle. We'll do 2164 * similar if we couldn't get budget or couldn't lock a zone 2165 * and SCHED_RESTART is set. 2166 */ 2167 needs_restart = blk_mq_sched_needs_restart(hctx); 2168 if (prep == PREP_DISPATCH_NO_BUDGET) 2169 needs_resource = true; 2170 if (!needs_restart || 2171 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2172 blk_mq_run_hw_queue(hctx, true); 2173 else if (needs_resource) 2174 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2175 2176 blk_mq_update_dispatch_busy(hctx, true); 2177 return false; 2178 } 2179 2180 blk_mq_update_dispatch_busy(hctx, false); 2181 return true; 2182 } 2183 2184 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2185 { 2186 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2187 2188 if (cpu >= nr_cpu_ids) 2189 cpu = cpumask_first(hctx->cpumask); 2190 return cpu; 2191 } 2192 2193 /* 2194 * It'd be great if the workqueue API had a way to pass 2195 * in a mask and had some smarts for more clever placement. 2196 * For now we just round-robin here, switching for every 2197 * BLK_MQ_CPU_WORK_BATCH queued items. 2198 */ 2199 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2200 { 2201 bool tried = false; 2202 int next_cpu = hctx->next_cpu; 2203 2204 if (hctx->queue->nr_hw_queues == 1) 2205 return WORK_CPU_UNBOUND; 2206 2207 if (--hctx->next_cpu_batch <= 0) { 2208 select_cpu: 2209 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2210 cpu_online_mask); 2211 if (next_cpu >= nr_cpu_ids) 2212 next_cpu = blk_mq_first_mapped_cpu(hctx); 2213 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2214 } 2215 2216 /* 2217 * Do unbound schedule if we can't find a online CPU for this hctx, 2218 * and it should only happen in the path of handling CPU DEAD. 2219 */ 2220 if (!cpu_online(next_cpu)) { 2221 if (!tried) { 2222 tried = true; 2223 goto select_cpu; 2224 } 2225 2226 /* 2227 * Make sure to re-select CPU next time once after CPUs 2228 * in hctx->cpumask become online again. 2229 */ 2230 hctx->next_cpu = next_cpu; 2231 hctx->next_cpu_batch = 1; 2232 return WORK_CPU_UNBOUND; 2233 } 2234 2235 hctx->next_cpu = next_cpu; 2236 return next_cpu; 2237 } 2238 2239 /** 2240 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2241 * @hctx: Pointer to the hardware queue to run. 2242 * @msecs: Milliseconds of delay to wait before running the queue. 2243 * 2244 * Run a hardware queue asynchronously with a delay of @msecs. 2245 */ 2246 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2247 { 2248 if (unlikely(blk_mq_hctx_stopped(hctx))) 2249 return; 2250 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2251 msecs_to_jiffies(msecs)); 2252 } 2253 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2254 2255 /** 2256 * blk_mq_run_hw_queue - Start to run a hardware queue. 2257 * @hctx: Pointer to the hardware queue to run. 2258 * @async: If we want to run the queue asynchronously. 2259 * 2260 * Check if the request queue is not in a quiesced state and if there are 2261 * pending requests to be sent. If this is true, run the queue to send requests 2262 * to hardware. 2263 */ 2264 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2265 { 2266 bool need_run; 2267 2268 /* 2269 * We can't run the queue inline with interrupts disabled. 2270 */ 2271 WARN_ON_ONCE(!async && in_interrupt()); 2272 2273 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2274 2275 /* 2276 * When queue is quiesced, we may be switching io scheduler, or 2277 * updating nr_hw_queues, or other things, and we can't run queue 2278 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2279 * 2280 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2281 * quiesced. 2282 */ 2283 __blk_mq_run_dispatch_ops(hctx->queue, false, 2284 need_run = !blk_queue_quiesced(hctx->queue) && 2285 blk_mq_hctx_has_pending(hctx)); 2286 2287 if (!need_run) 2288 return; 2289 2290 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2291 blk_mq_delay_run_hw_queue(hctx, 0); 2292 return; 2293 } 2294 2295 blk_mq_run_dispatch_ops(hctx->queue, 2296 blk_mq_sched_dispatch_requests(hctx)); 2297 } 2298 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2299 2300 /* 2301 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2302 * scheduler. 2303 */ 2304 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2305 { 2306 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2307 /* 2308 * If the IO scheduler does not respect hardware queues when 2309 * dispatching, we just don't bother with multiple HW queues and 2310 * dispatch from hctx for the current CPU since running multiple queues 2311 * just causes lock contention inside the scheduler and pointless cache 2312 * bouncing. 2313 */ 2314 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2315 2316 if (!blk_mq_hctx_stopped(hctx)) 2317 return hctx; 2318 return NULL; 2319 } 2320 2321 /** 2322 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2323 * @q: Pointer to the request queue to run. 2324 * @async: If we want to run the queue asynchronously. 2325 */ 2326 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2327 { 2328 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2329 unsigned long i; 2330 2331 sq_hctx = NULL; 2332 if (blk_queue_sq_sched(q)) 2333 sq_hctx = blk_mq_get_sq_hctx(q); 2334 queue_for_each_hw_ctx(q, hctx, i) { 2335 if (blk_mq_hctx_stopped(hctx)) 2336 continue; 2337 /* 2338 * Dispatch from this hctx either if there's no hctx preferred 2339 * by IO scheduler or if it has requests that bypass the 2340 * scheduler. 2341 */ 2342 if (!sq_hctx || sq_hctx == hctx || 2343 !list_empty_careful(&hctx->dispatch)) 2344 blk_mq_run_hw_queue(hctx, async); 2345 } 2346 } 2347 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2348 2349 /** 2350 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2351 * @q: Pointer to the request queue to run. 2352 * @msecs: Milliseconds of delay to wait before running the queues. 2353 */ 2354 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2355 { 2356 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2357 unsigned long i; 2358 2359 sq_hctx = NULL; 2360 if (blk_queue_sq_sched(q)) 2361 sq_hctx = blk_mq_get_sq_hctx(q); 2362 queue_for_each_hw_ctx(q, hctx, i) { 2363 if (blk_mq_hctx_stopped(hctx)) 2364 continue; 2365 /* 2366 * If there is already a run_work pending, leave the 2367 * pending delay untouched. Otherwise, a hctx can stall 2368 * if another hctx is re-delaying the other's work 2369 * before the work executes. 2370 */ 2371 if (delayed_work_pending(&hctx->run_work)) 2372 continue; 2373 /* 2374 * Dispatch from this hctx either if there's no hctx preferred 2375 * by IO scheduler or if it has requests that bypass the 2376 * scheduler. 2377 */ 2378 if (!sq_hctx || sq_hctx == hctx || 2379 !list_empty_careful(&hctx->dispatch)) 2380 blk_mq_delay_run_hw_queue(hctx, msecs); 2381 } 2382 } 2383 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2384 2385 /* 2386 * This function is often used for pausing .queue_rq() by driver when 2387 * there isn't enough resource or some conditions aren't satisfied, and 2388 * BLK_STS_RESOURCE is usually returned. 2389 * 2390 * We do not guarantee that dispatch can be drained or blocked 2391 * after blk_mq_stop_hw_queue() returns. Please use 2392 * blk_mq_quiesce_queue() for that requirement. 2393 */ 2394 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2395 { 2396 cancel_delayed_work(&hctx->run_work); 2397 2398 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2399 } 2400 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2401 2402 /* 2403 * This function is often used for pausing .queue_rq() by driver when 2404 * there isn't enough resource or some conditions aren't satisfied, and 2405 * BLK_STS_RESOURCE is usually returned. 2406 * 2407 * We do not guarantee that dispatch can be drained or blocked 2408 * after blk_mq_stop_hw_queues() returns. Please use 2409 * blk_mq_quiesce_queue() for that requirement. 2410 */ 2411 void blk_mq_stop_hw_queues(struct request_queue *q) 2412 { 2413 struct blk_mq_hw_ctx *hctx; 2414 unsigned long i; 2415 2416 queue_for_each_hw_ctx(q, hctx, i) 2417 blk_mq_stop_hw_queue(hctx); 2418 } 2419 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2420 2421 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2422 { 2423 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2424 2425 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2426 } 2427 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2428 2429 void blk_mq_start_hw_queues(struct request_queue *q) 2430 { 2431 struct blk_mq_hw_ctx *hctx; 2432 unsigned long i; 2433 2434 queue_for_each_hw_ctx(q, hctx, i) 2435 blk_mq_start_hw_queue(hctx); 2436 } 2437 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2438 2439 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2440 { 2441 if (!blk_mq_hctx_stopped(hctx)) 2442 return; 2443 2444 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2445 blk_mq_run_hw_queue(hctx, async); 2446 } 2447 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2448 2449 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2450 { 2451 struct blk_mq_hw_ctx *hctx; 2452 unsigned long i; 2453 2454 queue_for_each_hw_ctx(q, hctx, i) 2455 blk_mq_start_stopped_hw_queue(hctx, async || 2456 (hctx->flags & BLK_MQ_F_BLOCKING)); 2457 } 2458 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2459 2460 static void blk_mq_run_work_fn(struct work_struct *work) 2461 { 2462 struct blk_mq_hw_ctx *hctx = 2463 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2464 2465 blk_mq_run_dispatch_ops(hctx->queue, 2466 blk_mq_sched_dispatch_requests(hctx)); 2467 } 2468 2469 /** 2470 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2471 * @rq: Pointer to request to be inserted. 2472 * @flags: BLK_MQ_INSERT_* 2473 * 2474 * Should only be used carefully, when the caller knows we want to 2475 * bypass a potential IO scheduler on the target device. 2476 */ 2477 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2478 { 2479 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2480 2481 spin_lock(&hctx->lock); 2482 if (flags & BLK_MQ_INSERT_AT_HEAD) 2483 list_add(&rq->queuelist, &hctx->dispatch); 2484 else 2485 list_add_tail(&rq->queuelist, &hctx->dispatch); 2486 spin_unlock(&hctx->lock); 2487 } 2488 2489 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2490 struct blk_mq_ctx *ctx, struct list_head *list, 2491 bool run_queue_async) 2492 { 2493 struct request *rq; 2494 enum hctx_type type = hctx->type; 2495 2496 /* 2497 * Try to issue requests directly if the hw queue isn't busy to save an 2498 * extra enqueue & dequeue to the sw queue. 2499 */ 2500 if (!hctx->dispatch_busy && !run_queue_async) { 2501 blk_mq_run_dispatch_ops(hctx->queue, 2502 blk_mq_try_issue_list_directly(hctx, list)); 2503 if (list_empty(list)) 2504 goto out; 2505 } 2506 2507 /* 2508 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2509 * offline now 2510 */ 2511 list_for_each_entry(rq, list, queuelist) { 2512 BUG_ON(rq->mq_ctx != ctx); 2513 trace_block_rq_insert(rq); 2514 if (rq->cmd_flags & REQ_NOWAIT) 2515 run_queue_async = true; 2516 } 2517 2518 spin_lock(&ctx->lock); 2519 list_splice_tail_init(list, &ctx->rq_lists[type]); 2520 blk_mq_hctx_mark_pending(hctx, ctx); 2521 spin_unlock(&ctx->lock); 2522 out: 2523 blk_mq_run_hw_queue(hctx, run_queue_async); 2524 } 2525 2526 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2527 { 2528 struct request_queue *q = rq->q; 2529 struct blk_mq_ctx *ctx = rq->mq_ctx; 2530 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2531 2532 if (blk_rq_is_passthrough(rq)) { 2533 /* 2534 * Passthrough request have to be added to hctx->dispatch 2535 * directly. The device may be in a situation where it can't 2536 * handle FS request, and always returns BLK_STS_RESOURCE for 2537 * them, which gets them added to hctx->dispatch. 2538 * 2539 * If a passthrough request is required to unblock the queues, 2540 * and it is added to the scheduler queue, there is no chance to 2541 * dispatch it given we prioritize requests in hctx->dispatch. 2542 */ 2543 blk_mq_request_bypass_insert(rq, flags); 2544 } else if (req_op(rq) == REQ_OP_FLUSH) { 2545 /* 2546 * Firstly normal IO request is inserted to scheduler queue or 2547 * sw queue, meantime we add flush request to dispatch queue( 2548 * hctx->dispatch) directly and there is at most one in-flight 2549 * flush request for each hw queue, so it doesn't matter to add 2550 * flush request to tail or front of the dispatch queue. 2551 * 2552 * Secondly in case of NCQ, flush request belongs to non-NCQ 2553 * command, and queueing it will fail when there is any 2554 * in-flight normal IO request(NCQ command). When adding flush 2555 * rq to the front of hctx->dispatch, it is easier to introduce 2556 * extra time to flush rq's latency because of S_SCHED_RESTART 2557 * compared with adding to the tail of dispatch queue, then 2558 * chance of flush merge is increased, and less flush requests 2559 * will be issued to controller. It is observed that ~10% time 2560 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2561 * drive when adding flush rq to the front of hctx->dispatch. 2562 * 2563 * Simply queue flush rq to the front of hctx->dispatch so that 2564 * intensive flush workloads can benefit in case of NCQ HW. 2565 */ 2566 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2567 } else if (q->elevator) { 2568 LIST_HEAD(list); 2569 2570 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2571 2572 list_add(&rq->queuelist, &list); 2573 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2574 } else { 2575 trace_block_rq_insert(rq); 2576 2577 spin_lock(&ctx->lock); 2578 if (flags & BLK_MQ_INSERT_AT_HEAD) 2579 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2580 else 2581 list_add_tail(&rq->queuelist, 2582 &ctx->rq_lists[hctx->type]); 2583 blk_mq_hctx_mark_pending(hctx, ctx); 2584 spin_unlock(&ctx->lock); 2585 } 2586 } 2587 2588 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2589 unsigned int nr_segs) 2590 { 2591 int err; 2592 2593 if (bio->bi_opf & REQ_RAHEAD) 2594 rq->cmd_flags |= REQ_FAILFAST_MASK; 2595 2596 rq->__sector = bio->bi_iter.bi_sector; 2597 blk_rq_bio_prep(rq, bio, nr_segs); 2598 2599 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2600 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2601 WARN_ON_ONCE(err); 2602 2603 blk_account_io_start(rq); 2604 } 2605 2606 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2607 struct request *rq, bool last) 2608 { 2609 struct request_queue *q = rq->q; 2610 struct blk_mq_queue_data bd = { 2611 .rq = rq, 2612 .last = last, 2613 }; 2614 blk_status_t ret; 2615 2616 /* 2617 * For OK queue, we are done. For error, caller may kill it. 2618 * Any other error (busy), just add it to our list as we 2619 * previously would have done. 2620 */ 2621 ret = q->mq_ops->queue_rq(hctx, &bd); 2622 switch (ret) { 2623 case BLK_STS_OK: 2624 blk_mq_update_dispatch_busy(hctx, false); 2625 break; 2626 case BLK_STS_RESOURCE: 2627 case BLK_STS_DEV_RESOURCE: 2628 blk_mq_update_dispatch_busy(hctx, true); 2629 __blk_mq_requeue_request(rq); 2630 break; 2631 default: 2632 blk_mq_update_dispatch_busy(hctx, false); 2633 break; 2634 } 2635 2636 return ret; 2637 } 2638 2639 static bool blk_mq_get_budget_and_tag(struct request *rq) 2640 { 2641 int budget_token; 2642 2643 budget_token = blk_mq_get_dispatch_budget(rq->q); 2644 if (budget_token < 0) 2645 return false; 2646 blk_mq_set_rq_budget_token(rq, budget_token); 2647 if (!blk_mq_get_driver_tag(rq)) { 2648 blk_mq_put_dispatch_budget(rq->q, budget_token); 2649 return false; 2650 } 2651 return true; 2652 } 2653 2654 /** 2655 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2656 * @hctx: Pointer of the associated hardware queue. 2657 * @rq: Pointer to request to be sent. 2658 * 2659 * If the device has enough resources to accept a new request now, send the 2660 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2661 * we can try send it another time in the future. Requests inserted at this 2662 * queue have higher priority. 2663 */ 2664 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2665 struct request *rq) 2666 { 2667 blk_status_t ret; 2668 2669 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2670 blk_mq_insert_request(rq, 0); 2671 return; 2672 } 2673 2674 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2675 blk_mq_insert_request(rq, 0); 2676 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2677 return; 2678 } 2679 2680 ret = __blk_mq_issue_directly(hctx, rq, true); 2681 switch (ret) { 2682 case BLK_STS_OK: 2683 break; 2684 case BLK_STS_RESOURCE: 2685 case BLK_STS_DEV_RESOURCE: 2686 blk_mq_request_bypass_insert(rq, 0); 2687 blk_mq_run_hw_queue(hctx, false); 2688 break; 2689 default: 2690 blk_mq_end_request(rq, ret); 2691 break; 2692 } 2693 } 2694 2695 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2696 { 2697 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2698 2699 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2700 blk_mq_insert_request(rq, 0); 2701 return BLK_STS_OK; 2702 } 2703 2704 if (!blk_mq_get_budget_and_tag(rq)) 2705 return BLK_STS_RESOURCE; 2706 return __blk_mq_issue_directly(hctx, rq, last); 2707 } 2708 2709 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2710 { 2711 struct blk_mq_hw_ctx *hctx = NULL; 2712 struct request *rq; 2713 int queued = 0; 2714 blk_status_t ret = BLK_STS_OK; 2715 2716 while ((rq = rq_list_pop(&plug->mq_list))) { 2717 bool last = rq_list_empty(plug->mq_list); 2718 2719 if (hctx != rq->mq_hctx) { 2720 if (hctx) { 2721 blk_mq_commit_rqs(hctx, queued, false); 2722 queued = 0; 2723 } 2724 hctx = rq->mq_hctx; 2725 } 2726 2727 ret = blk_mq_request_issue_directly(rq, last); 2728 switch (ret) { 2729 case BLK_STS_OK: 2730 queued++; 2731 break; 2732 case BLK_STS_RESOURCE: 2733 case BLK_STS_DEV_RESOURCE: 2734 blk_mq_request_bypass_insert(rq, 0); 2735 blk_mq_run_hw_queue(hctx, false); 2736 goto out; 2737 default: 2738 blk_mq_end_request(rq, ret); 2739 break; 2740 } 2741 } 2742 2743 out: 2744 if (ret != BLK_STS_OK) 2745 blk_mq_commit_rqs(hctx, queued, false); 2746 } 2747 2748 static void __blk_mq_flush_plug_list(struct request_queue *q, 2749 struct blk_plug *plug) 2750 { 2751 if (blk_queue_quiesced(q)) 2752 return; 2753 q->mq_ops->queue_rqs(&plug->mq_list); 2754 } 2755 2756 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2757 { 2758 struct blk_mq_hw_ctx *this_hctx = NULL; 2759 struct blk_mq_ctx *this_ctx = NULL; 2760 struct request *requeue_list = NULL; 2761 struct request **requeue_lastp = &requeue_list; 2762 unsigned int depth = 0; 2763 bool is_passthrough = false; 2764 LIST_HEAD(list); 2765 2766 do { 2767 struct request *rq = rq_list_pop(&plug->mq_list); 2768 2769 if (!this_hctx) { 2770 this_hctx = rq->mq_hctx; 2771 this_ctx = rq->mq_ctx; 2772 is_passthrough = blk_rq_is_passthrough(rq); 2773 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2774 is_passthrough != blk_rq_is_passthrough(rq)) { 2775 rq_list_add_tail(&requeue_lastp, rq); 2776 continue; 2777 } 2778 list_add(&rq->queuelist, &list); 2779 depth++; 2780 } while (!rq_list_empty(plug->mq_list)); 2781 2782 plug->mq_list = requeue_list; 2783 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2784 2785 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2786 /* passthrough requests should never be issued to the I/O scheduler */ 2787 if (is_passthrough) { 2788 spin_lock(&this_hctx->lock); 2789 list_splice_tail_init(&list, &this_hctx->dispatch); 2790 spin_unlock(&this_hctx->lock); 2791 blk_mq_run_hw_queue(this_hctx, from_sched); 2792 } else if (this_hctx->queue->elevator) { 2793 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2794 &list, 0); 2795 blk_mq_run_hw_queue(this_hctx, from_sched); 2796 } else { 2797 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2798 } 2799 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2800 } 2801 2802 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2803 { 2804 struct request *rq; 2805 2806 /* 2807 * We may have been called recursively midway through handling 2808 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2809 * To avoid mq_list changing under our feet, clear rq_count early and 2810 * bail out specifically if rq_count is 0 rather than checking 2811 * whether the mq_list is empty. 2812 */ 2813 if (plug->rq_count == 0) 2814 return; 2815 plug->rq_count = 0; 2816 2817 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2818 struct request_queue *q; 2819 2820 rq = rq_list_peek(&plug->mq_list); 2821 q = rq->q; 2822 2823 /* 2824 * Peek first request and see if we have a ->queue_rqs() hook. 2825 * If we do, we can dispatch the whole plug list in one go. We 2826 * already know at this point that all requests belong to the 2827 * same queue, caller must ensure that's the case. 2828 * 2829 * Since we pass off the full list to the driver at this point, 2830 * we do not increment the active request count for the queue. 2831 * Bypass shared tags for now because of that. 2832 */ 2833 if (q->mq_ops->queue_rqs && 2834 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2835 blk_mq_run_dispatch_ops(q, 2836 __blk_mq_flush_plug_list(q, plug)); 2837 if (rq_list_empty(plug->mq_list)) 2838 return; 2839 } 2840 2841 blk_mq_run_dispatch_ops(q, 2842 blk_mq_plug_issue_direct(plug)); 2843 if (rq_list_empty(plug->mq_list)) 2844 return; 2845 } 2846 2847 do { 2848 blk_mq_dispatch_plug_list(plug, from_schedule); 2849 } while (!rq_list_empty(plug->mq_list)); 2850 } 2851 2852 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2853 struct list_head *list) 2854 { 2855 int queued = 0; 2856 blk_status_t ret = BLK_STS_OK; 2857 2858 while (!list_empty(list)) { 2859 struct request *rq = list_first_entry(list, struct request, 2860 queuelist); 2861 2862 list_del_init(&rq->queuelist); 2863 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2864 switch (ret) { 2865 case BLK_STS_OK: 2866 queued++; 2867 break; 2868 case BLK_STS_RESOURCE: 2869 case BLK_STS_DEV_RESOURCE: 2870 blk_mq_request_bypass_insert(rq, 0); 2871 if (list_empty(list)) 2872 blk_mq_run_hw_queue(hctx, false); 2873 goto out; 2874 default: 2875 blk_mq_end_request(rq, ret); 2876 break; 2877 } 2878 } 2879 2880 out: 2881 if (ret != BLK_STS_OK) 2882 blk_mq_commit_rqs(hctx, queued, false); 2883 } 2884 2885 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2886 struct bio *bio, unsigned int nr_segs) 2887 { 2888 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2889 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2890 return true; 2891 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2892 return true; 2893 } 2894 return false; 2895 } 2896 2897 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2898 struct blk_plug *plug, 2899 struct bio *bio, 2900 unsigned int nsegs) 2901 { 2902 struct blk_mq_alloc_data data = { 2903 .q = q, 2904 .nr_tags = 1, 2905 .cmd_flags = bio->bi_opf, 2906 }; 2907 struct request *rq; 2908 2909 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2910 return NULL; 2911 2912 rq_qos_throttle(q, bio); 2913 2914 if (plug) { 2915 data.nr_tags = plug->nr_ios; 2916 plug->nr_ios = 1; 2917 data.cached_rq = &plug->cached_rq; 2918 } 2919 2920 rq = __blk_mq_alloc_requests(&data); 2921 if (rq) 2922 return rq; 2923 rq_qos_cleanup(q, bio); 2924 if (bio->bi_opf & REQ_NOWAIT) 2925 bio_wouldblock_error(bio); 2926 return NULL; 2927 } 2928 2929 /* return true if this @rq can be used for @bio */ 2930 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug, 2931 struct bio *bio) 2932 { 2933 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf); 2934 enum hctx_type hctx_type = rq->mq_hctx->type; 2935 2936 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2937 2938 if (type != hctx_type && 2939 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2940 return false; 2941 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2942 return false; 2943 2944 /* 2945 * If any qos ->throttle() end up blocking, we will have flushed the 2946 * plug and hence killed the cached_rq list as well. Pop this entry 2947 * before we throttle. 2948 */ 2949 plug->cached_rq = rq_list_next(rq); 2950 rq_qos_throttle(rq->q, bio); 2951 2952 blk_mq_rq_time_init(rq, 0); 2953 rq->cmd_flags = bio->bi_opf; 2954 INIT_LIST_HEAD(&rq->queuelist); 2955 return true; 2956 } 2957 2958 /** 2959 * blk_mq_submit_bio - Create and send a request to block device. 2960 * @bio: Bio pointer. 2961 * 2962 * Builds up a request structure from @q and @bio and send to the device. The 2963 * request may not be queued directly to hardware if: 2964 * * This request can be merged with another one 2965 * * We want to place request at plug queue for possible future merging 2966 * * There is an IO scheduler active at this queue 2967 * 2968 * It will not queue the request if there is an error with the bio, or at the 2969 * request creation. 2970 */ 2971 void blk_mq_submit_bio(struct bio *bio) 2972 { 2973 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2974 struct blk_plug *plug = blk_mq_plug(bio); 2975 const int is_sync = op_is_sync(bio->bi_opf); 2976 struct blk_mq_hw_ctx *hctx; 2977 struct request *rq = NULL; 2978 unsigned int nr_segs = 1; 2979 blk_status_t ret; 2980 2981 bio = blk_queue_bounce(bio, q); 2982 2983 if (plug) { 2984 rq = rq_list_peek(&plug->cached_rq); 2985 if (rq && rq->q != q) 2986 rq = NULL; 2987 } 2988 if (rq) { 2989 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 2990 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2991 if (!bio) 2992 return; 2993 } 2994 if (!bio_integrity_prep(bio)) 2995 return; 2996 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2997 return; 2998 if (blk_mq_can_use_cached_rq(rq, plug, bio)) 2999 goto done; 3000 percpu_ref_get(&q->q_usage_counter); 3001 } else { 3002 if (unlikely(bio_queue_enter(bio))) 3003 return; 3004 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3005 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3006 if (!bio) 3007 goto fail; 3008 } 3009 if (!bio_integrity_prep(bio)) 3010 goto fail; 3011 } 3012 3013 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3014 if (unlikely(!rq)) { 3015 fail: 3016 blk_queue_exit(q); 3017 return; 3018 } 3019 3020 done: 3021 trace_block_getrq(bio); 3022 3023 rq_qos_track(q, rq, bio); 3024 3025 blk_mq_bio_to_request(rq, bio, nr_segs); 3026 3027 ret = blk_crypto_rq_get_keyslot(rq); 3028 if (ret != BLK_STS_OK) { 3029 bio->bi_status = ret; 3030 bio_endio(bio); 3031 blk_mq_free_request(rq); 3032 return; 3033 } 3034 3035 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3036 return; 3037 3038 if (plug) { 3039 blk_add_rq_to_plug(plug, rq); 3040 return; 3041 } 3042 3043 hctx = rq->mq_hctx; 3044 if ((rq->rq_flags & RQF_USE_SCHED) || 3045 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3046 blk_mq_insert_request(rq, 0); 3047 blk_mq_run_hw_queue(hctx, true); 3048 } else { 3049 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3050 } 3051 } 3052 3053 #ifdef CONFIG_BLK_MQ_STACKING 3054 /** 3055 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3056 * @rq: the request being queued 3057 */ 3058 blk_status_t blk_insert_cloned_request(struct request *rq) 3059 { 3060 struct request_queue *q = rq->q; 3061 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3062 unsigned int max_segments = blk_rq_get_max_segments(rq); 3063 blk_status_t ret; 3064 3065 if (blk_rq_sectors(rq) > max_sectors) { 3066 /* 3067 * SCSI device does not have a good way to return if 3068 * Write Same/Zero is actually supported. If a device rejects 3069 * a non-read/write command (discard, write same,etc.) the 3070 * low-level device driver will set the relevant queue limit to 3071 * 0 to prevent blk-lib from issuing more of the offending 3072 * operations. Commands queued prior to the queue limit being 3073 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3074 * errors being propagated to upper layers. 3075 */ 3076 if (max_sectors == 0) 3077 return BLK_STS_NOTSUPP; 3078 3079 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3080 __func__, blk_rq_sectors(rq), max_sectors); 3081 return BLK_STS_IOERR; 3082 } 3083 3084 /* 3085 * The queue settings related to segment counting may differ from the 3086 * original queue. 3087 */ 3088 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3089 if (rq->nr_phys_segments > max_segments) { 3090 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3091 __func__, rq->nr_phys_segments, max_segments); 3092 return BLK_STS_IOERR; 3093 } 3094 3095 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3096 return BLK_STS_IOERR; 3097 3098 ret = blk_crypto_rq_get_keyslot(rq); 3099 if (ret != BLK_STS_OK) 3100 return ret; 3101 3102 blk_account_io_start(rq); 3103 3104 /* 3105 * Since we have a scheduler attached on the top device, 3106 * bypass a potential scheduler on the bottom device for 3107 * insert. 3108 */ 3109 blk_mq_run_dispatch_ops(q, 3110 ret = blk_mq_request_issue_directly(rq, true)); 3111 if (ret) 3112 blk_account_io_done(rq, ktime_get_ns()); 3113 return ret; 3114 } 3115 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3116 3117 /** 3118 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3119 * @rq: the clone request to be cleaned up 3120 * 3121 * Description: 3122 * Free all bios in @rq for a cloned request. 3123 */ 3124 void blk_rq_unprep_clone(struct request *rq) 3125 { 3126 struct bio *bio; 3127 3128 while ((bio = rq->bio) != NULL) { 3129 rq->bio = bio->bi_next; 3130 3131 bio_put(bio); 3132 } 3133 } 3134 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3135 3136 /** 3137 * blk_rq_prep_clone - Helper function to setup clone request 3138 * @rq: the request to be setup 3139 * @rq_src: original request to be cloned 3140 * @bs: bio_set that bios for clone are allocated from 3141 * @gfp_mask: memory allocation mask for bio 3142 * @bio_ctr: setup function to be called for each clone bio. 3143 * Returns %0 for success, non %0 for failure. 3144 * @data: private data to be passed to @bio_ctr 3145 * 3146 * Description: 3147 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3148 * Also, pages which the original bios are pointing to are not copied 3149 * and the cloned bios just point same pages. 3150 * So cloned bios must be completed before original bios, which means 3151 * the caller must complete @rq before @rq_src. 3152 */ 3153 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3154 struct bio_set *bs, gfp_t gfp_mask, 3155 int (*bio_ctr)(struct bio *, struct bio *, void *), 3156 void *data) 3157 { 3158 struct bio *bio, *bio_src; 3159 3160 if (!bs) 3161 bs = &fs_bio_set; 3162 3163 __rq_for_each_bio(bio_src, rq_src) { 3164 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3165 bs); 3166 if (!bio) 3167 goto free_and_out; 3168 3169 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3170 goto free_and_out; 3171 3172 if (rq->bio) { 3173 rq->biotail->bi_next = bio; 3174 rq->biotail = bio; 3175 } else { 3176 rq->bio = rq->biotail = bio; 3177 } 3178 bio = NULL; 3179 } 3180 3181 /* Copy attributes of the original request to the clone request. */ 3182 rq->__sector = blk_rq_pos(rq_src); 3183 rq->__data_len = blk_rq_bytes(rq_src); 3184 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3185 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3186 rq->special_vec = rq_src->special_vec; 3187 } 3188 rq->nr_phys_segments = rq_src->nr_phys_segments; 3189 rq->ioprio = rq_src->ioprio; 3190 3191 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3192 goto free_and_out; 3193 3194 return 0; 3195 3196 free_and_out: 3197 if (bio) 3198 bio_put(bio); 3199 blk_rq_unprep_clone(rq); 3200 3201 return -ENOMEM; 3202 } 3203 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3204 #endif /* CONFIG_BLK_MQ_STACKING */ 3205 3206 /* 3207 * Steal bios from a request and add them to a bio list. 3208 * The request must not have been partially completed before. 3209 */ 3210 void blk_steal_bios(struct bio_list *list, struct request *rq) 3211 { 3212 if (rq->bio) { 3213 if (list->tail) 3214 list->tail->bi_next = rq->bio; 3215 else 3216 list->head = rq->bio; 3217 list->tail = rq->biotail; 3218 3219 rq->bio = NULL; 3220 rq->biotail = NULL; 3221 } 3222 3223 rq->__data_len = 0; 3224 } 3225 EXPORT_SYMBOL_GPL(blk_steal_bios); 3226 3227 static size_t order_to_size(unsigned int order) 3228 { 3229 return (size_t)PAGE_SIZE << order; 3230 } 3231 3232 /* called before freeing request pool in @tags */ 3233 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3234 struct blk_mq_tags *tags) 3235 { 3236 struct page *page; 3237 unsigned long flags; 3238 3239 /* 3240 * There is no need to clear mapping if driver tags is not initialized 3241 * or the mapping belongs to the driver tags. 3242 */ 3243 if (!drv_tags || drv_tags == tags) 3244 return; 3245 3246 list_for_each_entry(page, &tags->page_list, lru) { 3247 unsigned long start = (unsigned long)page_address(page); 3248 unsigned long end = start + order_to_size(page->private); 3249 int i; 3250 3251 for (i = 0; i < drv_tags->nr_tags; i++) { 3252 struct request *rq = drv_tags->rqs[i]; 3253 unsigned long rq_addr = (unsigned long)rq; 3254 3255 if (rq_addr >= start && rq_addr < end) { 3256 WARN_ON_ONCE(req_ref_read(rq) != 0); 3257 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3258 } 3259 } 3260 } 3261 3262 /* 3263 * Wait until all pending iteration is done. 3264 * 3265 * Request reference is cleared and it is guaranteed to be observed 3266 * after the ->lock is released. 3267 */ 3268 spin_lock_irqsave(&drv_tags->lock, flags); 3269 spin_unlock_irqrestore(&drv_tags->lock, flags); 3270 } 3271 3272 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3273 unsigned int hctx_idx) 3274 { 3275 struct blk_mq_tags *drv_tags; 3276 struct page *page; 3277 3278 if (list_empty(&tags->page_list)) 3279 return; 3280 3281 if (blk_mq_is_shared_tags(set->flags)) 3282 drv_tags = set->shared_tags; 3283 else 3284 drv_tags = set->tags[hctx_idx]; 3285 3286 if (tags->static_rqs && set->ops->exit_request) { 3287 int i; 3288 3289 for (i = 0; i < tags->nr_tags; i++) { 3290 struct request *rq = tags->static_rqs[i]; 3291 3292 if (!rq) 3293 continue; 3294 set->ops->exit_request(set, rq, hctx_idx); 3295 tags->static_rqs[i] = NULL; 3296 } 3297 } 3298 3299 blk_mq_clear_rq_mapping(drv_tags, tags); 3300 3301 while (!list_empty(&tags->page_list)) { 3302 page = list_first_entry(&tags->page_list, struct page, lru); 3303 list_del_init(&page->lru); 3304 /* 3305 * Remove kmemleak object previously allocated in 3306 * blk_mq_alloc_rqs(). 3307 */ 3308 kmemleak_free(page_address(page)); 3309 __free_pages(page, page->private); 3310 } 3311 } 3312 3313 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3314 { 3315 kfree(tags->rqs); 3316 tags->rqs = NULL; 3317 kfree(tags->static_rqs); 3318 tags->static_rqs = NULL; 3319 3320 blk_mq_free_tags(tags); 3321 } 3322 3323 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3324 unsigned int hctx_idx) 3325 { 3326 int i; 3327 3328 for (i = 0; i < set->nr_maps; i++) { 3329 unsigned int start = set->map[i].queue_offset; 3330 unsigned int end = start + set->map[i].nr_queues; 3331 3332 if (hctx_idx >= start && hctx_idx < end) 3333 break; 3334 } 3335 3336 if (i >= set->nr_maps) 3337 i = HCTX_TYPE_DEFAULT; 3338 3339 return i; 3340 } 3341 3342 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3343 unsigned int hctx_idx) 3344 { 3345 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3346 3347 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3348 } 3349 3350 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3351 unsigned int hctx_idx, 3352 unsigned int nr_tags, 3353 unsigned int reserved_tags) 3354 { 3355 int node = blk_mq_get_hctx_node(set, hctx_idx); 3356 struct blk_mq_tags *tags; 3357 3358 if (node == NUMA_NO_NODE) 3359 node = set->numa_node; 3360 3361 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3362 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3363 if (!tags) 3364 return NULL; 3365 3366 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3367 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3368 node); 3369 if (!tags->rqs) 3370 goto err_free_tags; 3371 3372 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3373 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3374 node); 3375 if (!tags->static_rqs) 3376 goto err_free_rqs; 3377 3378 return tags; 3379 3380 err_free_rqs: 3381 kfree(tags->rqs); 3382 err_free_tags: 3383 blk_mq_free_tags(tags); 3384 return NULL; 3385 } 3386 3387 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3388 unsigned int hctx_idx, int node) 3389 { 3390 int ret; 3391 3392 if (set->ops->init_request) { 3393 ret = set->ops->init_request(set, rq, hctx_idx, node); 3394 if (ret) 3395 return ret; 3396 } 3397 3398 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3399 return 0; 3400 } 3401 3402 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3403 struct blk_mq_tags *tags, 3404 unsigned int hctx_idx, unsigned int depth) 3405 { 3406 unsigned int i, j, entries_per_page, max_order = 4; 3407 int node = blk_mq_get_hctx_node(set, hctx_idx); 3408 size_t rq_size, left; 3409 3410 if (node == NUMA_NO_NODE) 3411 node = set->numa_node; 3412 3413 INIT_LIST_HEAD(&tags->page_list); 3414 3415 /* 3416 * rq_size is the size of the request plus driver payload, rounded 3417 * to the cacheline size 3418 */ 3419 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3420 cache_line_size()); 3421 left = rq_size * depth; 3422 3423 for (i = 0; i < depth; ) { 3424 int this_order = max_order; 3425 struct page *page; 3426 int to_do; 3427 void *p; 3428 3429 while (this_order && left < order_to_size(this_order - 1)) 3430 this_order--; 3431 3432 do { 3433 page = alloc_pages_node(node, 3434 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3435 this_order); 3436 if (page) 3437 break; 3438 if (!this_order--) 3439 break; 3440 if (order_to_size(this_order) < rq_size) 3441 break; 3442 } while (1); 3443 3444 if (!page) 3445 goto fail; 3446 3447 page->private = this_order; 3448 list_add_tail(&page->lru, &tags->page_list); 3449 3450 p = page_address(page); 3451 /* 3452 * Allow kmemleak to scan these pages as they contain pointers 3453 * to additional allocations like via ops->init_request(). 3454 */ 3455 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3456 entries_per_page = order_to_size(this_order) / rq_size; 3457 to_do = min(entries_per_page, depth - i); 3458 left -= to_do * rq_size; 3459 for (j = 0; j < to_do; j++) { 3460 struct request *rq = p; 3461 3462 tags->static_rqs[i] = rq; 3463 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3464 tags->static_rqs[i] = NULL; 3465 goto fail; 3466 } 3467 3468 p += rq_size; 3469 i++; 3470 } 3471 } 3472 return 0; 3473 3474 fail: 3475 blk_mq_free_rqs(set, tags, hctx_idx); 3476 return -ENOMEM; 3477 } 3478 3479 struct rq_iter_data { 3480 struct blk_mq_hw_ctx *hctx; 3481 bool has_rq; 3482 }; 3483 3484 static bool blk_mq_has_request(struct request *rq, void *data) 3485 { 3486 struct rq_iter_data *iter_data = data; 3487 3488 if (rq->mq_hctx != iter_data->hctx) 3489 return true; 3490 iter_data->has_rq = true; 3491 return false; 3492 } 3493 3494 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3495 { 3496 struct blk_mq_tags *tags = hctx->sched_tags ? 3497 hctx->sched_tags : hctx->tags; 3498 struct rq_iter_data data = { 3499 .hctx = hctx, 3500 }; 3501 3502 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3503 return data.has_rq; 3504 } 3505 3506 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3507 struct blk_mq_hw_ctx *hctx) 3508 { 3509 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3510 return false; 3511 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3512 return false; 3513 return true; 3514 } 3515 3516 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3517 { 3518 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3519 struct blk_mq_hw_ctx, cpuhp_online); 3520 3521 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3522 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3523 return 0; 3524 3525 /* 3526 * Prevent new request from being allocated on the current hctx. 3527 * 3528 * The smp_mb__after_atomic() Pairs with the implied barrier in 3529 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3530 * seen once we return from the tag allocator. 3531 */ 3532 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3533 smp_mb__after_atomic(); 3534 3535 /* 3536 * Try to grab a reference to the queue and wait for any outstanding 3537 * requests. If we could not grab a reference the queue has been 3538 * frozen and there are no requests. 3539 */ 3540 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3541 while (blk_mq_hctx_has_requests(hctx)) 3542 msleep(5); 3543 percpu_ref_put(&hctx->queue->q_usage_counter); 3544 } 3545 3546 return 0; 3547 } 3548 3549 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3550 { 3551 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3552 struct blk_mq_hw_ctx, cpuhp_online); 3553 3554 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3555 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3556 return 0; 3557 } 3558 3559 /* 3560 * 'cpu' is going away. splice any existing rq_list entries from this 3561 * software queue to the hw queue dispatch list, and ensure that it 3562 * gets run. 3563 */ 3564 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3565 { 3566 struct blk_mq_hw_ctx *hctx; 3567 struct blk_mq_ctx *ctx; 3568 LIST_HEAD(tmp); 3569 enum hctx_type type; 3570 3571 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3572 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3573 return 0; 3574 3575 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3576 type = hctx->type; 3577 3578 spin_lock(&ctx->lock); 3579 if (!list_empty(&ctx->rq_lists[type])) { 3580 list_splice_init(&ctx->rq_lists[type], &tmp); 3581 blk_mq_hctx_clear_pending(hctx, ctx); 3582 } 3583 spin_unlock(&ctx->lock); 3584 3585 if (list_empty(&tmp)) 3586 return 0; 3587 3588 spin_lock(&hctx->lock); 3589 list_splice_tail_init(&tmp, &hctx->dispatch); 3590 spin_unlock(&hctx->lock); 3591 3592 blk_mq_run_hw_queue(hctx, true); 3593 return 0; 3594 } 3595 3596 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3597 { 3598 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3599 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3600 &hctx->cpuhp_online); 3601 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3602 &hctx->cpuhp_dead); 3603 } 3604 3605 /* 3606 * Before freeing hw queue, clearing the flush request reference in 3607 * tags->rqs[] for avoiding potential UAF. 3608 */ 3609 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3610 unsigned int queue_depth, struct request *flush_rq) 3611 { 3612 int i; 3613 unsigned long flags; 3614 3615 /* The hw queue may not be mapped yet */ 3616 if (!tags) 3617 return; 3618 3619 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3620 3621 for (i = 0; i < queue_depth; i++) 3622 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3623 3624 /* 3625 * Wait until all pending iteration is done. 3626 * 3627 * Request reference is cleared and it is guaranteed to be observed 3628 * after the ->lock is released. 3629 */ 3630 spin_lock_irqsave(&tags->lock, flags); 3631 spin_unlock_irqrestore(&tags->lock, flags); 3632 } 3633 3634 /* hctx->ctxs will be freed in queue's release handler */ 3635 static void blk_mq_exit_hctx(struct request_queue *q, 3636 struct blk_mq_tag_set *set, 3637 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3638 { 3639 struct request *flush_rq = hctx->fq->flush_rq; 3640 3641 if (blk_mq_hw_queue_mapped(hctx)) 3642 blk_mq_tag_idle(hctx); 3643 3644 if (blk_queue_init_done(q)) 3645 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3646 set->queue_depth, flush_rq); 3647 if (set->ops->exit_request) 3648 set->ops->exit_request(set, flush_rq, hctx_idx); 3649 3650 if (set->ops->exit_hctx) 3651 set->ops->exit_hctx(hctx, hctx_idx); 3652 3653 blk_mq_remove_cpuhp(hctx); 3654 3655 xa_erase(&q->hctx_table, hctx_idx); 3656 3657 spin_lock(&q->unused_hctx_lock); 3658 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3659 spin_unlock(&q->unused_hctx_lock); 3660 } 3661 3662 static void blk_mq_exit_hw_queues(struct request_queue *q, 3663 struct blk_mq_tag_set *set, int nr_queue) 3664 { 3665 struct blk_mq_hw_ctx *hctx; 3666 unsigned long i; 3667 3668 queue_for_each_hw_ctx(q, hctx, i) { 3669 if (i == nr_queue) 3670 break; 3671 blk_mq_exit_hctx(q, set, hctx, i); 3672 } 3673 } 3674 3675 static int blk_mq_init_hctx(struct request_queue *q, 3676 struct blk_mq_tag_set *set, 3677 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3678 { 3679 hctx->queue_num = hctx_idx; 3680 3681 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3682 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3683 &hctx->cpuhp_online); 3684 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3685 3686 hctx->tags = set->tags[hctx_idx]; 3687 3688 if (set->ops->init_hctx && 3689 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3690 goto unregister_cpu_notifier; 3691 3692 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3693 hctx->numa_node)) 3694 goto exit_hctx; 3695 3696 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3697 goto exit_flush_rq; 3698 3699 return 0; 3700 3701 exit_flush_rq: 3702 if (set->ops->exit_request) 3703 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3704 exit_hctx: 3705 if (set->ops->exit_hctx) 3706 set->ops->exit_hctx(hctx, hctx_idx); 3707 unregister_cpu_notifier: 3708 blk_mq_remove_cpuhp(hctx); 3709 return -1; 3710 } 3711 3712 static struct blk_mq_hw_ctx * 3713 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3714 int node) 3715 { 3716 struct blk_mq_hw_ctx *hctx; 3717 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3718 3719 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3720 if (!hctx) 3721 goto fail_alloc_hctx; 3722 3723 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3724 goto free_hctx; 3725 3726 atomic_set(&hctx->nr_active, 0); 3727 if (node == NUMA_NO_NODE) 3728 node = set->numa_node; 3729 hctx->numa_node = node; 3730 3731 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3732 spin_lock_init(&hctx->lock); 3733 INIT_LIST_HEAD(&hctx->dispatch); 3734 hctx->queue = q; 3735 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3736 3737 INIT_LIST_HEAD(&hctx->hctx_list); 3738 3739 /* 3740 * Allocate space for all possible cpus to avoid allocation at 3741 * runtime 3742 */ 3743 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3744 gfp, node); 3745 if (!hctx->ctxs) 3746 goto free_cpumask; 3747 3748 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3749 gfp, node, false, false)) 3750 goto free_ctxs; 3751 hctx->nr_ctx = 0; 3752 3753 spin_lock_init(&hctx->dispatch_wait_lock); 3754 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3755 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3756 3757 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3758 if (!hctx->fq) 3759 goto free_bitmap; 3760 3761 blk_mq_hctx_kobj_init(hctx); 3762 3763 return hctx; 3764 3765 free_bitmap: 3766 sbitmap_free(&hctx->ctx_map); 3767 free_ctxs: 3768 kfree(hctx->ctxs); 3769 free_cpumask: 3770 free_cpumask_var(hctx->cpumask); 3771 free_hctx: 3772 kfree(hctx); 3773 fail_alloc_hctx: 3774 return NULL; 3775 } 3776 3777 static void blk_mq_init_cpu_queues(struct request_queue *q, 3778 unsigned int nr_hw_queues) 3779 { 3780 struct blk_mq_tag_set *set = q->tag_set; 3781 unsigned int i, j; 3782 3783 for_each_possible_cpu(i) { 3784 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3785 struct blk_mq_hw_ctx *hctx; 3786 int k; 3787 3788 __ctx->cpu = i; 3789 spin_lock_init(&__ctx->lock); 3790 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3791 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3792 3793 __ctx->queue = q; 3794 3795 /* 3796 * Set local node, IFF we have more than one hw queue. If 3797 * not, we remain on the home node of the device 3798 */ 3799 for (j = 0; j < set->nr_maps; j++) { 3800 hctx = blk_mq_map_queue_type(q, j, i); 3801 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3802 hctx->numa_node = cpu_to_node(i); 3803 } 3804 } 3805 } 3806 3807 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3808 unsigned int hctx_idx, 3809 unsigned int depth) 3810 { 3811 struct blk_mq_tags *tags; 3812 int ret; 3813 3814 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3815 if (!tags) 3816 return NULL; 3817 3818 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3819 if (ret) { 3820 blk_mq_free_rq_map(tags); 3821 return NULL; 3822 } 3823 3824 return tags; 3825 } 3826 3827 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3828 int hctx_idx) 3829 { 3830 if (blk_mq_is_shared_tags(set->flags)) { 3831 set->tags[hctx_idx] = set->shared_tags; 3832 3833 return true; 3834 } 3835 3836 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3837 set->queue_depth); 3838 3839 return set->tags[hctx_idx]; 3840 } 3841 3842 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3843 struct blk_mq_tags *tags, 3844 unsigned int hctx_idx) 3845 { 3846 if (tags) { 3847 blk_mq_free_rqs(set, tags, hctx_idx); 3848 blk_mq_free_rq_map(tags); 3849 } 3850 } 3851 3852 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3853 unsigned int hctx_idx) 3854 { 3855 if (!blk_mq_is_shared_tags(set->flags)) 3856 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3857 3858 set->tags[hctx_idx] = NULL; 3859 } 3860 3861 static void blk_mq_map_swqueue(struct request_queue *q) 3862 { 3863 unsigned int j, hctx_idx; 3864 unsigned long i; 3865 struct blk_mq_hw_ctx *hctx; 3866 struct blk_mq_ctx *ctx; 3867 struct blk_mq_tag_set *set = q->tag_set; 3868 3869 queue_for_each_hw_ctx(q, hctx, i) { 3870 cpumask_clear(hctx->cpumask); 3871 hctx->nr_ctx = 0; 3872 hctx->dispatch_from = NULL; 3873 } 3874 3875 /* 3876 * Map software to hardware queues. 3877 * 3878 * If the cpu isn't present, the cpu is mapped to first hctx. 3879 */ 3880 for_each_possible_cpu(i) { 3881 3882 ctx = per_cpu_ptr(q->queue_ctx, i); 3883 for (j = 0; j < set->nr_maps; j++) { 3884 if (!set->map[j].nr_queues) { 3885 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3886 HCTX_TYPE_DEFAULT, i); 3887 continue; 3888 } 3889 hctx_idx = set->map[j].mq_map[i]; 3890 /* unmapped hw queue can be remapped after CPU topo changed */ 3891 if (!set->tags[hctx_idx] && 3892 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3893 /* 3894 * If tags initialization fail for some hctx, 3895 * that hctx won't be brought online. In this 3896 * case, remap the current ctx to hctx[0] which 3897 * is guaranteed to always have tags allocated 3898 */ 3899 set->map[j].mq_map[i] = 0; 3900 } 3901 3902 hctx = blk_mq_map_queue_type(q, j, i); 3903 ctx->hctxs[j] = hctx; 3904 /* 3905 * If the CPU is already set in the mask, then we've 3906 * mapped this one already. This can happen if 3907 * devices share queues across queue maps. 3908 */ 3909 if (cpumask_test_cpu(i, hctx->cpumask)) 3910 continue; 3911 3912 cpumask_set_cpu(i, hctx->cpumask); 3913 hctx->type = j; 3914 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3915 hctx->ctxs[hctx->nr_ctx++] = ctx; 3916 3917 /* 3918 * If the nr_ctx type overflows, we have exceeded the 3919 * amount of sw queues we can support. 3920 */ 3921 BUG_ON(!hctx->nr_ctx); 3922 } 3923 3924 for (; j < HCTX_MAX_TYPES; j++) 3925 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3926 HCTX_TYPE_DEFAULT, i); 3927 } 3928 3929 queue_for_each_hw_ctx(q, hctx, i) { 3930 /* 3931 * If no software queues are mapped to this hardware queue, 3932 * disable it and free the request entries. 3933 */ 3934 if (!hctx->nr_ctx) { 3935 /* Never unmap queue 0. We need it as a 3936 * fallback in case of a new remap fails 3937 * allocation 3938 */ 3939 if (i) 3940 __blk_mq_free_map_and_rqs(set, i); 3941 3942 hctx->tags = NULL; 3943 continue; 3944 } 3945 3946 hctx->tags = set->tags[i]; 3947 WARN_ON(!hctx->tags); 3948 3949 /* 3950 * Set the map size to the number of mapped software queues. 3951 * This is more accurate and more efficient than looping 3952 * over all possibly mapped software queues. 3953 */ 3954 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3955 3956 /* 3957 * Initialize batch roundrobin counts 3958 */ 3959 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3960 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3961 } 3962 } 3963 3964 /* 3965 * Caller needs to ensure that we're either frozen/quiesced, or that 3966 * the queue isn't live yet. 3967 */ 3968 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3969 { 3970 struct blk_mq_hw_ctx *hctx; 3971 unsigned long i; 3972 3973 queue_for_each_hw_ctx(q, hctx, i) { 3974 if (shared) { 3975 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3976 } else { 3977 blk_mq_tag_idle(hctx); 3978 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3979 } 3980 } 3981 } 3982 3983 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3984 bool shared) 3985 { 3986 struct request_queue *q; 3987 3988 lockdep_assert_held(&set->tag_list_lock); 3989 3990 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3991 blk_mq_freeze_queue(q); 3992 queue_set_hctx_shared(q, shared); 3993 blk_mq_unfreeze_queue(q); 3994 } 3995 } 3996 3997 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3998 { 3999 struct blk_mq_tag_set *set = q->tag_set; 4000 4001 mutex_lock(&set->tag_list_lock); 4002 list_del(&q->tag_set_list); 4003 if (list_is_singular(&set->tag_list)) { 4004 /* just transitioned to unshared */ 4005 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4006 /* update existing queue */ 4007 blk_mq_update_tag_set_shared(set, false); 4008 } 4009 mutex_unlock(&set->tag_list_lock); 4010 INIT_LIST_HEAD(&q->tag_set_list); 4011 } 4012 4013 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4014 struct request_queue *q) 4015 { 4016 mutex_lock(&set->tag_list_lock); 4017 4018 /* 4019 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4020 */ 4021 if (!list_empty(&set->tag_list) && 4022 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4023 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4024 /* update existing queue */ 4025 blk_mq_update_tag_set_shared(set, true); 4026 } 4027 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4028 queue_set_hctx_shared(q, true); 4029 list_add_tail(&q->tag_set_list, &set->tag_list); 4030 4031 mutex_unlock(&set->tag_list_lock); 4032 } 4033 4034 /* All allocations will be freed in release handler of q->mq_kobj */ 4035 static int blk_mq_alloc_ctxs(struct request_queue *q) 4036 { 4037 struct blk_mq_ctxs *ctxs; 4038 int cpu; 4039 4040 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4041 if (!ctxs) 4042 return -ENOMEM; 4043 4044 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4045 if (!ctxs->queue_ctx) 4046 goto fail; 4047 4048 for_each_possible_cpu(cpu) { 4049 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4050 ctx->ctxs = ctxs; 4051 } 4052 4053 q->mq_kobj = &ctxs->kobj; 4054 q->queue_ctx = ctxs->queue_ctx; 4055 4056 return 0; 4057 fail: 4058 kfree(ctxs); 4059 return -ENOMEM; 4060 } 4061 4062 /* 4063 * It is the actual release handler for mq, but we do it from 4064 * request queue's release handler for avoiding use-after-free 4065 * and headache because q->mq_kobj shouldn't have been introduced, 4066 * but we can't group ctx/kctx kobj without it. 4067 */ 4068 void blk_mq_release(struct request_queue *q) 4069 { 4070 struct blk_mq_hw_ctx *hctx, *next; 4071 unsigned long i; 4072 4073 queue_for_each_hw_ctx(q, hctx, i) 4074 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4075 4076 /* all hctx are in .unused_hctx_list now */ 4077 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4078 list_del_init(&hctx->hctx_list); 4079 kobject_put(&hctx->kobj); 4080 } 4081 4082 xa_destroy(&q->hctx_table); 4083 4084 /* 4085 * release .mq_kobj and sw queue's kobject now because 4086 * both share lifetime with request queue. 4087 */ 4088 blk_mq_sysfs_deinit(q); 4089 } 4090 4091 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4092 void *queuedata) 4093 { 4094 struct request_queue *q; 4095 int ret; 4096 4097 q = blk_alloc_queue(set->numa_node); 4098 if (!q) 4099 return ERR_PTR(-ENOMEM); 4100 q->queuedata = queuedata; 4101 ret = blk_mq_init_allocated_queue(set, q); 4102 if (ret) { 4103 blk_put_queue(q); 4104 return ERR_PTR(ret); 4105 } 4106 return q; 4107 } 4108 4109 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4110 { 4111 return blk_mq_init_queue_data(set, NULL); 4112 } 4113 EXPORT_SYMBOL(blk_mq_init_queue); 4114 4115 /** 4116 * blk_mq_destroy_queue - shutdown a request queue 4117 * @q: request queue to shutdown 4118 * 4119 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4120 * requests will be failed with -ENODEV. The caller is responsible for dropping 4121 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4122 * 4123 * Context: can sleep 4124 */ 4125 void blk_mq_destroy_queue(struct request_queue *q) 4126 { 4127 WARN_ON_ONCE(!queue_is_mq(q)); 4128 WARN_ON_ONCE(blk_queue_registered(q)); 4129 4130 might_sleep(); 4131 4132 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4133 blk_queue_start_drain(q); 4134 blk_mq_freeze_queue_wait(q); 4135 4136 blk_sync_queue(q); 4137 blk_mq_cancel_work_sync(q); 4138 blk_mq_exit_queue(q); 4139 } 4140 EXPORT_SYMBOL(blk_mq_destroy_queue); 4141 4142 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4143 struct lock_class_key *lkclass) 4144 { 4145 struct request_queue *q; 4146 struct gendisk *disk; 4147 4148 q = blk_mq_init_queue_data(set, queuedata); 4149 if (IS_ERR(q)) 4150 return ERR_CAST(q); 4151 4152 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4153 if (!disk) { 4154 blk_mq_destroy_queue(q); 4155 blk_put_queue(q); 4156 return ERR_PTR(-ENOMEM); 4157 } 4158 set_bit(GD_OWNS_QUEUE, &disk->state); 4159 return disk; 4160 } 4161 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4162 4163 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4164 struct lock_class_key *lkclass) 4165 { 4166 struct gendisk *disk; 4167 4168 if (!blk_get_queue(q)) 4169 return NULL; 4170 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4171 if (!disk) 4172 blk_put_queue(q); 4173 return disk; 4174 } 4175 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4176 4177 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4178 struct blk_mq_tag_set *set, struct request_queue *q, 4179 int hctx_idx, int node) 4180 { 4181 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4182 4183 /* reuse dead hctx first */ 4184 spin_lock(&q->unused_hctx_lock); 4185 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4186 if (tmp->numa_node == node) { 4187 hctx = tmp; 4188 break; 4189 } 4190 } 4191 if (hctx) 4192 list_del_init(&hctx->hctx_list); 4193 spin_unlock(&q->unused_hctx_lock); 4194 4195 if (!hctx) 4196 hctx = blk_mq_alloc_hctx(q, set, node); 4197 if (!hctx) 4198 goto fail; 4199 4200 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4201 goto free_hctx; 4202 4203 return hctx; 4204 4205 free_hctx: 4206 kobject_put(&hctx->kobj); 4207 fail: 4208 return NULL; 4209 } 4210 4211 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4212 struct request_queue *q) 4213 { 4214 struct blk_mq_hw_ctx *hctx; 4215 unsigned long i, j; 4216 4217 /* protect against switching io scheduler */ 4218 mutex_lock(&q->sysfs_lock); 4219 for (i = 0; i < set->nr_hw_queues; i++) { 4220 int old_node; 4221 int node = blk_mq_get_hctx_node(set, i); 4222 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4223 4224 if (old_hctx) { 4225 old_node = old_hctx->numa_node; 4226 blk_mq_exit_hctx(q, set, old_hctx, i); 4227 } 4228 4229 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4230 if (!old_hctx) 4231 break; 4232 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4233 node, old_node); 4234 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4235 WARN_ON_ONCE(!hctx); 4236 } 4237 } 4238 /* 4239 * Increasing nr_hw_queues fails. Free the newly allocated 4240 * hctxs and keep the previous q->nr_hw_queues. 4241 */ 4242 if (i != set->nr_hw_queues) { 4243 j = q->nr_hw_queues; 4244 } else { 4245 j = i; 4246 q->nr_hw_queues = set->nr_hw_queues; 4247 } 4248 4249 xa_for_each_start(&q->hctx_table, j, hctx, j) 4250 blk_mq_exit_hctx(q, set, hctx, j); 4251 mutex_unlock(&q->sysfs_lock); 4252 } 4253 4254 static void blk_mq_update_poll_flag(struct request_queue *q) 4255 { 4256 struct blk_mq_tag_set *set = q->tag_set; 4257 4258 if (set->nr_maps > HCTX_TYPE_POLL && 4259 set->map[HCTX_TYPE_POLL].nr_queues) 4260 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4261 else 4262 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4263 } 4264 4265 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4266 struct request_queue *q) 4267 { 4268 /* mark the queue as mq asap */ 4269 q->mq_ops = set->ops; 4270 4271 if (blk_mq_alloc_ctxs(q)) 4272 goto err_exit; 4273 4274 /* init q->mq_kobj and sw queues' kobjects */ 4275 blk_mq_sysfs_init(q); 4276 4277 INIT_LIST_HEAD(&q->unused_hctx_list); 4278 spin_lock_init(&q->unused_hctx_lock); 4279 4280 xa_init(&q->hctx_table); 4281 4282 blk_mq_realloc_hw_ctxs(set, q); 4283 if (!q->nr_hw_queues) 4284 goto err_hctxs; 4285 4286 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4287 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4288 4289 q->tag_set = set; 4290 4291 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4292 blk_mq_update_poll_flag(q); 4293 4294 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4295 INIT_LIST_HEAD(&q->flush_list); 4296 INIT_LIST_HEAD(&q->requeue_list); 4297 spin_lock_init(&q->requeue_lock); 4298 4299 q->nr_requests = set->queue_depth; 4300 4301 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4302 blk_mq_add_queue_tag_set(set, q); 4303 blk_mq_map_swqueue(q); 4304 return 0; 4305 4306 err_hctxs: 4307 blk_mq_release(q); 4308 err_exit: 4309 q->mq_ops = NULL; 4310 return -ENOMEM; 4311 } 4312 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4313 4314 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4315 void blk_mq_exit_queue(struct request_queue *q) 4316 { 4317 struct blk_mq_tag_set *set = q->tag_set; 4318 4319 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4320 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4321 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4322 blk_mq_del_queue_tag_set(q); 4323 } 4324 4325 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4326 { 4327 int i; 4328 4329 if (blk_mq_is_shared_tags(set->flags)) { 4330 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4331 BLK_MQ_NO_HCTX_IDX, 4332 set->queue_depth); 4333 if (!set->shared_tags) 4334 return -ENOMEM; 4335 } 4336 4337 for (i = 0; i < set->nr_hw_queues; i++) { 4338 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4339 goto out_unwind; 4340 cond_resched(); 4341 } 4342 4343 return 0; 4344 4345 out_unwind: 4346 while (--i >= 0) 4347 __blk_mq_free_map_and_rqs(set, i); 4348 4349 if (blk_mq_is_shared_tags(set->flags)) { 4350 blk_mq_free_map_and_rqs(set, set->shared_tags, 4351 BLK_MQ_NO_HCTX_IDX); 4352 } 4353 4354 return -ENOMEM; 4355 } 4356 4357 /* 4358 * Allocate the request maps associated with this tag_set. Note that this 4359 * may reduce the depth asked for, if memory is tight. set->queue_depth 4360 * will be updated to reflect the allocated depth. 4361 */ 4362 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4363 { 4364 unsigned int depth; 4365 int err; 4366 4367 depth = set->queue_depth; 4368 do { 4369 err = __blk_mq_alloc_rq_maps(set); 4370 if (!err) 4371 break; 4372 4373 set->queue_depth >>= 1; 4374 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4375 err = -ENOMEM; 4376 break; 4377 } 4378 } while (set->queue_depth); 4379 4380 if (!set->queue_depth || err) { 4381 pr_err("blk-mq: failed to allocate request map\n"); 4382 return -ENOMEM; 4383 } 4384 4385 if (depth != set->queue_depth) 4386 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4387 depth, set->queue_depth); 4388 4389 return 0; 4390 } 4391 4392 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4393 { 4394 /* 4395 * blk_mq_map_queues() and multiple .map_queues() implementations 4396 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4397 * number of hardware queues. 4398 */ 4399 if (set->nr_maps == 1) 4400 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4401 4402 if (set->ops->map_queues && !is_kdump_kernel()) { 4403 int i; 4404 4405 /* 4406 * transport .map_queues is usually done in the following 4407 * way: 4408 * 4409 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4410 * mask = get_cpu_mask(queue) 4411 * for_each_cpu(cpu, mask) 4412 * set->map[x].mq_map[cpu] = queue; 4413 * } 4414 * 4415 * When we need to remap, the table has to be cleared for 4416 * killing stale mapping since one CPU may not be mapped 4417 * to any hw queue. 4418 */ 4419 for (i = 0; i < set->nr_maps; i++) 4420 blk_mq_clear_mq_map(&set->map[i]); 4421 4422 set->ops->map_queues(set); 4423 } else { 4424 BUG_ON(set->nr_maps > 1); 4425 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4426 } 4427 } 4428 4429 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4430 int new_nr_hw_queues) 4431 { 4432 struct blk_mq_tags **new_tags; 4433 int i; 4434 4435 if (set->nr_hw_queues >= new_nr_hw_queues) 4436 goto done; 4437 4438 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4439 GFP_KERNEL, set->numa_node); 4440 if (!new_tags) 4441 return -ENOMEM; 4442 4443 if (set->tags) 4444 memcpy(new_tags, set->tags, set->nr_hw_queues * 4445 sizeof(*set->tags)); 4446 kfree(set->tags); 4447 set->tags = new_tags; 4448 4449 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4450 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4451 while (--i >= set->nr_hw_queues) 4452 __blk_mq_free_map_and_rqs(set, i); 4453 return -ENOMEM; 4454 } 4455 cond_resched(); 4456 } 4457 4458 done: 4459 set->nr_hw_queues = new_nr_hw_queues; 4460 return 0; 4461 } 4462 4463 /* 4464 * Alloc a tag set to be associated with one or more request queues. 4465 * May fail with EINVAL for various error conditions. May adjust the 4466 * requested depth down, if it's too large. In that case, the set 4467 * value will be stored in set->queue_depth. 4468 */ 4469 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4470 { 4471 int i, ret; 4472 4473 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4474 4475 if (!set->nr_hw_queues) 4476 return -EINVAL; 4477 if (!set->queue_depth) 4478 return -EINVAL; 4479 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4480 return -EINVAL; 4481 4482 if (!set->ops->queue_rq) 4483 return -EINVAL; 4484 4485 if (!set->ops->get_budget ^ !set->ops->put_budget) 4486 return -EINVAL; 4487 4488 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4489 pr_info("blk-mq: reduced tag depth to %u\n", 4490 BLK_MQ_MAX_DEPTH); 4491 set->queue_depth = BLK_MQ_MAX_DEPTH; 4492 } 4493 4494 if (!set->nr_maps) 4495 set->nr_maps = 1; 4496 else if (set->nr_maps > HCTX_MAX_TYPES) 4497 return -EINVAL; 4498 4499 /* 4500 * If a crashdump is active, then we are potentially in a very 4501 * memory constrained environment. Limit us to 1 queue and 4502 * 64 tags to prevent using too much memory. 4503 */ 4504 if (is_kdump_kernel()) { 4505 set->nr_hw_queues = 1; 4506 set->nr_maps = 1; 4507 set->queue_depth = min(64U, set->queue_depth); 4508 } 4509 /* 4510 * There is no use for more h/w queues than cpus if we just have 4511 * a single map 4512 */ 4513 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4514 set->nr_hw_queues = nr_cpu_ids; 4515 4516 if (set->flags & BLK_MQ_F_BLOCKING) { 4517 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4518 if (!set->srcu) 4519 return -ENOMEM; 4520 ret = init_srcu_struct(set->srcu); 4521 if (ret) 4522 goto out_free_srcu; 4523 } 4524 4525 ret = -ENOMEM; 4526 set->tags = kcalloc_node(set->nr_hw_queues, 4527 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4528 set->numa_node); 4529 if (!set->tags) 4530 goto out_cleanup_srcu; 4531 4532 for (i = 0; i < set->nr_maps; i++) { 4533 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4534 sizeof(set->map[i].mq_map[0]), 4535 GFP_KERNEL, set->numa_node); 4536 if (!set->map[i].mq_map) 4537 goto out_free_mq_map; 4538 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4539 } 4540 4541 blk_mq_update_queue_map(set); 4542 4543 ret = blk_mq_alloc_set_map_and_rqs(set); 4544 if (ret) 4545 goto out_free_mq_map; 4546 4547 mutex_init(&set->tag_list_lock); 4548 INIT_LIST_HEAD(&set->tag_list); 4549 4550 return 0; 4551 4552 out_free_mq_map: 4553 for (i = 0; i < set->nr_maps; i++) { 4554 kfree(set->map[i].mq_map); 4555 set->map[i].mq_map = NULL; 4556 } 4557 kfree(set->tags); 4558 set->tags = NULL; 4559 out_cleanup_srcu: 4560 if (set->flags & BLK_MQ_F_BLOCKING) 4561 cleanup_srcu_struct(set->srcu); 4562 out_free_srcu: 4563 if (set->flags & BLK_MQ_F_BLOCKING) 4564 kfree(set->srcu); 4565 return ret; 4566 } 4567 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4568 4569 /* allocate and initialize a tagset for a simple single-queue device */ 4570 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4571 const struct blk_mq_ops *ops, unsigned int queue_depth, 4572 unsigned int set_flags) 4573 { 4574 memset(set, 0, sizeof(*set)); 4575 set->ops = ops; 4576 set->nr_hw_queues = 1; 4577 set->nr_maps = 1; 4578 set->queue_depth = queue_depth; 4579 set->numa_node = NUMA_NO_NODE; 4580 set->flags = set_flags; 4581 return blk_mq_alloc_tag_set(set); 4582 } 4583 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4584 4585 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4586 { 4587 int i, j; 4588 4589 for (i = 0; i < set->nr_hw_queues; i++) 4590 __blk_mq_free_map_and_rqs(set, i); 4591 4592 if (blk_mq_is_shared_tags(set->flags)) { 4593 blk_mq_free_map_and_rqs(set, set->shared_tags, 4594 BLK_MQ_NO_HCTX_IDX); 4595 } 4596 4597 for (j = 0; j < set->nr_maps; j++) { 4598 kfree(set->map[j].mq_map); 4599 set->map[j].mq_map = NULL; 4600 } 4601 4602 kfree(set->tags); 4603 set->tags = NULL; 4604 if (set->flags & BLK_MQ_F_BLOCKING) { 4605 cleanup_srcu_struct(set->srcu); 4606 kfree(set->srcu); 4607 } 4608 } 4609 EXPORT_SYMBOL(blk_mq_free_tag_set); 4610 4611 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4612 { 4613 struct blk_mq_tag_set *set = q->tag_set; 4614 struct blk_mq_hw_ctx *hctx; 4615 int ret; 4616 unsigned long i; 4617 4618 if (!set) 4619 return -EINVAL; 4620 4621 if (q->nr_requests == nr) 4622 return 0; 4623 4624 blk_mq_freeze_queue(q); 4625 blk_mq_quiesce_queue(q); 4626 4627 ret = 0; 4628 queue_for_each_hw_ctx(q, hctx, i) { 4629 if (!hctx->tags) 4630 continue; 4631 /* 4632 * If we're using an MQ scheduler, just update the scheduler 4633 * queue depth. This is similar to what the old code would do. 4634 */ 4635 if (hctx->sched_tags) { 4636 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4637 nr, true); 4638 } else { 4639 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4640 false); 4641 } 4642 if (ret) 4643 break; 4644 if (q->elevator && q->elevator->type->ops.depth_updated) 4645 q->elevator->type->ops.depth_updated(hctx); 4646 } 4647 if (!ret) { 4648 q->nr_requests = nr; 4649 if (blk_mq_is_shared_tags(set->flags)) { 4650 if (q->elevator) 4651 blk_mq_tag_update_sched_shared_tags(q); 4652 else 4653 blk_mq_tag_resize_shared_tags(set, nr); 4654 } 4655 } 4656 4657 blk_mq_unquiesce_queue(q); 4658 blk_mq_unfreeze_queue(q); 4659 4660 return ret; 4661 } 4662 4663 /* 4664 * request_queue and elevator_type pair. 4665 * It is just used by __blk_mq_update_nr_hw_queues to cache 4666 * the elevator_type associated with a request_queue. 4667 */ 4668 struct blk_mq_qe_pair { 4669 struct list_head node; 4670 struct request_queue *q; 4671 struct elevator_type *type; 4672 }; 4673 4674 /* 4675 * Cache the elevator_type in qe pair list and switch the 4676 * io scheduler to 'none' 4677 */ 4678 static bool blk_mq_elv_switch_none(struct list_head *head, 4679 struct request_queue *q) 4680 { 4681 struct blk_mq_qe_pair *qe; 4682 4683 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4684 if (!qe) 4685 return false; 4686 4687 /* q->elevator needs protection from ->sysfs_lock */ 4688 mutex_lock(&q->sysfs_lock); 4689 4690 /* the check has to be done with holding sysfs_lock */ 4691 if (!q->elevator) { 4692 kfree(qe); 4693 goto unlock; 4694 } 4695 4696 INIT_LIST_HEAD(&qe->node); 4697 qe->q = q; 4698 qe->type = q->elevator->type; 4699 /* keep a reference to the elevator module as we'll switch back */ 4700 __elevator_get(qe->type); 4701 list_add(&qe->node, head); 4702 elevator_disable(q); 4703 unlock: 4704 mutex_unlock(&q->sysfs_lock); 4705 4706 return true; 4707 } 4708 4709 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4710 struct request_queue *q) 4711 { 4712 struct blk_mq_qe_pair *qe; 4713 4714 list_for_each_entry(qe, head, node) 4715 if (qe->q == q) 4716 return qe; 4717 4718 return NULL; 4719 } 4720 4721 static void blk_mq_elv_switch_back(struct list_head *head, 4722 struct request_queue *q) 4723 { 4724 struct blk_mq_qe_pair *qe; 4725 struct elevator_type *t; 4726 4727 qe = blk_lookup_qe_pair(head, q); 4728 if (!qe) 4729 return; 4730 t = qe->type; 4731 list_del(&qe->node); 4732 kfree(qe); 4733 4734 mutex_lock(&q->sysfs_lock); 4735 elevator_switch(q, t); 4736 /* drop the reference acquired in blk_mq_elv_switch_none */ 4737 elevator_put(t); 4738 mutex_unlock(&q->sysfs_lock); 4739 } 4740 4741 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4742 int nr_hw_queues) 4743 { 4744 struct request_queue *q; 4745 LIST_HEAD(head); 4746 int prev_nr_hw_queues = set->nr_hw_queues; 4747 int i; 4748 4749 lockdep_assert_held(&set->tag_list_lock); 4750 4751 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4752 nr_hw_queues = nr_cpu_ids; 4753 if (nr_hw_queues < 1) 4754 return; 4755 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4756 return; 4757 4758 list_for_each_entry(q, &set->tag_list, tag_set_list) 4759 blk_mq_freeze_queue(q); 4760 /* 4761 * Switch IO scheduler to 'none', cleaning up the data associated 4762 * with the previous scheduler. We will switch back once we are done 4763 * updating the new sw to hw queue mappings. 4764 */ 4765 list_for_each_entry(q, &set->tag_list, tag_set_list) 4766 if (!blk_mq_elv_switch_none(&head, q)) 4767 goto switch_back; 4768 4769 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4770 blk_mq_debugfs_unregister_hctxs(q); 4771 blk_mq_sysfs_unregister_hctxs(q); 4772 } 4773 4774 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4775 goto reregister; 4776 4777 fallback: 4778 blk_mq_update_queue_map(set); 4779 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4780 blk_mq_realloc_hw_ctxs(set, q); 4781 blk_mq_update_poll_flag(q); 4782 if (q->nr_hw_queues != set->nr_hw_queues) { 4783 int i = prev_nr_hw_queues; 4784 4785 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4786 nr_hw_queues, prev_nr_hw_queues); 4787 for (; i < set->nr_hw_queues; i++) 4788 __blk_mq_free_map_and_rqs(set, i); 4789 4790 set->nr_hw_queues = prev_nr_hw_queues; 4791 goto fallback; 4792 } 4793 blk_mq_map_swqueue(q); 4794 } 4795 4796 reregister: 4797 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4798 blk_mq_sysfs_register_hctxs(q); 4799 blk_mq_debugfs_register_hctxs(q); 4800 } 4801 4802 switch_back: 4803 list_for_each_entry(q, &set->tag_list, tag_set_list) 4804 blk_mq_elv_switch_back(&head, q); 4805 4806 list_for_each_entry(q, &set->tag_list, tag_set_list) 4807 blk_mq_unfreeze_queue(q); 4808 4809 /* Free the excess tags when nr_hw_queues shrink. */ 4810 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4811 __blk_mq_free_map_and_rqs(set, i); 4812 } 4813 4814 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4815 { 4816 mutex_lock(&set->tag_list_lock); 4817 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4818 mutex_unlock(&set->tag_list_lock); 4819 } 4820 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4821 4822 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4823 struct io_comp_batch *iob, unsigned int flags) 4824 { 4825 long state = get_current_state(); 4826 int ret; 4827 4828 do { 4829 ret = q->mq_ops->poll(hctx, iob); 4830 if (ret > 0) { 4831 __set_current_state(TASK_RUNNING); 4832 return ret; 4833 } 4834 4835 if (signal_pending_state(state, current)) 4836 __set_current_state(TASK_RUNNING); 4837 if (task_is_running(current)) 4838 return 1; 4839 4840 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4841 break; 4842 cpu_relax(); 4843 } while (!need_resched()); 4844 4845 __set_current_state(TASK_RUNNING); 4846 return 0; 4847 } 4848 4849 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4850 struct io_comp_batch *iob, unsigned int flags) 4851 { 4852 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4853 4854 return blk_hctx_poll(q, hctx, iob, flags); 4855 } 4856 4857 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4858 unsigned int poll_flags) 4859 { 4860 struct request_queue *q = rq->q; 4861 int ret; 4862 4863 if (!blk_rq_is_poll(rq)) 4864 return 0; 4865 if (!percpu_ref_tryget(&q->q_usage_counter)) 4866 return 0; 4867 4868 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4869 blk_queue_exit(q); 4870 4871 return ret; 4872 } 4873 EXPORT_SYMBOL_GPL(blk_rq_poll); 4874 4875 unsigned int blk_mq_rq_cpu(struct request *rq) 4876 { 4877 return rq->mq_ctx->cpu; 4878 } 4879 EXPORT_SYMBOL(blk_mq_rq_cpu); 4880 4881 void blk_mq_cancel_work_sync(struct request_queue *q) 4882 { 4883 struct blk_mq_hw_ctx *hctx; 4884 unsigned long i; 4885 4886 cancel_delayed_work_sync(&q->requeue_work); 4887 4888 queue_for_each_hw_ctx(q, hctx, i) 4889 cancel_delayed_work_sync(&hctx->run_work); 4890 } 4891 4892 static int __init blk_mq_init(void) 4893 { 4894 int i; 4895 4896 for_each_possible_cpu(i) 4897 init_llist_head(&per_cpu(blk_cpu_done, i)); 4898 for_each_possible_cpu(i) 4899 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4900 __blk_mq_complete_request_remote, NULL); 4901 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4902 4903 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4904 "block/softirq:dead", NULL, 4905 blk_softirq_cpu_dead); 4906 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4907 blk_mq_hctx_notify_dead); 4908 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4909 blk_mq_hctx_notify_online, 4910 blk_mq_hctx_notify_offline); 4911 return 0; 4912 } 4913 subsys_initcall(blk_mq_init); 4914