xref: /openbmc/linux/block/blk-mq.c (revision c65176fd49f45bd5a5ffaa1790109745d1fa462c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if (rq->part == mi->part)
109 		mi->inflight[rq_data_dir(rq)]++;
110 
111 	return true;
112 }
113 
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 
120 	return mi.inflight[0] + mi.inflight[1];
121 }
122 
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 			 unsigned int inflight[2])
125 {
126 	struct mq_inflight mi = { .part = part };
127 
128 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 	inflight[0] = mi.inflight[0];
130 	inflight[1] = mi.inflight[1];
131 }
132 
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135 	mutex_lock(&q->mq_freeze_lock);
136 	if (++q->mq_freeze_depth == 1) {
137 		percpu_ref_kill(&q->q_usage_counter);
138 		mutex_unlock(&q->mq_freeze_lock);
139 		if (queue_is_mq(q))
140 			blk_mq_run_hw_queues(q, false);
141 	} else {
142 		mutex_unlock(&q->mq_freeze_lock);
143 	}
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146 
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152 
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 				     unsigned long timeout)
155 {
156 	return wait_event_timeout(q->mq_freeze_wq,
157 					percpu_ref_is_zero(&q->q_usage_counter),
158 					timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161 
162 /*
163  * Guarantee no request is in use, so we can change any data structure of
164  * the queue afterward.
165  */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168 	/*
169 	 * In the !blk_mq case we are only calling this to kill the
170 	 * q_usage_counter, otherwise this increases the freeze depth
171 	 * and waits for it to return to zero.  For this reason there is
172 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 	 * exported to drivers as the only user for unfreeze is blk_mq.
174 	 */
175 	blk_freeze_queue_start(q);
176 	blk_mq_freeze_queue_wait(q);
177 }
178 
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181 	/*
182 	 * ...just an alias to keep freeze and unfreeze actions balanced
183 	 * in the blk_mq_* namespace
184 	 */
185 	blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188 
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191 	mutex_lock(&q->mq_freeze_lock);
192 	q->mq_freeze_depth--;
193 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 	if (!q->mq_freeze_depth) {
195 		percpu_ref_resurrect(&q->q_usage_counter);
196 		wake_up_all(&q->mq_freeze_wq);
197 	}
198 	mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201 
202 /*
203  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204  * mpt3sas driver such that this function can be removed.
205  */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211 
212 /**
213  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214  * @q: request queue.
215  *
216  * Note: this function does not prevent that the struct request end_io()
217  * callback function is invoked. Once this function is returned, we make
218  * sure no dispatch can happen until the queue is unquiesced via
219  * blk_mq_unquiesce_queue().
220  */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223 	struct blk_mq_hw_ctx *hctx;
224 	unsigned int i;
225 	bool rcu = false;
226 
227 	blk_mq_quiesce_queue_nowait(q);
228 
229 	queue_for_each_hw_ctx(q, hctx, i) {
230 		if (hctx->flags & BLK_MQ_F_BLOCKING)
231 			synchronize_srcu(hctx->srcu);
232 		else
233 			rcu = true;
234 	}
235 	if (rcu)
236 		synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239 
240 /*
241  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242  * @q: request queue.
243  *
244  * This function recovers queue into the state before quiescing
245  * which is done by blk_mq_quiesce_queue.
246  */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250 
251 	/* dispatch requests which are inserted during quiescing */
252 	blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255 
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258 	struct blk_mq_hw_ctx *hctx;
259 	unsigned int i;
260 
261 	queue_for_each_hw_ctx(q, hctx, i)
262 		if (blk_mq_hw_queue_mapped(hctx))
263 			blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265 
266 /*
267  * Only need start/end time stamping if we have iostat or
268  * blk stats enabled, or using an IO scheduler.
269  */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274 
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 		unsigned int tag, u64 alloc_time_ns)
277 {
278 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 	struct request *rq = tags->static_rqs[tag];
280 
281 	if (data->q->elevator) {
282 		rq->tag = BLK_MQ_NO_TAG;
283 		rq->internal_tag = tag;
284 	} else {
285 		rq->tag = tag;
286 		rq->internal_tag = BLK_MQ_NO_TAG;
287 	}
288 
289 	/* csd/requeue_work/fifo_time is initialized before use */
290 	rq->q = data->q;
291 	rq->mq_ctx = data->ctx;
292 	rq->mq_hctx = data->hctx;
293 	rq->rq_flags = 0;
294 	rq->cmd_flags = data->cmd_flags;
295 	if (data->flags & BLK_MQ_REQ_PREEMPT)
296 		rq->rq_flags |= RQF_PREEMPT;
297 	if (blk_queue_io_stat(data->q))
298 		rq->rq_flags |= RQF_IO_STAT;
299 	INIT_LIST_HEAD(&rq->queuelist);
300 	INIT_HLIST_NODE(&rq->hash);
301 	RB_CLEAR_NODE(&rq->rb_node);
302 	rq->rq_disk = NULL;
303 	rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305 	rq->alloc_time_ns = alloc_time_ns;
306 #endif
307 	if (blk_mq_need_time_stamp(rq))
308 		rq->start_time_ns = ktime_get_ns();
309 	else
310 		rq->start_time_ns = 0;
311 	rq->io_start_time_ns = 0;
312 	rq->stats_sectors = 0;
313 	rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 	rq->nr_integrity_segments = 0;
316 #endif
317 	blk_crypto_rq_set_defaults(rq);
318 	/* tag was already set */
319 	WRITE_ONCE(rq->deadline, 0);
320 
321 	rq->timeout = 0;
322 
323 	rq->end_io = NULL;
324 	rq->end_io_data = NULL;
325 
326 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327 	refcount_set(&rq->ref, 1);
328 
329 	if (!op_is_flush(data->cmd_flags)) {
330 		struct elevator_queue *e = data->q->elevator;
331 
332 		rq->elv.icq = NULL;
333 		if (e && e->type->ops.prepare_request) {
334 			if (e->type->icq_cache)
335 				blk_mq_sched_assign_ioc(rq);
336 
337 			e->type->ops.prepare_request(rq);
338 			rq->rq_flags |= RQF_ELVPRIV;
339 		}
340 	}
341 
342 	data->hctx->queued++;
343 	return rq;
344 }
345 
346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348 	struct request_queue *q = data->q;
349 	struct elevator_queue *e = q->elevator;
350 	u64 alloc_time_ns = 0;
351 	unsigned int tag;
352 
353 	/* alloc_time includes depth and tag waits */
354 	if (blk_queue_rq_alloc_time(q))
355 		alloc_time_ns = ktime_get_ns();
356 
357 	if (data->cmd_flags & REQ_NOWAIT)
358 		data->flags |= BLK_MQ_REQ_NOWAIT;
359 
360 	if (e) {
361 		/*
362 		 * Flush requests are special and go directly to the
363 		 * dispatch list. Don't include reserved tags in the
364 		 * limiting, as it isn't useful.
365 		 */
366 		if (!op_is_flush(data->cmd_flags) &&
367 		    e->type->ops.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.limit_depth(data->cmd_flags, data);
370 	}
371 
372 retry:
373 	data->ctx = blk_mq_get_ctx(q);
374 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375 	if (!e)
376 		blk_mq_tag_busy(data->hctx);
377 
378 	/*
379 	 * Waiting allocations only fail because of an inactive hctx.  In that
380 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
381 	 * should have migrated us to an online CPU by now.
382 	 */
383 	tag = blk_mq_get_tag(data);
384 	if (tag == BLK_MQ_NO_TAG) {
385 		if (data->flags & BLK_MQ_REQ_NOWAIT)
386 			return NULL;
387 
388 		/*
389 		 * Give up the CPU and sleep for a random short time to ensure
390 		 * that thread using a realtime scheduling class are migrated
391 		 * off the CPU, and thus off the hctx that is going away.
392 		 */
393 		msleep(3);
394 		goto retry;
395 	}
396 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398 
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 		blk_mq_req_flags_t flags)
401 {
402 	struct blk_mq_alloc_data data = {
403 		.q		= q,
404 		.flags		= flags,
405 		.cmd_flags	= op,
406 	};
407 	struct request *rq;
408 	int ret;
409 
410 	ret = blk_queue_enter(q, flags);
411 	if (ret)
412 		return ERR_PTR(ret);
413 
414 	rq = __blk_mq_alloc_request(&data);
415 	if (!rq)
416 		goto out_queue_exit;
417 	rq->__data_len = 0;
418 	rq->__sector = (sector_t) -1;
419 	rq->bio = rq->biotail = NULL;
420 	return rq;
421 out_queue_exit:
422 	blk_queue_exit(q);
423 	return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426 
427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430 	struct blk_mq_alloc_data data = {
431 		.q		= q,
432 		.flags		= flags,
433 		.cmd_flags	= op,
434 	};
435 	u64 alloc_time_ns = 0;
436 	unsigned int cpu;
437 	unsigned int tag;
438 	int ret;
439 
440 	/* alloc_time includes depth and tag waits */
441 	if (blk_queue_rq_alloc_time(q))
442 		alloc_time_ns = ktime_get_ns();
443 
444 	/*
445 	 * If the tag allocator sleeps we could get an allocation for a
446 	 * different hardware context.  No need to complicate the low level
447 	 * allocator for this for the rare use case of a command tied to
448 	 * a specific queue.
449 	 */
450 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451 		return ERR_PTR(-EINVAL);
452 
453 	if (hctx_idx >= q->nr_hw_queues)
454 		return ERR_PTR(-EIO);
455 
456 	ret = blk_queue_enter(q, flags);
457 	if (ret)
458 		return ERR_PTR(ret);
459 
460 	/*
461 	 * Check if the hardware context is actually mapped to anything.
462 	 * If not tell the caller that it should skip this queue.
463 	 */
464 	ret = -EXDEV;
465 	data.hctx = q->queue_hw_ctx[hctx_idx];
466 	if (!blk_mq_hw_queue_mapped(data.hctx))
467 		goto out_queue_exit;
468 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469 	data.ctx = __blk_mq_get_ctx(q, cpu);
470 
471 	if (!q->elevator)
472 		blk_mq_tag_busy(data.hctx);
473 
474 	ret = -EWOULDBLOCK;
475 	tag = blk_mq_get_tag(&data);
476 	if (tag == BLK_MQ_NO_TAG)
477 		goto out_queue_exit;
478 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479 
480 out_queue_exit:
481 	blk_queue_exit(q);
482 	return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485 
486 static void __blk_mq_free_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 	struct blk_mq_ctx *ctx = rq->mq_ctx;
490 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 	const int sched_tag = rq->internal_tag;
492 
493 	blk_crypto_free_request(rq);
494 	blk_pm_mark_last_busy(rq);
495 	rq->mq_hctx = NULL;
496 	if (rq->tag != BLK_MQ_NO_TAG)
497 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498 	if (sched_tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500 	blk_mq_sched_restart(hctx);
501 	blk_queue_exit(q);
502 }
503 
504 void blk_mq_free_request(struct request *rq)
505 {
506 	struct request_queue *q = rq->q;
507 	struct elevator_queue *e = q->elevator;
508 	struct blk_mq_ctx *ctx = rq->mq_ctx;
509 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510 
511 	if (rq->rq_flags & RQF_ELVPRIV) {
512 		if (e && e->type->ops.finish_request)
513 			e->type->ops.finish_request(rq);
514 		if (rq->elv.icq) {
515 			put_io_context(rq->elv.icq->ioc);
516 			rq->elv.icq = NULL;
517 		}
518 	}
519 
520 	ctx->rq_completed[rq_is_sync(rq)]++;
521 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
522 		atomic_dec(&hctx->nr_active);
523 
524 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525 		laptop_io_completion(q->backing_dev_info);
526 
527 	rq_qos_done(q, rq);
528 
529 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530 	if (refcount_dec_and_test(&rq->ref))
531 		__blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534 
535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 	u64 now = 0;
538 
539 	if (blk_mq_need_time_stamp(rq))
540 		now = ktime_get_ns();
541 
542 	if (rq->rq_flags & RQF_STATS) {
543 		blk_mq_poll_stats_start(rq->q);
544 		blk_stat_add(rq, now);
545 	}
546 
547 	blk_mq_sched_completed_request(rq, now);
548 
549 	blk_account_io_done(rq, now);
550 
551 	if (rq->end_io) {
552 		rq_qos_done(rq->q, rq);
553 		rq->end_io(rq, error);
554 	} else {
555 		blk_mq_free_request(rq);
556 	}
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559 
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 		BUG();
564 	__blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567 
568 /*
569  * Softirq action handler - move entries to local list and loop over them
570  * while passing them to the queue registered handler.
571  */
572 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573 {
574 	struct list_head *cpu_list, local_list;
575 
576 	local_irq_disable();
577 	cpu_list = this_cpu_ptr(&blk_cpu_done);
578 	list_replace_init(cpu_list, &local_list);
579 	local_irq_enable();
580 
581 	while (!list_empty(&local_list)) {
582 		struct request *rq;
583 
584 		rq = list_entry(local_list.next, struct request, ipi_list);
585 		list_del_init(&rq->ipi_list);
586 		rq->q->mq_ops->complete(rq);
587 	}
588 }
589 
590 static void blk_mq_trigger_softirq(struct request *rq)
591 {
592 	struct list_head *list;
593 	unsigned long flags;
594 
595 	local_irq_save(flags);
596 	list = this_cpu_ptr(&blk_cpu_done);
597 	list_add_tail(&rq->ipi_list, list);
598 
599 	/*
600 	 * If the list only contains our just added request, signal a raise of
601 	 * the softirq.  If there are already entries there, someone already
602 	 * raised the irq but it hasn't run yet.
603 	 */
604 	if (list->next == &rq->ipi_list)
605 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
606 	local_irq_restore(flags);
607 }
608 
609 static int blk_softirq_cpu_dead(unsigned int cpu)
610 {
611 	/*
612 	 * If a CPU goes away, splice its entries to the current CPU
613 	 * and trigger a run of the softirq
614 	 */
615 	local_irq_disable();
616 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
617 			 this_cpu_ptr(&blk_cpu_done));
618 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
619 	local_irq_enable();
620 
621 	return 0;
622 }
623 
624 
625 static void __blk_mq_complete_request_remote(void *data)
626 {
627 	struct request *rq = data;
628 
629 	/*
630 	 * For most of single queue controllers, there is only one irq vector
631 	 * for handling I/O completion, and the only irq's affinity is set
632 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
633 	 * is handled on one specific CPU.
634 	 *
635 	 * So complete I/O requests in softirq context in case of single queue
636 	 * devices to avoid degrading I/O performance due to irqsoff latency.
637 	 */
638 	if (rq->q->nr_hw_queues == 1)
639 		blk_mq_trigger_softirq(rq);
640 	else
641 		rq->q->mq_ops->complete(rq);
642 }
643 
644 static inline bool blk_mq_complete_need_ipi(struct request *rq)
645 {
646 	int cpu = raw_smp_processor_id();
647 
648 	if (!IS_ENABLED(CONFIG_SMP) ||
649 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650 		return false;
651 
652 	/* same CPU or cache domain?  Complete locally */
653 	if (cpu == rq->mq_ctx->cpu ||
654 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656 		return false;
657 
658 	/* don't try to IPI to an offline CPU */
659 	return cpu_online(rq->mq_ctx->cpu);
660 }
661 
662 bool blk_mq_complete_request_remote(struct request *rq)
663 {
664 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665 
666 	/*
667 	 * For a polled request, always complete locallly, it's pointless
668 	 * to redirect the completion.
669 	 */
670 	if (rq->cmd_flags & REQ_HIPRI)
671 		return false;
672 
673 	if (blk_mq_complete_need_ipi(rq)) {
674 		rq->csd.func = __blk_mq_complete_request_remote;
675 		rq->csd.info = rq;
676 		rq->csd.flags = 0;
677 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678 	} else {
679 		if (rq->q->nr_hw_queues > 1)
680 			return false;
681 		blk_mq_trigger_softirq(rq);
682 	}
683 
684 	return true;
685 }
686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
687 
688 /**
689  * blk_mq_complete_request - end I/O on a request
690  * @rq:		the request being processed
691  *
692  * Description:
693  *	Complete a request by scheduling the ->complete_rq operation.
694  **/
695 void blk_mq_complete_request(struct request *rq)
696 {
697 	if (!blk_mq_complete_request_remote(rq))
698 		rq->q->mq_ops->complete(rq);
699 }
700 EXPORT_SYMBOL(blk_mq_complete_request);
701 
702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703 	__releases(hctx->srcu)
704 {
705 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
706 		rcu_read_unlock();
707 	else
708 		srcu_read_unlock(hctx->srcu, srcu_idx);
709 }
710 
711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712 	__acquires(hctx->srcu)
713 {
714 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
715 		/* shut up gcc false positive */
716 		*srcu_idx = 0;
717 		rcu_read_lock();
718 	} else
719 		*srcu_idx = srcu_read_lock(hctx->srcu);
720 }
721 
722 /**
723  * blk_mq_start_request - Start processing a request
724  * @rq: Pointer to request to be started
725  *
726  * Function used by device drivers to notify the block layer that a request
727  * is going to be processed now, so blk layer can do proper initializations
728  * such as starting the timeout timer.
729  */
730 void blk_mq_start_request(struct request *rq)
731 {
732 	struct request_queue *q = rq->q;
733 
734 	trace_block_rq_issue(q, rq);
735 
736 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737 		rq->io_start_time_ns = ktime_get_ns();
738 		rq->stats_sectors = blk_rq_sectors(rq);
739 		rq->rq_flags |= RQF_STATS;
740 		rq_qos_issue(q, rq);
741 	}
742 
743 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744 
745 	blk_add_timer(rq);
746 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747 
748 #ifdef CONFIG_BLK_DEV_INTEGRITY
749 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
750 		q->integrity.profile->prepare_fn(rq);
751 #endif
752 }
753 EXPORT_SYMBOL(blk_mq_start_request);
754 
755 static void __blk_mq_requeue_request(struct request *rq)
756 {
757 	struct request_queue *q = rq->q;
758 
759 	blk_mq_put_driver_tag(rq);
760 
761 	trace_block_rq_requeue(q, rq);
762 	rq_qos_requeue(q, rq);
763 
764 	if (blk_mq_request_started(rq)) {
765 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766 		rq->rq_flags &= ~RQF_TIMED_OUT;
767 	}
768 }
769 
770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771 {
772 	__blk_mq_requeue_request(rq);
773 
774 	/* this request will be re-inserted to io scheduler queue */
775 	blk_mq_sched_requeue_request(rq);
776 
777 	BUG_ON(!list_empty(&rq->queuelist));
778 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
779 }
780 EXPORT_SYMBOL(blk_mq_requeue_request);
781 
782 static void blk_mq_requeue_work(struct work_struct *work)
783 {
784 	struct request_queue *q =
785 		container_of(work, struct request_queue, requeue_work.work);
786 	LIST_HEAD(rq_list);
787 	struct request *rq, *next;
788 
789 	spin_lock_irq(&q->requeue_lock);
790 	list_splice_init(&q->requeue_list, &rq_list);
791 	spin_unlock_irq(&q->requeue_lock);
792 
793 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
794 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
795 			continue;
796 
797 		rq->rq_flags &= ~RQF_SOFTBARRIER;
798 		list_del_init(&rq->queuelist);
799 		/*
800 		 * If RQF_DONTPREP, rq has contained some driver specific
801 		 * data, so insert it to hctx dispatch list to avoid any
802 		 * merge.
803 		 */
804 		if (rq->rq_flags & RQF_DONTPREP)
805 			blk_mq_request_bypass_insert(rq, false, false);
806 		else
807 			blk_mq_sched_insert_request(rq, true, false, false);
808 	}
809 
810 	while (!list_empty(&rq_list)) {
811 		rq = list_entry(rq_list.next, struct request, queuelist);
812 		list_del_init(&rq->queuelist);
813 		blk_mq_sched_insert_request(rq, false, false, false);
814 	}
815 
816 	blk_mq_run_hw_queues(q, false);
817 }
818 
819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
820 				bool kick_requeue_list)
821 {
822 	struct request_queue *q = rq->q;
823 	unsigned long flags;
824 
825 	/*
826 	 * We abuse this flag that is otherwise used by the I/O scheduler to
827 	 * request head insertion from the workqueue.
828 	 */
829 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
830 
831 	spin_lock_irqsave(&q->requeue_lock, flags);
832 	if (at_head) {
833 		rq->rq_flags |= RQF_SOFTBARRIER;
834 		list_add(&rq->queuelist, &q->requeue_list);
835 	} else {
836 		list_add_tail(&rq->queuelist, &q->requeue_list);
837 	}
838 	spin_unlock_irqrestore(&q->requeue_lock, flags);
839 
840 	if (kick_requeue_list)
841 		blk_mq_kick_requeue_list(q);
842 }
843 
844 void blk_mq_kick_requeue_list(struct request_queue *q)
845 {
846 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
847 }
848 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
849 
850 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
851 				    unsigned long msecs)
852 {
853 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
854 				    msecs_to_jiffies(msecs));
855 }
856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
857 
858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
859 {
860 	if (tag < tags->nr_tags) {
861 		prefetch(tags->rqs[tag]);
862 		return tags->rqs[tag];
863 	}
864 
865 	return NULL;
866 }
867 EXPORT_SYMBOL(blk_mq_tag_to_rq);
868 
869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
870 			       void *priv, bool reserved)
871 {
872 	/*
873 	 * If we find a request that isn't idle and the queue matches,
874 	 * we know the queue is busy. Return false to stop the iteration.
875 	 */
876 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
877 		bool *busy = priv;
878 
879 		*busy = true;
880 		return false;
881 	}
882 
883 	return true;
884 }
885 
886 bool blk_mq_queue_inflight(struct request_queue *q)
887 {
888 	bool busy = false;
889 
890 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
891 	return busy;
892 }
893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
894 
895 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
896 {
897 	req->rq_flags |= RQF_TIMED_OUT;
898 	if (req->q->mq_ops->timeout) {
899 		enum blk_eh_timer_return ret;
900 
901 		ret = req->q->mq_ops->timeout(req, reserved);
902 		if (ret == BLK_EH_DONE)
903 			return;
904 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
905 	}
906 
907 	blk_add_timer(req);
908 }
909 
910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
911 {
912 	unsigned long deadline;
913 
914 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
915 		return false;
916 	if (rq->rq_flags & RQF_TIMED_OUT)
917 		return false;
918 
919 	deadline = READ_ONCE(rq->deadline);
920 	if (time_after_eq(jiffies, deadline))
921 		return true;
922 
923 	if (*next == 0)
924 		*next = deadline;
925 	else if (time_after(*next, deadline))
926 		*next = deadline;
927 	return false;
928 }
929 
930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
931 		struct request *rq, void *priv, bool reserved)
932 {
933 	unsigned long *next = priv;
934 
935 	/*
936 	 * Just do a quick check if it is expired before locking the request in
937 	 * so we're not unnecessarilly synchronizing across CPUs.
938 	 */
939 	if (!blk_mq_req_expired(rq, next))
940 		return true;
941 
942 	/*
943 	 * We have reason to believe the request may be expired. Take a
944 	 * reference on the request to lock this request lifetime into its
945 	 * currently allocated context to prevent it from being reallocated in
946 	 * the event the completion by-passes this timeout handler.
947 	 *
948 	 * If the reference was already released, then the driver beat the
949 	 * timeout handler to posting a natural completion.
950 	 */
951 	if (!refcount_inc_not_zero(&rq->ref))
952 		return true;
953 
954 	/*
955 	 * The request is now locked and cannot be reallocated underneath the
956 	 * timeout handler's processing. Re-verify this exact request is truly
957 	 * expired; if it is not expired, then the request was completed and
958 	 * reallocated as a new request.
959 	 */
960 	if (blk_mq_req_expired(rq, next))
961 		blk_mq_rq_timed_out(rq, reserved);
962 
963 	if (is_flush_rq(rq, hctx))
964 		rq->end_io(rq, 0);
965 	else if (refcount_dec_and_test(&rq->ref))
966 		__blk_mq_free_request(rq);
967 
968 	return true;
969 }
970 
971 static void blk_mq_timeout_work(struct work_struct *work)
972 {
973 	struct request_queue *q =
974 		container_of(work, struct request_queue, timeout_work);
975 	unsigned long next = 0;
976 	struct blk_mq_hw_ctx *hctx;
977 	int i;
978 
979 	/* A deadlock might occur if a request is stuck requiring a
980 	 * timeout at the same time a queue freeze is waiting
981 	 * completion, since the timeout code would not be able to
982 	 * acquire the queue reference here.
983 	 *
984 	 * That's why we don't use blk_queue_enter here; instead, we use
985 	 * percpu_ref_tryget directly, because we need to be able to
986 	 * obtain a reference even in the short window between the queue
987 	 * starting to freeze, by dropping the first reference in
988 	 * blk_freeze_queue_start, and the moment the last request is
989 	 * consumed, marked by the instant q_usage_counter reaches
990 	 * zero.
991 	 */
992 	if (!percpu_ref_tryget(&q->q_usage_counter))
993 		return;
994 
995 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996 
997 	if (next != 0) {
998 		mod_timer(&q->timeout, next);
999 	} else {
1000 		/*
1001 		 * Request timeouts are handled as a forward rolling timer. If
1002 		 * we end up here it means that no requests are pending and
1003 		 * also that no request has been pending for a while. Mark
1004 		 * each hctx as idle.
1005 		 */
1006 		queue_for_each_hw_ctx(q, hctx, i) {
1007 			/* the hctx may be unmapped, so check it here */
1008 			if (blk_mq_hw_queue_mapped(hctx))
1009 				blk_mq_tag_idle(hctx);
1010 		}
1011 	}
1012 	blk_queue_exit(q);
1013 }
1014 
1015 struct flush_busy_ctx_data {
1016 	struct blk_mq_hw_ctx *hctx;
1017 	struct list_head *list;
1018 };
1019 
1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021 {
1022 	struct flush_busy_ctx_data *flush_data = data;
1023 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025 	enum hctx_type type = hctx->type;
1026 
1027 	spin_lock(&ctx->lock);
1028 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029 	sbitmap_clear_bit(sb, bitnr);
1030 	spin_unlock(&ctx->lock);
1031 	return true;
1032 }
1033 
1034 /*
1035  * Process software queues that have been marked busy, splicing them
1036  * to the for-dispatch
1037  */
1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039 {
1040 	struct flush_busy_ctx_data data = {
1041 		.hctx = hctx,
1042 		.list = list,
1043 	};
1044 
1045 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046 }
1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048 
1049 struct dispatch_rq_data {
1050 	struct blk_mq_hw_ctx *hctx;
1051 	struct request *rq;
1052 };
1053 
1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055 		void *data)
1056 {
1057 	struct dispatch_rq_data *dispatch_data = data;
1058 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060 	enum hctx_type type = hctx->type;
1061 
1062 	spin_lock(&ctx->lock);
1063 	if (!list_empty(&ctx->rq_lists[type])) {
1064 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065 		list_del_init(&dispatch_data->rq->queuelist);
1066 		if (list_empty(&ctx->rq_lists[type]))
1067 			sbitmap_clear_bit(sb, bitnr);
1068 	}
1069 	spin_unlock(&ctx->lock);
1070 
1071 	return !dispatch_data->rq;
1072 }
1073 
1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075 					struct blk_mq_ctx *start)
1076 {
1077 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 	struct dispatch_rq_data data = {
1079 		.hctx = hctx,
1080 		.rq   = NULL,
1081 	};
1082 
1083 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1084 			       dispatch_rq_from_ctx, &data);
1085 
1086 	return data.rq;
1087 }
1088 
1089 static inline unsigned int queued_to_index(unsigned int queued)
1090 {
1091 	if (!queued)
1092 		return 0;
1093 
1094 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 }
1096 
1097 static bool __blk_mq_get_driver_tag(struct request *rq)
1098 {
1099 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1100 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101 	int tag;
1102 
1103 	blk_mq_tag_busy(rq->mq_hctx);
1104 
1105 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106 		bt = &rq->mq_hctx->tags->breserved_tags;
1107 		tag_offset = 0;
1108 	}
1109 
1110 	if (!hctx_may_queue(rq->mq_hctx, bt))
1111 		return false;
1112 	tag = __sbitmap_queue_get(bt);
1113 	if (tag == BLK_MQ_NO_TAG)
1114 		return false;
1115 
1116 	rq->tag = tag + tag_offset;
1117 	return true;
1118 }
1119 
1120 static bool blk_mq_get_driver_tag(struct request *rq)
1121 {
1122 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1123 
1124 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1125 		return false;
1126 
1127 	if ((hctx->flags & BLK_MQ_F_TAG_SHARED) &&
1128 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1129 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1130 		atomic_inc(&hctx->nr_active);
1131 	}
1132 	hctx->tags->rqs[rq->tag] = rq;
1133 	return true;
1134 }
1135 
1136 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1137 				int flags, void *key)
1138 {
1139 	struct blk_mq_hw_ctx *hctx;
1140 
1141 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1142 
1143 	spin_lock(&hctx->dispatch_wait_lock);
1144 	if (!list_empty(&wait->entry)) {
1145 		struct sbitmap_queue *sbq;
1146 
1147 		list_del_init(&wait->entry);
1148 		sbq = &hctx->tags->bitmap_tags;
1149 		atomic_dec(&sbq->ws_active);
1150 	}
1151 	spin_unlock(&hctx->dispatch_wait_lock);
1152 
1153 	blk_mq_run_hw_queue(hctx, true);
1154 	return 1;
1155 }
1156 
1157 /*
1158  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1159  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1160  * restart. For both cases, take care to check the condition again after
1161  * marking us as waiting.
1162  */
1163 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1164 				 struct request *rq)
1165 {
1166 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1167 	struct wait_queue_head *wq;
1168 	wait_queue_entry_t *wait;
1169 	bool ret;
1170 
1171 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1172 		blk_mq_sched_mark_restart_hctx(hctx);
1173 
1174 		/*
1175 		 * It's possible that a tag was freed in the window between the
1176 		 * allocation failure and adding the hardware queue to the wait
1177 		 * queue.
1178 		 *
1179 		 * Don't clear RESTART here, someone else could have set it.
1180 		 * At most this will cost an extra queue run.
1181 		 */
1182 		return blk_mq_get_driver_tag(rq);
1183 	}
1184 
1185 	wait = &hctx->dispatch_wait;
1186 	if (!list_empty_careful(&wait->entry))
1187 		return false;
1188 
1189 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1190 
1191 	spin_lock_irq(&wq->lock);
1192 	spin_lock(&hctx->dispatch_wait_lock);
1193 	if (!list_empty(&wait->entry)) {
1194 		spin_unlock(&hctx->dispatch_wait_lock);
1195 		spin_unlock_irq(&wq->lock);
1196 		return false;
1197 	}
1198 
1199 	atomic_inc(&sbq->ws_active);
1200 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1201 	__add_wait_queue(wq, wait);
1202 
1203 	/*
1204 	 * It's possible that a tag was freed in the window between the
1205 	 * allocation failure and adding the hardware queue to the wait
1206 	 * queue.
1207 	 */
1208 	ret = blk_mq_get_driver_tag(rq);
1209 	if (!ret) {
1210 		spin_unlock(&hctx->dispatch_wait_lock);
1211 		spin_unlock_irq(&wq->lock);
1212 		return false;
1213 	}
1214 
1215 	/*
1216 	 * We got a tag, remove ourselves from the wait queue to ensure
1217 	 * someone else gets the wakeup.
1218 	 */
1219 	list_del_init(&wait->entry);
1220 	atomic_dec(&sbq->ws_active);
1221 	spin_unlock(&hctx->dispatch_wait_lock);
1222 	spin_unlock_irq(&wq->lock);
1223 
1224 	return true;
1225 }
1226 
1227 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1229 /*
1230  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1231  * - EWMA is one simple way to compute running average value
1232  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1233  * - take 4 as factor for avoiding to get too small(0) result, and this
1234  *   factor doesn't matter because EWMA decreases exponentially
1235  */
1236 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1237 {
1238 	unsigned int ewma;
1239 
1240 	if (hctx->queue->elevator)
1241 		return;
1242 
1243 	ewma = hctx->dispatch_busy;
1244 
1245 	if (!ewma && !busy)
1246 		return;
1247 
1248 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1249 	if (busy)
1250 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1251 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1252 
1253 	hctx->dispatch_busy = ewma;
1254 }
1255 
1256 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1257 
1258 static void blk_mq_handle_dev_resource(struct request *rq,
1259 				       struct list_head *list)
1260 {
1261 	struct request *next =
1262 		list_first_entry_or_null(list, struct request, queuelist);
1263 
1264 	/*
1265 	 * If an I/O scheduler has been configured and we got a driver tag for
1266 	 * the next request already, free it.
1267 	 */
1268 	if (next)
1269 		blk_mq_put_driver_tag(next);
1270 
1271 	list_add(&rq->queuelist, list);
1272 	__blk_mq_requeue_request(rq);
1273 }
1274 
1275 static void blk_mq_handle_zone_resource(struct request *rq,
1276 					struct list_head *zone_list)
1277 {
1278 	/*
1279 	 * If we end up here it is because we cannot dispatch a request to a
1280 	 * specific zone due to LLD level zone-write locking or other zone
1281 	 * related resource not being available. In this case, set the request
1282 	 * aside in zone_list for retrying it later.
1283 	 */
1284 	list_add(&rq->queuelist, zone_list);
1285 	__blk_mq_requeue_request(rq);
1286 }
1287 
1288 enum prep_dispatch {
1289 	PREP_DISPATCH_OK,
1290 	PREP_DISPATCH_NO_TAG,
1291 	PREP_DISPATCH_NO_BUDGET,
1292 };
1293 
1294 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1295 						  bool need_budget)
1296 {
1297 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1298 
1299 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1300 		blk_mq_put_driver_tag(rq);
1301 		return PREP_DISPATCH_NO_BUDGET;
1302 	}
1303 
1304 	if (!blk_mq_get_driver_tag(rq)) {
1305 		/*
1306 		 * The initial allocation attempt failed, so we need to
1307 		 * rerun the hardware queue when a tag is freed. The
1308 		 * waitqueue takes care of that. If the queue is run
1309 		 * before we add this entry back on the dispatch list,
1310 		 * we'll re-run it below.
1311 		 */
1312 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1313 			/*
1314 			 * All budgets not got from this function will be put
1315 			 * together during handling partial dispatch
1316 			 */
1317 			if (need_budget)
1318 				blk_mq_put_dispatch_budget(rq->q);
1319 			return PREP_DISPATCH_NO_TAG;
1320 		}
1321 	}
1322 
1323 	return PREP_DISPATCH_OK;
1324 }
1325 
1326 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1327 static void blk_mq_release_budgets(struct request_queue *q,
1328 		unsigned int nr_budgets)
1329 {
1330 	int i;
1331 
1332 	for (i = 0; i < nr_budgets; i++)
1333 		blk_mq_put_dispatch_budget(q);
1334 }
1335 
1336 /*
1337  * Returns true if we did some work AND can potentially do more.
1338  */
1339 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1340 			     unsigned int nr_budgets)
1341 {
1342 	enum prep_dispatch prep;
1343 	struct request_queue *q = hctx->queue;
1344 	struct request *rq, *nxt;
1345 	int errors, queued;
1346 	blk_status_t ret = BLK_STS_OK;
1347 	LIST_HEAD(zone_list);
1348 
1349 	if (list_empty(list))
1350 		return false;
1351 
1352 	/*
1353 	 * Now process all the entries, sending them to the driver.
1354 	 */
1355 	errors = queued = 0;
1356 	do {
1357 		struct blk_mq_queue_data bd;
1358 
1359 		rq = list_first_entry(list, struct request, queuelist);
1360 
1361 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1362 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1363 		if (prep != PREP_DISPATCH_OK)
1364 			break;
1365 
1366 		list_del_init(&rq->queuelist);
1367 
1368 		bd.rq = rq;
1369 
1370 		/*
1371 		 * Flag last if we have no more requests, or if we have more
1372 		 * but can't assign a driver tag to it.
1373 		 */
1374 		if (list_empty(list))
1375 			bd.last = true;
1376 		else {
1377 			nxt = list_first_entry(list, struct request, queuelist);
1378 			bd.last = !blk_mq_get_driver_tag(nxt);
1379 		}
1380 
1381 		/*
1382 		 * once the request is queued to lld, no need to cover the
1383 		 * budget any more
1384 		 */
1385 		if (nr_budgets)
1386 			nr_budgets--;
1387 		ret = q->mq_ops->queue_rq(hctx, &bd);
1388 		switch (ret) {
1389 		case BLK_STS_OK:
1390 			queued++;
1391 			break;
1392 		case BLK_STS_RESOURCE:
1393 		case BLK_STS_DEV_RESOURCE:
1394 			blk_mq_handle_dev_resource(rq, list);
1395 			goto out;
1396 		case BLK_STS_ZONE_RESOURCE:
1397 			/*
1398 			 * Move the request to zone_list and keep going through
1399 			 * the dispatch list to find more requests the drive can
1400 			 * accept.
1401 			 */
1402 			blk_mq_handle_zone_resource(rq, &zone_list);
1403 			break;
1404 		default:
1405 			errors++;
1406 			blk_mq_end_request(rq, BLK_STS_IOERR);
1407 		}
1408 	} while (!list_empty(list));
1409 out:
1410 	if (!list_empty(&zone_list))
1411 		list_splice_tail_init(&zone_list, list);
1412 
1413 	hctx->dispatched[queued_to_index(queued)]++;
1414 
1415 	/*
1416 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1417 	 * that is where we will continue on next queue run.
1418 	 */
1419 	if (!list_empty(list)) {
1420 		bool needs_restart;
1421 		/* For non-shared tags, the RESTART check will suffice */
1422 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1423                         (hctx->flags & BLK_MQ_F_TAG_SHARED);
1424 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1425 
1426 		blk_mq_release_budgets(q, nr_budgets);
1427 
1428 		/*
1429 		 * If we didn't flush the entire list, we could have told
1430 		 * the driver there was more coming, but that turned out to
1431 		 * be a lie.
1432 		 */
1433 		if (q->mq_ops->commit_rqs && queued)
1434 			q->mq_ops->commit_rqs(hctx);
1435 
1436 		spin_lock(&hctx->lock);
1437 		list_splice_tail_init(list, &hctx->dispatch);
1438 		spin_unlock(&hctx->lock);
1439 
1440 		/*
1441 		 * Order adding requests to hctx->dispatch and checking
1442 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1443 		 * in blk_mq_sched_restart(). Avoid restart code path to
1444 		 * miss the new added requests to hctx->dispatch, meantime
1445 		 * SCHED_RESTART is observed here.
1446 		 */
1447 		smp_mb();
1448 
1449 		/*
1450 		 * If SCHED_RESTART was set by the caller of this function and
1451 		 * it is no longer set that means that it was cleared by another
1452 		 * thread and hence that a queue rerun is needed.
1453 		 *
1454 		 * If 'no_tag' is set, that means that we failed getting
1455 		 * a driver tag with an I/O scheduler attached. If our dispatch
1456 		 * waitqueue is no longer active, ensure that we run the queue
1457 		 * AFTER adding our entries back to the list.
1458 		 *
1459 		 * If no I/O scheduler has been configured it is possible that
1460 		 * the hardware queue got stopped and restarted before requests
1461 		 * were pushed back onto the dispatch list. Rerun the queue to
1462 		 * avoid starvation. Notes:
1463 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1464 		 *   been stopped before rerunning a queue.
1465 		 * - Some but not all block drivers stop a queue before
1466 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1467 		 *   and dm-rq.
1468 		 *
1469 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1470 		 * bit is set, run queue after a delay to avoid IO stalls
1471 		 * that could otherwise occur if the queue is idle.  We'll do
1472 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1473 		 */
1474 		needs_restart = blk_mq_sched_needs_restart(hctx);
1475 		if (!needs_restart ||
1476 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1477 			blk_mq_run_hw_queue(hctx, true);
1478 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1479 					   no_budget_avail))
1480 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1481 
1482 		blk_mq_update_dispatch_busy(hctx, true);
1483 		return false;
1484 	} else
1485 		blk_mq_update_dispatch_busy(hctx, false);
1486 
1487 	return (queued + errors) != 0;
1488 }
1489 
1490 /**
1491  * __blk_mq_run_hw_queue - Run a hardware queue.
1492  * @hctx: Pointer to the hardware queue to run.
1493  *
1494  * Send pending requests to the hardware.
1495  */
1496 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1497 {
1498 	int srcu_idx;
1499 
1500 	/*
1501 	 * We should be running this queue from one of the CPUs that
1502 	 * are mapped to it.
1503 	 *
1504 	 * There are at least two related races now between setting
1505 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1506 	 * __blk_mq_run_hw_queue():
1507 	 *
1508 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1509 	 *   but later it becomes online, then this warning is harmless
1510 	 *   at all
1511 	 *
1512 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1513 	 *   but later it becomes offline, then the warning can't be
1514 	 *   triggered, and we depend on blk-mq timeout handler to
1515 	 *   handle dispatched requests to this hctx
1516 	 */
1517 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1518 		cpu_online(hctx->next_cpu)) {
1519 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1520 			raw_smp_processor_id(),
1521 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1522 		dump_stack();
1523 	}
1524 
1525 	/*
1526 	 * We can't run the queue inline with ints disabled. Ensure that
1527 	 * we catch bad users of this early.
1528 	 */
1529 	WARN_ON_ONCE(in_interrupt());
1530 
1531 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1532 
1533 	hctx_lock(hctx, &srcu_idx);
1534 	blk_mq_sched_dispatch_requests(hctx);
1535 	hctx_unlock(hctx, srcu_idx);
1536 }
1537 
1538 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1539 {
1540 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1541 
1542 	if (cpu >= nr_cpu_ids)
1543 		cpu = cpumask_first(hctx->cpumask);
1544 	return cpu;
1545 }
1546 
1547 /*
1548  * It'd be great if the workqueue API had a way to pass
1549  * in a mask and had some smarts for more clever placement.
1550  * For now we just round-robin here, switching for every
1551  * BLK_MQ_CPU_WORK_BATCH queued items.
1552  */
1553 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1554 {
1555 	bool tried = false;
1556 	int next_cpu = hctx->next_cpu;
1557 
1558 	if (hctx->queue->nr_hw_queues == 1)
1559 		return WORK_CPU_UNBOUND;
1560 
1561 	if (--hctx->next_cpu_batch <= 0) {
1562 select_cpu:
1563 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1564 				cpu_online_mask);
1565 		if (next_cpu >= nr_cpu_ids)
1566 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1567 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1568 	}
1569 
1570 	/*
1571 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1572 	 * and it should only happen in the path of handling CPU DEAD.
1573 	 */
1574 	if (!cpu_online(next_cpu)) {
1575 		if (!tried) {
1576 			tried = true;
1577 			goto select_cpu;
1578 		}
1579 
1580 		/*
1581 		 * Make sure to re-select CPU next time once after CPUs
1582 		 * in hctx->cpumask become online again.
1583 		 */
1584 		hctx->next_cpu = next_cpu;
1585 		hctx->next_cpu_batch = 1;
1586 		return WORK_CPU_UNBOUND;
1587 	}
1588 
1589 	hctx->next_cpu = next_cpu;
1590 	return next_cpu;
1591 }
1592 
1593 /**
1594  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1595  * @hctx: Pointer to the hardware queue to run.
1596  * @async: If we want to run the queue asynchronously.
1597  * @msecs: Microseconds of delay to wait before running the queue.
1598  *
1599  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1600  * with a delay of @msecs.
1601  */
1602 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1603 					unsigned long msecs)
1604 {
1605 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1606 		return;
1607 
1608 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1609 		int cpu = get_cpu();
1610 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1611 			__blk_mq_run_hw_queue(hctx);
1612 			put_cpu();
1613 			return;
1614 		}
1615 
1616 		put_cpu();
1617 	}
1618 
1619 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1620 				    msecs_to_jiffies(msecs));
1621 }
1622 
1623 /**
1624  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1625  * @hctx: Pointer to the hardware queue to run.
1626  * @msecs: Microseconds of delay to wait before running the queue.
1627  *
1628  * Run a hardware queue asynchronously with a delay of @msecs.
1629  */
1630 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1631 {
1632 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1633 }
1634 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1635 
1636 /**
1637  * blk_mq_run_hw_queue - Start to run a hardware queue.
1638  * @hctx: Pointer to the hardware queue to run.
1639  * @async: If we want to run the queue asynchronously.
1640  *
1641  * Check if the request queue is not in a quiesced state and if there are
1642  * pending requests to be sent. If this is true, run the queue to send requests
1643  * to hardware.
1644  */
1645 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1646 {
1647 	int srcu_idx;
1648 	bool need_run;
1649 
1650 	/*
1651 	 * When queue is quiesced, we may be switching io scheduler, or
1652 	 * updating nr_hw_queues, or other things, and we can't run queue
1653 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1654 	 *
1655 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1656 	 * quiesced.
1657 	 */
1658 	hctx_lock(hctx, &srcu_idx);
1659 	need_run = !blk_queue_quiesced(hctx->queue) &&
1660 		blk_mq_hctx_has_pending(hctx);
1661 	hctx_unlock(hctx, srcu_idx);
1662 
1663 	if (need_run)
1664 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1665 }
1666 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1667 
1668 /**
1669  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1670  * @q: Pointer to the request queue to run.
1671  * @async: If we want to run the queue asynchronously.
1672  */
1673 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1674 {
1675 	struct blk_mq_hw_ctx *hctx;
1676 	int i;
1677 
1678 	queue_for_each_hw_ctx(q, hctx, i) {
1679 		if (blk_mq_hctx_stopped(hctx))
1680 			continue;
1681 
1682 		blk_mq_run_hw_queue(hctx, async);
1683 	}
1684 }
1685 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1686 
1687 /**
1688  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1689  * @q: Pointer to the request queue to run.
1690  * @msecs: Microseconds of delay to wait before running the queues.
1691  */
1692 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1693 {
1694 	struct blk_mq_hw_ctx *hctx;
1695 	int i;
1696 
1697 	queue_for_each_hw_ctx(q, hctx, i) {
1698 		if (blk_mq_hctx_stopped(hctx))
1699 			continue;
1700 
1701 		blk_mq_delay_run_hw_queue(hctx, msecs);
1702 	}
1703 }
1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705 
1706 /**
1707  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708  * @q: request queue.
1709  *
1710  * The caller is responsible for serializing this function against
1711  * blk_mq_{start,stop}_hw_queue().
1712  */
1713 bool blk_mq_queue_stopped(struct request_queue *q)
1714 {
1715 	struct blk_mq_hw_ctx *hctx;
1716 	int i;
1717 
1718 	queue_for_each_hw_ctx(q, hctx, i)
1719 		if (blk_mq_hctx_stopped(hctx))
1720 			return true;
1721 
1722 	return false;
1723 }
1724 EXPORT_SYMBOL(blk_mq_queue_stopped);
1725 
1726 /*
1727  * This function is often used for pausing .queue_rq() by driver when
1728  * there isn't enough resource or some conditions aren't satisfied, and
1729  * BLK_STS_RESOURCE is usually returned.
1730  *
1731  * We do not guarantee that dispatch can be drained or blocked
1732  * after blk_mq_stop_hw_queue() returns. Please use
1733  * blk_mq_quiesce_queue() for that requirement.
1734  */
1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736 {
1737 	cancel_delayed_work(&hctx->run_work);
1738 
1739 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742 
1743 /*
1744  * This function is often used for pausing .queue_rq() by driver when
1745  * there isn't enough resource or some conditions aren't satisfied, and
1746  * BLK_STS_RESOURCE is usually returned.
1747  *
1748  * We do not guarantee that dispatch can be drained or blocked
1749  * after blk_mq_stop_hw_queues() returns. Please use
1750  * blk_mq_quiesce_queue() for that requirement.
1751  */
1752 void blk_mq_stop_hw_queues(struct request_queue *q)
1753 {
1754 	struct blk_mq_hw_ctx *hctx;
1755 	int i;
1756 
1757 	queue_for_each_hw_ctx(q, hctx, i)
1758 		blk_mq_stop_hw_queue(hctx);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761 
1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763 {
1764 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765 
1766 	blk_mq_run_hw_queue(hctx, false);
1767 }
1768 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769 
1770 void blk_mq_start_hw_queues(struct request_queue *q)
1771 {
1772 	struct blk_mq_hw_ctx *hctx;
1773 	int i;
1774 
1775 	queue_for_each_hw_ctx(q, hctx, i)
1776 		blk_mq_start_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779 
1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781 {
1782 	if (!blk_mq_hctx_stopped(hctx))
1783 		return;
1784 
1785 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786 	blk_mq_run_hw_queue(hctx, async);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789 
1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 {
1792 	struct blk_mq_hw_ctx *hctx;
1793 	int i;
1794 
1795 	queue_for_each_hw_ctx(q, hctx, i)
1796 		blk_mq_start_stopped_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799 
1800 static void blk_mq_run_work_fn(struct work_struct *work)
1801 {
1802 	struct blk_mq_hw_ctx *hctx;
1803 
1804 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805 
1806 	/*
1807 	 * If we are stopped, don't run the queue.
1808 	 */
1809 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1810 		return;
1811 
1812 	__blk_mq_run_hw_queue(hctx);
1813 }
1814 
1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816 					    struct request *rq,
1817 					    bool at_head)
1818 {
1819 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1820 	enum hctx_type type = hctx->type;
1821 
1822 	lockdep_assert_held(&ctx->lock);
1823 
1824 	trace_block_rq_insert(hctx->queue, rq);
1825 
1826 	if (at_head)
1827 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828 	else
1829 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830 }
1831 
1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833 			     bool at_head)
1834 {
1835 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1836 
1837 	lockdep_assert_held(&ctx->lock);
1838 
1839 	__blk_mq_insert_req_list(hctx, rq, at_head);
1840 	blk_mq_hctx_mark_pending(hctx, ctx);
1841 }
1842 
1843 /**
1844  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845  * @rq: Pointer to request to be inserted.
1846  * @at_head: true if the request should be inserted at the head of the list.
1847  * @run_queue: If we should run the hardware queue after inserting the request.
1848  *
1849  * Should only be used carefully, when the caller knows we want to
1850  * bypass a potential IO scheduler on the target device.
1851  */
1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853 				  bool run_queue)
1854 {
1855 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856 
1857 	spin_lock(&hctx->lock);
1858 	if (at_head)
1859 		list_add(&rq->queuelist, &hctx->dispatch);
1860 	else
1861 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1862 	spin_unlock(&hctx->lock);
1863 
1864 	if (run_queue)
1865 		blk_mq_run_hw_queue(hctx, false);
1866 }
1867 
1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869 			    struct list_head *list)
1870 
1871 {
1872 	struct request *rq;
1873 	enum hctx_type type = hctx->type;
1874 
1875 	/*
1876 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877 	 * offline now
1878 	 */
1879 	list_for_each_entry(rq, list, queuelist) {
1880 		BUG_ON(rq->mq_ctx != ctx);
1881 		trace_block_rq_insert(hctx->queue, rq);
1882 	}
1883 
1884 	spin_lock(&ctx->lock);
1885 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1886 	blk_mq_hctx_mark_pending(hctx, ctx);
1887 	spin_unlock(&ctx->lock);
1888 }
1889 
1890 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1891 {
1892 	struct request *rqa = container_of(a, struct request, queuelist);
1893 	struct request *rqb = container_of(b, struct request, queuelist);
1894 
1895 	if (rqa->mq_ctx != rqb->mq_ctx)
1896 		return rqa->mq_ctx > rqb->mq_ctx;
1897 	if (rqa->mq_hctx != rqb->mq_hctx)
1898 		return rqa->mq_hctx > rqb->mq_hctx;
1899 
1900 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1901 }
1902 
1903 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1904 {
1905 	LIST_HEAD(list);
1906 
1907 	if (list_empty(&plug->mq_list))
1908 		return;
1909 	list_splice_init(&plug->mq_list, &list);
1910 
1911 	if (plug->rq_count > 2 && plug->multiple_queues)
1912 		list_sort(NULL, &list, plug_rq_cmp);
1913 
1914 	plug->rq_count = 0;
1915 
1916 	do {
1917 		struct list_head rq_list;
1918 		struct request *rq, *head_rq = list_entry_rq(list.next);
1919 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1920 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1921 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1922 		unsigned int depth = 1;
1923 
1924 		list_for_each_continue(pos, &list) {
1925 			rq = list_entry_rq(pos);
1926 			BUG_ON(!rq->q);
1927 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1928 				break;
1929 			depth++;
1930 		}
1931 
1932 		list_cut_before(&rq_list, &list, pos);
1933 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1934 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1935 						from_schedule);
1936 	} while(!list_empty(&list));
1937 }
1938 
1939 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1940 		unsigned int nr_segs)
1941 {
1942 	if (bio->bi_opf & REQ_RAHEAD)
1943 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1944 
1945 	rq->__sector = bio->bi_iter.bi_sector;
1946 	rq->write_hint = bio->bi_write_hint;
1947 	blk_rq_bio_prep(rq, bio, nr_segs);
1948 	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1949 
1950 	blk_account_io_start(rq);
1951 }
1952 
1953 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1954 					    struct request *rq,
1955 					    blk_qc_t *cookie, bool last)
1956 {
1957 	struct request_queue *q = rq->q;
1958 	struct blk_mq_queue_data bd = {
1959 		.rq = rq,
1960 		.last = last,
1961 	};
1962 	blk_qc_t new_cookie;
1963 	blk_status_t ret;
1964 
1965 	new_cookie = request_to_qc_t(hctx, rq);
1966 
1967 	/*
1968 	 * For OK queue, we are done. For error, caller may kill it.
1969 	 * Any other error (busy), just add it to our list as we
1970 	 * previously would have done.
1971 	 */
1972 	ret = q->mq_ops->queue_rq(hctx, &bd);
1973 	switch (ret) {
1974 	case BLK_STS_OK:
1975 		blk_mq_update_dispatch_busy(hctx, false);
1976 		*cookie = new_cookie;
1977 		break;
1978 	case BLK_STS_RESOURCE:
1979 	case BLK_STS_DEV_RESOURCE:
1980 		blk_mq_update_dispatch_busy(hctx, true);
1981 		__blk_mq_requeue_request(rq);
1982 		break;
1983 	default:
1984 		blk_mq_update_dispatch_busy(hctx, false);
1985 		*cookie = BLK_QC_T_NONE;
1986 		break;
1987 	}
1988 
1989 	return ret;
1990 }
1991 
1992 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1993 						struct request *rq,
1994 						blk_qc_t *cookie,
1995 						bool bypass_insert, bool last)
1996 {
1997 	struct request_queue *q = rq->q;
1998 	bool run_queue = true;
1999 
2000 	/*
2001 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2002 	 *
2003 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2004 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2005 	 * and avoid driver to try to dispatch again.
2006 	 */
2007 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2008 		run_queue = false;
2009 		bypass_insert = false;
2010 		goto insert;
2011 	}
2012 
2013 	if (q->elevator && !bypass_insert)
2014 		goto insert;
2015 
2016 	if (!blk_mq_get_dispatch_budget(q))
2017 		goto insert;
2018 
2019 	if (!blk_mq_get_driver_tag(rq)) {
2020 		blk_mq_put_dispatch_budget(q);
2021 		goto insert;
2022 	}
2023 
2024 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2025 insert:
2026 	if (bypass_insert)
2027 		return BLK_STS_RESOURCE;
2028 
2029 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2030 
2031 	return BLK_STS_OK;
2032 }
2033 
2034 /**
2035  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2036  * @hctx: Pointer of the associated hardware queue.
2037  * @rq: Pointer to request to be sent.
2038  * @cookie: Request queue cookie.
2039  *
2040  * If the device has enough resources to accept a new request now, send the
2041  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2042  * we can try send it another time in the future. Requests inserted at this
2043  * queue have higher priority.
2044  */
2045 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2046 		struct request *rq, blk_qc_t *cookie)
2047 {
2048 	blk_status_t ret;
2049 	int srcu_idx;
2050 
2051 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2052 
2053 	hctx_lock(hctx, &srcu_idx);
2054 
2055 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2056 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2057 		blk_mq_request_bypass_insert(rq, false, true);
2058 	else if (ret != BLK_STS_OK)
2059 		blk_mq_end_request(rq, ret);
2060 
2061 	hctx_unlock(hctx, srcu_idx);
2062 }
2063 
2064 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2065 {
2066 	blk_status_t ret;
2067 	int srcu_idx;
2068 	blk_qc_t unused_cookie;
2069 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2070 
2071 	hctx_lock(hctx, &srcu_idx);
2072 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2073 	hctx_unlock(hctx, srcu_idx);
2074 
2075 	return ret;
2076 }
2077 
2078 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2079 		struct list_head *list)
2080 {
2081 	int queued = 0;
2082 
2083 	while (!list_empty(list)) {
2084 		blk_status_t ret;
2085 		struct request *rq = list_first_entry(list, struct request,
2086 				queuelist);
2087 
2088 		list_del_init(&rq->queuelist);
2089 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2090 		if (ret != BLK_STS_OK) {
2091 			if (ret == BLK_STS_RESOURCE ||
2092 					ret == BLK_STS_DEV_RESOURCE) {
2093 				blk_mq_request_bypass_insert(rq, false,
2094 							list_empty(list));
2095 				break;
2096 			}
2097 			blk_mq_end_request(rq, ret);
2098 		} else
2099 			queued++;
2100 	}
2101 
2102 	/*
2103 	 * If we didn't flush the entire list, we could have told
2104 	 * the driver there was more coming, but that turned out to
2105 	 * be a lie.
2106 	 */
2107 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
2108 		hctx->queue->mq_ops->commit_rqs(hctx);
2109 }
2110 
2111 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2112 {
2113 	list_add_tail(&rq->queuelist, &plug->mq_list);
2114 	plug->rq_count++;
2115 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2116 		struct request *tmp;
2117 
2118 		tmp = list_first_entry(&plug->mq_list, struct request,
2119 						queuelist);
2120 		if (tmp->q != rq->q)
2121 			plug->multiple_queues = true;
2122 	}
2123 }
2124 
2125 /**
2126  * blk_mq_submit_bio - Create and send a request to block device.
2127  * @bio: Bio pointer.
2128  *
2129  * Builds up a request structure from @q and @bio and send to the device. The
2130  * request may not be queued directly to hardware if:
2131  * * This request can be merged with another one
2132  * * We want to place request at plug queue for possible future merging
2133  * * There is an IO scheduler active at this queue
2134  *
2135  * It will not queue the request if there is an error with the bio, or at the
2136  * request creation.
2137  *
2138  * Returns: Request queue cookie.
2139  */
2140 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2141 {
2142 	struct request_queue *q = bio->bi_disk->queue;
2143 	const int is_sync = op_is_sync(bio->bi_opf);
2144 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2145 	struct blk_mq_alloc_data data = {
2146 		.q		= q,
2147 	};
2148 	struct request *rq;
2149 	struct blk_plug *plug;
2150 	struct request *same_queue_rq = NULL;
2151 	unsigned int nr_segs;
2152 	blk_qc_t cookie;
2153 	blk_status_t ret;
2154 
2155 	blk_queue_bounce(q, &bio);
2156 	__blk_queue_split(&bio, &nr_segs);
2157 
2158 	if (!bio_integrity_prep(bio))
2159 		goto queue_exit;
2160 
2161 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2162 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2163 		goto queue_exit;
2164 
2165 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2166 		goto queue_exit;
2167 
2168 	rq_qos_throttle(q, bio);
2169 
2170 	data.cmd_flags = bio->bi_opf;
2171 	rq = __blk_mq_alloc_request(&data);
2172 	if (unlikely(!rq)) {
2173 		rq_qos_cleanup(q, bio);
2174 		if (bio->bi_opf & REQ_NOWAIT)
2175 			bio_wouldblock_error(bio);
2176 		goto queue_exit;
2177 	}
2178 
2179 	trace_block_getrq(q, bio, bio->bi_opf);
2180 
2181 	rq_qos_track(q, rq, bio);
2182 
2183 	cookie = request_to_qc_t(data.hctx, rq);
2184 
2185 	blk_mq_bio_to_request(rq, bio, nr_segs);
2186 
2187 	ret = blk_crypto_init_request(rq);
2188 	if (ret != BLK_STS_OK) {
2189 		bio->bi_status = ret;
2190 		bio_endio(bio);
2191 		blk_mq_free_request(rq);
2192 		return BLK_QC_T_NONE;
2193 	}
2194 
2195 	plug = blk_mq_plug(q, bio);
2196 	if (unlikely(is_flush_fua)) {
2197 		/* Bypass scheduler for flush requests */
2198 		blk_insert_flush(rq);
2199 		blk_mq_run_hw_queue(data.hctx, true);
2200 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2201 				!blk_queue_nonrot(q))) {
2202 		/*
2203 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2204 		 * we know the driver uses bd->last in a smart fashion.
2205 		 *
2206 		 * Use normal plugging if this disk is slow HDD, as sequential
2207 		 * IO may benefit a lot from plug merging.
2208 		 */
2209 		unsigned int request_count = plug->rq_count;
2210 		struct request *last = NULL;
2211 
2212 		if (!request_count)
2213 			trace_block_plug(q);
2214 		else
2215 			last = list_entry_rq(plug->mq_list.prev);
2216 
2217 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2218 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2219 			blk_flush_plug_list(plug, false);
2220 			trace_block_plug(q);
2221 		}
2222 
2223 		blk_add_rq_to_plug(plug, rq);
2224 	} else if (q->elevator) {
2225 		/* Insert the request at the IO scheduler queue */
2226 		blk_mq_sched_insert_request(rq, false, true, true);
2227 	} else if (plug && !blk_queue_nomerges(q)) {
2228 		/*
2229 		 * We do limited plugging. If the bio can be merged, do that.
2230 		 * Otherwise the existing request in the plug list will be
2231 		 * issued. So the plug list will have one request at most
2232 		 * The plug list might get flushed before this. If that happens,
2233 		 * the plug list is empty, and same_queue_rq is invalid.
2234 		 */
2235 		if (list_empty(&plug->mq_list))
2236 			same_queue_rq = NULL;
2237 		if (same_queue_rq) {
2238 			list_del_init(&same_queue_rq->queuelist);
2239 			plug->rq_count--;
2240 		}
2241 		blk_add_rq_to_plug(plug, rq);
2242 		trace_block_plug(q);
2243 
2244 		if (same_queue_rq) {
2245 			data.hctx = same_queue_rq->mq_hctx;
2246 			trace_block_unplug(q, 1, true);
2247 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2248 					&cookie);
2249 		}
2250 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2251 			!data.hctx->dispatch_busy) {
2252 		/*
2253 		 * There is no scheduler and we can try to send directly
2254 		 * to the hardware.
2255 		 */
2256 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2257 	} else {
2258 		/* Default case. */
2259 		blk_mq_sched_insert_request(rq, false, true, true);
2260 	}
2261 
2262 	return cookie;
2263 queue_exit:
2264 	blk_queue_exit(q);
2265 	return BLK_QC_T_NONE;
2266 }
2267 EXPORT_SYMBOL_GPL(blk_mq_submit_bio); /* only for request based dm */
2268 
2269 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2270 		     unsigned int hctx_idx)
2271 {
2272 	struct page *page;
2273 
2274 	if (tags->rqs && set->ops->exit_request) {
2275 		int i;
2276 
2277 		for (i = 0; i < tags->nr_tags; i++) {
2278 			struct request *rq = tags->static_rqs[i];
2279 
2280 			if (!rq)
2281 				continue;
2282 			set->ops->exit_request(set, rq, hctx_idx);
2283 			tags->static_rqs[i] = NULL;
2284 		}
2285 	}
2286 
2287 	while (!list_empty(&tags->page_list)) {
2288 		page = list_first_entry(&tags->page_list, struct page, lru);
2289 		list_del_init(&page->lru);
2290 		/*
2291 		 * Remove kmemleak object previously allocated in
2292 		 * blk_mq_alloc_rqs().
2293 		 */
2294 		kmemleak_free(page_address(page));
2295 		__free_pages(page, page->private);
2296 	}
2297 }
2298 
2299 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2300 {
2301 	kfree(tags->rqs);
2302 	tags->rqs = NULL;
2303 	kfree(tags->static_rqs);
2304 	tags->static_rqs = NULL;
2305 
2306 	blk_mq_free_tags(tags);
2307 }
2308 
2309 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2310 					unsigned int hctx_idx,
2311 					unsigned int nr_tags,
2312 					unsigned int reserved_tags)
2313 {
2314 	struct blk_mq_tags *tags;
2315 	int node;
2316 
2317 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2318 	if (node == NUMA_NO_NODE)
2319 		node = set->numa_node;
2320 
2321 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2322 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2323 	if (!tags)
2324 		return NULL;
2325 
2326 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2327 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2328 				 node);
2329 	if (!tags->rqs) {
2330 		blk_mq_free_tags(tags);
2331 		return NULL;
2332 	}
2333 
2334 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2335 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2336 					node);
2337 	if (!tags->static_rqs) {
2338 		kfree(tags->rqs);
2339 		blk_mq_free_tags(tags);
2340 		return NULL;
2341 	}
2342 
2343 	return tags;
2344 }
2345 
2346 static size_t order_to_size(unsigned int order)
2347 {
2348 	return (size_t)PAGE_SIZE << order;
2349 }
2350 
2351 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2352 			       unsigned int hctx_idx, int node)
2353 {
2354 	int ret;
2355 
2356 	if (set->ops->init_request) {
2357 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2358 		if (ret)
2359 			return ret;
2360 	}
2361 
2362 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2363 	return 0;
2364 }
2365 
2366 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2367 		     unsigned int hctx_idx, unsigned int depth)
2368 {
2369 	unsigned int i, j, entries_per_page, max_order = 4;
2370 	size_t rq_size, left;
2371 	int node;
2372 
2373 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2374 	if (node == NUMA_NO_NODE)
2375 		node = set->numa_node;
2376 
2377 	INIT_LIST_HEAD(&tags->page_list);
2378 
2379 	/*
2380 	 * rq_size is the size of the request plus driver payload, rounded
2381 	 * to the cacheline size
2382 	 */
2383 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2384 				cache_line_size());
2385 	left = rq_size * depth;
2386 
2387 	for (i = 0; i < depth; ) {
2388 		int this_order = max_order;
2389 		struct page *page;
2390 		int to_do;
2391 		void *p;
2392 
2393 		while (this_order && left < order_to_size(this_order - 1))
2394 			this_order--;
2395 
2396 		do {
2397 			page = alloc_pages_node(node,
2398 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2399 				this_order);
2400 			if (page)
2401 				break;
2402 			if (!this_order--)
2403 				break;
2404 			if (order_to_size(this_order) < rq_size)
2405 				break;
2406 		} while (1);
2407 
2408 		if (!page)
2409 			goto fail;
2410 
2411 		page->private = this_order;
2412 		list_add_tail(&page->lru, &tags->page_list);
2413 
2414 		p = page_address(page);
2415 		/*
2416 		 * Allow kmemleak to scan these pages as they contain pointers
2417 		 * to additional allocations like via ops->init_request().
2418 		 */
2419 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2420 		entries_per_page = order_to_size(this_order) / rq_size;
2421 		to_do = min(entries_per_page, depth - i);
2422 		left -= to_do * rq_size;
2423 		for (j = 0; j < to_do; j++) {
2424 			struct request *rq = p;
2425 
2426 			tags->static_rqs[i] = rq;
2427 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2428 				tags->static_rqs[i] = NULL;
2429 				goto fail;
2430 			}
2431 
2432 			p += rq_size;
2433 			i++;
2434 		}
2435 	}
2436 	return 0;
2437 
2438 fail:
2439 	blk_mq_free_rqs(set, tags, hctx_idx);
2440 	return -ENOMEM;
2441 }
2442 
2443 struct rq_iter_data {
2444 	struct blk_mq_hw_ctx *hctx;
2445 	bool has_rq;
2446 };
2447 
2448 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2449 {
2450 	struct rq_iter_data *iter_data = data;
2451 
2452 	if (rq->mq_hctx != iter_data->hctx)
2453 		return true;
2454 	iter_data->has_rq = true;
2455 	return false;
2456 }
2457 
2458 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2459 {
2460 	struct blk_mq_tags *tags = hctx->sched_tags ?
2461 			hctx->sched_tags : hctx->tags;
2462 	struct rq_iter_data data = {
2463 		.hctx	= hctx,
2464 	};
2465 
2466 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2467 	return data.has_rq;
2468 }
2469 
2470 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2471 		struct blk_mq_hw_ctx *hctx)
2472 {
2473 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2474 		return false;
2475 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2476 		return false;
2477 	return true;
2478 }
2479 
2480 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2481 {
2482 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2483 			struct blk_mq_hw_ctx, cpuhp_online);
2484 
2485 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2486 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2487 		return 0;
2488 
2489 	/*
2490 	 * Prevent new request from being allocated on the current hctx.
2491 	 *
2492 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2493 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2494 	 * seen once we return from the tag allocator.
2495 	 */
2496 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2497 	smp_mb__after_atomic();
2498 
2499 	/*
2500 	 * Try to grab a reference to the queue and wait for any outstanding
2501 	 * requests.  If we could not grab a reference the queue has been
2502 	 * frozen and there are no requests.
2503 	 */
2504 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2505 		while (blk_mq_hctx_has_requests(hctx))
2506 			msleep(5);
2507 		percpu_ref_put(&hctx->queue->q_usage_counter);
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2514 {
2515 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2516 			struct blk_mq_hw_ctx, cpuhp_online);
2517 
2518 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2519 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2520 	return 0;
2521 }
2522 
2523 /*
2524  * 'cpu' is going away. splice any existing rq_list entries from this
2525  * software queue to the hw queue dispatch list, and ensure that it
2526  * gets run.
2527  */
2528 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2529 {
2530 	struct blk_mq_hw_ctx *hctx;
2531 	struct blk_mq_ctx *ctx;
2532 	LIST_HEAD(tmp);
2533 	enum hctx_type type;
2534 
2535 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2536 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2537 		return 0;
2538 
2539 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2540 	type = hctx->type;
2541 
2542 	spin_lock(&ctx->lock);
2543 	if (!list_empty(&ctx->rq_lists[type])) {
2544 		list_splice_init(&ctx->rq_lists[type], &tmp);
2545 		blk_mq_hctx_clear_pending(hctx, ctx);
2546 	}
2547 	spin_unlock(&ctx->lock);
2548 
2549 	if (list_empty(&tmp))
2550 		return 0;
2551 
2552 	spin_lock(&hctx->lock);
2553 	list_splice_tail_init(&tmp, &hctx->dispatch);
2554 	spin_unlock(&hctx->lock);
2555 
2556 	blk_mq_run_hw_queue(hctx, true);
2557 	return 0;
2558 }
2559 
2560 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2561 {
2562 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2563 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2564 						    &hctx->cpuhp_online);
2565 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2566 					    &hctx->cpuhp_dead);
2567 }
2568 
2569 /* hctx->ctxs will be freed in queue's release handler */
2570 static void blk_mq_exit_hctx(struct request_queue *q,
2571 		struct blk_mq_tag_set *set,
2572 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2573 {
2574 	if (blk_mq_hw_queue_mapped(hctx))
2575 		blk_mq_tag_idle(hctx);
2576 
2577 	if (set->ops->exit_request)
2578 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2579 
2580 	if (set->ops->exit_hctx)
2581 		set->ops->exit_hctx(hctx, hctx_idx);
2582 
2583 	blk_mq_remove_cpuhp(hctx);
2584 
2585 	spin_lock(&q->unused_hctx_lock);
2586 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2587 	spin_unlock(&q->unused_hctx_lock);
2588 }
2589 
2590 static void blk_mq_exit_hw_queues(struct request_queue *q,
2591 		struct blk_mq_tag_set *set, int nr_queue)
2592 {
2593 	struct blk_mq_hw_ctx *hctx;
2594 	unsigned int i;
2595 
2596 	queue_for_each_hw_ctx(q, hctx, i) {
2597 		if (i == nr_queue)
2598 			break;
2599 		blk_mq_debugfs_unregister_hctx(hctx);
2600 		blk_mq_exit_hctx(q, set, hctx, i);
2601 	}
2602 }
2603 
2604 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2605 {
2606 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2607 
2608 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2609 			   __alignof__(struct blk_mq_hw_ctx)) !=
2610 		     sizeof(struct blk_mq_hw_ctx));
2611 
2612 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2613 		hw_ctx_size += sizeof(struct srcu_struct);
2614 
2615 	return hw_ctx_size;
2616 }
2617 
2618 static int blk_mq_init_hctx(struct request_queue *q,
2619 		struct blk_mq_tag_set *set,
2620 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2621 {
2622 	hctx->queue_num = hctx_idx;
2623 
2624 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2625 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2626 				&hctx->cpuhp_online);
2627 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2628 
2629 	hctx->tags = set->tags[hctx_idx];
2630 
2631 	if (set->ops->init_hctx &&
2632 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2633 		goto unregister_cpu_notifier;
2634 
2635 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2636 				hctx->numa_node))
2637 		goto exit_hctx;
2638 	return 0;
2639 
2640  exit_hctx:
2641 	if (set->ops->exit_hctx)
2642 		set->ops->exit_hctx(hctx, hctx_idx);
2643  unregister_cpu_notifier:
2644 	blk_mq_remove_cpuhp(hctx);
2645 	return -1;
2646 }
2647 
2648 static struct blk_mq_hw_ctx *
2649 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2650 		int node)
2651 {
2652 	struct blk_mq_hw_ctx *hctx;
2653 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2654 
2655 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2656 	if (!hctx)
2657 		goto fail_alloc_hctx;
2658 
2659 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2660 		goto free_hctx;
2661 
2662 	atomic_set(&hctx->nr_active, 0);
2663 	if (node == NUMA_NO_NODE)
2664 		node = set->numa_node;
2665 	hctx->numa_node = node;
2666 
2667 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2668 	spin_lock_init(&hctx->lock);
2669 	INIT_LIST_HEAD(&hctx->dispatch);
2670 	hctx->queue = q;
2671 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2672 
2673 	INIT_LIST_HEAD(&hctx->hctx_list);
2674 
2675 	/*
2676 	 * Allocate space for all possible cpus to avoid allocation at
2677 	 * runtime
2678 	 */
2679 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2680 			gfp, node);
2681 	if (!hctx->ctxs)
2682 		goto free_cpumask;
2683 
2684 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2685 				gfp, node))
2686 		goto free_ctxs;
2687 	hctx->nr_ctx = 0;
2688 
2689 	spin_lock_init(&hctx->dispatch_wait_lock);
2690 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2691 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2692 
2693 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2694 	if (!hctx->fq)
2695 		goto free_bitmap;
2696 
2697 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2698 		init_srcu_struct(hctx->srcu);
2699 	blk_mq_hctx_kobj_init(hctx);
2700 
2701 	return hctx;
2702 
2703  free_bitmap:
2704 	sbitmap_free(&hctx->ctx_map);
2705  free_ctxs:
2706 	kfree(hctx->ctxs);
2707  free_cpumask:
2708 	free_cpumask_var(hctx->cpumask);
2709  free_hctx:
2710 	kfree(hctx);
2711  fail_alloc_hctx:
2712 	return NULL;
2713 }
2714 
2715 static void blk_mq_init_cpu_queues(struct request_queue *q,
2716 				   unsigned int nr_hw_queues)
2717 {
2718 	struct blk_mq_tag_set *set = q->tag_set;
2719 	unsigned int i, j;
2720 
2721 	for_each_possible_cpu(i) {
2722 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2723 		struct blk_mq_hw_ctx *hctx;
2724 		int k;
2725 
2726 		__ctx->cpu = i;
2727 		spin_lock_init(&__ctx->lock);
2728 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2729 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2730 
2731 		__ctx->queue = q;
2732 
2733 		/*
2734 		 * Set local node, IFF we have more than one hw queue. If
2735 		 * not, we remain on the home node of the device
2736 		 */
2737 		for (j = 0; j < set->nr_maps; j++) {
2738 			hctx = blk_mq_map_queue_type(q, j, i);
2739 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2740 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2741 		}
2742 	}
2743 }
2744 
2745 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2746 					int hctx_idx)
2747 {
2748 	int ret = 0;
2749 
2750 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2751 					set->queue_depth, set->reserved_tags);
2752 	if (!set->tags[hctx_idx])
2753 		return false;
2754 
2755 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2756 				set->queue_depth);
2757 	if (!ret)
2758 		return true;
2759 
2760 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2761 	set->tags[hctx_idx] = NULL;
2762 	return false;
2763 }
2764 
2765 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2766 					 unsigned int hctx_idx)
2767 {
2768 	if (set->tags && set->tags[hctx_idx]) {
2769 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2770 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2771 		set->tags[hctx_idx] = NULL;
2772 	}
2773 }
2774 
2775 static void blk_mq_map_swqueue(struct request_queue *q)
2776 {
2777 	unsigned int i, j, hctx_idx;
2778 	struct blk_mq_hw_ctx *hctx;
2779 	struct blk_mq_ctx *ctx;
2780 	struct blk_mq_tag_set *set = q->tag_set;
2781 
2782 	queue_for_each_hw_ctx(q, hctx, i) {
2783 		cpumask_clear(hctx->cpumask);
2784 		hctx->nr_ctx = 0;
2785 		hctx->dispatch_from = NULL;
2786 	}
2787 
2788 	/*
2789 	 * Map software to hardware queues.
2790 	 *
2791 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2792 	 */
2793 	for_each_possible_cpu(i) {
2794 
2795 		ctx = per_cpu_ptr(q->queue_ctx, i);
2796 		for (j = 0; j < set->nr_maps; j++) {
2797 			if (!set->map[j].nr_queues) {
2798 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2799 						HCTX_TYPE_DEFAULT, i);
2800 				continue;
2801 			}
2802 			hctx_idx = set->map[j].mq_map[i];
2803 			/* unmapped hw queue can be remapped after CPU topo changed */
2804 			if (!set->tags[hctx_idx] &&
2805 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2806 				/*
2807 				 * If tags initialization fail for some hctx,
2808 				 * that hctx won't be brought online.  In this
2809 				 * case, remap the current ctx to hctx[0] which
2810 				 * is guaranteed to always have tags allocated
2811 				 */
2812 				set->map[j].mq_map[i] = 0;
2813 			}
2814 
2815 			hctx = blk_mq_map_queue_type(q, j, i);
2816 			ctx->hctxs[j] = hctx;
2817 			/*
2818 			 * If the CPU is already set in the mask, then we've
2819 			 * mapped this one already. This can happen if
2820 			 * devices share queues across queue maps.
2821 			 */
2822 			if (cpumask_test_cpu(i, hctx->cpumask))
2823 				continue;
2824 
2825 			cpumask_set_cpu(i, hctx->cpumask);
2826 			hctx->type = j;
2827 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2828 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2829 
2830 			/*
2831 			 * If the nr_ctx type overflows, we have exceeded the
2832 			 * amount of sw queues we can support.
2833 			 */
2834 			BUG_ON(!hctx->nr_ctx);
2835 		}
2836 
2837 		for (; j < HCTX_MAX_TYPES; j++)
2838 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2839 					HCTX_TYPE_DEFAULT, i);
2840 	}
2841 
2842 	queue_for_each_hw_ctx(q, hctx, i) {
2843 		/*
2844 		 * If no software queues are mapped to this hardware queue,
2845 		 * disable it and free the request entries.
2846 		 */
2847 		if (!hctx->nr_ctx) {
2848 			/* Never unmap queue 0.  We need it as a
2849 			 * fallback in case of a new remap fails
2850 			 * allocation
2851 			 */
2852 			if (i && set->tags[i])
2853 				blk_mq_free_map_and_requests(set, i);
2854 
2855 			hctx->tags = NULL;
2856 			continue;
2857 		}
2858 
2859 		hctx->tags = set->tags[i];
2860 		WARN_ON(!hctx->tags);
2861 
2862 		/*
2863 		 * Set the map size to the number of mapped software queues.
2864 		 * This is more accurate and more efficient than looping
2865 		 * over all possibly mapped software queues.
2866 		 */
2867 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2868 
2869 		/*
2870 		 * Initialize batch roundrobin counts
2871 		 */
2872 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2873 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2874 	}
2875 }
2876 
2877 /*
2878  * Caller needs to ensure that we're either frozen/quiesced, or that
2879  * the queue isn't live yet.
2880  */
2881 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2882 {
2883 	struct blk_mq_hw_ctx *hctx;
2884 	int i;
2885 
2886 	queue_for_each_hw_ctx(q, hctx, i) {
2887 		if (shared)
2888 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2889 		else
2890 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2891 	}
2892 }
2893 
2894 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2895 					bool shared)
2896 {
2897 	struct request_queue *q;
2898 
2899 	lockdep_assert_held(&set->tag_list_lock);
2900 
2901 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2902 		blk_mq_freeze_queue(q);
2903 		queue_set_hctx_shared(q, shared);
2904 		blk_mq_unfreeze_queue(q);
2905 	}
2906 }
2907 
2908 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2909 {
2910 	struct blk_mq_tag_set *set = q->tag_set;
2911 
2912 	mutex_lock(&set->tag_list_lock);
2913 	list_del(&q->tag_set_list);
2914 	if (list_is_singular(&set->tag_list)) {
2915 		/* just transitioned to unshared */
2916 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2917 		/* update existing queue */
2918 		blk_mq_update_tag_set_depth(set, false);
2919 	}
2920 	mutex_unlock(&set->tag_list_lock);
2921 	INIT_LIST_HEAD(&q->tag_set_list);
2922 }
2923 
2924 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2925 				     struct request_queue *q)
2926 {
2927 	mutex_lock(&set->tag_list_lock);
2928 
2929 	/*
2930 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2931 	 */
2932 	if (!list_empty(&set->tag_list) &&
2933 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2934 		set->flags |= BLK_MQ_F_TAG_SHARED;
2935 		/* update existing queue */
2936 		blk_mq_update_tag_set_depth(set, true);
2937 	}
2938 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2939 		queue_set_hctx_shared(q, true);
2940 	list_add_tail(&q->tag_set_list, &set->tag_list);
2941 
2942 	mutex_unlock(&set->tag_list_lock);
2943 }
2944 
2945 /* All allocations will be freed in release handler of q->mq_kobj */
2946 static int blk_mq_alloc_ctxs(struct request_queue *q)
2947 {
2948 	struct blk_mq_ctxs *ctxs;
2949 	int cpu;
2950 
2951 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2952 	if (!ctxs)
2953 		return -ENOMEM;
2954 
2955 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2956 	if (!ctxs->queue_ctx)
2957 		goto fail;
2958 
2959 	for_each_possible_cpu(cpu) {
2960 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2961 		ctx->ctxs = ctxs;
2962 	}
2963 
2964 	q->mq_kobj = &ctxs->kobj;
2965 	q->queue_ctx = ctxs->queue_ctx;
2966 
2967 	return 0;
2968  fail:
2969 	kfree(ctxs);
2970 	return -ENOMEM;
2971 }
2972 
2973 /*
2974  * It is the actual release handler for mq, but we do it from
2975  * request queue's release handler for avoiding use-after-free
2976  * and headache because q->mq_kobj shouldn't have been introduced,
2977  * but we can't group ctx/kctx kobj without it.
2978  */
2979 void blk_mq_release(struct request_queue *q)
2980 {
2981 	struct blk_mq_hw_ctx *hctx, *next;
2982 	int i;
2983 
2984 	queue_for_each_hw_ctx(q, hctx, i)
2985 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2986 
2987 	/* all hctx are in .unused_hctx_list now */
2988 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2989 		list_del_init(&hctx->hctx_list);
2990 		kobject_put(&hctx->kobj);
2991 	}
2992 
2993 	kfree(q->queue_hw_ctx);
2994 
2995 	/*
2996 	 * release .mq_kobj and sw queue's kobject now because
2997 	 * both share lifetime with request queue.
2998 	 */
2999 	blk_mq_sysfs_deinit(q);
3000 }
3001 
3002 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3003 		void *queuedata)
3004 {
3005 	struct request_queue *uninit_q, *q;
3006 
3007 	uninit_q = blk_alloc_queue(set->numa_node);
3008 	if (!uninit_q)
3009 		return ERR_PTR(-ENOMEM);
3010 	uninit_q->queuedata = queuedata;
3011 
3012 	/*
3013 	 * Initialize the queue without an elevator. device_add_disk() will do
3014 	 * the initialization.
3015 	 */
3016 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3017 	if (IS_ERR(q))
3018 		blk_cleanup_queue(uninit_q);
3019 
3020 	return q;
3021 }
3022 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3023 
3024 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3025 {
3026 	return blk_mq_init_queue_data(set, NULL);
3027 }
3028 EXPORT_SYMBOL(blk_mq_init_queue);
3029 
3030 /*
3031  * Helper for setting up a queue with mq ops, given queue depth, and
3032  * the passed in mq ops flags.
3033  */
3034 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3035 					   const struct blk_mq_ops *ops,
3036 					   unsigned int queue_depth,
3037 					   unsigned int set_flags)
3038 {
3039 	struct request_queue *q;
3040 	int ret;
3041 
3042 	memset(set, 0, sizeof(*set));
3043 	set->ops = ops;
3044 	set->nr_hw_queues = 1;
3045 	set->nr_maps = 1;
3046 	set->queue_depth = queue_depth;
3047 	set->numa_node = NUMA_NO_NODE;
3048 	set->flags = set_flags;
3049 
3050 	ret = blk_mq_alloc_tag_set(set);
3051 	if (ret)
3052 		return ERR_PTR(ret);
3053 
3054 	q = blk_mq_init_queue(set);
3055 	if (IS_ERR(q)) {
3056 		blk_mq_free_tag_set(set);
3057 		return q;
3058 	}
3059 
3060 	return q;
3061 }
3062 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3063 
3064 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3065 		struct blk_mq_tag_set *set, struct request_queue *q,
3066 		int hctx_idx, int node)
3067 {
3068 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3069 
3070 	/* reuse dead hctx first */
3071 	spin_lock(&q->unused_hctx_lock);
3072 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3073 		if (tmp->numa_node == node) {
3074 			hctx = tmp;
3075 			break;
3076 		}
3077 	}
3078 	if (hctx)
3079 		list_del_init(&hctx->hctx_list);
3080 	spin_unlock(&q->unused_hctx_lock);
3081 
3082 	if (!hctx)
3083 		hctx = blk_mq_alloc_hctx(q, set, node);
3084 	if (!hctx)
3085 		goto fail;
3086 
3087 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3088 		goto free_hctx;
3089 
3090 	return hctx;
3091 
3092  free_hctx:
3093 	kobject_put(&hctx->kobj);
3094  fail:
3095 	return NULL;
3096 }
3097 
3098 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3099 						struct request_queue *q)
3100 {
3101 	int i, j, end;
3102 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3103 
3104 	if (q->nr_hw_queues < set->nr_hw_queues) {
3105 		struct blk_mq_hw_ctx **new_hctxs;
3106 
3107 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3108 				       sizeof(*new_hctxs), GFP_KERNEL,
3109 				       set->numa_node);
3110 		if (!new_hctxs)
3111 			return;
3112 		if (hctxs)
3113 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3114 			       sizeof(*hctxs));
3115 		q->queue_hw_ctx = new_hctxs;
3116 		kfree(hctxs);
3117 		hctxs = new_hctxs;
3118 	}
3119 
3120 	/* protect against switching io scheduler  */
3121 	mutex_lock(&q->sysfs_lock);
3122 	for (i = 0; i < set->nr_hw_queues; i++) {
3123 		int node;
3124 		struct blk_mq_hw_ctx *hctx;
3125 
3126 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3127 		/*
3128 		 * If the hw queue has been mapped to another numa node,
3129 		 * we need to realloc the hctx. If allocation fails, fallback
3130 		 * to use the previous one.
3131 		 */
3132 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3133 			continue;
3134 
3135 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3136 		if (hctx) {
3137 			if (hctxs[i])
3138 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3139 			hctxs[i] = hctx;
3140 		} else {
3141 			if (hctxs[i])
3142 				pr_warn("Allocate new hctx on node %d fails,\
3143 						fallback to previous one on node %d\n",
3144 						node, hctxs[i]->numa_node);
3145 			else
3146 				break;
3147 		}
3148 	}
3149 	/*
3150 	 * Increasing nr_hw_queues fails. Free the newly allocated
3151 	 * hctxs and keep the previous q->nr_hw_queues.
3152 	 */
3153 	if (i != set->nr_hw_queues) {
3154 		j = q->nr_hw_queues;
3155 		end = i;
3156 	} else {
3157 		j = i;
3158 		end = q->nr_hw_queues;
3159 		q->nr_hw_queues = set->nr_hw_queues;
3160 	}
3161 
3162 	for (; j < end; j++) {
3163 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3164 
3165 		if (hctx) {
3166 			if (hctx->tags)
3167 				blk_mq_free_map_and_requests(set, j);
3168 			blk_mq_exit_hctx(q, set, hctx, j);
3169 			hctxs[j] = NULL;
3170 		}
3171 	}
3172 	mutex_unlock(&q->sysfs_lock);
3173 }
3174 
3175 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3176 						  struct request_queue *q,
3177 						  bool elevator_init)
3178 {
3179 	/* mark the queue as mq asap */
3180 	q->mq_ops = set->ops;
3181 
3182 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3183 					     blk_mq_poll_stats_bkt,
3184 					     BLK_MQ_POLL_STATS_BKTS, q);
3185 	if (!q->poll_cb)
3186 		goto err_exit;
3187 
3188 	if (blk_mq_alloc_ctxs(q))
3189 		goto err_poll;
3190 
3191 	/* init q->mq_kobj and sw queues' kobjects */
3192 	blk_mq_sysfs_init(q);
3193 
3194 	INIT_LIST_HEAD(&q->unused_hctx_list);
3195 	spin_lock_init(&q->unused_hctx_lock);
3196 
3197 	blk_mq_realloc_hw_ctxs(set, q);
3198 	if (!q->nr_hw_queues)
3199 		goto err_hctxs;
3200 
3201 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3202 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3203 
3204 	q->tag_set = set;
3205 
3206 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3207 	if (set->nr_maps > HCTX_TYPE_POLL &&
3208 	    set->map[HCTX_TYPE_POLL].nr_queues)
3209 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3210 
3211 	q->sg_reserved_size = INT_MAX;
3212 
3213 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3214 	INIT_LIST_HEAD(&q->requeue_list);
3215 	spin_lock_init(&q->requeue_lock);
3216 
3217 	q->nr_requests = set->queue_depth;
3218 
3219 	/*
3220 	 * Default to classic polling
3221 	 */
3222 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3223 
3224 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3225 	blk_mq_add_queue_tag_set(set, q);
3226 	blk_mq_map_swqueue(q);
3227 
3228 	if (elevator_init)
3229 		elevator_init_mq(q);
3230 
3231 	return q;
3232 
3233 err_hctxs:
3234 	kfree(q->queue_hw_ctx);
3235 	q->nr_hw_queues = 0;
3236 	blk_mq_sysfs_deinit(q);
3237 err_poll:
3238 	blk_stat_free_callback(q->poll_cb);
3239 	q->poll_cb = NULL;
3240 err_exit:
3241 	q->mq_ops = NULL;
3242 	return ERR_PTR(-ENOMEM);
3243 }
3244 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3245 
3246 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3247 void blk_mq_exit_queue(struct request_queue *q)
3248 {
3249 	struct blk_mq_tag_set	*set = q->tag_set;
3250 
3251 	blk_mq_del_queue_tag_set(q);
3252 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3253 }
3254 
3255 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3256 {
3257 	int i;
3258 
3259 	for (i = 0; i < set->nr_hw_queues; i++)
3260 		if (!__blk_mq_alloc_map_and_request(set, i))
3261 			goto out_unwind;
3262 
3263 	return 0;
3264 
3265 out_unwind:
3266 	while (--i >= 0)
3267 		blk_mq_free_map_and_requests(set, i);
3268 
3269 	return -ENOMEM;
3270 }
3271 
3272 /*
3273  * Allocate the request maps associated with this tag_set. Note that this
3274  * may reduce the depth asked for, if memory is tight. set->queue_depth
3275  * will be updated to reflect the allocated depth.
3276  */
3277 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3278 {
3279 	unsigned int depth;
3280 	int err;
3281 
3282 	depth = set->queue_depth;
3283 	do {
3284 		err = __blk_mq_alloc_rq_maps(set);
3285 		if (!err)
3286 			break;
3287 
3288 		set->queue_depth >>= 1;
3289 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3290 			err = -ENOMEM;
3291 			break;
3292 		}
3293 	} while (set->queue_depth);
3294 
3295 	if (!set->queue_depth || err) {
3296 		pr_err("blk-mq: failed to allocate request map\n");
3297 		return -ENOMEM;
3298 	}
3299 
3300 	if (depth != set->queue_depth)
3301 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3302 						depth, set->queue_depth);
3303 
3304 	return 0;
3305 }
3306 
3307 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3308 {
3309 	/*
3310 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3311 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3312 	 * number of hardware queues.
3313 	 */
3314 	if (set->nr_maps == 1)
3315 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3316 
3317 	if (set->ops->map_queues && !is_kdump_kernel()) {
3318 		int i;
3319 
3320 		/*
3321 		 * transport .map_queues is usually done in the following
3322 		 * way:
3323 		 *
3324 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3325 		 * 	mask = get_cpu_mask(queue)
3326 		 * 	for_each_cpu(cpu, mask)
3327 		 * 		set->map[x].mq_map[cpu] = queue;
3328 		 * }
3329 		 *
3330 		 * When we need to remap, the table has to be cleared for
3331 		 * killing stale mapping since one CPU may not be mapped
3332 		 * to any hw queue.
3333 		 */
3334 		for (i = 0; i < set->nr_maps; i++)
3335 			blk_mq_clear_mq_map(&set->map[i]);
3336 
3337 		return set->ops->map_queues(set);
3338 	} else {
3339 		BUG_ON(set->nr_maps > 1);
3340 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3341 	}
3342 }
3343 
3344 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3345 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3346 {
3347 	struct blk_mq_tags **new_tags;
3348 
3349 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3350 		return 0;
3351 
3352 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3353 				GFP_KERNEL, set->numa_node);
3354 	if (!new_tags)
3355 		return -ENOMEM;
3356 
3357 	if (set->tags)
3358 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3359 		       sizeof(*set->tags));
3360 	kfree(set->tags);
3361 	set->tags = new_tags;
3362 	set->nr_hw_queues = new_nr_hw_queues;
3363 
3364 	return 0;
3365 }
3366 
3367 /*
3368  * Alloc a tag set to be associated with one or more request queues.
3369  * May fail with EINVAL for various error conditions. May adjust the
3370  * requested depth down, if it's too large. In that case, the set
3371  * value will be stored in set->queue_depth.
3372  */
3373 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3374 {
3375 	int i, ret;
3376 
3377 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3378 
3379 	if (!set->nr_hw_queues)
3380 		return -EINVAL;
3381 	if (!set->queue_depth)
3382 		return -EINVAL;
3383 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3384 		return -EINVAL;
3385 
3386 	if (!set->ops->queue_rq)
3387 		return -EINVAL;
3388 
3389 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3390 		return -EINVAL;
3391 
3392 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3393 		pr_info("blk-mq: reduced tag depth to %u\n",
3394 			BLK_MQ_MAX_DEPTH);
3395 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3396 	}
3397 
3398 	if (!set->nr_maps)
3399 		set->nr_maps = 1;
3400 	else if (set->nr_maps > HCTX_MAX_TYPES)
3401 		return -EINVAL;
3402 
3403 	/*
3404 	 * If a crashdump is active, then we are potentially in a very
3405 	 * memory constrained environment. Limit us to 1 queue and
3406 	 * 64 tags to prevent using too much memory.
3407 	 */
3408 	if (is_kdump_kernel()) {
3409 		set->nr_hw_queues = 1;
3410 		set->nr_maps = 1;
3411 		set->queue_depth = min(64U, set->queue_depth);
3412 	}
3413 	/*
3414 	 * There is no use for more h/w queues than cpus if we just have
3415 	 * a single map
3416 	 */
3417 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3418 		set->nr_hw_queues = nr_cpu_ids;
3419 
3420 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3421 		return -ENOMEM;
3422 
3423 	ret = -ENOMEM;
3424 	for (i = 0; i < set->nr_maps; i++) {
3425 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3426 						  sizeof(set->map[i].mq_map[0]),
3427 						  GFP_KERNEL, set->numa_node);
3428 		if (!set->map[i].mq_map)
3429 			goto out_free_mq_map;
3430 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3431 	}
3432 
3433 	ret = blk_mq_update_queue_map(set);
3434 	if (ret)
3435 		goto out_free_mq_map;
3436 
3437 	ret = blk_mq_alloc_map_and_requests(set);
3438 	if (ret)
3439 		goto out_free_mq_map;
3440 
3441 	mutex_init(&set->tag_list_lock);
3442 	INIT_LIST_HEAD(&set->tag_list);
3443 
3444 	return 0;
3445 
3446 out_free_mq_map:
3447 	for (i = 0; i < set->nr_maps; i++) {
3448 		kfree(set->map[i].mq_map);
3449 		set->map[i].mq_map = NULL;
3450 	}
3451 	kfree(set->tags);
3452 	set->tags = NULL;
3453 	return ret;
3454 }
3455 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3456 
3457 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3458 {
3459 	int i, j;
3460 
3461 	for (i = 0; i < set->nr_hw_queues; i++)
3462 		blk_mq_free_map_and_requests(set, i);
3463 
3464 	for (j = 0; j < set->nr_maps; j++) {
3465 		kfree(set->map[j].mq_map);
3466 		set->map[j].mq_map = NULL;
3467 	}
3468 
3469 	kfree(set->tags);
3470 	set->tags = NULL;
3471 }
3472 EXPORT_SYMBOL(blk_mq_free_tag_set);
3473 
3474 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3475 {
3476 	struct blk_mq_tag_set *set = q->tag_set;
3477 	struct blk_mq_hw_ctx *hctx;
3478 	int i, ret;
3479 
3480 	if (!set)
3481 		return -EINVAL;
3482 
3483 	if (q->nr_requests == nr)
3484 		return 0;
3485 
3486 	blk_mq_freeze_queue(q);
3487 	blk_mq_quiesce_queue(q);
3488 
3489 	ret = 0;
3490 	queue_for_each_hw_ctx(q, hctx, i) {
3491 		if (!hctx->tags)
3492 			continue;
3493 		/*
3494 		 * If we're using an MQ scheduler, just update the scheduler
3495 		 * queue depth. This is similar to what the old code would do.
3496 		 */
3497 		if (!hctx->sched_tags) {
3498 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3499 							false);
3500 		} else {
3501 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3502 							nr, true);
3503 		}
3504 		if (ret)
3505 			break;
3506 		if (q->elevator && q->elevator->type->ops.depth_updated)
3507 			q->elevator->type->ops.depth_updated(hctx);
3508 	}
3509 
3510 	if (!ret)
3511 		q->nr_requests = nr;
3512 
3513 	blk_mq_unquiesce_queue(q);
3514 	blk_mq_unfreeze_queue(q);
3515 
3516 	return ret;
3517 }
3518 
3519 /*
3520  * request_queue and elevator_type pair.
3521  * It is just used by __blk_mq_update_nr_hw_queues to cache
3522  * the elevator_type associated with a request_queue.
3523  */
3524 struct blk_mq_qe_pair {
3525 	struct list_head node;
3526 	struct request_queue *q;
3527 	struct elevator_type *type;
3528 };
3529 
3530 /*
3531  * Cache the elevator_type in qe pair list and switch the
3532  * io scheduler to 'none'
3533  */
3534 static bool blk_mq_elv_switch_none(struct list_head *head,
3535 		struct request_queue *q)
3536 {
3537 	struct blk_mq_qe_pair *qe;
3538 
3539 	if (!q->elevator)
3540 		return true;
3541 
3542 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3543 	if (!qe)
3544 		return false;
3545 
3546 	INIT_LIST_HEAD(&qe->node);
3547 	qe->q = q;
3548 	qe->type = q->elevator->type;
3549 	list_add(&qe->node, head);
3550 
3551 	mutex_lock(&q->sysfs_lock);
3552 	/*
3553 	 * After elevator_switch_mq, the previous elevator_queue will be
3554 	 * released by elevator_release. The reference of the io scheduler
3555 	 * module get by elevator_get will also be put. So we need to get
3556 	 * a reference of the io scheduler module here to prevent it to be
3557 	 * removed.
3558 	 */
3559 	__module_get(qe->type->elevator_owner);
3560 	elevator_switch_mq(q, NULL);
3561 	mutex_unlock(&q->sysfs_lock);
3562 
3563 	return true;
3564 }
3565 
3566 static void blk_mq_elv_switch_back(struct list_head *head,
3567 		struct request_queue *q)
3568 {
3569 	struct blk_mq_qe_pair *qe;
3570 	struct elevator_type *t = NULL;
3571 
3572 	list_for_each_entry(qe, head, node)
3573 		if (qe->q == q) {
3574 			t = qe->type;
3575 			break;
3576 		}
3577 
3578 	if (!t)
3579 		return;
3580 
3581 	list_del(&qe->node);
3582 	kfree(qe);
3583 
3584 	mutex_lock(&q->sysfs_lock);
3585 	elevator_switch_mq(q, t);
3586 	mutex_unlock(&q->sysfs_lock);
3587 }
3588 
3589 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3590 							int nr_hw_queues)
3591 {
3592 	struct request_queue *q;
3593 	LIST_HEAD(head);
3594 	int prev_nr_hw_queues;
3595 
3596 	lockdep_assert_held(&set->tag_list_lock);
3597 
3598 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3599 		nr_hw_queues = nr_cpu_ids;
3600 	if (nr_hw_queues < 1)
3601 		return;
3602 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3603 		return;
3604 
3605 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3606 		blk_mq_freeze_queue(q);
3607 	/*
3608 	 * Switch IO scheduler to 'none', cleaning up the data associated
3609 	 * with the previous scheduler. We will switch back once we are done
3610 	 * updating the new sw to hw queue mappings.
3611 	 */
3612 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3613 		if (!blk_mq_elv_switch_none(&head, q))
3614 			goto switch_back;
3615 
3616 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3617 		blk_mq_debugfs_unregister_hctxs(q);
3618 		blk_mq_sysfs_unregister(q);
3619 	}
3620 
3621 	prev_nr_hw_queues = set->nr_hw_queues;
3622 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3623 	    0)
3624 		goto reregister;
3625 
3626 	set->nr_hw_queues = nr_hw_queues;
3627 fallback:
3628 	blk_mq_update_queue_map(set);
3629 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3630 		blk_mq_realloc_hw_ctxs(set, q);
3631 		if (q->nr_hw_queues != set->nr_hw_queues) {
3632 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3633 					nr_hw_queues, prev_nr_hw_queues);
3634 			set->nr_hw_queues = prev_nr_hw_queues;
3635 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3636 			goto fallback;
3637 		}
3638 		blk_mq_map_swqueue(q);
3639 	}
3640 
3641 reregister:
3642 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3643 		blk_mq_sysfs_register(q);
3644 		blk_mq_debugfs_register_hctxs(q);
3645 	}
3646 
3647 switch_back:
3648 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3649 		blk_mq_elv_switch_back(&head, q);
3650 
3651 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3652 		blk_mq_unfreeze_queue(q);
3653 }
3654 
3655 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3656 {
3657 	mutex_lock(&set->tag_list_lock);
3658 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3659 	mutex_unlock(&set->tag_list_lock);
3660 }
3661 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3662 
3663 /* Enable polling stats and return whether they were already enabled. */
3664 static bool blk_poll_stats_enable(struct request_queue *q)
3665 {
3666 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3667 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3668 		return true;
3669 	blk_stat_add_callback(q, q->poll_cb);
3670 	return false;
3671 }
3672 
3673 static void blk_mq_poll_stats_start(struct request_queue *q)
3674 {
3675 	/*
3676 	 * We don't arm the callback if polling stats are not enabled or the
3677 	 * callback is already active.
3678 	 */
3679 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3680 	    blk_stat_is_active(q->poll_cb))
3681 		return;
3682 
3683 	blk_stat_activate_msecs(q->poll_cb, 100);
3684 }
3685 
3686 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3687 {
3688 	struct request_queue *q = cb->data;
3689 	int bucket;
3690 
3691 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3692 		if (cb->stat[bucket].nr_samples)
3693 			q->poll_stat[bucket] = cb->stat[bucket];
3694 	}
3695 }
3696 
3697 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3698 				       struct request *rq)
3699 {
3700 	unsigned long ret = 0;
3701 	int bucket;
3702 
3703 	/*
3704 	 * If stats collection isn't on, don't sleep but turn it on for
3705 	 * future users
3706 	 */
3707 	if (!blk_poll_stats_enable(q))
3708 		return 0;
3709 
3710 	/*
3711 	 * As an optimistic guess, use half of the mean service time
3712 	 * for this type of request. We can (and should) make this smarter.
3713 	 * For instance, if the completion latencies are tight, we can
3714 	 * get closer than just half the mean. This is especially
3715 	 * important on devices where the completion latencies are longer
3716 	 * than ~10 usec. We do use the stats for the relevant IO size
3717 	 * if available which does lead to better estimates.
3718 	 */
3719 	bucket = blk_mq_poll_stats_bkt(rq);
3720 	if (bucket < 0)
3721 		return ret;
3722 
3723 	if (q->poll_stat[bucket].nr_samples)
3724 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3725 
3726 	return ret;
3727 }
3728 
3729 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3730 				     struct request *rq)
3731 {
3732 	struct hrtimer_sleeper hs;
3733 	enum hrtimer_mode mode;
3734 	unsigned int nsecs;
3735 	ktime_t kt;
3736 
3737 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3738 		return false;
3739 
3740 	/*
3741 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3742 	 *
3743 	 *  0:	use half of prev avg
3744 	 * >0:	use this specific value
3745 	 */
3746 	if (q->poll_nsec > 0)
3747 		nsecs = q->poll_nsec;
3748 	else
3749 		nsecs = blk_mq_poll_nsecs(q, rq);
3750 
3751 	if (!nsecs)
3752 		return false;
3753 
3754 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3755 
3756 	/*
3757 	 * This will be replaced with the stats tracking code, using
3758 	 * 'avg_completion_time / 2' as the pre-sleep target.
3759 	 */
3760 	kt = nsecs;
3761 
3762 	mode = HRTIMER_MODE_REL;
3763 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3764 	hrtimer_set_expires(&hs.timer, kt);
3765 
3766 	do {
3767 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3768 			break;
3769 		set_current_state(TASK_UNINTERRUPTIBLE);
3770 		hrtimer_sleeper_start_expires(&hs, mode);
3771 		if (hs.task)
3772 			io_schedule();
3773 		hrtimer_cancel(&hs.timer);
3774 		mode = HRTIMER_MODE_ABS;
3775 	} while (hs.task && !signal_pending(current));
3776 
3777 	__set_current_state(TASK_RUNNING);
3778 	destroy_hrtimer_on_stack(&hs.timer);
3779 	return true;
3780 }
3781 
3782 static bool blk_mq_poll_hybrid(struct request_queue *q,
3783 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3784 {
3785 	struct request *rq;
3786 
3787 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3788 		return false;
3789 
3790 	if (!blk_qc_t_is_internal(cookie))
3791 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3792 	else {
3793 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3794 		/*
3795 		 * With scheduling, if the request has completed, we'll
3796 		 * get a NULL return here, as we clear the sched tag when
3797 		 * that happens. The request still remains valid, like always,
3798 		 * so we should be safe with just the NULL check.
3799 		 */
3800 		if (!rq)
3801 			return false;
3802 	}
3803 
3804 	return blk_mq_poll_hybrid_sleep(q, rq);
3805 }
3806 
3807 /**
3808  * blk_poll - poll for IO completions
3809  * @q:  the queue
3810  * @cookie: cookie passed back at IO submission time
3811  * @spin: whether to spin for completions
3812  *
3813  * Description:
3814  *    Poll for completions on the passed in queue. Returns number of
3815  *    completed entries found. If @spin is true, then blk_poll will continue
3816  *    looping until at least one completion is found, unless the task is
3817  *    otherwise marked running (or we need to reschedule).
3818  */
3819 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3820 {
3821 	struct blk_mq_hw_ctx *hctx;
3822 	long state;
3823 
3824 	if (!blk_qc_t_valid(cookie) ||
3825 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3826 		return 0;
3827 
3828 	if (current->plug)
3829 		blk_flush_plug_list(current->plug, false);
3830 
3831 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3832 
3833 	/*
3834 	 * If we sleep, have the caller restart the poll loop to reset
3835 	 * the state. Like for the other success return cases, the
3836 	 * caller is responsible for checking if the IO completed. If
3837 	 * the IO isn't complete, we'll get called again and will go
3838 	 * straight to the busy poll loop.
3839 	 */
3840 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3841 		return 1;
3842 
3843 	hctx->poll_considered++;
3844 
3845 	state = current->state;
3846 	do {
3847 		int ret;
3848 
3849 		hctx->poll_invoked++;
3850 
3851 		ret = q->mq_ops->poll(hctx);
3852 		if (ret > 0) {
3853 			hctx->poll_success++;
3854 			__set_current_state(TASK_RUNNING);
3855 			return ret;
3856 		}
3857 
3858 		if (signal_pending_state(state, current))
3859 			__set_current_state(TASK_RUNNING);
3860 
3861 		if (current->state == TASK_RUNNING)
3862 			return 1;
3863 		if (ret < 0 || !spin)
3864 			break;
3865 		cpu_relax();
3866 	} while (!need_resched());
3867 
3868 	__set_current_state(TASK_RUNNING);
3869 	return 0;
3870 }
3871 EXPORT_SYMBOL_GPL(blk_poll);
3872 
3873 unsigned int blk_mq_rq_cpu(struct request *rq)
3874 {
3875 	return rq->mq_ctx->cpu;
3876 }
3877 EXPORT_SYMBOL(blk_mq_rq_cpu);
3878 
3879 static int __init blk_mq_init(void)
3880 {
3881 	int i;
3882 
3883 	for_each_possible_cpu(i)
3884 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3885 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3886 
3887 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3888 				  "block/softirq:dead", NULL,
3889 				  blk_softirq_cpu_dead);
3890 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3891 				blk_mq_hctx_notify_dead);
3892 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3893 				blk_mq_hctx_notify_online,
3894 				blk_mq_hctx_notify_offline);
3895 	return 0;
3896 }
3897 subsys_initcall(blk_mq_init);
3898