xref: /openbmc/linux/block/blk-mq.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26 
27 #include <trace/events/block.h>
28 
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	return sbitmap_any_bit_set(&hctx->ctx_map);
43 }
44 
45 /*
46  * Mark this ctx as having pending work in this hardware queue
47  */
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 				     struct blk_mq_ctx *ctx)
50 {
51 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 }
54 
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 				      struct blk_mq_ctx *ctx)
57 {
58 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60 
61 void blk_mq_freeze_queue_start(struct request_queue *q)
62 {
63 	int freeze_depth;
64 
65 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 	if (freeze_depth == 1) {
67 		percpu_ref_kill(&q->q_usage_counter);
68 		blk_mq_run_hw_queues(q, false);
69 	}
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72 
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
74 {
75 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 }
77 
78 /*
79  * Guarantee no request is in use, so we can change any data structure of
80  * the queue afterward.
81  */
82 void blk_freeze_queue(struct request_queue *q)
83 {
84 	/*
85 	 * In the !blk_mq case we are only calling this to kill the
86 	 * q_usage_counter, otherwise this increases the freeze depth
87 	 * and waits for it to return to zero.  For this reason there is
88 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 	 * exported to drivers as the only user for unfreeze is blk_mq.
90 	 */
91 	blk_mq_freeze_queue_start(q);
92 	blk_mq_freeze_queue_wait(q);
93 }
94 
95 void blk_mq_freeze_queue(struct request_queue *q)
96 {
97 	/*
98 	 * ...just an alias to keep freeze and unfreeze actions balanced
99 	 * in the blk_mq_* namespace
100 	 */
101 	blk_freeze_queue(q);
102 }
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104 
105 void blk_mq_unfreeze_queue(struct request_queue *q)
106 {
107 	int freeze_depth;
108 
109 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 	WARN_ON_ONCE(freeze_depth < 0);
111 	if (!freeze_depth) {
112 		percpu_ref_reinit(&q->q_usage_counter);
113 		wake_up_all(&q->mq_freeze_wq);
114 	}
115 }
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117 
118 void blk_mq_wake_waiters(struct request_queue *q)
119 {
120 	struct blk_mq_hw_ctx *hctx;
121 	unsigned int i;
122 
123 	queue_for_each_hw_ctx(q, hctx, i)
124 		if (blk_mq_hw_queue_mapped(hctx))
125 			blk_mq_tag_wakeup_all(hctx->tags, true);
126 
127 	/*
128 	 * If we are called because the queue has now been marked as
129 	 * dying, we need to ensure that processes currently waiting on
130 	 * the queue are notified as well.
131 	 */
132 	wake_up_all(&q->mq_freeze_wq);
133 }
134 
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
136 {
137 	return blk_mq_has_free_tags(hctx->tags);
138 }
139 EXPORT_SYMBOL(blk_mq_can_queue);
140 
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 			       struct request *rq, int op,
143 			       unsigned int op_flags)
144 {
145 	if (blk_queue_io_stat(q))
146 		op_flags |= REQ_IO_STAT;
147 
148 	INIT_LIST_HEAD(&rq->queuelist);
149 	/* csd/requeue_work/fifo_time is initialized before use */
150 	rq->q = q;
151 	rq->mq_ctx = ctx;
152 	req_set_op_attrs(rq, op, op_flags);
153 	/* do not touch atomic flags, it needs atomic ops against the timer */
154 	rq->cpu = -1;
155 	INIT_HLIST_NODE(&rq->hash);
156 	RB_CLEAR_NODE(&rq->rb_node);
157 	rq->rq_disk = NULL;
158 	rq->part = NULL;
159 	rq->start_time = jiffies;
160 #ifdef CONFIG_BLK_CGROUP
161 	rq->rl = NULL;
162 	set_start_time_ns(rq);
163 	rq->io_start_time_ns = 0;
164 #endif
165 	rq->nr_phys_segments = 0;
166 #if defined(CONFIG_BLK_DEV_INTEGRITY)
167 	rq->nr_integrity_segments = 0;
168 #endif
169 	rq->special = NULL;
170 	/* tag was already set */
171 	rq->errors = 0;
172 
173 	rq->cmd = rq->__cmd;
174 
175 	rq->extra_len = 0;
176 	rq->sense_len = 0;
177 	rq->resid_len = 0;
178 	rq->sense = NULL;
179 
180 	INIT_LIST_HEAD(&rq->timeout_list);
181 	rq->timeout = 0;
182 
183 	rq->end_io = NULL;
184 	rq->end_io_data = NULL;
185 	rq->next_rq = NULL;
186 
187 	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
188 }
189 
190 static struct request *
191 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
192 {
193 	struct request *rq;
194 	unsigned int tag;
195 
196 	tag = blk_mq_get_tag(data);
197 	if (tag != BLK_MQ_TAG_FAIL) {
198 		rq = data->hctx->tags->rqs[tag];
199 
200 		if (blk_mq_tag_busy(data->hctx)) {
201 			rq->cmd_flags = REQ_MQ_INFLIGHT;
202 			atomic_inc(&data->hctx->nr_active);
203 		}
204 
205 		rq->tag = tag;
206 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
207 		return rq;
208 	}
209 
210 	return NULL;
211 }
212 
213 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
214 		unsigned int flags)
215 {
216 	struct blk_mq_ctx *ctx;
217 	struct blk_mq_hw_ctx *hctx;
218 	struct request *rq;
219 	struct blk_mq_alloc_data alloc_data;
220 	int ret;
221 
222 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
223 	if (ret)
224 		return ERR_PTR(ret);
225 
226 	ctx = blk_mq_get_ctx(q);
227 	hctx = blk_mq_map_queue(q, ctx->cpu);
228 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
229 	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
230 	blk_mq_put_ctx(ctx);
231 
232 	if (!rq) {
233 		blk_queue_exit(q);
234 		return ERR_PTR(-EWOULDBLOCK);
235 	}
236 
237 	rq->__data_len = 0;
238 	rq->__sector = (sector_t) -1;
239 	rq->bio = rq->biotail = NULL;
240 	return rq;
241 }
242 EXPORT_SYMBOL(blk_mq_alloc_request);
243 
244 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
245 		unsigned int flags, unsigned int hctx_idx)
246 {
247 	struct blk_mq_hw_ctx *hctx;
248 	struct blk_mq_ctx *ctx;
249 	struct request *rq;
250 	struct blk_mq_alloc_data alloc_data;
251 	int ret;
252 
253 	/*
254 	 * If the tag allocator sleeps we could get an allocation for a
255 	 * different hardware context.  No need to complicate the low level
256 	 * allocator for this for the rare use case of a command tied to
257 	 * a specific queue.
258 	 */
259 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
260 		return ERR_PTR(-EINVAL);
261 
262 	if (hctx_idx >= q->nr_hw_queues)
263 		return ERR_PTR(-EIO);
264 
265 	ret = blk_queue_enter(q, true);
266 	if (ret)
267 		return ERR_PTR(ret);
268 
269 	/*
270 	 * Check if the hardware context is actually mapped to anything.
271 	 * If not tell the caller that it should skip this queue.
272 	 */
273 	hctx = q->queue_hw_ctx[hctx_idx];
274 	if (!blk_mq_hw_queue_mapped(hctx)) {
275 		ret = -EXDEV;
276 		goto out_queue_exit;
277 	}
278 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
279 
280 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
281 	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
282 	if (!rq) {
283 		ret = -EWOULDBLOCK;
284 		goto out_queue_exit;
285 	}
286 
287 	return rq;
288 
289 out_queue_exit:
290 	blk_queue_exit(q);
291 	return ERR_PTR(ret);
292 }
293 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
294 
295 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
296 				  struct blk_mq_ctx *ctx, struct request *rq)
297 {
298 	const int tag = rq->tag;
299 	struct request_queue *q = rq->q;
300 
301 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
302 		atomic_dec(&hctx->nr_active);
303 	rq->cmd_flags = 0;
304 
305 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
306 	blk_mq_put_tag(hctx, ctx, tag);
307 	blk_queue_exit(q);
308 }
309 
310 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
311 {
312 	struct blk_mq_ctx *ctx = rq->mq_ctx;
313 
314 	ctx->rq_completed[rq_is_sync(rq)]++;
315 	__blk_mq_free_request(hctx, ctx, rq);
316 
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
319 
320 void blk_mq_free_request(struct request *rq)
321 {
322 	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
323 }
324 EXPORT_SYMBOL_GPL(blk_mq_free_request);
325 
326 inline void __blk_mq_end_request(struct request *rq, int error)
327 {
328 	blk_account_io_done(rq);
329 
330 	if (rq->end_io) {
331 		rq->end_io(rq, error);
332 	} else {
333 		if (unlikely(blk_bidi_rq(rq)))
334 			blk_mq_free_request(rq->next_rq);
335 		blk_mq_free_request(rq);
336 	}
337 }
338 EXPORT_SYMBOL(__blk_mq_end_request);
339 
340 void blk_mq_end_request(struct request *rq, int error)
341 {
342 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
343 		BUG();
344 	__blk_mq_end_request(rq, error);
345 }
346 EXPORT_SYMBOL(blk_mq_end_request);
347 
348 static void __blk_mq_complete_request_remote(void *data)
349 {
350 	struct request *rq = data;
351 
352 	rq->q->softirq_done_fn(rq);
353 }
354 
355 static void blk_mq_ipi_complete_request(struct request *rq)
356 {
357 	struct blk_mq_ctx *ctx = rq->mq_ctx;
358 	bool shared = false;
359 	int cpu;
360 
361 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
362 		rq->q->softirq_done_fn(rq);
363 		return;
364 	}
365 
366 	cpu = get_cpu();
367 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
368 		shared = cpus_share_cache(cpu, ctx->cpu);
369 
370 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
371 		rq->csd.func = __blk_mq_complete_request_remote;
372 		rq->csd.info = rq;
373 		rq->csd.flags = 0;
374 		smp_call_function_single_async(ctx->cpu, &rq->csd);
375 	} else {
376 		rq->q->softirq_done_fn(rq);
377 	}
378 	put_cpu();
379 }
380 
381 static void __blk_mq_complete_request(struct request *rq)
382 {
383 	struct request_queue *q = rq->q;
384 
385 	if (!q->softirq_done_fn)
386 		blk_mq_end_request(rq, rq->errors);
387 	else
388 		blk_mq_ipi_complete_request(rq);
389 }
390 
391 /**
392  * blk_mq_complete_request - end I/O on a request
393  * @rq:		the request being processed
394  *
395  * Description:
396  *	Ends all I/O on a request. It does not handle partial completions.
397  *	The actual completion happens out-of-order, through a IPI handler.
398  **/
399 void blk_mq_complete_request(struct request *rq, int error)
400 {
401 	struct request_queue *q = rq->q;
402 
403 	if (unlikely(blk_should_fake_timeout(q)))
404 		return;
405 	if (!blk_mark_rq_complete(rq)) {
406 		rq->errors = error;
407 		__blk_mq_complete_request(rq);
408 	}
409 }
410 EXPORT_SYMBOL(blk_mq_complete_request);
411 
412 int blk_mq_request_started(struct request *rq)
413 {
414 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
415 }
416 EXPORT_SYMBOL_GPL(blk_mq_request_started);
417 
418 void blk_mq_start_request(struct request *rq)
419 {
420 	struct request_queue *q = rq->q;
421 
422 	trace_block_rq_issue(q, rq);
423 
424 	rq->resid_len = blk_rq_bytes(rq);
425 	if (unlikely(blk_bidi_rq(rq)))
426 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
427 
428 	blk_add_timer(rq);
429 
430 	/*
431 	 * Ensure that ->deadline is visible before set the started
432 	 * flag and clear the completed flag.
433 	 */
434 	smp_mb__before_atomic();
435 
436 	/*
437 	 * Mark us as started and clear complete. Complete might have been
438 	 * set if requeue raced with timeout, which then marked it as
439 	 * complete. So be sure to clear complete again when we start
440 	 * the request, otherwise we'll ignore the completion event.
441 	 */
442 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
443 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
444 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
445 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
446 
447 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
448 		/*
449 		 * Make sure space for the drain appears.  We know we can do
450 		 * this because max_hw_segments has been adjusted to be one
451 		 * fewer than the device can handle.
452 		 */
453 		rq->nr_phys_segments++;
454 	}
455 }
456 EXPORT_SYMBOL(blk_mq_start_request);
457 
458 static void __blk_mq_requeue_request(struct request *rq)
459 {
460 	struct request_queue *q = rq->q;
461 
462 	trace_block_rq_requeue(q, rq);
463 
464 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
465 		if (q->dma_drain_size && blk_rq_bytes(rq))
466 			rq->nr_phys_segments--;
467 	}
468 }
469 
470 void blk_mq_requeue_request(struct request *rq)
471 {
472 	__blk_mq_requeue_request(rq);
473 
474 	BUG_ON(blk_queued_rq(rq));
475 	blk_mq_add_to_requeue_list(rq, true);
476 }
477 EXPORT_SYMBOL(blk_mq_requeue_request);
478 
479 static void blk_mq_requeue_work(struct work_struct *work)
480 {
481 	struct request_queue *q =
482 		container_of(work, struct request_queue, requeue_work.work);
483 	LIST_HEAD(rq_list);
484 	struct request *rq, *next;
485 	unsigned long flags;
486 
487 	spin_lock_irqsave(&q->requeue_lock, flags);
488 	list_splice_init(&q->requeue_list, &rq_list);
489 	spin_unlock_irqrestore(&q->requeue_lock, flags);
490 
491 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
492 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
493 			continue;
494 
495 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
496 		list_del_init(&rq->queuelist);
497 		blk_mq_insert_request(rq, true, false, false);
498 	}
499 
500 	while (!list_empty(&rq_list)) {
501 		rq = list_entry(rq_list.next, struct request, queuelist);
502 		list_del_init(&rq->queuelist);
503 		blk_mq_insert_request(rq, false, false, false);
504 	}
505 
506 	/*
507 	 * Use the start variant of queue running here, so that running
508 	 * the requeue work will kick stopped queues.
509 	 */
510 	blk_mq_start_hw_queues(q);
511 }
512 
513 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
514 {
515 	struct request_queue *q = rq->q;
516 	unsigned long flags;
517 
518 	/*
519 	 * We abuse this flag that is otherwise used by the I/O scheduler to
520 	 * request head insertation from the workqueue.
521 	 */
522 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
523 
524 	spin_lock_irqsave(&q->requeue_lock, flags);
525 	if (at_head) {
526 		rq->cmd_flags |= REQ_SOFTBARRIER;
527 		list_add(&rq->queuelist, &q->requeue_list);
528 	} else {
529 		list_add_tail(&rq->queuelist, &q->requeue_list);
530 	}
531 	spin_unlock_irqrestore(&q->requeue_lock, flags);
532 }
533 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
534 
535 void blk_mq_cancel_requeue_work(struct request_queue *q)
536 {
537 	cancel_delayed_work_sync(&q->requeue_work);
538 }
539 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
540 
541 void blk_mq_kick_requeue_list(struct request_queue *q)
542 {
543 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
544 }
545 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
546 
547 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
548 				    unsigned long msecs)
549 {
550 	kblockd_schedule_delayed_work(&q->requeue_work,
551 				      msecs_to_jiffies(msecs));
552 }
553 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
554 
555 void blk_mq_abort_requeue_list(struct request_queue *q)
556 {
557 	unsigned long flags;
558 	LIST_HEAD(rq_list);
559 
560 	spin_lock_irqsave(&q->requeue_lock, flags);
561 	list_splice_init(&q->requeue_list, &rq_list);
562 	spin_unlock_irqrestore(&q->requeue_lock, flags);
563 
564 	while (!list_empty(&rq_list)) {
565 		struct request *rq;
566 
567 		rq = list_first_entry(&rq_list, struct request, queuelist);
568 		list_del_init(&rq->queuelist);
569 		rq->errors = -EIO;
570 		blk_mq_end_request(rq, rq->errors);
571 	}
572 }
573 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
574 
575 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
576 {
577 	if (tag < tags->nr_tags) {
578 		prefetch(tags->rqs[tag]);
579 		return tags->rqs[tag];
580 	}
581 
582 	return NULL;
583 }
584 EXPORT_SYMBOL(blk_mq_tag_to_rq);
585 
586 struct blk_mq_timeout_data {
587 	unsigned long next;
588 	unsigned int next_set;
589 };
590 
591 void blk_mq_rq_timed_out(struct request *req, bool reserved)
592 {
593 	struct blk_mq_ops *ops = req->q->mq_ops;
594 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
595 
596 	/*
597 	 * We know that complete is set at this point. If STARTED isn't set
598 	 * anymore, then the request isn't active and the "timeout" should
599 	 * just be ignored. This can happen due to the bitflag ordering.
600 	 * Timeout first checks if STARTED is set, and if it is, assumes
601 	 * the request is active. But if we race with completion, then
602 	 * we both flags will get cleared. So check here again, and ignore
603 	 * a timeout event with a request that isn't active.
604 	 */
605 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606 		return;
607 
608 	if (ops->timeout)
609 		ret = ops->timeout(req, reserved);
610 
611 	switch (ret) {
612 	case BLK_EH_HANDLED:
613 		__blk_mq_complete_request(req);
614 		break;
615 	case BLK_EH_RESET_TIMER:
616 		blk_add_timer(req);
617 		blk_clear_rq_complete(req);
618 		break;
619 	case BLK_EH_NOT_HANDLED:
620 		break;
621 	default:
622 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
623 		break;
624 	}
625 }
626 
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628 		struct request *rq, void *priv, bool reserved)
629 {
630 	struct blk_mq_timeout_data *data = priv;
631 
632 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
633 		/*
634 		 * If a request wasn't started before the queue was
635 		 * marked dying, kill it here or it'll go unnoticed.
636 		 */
637 		if (unlikely(blk_queue_dying(rq->q))) {
638 			rq->errors = -EIO;
639 			blk_mq_end_request(rq, rq->errors);
640 		}
641 		return;
642 	}
643 
644 	if (time_after_eq(jiffies, rq->deadline)) {
645 		if (!blk_mark_rq_complete(rq))
646 			blk_mq_rq_timed_out(rq, reserved);
647 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
648 		data->next = rq->deadline;
649 		data->next_set = 1;
650 	}
651 }
652 
653 static void blk_mq_timeout_work(struct work_struct *work)
654 {
655 	struct request_queue *q =
656 		container_of(work, struct request_queue, timeout_work);
657 	struct blk_mq_timeout_data data = {
658 		.next		= 0,
659 		.next_set	= 0,
660 	};
661 	int i;
662 
663 	/* A deadlock might occur if a request is stuck requiring a
664 	 * timeout at the same time a queue freeze is waiting
665 	 * completion, since the timeout code would not be able to
666 	 * acquire the queue reference here.
667 	 *
668 	 * That's why we don't use blk_queue_enter here; instead, we use
669 	 * percpu_ref_tryget directly, because we need to be able to
670 	 * obtain a reference even in the short window between the queue
671 	 * starting to freeze, by dropping the first reference in
672 	 * blk_mq_freeze_queue_start, and the moment the last request is
673 	 * consumed, marked by the instant q_usage_counter reaches
674 	 * zero.
675 	 */
676 	if (!percpu_ref_tryget(&q->q_usage_counter))
677 		return;
678 
679 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
680 
681 	if (data.next_set) {
682 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
683 		mod_timer(&q->timeout, data.next);
684 	} else {
685 		struct blk_mq_hw_ctx *hctx;
686 
687 		queue_for_each_hw_ctx(q, hctx, i) {
688 			/* the hctx may be unmapped, so check it here */
689 			if (blk_mq_hw_queue_mapped(hctx))
690 				blk_mq_tag_idle(hctx);
691 		}
692 	}
693 	blk_queue_exit(q);
694 }
695 
696 /*
697  * Reverse check our software queue for entries that we could potentially
698  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
699  * too much time checking for merges.
700  */
701 static bool blk_mq_attempt_merge(struct request_queue *q,
702 				 struct blk_mq_ctx *ctx, struct bio *bio)
703 {
704 	struct request *rq;
705 	int checked = 8;
706 
707 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
708 		int el_ret;
709 
710 		if (!checked--)
711 			break;
712 
713 		if (!blk_rq_merge_ok(rq, bio))
714 			continue;
715 
716 		el_ret = blk_try_merge(rq, bio);
717 		if (el_ret == ELEVATOR_BACK_MERGE) {
718 			if (bio_attempt_back_merge(q, rq, bio)) {
719 				ctx->rq_merged++;
720 				return true;
721 			}
722 			break;
723 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
724 			if (bio_attempt_front_merge(q, rq, bio)) {
725 				ctx->rq_merged++;
726 				return true;
727 			}
728 			break;
729 		}
730 	}
731 
732 	return false;
733 }
734 
735 struct flush_busy_ctx_data {
736 	struct blk_mq_hw_ctx *hctx;
737 	struct list_head *list;
738 };
739 
740 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
741 {
742 	struct flush_busy_ctx_data *flush_data = data;
743 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
744 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
745 
746 	sbitmap_clear_bit(sb, bitnr);
747 	spin_lock(&ctx->lock);
748 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
749 	spin_unlock(&ctx->lock);
750 	return true;
751 }
752 
753 /*
754  * Process software queues that have been marked busy, splicing them
755  * to the for-dispatch
756  */
757 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
758 {
759 	struct flush_busy_ctx_data data = {
760 		.hctx = hctx,
761 		.list = list,
762 	};
763 
764 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
765 }
766 
767 static inline unsigned int queued_to_index(unsigned int queued)
768 {
769 	if (!queued)
770 		return 0;
771 
772 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
773 }
774 
775 /*
776  * Run this hardware queue, pulling any software queues mapped to it in.
777  * Note that this function currently has various problems around ordering
778  * of IO. In particular, we'd like FIFO behaviour on handling existing
779  * items on the hctx->dispatch list. Ignore that for now.
780  */
781 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
782 {
783 	struct request_queue *q = hctx->queue;
784 	struct request *rq;
785 	LIST_HEAD(rq_list);
786 	LIST_HEAD(driver_list);
787 	struct list_head *dptr;
788 	int queued;
789 
790 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
791 		return;
792 
793 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
794 		cpu_online(hctx->next_cpu));
795 
796 	hctx->run++;
797 
798 	/*
799 	 * Touch any software queue that has pending entries.
800 	 */
801 	flush_busy_ctxs(hctx, &rq_list);
802 
803 	/*
804 	 * If we have previous entries on our dispatch list, grab them
805 	 * and stuff them at the front for more fair dispatch.
806 	 */
807 	if (!list_empty_careful(&hctx->dispatch)) {
808 		spin_lock(&hctx->lock);
809 		if (!list_empty(&hctx->dispatch))
810 			list_splice_init(&hctx->dispatch, &rq_list);
811 		spin_unlock(&hctx->lock);
812 	}
813 
814 	/*
815 	 * Start off with dptr being NULL, so we start the first request
816 	 * immediately, even if we have more pending.
817 	 */
818 	dptr = NULL;
819 
820 	/*
821 	 * Now process all the entries, sending them to the driver.
822 	 */
823 	queued = 0;
824 	while (!list_empty(&rq_list)) {
825 		struct blk_mq_queue_data bd;
826 		int ret;
827 
828 		rq = list_first_entry(&rq_list, struct request, queuelist);
829 		list_del_init(&rq->queuelist);
830 
831 		bd.rq = rq;
832 		bd.list = dptr;
833 		bd.last = list_empty(&rq_list);
834 
835 		ret = q->mq_ops->queue_rq(hctx, &bd);
836 		switch (ret) {
837 		case BLK_MQ_RQ_QUEUE_OK:
838 			queued++;
839 			break;
840 		case BLK_MQ_RQ_QUEUE_BUSY:
841 			list_add(&rq->queuelist, &rq_list);
842 			__blk_mq_requeue_request(rq);
843 			break;
844 		default:
845 			pr_err("blk-mq: bad return on queue: %d\n", ret);
846 		case BLK_MQ_RQ_QUEUE_ERROR:
847 			rq->errors = -EIO;
848 			blk_mq_end_request(rq, rq->errors);
849 			break;
850 		}
851 
852 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
853 			break;
854 
855 		/*
856 		 * We've done the first request. If we have more than 1
857 		 * left in the list, set dptr to defer issue.
858 		 */
859 		if (!dptr && rq_list.next != rq_list.prev)
860 			dptr = &driver_list;
861 	}
862 
863 	hctx->dispatched[queued_to_index(queued)]++;
864 
865 	/*
866 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
867 	 * that is where we will continue on next queue run.
868 	 */
869 	if (!list_empty(&rq_list)) {
870 		spin_lock(&hctx->lock);
871 		list_splice(&rq_list, &hctx->dispatch);
872 		spin_unlock(&hctx->lock);
873 		/*
874 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
875 		 * it's possible the queue is stopped and restarted again
876 		 * before this. Queue restart will dispatch requests. And since
877 		 * requests in rq_list aren't added into hctx->dispatch yet,
878 		 * the requests in rq_list might get lost.
879 		 *
880 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
881 		 **/
882 		blk_mq_run_hw_queue(hctx, true);
883 	}
884 }
885 
886 /*
887  * It'd be great if the workqueue API had a way to pass
888  * in a mask and had some smarts for more clever placement.
889  * For now we just round-robin here, switching for every
890  * BLK_MQ_CPU_WORK_BATCH queued items.
891  */
892 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
893 {
894 	if (hctx->queue->nr_hw_queues == 1)
895 		return WORK_CPU_UNBOUND;
896 
897 	if (--hctx->next_cpu_batch <= 0) {
898 		int cpu = hctx->next_cpu, next_cpu;
899 
900 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
901 		if (next_cpu >= nr_cpu_ids)
902 			next_cpu = cpumask_first(hctx->cpumask);
903 
904 		hctx->next_cpu = next_cpu;
905 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
906 
907 		return cpu;
908 	}
909 
910 	return hctx->next_cpu;
911 }
912 
913 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
914 {
915 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
916 	    !blk_mq_hw_queue_mapped(hctx)))
917 		return;
918 
919 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
920 		int cpu = get_cpu();
921 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
922 			__blk_mq_run_hw_queue(hctx);
923 			put_cpu();
924 			return;
925 		}
926 
927 		put_cpu();
928 	}
929 
930 	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
931 }
932 
933 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
934 {
935 	struct blk_mq_hw_ctx *hctx;
936 	int i;
937 
938 	queue_for_each_hw_ctx(q, hctx, i) {
939 		if ((!blk_mq_hctx_has_pending(hctx) &&
940 		    list_empty_careful(&hctx->dispatch)) ||
941 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
942 			continue;
943 
944 		blk_mq_run_hw_queue(hctx, async);
945 	}
946 }
947 EXPORT_SYMBOL(blk_mq_run_hw_queues);
948 
949 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
950 {
951 	cancel_work(&hctx->run_work);
952 	cancel_delayed_work(&hctx->delay_work);
953 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
954 }
955 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
956 
957 void blk_mq_stop_hw_queues(struct request_queue *q)
958 {
959 	struct blk_mq_hw_ctx *hctx;
960 	int i;
961 
962 	queue_for_each_hw_ctx(q, hctx, i)
963 		blk_mq_stop_hw_queue(hctx);
964 }
965 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
966 
967 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
968 {
969 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
970 
971 	blk_mq_run_hw_queue(hctx, false);
972 }
973 EXPORT_SYMBOL(blk_mq_start_hw_queue);
974 
975 void blk_mq_start_hw_queues(struct request_queue *q)
976 {
977 	struct blk_mq_hw_ctx *hctx;
978 	int i;
979 
980 	queue_for_each_hw_ctx(q, hctx, i)
981 		blk_mq_start_hw_queue(hctx);
982 }
983 EXPORT_SYMBOL(blk_mq_start_hw_queues);
984 
985 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
986 {
987 	struct blk_mq_hw_ctx *hctx;
988 	int i;
989 
990 	queue_for_each_hw_ctx(q, hctx, i) {
991 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
992 			continue;
993 
994 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
995 		blk_mq_run_hw_queue(hctx, async);
996 	}
997 }
998 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
999 
1000 static void blk_mq_run_work_fn(struct work_struct *work)
1001 {
1002 	struct blk_mq_hw_ctx *hctx;
1003 
1004 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1005 
1006 	__blk_mq_run_hw_queue(hctx);
1007 }
1008 
1009 static void blk_mq_delay_work_fn(struct work_struct *work)
1010 {
1011 	struct blk_mq_hw_ctx *hctx;
1012 
1013 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1014 
1015 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1016 		__blk_mq_run_hw_queue(hctx);
1017 }
1018 
1019 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1020 {
1021 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1022 		return;
1023 
1024 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1025 			&hctx->delay_work, msecs_to_jiffies(msecs));
1026 }
1027 EXPORT_SYMBOL(blk_mq_delay_queue);
1028 
1029 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1030 					    struct request *rq,
1031 					    bool at_head)
1032 {
1033 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1034 
1035 	trace_block_rq_insert(hctx->queue, rq);
1036 
1037 	if (at_head)
1038 		list_add(&rq->queuelist, &ctx->rq_list);
1039 	else
1040 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1041 }
1042 
1043 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1044 				    struct request *rq, bool at_head)
1045 {
1046 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1047 
1048 	__blk_mq_insert_req_list(hctx, rq, at_head);
1049 	blk_mq_hctx_mark_pending(hctx, ctx);
1050 }
1051 
1052 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1053 			   bool async)
1054 {
1055 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1056 	struct request_queue *q = rq->q;
1057 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1058 
1059 	spin_lock(&ctx->lock);
1060 	__blk_mq_insert_request(hctx, rq, at_head);
1061 	spin_unlock(&ctx->lock);
1062 
1063 	if (run_queue)
1064 		blk_mq_run_hw_queue(hctx, async);
1065 }
1066 
1067 static void blk_mq_insert_requests(struct request_queue *q,
1068 				     struct blk_mq_ctx *ctx,
1069 				     struct list_head *list,
1070 				     int depth,
1071 				     bool from_schedule)
1072 
1073 {
1074 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1075 
1076 	trace_block_unplug(q, depth, !from_schedule);
1077 
1078 	/*
1079 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1080 	 * offline now
1081 	 */
1082 	spin_lock(&ctx->lock);
1083 	while (!list_empty(list)) {
1084 		struct request *rq;
1085 
1086 		rq = list_first_entry(list, struct request, queuelist);
1087 		BUG_ON(rq->mq_ctx != ctx);
1088 		list_del_init(&rq->queuelist);
1089 		__blk_mq_insert_req_list(hctx, rq, false);
1090 	}
1091 	blk_mq_hctx_mark_pending(hctx, ctx);
1092 	spin_unlock(&ctx->lock);
1093 
1094 	blk_mq_run_hw_queue(hctx, from_schedule);
1095 }
1096 
1097 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1098 {
1099 	struct request *rqa = container_of(a, struct request, queuelist);
1100 	struct request *rqb = container_of(b, struct request, queuelist);
1101 
1102 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1103 		 (rqa->mq_ctx == rqb->mq_ctx &&
1104 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1105 }
1106 
1107 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1108 {
1109 	struct blk_mq_ctx *this_ctx;
1110 	struct request_queue *this_q;
1111 	struct request *rq;
1112 	LIST_HEAD(list);
1113 	LIST_HEAD(ctx_list);
1114 	unsigned int depth;
1115 
1116 	list_splice_init(&plug->mq_list, &list);
1117 
1118 	list_sort(NULL, &list, plug_ctx_cmp);
1119 
1120 	this_q = NULL;
1121 	this_ctx = NULL;
1122 	depth = 0;
1123 
1124 	while (!list_empty(&list)) {
1125 		rq = list_entry_rq(list.next);
1126 		list_del_init(&rq->queuelist);
1127 		BUG_ON(!rq->q);
1128 		if (rq->mq_ctx != this_ctx) {
1129 			if (this_ctx) {
1130 				blk_mq_insert_requests(this_q, this_ctx,
1131 							&ctx_list, depth,
1132 							from_schedule);
1133 			}
1134 
1135 			this_ctx = rq->mq_ctx;
1136 			this_q = rq->q;
1137 			depth = 0;
1138 		}
1139 
1140 		depth++;
1141 		list_add_tail(&rq->queuelist, &ctx_list);
1142 	}
1143 
1144 	/*
1145 	 * If 'this_ctx' is set, we know we have entries to complete
1146 	 * on 'ctx_list'. Do those.
1147 	 */
1148 	if (this_ctx) {
1149 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1150 				       from_schedule);
1151 	}
1152 }
1153 
1154 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1155 {
1156 	init_request_from_bio(rq, bio);
1157 
1158 	blk_account_io_start(rq, 1);
1159 }
1160 
1161 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1162 {
1163 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1164 		!blk_queue_nomerges(hctx->queue);
1165 }
1166 
1167 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1168 					 struct blk_mq_ctx *ctx,
1169 					 struct request *rq, struct bio *bio)
1170 {
1171 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1172 		blk_mq_bio_to_request(rq, bio);
1173 		spin_lock(&ctx->lock);
1174 insert_rq:
1175 		__blk_mq_insert_request(hctx, rq, false);
1176 		spin_unlock(&ctx->lock);
1177 		return false;
1178 	} else {
1179 		struct request_queue *q = hctx->queue;
1180 
1181 		spin_lock(&ctx->lock);
1182 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1183 			blk_mq_bio_to_request(rq, bio);
1184 			goto insert_rq;
1185 		}
1186 
1187 		spin_unlock(&ctx->lock);
1188 		__blk_mq_free_request(hctx, ctx, rq);
1189 		return true;
1190 	}
1191 }
1192 
1193 struct blk_map_ctx {
1194 	struct blk_mq_hw_ctx *hctx;
1195 	struct blk_mq_ctx *ctx;
1196 };
1197 
1198 static struct request *blk_mq_map_request(struct request_queue *q,
1199 					  struct bio *bio,
1200 					  struct blk_map_ctx *data)
1201 {
1202 	struct blk_mq_hw_ctx *hctx;
1203 	struct blk_mq_ctx *ctx;
1204 	struct request *rq;
1205 	int op = bio_data_dir(bio);
1206 	int op_flags = 0;
1207 	struct blk_mq_alloc_data alloc_data;
1208 
1209 	blk_queue_enter_live(q);
1210 	ctx = blk_mq_get_ctx(q);
1211 	hctx = blk_mq_map_queue(q, ctx->cpu);
1212 
1213 	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1214 		op_flags |= REQ_SYNC;
1215 
1216 	trace_block_getrq(q, bio, op);
1217 	blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1218 	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1219 
1220 	data->hctx = alloc_data.hctx;
1221 	data->ctx = alloc_data.ctx;
1222 	data->hctx->queued++;
1223 	return rq;
1224 }
1225 
1226 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1227 {
1228 	int ret;
1229 	struct request_queue *q = rq->q;
1230 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1231 	struct blk_mq_queue_data bd = {
1232 		.rq = rq,
1233 		.list = NULL,
1234 		.last = 1
1235 	};
1236 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1237 
1238 	/*
1239 	 * For OK queue, we are done. For error, kill it. Any other
1240 	 * error (busy), just add it to our list as we previously
1241 	 * would have done
1242 	 */
1243 	ret = q->mq_ops->queue_rq(hctx, &bd);
1244 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1245 		*cookie = new_cookie;
1246 		return 0;
1247 	}
1248 
1249 	__blk_mq_requeue_request(rq);
1250 
1251 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1252 		*cookie = BLK_QC_T_NONE;
1253 		rq->errors = -EIO;
1254 		blk_mq_end_request(rq, rq->errors);
1255 		return 0;
1256 	}
1257 
1258 	return -1;
1259 }
1260 
1261 /*
1262  * Multiple hardware queue variant. This will not use per-process plugs,
1263  * but will attempt to bypass the hctx queueing if we can go straight to
1264  * hardware for SYNC IO.
1265  */
1266 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1267 {
1268 	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1269 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1270 	struct blk_map_ctx data;
1271 	struct request *rq;
1272 	unsigned int request_count = 0;
1273 	struct blk_plug *plug;
1274 	struct request *same_queue_rq = NULL;
1275 	blk_qc_t cookie;
1276 
1277 	blk_queue_bounce(q, &bio);
1278 
1279 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1280 		bio_io_error(bio);
1281 		return BLK_QC_T_NONE;
1282 	}
1283 
1284 	blk_queue_split(q, &bio, q->bio_split);
1285 
1286 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1287 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1288 		return BLK_QC_T_NONE;
1289 
1290 	rq = blk_mq_map_request(q, bio, &data);
1291 	if (unlikely(!rq))
1292 		return BLK_QC_T_NONE;
1293 
1294 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1295 
1296 	if (unlikely(is_flush_fua)) {
1297 		blk_mq_bio_to_request(rq, bio);
1298 		blk_insert_flush(rq);
1299 		goto run_queue;
1300 	}
1301 
1302 	plug = current->plug;
1303 	/*
1304 	 * If the driver supports defer issued based on 'last', then
1305 	 * queue it up like normal since we can potentially save some
1306 	 * CPU this way.
1307 	 */
1308 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1309 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1310 		struct request *old_rq = NULL;
1311 
1312 		blk_mq_bio_to_request(rq, bio);
1313 
1314 		/*
1315 		 * We do limited pluging. If the bio can be merged, do that.
1316 		 * Otherwise the existing request in the plug list will be
1317 		 * issued. So the plug list will have one request at most
1318 		 */
1319 		if (plug) {
1320 			/*
1321 			 * The plug list might get flushed before this. If that
1322 			 * happens, same_queue_rq is invalid and plug list is
1323 			 * empty
1324 			 */
1325 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1326 				old_rq = same_queue_rq;
1327 				list_del_init(&old_rq->queuelist);
1328 			}
1329 			list_add_tail(&rq->queuelist, &plug->mq_list);
1330 		} else /* is_sync */
1331 			old_rq = rq;
1332 		blk_mq_put_ctx(data.ctx);
1333 		if (!old_rq)
1334 			goto done;
1335 		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1336 			goto done;
1337 		blk_mq_insert_request(old_rq, false, true, true);
1338 		goto done;
1339 	}
1340 
1341 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1342 		/*
1343 		 * For a SYNC request, send it to the hardware immediately. For
1344 		 * an ASYNC request, just ensure that we run it later on. The
1345 		 * latter allows for merging opportunities and more efficient
1346 		 * dispatching.
1347 		 */
1348 run_queue:
1349 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1350 	}
1351 	blk_mq_put_ctx(data.ctx);
1352 done:
1353 	return cookie;
1354 }
1355 
1356 /*
1357  * Single hardware queue variant. This will attempt to use any per-process
1358  * plug for merging and IO deferral.
1359  */
1360 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1361 {
1362 	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1363 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1364 	struct blk_plug *plug;
1365 	unsigned int request_count = 0;
1366 	struct blk_map_ctx data;
1367 	struct request *rq;
1368 	blk_qc_t cookie;
1369 
1370 	blk_queue_bounce(q, &bio);
1371 
1372 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1373 		bio_io_error(bio);
1374 		return BLK_QC_T_NONE;
1375 	}
1376 
1377 	blk_queue_split(q, &bio, q->bio_split);
1378 
1379 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1380 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1381 			return BLK_QC_T_NONE;
1382 	} else
1383 		request_count = blk_plug_queued_count(q);
1384 
1385 	rq = blk_mq_map_request(q, bio, &data);
1386 	if (unlikely(!rq))
1387 		return BLK_QC_T_NONE;
1388 
1389 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1390 
1391 	if (unlikely(is_flush_fua)) {
1392 		blk_mq_bio_to_request(rq, bio);
1393 		blk_insert_flush(rq);
1394 		goto run_queue;
1395 	}
1396 
1397 	/*
1398 	 * A task plug currently exists. Since this is completely lockless,
1399 	 * utilize that to temporarily store requests until the task is
1400 	 * either done or scheduled away.
1401 	 */
1402 	plug = current->plug;
1403 	if (plug) {
1404 		blk_mq_bio_to_request(rq, bio);
1405 		if (!request_count)
1406 			trace_block_plug(q);
1407 
1408 		blk_mq_put_ctx(data.ctx);
1409 
1410 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1411 			blk_flush_plug_list(plug, false);
1412 			trace_block_plug(q);
1413 		}
1414 
1415 		list_add_tail(&rq->queuelist, &plug->mq_list);
1416 		return cookie;
1417 	}
1418 
1419 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1420 		/*
1421 		 * For a SYNC request, send it to the hardware immediately. For
1422 		 * an ASYNC request, just ensure that we run it later on. The
1423 		 * latter allows for merging opportunities and more efficient
1424 		 * dispatching.
1425 		 */
1426 run_queue:
1427 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1428 	}
1429 
1430 	blk_mq_put_ctx(data.ctx);
1431 	return cookie;
1432 }
1433 
1434 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1435 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1436 {
1437 	struct page *page;
1438 
1439 	if (tags->rqs && set->ops->exit_request) {
1440 		int i;
1441 
1442 		for (i = 0; i < tags->nr_tags; i++) {
1443 			if (!tags->rqs[i])
1444 				continue;
1445 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1446 						hctx_idx, i);
1447 			tags->rqs[i] = NULL;
1448 		}
1449 	}
1450 
1451 	while (!list_empty(&tags->page_list)) {
1452 		page = list_first_entry(&tags->page_list, struct page, lru);
1453 		list_del_init(&page->lru);
1454 		/*
1455 		 * Remove kmemleak object previously allocated in
1456 		 * blk_mq_init_rq_map().
1457 		 */
1458 		kmemleak_free(page_address(page));
1459 		__free_pages(page, page->private);
1460 	}
1461 
1462 	kfree(tags->rqs);
1463 
1464 	blk_mq_free_tags(tags);
1465 }
1466 
1467 static size_t order_to_size(unsigned int order)
1468 {
1469 	return (size_t)PAGE_SIZE << order;
1470 }
1471 
1472 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1473 		unsigned int hctx_idx)
1474 {
1475 	struct blk_mq_tags *tags;
1476 	unsigned int i, j, entries_per_page, max_order = 4;
1477 	size_t rq_size, left;
1478 
1479 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1480 				set->numa_node,
1481 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1482 	if (!tags)
1483 		return NULL;
1484 
1485 	INIT_LIST_HEAD(&tags->page_list);
1486 
1487 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1488 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1489 				 set->numa_node);
1490 	if (!tags->rqs) {
1491 		blk_mq_free_tags(tags);
1492 		return NULL;
1493 	}
1494 
1495 	/*
1496 	 * rq_size is the size of the request plus driver payload, rounded
1497 	 * to the cacheline size
1498 	 */
1499 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1500 				cache_line_size());
1501 	left = rq_size * set->queue_depth;
1502 
1503 	for (i = 0; i < set->queue_depth; ) {
1504 		int this_order = max_order;
1505 		struct page *page;
1506 		int to_do;
1507 		void *p;
1508 
1509 		while (this_order && left < order_to_size(this_order - 1))
1510 			this_order--;
1511 
1512 		do {
1513 			page = alloc_pages_node(set->numa_node,
1514 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1515 				this_order);
1516 			if (page)
1517 				break;
1518 			if (!this_order--)
1519 				break;
1520 			if (order_to_size(this_order) < rq_size)
1521 				break;
1522 		} while (1);
1523 
1524 		if (!page)
1525 			goto fail;
1526 
1527 		page->private = this_order;
1528 		list_add_tail(&page->lru, &tags->page_list);
1529 
1530 		p = page_address(page);
1531 		/*
1532 		 * Allow kmemleak to scan these pages as they contain pointers
1533 		 * to additional allocations like via ops->init_request().
1534 		 */
1535 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1536 		entries_per_page = order_to_size(this_order) / rq_size;
1537 		to_do = min(entries_per_page, set->queue_depth - i);
1538 		left -= to_do * rq_size;
1539 		for (j = 0; j < to_do; j++) {
1540 			tags->rqs[i] = p;
1541 			if (set->ops->init_request) {
1542 				if (set->ops->init_request(set->driver_data,
1543 						tags->rqs[i], hctx_idx, i,
1544 						set->numa_node)) {
1545 					tags->rqs[i] = NULL;
1546 					goto fail;
1547 				}
1548 			}
1549 
1550 			p += rq_size;
1551 			i++;
1552 		}
1553 	}
1554 	return tags;
1555 
1556 fail:
1557 	blk_mq_free_rq_map(set, tags, hctx_idx);
1558 	return NULL;
1559 }
1560 
1561 /*
1562  * 'cpu' is going away. splice any existing rq_list entries from this
1563  * software queue to the hw queue dispatch list, and ensure that it
1564  * gets run.
1565  */
1566 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1567 {
1568 	struct blk_mq_hw_ctx *hctx;
1569 	struct blk_mq_ctx *ctx;
1570 	LIST_HEAD(tmp);
1571 
1572 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1573 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1574 
1575 	spin_lock(&ctx->lock);
1576 	if (!list_empty(&ctx->rq_list)) {
1577 		list_splice_init(&ctx->rq_list, &tmp);
1578 		blk_mq_hctx_clear_pending(hctx, ctx);
1579 	}
1580 	spin_unlock(&ctx->lock);
1581 
1582 	if (list_empty(&tmp))
1583 		return 0;
1584 
1585 	spin_lock(&hctx->lock);
1586 	list_splice_tail_init(&tmp, &hctx->dispatch);
1587 	spin_unlock(&hctx->lock);
1588 
1589 	blk_mq_run_hw_queue(hctx, true);
1590 	return 0;
1591 }
1592 
1593 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1594 {
1595 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1596 					    &hctx->cpuhp_dead);
1597 }
1598 
1599 /* hctx->ctxs will be freed in queue's release handler */
1600 static void blk_mq_exit_hctx(struct request_queue *q,
1601 		struct blk_mq_tag_set *set,
1602 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1603 {
1604 	unsigned flush_start_tag = set->queue_depth;
1605 
1606 	blk_mq_tag_idle(hctx);
1607 
1608 	if (set->ops->exit_request)
1609 		set->ops->exit_request(set->driver_data,
1610 				       hctx->fq->flush_rq, hctx_idx,
1611 				       flush_start_tag + hctx_idx);
1612 
1613 	if (set->ops->exit_hctx)
1614 		set->ops->exit_hctx(hctx, hctx_idx);
1615 
1616 	blk_mq_remove_cpuhp(hctx);
1617 	blk_free_flush_queue(hctx->fq);
1618 	sbitmap_free(&hctx->ctx_map);
1619 }
1620 
1621 static void blk_mq_exit_hw_queues(struct request_queue *q,
1622 		struct blk_mq_tag_set *set, int nr_queue)
1623 {
1624 	struct blk_mq_hw_ctx *hctx;
1625 	unsigned int i;
1626 
1627 	queue_for_each_hw_ctx(q, hctx, i) {
1628 		if (i == nr_queue)
1629 			break;
1630 		blk_mq_exit_hctx(q, set, hctx, i);
1631 	}
1632 }
1633 
1634 static void blk_mq_free_hw_queues(struct request_queue *q,
1635 		struct blk_mq_tag_set *set)
1636 {
1637 	struct blk_mq_hw_ctx *hctx;
1638 	unsigned int i;
1639 
1640 	queue_for_each_hw_ctx(q, hctx, i)
1641 		free_cpumask_var(hctx->cpumask);
1642 }
1643 
1644 static int blk_mq_init_hctx(struct request_queue *q,
1645 		struct blk_mq_tag_set *set,
1646 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1647 {
1648 	int node;
1649 	unsigned flush_start_tag = set->queue_depth;
1650 
1651 	node = hctx->numa_node;
1652 	if (node == NUMA_NO_NODE)
1653 		node = hctx->numa_node = set->numa_node;
1654 
1655 	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1656 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1657 	spin_lock_init(&hctx->lock);
1658 	INIT_LIST_HEAD(&hctx->dispatch);
1659 	hctx->queue = q;
1660 	hctx->queue_num = hctx_idx;
1661 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1662 
1663 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1664 
1665 	hctx->tags = set->tags[hctx_idx];
1666 
1667 	/*
1668 	 * Allocate space for all possible cpus to avoid allocation at
1669 	 * runtime
1670 	 */
1671 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1672 					GFP_KERNEL, node);
1673 	if (!hctx->ctxs)
1674 		goto unregister_cpu_notifier;
1675 
1676 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1677 			      node))
1678 		goto free_ctxs;
1679 
1680 	hctx->nr_ctx = 0;
1681 
1682 	if (set->ops->init_hctx &&
1683 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1684 		goto free_bitmap;
1685 
1686 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1687 	if (!hctx->fq)
1688 		goto exit_hctx;
1689 
1690 	if (set->ops->init_request &&
1691 	    set->ops->init_request(set->driver_data,
1692 				   hctx->fq->flush_rq, hctx_idx,
1693 				   flush_start_tag + hctx_idx, node))
1694 		goto free_fq;
1695 
1696 	return 0;
1697 
1698  free_fq:
1699 	kfree(hctx->fq);
1700  exit_hctx:
1701 	if (set->ops->exit_hctx)
1702 		set->ops->exit_hctx(hctx, hctx_idx);
1703  free_bitmap:
1704 	sbitmap_free(&hctx->ctx_map);
1705  free_ctxs:
1706 	kfree(hctx->ctxs);
1707  unregister_cpu_notifier:
1708 	blk_mq_remove_cpuhp(hctx);
1709 	return -1;
1710 }
1711 
1712 static void blk_mq_init_cpu_queues(struct request_queue *q,
1713 				   unsigned int nr_hw_queues)
1714 {
1715 	unsigned int i;
1716 
1717 	for_each_possible_cpu(i) {
1718 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1719 		struct blk_mq_hw_ctx *hctx;
1720 
1721 		memset(__ctx, 0, sizeof(*__ctx));
1722 		__ctx->cpu = i;
1723 		spin_lock_init(&__ctx->lock);
1724 		INIT_LIST_HEAD(&__ctx->rq_list);
1725 		__ctx->queue = q;
1726 
1727 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1728 		if (!cpu_online(i))
1729 			continue;
1730 
1731 		hctx = blk_mq_map_queue(q, i);
1732 
1733 		/*
1734 		 * Set local node, IFF we have more than one hw queue. If
1735 		 * not, we remain on the home node of the device
1736 		 */
1737 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1738 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1739 	}
1740 }
1741 
1742 static void blk_mq_map_swqueue(struct request_queue *q,
1743 			       const struct cpumask *online_mask)
1744 {
1745 	unsigned int i;
1746 	struct blk_mq_hw_ctx *hctx;
1747 	struct blk_mq_ctx *ctx;
1748 	struct blk_mq_tag_set *set = q->tag_set;
1749 
1750 	/*
1751 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1752 	 */
1753 	mutex_lock(&q->sysfs_lock);
1754 
1755 	queue_for_each_hw_ctx(q, hctx, i) {
1756 		cpumask_clear(hctx->cpumask);
1757 		hctx->nr_ctx = 0;
1758 	}
1759 
1760 	/*
1761 	 * Map software to hardware queues
1762 	 */
1763 	for_each_possible_cpu(i) {
1764 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1765 		if (!cpumask_test_cpu(i, online_mask))
1766 			continue;
1767 
1768 		ctx = per_cpu_ptr(q->queue_ctx, i);
1769 		hctx = blk_mq_map_queue(q, i);
1770 
1771 		cpumask_set_cpu(i, hctx->cpumask);
1772 		ctx->index_hw = hctx->nr_ctx;
1773 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1774 	}
1775 
1776 	mutex_unlock(&q->sysfs_lock);
1777 
1778 	queue_for_each_hw_ctx(q, hctx, i) {
1779 		/*
1780 		 * If no software queues are mapped to this hardware queue,
1781 		 * disable it and free the request entries.
1782 		 */
1783 		if (!hctx->nr_ctx) {
1784 			if (set->tags[i]) {
1785 				blk_mq_free_rq_map(set, set->tags[i], i);
1786 				set->tags[i] = NULL;
1787 			}
1788 			hctx->tags = NULL;
1789 			continue;
1790 		}
1791 
1792 		/* unmapped hw queue can be remapped after CPU topo changed */
1793 		if (!set->tags[i])
1794 			set->tags[i] = blk_mq_init_rq_map(set, i);
1795 		hctx->tags = set->tags[i];
1796 		WARN_ON(!hctx->tags);
1797 
1798 		/*
1799 		 * Set the map size to the number of mapped software queues.
1800 		 * This is more accurate and more efficient than looping
1801 		 * over all possibly mapped software queues.
1802 		 */
1803 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1804 
1805 		/*
1806 		 * Initialize batch roundrobin counts
1807 		 */
1808 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1809 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1810 	}
1811 }
1812 
1813 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1814 {
1815 	struct blk_mq_hw_ctx *hctx;
1816 	int i;
1817 
1818 	queue_for_each_hw_ctx(q, hctx, i) {
1819 		if (shared)
1820 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1821 		else
1822 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1823 	}
1824 }
1825 
1826 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1827 {
1828 	struct request_queue *q;
1829 
1830 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1831 		blk_mq_freeze_queue(q);
1832 		queue_set_hctx_shared(q, shared);
1833 		blk_mq_unfreeze_queue(q);
1834 	}
1835 }
1836 
1837 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1838 {
1839 	struct blk_mq_tag_set *set = q->tag_set;
1840 
1841 	mutex_lock(&set->tag_list_lock);
1842 	list_del_init(&q->tag_set_list);
1843 	if (list_is_singular(&set->tag_list)) {
1844 		/* just transitioned to unshared */
1845 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1846 		/* update existing queue */
1847 		blk_mq_update_tag_set_depth(set, false);
1848 	}
1849 	mutex_unlock(&set->tag_list_lock);
1850 }
1851 
1852 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1853 				     struct request_queue *q)
1854 {
1855 	q->tag_set = set;
1856 
1857 	mutex_lock(&set->tag_list_lock);
1858 
1859 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1860 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1861 		set->flags |= BLK_MQ_F_TAG_SHARED;
1862 		/* update existing queue */
1863 		blk_mq_update_tag_set_depth(set, true);
1864 	}
1865 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1866 		queue_set_hctx_shared(q, true);
1867 	list_add_tail(&q->tag_set_list, &set->tag_list);
1868 
1869 	mutex_unlock(&set->tag_list_lock);
1870 }
1871 
1872 /*
1873  * It is the actual release handler for mq, but we do it from
1874  * request queue's release handler for avoiding use-after-free
1875  * and headache because q->mq_kobj shouldn't have been introduced,
1876  * but we can't group ctx/kctx kobj without it.
1877  */
1878 void blk_mq_release(struct request_queue *q)
1879 {
1880 	struct blk_mq_hw_ctx *hctx;
1881 	unsigned int i;
1882 
1883 	/* hctx kobj stays in hctx */
1884 	queue_for_each_hw_ctx(q, hctx, i) {
1885 		if (!hctx)
1886 			continue;
1887 		kfree(hctx->ctxs);
1888 		kfree(hctx);
1889 	}
1890 
1891 	q->mq_map = NULL;
1892 
1893 	kfree(q->queue_hw_ctx);
1894 
1895 	/* ctx kobj stays in queue_ctx */
1896 	free_percpu(q->queue_ctx);
1897 }
1898 
1899 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1900 {
1901 	struct request_queue *uninit_q, *q;
1902 
1903 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1904 	if (!uninit_q)
1905 		return ERR_PTR(-ENOMEM);
1906 
1907 	q = blk_mq_init_allocated_queue(set, uninit_q);
1908 	if (IS_ERR(q))
1909 		blk_cleanup_queue(uninit_q);
1910 
1911 	return q;
1912 }
1913 EXPORT_SYMBOL(blk_mq_init_queue);
1914 
1915 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1916 						struct request_queue *q)
1917 {
1918 	int i, j;
1919 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1920 
1921 	blk_mq_sysfs_unregister(q);
1922 	for (i = 0; i < set->nr_hw_queues; i++) {
1923 		int node;
1924 
1925 		if (hctxs[i])
1926 			continue;
1927 
1928 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1929 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1930 					GFP_KERNEL, node);
1931 		if (!hctxs[i])
1932 			break;
1933 
1934 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1935 						node)) {
1936 			kfree(hctxs[i]);
1937 			hctxs[i] = NULL;
1938 			break;
1939 		}
1940 
1941 		atomic_set(&hctxs[i]->nr_active, 0);
1942 		hctxs[i]->numa_node = node;
1943 		hctxs[i]->queue_num = i;
1944 
1945 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1946 			free_cpumask_var(hctxs[i]->cpumask);
1947 			kfree(hctxs[i]);
1948 			hctxs[i] = NULL;
1949 			break;
1950 		}
1951 		blk_mq_hctx_kobj_init(hctxs[i]);
1952 	}
1953 	for (j = i; j < q->nr_hw_queues; j++) {
1954 		struct blk_mq_hw_ctx *hctx = hctxs[j];
1955 
1956 		if (hctx) {
1957 			if (hctx->tags) {
1958 				blk_mq_free_rq_map(set, hctx->tags, j);
1959 				set->tags[j] = NULL;
1960 			}
1961 			blk_mq_exit_hctx(q, set, hctx, j);
1962 			free_cpumask_var(hctx->cpumask);
1963 			kobject_put(&hctx->kobj);
1964 			kfree(hctx->ctxs);
1965 			kfree(hctx);
1966 			hctxs[j] = NULL;
1967 
1968 		}
1969 	}
1970 	q->nr_hw_queues = i;
1971 	blk_mq_sysfs_register(q);
1972 }
1973 
1974 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1975 						  struct request_queue *q)
1976 {
1977 	/* mark the queue as mq asap */
1978 	q->mq_ops = set->ops;
1979 
1980 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
1981 	if (!q->queue_ctx)
1982 		goto err_exit;
1983 
1984 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
1985 						GFP_KERNEL, set->numa_node);
1986 	if (!q->queue_hw_ctx)
1987 		goto err_percpu;
1988 
1989 	q->mq_map = set->mq_map;
1990 
1991 	blk_mq_realloc_hw_ctxs(set, q);
1992 	if (!q->nr_hw_queues)
1993 		goto err_hctxs;
1994 
1995 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1996 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1997 
1998 	q->nr_queues = nr_cpu_ids;
1999 
2000 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2001 
2002 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2003 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2004 
2005 	q->sg_reserved_size = INT_MAX;
2006 
2007 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2008 	INIT_LIST_HEAD(&q->requeue_list);
2009 	spin_lock_init(&q->requeue_lock);
2010 
2011 	if (q->nr_hw_queues > 1)
2012 		blk_queue_make_request(q, blk_mq_make_request);
2013 	else
2014 		blk_queue_make_request(q, blk_sq_make_request);
2015 
2016 	/*
2017 	 * Do this after blk_queue_make_request() overrides it...
2018 	 */
2019 	q->nr_requests = set->queue_depth;
2020 
2021 	if (set->ops->complete)
2022 		blk_queue_softirq_done(q, set->ops->complete);
2023 
2024 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2025 
2026 	get_online_cpus();
2027 	mutex_lock(&all_q_mutex);
2028 
2029 	list_add_tail(&q->all_q_node, &all_q_list);
2030 	blk_mq_add_queue_tag_set(set, q);
2031 	blk_mq_map_swqueue(q, cpu_online_mask);
2032 
2033 	mutex_unlock(&all_q_mutex);
2034 	put_online_cpus();
2035 
2036 	return q;
2037 
2038 err_hctxs:
2039 	kfree(q->queue_hw_ctx);
2040 err_percpu:
2041 	free_percpu(q->queue_ctx);
2042 err_exit:
2043 	q->mq_ops = NULL;
2044 	return ERR_PTR(-ENOMEM);
2045 }
2046 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2047 
2048 void blk_mq_free_queue(struct request_queue *q)
2049 {
2050 	struct blk_mq_tag_set	*set = q->tag_set;
2051 
2052 	mutex_lock(&all_q_mutex);
2053 	list_del_init(&q->all_q_node);
2054 	mutex_unlock(&all_q_mutex);
2055 
2056 	blk_mq_del_queue_tag_set(q);
2057 
2058 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2059 	blk_mq_free_hw_queues(q, set);
2060 }
2061 
2062 /* Basically redo blk_mq_init_queue with queue frozen */
2063 static void blk_mq_queue_reinit(struct request_queue *q,
2064 				const struct cpumask *online_mask)
2065 {
2066 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2067 
2068 	blk_mq_sysfs_unregister(q);
2069 
2070 	/*
2071 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2072 	 * we should change hctx numa_node according to new topology (this
2073 	 * involves free and re-allocate memory, worthy doing?)
2074 	 */
2075 
2076 	blk_mq_map_swqueue(q, online_mask);
2077 
2078 	blk_mq_sysfs_register(q);
2079 }
2080 
2081 /*
2082  * New online cpumask which is going to be set in this hotplug event.
2083  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2084  * one-by-one and dynamically allocating this could result in a failure.
2085  */
2086 static struct cpumask cpuhp_online_new;
2087 
2088 static void blk_mq_queue_reinit_work(void)
2089 {
2090 	struct request_queue *q;
2091 
2092 	mutex_lock(&all_q_mutex);
2093 	/*
2094 	 * We need to freeze and reinit all existing queues.  Freezing
2095 	 * involves synchronous wait for an RCU grace period and doing it
2096 	 * one by one may take a long time.  Start freezing all queues in
2097 	 * one swoop and then wait for the completions so that freezing can
2098 	 * take place in parallel.
2099 	 */
2100 	list_for_each_entry(q, &all_q_list, all_q_node)
2101 		blk_mq_freeze_queue_start(q);
2102 	list_for_each_entry(q, &all_q_list, all_q_node) {
2103 		blk_mq_freeze_queue_wait(q);
2104 
2105 		/*
2106 		 * timeout handler can't touch hw queue during the
2107 		 * reinitialization
2108 		 */
2109 		del_timer_sync(&q->timeout);
2110 	}
2111 
2112 	list_for_each_entry(q, &all_q_list, all_q_node)
2113 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2114 
2115 	list_for_each_entry(q, &all_q_list, all_q_node)
2116 		blk_mq_unfreeze_queue(q);
2117 
2118 	mutex_unlock(&all_q_mutex);
2119 }
2120 
2121 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2122 {
2123 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2124 	blk_mq_queue_reinit_work();
2125 	return 0;
2126 }
2127 
2128 /*
2129  * Before hotadded cpu starts handling requests, new mappings must be
2130  * established.  Otherwise, these requests in hw queue might never be
2131  * dispatched.
2132  *
2133  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2134  * for CPU0, and ctx1 for CPU1).
2135  *
2136  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2137  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2138  *
2139  * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2140  * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2141  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2142  * is ignored.
2143  */
2144 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2145 {
2146 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2147 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2148 	blk_mq_queue_reinit_work();
2149 	return 0;
2150 }
2151 
2152 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2153 {
2154 	int i;
2155 
2156 	for (i = 0; i < set->nr_hw_queues; i++) {
2157 		set->tags[i] = blk_mq_init_rq_map(set, i);
2158 		if (!set->tags[i])
2159 			goto out_unwind;
2160 	}
2161 
2162 	return 0;
2163 
2164 out_unwind:
2165 	while (--i >= 0)
2166 		blk_mq_free_rq_map(set, set->tags[i], i);
2167 
2168 	return -ENOMEM;
2169 }
2170 
2171 /*
2172  * Allocate the request maps associated with this tag_set. Note that this
2173  * may reduce the depth asked for, if memory is tight. set->queue_depth
2174  * will be updated to reflect the allocated depth.
2175  */
2176 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2177 {
2178 	unsigned int depth;
2179 	int err;
2180 
2181 	depth = set->queue_depth;
2182 	do {
2183 		err = __blk_mq_alloc_rq_maps(set);
2184 		if (!err)
2185 			break;
2186 
2187 		set->queue_depth >>= 1;
2188 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2189 			err = -ENOMEM;
2190 			break;
2191 		}
2192 	} while (set->queue_depth);
2193 
2194 	if (!set->queue_depth || err) {
2195 		pr_err("blk-mq: failed to allocate request map\n");
2196 		return -ENOMEM;
2197 	}
2198 
2199 	if (depth != set->queue_depth)
2200 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2201 						depth, set->queue_depth);
2202 
2203 	return 0;
2204 }
2205 
2206 /*
2207  * Alloc a tag set to be associated with one or more request queues.
2208  * May fail with EINVAL for various error conditions. May adjust the
2209  * requested depth down, if if it too large. In that case, the set
2210  * value will be stored in set->queue_depth.
2211  */
2212 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2213 {
2214 	int ret;
2215 
2216 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2217 
2218 	if (!set->nr_hw_queues)
2219 		return -EINVAL;
2220 	if (!set->queue_depth)
2221 		return -EINVAL;
2222 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2223 		return -EINVAL;
2224 
2225 	if (!set->ops->queue_rq)
2226 		return -EINVAL;
2227 
2228 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2229 		pr_info("blk-mq: reduced tag depth to %u\n",
2230 			BLK_MQ_MAX_DEPTH);
2231 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2232 	}
2233 
2234 	/*
2235 	 * If a crashdump is active, then we are potentially in a very
2236 	 * memory constrained environment. Limit us to 1 queue and
2237 	 * 64 tags to prevent using too much memory.
2238 	 */
2239 	if (is_kdump_kernel()) {
2240 		set->nr_hw_queues = 1;
2241 		set->queue_depth = min(64U, set->queue_depth);
2242 	}
2243 	/*
2244 	 * There is no use for more h/w queues than cpus.
2245 	 */
2246 	if (set->nr_hw_queues > nr_cpu_ids)
2247 		set->nr_hw_queues = nr_cpu_ids;
2248 
2249 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2250 				 GFP_KERNEL, set->numa_node);
2251 	if (!set->tags)
2252 		return -ENOMEM;
2253 
2254 	ret = -ENOMEM;
2255 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2256 			GFP_KERNEL, set->numa_node);
2257 	if (!set->mq_map)
2258 		goto out_free_tags;
2259 
2260 	if (set->ops->map_queues)
2261 		ret = set->ops->map_queues(set);
2262 	else
2263 		ret = blk_mq_map_queues(set);
2264 	if (ret)
2265 		goto out_free_mq_map;
2266 
2267 	ret = blk_mq_alloc_rq_maps(set);
2268 	if (ret)
2269 		goto out_free_mq_map;
2270 
2271 	mutex_init(&set->tag_list_lock);
2272 	INIT_LIST_HEAD(&set->tag_list);
2273 
2274 	return 0;
2275 
2276 out_free_mq_map:
2277 	kfree(set->mq_map);
2278 	set->mq_map = NULL;
2279 out_free_tags:
2280 	kfree(set->tags);
2281 	set->tags = NULL;
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2285 
2286 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2287 {
2288 	int i;
2289 
2290 	for (i = 0; i < nr_cpu_ids; i++) {
2291 		if (set->tags[i])
2292 			blk_mq_free_rq_map(set, set->tags[i], i);
2293 	}
2294 
2295 	kfree(set->mq_map);
2296 	set->mq_map = NULL;
2297 
2298 	kfree(set->tags);
2299 	set->tags = NULL;
2300 }
2301 EXPORT_SYMBOL(blk_mq_free_tag_set);
2302 
2303 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2304 {
2305 	struct blk_mq_tag_set *set = q->tag_set;
2306 	struct blk_mq_hw_ctx *hctx;
2307 	int i, ret;
2308 
2309 	if (!set || nr > set->queue_depth)
2310 		return -EINVAL;
2311 
2312 	ret = 0;
2313 	queue_for_each_hw_ctx(q, hctx, i) {
2314 		if (!hctx->tags)
2315 			continue;
2316 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2317 		if (ret)
2318 			break;
2319 	}
2320 
2321 	if (!ret)
2322 		q->nr_requests = nr;
2323 
2324 	return ret;
2325 }
2326 
2327 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2328 {
2329 	struct request_queue *q;
2330 
2331 	if (nr_hw_queues > nr_cpu_ids)
2332 		nr_hw_queues = nr_cpu_ids;
2333 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2334 		return;
2335 
2336 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2337 		blk_mq_freeze_queue(q);
2338 
2339 	set->nr_hw_queues = nr_hw_queues;
2340 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2341 		blk_mq_realloc_hw_ctxs(set, q);
2342 
2343 		if (q->nr_hw_queues > 1)
2344 			blk_queue_make_request(q, blk_mq_make_request);
2345 		else
2346 			blk_queue_make_request(q, blk_sq_make_request);
2347 
2348 		blk_mq_queue_reinit(q, cpu_online_mask);
2349 	}
2350 
2351 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2352 		blk_mq_unfreeze_queue(q);
2353 }
2354 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2355 
2356 void blk_mq_disable_hotplug(void)
2357 {
2358 	mutex_lock(&all_q_mutex);
2359 }
2360 
2361 void blk_mq_enable_hotplug(void)
2362 {
2363 	mutex_unlock(&all_q_mutex);
2364 }
2365 
2366 static int __init blk_mq_init(void)
2367 {
2368 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2369 				blk_mq_hctx_notify_dead);
2370 
2371 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2372 				  blk_mq_queue_reinit_prepare,
2373 				  blk_mq_queue_reinit_dead);
2374 	return 0;
2375 }
2376 subsys_initcall(blk_mq_init);
2377