xref: /openbmc/linux/block/blk-mq.c (revision c4ee0af3)
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17 
18 #include <trace/events/block.h>
19 
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24 
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27 
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29 
30 DEFINE_PER_CPU(struct llist_head, ipi_lists);
31 
32 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
33 					   unsigned int cpu)
34 {
35 	return per_cpu_ptr(q->queue_ctx, cpu);
36 }
37 
38 /*
39  * This assumes per-cpu software queueing queues. They could be per-node
40  * as well, for instance. For now this is hardcoded as-is. Note that we don't
41  * care about preemption, since we know the ctx's are persistent. This does
42  * mean that we can't rely on ctx always matching the currently running CPU.
43  */
44 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
45 {
46 	return __blk_mq_get_ctx(q, get_cpu());
47 }
48 
49 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
50 {
51 	put_cpu();
52 }
53 
54 /*
55  * Check if any of the ctx's have pending work in this hardware queue
56  */
57 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
58 {
59 	unsigned int i;
60 
61 	for (i = 0; i < hctx->nr_ctx_map; i++)
62 		if (hctx->ctx_map[i])
63 			return true;
64 
65 	return false;
66 }
67 
68 /*
69  * Mark this ctx as having pending work in this hardware queue
70  */
71 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
72 				     struct blk_mq_ctx *ctx)
73 {
74 	if (!test_bit(ctx->index_hw, hctx->ctx_map))
75 		set_bit(ctx->index_hw, hctx->ctx_map);
76 }
77 
78 static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
79 				       bool reserved)
80 {
81 	struct request *rq;
82 	unsigned int tag;
83 
84 	tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
85 	if (tag != BLK_MQ_TAG_FAIL) {
86 		rq = hctx->rqs[tag];
87 		rq->tag = tag;
88 
89 		return rq;
90 	}
91 
92 	return NULL;
93 }
94 
95 static int blk_mq_queue_enter(struct request_queue *q)
96 {
97 	int ret;
98 
99 	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 	smp_wmb();
101 	/* we have problems to freeze the queue if it's initializing */
102 	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
103 		return 0;
104 
105 	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
106 
107 	spin_lock_irq(q->queue_lock);
108 	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
109 		!blk_queue_bypass(q), *q->queue_lock);
110 	/* inc usage with lock hold to avoid freeze_queue runs here */
111 	if (!ret)
112 		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
113 	spin_unlock_irq(q->queue_lock);
114 
115 	return ret;
116 }
117 
118 static void blk_mq_queue_exit(struct request_queue *q)
119 {
120 	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
121 }
122 
123 /*
124  * Guarantee no request is in use, so we can change any data structure of
125  * the queue afterward.
126  */
127 static void blk_mq_freeze_queue(struct request_queue *q)
128 {
129 	bool drain;
130 
131 	spin_lock_irq(q->queue_lock);
132 	drain = !q->bypass_depth++;
133 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
134 	spin_unlock_irq(q->queue_lock);
135 
136 	if (!drain)
137 		return;
138 
139 	while (true) {
140 		s64 count;
141 
142 		spin_lock_irq(q->queue_lock);
143 		count = percpu_counter_sum(&q->mq_usage_counter);
144 		spin_unlock_irq(q->queue_lock);
145 
146 		if (count == 0)
147 			break;
148 		blk_mq_run_queues(q, false);
149 		msleep(10);
150 	}
151 }
152 
153 static void blk_mq_unfreeze_queue(struct request_queue *q)
154 {
155 	bool wake = false;
156 
157 	spin_lock_irq(q->queue_lock);
158 	if (!--q->bypass_depth) {
159 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
160 		wake = true;
161 	}
162 	WARN_ON_ONCE(q->bypass_depth < 0);
163 	spin_unlock_irq(q->queue_lock);
164 	if (wake)
165 		wake_up_all(&q->mq_freeze_wq);
166 }
167 
168 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
169 {
170 	return blk_mq_has_free_tags(hctx->tags);
171 }
172 EXPORT_SYMBOL(blk_mq_can_queue);
173 
174 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
175 			       struct request *rq, unsigned int rw_flags)
176 {
177 	if (blk_queue_io_stat(q))
178 		rw_flags |= REQ_IO_STAT;
179 
180 	rq->mq_ctx = ctx;
181 	rq->cmd_flags = rw_flags;
182 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
183 }
184 
185 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
186 					      gfp_t gfp, bool reserved)
187 {
188 	return blk_mq_alloc_rq(hctx, gfp, reserved);
189 }
190 
191 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
192 						   int rw, gfp_t gfp,
193 						   bool reserved)
194 {
195 	struct request *rq;
196 
197 	do {
198 		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
199 		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
200 
201 		rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
202 		if (rq) {
203 			blk_mq_rq_ctx_init(q, ctx, rq, rw);
204 			break;
205 		}
206 
207 		blk_mq_put_ctx(ctx);
208 		if (!(gfp & __GFP_WAIT))
209 			break;
210 
211 		__blk_mq_run_hw_queue(hctx);
212 		blk_mq_wait_for_tags(hctx->tags);
213 	} while (1);
214 
215 	return rq;
216 }
217 
218 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
219 		gfp_t gfp, bool reserved)
220 {
221 	struct request *rq;
222 
223 	if (blk_mq_queue_enter(q))
224 		return NULL;
225 
226 	rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
227 	if (rq)
228 		blk_mq_put_ctx(rq->mq_ctx);
229 	return rq;
230 }
231 
232 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
233 					      gfp_t gfp)
234 {
235 	struct request *rq;
236 
237 	if (blk_mq_queue_enter(q))
238 		return NULL;
239 
240 	rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
241 	if (rq)
242 		blk_mq_put_ctx(rq->mq_ctx);
243 	return rq;
244 }
245 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
246 
247 /*
248  * Re-init and set pdu, if we have it
249  */
250 static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
251 {
252 	blk_rq_init(hctx->queue, rq);
253 
254 	if (hctx->cmd_size)
255 		rq->special = blk_mq_rq_to_pdu(rq);
256 }
257 
258 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
259 				  struct blk_mq_ctx *ctx, struct request *rq)
260 {
261 	const int tag = rq->tag;
262 	struct request_queue *q = rq->q;
263 
264 	blk_mq_rq_init(hctx, rq);
265 	blk_mq_put_tag(hctx->tags, tag);
266 
267 	blk_mq_queue_exit(q);
268 }
269 
270 void blk_mq_free_request(struct request *rq)
271 {
272 	struct blk_mq_ctx *ctx = rq->mq_ctx;
273 	struct blk_mq_hw_ctx *hctx;
274 	struct request_queue *q = rq->q;
275 
276 	ctx->rq_completed[rq_is_sync(rq)]++;
277 
278 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
279 	__blk_mq_free_request(hctx, ctx, rq);
280 }
281 
282 static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
283 {
284 	if (error)
285 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
286 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
287 		error = -EIO;
288 
289 	if (unlikely(rq->cmd_flags & REQ_QUIET))
290 		set_bit(BIO_QUIET, &bio->bi_flags);
291 
292 	/* don't actually finish bio if it's part of flush sequence */
293 	if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
294 		bio_endio(bio, error);
295 }
296 
297 void blk_mq_complete_request(struct request *rq, int error)
298 {
299 	struct bio *bio = rq->bio;
300 	unsigned int bytes = 0;
301 
302 	trace_block_rq_complete(rq->q, rq);
303 
304 	while (bio) {
305 		struct bio *next = bio->bi_next;
306 
307 		bio->bi_next = NULL;
308 		bytes += bio->bi_size;
309 		blk_mq_bio_endio(rq, bio, error);
310 		bio = next;
311 	}
312 
313 	blk_account_io_completion(rq, bytes);
314 
315 	blk_account_io_done(rq);
316 
317 	if (rq->end_io)
318 		rq->end_io(rq, error);
319 	else
320 		blk_mq_free_request(rq);
321 }
322 
323 void __blk_mq_end_io(struct request *rq, int error)
324 {
325 	if (!blk_mark_rq_complete(rq))
326 		blk_mq_complete_request(rq, error);
327 }
328 
329 #if defined(CONFIG_SMP)
330 
331 /*
332  * Called with interrupts disabled.
333  */
334 static void ipi_end_io(void *data)
335 {
336 	struct llist_head *list = &per_cpu(ipi_lists, smp_processor_id());
337 	struct llist_node *entry, *next;
338 	struct request *rq;
339 
340 	entry = llist_del_all(list);
341 
342 	while (entry) {
343 		next = entry->next;
344 		rq = llist_entry(entry, struct request, ll_list);
345 		__blk_mq_end_io(rq, rq->errors);
346 		entry = next;
347 	}
348 }
349 
350 static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
351 			  struct request *rq, const int error)
352 {
353 	struct call_single_data *data = &rq->csd;
354 
355 	rq->errors = error;
356 	rq->ll_list.next = NULL;
357 
358 	/*
359 	 * If the list is non-empty, an existing IPI must already
360 	 * be "in flight". If that is the case, we need not schedule
361 	 * a new one.
362 	 */
363 	if (llist_add(&rq->ll_list, &per_cpu(ipi_lists, ctx->cpu))) {
364 		data->func = ipi_end_io;
365 		data->flags = 0;
366 		__smp_call_function_single(ctx->cpu, data, 0);
367 	}
368 
369 	return true;
370 }
371 #else /* CONFIG_SMP */
372 static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
373 			  struct request *rq, const int error)
374 {
375 	return false;
376 }
377 #endif
378 
379 /*
380  * End IO on this request on a multiqueue enabled driver. We'll either do
381  * it directly inline, or punt to a local IPI handler on the matching
382  * remote CPU.
383  */
384 void blk_mq_end_io(struct request *rq, int error)
385 {
386 	struct blk_mq_ctx *ctx = rq->mq_ctx;
387 	int cpu;
388 
389 	if (!ctx->ipi_redirect)
390 		return __blk_mq_end_io(rq, error);
391 
392 	cpu = get_cpu();
393 
394 	if (cpu == ctx->cpu || !cpu_online(ctx->cpu) ||
395 	    !ipi_remote_cpu(ctx, cpu, rq, error))
396 		__blk_mq_end_io(rq, error);
397 
398 	put_cpu();
399 }
400 EXPORT_SYMBOL(blk_mq_end_io);
401 
402 static void blk_mq_start_request(struct request *rq)
403 {
404 	struct request_queue *q = rq->q;
405 
406 	trace_block_rq_issue(q, rq);
407 
408 	/*
409 	 * Just mark start time and set the started bit. Due to memory
410 	 * ordering, we know we'll see the correct deadline as long as
411 	 * REQ_ATOMIC_STARTED is seen.
412 	 */
413 	rq->deadline = jiffies + q->rq_timeout;
414 	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
415 }
416 
417 static void blk_mq_requeue_request(struct request *rq)
418 {
419 	struct request_queue *q = rq->q;
420 
421 	trace_block_rq_requeue(q, rq);
422 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
423 }
424 
425 struct blk_mq_timeout_data {
426 	struct blk_mq_hw_ctx *hctx;
427 	unsigned long *next;
428 	unsigned int *next_set;
429 };
430 
431 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
432 {
433 	struct blk_mq_timeout_data *data = __data;
434 	struct blk_mq_hw_ctx *hctx = data->hctx;
435 	unsigned int tag;
436 
437 	 /* It may not be in flight yet (this is where
438 	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
439 	 * statically allocated, so we know it's always safe to access the
440 	 * memory associated with a bit offset into ->rqs[].
441 	 */
442 	tag = 0;
443 	do {
444 		struct request *rq;
445 
446 		tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
447 		if (tag >= hctx->queue_depth)
448 			break;
449 
450 		rq = hctx->rqs[tag++];
451 
452 		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
453 			continue;
454 
455 		blk_rq_check_expired(rq, data->next, data->next_set);
456 	} while (1);
457 }
458 
459 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
460 					unsigned long *next,
461 					unsigned int *next_set)
462 {
463 	struct blk_mq_timeout_data data = {
464 		.hctx		= hctx,
465 		.next		= next,
466 		.next_set	= next_set,
467 	};
468 
469 	/*
470 	 * Ask the tagging code to iterate busy requests, so we can
471 	 * check them for timeout.
472 	 */
473 	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
474 }
475 
476 static void blk_mq_rq_timer(unsigned long data)
477 {
478 	struct request_queue *q = (struct request_queue *) data;
479 	struct blk_mq_hw_ctx *hctx;
480 	unsigned long next = 0;
481 	int i, next_set = 0;
482 
483 	queue_for_each_hw_ctx(q, hctx, i)
484 		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
485 
486 	if (next_set)
487 		mod_timer(&q->timeout, round_jiffies_up(next));
488 }
489 
490 /*
491  * Reverse check our software queue for entries that we could potentially
492  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
493  * too much time checking for merges.
494  */
495 static bool blk_mq_attempt_merge(struct request_queue *q,
496 				 struct blk_mq_ctx *ctx, struct bio *bio)
497 {
498 	struct request *rq;
499 	int checked = 8;
500 
501 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
502 		int el_ret;
503 
504 		if (!checked--)
505 			break;
506 
507 		if (!blk_rq_merge_ok(rq, bio))
508 			continue;
509 
510 		el_ret = blk_try_merge(rq, bio);
511 		if (el_ret == ELEVATOR_BACK_MERGE) {
512 			if (bio_attempt_back_merge(q, rq, bio)) {
513 				ctx->rq_merged++;
514 				return true;
515 			}
516 			break;
517 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
518 			if (bio_attempt_front_merge(q, rq, bio)) {
519 				ctx->rq_merged++;
520 				return true;
521 			}
522 			break;
523 		}
524 	}
525 
526 	return false;
527 }
528 
529 void blk_mq_add_timer(struct request *rq)
530 {
531 	__blk_add_timer(rq, NULL);
532 }
533 
534 /*
535  * Run this hardware queue, pulling any software queues mapped to it in.
536  * Note that this function currently has various problems around ordering
537  * of IO. In particular, we'd like FIFO behaviour on handling existing
538  * items on the hctx->dispatch list. Ignore that for now.
539  */
540 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
541 {
542 	struct request_queue *q = hctx->queue;
543 	struct blk_mq_ctx *ctx;
544 	struct request *rq;
545 	LIST_HEAD(rq_list);
546 	int bit, queued;
547 
548 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
549 		return;
550 
551 	hctx->run++;
552 
553 	/*
554 	 * Touch any software queue that has pending entries.
555 	 */
556 	for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
557 		clear_bit(bit, hctx->ctx_map);
558 		ctx = hctx->ctxs[bit];
559 		BUG_ON(bit != ctx->index_hw);
560 
561 		spin_lock(&ctx->lock);
562 		list_splice_tail_init(&ctx->rq_list, &rq_list);
563 		spin_unlock(&ctx->lock);
564 	}
565 
566 	/*
567 	 * If we have previous entries on our dispatch list, grab them
568 	 * and stuff them at the front for more fair dispatch.
569 	 */
570 	if (!list_empty_careful(&hctx->dispatch)) {
571 		spin_lock(&hctx->lock);
572 		if (!list_empty(&hctx->dispatch))
573 			list_splice_init(&hctx->dispatch, &rq_list);
574 		spin_unlock(&hctx->lock);
575 	}
576 
577 	/*
578 	 * Delete and return all entries from our dispatch list
579 	 */
580 	queued = 0;
581 
582 	/*
583 	 * Now process all the entries, sending them to the driver.
584 	 */
585 	while (!list_empty(&rq_list)) {
586 		int ret;
587 
588 		rq = list_first_entry(&rq_list, struct request, queuelist);
589 		list_del_init(&rq->queuelist);
590 		blk_mq_start_request(rq);
591 
592 		/*
593 		 * Last request in the series. Flag it as such, this
594 		 * enables drivers to know when IO should be kicked off,
595 		 * if they don't do it on a per-request basis.
596 		 *
597 		 * Note: the flag isn't the only condition drivers
598 		 * should do kick off. If drive is busy, the last
599 		 * request might not have the bit set.
600 		 */
601 		if (list_empty(&rq_list))
602 			rq->cmd_flags |= REQ_END;
603 
604 		ret = q->mq_ops->queue_rq(hctx, rq);
605 		switch (ret) {
606 		case BLK_MQ_RQ_QUEUE_OK:
607 			queued++;
608 			continue;
609 		case BLK_MQ_RQ_QUEUE_BUSY:
610 			/*
611 			 * FIXME: we should have a mechanism to stop the queue
612 			 * like blk_stop_queue, otherwise we will waste cpu
613 			 * time
614 			 */
615 			list_add(&rq->queuelist, &rq_list);
616 			blk_mq_requeue_request(rq);
617 			break;
618 		default:
619 			pr_err("blk-mq: bad return on queue: %d\n", ret);
620 			rq->errors = -EIO;
621 		case BLK_MQ_RQ_QUEUE_ERROR:
622 			blk_mq_end_io(rq, rq->errors);
623 			break;
624 		}
625 
626 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
627 			break;
628 	}
629 
630 	if (!queued)
631 		hctx->dispatched[0]++;
632 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
633 		hctx->dispatched[ilog2(queued) + 1]++;
634 
635 	/*
636 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
637 	 * that is where we will continue on next queue run.
638 	 */
639 	if (!list_empty(&rq_list)) {
640 		spin_lock(&hctx->lock);
641 		list_splice(&rq_list, &hctx->dispatch);
642 		spin_unlock(&hctx->lock);
643 	}
644 }
645 
646 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
647 {
648 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
649 		return;
650 
651 	if (!async)
652 		__blk_mq_run_hw_queue(hctx);
653 	else {
654 		struct request_queue *q = hctx->queue;
655 
656 		kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
657 	}
658 }
659 
660 void blk_mq_run_queues(struct request_queue *q, bool async)
661 {
662 	struct blk_mq_hw_ctx *hctx;
663 	int i;
664 
665 	queue_for_each_hw_ctx(q, hctx, i) {
666 		if ((!blk_mq_hctx_has_pending(hctx) &&
667 		    list_empty_careful(&hctx->dispatch)) ||
668 		    test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
669 			continue;
670 
671 		blk_mq_run_hw_queue(hctx, async);
672 	}
673 }
674 EXPORT_SYMBOL(blk_mq_run_queues);
675 
676 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
677 {
678 	cancel_delayed_work(&hctx->delayed_work);
679 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
680 }
681 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
682 
683 void blk_mq_stop_hw_queues(struct request_queue *q)
684 {
685 	struct blk_mq_hw_ctx *hctx;
686 	int i;
687 
688 	queue_for_each_hw_ctx(q, hctx, i)
689 		blk_mq_stop_hw_queue(hctx);
690 }
691 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
692 
693 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
694 {
695 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
696 	__blk_mq_run_hw_queue(hctx);
697 }
698 EXPORT_SYMBOL(blk_mq_start_hw_queue);
699 
700 void blk_mq_start_stopped_hw_queues(struct request_queue *q)
701 {
702 	struct blk_mq_hw_ctx *hctx;
703 	int i;
704 
705 	queue_for_each_hw_ctx(q, hctx, i) {
706 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
707 			continue;
708 
709 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
710 		blk_mq_run_hw_queue(hctx, true);
711 	}
712 }
713 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
714 
715 static void blk_mq_work_fn(struct work_struct *work)
716 {
717 	struct blk_mq_hw_ctx *hctx;
718 
719 	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
720 	__blk_mq_run_hw_queue(hctx);
721 }
722 
723 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
724 				    struct request *rq)
725 {
726 	struct blk_mq_ctx *ctx = rq->mq_ctx;
727 
728 	trace_block_rq_insert(hctx->queue, rq);
729 
730 	list_add_tail(&rq->queuelist, &ctx->rq_list);
731 	blk_mq_hctx_mark_pending(hctx, ctx);
732 
733 	/*
734 	 * We do this early, to ensure we are on the right CPU.
735 	 */
736 	blk_mq_add_timer(rq);
737 }
738 
739 void blk_mq_insert_request(struct request_queue *q, struct request *rq,
740 			   bool run_queue)
741 {
742 	struct blk_mq_hw_ctx *hctx;
743 	struct blk_mq_ctx *ctx, *current_ctx;
744 
745 	ctx = rq->mq_ctx;
746 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
747 
748 	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
749 		blk_insert_flush(rq);
750 	} else {
751 		current_ctx = blk_mq_get_ctx(q);
752 
753 		if (!cpu_online(ctx->cpu)) {
754 			ctx = current_ctx;
755 			hctx = q->mq_ops->map_queue(q, ctx->cpu);
756 			rq->mq_ctx = ctx;
757 		}
758 		spin_lock(&ctx->lock);
759 		__blk_mq_insert_request(hctx, rq);
760 		spin_unlock(&ctx->lock);
761 
762 		blk_mq_put_ctx(current_ctx);
763 	}
764 
765 	if (run_queue)
766 		__blk_mq_run_hw_queue(hctx);
767 }
768 EXPORT_SYMBOL(blk_mq_insert_request);
769 
770 /*
771  * This is a special version of blk_mq_insert_request to bypass FLUSH request
772  * check. Should only be used internally.
773  */
774 void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
775 {
776 	struct request_queue *q = rq->q;
777 	struct blk_mq_hw_ctx *hctx;
778 	struct blk_mq_ctx *ctx, *current_ctx;
779 
780 	current_ctx = blk_mq_get_ctx(q);
781 
782 	ctx = rq->mq_ctx;
783 	if (!cpu_online(ctx->cpu)) {
784 		ctx = current_ctx;
785 		rq->mq_ctx = ctx;
786 	}
787 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
788 
789 	/* ctx->cpu might be offline */
790 	spin_lock(&ctx->lock);
791 	__blk_mq_insert_request(hctx, rq);
792 	spin_unlock(&ctx->lock);
793 
794 	blk_mq_put_ctx(current_ctx);
795 
796 	if (run_queue)
797 		blk_mq_run_hw_queue(hctx, async);
798 }
799 
800 static void blk_mq_insert_requests(struct request_queue *q,
801 				     struct blk_mq_ctx *ctx,
802 				     struct list_head *list,
803 				     int depth,
804 				     bool from_schedule)
805 
806 {
807 	struct blk_mq_hw_ctx *hctx;
808 	struct blk_mq_ctx *current_ctx;
809 
810 	trace_block_unplug(q, depth, !from_schedule);
811 
812 	current_ctx = blk_mq_get_ctx(q);
813 
814 	if (!cpu_online(ctx->cpu))
815 		ctx = current_ctx;
816 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
817 
818 	/*
819 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
820 	 * offline now
821 	 */
822 	spin_lock(&ctx->lock);
823 	while (!list_empty(list)) {
824 		struct request *rq;
825 
826 		rq = list_first_entry(list, struct request, queuelist);
827 		list_del_init(&rq->queuelist);
828 		rq->mq_ctx = ctx;
829 		__blk_mq_insert_request(hctx, rq);
830 	}
831 	spin_unlock(&ctx->lock);
832 
833 	blk_mq_put_ctx(current_ctx);
834 
835 	blk_mq_run_hw_queue(hctx, from_schedule);
836 }
837 
838 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
839 {
840 	struct request *rqa = container_of(a, struct request, queuelist);
841 	struct request *rqb = container_of(b, struct request, queuelist);
842 
843 	return !(rqa->mq_ctx < rqb->mq_ctx ||
844 		 (rqa->mq_ctx == rqb->mq_ctx &&
845 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
846 }
847 
848 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
849 {
850 	struct blk_mq_ctx *this_ctx;
851 	struct request_queue *this_q;
852 	struct request *rq;
853 	LIST_HEAD(list);
854 	LIST_HEAD(ctx_list);
855 	unsigned int depth;
856 
857 	list_splice_init(&plug->mq_list, &list);
858 
859 	list_sort(NULL, &list, plug_ctx_cmp);
860 
861 	this_q = NULL;
862 	this_ctx = NULL;
863 	depth = 0;
864 
865 	while (!list_empty(&list)) {
866 		rq = list_entry_rq(list.next);
867 		list_del_init(&rq->queuelist);
868 		BUG_ON(!rq->q);
869 		if (rq->mq_ctx != this_ctx) {
870 			if (this_ctx) {
871 				blk_mq_insert_requests(this_q, this_ctx,
872 							&ctx_list, depth,
873 							from_schedule);
874 			}
875 
876 			this_ctx = rq->mq_ctx;
877 			this_q = rq->q;
878 			depth = 0;
879 		}
880 
881 		depth++;
882 		list_add_tail(&rq->queuelist, &ctx_list);
883 	}
884 
885 	/*
886 	 * If 'this_ctx' is set, we know we have entries to complete
887 	 * on 'ctx_list'. Do those.
888 	 */
889 	if (this_ctx) {
890 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
891 				       from_schedule);
892 	}
893 }
894 
895 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
896 {
897 	init_request_from_bio(rq, bio);
898 	blk_account_io_start(rq, 1);
899 }
900 
901 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
902 {
903 	struct blk_mq_hw_ctx *hctx;
904 	struct blk_mq_ctx *ctx;
905 	const int is_sync = rw_is_sync(bio->bi_rw);
906 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
907 	int rw = bio_data_dir(bio);
908 	struct request *rq;
909 	unsigned int use_plug, request_count = 0;
910 
911 	/*
912 	 * If we have multiple hardware queues, just go directly to
913 	 * one of those for sync IO.
914 	 */
915 	use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
916 
917 	blk_queue_bounce(q, &bio);
918 
919 	if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
920 		return;
921 
922 	if (blk_mq_queue_enter(q)) {
923 		bio_endio(bio, -EIO);
924 		return;
925 	}
926 
927 	ctx = blk_mq_get_ctx(q);
928 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
929 
930 	trace_block_getrq(q, bio, rw);
931 	rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
932 	if (likely(rq))
933 		blk_mq_rq_ctx_init(q, ctx, rq, rw);
934 	else {
935 		blk_mq_put_ctx(ctx);
936 		trace_block_sleeprq(q, bio, rw);
937 		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
938 							false);
939 		ctx = rq->mq_ctx;
940 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
941 	}
942 
943 	hctx->queued++;
944 
945 	if (unlikely(is_flush_fua)) {
946 		blk_mq_bio_to_request(rq, bio);
947 		blk_mq_put_ctx(ctx);
948 		blk_insert_flush(rq);
949 		goto run_queue;
950 	}
951 
952 	/*
953 	 * A task plug currently exists. Since this is completely lockless,
954 	 * utilize that to temporarily store requests until the task is
955 	 * either done or scheduled away.
956 	 */
957 	if (use_plug) {
958 		struct blk_plug *plug = current->plug;
959 
960 		if (plug) {
961 			blk_mq_bio_to_request(rq, bio);
962 			if (list_empty(&plug->mq_list))
963 				trace_block_plug(q);
964 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
965 				blk_flush_plug_list(plug, false);
966 				trace_block_plug(q);
967 			}
968 			list_add_tail(&rq->queuelist, &plug->mq_list);
969 			blk_mq_put_ctx(ctx);
970 			return;
971 		}
972 	}
973 
974 	spin_lock(&ctx->lock);
975 
976 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
977 	    blk_mq_attempt_merge(q, ctx, bio))
978 		__blk_mq_free_request(hctx, ctx, rq);
979 	else {
980 		blk_mq_bio_to_request(rq, bio);
981 		__blk_mq_insert_request(hctx, rq);
982 	}
983 
984 	spin_unlock(&ctx->lock);
985 	blk_mq_put_ctx(ctx);
986 
987 	/*
988 	 * For a SYNC request, send it to the hardware immediately. For an
989 	 * ASYNC request, just ensure that we run it later on. The latter
990 	 * allows for merging opportunities and more efficient dispatching.
991 	 */
992 run_queue:
993 	blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
994 }
995 
996 /*
997  * Default mapping to a software queue, since we use one per CPU.
998  */
999 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1000 {
1001 	return q->queue_hw_ctx[q->mq_map[cpu]];
1002 }
1003 EXPORT_SYMBOL(blk_mq_map_queue);
1004 
1005 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1006 						   unsigned int hctx_index)
1007 {
1008 	return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1009 				GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1010 }
1011 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1012 
1013 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1014 				 unsigned int hctx_index)
1015 {
1016 	kfree(hctx);
1017 }
1018 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1019 
1020 static void blk_mq_hctx_notify(void *data, unsigned long action,
1021 			       unsigned int cpu)
1022 {
1023 	struct blk_mq_hw_ctx *hctx = data;
1024 	struct blk_mq_ctx *ctx;
1025 	LIST_HEAD(tmp);
1026 
1027 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1028 		return;
1029 
1030 	/*
1031 	 * Move ctx entries to new CPU, if this one is going away.
1032 	 */
1033 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1034 
1035 	spin_lock(&ctx->lock);
1036 	if (!list_empty(&ctx->rq_list)) {
1037 		list_splice_init(&ctx->rq_list, &tmp);
1038 		clear_bit(ctx->index_hw, hctx->ctx_map);
1039 	}
1040 	spin_unlock(&ctx->lock);
1041 
1042 	if (list_empty(&tmp))
1043 		return;
1044 
1045 	ctx = blk_mq_get_ctx(hctx->queue);
1046 	spin_lock(&ctx->lock);
1047 
1048 	while (!list_empty(&tmp)) {
1049 		struct request *rq;
1050 
1051 		rq = list_first_entry(&tmp, struct request, queuelist);
1052 		rq->mq_ctx = ctx;
1053 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1054 	}
1055 
1056 	blk_mq_hctx_mark_pending(hctx, ctx);
1057 
1058 	spin_unlock(&ctx->lock);
1059 	blk_mq_put_ctx(ctx);
1060 }
1061 
1062 static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1063 				    void (*init)(void *, struct blk_mq_hw_ctx *,
1064 					struct request *, unsigned int),
1065 				    void *data)
1066 {
1067 	unsigned int i;
1068 
1069 	for (i = 0; i < hctx->queue_depth; i++) {
1070 		struct request *rq = hctx->rqs[i];
1071 
1072 		init(data, hctx, rq, i);
1073 	}
1074 }
1075 
1076 void blk_mq_init_commands(struct request_queue *q,
1077 			  void (*init)(void *, struct blk_mq_hw_ctx *,
1078 					struct request *, unsigned int),
1079 			  void *data)
1080 {
1081 	struct blk_mq_hw_ctx *hctx;
1082 	unsigned int i;
1083 
1084 	queue_for_each_hw_ctx(q, hctx, i)
1085 		blk_mq_init_hw_commands(hctx, init, data);
1086 }
1087 EXPORT_SYMBOL(blk_mq_init_commands);
1088 
1089 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1090 {
1091 	struct page *page;
1092 
1093 	while (!list_empty(&hctx->page_list)) {
1094 		page = list_first_entry(&hctx->page_list, struct page, list);
1095 		list_del_init(&page->list);
1096 		__free_pages(page, page->private);
1097 	}
1098 
1099 	kfree(hctx->rqs);
1100 
1101 	if (hctx->tags)
1102 		blk_mq_free_tags(hctx->tags);
1103 }
1104 
1105 static size_t order_to_size(unsigned int order)
1106 {
1107 	size_t ret = PAGE_SIZE;
1108 
1109 	while (order--)
1110 		ret *= 2;
1111 
1112 	return ret;
1113 }
1114 
1115 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1116 			      unsigned int reserved_tags, int node)
1117 {
1118 	unsigned int i, j, entries_per_page, max_order = 4;
1119 	size_t rq_size, left;
1120 
1121 	INIT_LIST_HEAD(&hctx->page_list);
1122 
1123 	hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1124 					GFP_KERNEL, node);
1125 	if (!hctx->rqs)
1126 		return -ENOMEM;
1127 
1128 	/*
1129 	 * rq_size is the size of the request plus driver payload, rounded
1130 	 * to the cacheline size
1131 	 */
1132 	rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1133 				cache_line_size());
1134 	left = rq_size * hctx->queue_depth;
1135 
1136 	for (i = 0; i < hctx->queue_depth;) {
1137 		int this_order = max_order;
1138 		struct page *page;
1139 		int to_do;
1140 		void *p;
1141 
1142 		while (left < order_to_size(this_order - 1) && this_order)
1143 			this_order--;
1144 
1145 		do {
1146 			page = alloc_pages_node(node, GFP_KERNEL, this_order);
1147 			if (page)
1148 				break;
1149 			if (!this_order--)
1150 				break;
1151 			if (order_to_size(this_order) < rq_size)
1152 				break;
1153 		} while (1);
1154 
1155 		if (!page)
1156 			break;
1157 
1158 		page->private = this_order;
1159 		list_add_tail(&page->list, &hctx->page_list);
1160 
1161 		p = page_address(page);
1162 		entries_per_page = order_to_size(this_order) / rq_size;
1163 		to_do = min(entries_per_page, hctx->queue_depth - i);
1164 		left -= to_do * rq_size;
1165 		for (j = 0; j < to_do; j++) {
1166 			hctx->rqs[i] = p;
1167 			blk_mq_rq_init(hctx, hctx->rqs[i]);
1168 			p += rq_size;
1169 			i++;
1170 		}
1171 	}
1172 
1173 	if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1174 		goto err_rq_map;
1175 	else if (i != hctx->queue_depth) {
1176 		hctx->queue_depth = i;
1177 		pr_warn("%s: queue depth set to %u because of low memory\n",
1178 					__func__, i);
1179 	}
1180 
1181 	hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1182 	if (!hctx->tags) {
1183 err_rq_map:
1184 		blk_mq_free_rq_map(hctx);
1185 		return -ENOMEM;
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static int blk_mq_init_hw_queues(struct request_queue *q,
1192 				 struct blk_mq_reg *reg, void *driver_data)
1193 {
1194 	struct blk_mq_hw_ctx *hctx;
1195 	unsigned int i, j;
1196 
1197 	/*
1198 	 * Initialize hardware queues
1199 	 */
1200 	queue_for_each_hw_ctx(q, hctx, i) {
1201 		unsigned int num_maps;
1202 		int node;
1203 
1204 		node = hctx->numa_node;
1205 		if (node == NUMA_NO_NODE)
1206 			node = hctx->numa_node = reg->numa_node;
1207 
1208 		INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1209 		spin_lock_init(&hctx->lock);
1210 		INIT_LIST_HEAD(&hctx->dispatch);
1211 		hctx->queue = q;
1212 		hctx->queue_num = i;
1213 		hctx->flags = reg->flags;
1214 		hctx->queue_depth = reg->queue_depth;
1215 		hctx->cmd_size = reg->cmd_size;
1216 
1217 		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1218 						blk_mq_hctx_notify, hctx);
1219 		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1220 
1221 		if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1222 			break;
1223 
1224 		/*
1225 		 * Allocate space for all possible cpus to avoid allocation in
1226 		 * runtime
1227 		 */
1228 		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1229 						GFP_KERNEL, node);
1230 		if (!hctx->ctxs)
1231 			break;
1232 
1233 		num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1234 		hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1235 						GFP_KERNEL, node);
1236 		if (!hctx->ctx_map)
1237 			break;
1238 
1239 		hctx->nr_ctx_map = num_maps;
1240 		hctx->nr_ctx = 0;
1241 
1242 		if (reg->ops->init_hctx &&
1243 		    reg->ops->init_hctx(hctx, driver_data, i))
1244 			break;
1245 	}
1246 
1247 	if (i == q->nr_hw_queues)
1248 		return 0;
1249 
1250 	/*
1251 	 * Init failed
1252 	 */
1253 	queue_for_each_hw_ctx(q, hctx, j) {
1254 		if (i == j)
1255 			break;
1256 
1257 		if (reg->ops->exit_hctx)
1258 			reg->ops->exit_hctx(hctx, j);
1259 
1260 		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1261 		blk_mq_free_rq_map(hctx);
1262 		kfree(hctx->ctxs);
1263 	}
1264 
1265 	return 1;
1266 }
1267 
1268 static void blk_mq_init_cpu_queues(struct request_queue *q,
1269 				   unsigned int nr_hw_queues)
1270 {
1271 	unsigned int i;
1272 
1273 	for_each_possible_cpu(i) {
1274 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1275 		struct blk_mq_hw_ctx *hctx;
1276 
1277 		memset(__ctx, 0, sizeof(*__ctx));
1278 		__ctx->cpu = i;
1279 		spin_lock_init(&__ctx->lock);
1280 		INIT_LIST_HEAD(&__ctx->rq_list);
1281 		__ctx->queue = q;
1282 
1283 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1284 		hctx = q->mq_ops->map_queue(q, i);
1285 		hctx->nr_ctx++;
1286 
1287 		if (!cpu_online(i))
1288 			continue;
1289 
1290 		/*
1291 		 * Set local node, IFF we have more than one hw queue. If
1292 		 * not, we remain on the home node of the device
1293 		 */
1294 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1295 			hctx->numa_node = cpu_to_node(i);
1296 	}
1297 }
1298 
1299 static void blk_mq_map_swqueue(struct request_queue *q)
1300 {
1301 	unsigned int i;
1302 	struct blk_mq_hw_ctx *hctx;
1303 	struct blk_mq_ctx *ctx;
1304 
1305 	queue_for_each_hw_ctx(q, hctx, i) {
1306 		hctx->nr_ctx = 0;
1307 	}
1308 
1309 	/*
1310 	 * Map software to hardware queues
1311 	 */
1312 	queue_for_each_ctx(q, ctx, i) {
1313 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1314 		hctx = q->mq_ops->map_queue(q, i);
1315 		ctx->index_hw = hctx->nr_ctx;
1316 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1317 	}
1318 }
1319 
1320 struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1321 					void *driver_data)
1322 {
1323 	struct blk_mq_hw_ctx **hctxs;
1324 	struct blk_mq_ctx *ctx;
1325 	struct request_queue *q;
1326 	int i;
1327 
1328 	if (!reg->nr_hw_queues ||
1329 	    !reg->ops->queue_rq || !reg->ops->map_queue ||
1330 	    !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1331 		return ERR_PTR(-EINVAL);
1332 
1333 	if (!reg->queue_depth)
1334 		reg->queue_depth = BLK_MQ_MAX_DEPTH;
1335 	else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1336 		pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1337 		reg->queue_depth = BLK_MQ_MAX_DEPTH;
1338 	}
1339 
1340 	/*
1341 	 * Set aside a tag for flush requests.  It will only be used while
1342 	 * another flush request is in progress but outside the driver.
1343 	 *
1344 	 * TODO: only allocate if flushes are supported
1345 	 */
1346 	reg->queue_depth++;
1347 	reg->reserved_tags++;
1348 
1349 	if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1350 		return ERR_PTR(-EINVAL);
1351 
1352 	ctx = alloc_percpu(struct blk_mq_ctx);
1353 	if (!ctx)
1354 		return ERR_PTR(-ENOMEM);
1355 
1356 	hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1357 			reg->numa_node);
1358 
1359 	if (!hctxs)
1360 		goto err_percpu;
1361 
1362 	for (i = 0; i < reg->nr_hw_queues; i++) {
1363 		hctxs[i] = reg->ops->alloc_hctx(reg, i);
1364 		if (!hctxs[i])
1365 			goto err_hctxs;
1366 
1367 		hctxs[i]->numa_node = NUMA_NO_NODE;
1368 		hctxs[i]->queue_num = i;
1369 	}
1370 
1371 	q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1372 	if (!q)
1373 		goto err_hctxs;
1374 
1375 	q->mq_map = blk_mq_make_queue_map(reg);
1376 	if (!q->mq_map)
1377 		goto err_map;
1378 
1379 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1380 	blk_queue_rq_timeout(q, 30000);
1381 
1382 	q->nr_queues = nr_cpu_ids;
1383 	q->nr_hw_queues = reg->nr_hw_queues;
1384 
1385 	q->queue_ctx = ctx;
1386 	q->queue_hw_ctx = hctxs;
1387 
1388 	q->mq_ops = reg->ops;
1389 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1390 
1391 	blk_queue_make_request(q, blk_mq_make_request);
1392 	blk_queue_rq_timed_out(q, reg->ops->timeout);
1393 	if (reg->timeout)
1394 		blk_queue_rq_timeout(q, reg->timeout);
1395 
1396 	blk_mq_init_flush(q);
1397 	blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1398 
1399 	if (blk_mq_init_hw_queues(q, reg, driver_data))
1400 		goto err_hw;
1401 
1402 	blk_mq_map_swqueue(q);
1403 
1404 	mutex_lock(&all_q_mutex);
1405 	list_add_tail(&q->all_q_node, &all_q_list);
1406 	mutex_unlock(&all_q_mutex);
1407 
1408 	return q;
1409 err_hw:
1410 	kfree(q->mq_map);
1411 err_map:
1412 	blk_cleanup_queue(q);
1413 err_hctxs:
1414 	for (i = 0; i < reg->nr_hw_queues; i++) {
1415 		if (!hctxs[i])
1416 			break;
1417 		reg->ops->free_hctx(hctxs[i], i);
1418 	}
1419 	kfree(hctxs);
1420 err_percpu:
1421 	free_percpu(ctx);
1422 	return ERR_PTR(-ENOMEM);
1423 }
1424 EXPORT_SYMBOL(blk_mq_init_queue);
1425 
1426 void blk_mq_free_queue(struct request_queue *q)
1427 {
1428 	struct blk_mq_hw_ctx *hctx;
1429 	int i;
1430 
1431 	queue_for_each_hw_ctx(q, hctx, i) {
1432 		cancel_delayed_work_sync(&hctx->delayed_work);
1433 		kfree(hctx->ctx_map);
1434 		kfree(hctx->ctxs);
1435 		blk_mq_free_rq_map(hctx);
1436 		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1437 		if (q->mq_ops->exit_hctx)
1438 			q->mq_ops->exit_hctx(hctx, i);
1439 		q->mq_ops->free_hctx(hctx, i);
1440 	}
1441 
1442 	free_percpu(q->queue_ctx);
1443 	kfree(q->queue_hw_ctx);
1444 	kfree(q->mq_map);
1445 
1446 	q->queue_ctx = NULL;
1447 	q->queue_hw_ctx = NULL;
1448 	q->mq_map = NULL;
1449 
1450 	mutex_lock(&all_q_mutex);
1451 	list_del_init(&q->all_q_node);
1452 	mutex_unlock(&all_q_mutex);
1453 }
1454 EXPORT_SYMBOL(blk_mq_free_queue);
1455 
1456 /* Basically redo blk_mq_init_queue with queue frozen */
1457 static void blk_mq_queue_reinit(struct request_queue *q)
1458 {
1459 	blk_mq_freeze_queue(q);
1460 
1461 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1462 
1463 	/*
1464 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1465 	 * we should change hctx numa_node according to new topology (this
1466 	 * involves free and re-allocate memory, worthy doing?)
1467 	 */
1468 
1469 	blk_mq_map_swqueue(q);
1470 
1471 	blk_mq_unfreeze_queue(q);
1472 }
1473 
1474 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1475 				      unsigned long action, void *hcpu)
1476 {
1477 	struct request_queue *q;
1478 
1479 	/*
1480 	 * Before new mapping is established, hotadded cpu might already start
1481 	 * handling requests. This doesn't break anything as we map offline
1482 	 * CPUs to first hardware queue. We will re-init queue below to get
1483 	 * optimal settings.
1484 	 */
1485 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1486 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1487 		return NOTIFY_OK;
1488 
1489 	mutex_lock(&all_q_mutex);
1490 	list_for_each_entry(q, &all_q_list, all_q_node)
1491 		blk_mq_queue_reinit(q);
1492 	mutex_unlock(&all_q_mutex);
1493 	return NOTIFY_OK;
1494 }
1495 
1496 static int __init blk_mq_init(void)
1497 {
1498 	unsigned int i;
1499 
1500 	for_each_possible_cpu(i)
1501 		init_llist_head(&per_cpu(ipi_lists, i));
1502 
1503 	blk_mq_cpu_init();
1504 
1505 	/* Must be called after percpu_counter_hotcpu_callback() */
1506 	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1507 
1508 	return 0;
1509 }
1510 subsys_initcall(blk_mq_init);
1511