1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_inflight(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->part && blk_do_io_stat(rq) && 97 (!mi->part->bd_partno || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 unsigned int blk_mq_in_flight(struct request_queue *q, 105 struct block_device *part) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 110 111 return mi.inflight[0] + mi.inflight[1]; 112 } 113 114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 115 unsigned int inflight[2]) 116 { 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 inflight[0] = mi.inflight[0]; 121 inflight[1] = mi.inflight[1]; 122 } 123 124 void blk_freeze_queue_start(struct request_queue *q) 125 { 126 mutex_lock(&q->mq_freeze_lock); 127 if (++q->mq_freeze_depth == 1) { 128 percpu_ref_kill(&q->q_usage_counter); 129 mutex_unlock(&q->mq_freeze_lock); 130 if (queue_is_mq(q)) 131 blk_mq_run_hw_queues(q, false); 132 } else { 133 mutex_unlock(&q->mq_freeze_lock); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 137 138 void blk_mq_freeze_queue_wait(struct request_queue *q) 139 { 140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 143 144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 145 unsigned long timeout) 146 { 147 return wait_event_timeout(q->mq_freeze_wq, 148 percpu_ref_is_zero(&q->q_usage_counter), 149 timeout); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 152 153 /* 154 * Guarantee no request is in use, so we can change any data structure of 155 * the queue afterward. 156 */ 157 void blk_freeze_queue(struct request_queue *q) 158 { 159 /* 160 * In the !blk_mq case we are only calling this to kill the 161 * q_usage_counter, otherwise this increases the freeze depth 162 * and waits for it to return to zero. For this reason there is 163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 164 * exported to drivers as the only user for unfreeze is blk_mq. 165 */ 166 blk_freeze_queue_start(q); 167 blk_mq_freeze_queue_wait(q); 168 } 169 170 void blk_mq_freeze_queue(struct request_queue *q) 171 { 172 /* 173 * ...just an alias to keep freeze and unfreeze actions balanced 174 * in the blk_mq_* namespace 175 */ 176 blk_freeze_queue(q); 177 } 178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 179 180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 181 { 182 mutex_lock(&q->mq_freeze_lock); 183 if (force_atomic) 184 q->q_usage_counter.data->force_atomic = true; 185 q->mq_freeze_depth--; 186 WARN_ON_ONCE(q->mq_freeze_depth < 0); 187 if (!q->mq_freeze_depth) { 188 percpu_ref_resurrect(&q->q_usage_counter); 189 wake_up_all(&q->mq_freeze_wq); 190 } 191 mutex_unlock(&q->mq_freeze_lock); 192 } 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 __blk_mq_unfreeze_queue(q, false); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&q->queue_lock, flags); 209 if (!q->quiesce_depth++) 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 spin_unlock_irqrestore(&q->queue_lock, flags); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 214 215 /** 216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 217 * @set: tag_set to wait on 218 * 219 * Note: it is driver's responsibility for making sure that quiesce has 220 * been started on or more of the request_queues of the tag_set. This 221 * function only waits for the quiesce on those request_queues that had 222 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 223 */ 224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 225 { 226 if (set->flags & BLK_MQ_F_BLOCKING) 227 synchronize_srcu(set->srcu); 228 else 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 232 233 /** 234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 235 * @q: request queue. 236 * 237 * Note: this function does not prevent that the struct request end_io() 238 * callback function is invoked. Once this function is returned, we make 239 * sure no dispatch can happen until the queue is unquiesced via 240 * blk_mq_unquiesce_queue(). 241 */ 242 void blk_mq_quiesce_queue(struct request_queue *q) 243 { 244 blk_mq_quiesce_queue_nowait(q); 245 /* nothing to wait for non-mq queues */ 246 if (queue_is_mq(q)) 247 blk_mq_wait_quiesce_done(q->tag_set); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 250 251 /* 252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 253 * @q: request queue. 254 * 255 * This function recovers queue into the state before quiescing 256 * which is done by blk_mq_quiesce_queue. 257 */ 258 void blk_mq_unquiesce_queue(struct request_queue *q) 259 { 260 unsigned long flags; 261 bool run_queue = false; 262 263 spin_lock_irqsave(&q->queue_lock, flags); 264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 265 ; 266 } else if (!--q->quiesce_depth) { 267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 268 run_queue = true; 269 } 270 spin_unlock_irqrestore(&q->queue_lock, flags); 271 272 /* dispatch requests which are inserted during quiescing */ 273 if (run_queue) 274 blk_mq_run_hw_queues(q, true); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 277 278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 279 { 280 struct request_queue *q; 281 282 mutex_lock(&set->tag_list_lock); 283 list_for_each_entry(q, &set->tag_list, tag_set_list) { 284 if (!blk_queue_skip_tagset_quiesce(q)) 285 blk_mq_quiesce_queue_nowait(q); 286 } 287 blk_mq_wait_quiesce_done(set); 288 mutex_unlock(&set->tag_list_lock); 289 } 290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 291 292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 293 { 294 struct request_queue *q; 295 296 mutex_lock(&set->tag_list_lock); 297 list_for_each_entry(q, &set->tag_list, tag_set_list) { 298 if (!blk_queue_skip_tagset_quiesce(q)) 299 blk_mq_unquiesce_queue(q); 300 } 301 mutex_unlock(&set->tag_list_lock); 302 } 303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 304 305 void blk_mq_wake_waiters(struct request_queue *q) 306 { 307 struct blk_mq_hw_ctx *hctx; 308 unsigned long i; 309 310 queue_for_each_hw_ctx(q, hctx, i) 311 if (blk_mq_hw_queue_mapped(hctx)) 312 blk_mq_tag_wakeup_all(hctx->tags, true); 313 } 314 315 void blk_rq_init(struct request_queue *q, struct request *rq) 316 { 317 memset(rq, 0, sizeof(*rq)); 318 319 INIT_LIST_HEAD(&rq->queuelist); 320 rq->q = q; 321 rq->__sector = (sector_t) -1; 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->tag = BLK_MQ_NO_TAG; 325 rq->internal_tag = BLK_MQ_NO_TAG; 326 rq->start_time_ns = ktime_get_ns(); 327 rq->part = NULL; 328 blk_crypto_rq_set_defaults(rq); 329 } 330 EXPORT_SYMBOL(blk_rq_init); 331 332 /* Set start and alloc time when the allocated request is actually used */ 333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 334 { 335 if (blk_mq_need_time_stamp(rq)) 336 rq->start_time_ns = ktime_get_ns(); 337 else 338 rq->start_time_ns = 0; 339 340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 341 if (blk_queue_rq_alloc_time(rq->q)) 342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 343 else 344 rq->alloc_time_ns = 0; 345 #endif 346 } 347 348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 349 struct blk_mq_tags *tags, unsigned int tag) 350 { 351 struct blk_mq_ctx *ctx = data->ctx; 352 struct blk_mq_hw_ctx *hctx = data->hctx; 353 struct request_queue *q = data->q; 354 struct request *rq = tags->static_rqs[tag]; 355 356 rq->q = q; 357 rq->mq_ctx = ctx; 358 rq->mq_hctx = hctx; 359 rq->cmd_flags = data->cmd_flags; 360 361 if (data->flags & BLK_MQ_REQ_PM) 362 data->rq_flags |= RQF_PM; 363 if (blk_queue_io_stat(q)) 364 data->rq_flags |= RQF_IO_STAT; 365 rq->rq_flags = data->rq_flags; 366 367 if (data->rq_flags & RQF_SCHED_TAGS) { 368 rq->tag = BLK_MQ_NO_TAG; 369 rq->internal_tag = tag; 370 } else { 371 rq->tag = tag; 372 rq->internal_tag = BLK_MQ_NO_TAG; 373 } 374 rq->timeout = 0; 375 376 rq->part = NULL; 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_USE_SCHED) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (e->type->ops.prepare_request) 399 e->type->ops.prepare_request(rq); 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 407 { 408 unsigned int tag, tag_offset; 409 struct blk_mq_tags *tags; 410 struct request *rq; 411 unsigned long tag_mask; 412 int i, nr = 0; 413 414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 415 if (unlikely(!tag_mask)) 416 return NULL; 417 418 tags = blk_mq_tags_from_data(data); 419 for (i = 0; tag_mask; i++) { 420 if (!(tag_mask & (1UL << i))) 421 continue; 422 tag = tag_offset + i; 423 prefetch(tags->static_rqs[tag]); 424 tag_mask &= ~(1UL << i); 425 rq = blk_mq_rq_ctx_init(data, tags, tag); 426 rq_list_add(data->cached_rq, rq); 427 nr++; 428 } 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 if (q->elevator) { 451 /* 452 * All requests use scheduler tags when an I/O scheduler is 453 * enabled for the queue. 454 */ 455 data->rq_flags |= RQF_SCHED_TAGS; 456 457 /* 458 * Flush/passthrough requests are special and go directly to the 459 * dispatch list. 460 */ 461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 462 !blk_op_is_passthrough(data->cmd_flags)) { 463 struct elevator_mq_ops *ops = &q->elevator->type->ops; 464 465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 466 467 data->rq_flags |= RQF_USE_SCHED; 468 if (ops->limit_depth) 469 ops->limit_depth(data->cmd_flags, data); 470 } 471 } 472 473 retry: 474 data->ctx = blk_mq_get_ctx(q); 475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 476 if (!(data->rq_flags & RQF_SCHED_TAGS)) 477 blk_mq_tag_busy(data->hctx); 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data); 487 if (rq) { 488 blk_mq_rq_time_init(rq, alloc_time_ns); 489 return rq; 490 } 491 data->nr_tags = 1; 492 } 493 494 /* 495 * Waiting allocations only fail because of an inactive hctx. In that 496 * case just retry the hctx assignment and tag allocation as CPU hotplug 497 * should have migrated us to an online CPU by now. 498 */ 499 tag = blk_mq_get_tag(data); 500 if (tag == BLK_MQ_NO_TAG) { 501 if (data->flags & BLK_MQ_REQ_NOWAIT) 502 return NULL; 503 /* 504 * Give up the CPU and sleep for a random short time to 505 * ensure that thread using a realtime scheduling class 506 * are migrated off the CPU, and thus off the hctx that 507 * is going away. 508 */ 509 msleep(3); 510 goto retry; 511 } 512 513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 514 blk_mq_rq_time_init(rq, alloc_time_ns); 515 return rq; 516 } 517 518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 519 struct blk_plug *plug, 520 blk_opf_t opf, 521 blk_mq_req_flags_t flags) 522 { 523 struct blk_mq_alloc_data data = { 524 .q = q, 525 .flags = flags, 526 .cmd_flags = opf, 527 .nr_tags = plug->nr_ios, 528 .cached_rq = &plug->cached_rq, 529 }; 530 struct request *rq; 531 532 if (blk_queue_enter(q, flags)) 533 return NULL; 534 535 plug->nr_ios = 1; 536 537 rq = __blk_mq_alloc_requests(&data); 538 if (unlikely(!rq)) 539 blk_queue_exit(q); 540 return rq; 541 } 542 543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 544 blk_opf_t opf, 545 blk_mq_req_flags_t flags) 546 { 547 struct blk_plug *plug = current->plug; 548 struct request *rq; 549 550 if (!plug) 551 return NULL; 552 553 if (rq_list_empty(plug->cached_rq)) { 554 if (plug->nr_ios == 1) 555 return NULL; 556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 557 if (!rq) 558 return NULL; 559 } else { 560 rq = rq_list_peek(&plug->cached_rq); 561 if (!rq || rq->q != q) 562 return NULL; 563 564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 565 return NULL; 566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 567 return NULL; 568 569 plug->cached_rq = rq_list_next(rq); 570 blk_mq_rq_time_init(rq, 0); 571 } 572 573 rq->cmd_flags = opf; 574 INIT_LIST_HEAD(&rq->queuelist); 575 return rq; 576 } 577 578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 579 blk_mq_req_flags_t flags) 580 { 581 struct request *rq; 582 583 rq = blk_mq_alloc_cached_request(q, opf, flags); 584 if (!rq) { 585 struct blk_mq_alloc_data data = { 586 .q = q, 587 .flags = flags, 588 .cmd_flags = opf, 589 .nr_tags = 1, 590 }; 591 int ret; 592 593 ret = blk_queue_enter(q, flags); 594 if (ret) 595 return ERR_PTR(ret); 596 597 rq = __blk_mq_alloc_requests(&data); 598 if (!rq) 599 goto out_queue_exit; 600 } 601 rq->__data_len = 0; 602 rq->__sector = (sector_t) -1; 603 rq->bio = rq->biotail = NULL; 604 return rq; 605 out_queue_exit: 606 blk_queue_exit(q); 607 return ERR_PTR(-EWOULDBLOCK); 608 } 609 EXPORT_SYMBOL(blk_mq_alloc_request); 610 611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 613 { 614 struct blk_mq_alloc_data data = { 615 .q = q, 616 .flags = flags, 617 .cmd_flags = opf, 618 .nr_tags = 1, 619 }; 620 u64 alloc_time_ns = 0; 621 struct request *rq; 622 unsigned int cpu; 623 unsigned int tag; 624 int ret; 625 626 /* alloc_time includes depth and tag waits */ 627 if (blk_queue_rq_alloc_time(q)) 628 alloc_time_ns = ktime_get_ns(); 629 630 /* 631 * If the tag allocator sleeps we could get an allocation for a 632 * different hardware context. No need to complicate the low level 633 * allocator for this for the rare use case of a command tied to 634 * a specific queue. 635 */ 636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 638 return ERR_PTR(-EINVAL); 639 640 if (hctx_idx >= q->nr_hw_queues) 641 return ERR_PTR(-EIO); 642 643 ret = blk_queue_enter(q, flags); 644 if (ret) 645 return ERR_PTR(ret); 646 647 /* 648 * Check if the hardware context is actually mapped to anything. 649 * If not tell the caller that it should skip this queue. 650 */ 651 ret = -EXDEV; 652 data.hctx = xa_load(&q->hctx_table, hctx_idx); 653 if (!blk_mq_hw_queue_mapped(data.hctx)) 654 goto out_queue_exit; 655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 656 if (cpu >= nr_cpu_ids) 657 goto out_queue_exit; 658 data.ctx = __blk_mq_get_ctx(q, cpu); 659 660 if (q->elevator) 661 data.rq_flags |= RQF_SCHED_TAGS; 662 else 663 blk_mq_tag_busy(data.hctx); 664 665 if (flags & BLK_MQ_REQ_RESERVED) 666 data.rq_flags |= RQF_RESV; 667 668 ret = -EWOULDBLOCK; 669 tag = blk_mq_get_tag(&data); 670 if (tag == BLK_MQ_NO_TAG) 671 goto out_queue_exit; 672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 673 blk_mq_rq_time_init(rq, alloc_time_ns); 674 rq->__data_len = 0; 675 rq->__sector = (sector_t) -1; 676 rq->bio = rq->biotail = NULL; 677 return rq; 678 679 out_queue_exit: 680 blk_queue_exit(q); 681 return ERR_PTR(ret); 682 } 683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 684 685 static void blk_mq_finish_request(struct request *rq) 686 { 687 struct request_queue *q = rq->q; 688 689 if (rq->rq_flags & RQF_USE_SCHED) { 690 q->elevator->type->ops.finish_request(rq); 691 /* 692 * For postflush request that may need to be 693 * completed twice, we should clear this flag 694 * to avoid double finish_request() on the rq. 695 */ 696 rq->rq_flags &= ~RQF_USE_SCHED; 697 } 698 } 699 700 static void __blk_mq_free_request(struct request *rq) 701 { 702 struct request_queue *q = rq->q; 703 struct blk_mq_ctx *ctx = rq->mq_ctx; 704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 705 const int sched_tag = rq->internal_tag; 706 707 blk_crypto_free_request(rq); 708 blk_pm_mark_last_busy(rq); 709 rq->mq_hctx = NULL; 710 711 if (rq->rq_flags & RQF_MQ_INFLIGHT) 712 __blk_mq_dec_active_requests(hctx); 713 714 if (rq->tag != BLK_MQ_NO_TAG) 715 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 716 if (sched_tag != BLK_MQ_NO_TAG) 717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 718 blk_mq_sched_restart(hctx); 719 blk_queue_exit(q); 720 } 721 722 void blk_mq_free_request(struct request *rq) 723 { 724 struct request_queue *q = rq->q; 725 726 blk_mq_finish_request(rq); 727 728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 729 laptop_io_completion(q->disk->bdi); 730 731 rq_qos_done(q, rq); 732 733 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 734 if (req_ref_put_and_test(rq)) 735 __blk_mq_free_request(rq); 736 } 737 EXPORT_SYMBOL_GPL(blk_mq_free_request); 738 739 void blk_mq_free_plug_rqs(struct blk_plug *plug) 740 { 741 struct request *rq; 742 743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 744 blk_mq_free_request(rq); 745 } 746 747 void blk_dump_rq_flags(struct request *rq, char *msg) 748 { 749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 750 rq->q->disk ? rq->q->disk->disk_name : "?", 751 (__force unsigned long long) rq->cmd_flags); 752 753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 754 (unsigned long long)blk_rq_pos(rq), 755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 756 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 757 rq->bio, rq->biotail, blk_rq_bytes(rq)); 758 } 759 EXPORT_SYMBOL(blk_dump_rq_flags); 760 761 static void req_bio_endio(struct request *rq, struct bio *bio, 762 unsigned int nbytes, blk_status_t error) 763 { 764 if (unlikely(error)) { 765 bio->bi_status = error; 766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 767 /* 768 * Partial zone append completions cannot be supported as the 769 * BIO fragments may end up not being written sequentially. 770 */ 771 if (bio->bi_iter.bi_size != nbytes) 772 bio->bi_status = BLK_STS_IOERR; 773 else 774 bio->bi_iter.bi_sector = rq->__sector; 775 } 776 777 bio_advance(bio, nbytes); 778 779 if (unlikely(rq->rq_flags & RQF_QUIET)) 780 bio_set_flag(bio, BIO_QUIET); 781 /* don't actually finish bio if it's part of flush sequence */ 782 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 783 bio_endio(bio); 784 } 785 786 static void blk_account_io_completion(struct request *req, unsigned int bytes) 787 { 788 if (req->part && blk_do_io_stat(req)) { 789 const int sgrp = op_stat_group(req_op(req)); 790 791 part_stat_lock(); 792 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 793 part_stat_unlock(); 794 } 795 } 796 797 static void blk_print_req_error(struct request *req, blk_status_t status) 798 { 799 printk_ratelimited(KERN_ERR 800 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 801 "phys_seg %u prio class %u\n", 802 blk_status_to_str(status), 803 req->q->disk ? req->q->disk->disk_name : "?", 804 blk_rq_pos(req), (__force u32)req_op(req), 805 blk_op_str(req_op(req)), 806 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 807 req->nr_phys_segments, 808 IOPRIO_PRIO_CLASS(req->ioprio)); 809 } 810 811 /* 812 * Fully end IO on a request. Does not support partial completions, or 813 * errors. 814 */ 815 static void blk_complete_request(struct request *req) 816 { 817 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 818 int total_bytes = blk_rq_bytes(req); 819 struct bio *bio = req->bio; 820 821 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 822 823 if (!bio) 824 return; 825 826 #ifdef CONFIG_BLK_DEV_INTEGRITY 827 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 828 req->q->integrity.profile->complete_fn(req, total_bytes); 829 #endif 830 831 /* 832 * Upper layers may call blk_crypto_evict_key() anytime after the last 833 * bio_endio(). Therefore, the keyslot must be released before that. 834 */ 835 blk_crypto_rq_put_keyslot(req); 836 837 blk_account_io_completion(req, total_bytes); 838 839 do { 840 struct bio *next = bio->bi_next; 841 842 /* Completion has already been traced */ 843 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 844 845 if (req_op(req) == REQ_OP_ZONE_APPEND) 846 bio->bi_iter.bi_sector = req->__sector; 847 848 if (!is_flush) 849 bio_endio(bio); 850 bio = next; 851 } while (bio); 852 853 /* 854 * Reset counters so that the request stacking driver 855 * can find how many bytes remain in the request 856 * later. 857 */ 858 if (!req->end_io) { 859 req->bio = NULL; 860 req->__data_len = 0; 861 } 862 } 863 864 /** 865 * blk_update_request - Complete multiple bytes without completing the request 866 * @req: the request being processed 867 * @error: block status code 868 * @nr_bytes: number of bytes to complete for @req 869 * 870 * Description: 871 * Ends I/O on a number of bytes attached to @req, but doesn't complete 872 * the request structure even if @req doesn't have leftover. 873 * If @req has leftover, sets it up for the next range of segments. 874 * 875 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 876 * %false return from this function. 877 * 878 * Note: 879 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 880 * except in the consistency check at the end of this function. 881 * 882 * Return: 883 * %false - this request doesn't have any more data 884 * %true - this request has more data 885 **/ 886 bool blk_update_request(struct request *req, blk_status_t error, 887 unsigned int nr_bytes) 888 { 889 int total_bytes; 890 891 trace_block_rq_complete(req, error, nr_bytes); 892 893 if (!req->bio) 894 return false; 895 896 #ifdef CONFIG_BLK_DEV_INTEGRITY 897 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 898 error == BLK_STS_OK) 899 req->q->integrity.profile->complete_fn(req, nr_bytes); 900 #endif 901 902 /* 903 * Upper layers may call blk_crypto_evict_key() anytime after the last 904 * bio_endio(). Therefore, the keyslot must be released before that. 905 */ 906 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 907 __blk_crypto_rq_put_keyslot(req); 908 909 if (unlikely(error && !blk_rq_is_passthrough(req) && 910 !(req->rq_flags & RQF_QUIET)) && 911 !test_bit(GD_DEAD, &req->q->disk->state)) { 912 blk_print_req_error(req, error); 913 trace_block_rq_error(req, error, nr_bytes); 914 } 915 916 blk_account_io_completion(req, nr_bytes); 917 918 total_bytes = 0; 919 while (req->bio) { 920 struct bio *bio = req->bio; 921 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 922 923 if (bio_bytes == bio->bi_iter.bi_size) 924 req->bio = bio->bi_next; 925 926 /* Completion has already been traced */ 927 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 928 req_bio_endio(req, bio, bio_bytes, error); 929 930 total_bytes += bio_bytes; 931 nr_bytes -= bio_bytes; 932 933 if (!nr_bytes) 934 break; 935 } 936 937 /* 938 * completely done 939 */ 940 if (!req->bio) { 941 /* 942 * Reset counters so that the request stacking driver 943 * can find how many bytes remain in the request 944 * later. 945 */ 946 req->__data_len = 0; 947 return false; 948 } 949 950 req->__data_len -= total_bytes; 951 952 /* update sector only for requests with clear definition of sector */ 953 if (!blk_rq_is_passthrough(req)) 954 req->__sector += total_bytes >> 9; 955 956 /* mixed attributes always follow the first bio */ 957 if (req->rq_flags & RQF_MIXED_MERGE) { 958 req->cmd_flags &= ~REQ_FAILFAST_MASK; 959 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 960 } 961 962 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 963 /* 964 * If total number of sectors is less than the first segment 965 * size, something has gone terribly wrong. 966 */ 967 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 968 blk_dump_rq_flags(req, "request botched"); 969 req->__data_len = blk_rq_cur_bytes(req); 970 } 971 972 /* recalculate the number of segments */ 973 req->nr_phys_segments = blk_recalc_rq_segments(req); 974 } 975 976 return true; 977 } 978 EXPORT_SYMBOL_GPL(blk_update_request); 979 980 static inline void blk_account_io_done(struct request *req, u64 now) 981 { 982 trace_block_io_done(req); 983 984 /* 985 * Account IO completion. flush_rq isn't accounted as a 986 * normal IO on queueing nor completion. Accounting the 987 * containing request is enough. 988 */ 989 if (blk_do_io_stat(req) && req->part && 990 !(req->rq_flags & RQF_FLUSH_SEQ)) { 991 const int sgrp = op_stat_group(req_op(req)); 992 993 part_stat_lock(); 994 update_io_ticks(req->part, jiffies, true); 995 part_stat_inc(req->part, ios[sgrp]); 996 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 997 part_stat_unlock(); 998 } 999 } 1000 1001 static inline void blk_account_io_start(struct request *req) 1002 { 1003 trace_block_io_start(req); 1004 1005 if (blk_do_io_stat(req)) { 1006 /* 1007 * All non-passthrough requests are created from a bio with one 1008 * exception: when a flush command that is part of a flush sequence 1009 * generated by the state machine in blk-flush.c is cloned onto the 1010 * lower device by dm-multipath we can get here without a bio. 1011 */ 1012 if (req->bio) 1013 req->part = req->bio->bi_bdev; 1014 else 1015 req->part = req->q->disk->part0; 1016 1017 part_stat_lock(); 1018 update_io_ticks(req->part, jiffies, false); 1019 part_stat_unlock(); 1020 } 1021 } 1022 1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1024 { 1025 if (rq->rq_flags & RQF_STATS) 1026 blk_stat_add(rq, now); 1027 1028 blk_mq_sched_completed_request(rq, now); 1029 blk_account_io_done(rq, now); 1030 } 1031 1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1033 { 1034 if (blk_mq_need_time_stamp(rq)) 1035 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1036 1037 blk_mq_finish_request(rq); 1038 1039 if (rq->end_io) { 1040 rq_qos_done(rq->q, rq); 1041 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1042 blk_mq_free_request(rq); 1043 } else { 1044 blk_mq_free_request(rq); 1045 } 1046 } 1047 EXPORT_SYMBOL(__blk_mq_end_request); 1048 1049 void blk_mq_end_request(struct request *rq, blk_status_t error) 1050 { 1051 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1052 BUG(); 1053 __blk_mq_end_request(rq, error); 1054 } 1055 EXPORT_SYMBOL(blk_mq_end_request); 1056 1057 #define TAG_COMP_BATCH 32 1058 1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1060 int *tag_array, int nr_tags) 1061 { 1062 struct request_queue *q = hctx->queue; 1063 1064 /* 1065 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1066 * update hctx->nr_active in batch 1067 */ 1068 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1069 __blk_mq_sub_active_requests(hctx, nr_tags); 1070 1071 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1072 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1073 } 1074 1075 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1076 { 1077 int tags[TAG_COMP_BATCH], nr_tags = 0; 1078 struct blk_mq_hw_ctx *cur_hctx = NULL; 1079 struct request *rq; 1080 u64 now = 0; 1081 1082 if (iob->need_ts) 1083 now = ktime_get_ns(); 1084 1085 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1086 prefetch(rq->bio); 1087 prefetch(rq->rq_next); 1088 1089 blk_complete_request(rq); 1090 if (iob->need_ts) 1091 __blk_mq_end_request_acct(rq, now); 1092 1093 blk_mq_finish_request(rq); 1094 1095 rq_qos_done(rq->q, rq); 1096 1097 /* 1098 * If end_io handler returns NONE, then it still has 1099 * ownership of the request. 1100 */ 1101 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1102 continue; 1103 1104 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1105 if (!req_ref_put_and_test(rq)) 1106 continue; 1107 1108 blk_crypto_free_request(rq); 1109 blk_pm_mark_last_busy(rq); 1110 1111 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1112 if (cur_hctx) 1113 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1114 nr_tags = 0; 1115 cur_hctx = rq->mq_hctx; 1116 } 1117 tags[nr_tags++] = rq->tag; 1118 } 1119 1120 if (nr_tags) 1121 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1122 } 1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1124 1125 static void blk_complete_reqs(struct llist_head *list) 1126 { 1127 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1128 struct request *rq, *next; 1129 1130 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1131 rq->q->mq_ops->complete(rq); 1132 } 1133 1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1135 { 1136 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1137 } 1138 1139 static int blk_softirq_cpu_dead(unsigned int cpu) 1140 { 1141 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1142 return 0; 1143 } 1144 1145 static void __blk_mq_complete_request_remote(void *data) 1146 { 1147 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1148 } 1149 1150 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1151 { 1152 int cpu = raw_smp_processor_id(); 1153 1154 if (!IS_ENABLED(CONFIG_SMP) || 1155 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1156 return false; 1157 /* 1158 * With force threaded interrupts enabled, raising softirq from an SMP 1159 * function call will always result in waking the ksoftirqd thread. 1160 * This is probably worse than completing the request on a different 1161 * cache domain. 1162 */ 1163 if (force_irqthreads()) 1164 return false; 1165 1166 /* same CPU or cache domain? Complete locally */ 1167 if (cpu == rq->mq_ctx->cpu || 1168 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1169 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1170 return false; 1171 1172 /* don't try to IPI to an offline CPU */ 1173 return cpu_online(rq->mq_ctx->cpu); 1174 } 1175 1176 static void blk_mq_complete_send_ipi(struct request *rq) 1177 { 1178 unsigned int cpu; 1179 1180 cpu = rq->mq_ctx->cpu; 1181 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1182 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1183 } 1184 1185 static void blk_mq_raise_softirq(struct request *rq) 1186 { 1187 struct llist_head *list; 1188 1189 preempt_disable(); 1190 list = this_cpu_ptr(&blk_cpu_done); 1191 if (llist_add(&rq->ipi_list, list)) 1192 raise_softirq(BLOCK_SOFTIRQ); 1193 preempt_enable(); 1194 } 1195 1196 bool blk_mq_complete_request_remote(struct request *rq) 1197 { 1198 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1199 1200 /* 1201 * For request which hctx has only one ctx mapping, 1202 * or a polled request, always complete locally, 1203 * it's pointless to redirect the completion. 1204 */ 1205 if ((rq->mq_hctx->nr_ctx == 1 && 1206 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1207 rq->cmd_flags & REQ_POLLED) 1208 return false; 1209 1210 if (blk_mq_complete_need_ipi(rq)) { 1211 blk_mq_complete_send_ipi(rq); 1212 return true; 1213 } 1214 1215 if (rq->q->nr_hw_queues == 1) { 1216 blk_mq_raise_softirq(rq); 1217 return true; 1218 } 1219 return false; 1220 } 1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1222 1223 /** 1224 * blk_mq_complete_request - end I/O on a request 1225 * @rq: the request being processed 1226 * 1227 * Description: 1228 * Complete a request by scheduling the ->complete_rq operation. 1229 **/ 1230 void blk_mq_complete_request(struct request *rq) 1231 { 1232 if (!blk_mq_complete_request_remote(rq)) 1233 rq->q->mq_ops->complete(rq); 1234 } 1235 EXPORT_SYMBOL(blk_mq_complete_request); 1236 1237 /** 1238 * blk_mq_start_request - Start processing a request 1239 * @rq: Pointer to request to be started 1240 * 1241 * Function used by device drivers to notify the block layer that a request 1242 * is going to be processed now, so blk layer can do proper initializations 1243 * such as starting the timeout timer. 1244 */ 1245 void blk_mq_start_request(struct request *rq) 1246 { 1247 struct request_queue *q = rq->q; 1248 1249 trace_block_rq_issue(rq); 1250 1251 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1252 rq->io_start_time_ns = ktime_get_ns(); 1253 rq->stats_sectors = blk_rq_sectors(rq); 1254 rq->rq_flags |= RQF_STATS; 1255 rq_qos_issue(q, rq); 1256 } 1257 1258 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1259 1260 blk_add_timer(rq); 1261 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1262 1263 #ifdef CONFIG_BLK_DEV_INTEGRITY 1264 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1265 q->integrity.profile->prepare_fn(rq); 1266 #endif 1267 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1268 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1269 } 1270 EXPORT_SYMBOL(blk_mq_start_request); 1271 1272 /* 1273 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1274 * queues. This is important for md arrays to benefit from merging 1275 * requests. 1276 */ 1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1278 { 1279 if (plug->multiple_queues) 1280 return BLK_MAX_REQUEST_COUNT * 2; 1281 return BLK_MAX_REQUEST_COUNT; 1282 } 1283 1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1285 { 1286 struct request *last = rq_list_peek(&plug->mq_list); 1287 1288 if (!plug->rq_count) { 1289 trace_block_plug(rq->q); 1290 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1291 (!blk_queue_nomerges(rq->q) && 1292 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1293 blk_mq_flush_plug_list(plug, false); 1294 last = NULL; 1295 trace_block_plug(rq->q); 1296 } 1297 1298 if (!plug->multiple_queues && last && last->q != rq->q) 1299 plug->multiple_queues = true; 1300 /* 1301 * Any request allocated from sched tags can't be issued to 1302 * ->queue_rqs() directly 1303 */ 1304 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1305 plug->has_elevator = true; 1306 rq->rq_next = NULL; 1307 rq_list_add(&plug->mq_list, rq); 1308 plug->rq_count++; 1309 } 1310 1311 /** 1312 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1313 * @rq: request to insert 1314 * @at_head: insert request at head or tail of queue 1315 * 1316 * Description: 1317 * Insert a fully prepared request at the back of the I/O scheduler queue 1318 * for execution. Don't wait for completion. 1319 * 1320 * Note: 1321 * This function will invoke @done directly if the queue is dead. 1322 */ 1323 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1324 { 1325 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1326 1327 WARN_ON(irqs_disabled()); 1328 WARN_ON(!blk_rq_is_passthrough(rq)); 1329 1330 blk_account_io_start(rq); 1331 1332 /* 1333 * As plugging can be enabled for passthrough requests on a zoned 1334 * device, directly accessing the plug instead of using blk_mq_plug() 1335 * should not have any consequences. 1336 */ 1337 if (current->plug && !at_head) { 1338 blk_add_rq_to_plug(current->plug, rq); 1339 return; 1340 } 1341 1342 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1343 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1344 } 1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1346 1347 struct blk_rq_wait { 1348 struct completion done; 1349 blk_status_t ret; 1350 }; 1351 1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1353 { 1354 struct blk_rq_wait *wait = rq->end_io_data; 1355 1356 wait->ret = ret; 1357 complete(&wait->done); 1358 return RQ_END_IO_NONE; 1359 } 1360 1361 bool blk_rq_is_poll(struct request *rq) 1362 { 1363 if (!rq->mq_hctx) 1364 return false; 1365 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1366 return false; 1367 return true; 1368 } 1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1370 1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1372 { 1373 do { 1374 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1375 cond_resched(); 1376 } while (!completion_done(wait)); 1377 } 1378 1379 /** 1380 * blk_execute_rq - insert a request into queue for execution 1381 * @rq: request to insert 1382 * @at_head: insert request at head or tail of queue 1383 * 1384 * Description: 1385 * Insert a fully prepared request at the back of the I/O scheduler queue 1386 * for execution and wait for completion. 1387 * Return: The blk_status_t result provided to blk_mq_end_request(). 1388 */ 1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1390 { 1391 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1392 struct blk_rq_wait wait = { 1393 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1394 }; 1395 1396 WARN_ON(irqs_disabled()); 1397 WARN_ON(!blk_rq_is_passthrough(rq)); 1398 1399 rq->end_io_data = &wait; 1400 rq->end_io = blk_end_sync_rq; 1401 1402 blk_account_io_start(rq); 1403 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1404 blk_mq_run_hw_queue(hctx, false); 1405 1406 if (blk_rq_is_poll(rq)) { 1407 blk_rq_poll_completion(rq, &wait.done); 1408 } else { 1409 /* 1410 * Prevent hang_check timer from firing at us during very long 1411 * I/O 1412 */ 1413 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1414 1415 if (hang_check) 1416 while (!wait_for_completion_io_timeout(&wait.done, 1417 hang_check * (HZ/2))) 1418 ; 1419 else 1420 wait_for_completion_io(&wait.done); 1421 } 1422 1423 return wait.ret; 1424 } 1425 EXPORT_SYMBOL(blk_execute_rq); 1426 1427 static void __blk_mq_requeue_request(struct request *rq) 1428 { 1429 struct request_queue *q = rq->q; 1430 1431 blk_mq_put_driver_tag(rq); 1432 1433 trace_block_rq_requeue(rq); 1434 rq_qos_requeue(q, rq); 1435 1436 if (blk_mq_request_started(rq)) { 1437 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1438 rq->rq_flags &= ~RQF_TIMED_OUT; 1439 } 1440 } 1441 1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1443 { 1444 struct request_queue *q = rq->q; 1445 unsigned long flags; 1446 1447 __blk_mq_requeue_request(rq); 1448 1449 /* this request will be re-inserted to io scheduler queue */ 1450 blk_mq_sched_requeue_request(rq); 1451 1452 spin_lock_irqsave(&q->requeue_lock, flags); 1453 list_add_tail(&rq->queuelist, &q->requeue_list); 1454 spin_unlock_irqrestore(&q->requeue_lock, flags); 1455 1456 if (kick_requeue_list) 1457 blk_mq_kick_requeue_list(q); 1458 } 1459 EXPORT_SYMBOL(blk_mq_requeue_request); 1460 1461 static void blk_mq_requeue_work(struct work_struct *work) 1462 { 1463 struct request_queue *q = 1464 container_of(work, struct request_queue, requeue_work.work); 1465 LIST_HEAD(rq_list); 1466 LIST_HEAD(flush_list); 1467 struct request *rq; 1468 1469 spin_lock_irq(&q->requeue_lock); 1470 list_splice_init(&q->requeue_list, &rq_list); 1471 list_splice_init(&q->flush_list, &flush_list); 1472 spin_unlock_irq(&q->requeue_lock); 1473 1474 while (!list_empty(&rq_list)) { 1475 rq = list_entry(rq_list.next, struct request, queuelist); 1476 /* 1477 * If RQF_DONTPREP ist set, the request has been started by the 1478 * driver already and might have driver-specific data allocated 1479 * already. Insert it into the hctx dispatch list to avoid 1480 * block layer merges for the request. 1481 */ 1482 if (rq->rq_flags & RQF_DONTPREP) { 1483 list_del_init(&rq->queuelist); 1484 blk_mq_request_bypass_insert(rq, 0); 1485 } else { 1486 list_del_init(&rq->queuelist); 1487 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1488 } 1489 } 1490 1491 while (!list_empty(&flush_list)) { 1492 rq = list_entry(flush_list.next, struct request, queuelist); 1493 list_del_init(&rq->queuelist); 1494 blk_mq_insert_request(rq, 0); 1495 } 1496 1497 blk_mq_run_hw_queues(q, false); 1498 } 1499 1500 void blk_mq_kick_requeue_list(struct request_queue *q) 1501 { 1502 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1503 } 1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1505 1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1507 unsigned long msecs) 1508 { 1509 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1510 msecs_to_jiffies(msecs)); 1511 } 1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1513 1514 static bool blk_is_flush_data_rq(struct request *rq) 1515 { 1516 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1517 } 1518 1519 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1520 { 1521 /* 1522 * If we find a request that isn't idle we know the queue is busy 1523 * as it's checked in the iter. 1524 * Return false to stop the iteration. 1525 * 1526 * In case of queue quiesce, if one flush data request is completed, 1527 * don't count it as inflight given the flush sequence is suspended, 1528 * and the original flush data request is invisible to driver, just 1529 * like other pending requests because of quiesce 1530 */ 1531 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1532 blk_is_flush_data_rq(rq) && 1533 blk_mq_request_completed(rq))) { 1534 bool *busy = priv; 1535 1536 *busy = true; 1537 return false; 1538 } 1539 1540 return true; 1541 } 1542 1543 bool blk_mq_queue_inflight(struct request_queue *q) 1544 { 1545 bool busy = false; 1546 1547 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1548 return busy; 1549 } 1550 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1551 1552 static void blk_mq_rq_timed_out(struct request *req) 1553 { 1554 req->rq_flags |= RQF_TIMED_OUT; 1555 if (req->q->mq_ops->timeout) { 1556 enum blk_eh_timer_return ret; 1557 1558 ret = req->q->mq_ops->timeout(req); 1559 if (ret == BLK_EH_DONE) 1560 return; 1561 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1562 } 1563 1564 blk_add_timer(req); 1565 } 1566 1567 struct blk_expired_data { 1568 bool has_timedout_rq; 1569 unsigned long next; 1570 unsigned long timeout_start; 1571 }; 1572 1573 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1574 { 1575 unsigned long deadline; 1576 1577 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1578 return false; 1579 if (rq->rq_flags & RQF_TIMED_OUT) 1580 return false; 1581 1582 deadline = READ_ONCE(rq->deadline); 1583 if (time_after_eq(expired->timeout_start, deadline)) 1584 return true; 1585 1586 if (expired->next == 0) 1587 expired->next = deadline; 1588 else if (time_after(expired->next, deadline)) 1589 expired->next = deadline; 1590 return false; 1591 } 1592 1593 void blk_mq_put_rq_ref(struct request *rq) 1594 { 1595 if (is_flush_rq(rq)) { 1596 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1597 blk_mq_free_request(rq); 1598 } else if (req_ref_put_and_test(rq)) { 1599 __blk_mq_free_request(rq); 1600 } 1601 } 1602 1603 static bool blk_mq_check_expired(struct request *rq, void *priv) 1604 { 1605 struct blk_expired_data *expired = priv; 1606 1607 /* 1608 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1609 * be reallocated underneath the timeout handler's processing, then 1610 * the expire check is reliable. If the request is not expired, then 1611 * it was completed and reallocated as a new request after returning 1612 * from blk_mq_check_expired(). 1613 */ 1614 if (blk_mq_req_expired(rq, expired)) { 1615 expired->has_timedout_rq = true; 1616 return false; 1617 } 1618 return true; 1619 } 1620 1621 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1622 { 1623 struct blk_expired_data *expired = priv; 1624 1625 if (blk_mq_req_expired(rq, expired)) 1626 blk_mq_rq_timed_out(rq); 1627 return true; 1628 } 1629 1630 static void blk_mq_timeout_work(struct work_struct *work) 1631 { 1632 struct request_queue *q = 1633 container_of(work, struct request_queue, timeout_work); 1634 struct blk_expired_data expired = { 1635 .timeout_start = jiffies, 1636 }; 1637 struct blk_mq_hw_ctx *hctx; 1638 unsigned long i; 1639 1640 /* A deadlock might occur if a request is stuck requiring a 1641 * timeout at the same time a queue freeze is waiting 1642 * completion, since the timeout code would not be able to 1643 * acquire the queue reference here. 1644 * 1645 * That's why we don't use blk_queue_enter here; instead, we use 1646 * percpu_ref_tryget directly, because we need to be able to 1647 * obtain a reference even in the short window between the queue 1648 * starting to freeze, by dropping the first reference in 1649 * blk_freeze_queue_start, and the moment the last request is 1650 * consumed, marked by the instant q_usage_counter reaches 1651 * zero. 1652 */ 1653 if (!percpu_ref_tryget(&q->q_usage_counter)) 1654 return; 1655 1656 /* check if there is any timed-out request */ 1657 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1658 if (expired.has_timedout_rq) { 1659 /* 1660 * Before walking tags, we must ensure any submit started 1661 * before the current time has finished. Since the submit 1662 * uses srcu or rcu, wait for a synchronization point to 1663 * ensure all running submits have finished 1664 */ 1665 blk_mq_wait_quiesce_done(q->tag_set); 1666 1667 expired.next = 0; 1668 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1669 } 1670 1671 if (expired.next != 0) { 1672 mod_timer(&q->timeout, expired.next); 1673 } else { 1674 /* 1675 * Request timeouts are handled as a forward rolling timer. If 1676 * we end up here it means that no requests are pending and 1677 * also that no request has been pending for a while. Mark 1678 * each hctx as idle. 1679 */ 1680 queue_for_each_hw_ctx(q, hctx, i) { 1681 /* the hctx may be unmapped, so check it here */ 1682 if (blk_mq_hw_queue_mapped(hctx)) 1683 blk_mq_tag_idle(hctx); 1684 } 1685 } 1686 blk_queue_exit(q); 1687 } 1688 1689 struct flush_busy_ctx_data { 1690 struct blk_mq_hw_ctx *hctx; 1691 struct list_head *list; 1692 }; 1693 1694 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1695 { 1696 struct flush_busy_ctx_data *flush_data = data; 1697 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1698 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1699 enum hctx_type type = hctx->type; 1700 1701 spin_lock(&ctx->lock); 1702 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1703 sbitmap_clear_bit(sb, bitnr); 1704 spin_unlock(&ctx->lock); 1705 return true; 1706 } 1707 1708 /* 1709 * Process software queues that have been marked busy, splicing them 1710 * to the for-dispatch 1711 */ 1712 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1713 { 1714 struct flush_busy_ctx_data data = { 1715 .hctx = hctx, 1716 .list = list, 1717 }; 1718 1719 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1720 } 1721 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1722 1723 struct dispatch_rq_data { 1724 struct blk_mq_hw_ctx *hctx; 1725 struct request *rq; 1726 }; 1727 1728 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1729 void *data) 1730 { 1731 struct dispatch_rq_data *dispatch_data = data; 1732 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1733 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1734 enum hctx_type type = hctx->type; 1735 1736 spin_lock(&ctx->lock); 1737 if (!list_empty(&ctx->rq_lists[type])) { 1738 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1739 list_del_init(&dispatch_data->rq->queuelist); 1740 if (list_empty(&ctx->rq_lists[type])) 1741 sbitmap_clear_bit(sb, bitnr); 1742 } 1743 spin_unlock(&ctx->lock); 1744 1745 return !dispatch_data->rq; 1746 } 1747 1748 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1749 struct blk_mq_ctx *start) 1750 { 1751 unsigned off = start ? start->index_hw[hctx->type] : 0; 1752 struct dispatch_rq_data data = { 1753 .hctx = hctx, 1754 .rq = NULL, 1755 }; 1756 1757 __sbitmap_for_each_set(&hctx->ctx_map, off, 1758 dispatch_rq_from_ctx, &data); 1759 1760 return data.rq; 1761 } 1762 1763 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1764 { 1765 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1766 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1767 int tag; 1768 1769 blk_mq_tag_busy(rq->mq_hctx); 1770 1771 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1772 bt = &rq->mq_hctx->tags->breserved_tags; 1773 tag_offset = 0; 1774 } else { 1775 if (!hctx_may_queue(rq->mq_hctx, bt)) 1776 return false; 1777 } 1778 1779 tag = __sbitmap_queue_get(bt); 1780 if (tag == BLK_MQ_NO_TAG) 1781 return false; 1782 1783 rq->tag = tag + tag_offset; 1784 return true; 1785 } 1786 1787 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1788 { 1789 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1790 return false; 1791 1792 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1793 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1794 rq->rq_flags |= RQF_MQ_INFLIGHT; 1795 __blk_mq_inc_active_requests(hctx); 1796 } 1797 hctx->tags->rqs[rq->tag] = rq; 1798 return true; 1799 } 1800 1801 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1802 int flags, void *key) 1803 { 1804 struct blk_mq_hw_ctx *hctx; 1805 1806 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1807 1808 spin_lock(&hctx->dispatch_wait_lock); 1809 if (!list_empty(&wait->entry)) { 1810 struct sbitmap_queue *sbq; 1811 1812 list_del_init(&wait->entry); 1813 sbq = &hctx->tags->bitmap_tags; 1814 atomic_dec(&sbq->ws_active); 1815 } 1816 spin_unlock(&hctx->dispatch_wait_lock); 1817 1818 blk_mq_run_hw_queue(hctx, true); 1819 return 1; 1820 } 1821 1822 /* 1823 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1824 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1825 * restart. For both cases, take care to check the condition again after 1826 * marking us as waiting. 1827 */ 1828 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1829 struct request *rq) 1830 { 1831 struct sbitmap_queue *sbq; 1832 struct wait_queue_head *wq; 1833 wait_queue_entry_t *wait; 1834 bool ret; 1835 1836 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1837 !(blk_mq_is_shared_tags(hctx->flags))) { 1838 blk_mq_sched_mark_restart_hctx(hctx); 1839 1840 /* 1841 * It's possible that a tag was freed in the window between the 1842 * allocation failure and adding the hardware queue to the wait 1843 * queue. 1844 * 1845 * Don't clear RESTART here, someone else could have set it. 1846 * At most this will cost an extra queue run. 1847 */ 1848 return blk_mq_get_driver_tag(rq); 1849 } 1850 1851 wait = &hctx->dispatch_wait; 1852 if (!list_empty_careful(&wait->entry)) 1853 return false; 1854 1855 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1856 sbq = &hctx->tags->breserved_tags; 1857 else 1858 sbq = &hctx->tags->bitmap_tags; 1859 wq = &bt_wait_ptr(sbq, hctx)->wait; 1860 1861 spin_lock_irq(&wq->lock); 1862 spin_lock(&hctx->dispatch_wait_lock); 1863 if (!list_empty(&wait->entry)) { 1864 spin_unlock(&hctx->dispatch_wait_lock); 1865 spin_unlock_irq(&wq->lock); 1866 return false; 1867 } 1868 1869 atomic_inc(&sbq->ws_active); 1870 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1871 __add_wait_queue(wq, wait); 1872 1873 /* 1874 * Add one explicit barrier since blk_mq_get_driver_tag() may 1875 * not imply barrier in case of failure. 1876 * 1877 * Order adding us to wait queue and allocating driver tag. 1878 * 1879 * The pair is the one implied in sbitmap_queue_wake_up() which 1880 * orders clearing sbitmap tag bits and waitqueue_active() in 1881 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1882 * 1883 * Otherwise, re-order of adding wait queue and getting driver tag 1884 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1885 * the waitqueue_active() may not observe us in wait queue. 1886 */ 1887 smp_mb(); 1888 1889 /* 1890 * It's possible that a tag was freed in the window between the 1891 * allocation failure and adding the hardware queue to the wait 1892 * queue. 1893 */ 1894 ret = blk_mq_get_driver_tag(rq); 1895 if (!ret) { 1896 spin_unlock(&hctx->dispatch_wait_lock); 1897 spin_unlock_irq(&wq->lock); 1898 return false; 1899 } 1900 1901 /* 1902 * We got a tag, remove ourselves from the wait queue to ensure 1903 * someone else gets the wakeup. 1904 */ 1905 list_del_init(&wait->entry); 1906 atomic_dec(&sbq->ws_active); 1907 spin_unlock(&hctx->dispatch_wait_lock); 1908 spin_unlock_irq(&wq->lock); 1909 1910 return true; 1911 } 1912 1913 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1914 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1915 /* 1916 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1917 * - EWMA is one simple way to compute running average value 1918 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1919 * - take 4 as factor for avoiding to get too small(0) result, and this 1920 * factor doesn't matter because EWMA decreases exponentially 1921 */ 1922 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1923 { 1924 unsigned int ewma; 1925 1926 ewma = hctx->dispatch_busy; 1927 1928 if (!ewma && !busy) 1929 return; 1930 1931 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1932 if (busy) 1933 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1934 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1935 1936 hctx->dispatch_busy = ewma; 1937 } 1938 1939 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1940 1941 static void blk_mq_handle_dev_resource(struct request *rq, 1942 struct list_head *list) 1943 { 1944 list_add(&rq->queuelist, list); 1945 __blk_mq_requeue_request(rq); 1946 } 1947 1948 static void blk_mq_handle_zone_resource(struct request *rq, 1949 struct list_head *zone_list) 1950 { 1951 /* 1952 * If we end up here it is because we cannot dispatch a request to a 1953 * specific zone due to LLD level zone-write locking or other zone 1954 * related resource not being available. In this case, set the request 1955 * aside in zone_list for retrying it later. 1956 */ 1957 list_add(&rq->queuelist, zone_list); 1958 __blk_mq_requeue_request(rq); 1959 } 1960 1961 enum prep_dispatch { 1962 PREP_DISPATCH_OK, 1963 PREP_DISPATCH_NO_TAG, 1964 PREP_DISPATCH_NO_BUDGET, 1965 }; 1966 1967 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1968 bool need_budget) 1969 { 1970 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1971 int budget_token = -1; 1972 1973 if (need_budget) { 1974 budget_token = blk_mq_get_dispatch_budget(rq->q); 1975 if (budget_token < 0) { 1976 blk_mq_put_driver_tag(rq); 1977 return PREP_DISPATCH_NO_BUDGET; 1978 } 1979 blk_mq_set_rq_budget_token(rq, budget_token); 1980 } 1981 1982 if (!blk_mq_get_driver_tag(rq)) { 1983 /* 1984 * The initial allocation attempt failed, so we need to 1985 * rerun the hardware queue when a tag is freed. The 1986 * waitqueue takes care of that. If the queue is run 1987 * before we add this entry back on the dispatch list, 1988 * we'll re-run it below. 1989 */ 1990 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1991 /* 1992 * All budgets not got from this function will be put 1993 * together during handling partial dispatch 1994 */ 1995 if (need_budget) 1996 blk_mq_put_dispatch_budget(rq->q, budget_token); 1997 return PREP_DISPATCH_NO_TAG; 1998 } 1999 } 2000 2001 return PREP_DISPATCH_OK; 2002 } 2003 2004 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2005 static void blk_mq_release_budgets(struct request_queue *q, 2006 struct list_head *list) 2007 { 2008 struct request *rq; 2009 2010 list_for_each_entry(rq, list, queuelist) { 2011 int budget_token = blk_mq_get_rq_budget_token(rq); 2012 2013 if (budget_token >= 0) 2014 blk_mq_put_dispatch_budget(q, budget_token); 2015 } 2016 } 2017 2018 /* 2019 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2020 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2021 * details) 2022 * Attention, we should explicitly call this in unusual cases: 2023 * 1) did not queue everything initially scheduled to queue 2024 * 2) the last attempt to queue a request failed 2025 */ 2026 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2027 bool from_schedule) 2028 { 2029 if (hctx->queue->mq_ops->commit_rqs && queued) { 2030 trace_block_unplug(hctx->queue, queued, !from_schedule); 2031 hctx->queue->mq_ops->commit_rqs(hctx); 2032 } 2033 } 2034 2035 /* 2036 * Returns true if we did some work AND can potentially do more. 2037 */ 2038 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2039 unsigned int nr_budgets) 2040 { 2041 enum prep_dispatch prep; 2042 struct request_queue *q = hctx->queue; 2043 struct request *rq; 2044 int queued; 2045 blk_status_t ret = BLK_STS_OK; 2046 LIST_HEAD(zone_list); 2047 bool needs_resource = false; 2048 2049 if (list_empty(list)) 2050 return false; 2051 2052 /* 2053 * Now process all the entries, sending them to the driver. 2054 */ 2055 queued = 0; 2056 do { 2057 struct blk_mq_queue_data bd; 2058 2059 rq = list_first_entry(list, struct request, queuelist); 2060 2061 WARN_ON_ONCE(hctx != rq->mq_hctx); 2062 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2063 if (prep != PREP_DISPATCH_OK) 2064 break; 2065 2066 list_del_init(&rq->queuelist); 2067 2068 bd.rq = rq; 2069 bd.last = list_empty(list); 2070 2071 /* 2072 * once the request is queued to lld, no need to cover the 2073 * budget any more 2074 */ 2075 if (nr_budgets) 2076 nr_budgets--; 2077 ret = q->mq_ops->queue_rq(hctx, &bd); 2078 switch (ret) { 2079 case BLK_STS_OK: 2080 queued++; 2081 break; 2082 case BLK_STS_RESOURCE: 2083 needs_resource = true; 2084 fallthrough; 2085 case BLK_STS_DEV_RESOURCE: 2086 blk_mq_handle_dev_resource(rq, list); 2087 goto out; 2088 case BLK_STS_ZONE_RESOURCE: 2089 /* 2090 * Move the request to zone_list and keep going through 2091 * the dispatch list to find more requests the drive can 2092 * accept. 2093 */ 2094 blk_mq_handle_zone_resource(rq, &zone_list); 2095 needs_resource = true; 2096 break; 2097 default: 2098 blk_mq_end_request(rq, ret); 2099 } 2100 } while (!list_empty(list)); 2101 out: 2102 if (!list_empty(&zone_list)) 2103 list_splice_tail_init(&zone_list, list); 2104 2105 /* If we didn't flush the entire list, we could have told the driver 2106 * there was more coming, but that turned out to be a lie. 2107 */ 2108 if (!list_empty(list) || ret != BLK_STS_OK) 2109 blk_mq_commit_rqs(hctx, queued, false); 2110 2111 /* 2112 * Any items that need requeuing? Stuff them into hctx->dispatch, 2113 * that is where we will continue on next queue run. 2114 */ 2115 if (!list_empty(list)) { 2116 bool needs_restart; 2117 /* For non-shared tags, the RESTART check will suffice */ 2118 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2119 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2120 blk_mq_is_shared_tags(hctx->flags)); 2121 2122 if (nr_budgets) 2123 blk_mq_release_budgets(q, list); 2124 2125 spin_lock(&hctx->lock); 2126 list_splice_tail_init(list, &hctx->dispatch); 2127 spin_unlock(&hctx->lock); 2128 2129 /* 2130 * Order adding requests to hctx->dispatch and checking 2131 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2132 * in blk_mq_sched_restart(). Avoid restart code path to 2133 * miss the new added requests to hctx->dispatch, meantime 2134 * SCHED_RESTART is observed here. 2135 */ 2136 smp_mb(); 2137 2138 /* 2139 * If SCHED_RESTART was set by the caller of this function and 2140 * it is no longer set that means that it was cleared by another 2141 * thread and hence that a queue rerun is needed. 2142 * 2143 * If 'no_tag' is set, that means that we failed getting 2144 * a driver tag with an I/O scheduler attached. If our dispatch 2145 * waitqueue is no longer active, ensure that we run the queue 2146 * AFTER adding our entries back to the list. 2147 * 2148 * If no I/O scheduler has been configured it is possible that 2149 * the hardware queue got stopped and restarted before requests 2150 * were pushed back onto the dispatch list. Rerun the queue to 2151 * avoid starvation. Notes: 2152 * - blk_mq_run_hw_queue() checks whether or not a queue has 2153 * been stopped before rerunning a queue. 2154 * - Some but not all block drivers stop a queue before 2155 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2156 * and dm-rq. 2157 * 2158 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2159 * bit is set, run queue after a delay to avoid IO stalls 2160 * that could otherwise occur if the queue is idle. We'll do 2161 * similar if we couldn't get budget or couldn't lock a zone 2162 * and SCHED_RESTART is set. 2163 */ 2164 needs_restart = blk_mq_sched_needs_restart(hctx); 2165 if (prep == PREP_DISPATCH_NO_BUDGET) 2166 needs_resource = true; 2167 if (!needs_restart || 2168 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2169 blk_mq_run_hw_queue(hctx, true); 2170 else if (needs_resource) 2171 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2172 2173 blk_mq_update_dispatch_busy(hctx, true); 2174 return false; 2175 } 2176 2177 blk_mq_update_dispatch_busy(hctx, false); 2178 return true; 2179 } 2180 2181 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2182 { 2183 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2184 2185 if (cpu >= nr_cpu_ids) 2186 cpu = cpumask_first(hctx->cpumask); 2187 return cpu; 2188 } 2189 2190 /* 2191 * It'd be great if the workqueue API had a way to pass 2192 * in a mask and had some smarts for more clever placement. 2193 * For now we just round-robin here, switching for every 2194 * BLK_MQ_CPU_WORK_BATCH queued items. 2195 */ 2196 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2197 { 2198 bool tried = false; 2199 int next_cpu = hctx->next_cpu; 2200 2201 if (hctx->queue->nr_hw_queues == 1) 2202 return WORK_CPU_UNBOUND; 2203 2204 if (--hctx->next_cpu_batch <= 0) { 2205 select_cpu: 2206 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2207 cpu_online_mask); 2208 if (next_cpu >= nr_cpu_ids) 2209 next_cpu = blk_mq_first_mapped_cpu(hctx); 2210 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2211 } 2212 2213 /* 2214 * Do unbound schedule if we can't find a online CPU for this hctx, 2215 * and it should only happen in the path of handling CPU DEAD. 2216 */ 2217 if (!cpu_online(next_cpu)) { 2218 if (!tried) { 2219 tried = true; 2220 goto select_cpu; 2221 } 2222 2223 /* 2224 * Make sure to re-select CPU next time once after CPUs 2225 * in hctx->cpumask become online again. 2226 */ 2227 hctx->next_cpu = next_cpu; 2228 hctx->next_cpu_batch = 1; 2229 return WORK_CPU_UNBOUND; 2230 } 2231 2232 hctx->next_cpu = next_cpu; 2233 return next_cpu; 2234 } 2235 2236 /** 2237 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2238 * @hctx: Pointer to the hardware queue to run. 2239 * @msecs: Milliseconds of delay to wait before running the queue. 2240 * 2241 * Run a hardware queue asynchronously with a delay of @msecs. 2242 */ 2243 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2244 { 2245 if (unlikely(blk_mq_hctx_stopped(hctx))) 2246 return; 2247 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2248 msecs_to_jiffies(msecs)); 2249 } 2250 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2251 2252 /** 2253 * blk_mq_run_hw_queue - Start to run a hardware queue. 2254 * @hctx: Pointer to the hardware queue to run. 2255 * @async: If we want to run the queue asynchronously. 2256 * 2257 * Check if the request queue is not in a quiesced state and if there are 2258 * pending requests to be sent. If this is true, run the queue to send requests 2259 * to hardware. 2260 */ 2261 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2262 { 2263 bool need_run; 2264 2265 /* 2266 * We can't run the queue inline with interrupts disabled. 2267 */ 2268 WARN_ON_ONCE(!async && in_interrupt()); 2269 2270 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2271 2272 /* 2273 * When queue is quiesced, we may be switching io scheduler, or 2274 * updating nr_hw_queues, or other things, and we can't run queue 2275 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2276 * 2277 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2278 * quiesced. 2279 */ 2280 __blk_mq_run_dispatch_ops(hctx->queue, false, 2281 need_run = !blk_queue_quiesced(hctx->queue) && 2282 blk_mq_hctx_has_pending(hctx)); 2283 2284 if (!need_run) 2285 return; 2286 2287 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2288 blk_mq_delay_run_hw_queue(hctx, 0); 2289 return; 2290 } 2291 2292 blk_mq_run_dispatch_ops(hctx->queue, 2293 blk_mq_sched_dispatch_requests(hctx)); 2294 } 2295 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2296 2297 /* 2298 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2299 * scheduler. 2300 */ 2301 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2302 { 2303 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2304 /* 2305 * If the IO scheduler does not respect hardware queues when 2306 * dispatching, we just don't bother with multiple HW queues and 2307 * dispatch from hctx for the current CPU since running multiple queues 2308 * just causes lock contention inside the scheduler and pointless cache 2309 * bouncing. 2310 */ 2311 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2312 2313 if (!blk_mq_hctx_stopped(hctx)) 2314 return hctx; 2315 return NULL; 2316 } 2317 2318 /** 2319 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2320 * @q: Pointer to the request queue to run. 2321 * @async: If we want to run the queue asynchronously. 2322 */ 2323 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2324 { 2325 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2326 unsigned long i; 2327 2328 sq_hctx = NULL; 2329 if (blk_queue_sq_sched(q)) 2330 sq_hctx = blk_mq_get_sq_hctx(q); 2331 queue_for_each_hw_ctx(q, hctx, i) { 2332 if (blk_mq_hctx_stopped(hctx)) 2333 continue; 2334 /* 2335 * Dispatch from this hctx either if there's no hctx preferred 2336 * by IO scheduler or if it has requests that bypass the 2337 * scheduler. 2338 */ 2339 if (!sq_hctx || sq_hctx == hctx || 2340 !list_empty_careful(&hctx->dispatch)) 2341 blk_mq_run_hw_queue(hctx, async); 2342 } 2343 } 2344 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2345 2346 /** 2347 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2348 * @q: Pointer to the request queue to run. 2349 * @msecs: Milliseconds of delay to wait before running the queues. 2350 */ 2351 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2352 { 2353 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2354 unsigned long i; 2355 2356 sq_hctx = NULL; 2357 if (blk_queue_sq_sched(q)) 2358 sq_hctx = blk_mq_get_sq_hctx(q); 2359 queue_for_each_hw_ctx(q, hctx, i) { 2360 if (blk_mq_hctx_stopped(hctx)) 2361 continue; 2362 /* 2363 * If there is already a run_work pending, leave the 2364 * pending delay untouched. Otherwise, a hctx can stall 2365 * if another hctx is re-delaying the other's work 2366 * before the work executes. 2367 */ 2368 if (delayed_work_pending(&hctx->run_work)) 2369 continue; 2370 /* 2371 * Dispatch from this hctx either if there's no hctx preferred 2372 * by IO scheduler or if it has requests that bypass the 2373 * scheduler. 2374 */ 2375 if (!sq_hctx || sq_hctx == hctx || 2376 !list_empty_careful(&hctx->dispatch)) 2377 blk_mq_delay_run_hw_queue(hctx, msecs); 2378 } 2379 } 2380 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2381 2382 /* 2383 * This function is often used for pausing .queue_rq() by driver when 2384 * there isn't enough resource or some conditions aren't satisfied, and 2385 * BLK_STS_RESOURCE is usually returned. 2386 * 2387 * We do not guarantee that dispatch can be drained or blocked 2388 * after blk_mq_stop_hw_queue() returns. Please use 2389 * blk_mq_quiesce_queue() for that requirement. 2390 */ 2391 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2392 { 2393 cancel_delayed_work(&hctx->run_work); 2394 2395 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2396 } 2397 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2398 2399 /* 2400 * This function is often used for pausing .queue_rq() by driver when 2401 * there isn't enough resource or some conditions aren't satisfied, and 2402 * BLK_STS_RESOURCE is usually returned. 2403 * 2404 * We do not guarantee that dispatch can be drained or blocked 2405 * after blk_mq_stop_hw_queues() returns. Please use 2406 * blk_mq_quiesce_queue() for that requirement. 2407 */ 2408 void blk_mq_stop_hw_queues(struct request_queue *q) 2409 { 2410 struct blk_mq_hw_ctx *hctx; 2411 unsigned long i; 2412 2413 queue_for_each_hw_ctx(q, hctx, i) 2414 blk_mq_stop_hw_queue(hctx); 2415 } 2416 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2417 2418 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2419 { 2420 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2421 2422 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2423 } 2424 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2425 2426 void blk_mq_start_hw_queues(struct request_queue *q) 2427 { 2428 struct blk_mq_hw_ctx *hctx; 2429 unsigned long i; 2430 2431 queue_for_each_hw_ctx(q, hctx, i) 2432 blk_mq_start_hw_queue(hctx); 2433 } 2434 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2435 2436 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2437 { 2438 if (!blk_mq_hctx_stopped(hctx)) 2439 return; 2440 2441 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2442 blk_mq_run_hw_queue(hctx, async); 2443 } 2444 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2445 2446 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2447 { 2448 struct blk_mq_hw_ctx *hctx; 2449 unsigned long i; 2450 2451 queue_for_each_hw_ctx(q, hctx, i) 2452 blk_mq_start_stopped_hw_queue(hctx, async || 2453 (hctx->flags & BLK_MQ_F_BLOCKING)); 2454 } 2455 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2456 2457 static void blk_mq_run_work_fn(struct work_struct *work) 2458 { 2459 struct blk_mq_hw_ctx *hctx = 2460 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2461 2462 blk_mq_run_dispatch_ops(hctx->queue, 2463 blk_mq_sched_dispatch_requests(hctx)); 2464 } 2465 2466 /** 2467 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2468 * @rq: Pointer to request to be inserted. 2469 * @flags: BLK_MQ_INSERT_* 2470 * 2471 * Should only be used carefully, when the caller knows we want to 2472 * bypass a potential IO scheduler on the target device. 2473 */ 2474 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2475 { 2476 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2477 2478 spin_lock(&hctx->lock); 2479 if (flags & BLK_MQ_INSERT_AT_HEAD) 2480 list_add(&rq->queuelist, &hctx->dispatch); 2481 else 2482 list_add_tail(&rq->queuelist, &hctx->dispatch); 2483 spin_unlock(&hctx->lock); 2484 } 2485 2486 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2487 struct blk_mq_ctx *ctx, struct list_head *list, 2488 bool run_queue_async) 2489 { 2490 struct request *rq; 2491 enum hctx_type type = hctx->type; 2492 2493 /* 2494 * Try to issue requests directly if the hw queue isn't busy to save an 2495 * extra enqueue & dequeue to the sw queue. 2496 */ 2497 if (!hctx->dispatch_busy && !run_queue_async) { 2498 blk_mq_run_dispatch_ops(hctx->queue, 2499 blk_mq_try_issue_list_directly(hctx, list)); 2500 if (list_empty(list)) 2501 goto out; 2502 } 2503 2504 /* 2505 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2506 * offline now 2507 */ 2508 list_for_each_entry(rq, list, queuelist) { 2509 BUG_ON(rq->mq_ctx != ctx); 2510 trace_block_rq_insert(rq); 2511 if (rq->cmd_flags & REQ_NOWAIT) 2512 run_queue_async = true; 2513 } 2514 2515 spin_lock(&ctx->lock); 2516 list_splice_tail_init(list, &ctx->rq_lists[type]); 2517 blk_mq_hctx_mark_pending(hctx, ctx); 2518 spin_unlock(&ctx->lock); 2519 out: 2520 blk_mq_run_hw_queue(hctx, run_queue_async); 2521 } 2522 2523 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2524 { 2525 struct request_queue *q = rq->q; 2526 struct blk_mq_ctx *ctx = rq->mq_ctx; 2527 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2528 2529 if (blk_rq_is_passthrough(rq)) { 2530 /* 2531 * Passthrough request have to be added to hctx->dispatch 2532 * directly. The device may be in a situation where it can't 2533 * handle FS request, and always returns BLK_STS_RESOURCE for 2534 * them, which gets them added to hctx->dispatch. 2535 * 2536 * If a passthrough request is required to unblock the queues, 2537 * and it is added to the scheduler queue, there is no chance to 2538 * dispatch it given we prioritize requests in hctx->dispatch. 2539 */ 2540 blk_mq_request_bypass_insert(rq, flags); 2541 } else if (req_op(rq) == REQ_OP_FLUSH) { 2542 /* 2543 * Firstly normal IO request is inserted to scheduler queue or 2544 * sw queue, meantime we add flush request to dispatch queue( 2545 * hctx->dispatch) directly and there is at most one in-flight 2546 * flush request for each hw queue, so it doesn't matter to add 2547 * flush request to tail or front of the dispatch queue. 2548 * 2549 * Secondly in case of NCQ, flush request belongs to non-NCQ 2550 * command, and queueing it will fail when there is any 2551 * in-flight normal IO request(NCQ command). When adding flush 2552 * rq to the front of hctx->dispatch, it is easier to introduce 2553 * extra time to flush rq's latency because of S_SCHED_RESTART 2554 * compared with adding to the tail of dispatch queue, then 2555 * chance of flush merge is increased, and less flush requests 2556 * will be issued to controller. It is observed that ~10% time 2557 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2558 * drive when adding flush rq to the front of hctx->dispatch. 2559 * 2560 * Simply queue flush rq to the front of hctx->dispatch so that 2561 * intensive flush workloads can benefit in case of NCQ HW. 2562 */ 2563 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2564 } else if (q->elevator) { 2565 LIST_HEAD(list); 2566 2567 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2568 2569 list_add(&rq->queuelist, &list); 2570 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2571 } else { 2572 trace_block_rq_insert(rq); 2573 2574 spin_lock(&ctx->lock); 2575 if (flags & BLK_MQ_INSERT_AT_HEAD) 2576 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2577 else 2578 list_add_tail(&rq->queuelist, 2579 &ctx->rq_lists[hctx->type]); 2580 blk_mq_hctx_mark_pending(hctx, ctx); 2581 spin_unlock(&ctx->lock); 2582 } 2583 } 2584 2585 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2586 unsigned int nr_segs) 2587 { 2588 int err; 2589 2590 if (bio->bi_opf & REQ_RAHEAD) 2591 rq->cmd_flags |= REQ_FAILFAST_MASK; 2592 2593 rq->__sector = bio->bi_iter.bi_sector; 2594 blk_rq_bio_prep(rq, bio, nr_segs); 2595 2596 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2597 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2598 WARN_ON_ONCE(err); 2599 2600 blk_account_io_start(rq); 2601 } 2602 2603 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2604 struct request *rq, bool last) 2605 { 2606 struct request_queue *q = rq->q; 2607 struct blk_mq_queue_data bd = { 2608 .rq = rq, 2609 .last = last, 2610 }; 2611 blk_status_t ret; 2612 2613 /* 2614 * For OK queue, we are done. For error, caller may kill it. 2615 * Any other error (busy), just add it to our list as we 2616 * previously would have done. 2617 */ 2618 ret = q->mq_ops->queue_rq(hctx, &bd); 2619 switch (ret) { 2620 case BLK_STS_OK: 2621 blk_mq_update_dispatch_busy(hctx, false); 2622 break; 2623 case BLK_STS_RESOURCE: 2624 case BLK_STS_DEV_RESOURCE: 2625 blk_mq_update_dispatch_busy(hctx, true); 2626 __blk_mq_requeue_request(rq); 2627 break; 2628 default: 2629 blk_mq_update_dispatch_busy(hctx, false); 2630 break; 2631 } 2632 2633 return ret; 2634 } 2635 2636 static bool blk_mq_get_budget_and_tag(struct request *rq) 2637 { 2638 int budget_token; 2639 2640 budget_token = blk_mq_get_dispatch_budget(rq->q); 2641 if (budget_token < 0) 2642 return false; 2643 blk_mq_set_rq_budget_token(rq, budget_token); 2644 if (!blk_mq_get_driver_tag(rq)) { 2645 blk_mq_put_dispatch_budget(rq->q, budget_token); 2646 return false; 2647 } 2648 return true; 2649 } 2650 2651 /** 2652 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2653 * @hctx: Pointer of the associated hardware queue. 2654 * @rq: Pointer to request to be sent. 2655 * 2656 * If the device has enough resources to accept a new request now, send the 2657 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2658 * we can try send it another time in the future. Requests inserted at this 2659 * queue have higher priority. 2660 */ 2661 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2662 struct request *rq) 2663 { 2664 blk_status_t ret; 2665 2666 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2667 blk_mq_insert_request(rq, 0); 2668 return; 2669 } 2670 2671 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2672 blk_mq_insert_request(rq, 0); 2673 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2674 return; 2675 } 2676 2677 ret = __blk_mq_issue_directly(hctx, rq, true); 2678 switch (ret) { 2679 case BLK_STS_OK: 2680 break; 2681 case BLK_STS_RESOURCE: 2682 case BLK_STS_DEV_RESOURCE: 2683 blk_mq_request_bypass_insert(rq, 0); 2684 blk_mq_run_hw_queue(hctx, false); 2685 break; 2686 default: 2687 blk_mq_end_request(rq, ret); 2688 break; 2689 } 2690 } 2691 2692 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2693 { 2694 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2695 2696 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2697 blk_mq_insert_request(rq, 0); 2698 return BLK_STS_OK; 2699 } 2700 2701 if (!blk_mq_get_budget_and_tag(rq)) 2702 return BLK_STS_RESOURCE; 2703 return __blk_mq_issue_directly(hctx, rq, last); 2704 } 2705 2706 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2707 { 2708 struct blk_mq_hw_ctx *hctx = NULL; 2709 struct request *rq; 2710 int queued = 0; 2711 blk_status_t ret = BLK_STS_OK; 2712 2713 while ((rq = rq_list_pop(&plug->mq_list))) { 2714 bool last = rq_list_empty(plug->mq_list); 2715 2716 if (hctx != rq->mq_hctx) { 2717 if (hctx) { 2718 blk_mq_commit_rqs(hctx, queued, false); 2719 queued = 0; 2720 } 2721 hctx = rq->mq_hctx; 2722 } 2723 2724 ret = blk_mq_request_issue_directly(rq, last); 2725 switch (ret) { 2726 case BLK_STS_OK: 2727 queued++; 2728 break; 2729 case BLK_STS_RESOURCE: 2730 case BLK_STS_DEV_RESOURCE: 2731 blk_mq_request_bypass_insert(rq, 0); 2732 blk_mq_run_hw_queue(hctx, false); 2733 goto out; 2734 default: 2735 blk_mq_end_request(rq, ret); 2736 break; 2737 } 2738 } 2739 2740 out: 2741 if (ret != BLK_STS_OK) 2742 blk_mq_commit_rqs(hctx, queued, false); 2743 } 2744 2745 static void __blk_mq_flush_plug_list(struct request_queue *q, 2746 struct blk_plug *plug) 2747 { 2748 if (blk_queue_quiesced(q)) 2749 return; 2750 q->mq_ops->queue_rqs(&plug->mq_list); 2751 } 2752 2753 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2754 { 2755 struct blk_mq_hw_ctx *this_hctx = NULL; 2756 struct blk_mq_ctx *this_ctx = NULL; 2757 struct request *requeue_list = NULL; 2758 struct request **requeue_lastp = &requeue_list; 2759 unsigned int depth = 0; 2760 bool is_passthrough = false; 2761 LIST_HEAD(list); 2762 2763 do { 2764 struct request *rq = rq_list_pop(&plug->mq_list); 2765 2766 if (!this_hctx) { 2767 this_hctx = rq->mq_hctx; 2768 this_ctx = rq->mq_ctx; 2769 is_passthrough = blk_rq_is_passthrough(rq); 2770 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2771 is_passthrough != blk_rq_is_passthrough(rq)) { 2772 rq_list_add_tail(&requeue_lastp, rq); 2773 continue; 2774 } 2775 list_add(&rq->queuelist, &list); 2776 depth++; 2777 } while (!rq_list_empty(plug->mq_list)); 2778 2779 plug->mq_list = requeue_list; 2780 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2781 2782 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2783 /* passthrough requests should never be issued to the I/O scheduler */ 2784 if (is_passthrough) { 2785 spin_lock(&this_hctx->lock); 2786 list_splice_tail_init(&list, &this_hctx->dispatch); 2787 spin_unlock(&this_hctx->lock); 2788 blk_mq_run_hw_queue(this_hctx, from_sched); 2789 } else if (this_hctx->queue->elevator) { 2790 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2791 &list, 0); 2792 blk_mq_run_hw_queue(this_hctx, from_sched); 2793 } else { 2794 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2795 } 2796 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2797 } 2798 2799 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2800 { 2801 struct request *rq; 2802 2803 /* 2804 * We may have been called recursively midway through handling 2805 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2806 * To avoid mq_list changing under our feet, clear rq_count early and 2807 * bail out specifically if rq_count is 0 rather than checking 2808 * whether the mq_list is empty. 2809 */ 2810 if (plug->rq_count == 0) 2811 return; 2812 plug->rq_count = 0; 2813 2814 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2815 struct request_queue *q; 2816 2817 rq = rq_list_peek(&plug->mq_list); 2818 q = rq->q; 2819 2820 /* 2821 * Peek first request and see if we have a ->queue_rqs() hook. 2822 * If we do, we can dispatch the whole plug list in one go. We 2823 * already know at this point that all requests belong to the 2824 * same queue, caller must ensure that's the case. 2825 * 2826 * Since we pass off the full list to the driver at this point, 2827 * we do not increment the active request count for the queue. 2828 * Bypass shared tags for now because of that. 2829 */ 2830 if (q->mq_ops->queue_rqs && 2831 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2832 blk_mq_run_dispatch_ops(q, 2833 __blk_mq_flush_plug_list(q, plug)); 2834 if (rq_list_empty(plug->mq_list)) 2835 return; 2836 } 2837 2838 blk_mq_run_dispatch_ops(q, 2839 blk_mq_plug_issue_direct(plug)); 2840 if (rq_list_empty(plug->mq_list)) 2841 return; 2842 } 2843 2844 do { 2845 blk_mq_dispatch_plug_list(plug, from_schedule); 2846 } while (!rq_list_empty(plug->mq_list)); 2847 } 2848 2849 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2850 struct list_head *list) 2851 { 2852 int queued = 0; 2853 blk_status_t ret = BLK_STS_OK; 2854 2855 while (!list_empty(list)) { 2856 struct request *rq = list_first_entry(list, struct request, 2857 queuelist); 2858 2859 list_del_init(&rq->queuelist); 2860 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2861 switch (ret) { 2862 case BLK_STS_OK: 2863 queued++; 2864 break; 2865 case BLK_STS_RESOURCE: 2866 case BLK_STS_DEV_RESOURCE: 2867 blk_mq_request_bypass_insert(rq, 0); 2868 if (list_empty(list)) 2869 blk_mq_run_hw_queue(hctx, false); 2870 goto out; 2871 default: 2872 blk_mq_end_request(rq, ret); 2873 break; 2874 } 2875 } 2876 2877 out: 2878 if (ret != BLK_STS_OK) 2879 blk_mq_commit_rqs(hctx, queued, false); 2880 } 2881 2882 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2883 struct bio *bio, unsigned int nr_segs) 2884 { 2885 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2886 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2887 return true; 2888 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2889 return true; 2890 } 2891 return false; 2892 } 2893 2894 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2895 struct blk_plug *plug, 2896 struct bio *bio, 2897 unsigned int nsegs) 2898 { 2899 struct blk_mq_alloc_data data = { 2900 .q = q, 2901 .nr_tags = 1, 2902 .cmd_flags = bio->bi_opf, 2903 }; 2904 struct request *rq; 2905 2906 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2907 return NULL; 2908 2909 rq_qos_throttle(q, bio); 2910 2911 if (plug) { 2912 data.nr_tags = plug->nr_ios; 2913 plug->nr_ios = 1; 2914 data.cached_rq = &plug->cached_rq; 2915 } 2916 2917 rq = __blk_mq_alloc_requests(&data); 2918 if (rq) 2919 return rq; 2920 rq_qos_cleanup(q, bio); 2921 if (bio->bi_opf & REQ_NOWAIT) 2922 bio_wouldblock_error(bio); 2923 return NULL; 2924 } 2925 2926 /* return true if this @rq can be used for @bio */ 2927 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug, 2928 struct bio *bio) 2929 { 2930 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf); 2931 enum hctx_type hctx_type = rq->mq_hctx->type; 2932 2933 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2934 2935 if (type != hctx_type && 2936 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2937 return false; 2938 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2939 return false; 2940 2941 /* 2942 * If any qos ->throttle() end up blocking, we will have flushed the 2943 * plug and hence killed the cached_rq list as well. Pop this entry 2944 * before we throttle. 2945 */ 2946 plug->cached_rq = rq_list_next(rq); 2947 rq_qos_throttle(rq->q, bio); 2948 2949 blk_mq_rq_time_init(rq, 0); 2950 rq->cmd_flags = bio->bi_opf; 2951 INIT_LIST_HEAD(&rq->queuelist); 2952 return true; 2953 } 2954 2955 static void bio_set_ioprio(struct bio *bio) 2956 { 2957 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2958 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2959 bio->bi_ioprio = get_current_ioprio(); 2960 blkcg_set_ioprio(bio); 2961 } 2962 2963 /** 2964 * blk_mq_submit_bio - Create and send a request to block device. 2965 * @bio: Bio pointer. 2966 * 2967 * Builds up a request structure from @q and @bio and send to the device. The 2968 * request may not be queued directly to hardware if: 2969 * * This request can be merged with another one 2970 * * We want to place request at plug queue for possible future merging 2971 * * There is an IO scheduler active at this queue 2972 * 2973 * It will not queue the request if there is an error with the bio, or at the 2974 * request creation. 2975 */ 2976 void blk_mq_submit_bio(struct bio *bio) 2977 { 2978 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2979 struct blk_plug *plug = blk_mq_plug(bio); 2980 const int is_sync = op_is_sync(bio->bi_opf); 2981 struct blk_mq_hw_ctx *hctx; 2982 struct request *rq = NULL; 2983 unsigned int nr_segs = 1; 2984 blk_status_t ret; 2985 2986 bio = blk_queue_bounce(bio, q); 2987 bio_set_ioprio(bio); 2988 2989 if (plug) { 2990 rq = rq_list_peek(&plug->cached_rq); 2991 if (rq && rq->q != q) 2992 rq = NULL; 2993 } 2994 if (rq) { 2995 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 2996 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2997 if (!bio) 2998 return; 2999 } 3000 if (!bio_integrity_prep(bio)) 3001 return; 3002 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3003 return; 3004 if (blk_mq_can_use_cached_rq(rq, plug, bio)) 3005 goto done; 3006 percpu_ref_get(&q->q_usage_counter); 3007 } else { 3008 if (unlikely(bio_queue_enter(bio))) 3009 return; 3010 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3011 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3012 if (!bio) 3013 goto fail; 3014 } 3015 if (!bio_integrity_prep(bio)) 3016 goto fail; 3017 } 3018 3019 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3020 if (unlikely(!rq)) { 3021 fail: 3022 blk_queue_exit(q); 3023 return; 3024 } 3025 3026 done: 3027 trace_block_getrq(bio); 3028 3029 rq_qos_track(q, rq, bio); 3030 3031 blk_mq_bio_to_request(rq, bio, nr_segs); 3032 3033 ret = blk_crypto_rq_get_keyslot(rq); 3034 if (ret != BLK_STS_OK) { 3035 bio->bi_status = ret; 3036 bio_endio(bio); 3037 blk_mq_free_request(rq); 3038 return; 3039 } 3040 3041 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3042 return; 3043 3044 if (plug) { 3045 blk_add_rq_to_plug(plug, rq); 3046 return; 3047 } 3048 3049 hctx = rq->mq_hctx; 3050 if ((rq->rq_flags & RQF_USE_SCHED) || 3051 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3052 blk_mq_insert_request(rq, 0); 3053 blk_mq_run_hw_queue(hctx, true); 3054 } else { 3055 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3056 } 3057 } 3058 3059 #ifdef CONFIG_BLK_MQ_STACKING 3060 /** 3061 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3062 * @rq: the request being queued 3063 */ 3064 blk_status_t blk_insert_cloned_request(struct request *rq) 3065 { 3066 struct request_queue *q = rq->q; 3067 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3068 unsigned int max_segments = blk_rq_get_max_segments(rq); 3069 blk_status_t ret; 3070 3071 if (blk_rq_sectors(rq) > max_sectors) { 3072 /* 3073 * SCSI device does not have a good way to return if 3074 * Write Same/Zero is actually supported. If a device rejects 3075 * a non-read/write command (discard, write same,etc.) the 3076 * low-level device driver will set the relevant queue limit to 3077 * 0 to prevent blk-lib from issuing more of the offending 3078 * operations. Commands queued prior to the queue limit being 3079 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3080 * errors being propagated to upper layers. 3081 */ 3082 if (max_sectors == 0) 3083 return BLK_STS_NOTSUPP; 3084 3085 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3086 __func__, blk_rq_sectors(rq), max_sectors); 3087 return BLK_STS_IOERR; 3088 } 3089 3090 /* 3091 * The queue settings related to segment counting may differ from the 3092 * original queue. 3093 */ 3094 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3095 if (rq->nr_phys_segments > max_segments) { 3096 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3097 __func__, rq->nr_phys_segments, max_segments); 3098 return BLK_STS_IOERR; 3099 } 3100 3101 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3102 return BLK_STS_IOERR; 3103 3104 ret = blk_crypto_rq_get_keyslot(rq); 3105 if (ret != BLK_STS_OK) 3106 return ret; 3107 3108 blk_account_io_start(rq); 3109 3110 /* 3111 * Since we have a scheduler attached on the top device, 3112 * bypass a potential scheduler on the bottom device for 3113 * insert. 3114 */ 3115 blk_mq_run_dispatch_ops(q, 3116 ret = blk_mq_request_issue_directly(rq, true)); 3117 if (ret) 3118 blk_account_io_done(rq, ktime_get_ns()); 3119 return ret; 3120 } 3121 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3122 3123 /** 3124 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3125 * @rq: the clone request to be cleaned up 3126 * 3127 * Description: 3128 * Free all bios in @rq for a cloned request. 3129 */ 3130 void blk_rq_unprep_clone(struct request *rq) 3131 { 3132 struct bio *bio; 3133 3134 while ((bio = rq->bio) != NULL) { 3135 rq->bio = bio->bi_next; 3136 3137 bio_put(bio); 3138 } 3139 } 3140 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3141 3142 /** 3143 * blk_rq_prep_clone - Helper function to setup clone request 3144 * @rq: the request to be setup 3145 * @rq_src: original request to be cloned 3146 * @bs: bio_set that bios for clone are allocated from 3147 * @gfp_mask: memory allocation mask for bio 3148 * @bio_ctr: setup function to be called for each clone bio. 3149 * Returns %0 for success, non %0 for failure. 3150 * @data: private data to be passed to @bio_ctr 3151 * 3152 * Description: 3153 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3154 * Also, pages which the original bios are pointing to are not copied 3155 * and the cloned bios just point same pages. 3156 * So cloned bios must be completed before original bios, which means 3157 * the caller must complete @rq before @rq_src. 3158 */ 3159 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3160 struct bio_set *bs, gfp_t gfp_mask, 3161 int (*bio_ctr)(struct bio *, struct bio *, void *), 3162 void *data) 3163 { 3164 struct bio *bio, *bio_src; 3165 3166 if (!bs) 3167 bs = &fs_bio_set; 3168 3169 __rq_for_each_bio(bio_src, rq_src) { 3170 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3171 bs); 3172 if (!bio) 3173 goto free_and_out; 3174 3175 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3176 goto free_and_out; 3177 3178 if (rq->bio) { 3179 rq->biotail->bi_next = bio; 3180 rq->biotail = bio; 3181 } else { 3182 rq->bio = rq->biotail = bio; 3183 } 3184 bio = NULL; 3185 } 3186 3187 /* Copy attributes of the original request to the clone request. */ 3188 rq->__sector = blk_rq_pos(rq_src); 3189 rq->__data_len = blk_rq_bytes(rq_src); 3190 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3191 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3192 rq->special_vec = rq_src->special_vec; 3193 } 3194 rq->nr_phys_segments = rq_src->nr_phys_segments; 3195 rq->ioprio = rq_src->ioprio; 3196 3197 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3198 goto free_and_out; 3199 3200 return 0; 3201 3202 free_and_out: 3203 if (bio) 3204 bio_put(bio); 3205 blk_rq_unprep_clone(rq); 3206 3207 return -ENOMEM; 3208 } 3209 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3210 #endif /* CONFIG_BLK_MQ_STACKING */ 3211 3212 /* 3213 * Steal bios from a request and add them to a bio list. 3214 * The request must not have been partially completed before. 3215 */ 3216 void blk_steal_bios(struct bio_list *list, struct request *rq) 3217 { 3218 if (rq->bio) { 3219 if (list->tail) 3220 list->tail->bi_next = rq->bio; 3221 else 3222 list->head = rq->bio; 3223 list->tail = rq->biotail; 3224 3225 rq->bio = NULL; 3226 rq->biotail = NULL; 3227 } 3228 3229 rq->__data_len = 0; 3230 } 3231 EXPORT_SYMBOL_GPL(blk_steal_bios); 3232 3233 static size_t order_to_size(unsigned int order) 3234 { 3235 return (size_t)PAGE_SIZE << order; 3236 } 3237 3238 /* called before freeing request pool in @tags */ 3239 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3240 struct blk_mq_tags *tags) 3241 { 3242 struct page *page; 3243 unsigned long flags; 3244 3245 /* 3246 * There is no need to clear mapping if driver tags is not initialized 3247 * or the mapping belongs to the driver tags. 3248 */ 3249 if (!drv_tags || drv_tags == tags) 3250 return; 3251 3252 list_for_each_entry(page, &tags->page_list, lru) { 3253 unsigned long start = (unsigned long)page_address(page); 3254 unsigned long end = start + order_to_size(page->private); 3255 int i; 3256 3257 for (i = 0; i < drv_tags->nr_tags; i++) { 3258 struct request *rq = drv_tags->rqs[i]; 3259 unsigned long rq_addr = (unsigned long)rq; 3260 3261 if (rq_addr >= start && rq_addr < end) { 3262 WARN_ON_ONCE(req_ref_read(rq) != 0); 3263 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3264 } 3265 } 3266 } 3267 3268 /* 3269 * Wait until all pending iteration is done. 3270 * 3271 * Request reference is cleared and it is guaranteed to be observed 3272 * after the ->lock is released. 3273 */ 3274 spin_lock_irqsave(&drv_tags->lock, flags); 3275 spin_unlock_irqrestore(&drv_tags->lock, flags); 3276 } 3277 3278 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3279 unsigned int hctx_idx) 3280 { 3281 struct blk_mq_tags *drv_tags; 3282 struct page *page; 3283 3284 if (list_empty(&tags->page_list)) 3285 return; 3286 3287 if (blk_mq_is_shared_tags(set->flags)) 3288 drv_tags = set->shared_tags; 3289 else 3290 drv_tags = set->tags[hctx_idx]; 3291 3292 if (tags->static_rqs && set->ops->exit_request) { 3293 int i; 3294 3295 for (i = 0; i < tags->nr_tags; i++) { 3296 struct request *rq = tags->static_rqs[i]; 3297 3298 if (!rq) 3299 continue; 3300 set->ops->exit_request(set, rq, hctx_idx); 3301 tags->static_rqs[i] = NULL; 3302 } 3303 } 3304 3305 blk_mq_clear_rq_mapping(drv_tags, tags); 3306 3307 while (!list_empty(&tags->page_list)) { 3308 page = list_first_entry(&tags->page_list, struct page, lru); 3309 list_del_init(&page->lru); 3310 /* 3311 * Remove kmemleak object previously allocated in 3312 * blk_mq_alloc_rqs(). 3313 */ 3314 kmemleak_free(page_address(page)); 3315 __free_pages(page, page->private); 3316 } 3317 } 3318 3319 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3320 { 3321 kfree(tags->rqs); 3322 tags->rqs = NULL; 3323 kfree(tags->static_rqs); 3324 tags->static_rqs = NULL; 3325 3326 blk_mq_free_tags(tags); 3327 } 3328 3329 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3330 unsigned int hctx_idx) 3331 { 3332 int i; 3333 3334 for (i = 0; i < set->nr_maps; i++) { 3335 unsigned int start = set->map[i].queue_offset; 3336 unsigned int end = start + set->map[i].nr_queues; 3337 3338 if (hctx_idx >= start && hctx_idx < end) 3339 break; 3340 } 3341 3342 if (i >= set->nr_maps) 3343 i = HCTX_TYPE_DEFAULT; 3344 3345 return i; 3346 } 3347 3348 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3349 unsigned int hctx_idx) 3350 { 3351 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3352 3353 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3354 } 3355 3356 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3357 unsigned int hctx_idx, 3358 unsigned int nr_tags, 3359 unsigned int reserved_tags) 3360 { 3361 int node = blk_mq_get_hctx_node(set, hctx_idx); 3362 struct blk_mq_tags *tags; 3363 3364 if (node == NUMA_NO_NODE) 3365 node = set->numa_node; 3366 3367 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3368 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3369 if (!tags) 3370 return NULL; 3371 3372 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3373 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3374 node); 3375 if (!tags->rqs) 3376 goto err_free_tags; 3377 3378 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3379 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3380 node); 3381 if (!tags->static_rqs) 3382 goto err_free_rqs; 3383 3384 return tags; 3385 3386 err_free_rqs: 3387 kfree(tags->rqs); 3388 err_free_tags: 3389 blk_mq_free_tags(tags); 3390 return NULL; 3391 } 3392 3393 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3394 unsigned int hctx_idx, int node) 3395 { 3396 int ret; 3397 3398 if (set->ops->init_request) { 3399 ret = set->ops->init_request(set, rq, hctx_idx, node); 3400 if (ret) 3401 return ret; 3402 } 3403 3404 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3405 return 0; 3406 } 3407 3408 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3409 struct blk_mq_tags *tags, 3410 unsigned int hctx_idx, unsigned int depth) 3411 { 3412 unsigned int i, j, entries_per_page, max_order = 4; 3413 int node = blk_mq_get_hctx_node(set, hctx_idx); 3414 size_t rq_size, left; 3415 3416 if (node == NUMA_NO_NODE) 3417 node = set->numa_node; 3418 3419 INIT_LIST_HEAD(&tags->page_list); 3420 3421 /* 3422 * rq_size is the size of the request plus driver payload, rounded 3423 * to the cacheline size 3424 */ 3425 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3426 cache_line_size()); 3427 left = rq_size * depth; 3428 3429 for (i = 0; i < depth; ) { 3430 int this_order = max_order; 3431 struct page *page; 3432 int to_do; 3433 void *p; 3434 3435 while (this_order && left < order_to_size(this_order - 1)) 3436 this_order--; 3437 3438 do { 3439 page = alloc_pages_node(node, 3440 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3441 this_order); 3442 if (page) 3443 break; 3444 if (!this_order--) 3445 break; 3446 if (order_to_size(this_order) < rq_size) 3447 break; 3448 } while (1); 3449 3450 if (!page) 3451 goto fail; 3452 3453 page->private = this_order; 3454 list_add_tail(&page->lru, &tags->page_list); 3455 3456 p = page_address(page); 3457 /* 3458 * Allow kmemleak to scan these pages as they contain pointers 3459 * to additional allocations like via ops->init_request(). 3460 */ 3461 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3462 entries_per_page = order_to_size(this_order) / rq_size; 3463 to_do = min(entries_per_page, depth - i); 3464 left -= to_do * rq_size; 3465 for (j = 0; j < to_do; j++) { 3466 struct request *rq = p; 3467 3468 tags->static_rqs[i] = rq; 3469 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3470 tags->static_rqs[i] = NULL; 3471 goto fail; 3472 } 3473 3474 p += rq_size; 3475 i++; 3476 } 3477 } 3478 return 0; 3479 3480 fail: 3481 blk_mq_free_rqs(set, tags, hctx_idx); 3482 return -ENOMEM; 3483 } 3484 3485 struct rq_iter_data { 3486 struct blk_mq_hw_ctx *hctx; 3487 bool has_rq; 3488 }; 3489 3490 static bool blk_mq_has_request(struct request *rq, void *data) 3491 { 3492 struct rq_iter_data *iter_data = data; 3493 3494 if (rq->mq_hctx != iter_data->hctx) 3495 return true; 3496 iter_data->has_rq = true; 3497 return false; 3498 } 3499 3500 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3501 { 3502 struct blk_mq_tags *tags = hctx->sched_tags ? 3503 hctx->sched_tags : hctx->tags; 3504 struct rq_iter_data data = { 3505 .hctx = hctx, 3506 }; 3507 3508 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3509 return data.has_rq; 3510 } 3511 3512 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3513 struct blk_mq_hw_ctx *hctx) 3514 { 3515 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3516 return false; 3517 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3518 return false; 3519 return true; 3520 } 3521 3522 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3523 { 3524 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3525 struct blk_mq_hw_ctx, cpuhp_online); 3526 3527 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3528 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3529 return 0; 3530 3531 /* 3532 * Prevent new request from being allocated on the current hctx. 3533 * 3534 * The smp_mb__after_atomic() Pairs with the implied barrier in 3535 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3536 * seen once we return from the tag allocator. 3537 */ 3538 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3539 smp_mb__after_atomic(); 3540 3541 /* 3542 * Try to grab a reference to the queue and wait for any outstanding 3543 * requests. If we could not grab a reference the queue has been 3544 * frozen and there are no requests. 3545 */ 3546 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3547 while (blk_mq_hctx_has_requests(hctx)) 3548 msleep(5); 3549 percpu_ref_put(&hctx->queue->q_usage_counter); 3550 } 3551 3552 return 0; 3553 } 3554 3555 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3556 { 3557 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3558 struct blk_mq_hw_ctx, cpuhp_online); 3559 3560 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3561 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3562 return 0; 3563 } 3564 3565 /* 3566 * 'cpu' is going away. splice any existing rq_list entries from this 3567 * software queue to the hw queue dispatch list, and ensure that it 3568 * gets run. 3569 */ 3570 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3571 { 3572 struct blk_mq_hw_ctx *hctx; 3573 struct blk_mq_ctx *ctx; 3574 LIST_HEAD(tmp); 3575 enum hctx_type type; 3576 3577 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3578 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3579 return 0; 3580 3581 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3582 type = hctx->type; 3583 3584 spin_lock(&ctx->lock); 3585 if (!list_empty(&ctx->rq_lists[type])) { 3586 list_splice_init(&ctx->rq_lists[type], &tmp); 3587 blk_mq_hctx_clear_pending(hctx, ctx); 3588 } 3589 spin_unlock(&ctx->lock); 3590 3591 if (list_empty(&tmp)) 3592 return 0; 3593 3594 spin_lock(&hctx->lock); 3595 list_splice_tail_init(&tmp, &hctx->dispatch); 3596 spin_unlock(&hctx->lock); 3597 3598 blk_mq_run_hw_queue(hctx, true); 3599 return 0; 3600 } 3601 3602 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3603 { 3604 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3605 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3606 &hctx->cpuhp_online); 3607 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3608 &hctx->cpuhp_dead); 3609 } 3610 3611 /* 3612 * Before freeing hw queue, clearing the flush request reference in 3613 * tags->rqs[] for avoiding potential UAF. 3614 */ 3615 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3616 unsigned int queue_depth, struct request *flush_rq) 3617 { 3618 int i; 3619 unsigned long flags; 3620 3621 /* The hw queue may not be mapped yet */ 3622 if (!tags) 3623 return; 3624 3625 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3626 3627 for (i = 0; i < queue_depth; i++) 3628 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3629 3630 /* 3631 * Wait until all pending iteration is done. 3632 * 3633 * Request reference is cleared and it is guaranteed to be observed 3634 * after the ->lock is released. 3635 */ 3636 spin_lock_irqsave(&tags->lock, flags); 3637 spin_unlock_irqrestore(&tags->lock, flags); 3638 } 3639 3640 /* hctx->ctxs will be freed in queue's release handler */ 3641 static void blk_mq_exit_hctx(struct request_queue *q, 3642 struct blk_mq_tag_set *set, 3643 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3644 { 3645 struct request *flush_rq = hctx->fq->flush_rq; 3646 3647 if (blk_mq_hw_queue_mapped(hctx)) 3648 blk_mq_tag_idle(hctx); 3649 3650 if (blk_queue_init_done(q)) 3651 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3652 set->queue_depth, flush_rq); 3653 if (set->ops->exit_request) 3654 set->ops->exit_request(set, flush_rq, hctx_idx); 3655 3656 if (set->ops->exit_hctx) 3657 set->ops->exit_hctx(hctx, hctx_idx); 3658 3659 blk_mq_remove_cpuhp(hctx); 3660 3661 xa_erase(&q->hctx_table, hctx_idx); 3662 3663 spin_lock(&q->unused_hctx_lock); 3664 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3665 spin_unlock(&q->unused_hctx_lock); 3666 } 3667 3668 static void blk_mq_exit_hw_queues(struct request_queue *q, 3669 struct blk_mq_tag_set *set, int nr_queue) 3670 { 3671 struct blk_mq_hw_ctx *hctx; 3672 unsigned long i; 3673 3674 queue_for_each_hw_ctx(q, hctx, i) { 3675 if (i == nr_queue) 3676 break; 3677 blk_mq_exit_hctx(q, set, hctx, i); 3678 } 3679 } 3680 3681 static int blk_mq_init_hctx(struct request_queue *q, 3682 struct blk_mq_tag_set *set, 3683 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3684 { 3685 hctx->queue_num = hctx_idx; 3686 3687 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3688 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3689 &hctx->cpuhp_online); 3690 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3691 3692 hctx->tags = set->tags[hctx_idx]; 3693 3694 if (set->ops->init_hctx && 3695 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3696 goto unregister_cpu_notifier; 3697 3698 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3699 hctx->numa_node)) 3700 goto exit_hctx; 3701 3702 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3703 goto exit_flush_rq; 3704 3705 return 0; 3706 3707 exit_flush_rq: 3708 if (set->ops->exit_request) 3709 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3710 exit_hctx: 3711 if (set->ops->exit_hctx) 3712 set->ops->exit_hctx(hctx, hctx_idx); 3713 unregister_cpu_notifier: 3714 blk_mq_remove_cpuhp(hctx); 3715 return -1; 3716 } 3717 3718 static struct blk_mq_hw_ctx * 3719 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3720 int node) 3721 { 3722 struct blk_mq_hw_ctx *hctx; 3723 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3724 3725 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3726 if (!hctx) 3727 goto fail_alloc_hctx; 3728 3729 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3730 goto free_hctx; 3731 3732 atomic_set(&hctx->nr_active, 0); 3733 if (node == NUMA_NO_NODE) 3734 node = set->numa_node; 3735 hctx->numa_node = node; 3736 3737 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3738 spin_lock_init(&hctx->lock); 3739 INIT_LIST_HEAD(&hctx->dispatch); 3740 hctx->queue = q; 3741 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3742 3743 INIT_LIST_HEAD(&hctx->hctx_list); 3744 3745 /* 3746 * Allocate space for all possible cpus to avoid allocation at 3747 * runtime 3748 */ 3749 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3750 gfp, node); 3751 if (!hctx->ctxs) 3752 goto free_cpumask; 3753 3754 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3755 gfp, node, false, false)) 3756 goto free_ctxs; 3757 hctx->nr_ctx = 0; 3758 3759 spin_lock_init(&hctx->dispatch_wait_lock); 3760 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3761 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3762 3763 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3764 if (!hctx->fq) 3765 goto free_bitmap; 3766 3767 blk_mq_hctx_kobj_init(hctx); 3768 3769 return hctx; 3770 3771 free_bitmap: 3772 sbitmap_free(&hctx->ctx_map); 3773 free_ctxs: 3774 kfree(hctx->ctxs); 3775 free_cpumask: 3776 free_cpumask_var(hctx->cpumask); 3777 free_hctx: 3778 kfree(hctx); 3779 fail_alloc_hctx: 3780 return NULL; 3781 } 3782 3783 static void blk_mq_init_cpu_queues(struct request_queue *q, 3784 unsigned int nr_hw_queues) 3785 { 3786 struct blk_mq_tag_set *set = q->tag_set; 3787 unsigned int i, j; 3788 3789 for_each_possible_cpu(i) { 3790 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3791 struct blk_mq_hw_ctx *hctx; 3792 int k; 3793 3794 __ctx->cpu = i; 3795 spin_lock_init(&__ctx->lock); 3796 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3797 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3798 3799 __ctx->queue = q; 3800 3801 /* 3802 * Set local node, IFF we have more than one hw queue. If 3803 * not, we remain on the home node of the device 3804 */ 3805 for (j = 0; j < set->nr_maps; j++) { 3806 hctx = blk_mq_map_queue_type(q, j, i); 3807 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3808 hctx->numa_node = cpu_to_node(i); 3809 } 3810 } 3811 } 3812 3813 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3814 unsigned int hctx_idx, 3815 unsigned int depth) 3816 { 3817 struct blk_mq_tags *tags; 3818 int ret; 3819 3820 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3821 if (!tags) 3822 return NULL; 3823 3824 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3825 if (ret) { 3826 blk_mq_free_rq_map(tags); 3827 return NULL; 3828 } 3829 3830 return tags; 3831 } 3832 3833 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3834 int hctx_idx) 3835 { 3836 if (blk_mq_is_shared_tags(set->flags)) { 3837 set->tags[hctx_idx] = set->shared_tags; 3838 3839 return true; 3840 } 3841 3842 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3843 set->queue_depth); 3844 3845 return set->tags[hctx_idx]; 3846 } 3847 3848 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3849 struct blk_mq_tags *tags, 3850 unsigned int hctx_idx) 3851 { 3852 if (tags) { 3853 blk_mq_free_rqs(set, tags, hctx_idx); 3854 blk_mq_free_rq_map(tags); 3855 } 3856 } 3857 3858 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3859 unsigned int hctx_idx) 3860 { 3861 if (!blk_mq_is_shared_tags(set->flags)) 3862 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3863 3864 set->tags[hctx_idx] = NULL; 3865 } 3866 3867 static void blk_mq_map_swqueue(struct request_queue *q) 3868 { 3869 unsigned int j, hctx_idx; 3870 unsigned long i; 3871 struct blk_mq_hw_ctx *hctx; 3872 struct blk_mq_ctx *ctx; 3873 struct blk_mq_tag_set *set = q->tag_set; 3874 3875 queue_for_each_hw_ctx(q, hctx, i) { 3876 cpumask_clear(hctx->cpumask); 3877 hctx->nr_ctx = 0; 3878 hctx->dispatch_from = NULL; 3879 } 3880 3881 /* 3882 * Map software to hardware queues. 3883 * 3884 * If the cpu isn't present, the cpu is mapped to first hctx. 3885 */ 3886 for_each_possible_cpu(i) { 3887 3888 ctx = per_cpu_ptr(q->queue_ctx, i); 3889 for (j = 0; j < set->nr_maps; j++) { 3890 if (!set->map[j].nr_queues) { 3891 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3892 HCTX_TYPE_DEFAULT, i); 3893 continue; 3894 } 3895 hctx_idx = set->map[j].mq_map[i]; 3896 /* unmapped hw queue can be remapped after CPU topo changed */ 3897 if (!set->tags[hctx_idx] && 3898 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3899 /* 3900 * If tags initialization fail for some hctx, 3901 * that hctx won't be brought online. In this 3902 * case, remap the current ctx to hctx[0] which 3903 * is guaranteed to always have tags allocated 3904 */ 3905 set->map[j].mq_map[i] = 0; 3906 } 3907 3908 hctx = blk_mq_map_queue_type(q, j, i); 3909 ctx->hctxs[j] = hctx; 3910 /* 3911 * If the CPU is already set in the mask, then we've 3912 * mapped this one already. This can happen if 3913 * devices share queues across queue maps. 3914 */ 3915 if (cpumask_test_cpu(i, hctx->cpumask)) 3916 continue; 3917 3918 cpumask_set_cpu(i, hctx->cpumask); 3919 hctx->type = j; 3920 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3921 hctx->ctxs[hctx->nr_ctx++] = ctx; 3922 3923 /* 3924 * If the nr_ctx type overflows, we have exceeded the 3925 * amount of sw queues we can support. 3926 */ 3927 BUG_ON(!hctx->nr_ctx); 3928 } 3929 3930 for (; j < HCTX_MAX_TYPES; j++) 3931 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3932 HCTX_TYPE_DEFAULT, i); 3933 } 3934 3935 queue_for_each_hw_ctx(q, hctx, i) { 3936 /* 3937 * If no software queues are mapped to this hardware queue, 3938 * disable it and free the request entries. 3939 */ 3940 if (!hctx->nr_ctx) { 3941 /* Never unmap queue 0. We need it as a 3942 * fallback in case of a new remap fails 3943 * allocation 3944 */ 3945 if (i) 3946 __blk_mq_free_map_and_rqs(set, i); 3947 3948 hctx->tags = NULL; 3949 continue; 3950 } 3951 3952 hctx->tags = set->tags[i]; 3953 WARN_ON(!hctx->tags); 3954 3955 /* 3956 * Set the map size to the number of mapped software queues. 3957 * This is more accurate and more efficient than looping 3958 * over all possibly mapped software queues. 3959 */ 3960 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3961 3962 /* 3963 * Initialize batch roundrobin counts 3964 */ 3965 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3966 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3967 } 3968 } 3969 3970 /* 3971 * Caller needs to ensure that we're either frozen/quiesced, or that 3972 * the queue isn't live yet. 3973 */ 3974 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3975 { 3976 struct blk_mq_hw_ctx *hctx; 3977 unsigned long i; 3978 3979 queue_for_each_hw_ctx(q, hctx, i) { 3980 if (shared) { 3981 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3982 } else { 3983 blk_mq_tag_idle(hctx); 3984 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3985 } 3986 } 3987 } 3988 3989 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3990 bool shared) 3991 { 3992 struct request_queue *q; 3993 3994 lockdep_assert_held(&set->tag_list_lock); 3995 3996 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3997 blk_mq_freeze_queue(q); 3998 queue_set_hctx_shared(q, shared); 3999 blk_mq_unfreeze_queue(q); 4000 } 4001 } 4002 4003 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4004 { 4005 struct blk_mq_tag_set *set = q->tag_set; 4006 4007 mutex_lock(&set->tag_list_lock); 4008 list_del(&q->tag_set_list); 4009 if (list_is_singular(&set->tag_list)) { 4010 /* just transitioned to unshared */ 4011 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4012 /* update existing queue */ 4013 blk_mq_update_tag_set_shared(set, false); 4014 } 4015 mutex_unlock(&set->tag_list_lock); 4016 INIT_LIST_HEAD(&q->tag_set_list); 4017 } 4018 4019 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4020 struct request_queue *q) 4021 { 4022 mutex_lock(&set->tag_list_lock); 4023 4024 /* 4025 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4026 */ 4027 if (!list_empty(&set->tag_list) && 4028 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4029 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4030 /* update existing queue */ 4031 blk_mq_update_tag_set_shared(set, true); 4032 } 4033 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4034 queue_set_hctx_shared(q, true); 4035 list_add_tail(&q->tag_set_list, &set->tag_list); 4036 4037 mutex_unlock(&set->tag_list_lock); 4038 } 4039 4040 /* All allocations will be freed in release handler of q->mq_kobj */ 4041 static int blk_mq_alloc_ctxs(struct request_queue *q) 4042 { 4043 struct blk_mq_ctxs *ctxs; 4044 int cpu; 4045 4046 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4047 if (!ctxs) 4048 return -ENOMEM; 4049 4050 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4051 if (!ctxs->queue_ctx) 4052 goto fail; 4053 4054 for_each_possible_cpu(cpu) { 4055 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4056 ctx->ctxs = ctxs; 4057 } 4058 4059 q->mq_kobj = &ctxs->kobj; 4060 q->queue_ctx = ctxs->queue_ctx; 4061 4062 return 0; 4063 fail: 4064 kfree(ctxs); 4065 return -ENOMEM; 4066 } 4067 4068 /* 4069 * It is the actual release handler for mq, but we do it from 4070 * request queue's release handler for avoiding use-after-free 4071 * and headache because q->mq_kobj shouldn't have been introduced, 4072 * but we can't group ctx/kctx kobj without it. 4073 */ 4074 void blk_mq_release(struct request_queue *q) 4075 { 4076 struct blk_mq_hw_ctx *hctx, *next; 4077 unsigned long i; 4078 4079 queue_for_each_hw_ctx(q, hctx, i) 4080 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4081 4082 /* all hctx are in .unused_hctx_list now */ 4083 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4084 list_del_init(&hctx->hctx_list); 4085 kobject_put(&hctx->kobj); 4086 } 4087 4088 xa_destroy(&q->hctx_table); 4089 4090 /* 4091 * release .mq_kobj and sw queue's kobject now because 4092 * both share lifetime with request queue. 4093 */ 4094 blk_mq_sysfs_deinit(q); 4095 } 4096 4097 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4098 void *queuedata) 4099 { 4100 struct request_queue *q; 4101 int ret; 4102 4103 q = blk_alloc_queue(set->numa_node); 4104 if (!q) 4105 return ERR_PTR(-ENOMEM); 4106 q->queuedata = queuedata; 4107 ret = blk_mq_init_allocated_queue(set, q); 4108 if (ret) { 4109 blk_put_queue(q); 4110 return ERR_PTR(ret); 4111 } 4112 return q; 4113 } 4114 4115 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4116 { 4117 return blk_mq_init_queue_data(set, NULL); 4118 } 4119 EXPORT_SYMBOL(blk_mq_init_queue); 4120 4121 /** 4122 * blk_mq_destroy_queue - shutdown a request queue 4123 * @q: request queue to shutdown 4124 * 4125 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4126 * requests will be failed with -ENODEV. The caller is responsible for dropping 4127 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4128 * 4129 * Context: can sleep 4130 */ 4131 void blk_mq_destroy_queue(struct request_queue *q) 4132 { 4133 WARN_ON_ONCE(!queue_is_mq(q)); 4134 WARN_ON_ONCE(blk_queue_registered(q)); 4135 4136 might_sleep(); 4137 4138 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4139 blk_queue_start_drain(q); 4140 blk_mq_freeze_queue_wait(q); 4141 4142 blk_sync_queue(q); 4143 blk_mq_cancel_work_sync(q); 4144 blk_mq_exit_queue(q); 4145 } 4146 EXPORT_SYMBOL(blk_mq_destroy_queue); 4147 4148 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4149 struct lock_class_key *lkclass) 4150 { 4151 struct request_queue *q; 4152 struct gendisk *disk; 4153 4154 q = blk_mq_init_queue_data(set, queuedata); 4155 if (IS_ERR(q)) 4156 return ERR_CAST(q); 4157 4158 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4159 if (!disk) { 4160 blk_mq_destroy_queue(q); 4161 blk_put_queue(q); 4162 return ERR_PTR(-ENOMEM); 4163 } 4164 set_bit(GD_OWNS_QUEUE, &disk->state); 4165 return disk; 4166 } 4167 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4168 4169 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4170 struct lock_class_key *lkclass) 4171 { 4172 struct gendisk *disk; 4173 4174 if (!blk_get_queue(q)) 4175 return NULL; 4176 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4177 if (!disk) 4178 blk_put_queue(q); 4179 return disk; 4180 } 4181 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4182 4183 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4184 struct blk_mq_tag_set *set, struct request_queue *q, 4185 int hctx_idx, int node) 4186 { 4187 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4188 4189 /* reuse dead hctx first */ 4190 spin_lock(&q->unused_hctx_lock); 4191 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4192 if (tmp->numa_node == node) { 4193 hctx = tmp; 4194 break; 4195 } 4196 } 4197 if (hctx) 4198 list_del_init(&hctx->hctx_list); 4199 spin_unlock(&q->unused_hctx_lock); 4200 4201 if (!hctx) 4202 hctx = blk_mq_alloc_hctx(q, set, node); 4203 if (!hctx) 4204 goto fail; 4205 4206 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4207 goto free_hctx; 4208 4209 return hctx; 4210 4211 free_hctx: 4212 kobject_put(&hctx->kobj); 4213 fail: 4214 return NULL; 4215 } 4216 4217 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4218 struct request_queue *q) 4219 { 4220 struct blk_mq_hw_ctx *hctx; 4221 unsigned long i, j; 4222 4223 /* protect against switching io scheduler */ 4224 mutex_lock(&q->sysfs_lock); 4225 for (i = 0; i < set->nr_hw_queues; i++) { 4226 int old_node; 4227 int node = blk_mq_get_hctx_node(set, i); 4228 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4229 4230 if (old_hctx) { 4231 old_node = old_hctx->numa_node; 4232 blk_mq_exit_hctx(q, set, old_hctx, i); 4233 } 4234 4235 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4236 if (!old_hctx) 4237 break; 4238 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4239 node, old_node); 4240 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4241 WARN_ON_ONCE(!hctx); 4242 } 4243 } 4244 /* 4245 * Increasing nr_hw_queues fails. Free the newly allocated 4246 * hctxs and keep the previous q->nr_hw_queues. 4247 */ 4248 if (i != set->nr_hw_queues) { 4249 j = q->nr_hw_queues; 4250 } else { 4251 j = i; 4252 q->nr_hw_queues = set->nr_hw_queues; 4253 } 4254 4255 xa_for_each_start(&q->hctx_table, j, hctx, j) 4256 blk_mq_exit_hctx(q, set, hctx, j); 4257 mutex_unlock(&q->sysfs_lock); 4258 } 4259 4260 static void blk_mq_update_poll_flag(struct request_queue *q) 4261 { 4262 struct blk_mq_tag_set *set = q->tag_set; 4263 4264 if (set->nr_maps > HCTX_TYPE_POLL && 4265 set->map[HCTX_TYPE_POLL].nr_queues) 4266 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4267 else 4268 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4269 } 4270 4271 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4272 struct request_queue *q) 4273 { 4274 /* mark the queue as mq asap */ 4275 q->mq_ops = set->ops; 4276 4277 if (blk_mq_alloc_ctxs(q)) 4278 goto err_exit; 4279 4280 /* init q->mq_kobj and sw queues' kobjects */ 4281 blk_mq_sysfs_init(q); 4282 4283 INIT_LIST_HEAD(&q->unused_hctx_list); 4284 spin_lock_init(&q->unused_hctx_lock); 4285 4286 xa_init(&q->hctx_table); 4287 4288 blk_mq_realloc_hw_ctxs(set, q); 4289 if (!q->nr_hw_queues) 4290 goto err_hctxs; 4291 4292 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4293 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4294 4295 q->tag_set = set; 4296 4297 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4298 blk_mq_update_poll_flag(q); 4299 4300 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4301 INIT_LIST_HEAD(&q->flush_list); 4302 INIT_LIST_HEAD(&q->requeue_list); 4303 spin_lock_init(&q->requeue_lock); 4304 4305 q->nr_requests = set->queue_depth; 4306 4307 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4308 blk_mq_add_queue_tag_set(set, q); 4309 blk_mq_map_swqueue(q); 4310 return 0; 4311 4312 err_hctxs: 4313 blk_mq_release(q); 4314 err_exit: 4315 q->mq_ops = NULL; 4316 return -ENOMEM; 4317 } 4318 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4319 4320 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4321 void blk_mq_exit_queue(struct request_queue *q) 4322 { 4323 struct blk_mq_tag_set *set = q->tag_set; 4324 4325 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4326 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4327 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4328 blk_mq_del_queue_tag_set(q); 4329 } 4330 4331 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4332 { 4333 int i; 4334 4335 if (blk_mq_is_shared_tags(set->flags)) { 4336 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4337 BLK_MQ_NO_HCTX_IDX, 4338 set->queue_depth); 4339 if (!set->shared_tags) 4340 return -ENOMEM; 4341 } 4342 4343 for (i = 0; i < set->nr_hw_queues; i++) { 4344 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4345 goto out_unwind; 4346 cond_resched(); 4347 } 4348 4349 return 0; 4350 4351 out_unwind: 4352 while (--i >= 0) 4353 __blk_mq_free_map_and_rqs(set, i); 4354 4355 if (blk_mq_is_shared_tags(set->flags)) { 4356 blk_mq_free_map_and_rqs(set, set->shared_tags, 4357 BLK_MQ_NO_HCTX_IDX); 4358 } 4359 4360 return -ENOMEM; 4361 } 4362 4363 /* 4364 * Allocate the request maps associated with this tag_set. Note that this 4365 * may reduce the depth asked for, if memory is tight. set->queue_depth 4366 * will be updated to reflect the allocated depth. 4367 */ 4368 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4369 { 4370 unsigned int depth; 4371 int err; 4372 4373 depth = set->queue_depth; 4374 do { 4375 err = __blk_mq_alloc_rq_maps(set); 4376 if (!err) 4377 break; 4378 4379 set->queue_depth >>= 1; 4380 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4381 err = -ENOMEM; 4382 break; 4383 } 4384 } while (set->queue_depth); 4385 4386 if (!set->queue_depth || err) { 4387 pr_err("blk-mq: failed to allocate request map\n"); 4388 return -ENOMEM; 4389 } 4390 4391 if (depth != set->queue_depth) 4392 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4393 depth, set->queue_depth); 4394 4395 return 0; 4396 } 4397 4398 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4399 { 4400 /* 4401 * blk_mq_map_queues() and multiple .map_queues() implementations 4402 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4403 * number of hardware queues. 4404 */ 4405 if (set->nr_maps == 1) 4406 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4407 4408 if (set->ops->map_queues && !is_kdump_kernel()) { 4409 int i; 4410 4411 /* 4412 * transport .map_queues is usually done in the following 4413 * way: 4414 * 4415 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4416 * mask = get_cpu_mask(queue) 4417 * for_each_cpu(cpu, mask) 4418 * set->map[x].mq_map[cpu] = queue; 4419 * } 4420 * 4421 * When we need to remap, the table has to be cleared for 4422 * killing stale mapping since one CPU may not be mapped 4423 * to any hw queue. 4424 */ 4425 for (i = 0; i < set->nr_maps; i++) 4426 blk_mq_clear_mq_map(&set->map[i]); 4427 4428 set->ops->map_queues(set); 4429 } else { 4430 BUG_ON(set->nr_maps > 1); 4431 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4432 } 4433 } 4434 4435 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4436 int new_nr_hw_queues) 4437 { 4438 struct blk_mq_tags **new_tags; 4439 int i; 4440 4441 if (set->nr_hw_queues >= new_nr_hw_queues) 4442 goto done; 4443 4444 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4445 GFP_KERNEL, set->numa_node); 4446 if (!new_tags) 4447 return -ENOMEM; 4448 4449 if (set->tags) 4450 memcpy(new_tags, set->tags, set->nr_hw_queues * 4451 sizeof(*set->tags)); 4452 kfree(set->tags); 4453 set->tags = new_tags; 4454 4455 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4456 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4457 while (--i >= set->nr_hw_queues) 4458 __blk_mq_free_map_and_rqs(set, i); 4459 return -ENOMEM; 4460 } 4461 cond_resched(); 4462 } 4463 4464 done: 4465 set->nr_hw_queues = new_nr_hw_queues; 4466 return 0; 4467 } 4468 4469 /* 4470 * Alloc a tag set to be associated with one or more request queues. 4471 * May fail with EINVAL for various error conditions. May adjust the 4472 * requested depth down, if it's too large. In that case, the set 4473 * value will be stored in set->queue_depth. 4474 */ 4475 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4476 { 4477 int i, ret; 4478 4479 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4480 4481 if (!set->nr_hw_queues) 4482 return -EINVAL; 4483 if (!set->queue_depth) 4484 return -EINVAL; 4485 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4486 return -EINVAL; 4487 4488 if (!set->ops->queue_rq) 4489 return -EINVAL; 4490 4491 if (!set->ops->get_budget ^ !set->ops->put_budget) 4492 return -EINVAL; 4493 4494 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4495 pr_info("blk-mq: reduced tag depth to %u\n", 4496 BLK_MQ_MAX_DEPTH); 4497 set->queue_depth = BLK_MQ_MAX_DEPTH; 4498 } 4499 4500 if (!set->nr_maps) 4501 set->nr_maps = 1; 4502 else if (set->nr_maps > HCTX_MAX_TYPES) 4503 return -EINVAL; 4504 4505 /* 4506 * If a crashdump is active, then we are potentially in a very 4507 * memory constrained environment. Limit us to 1 queue and 4508 * 64 tags to prevent using too much memory. 4509 */ 4510 if (is_kdump_kernel()) { 4511 set->nr_hw_queues = 1; 4512 set->nr_maps = 1; 4513 set->queue_depth = min(64U, set->queue_depth); 4514 } 4515 /* 4516 * There is no use for more h/w queues than cpus if we just have 4517 * a single map 4518 */ 4519 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4520 set->nr_hw_queues = nr_cpu_ids; 4521 4522 if (set->flags & BLK_MQ_F_BLOCKING) { 4523 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4524 if (!set->srcu) 4525 return -ENOMEM; 4526 ret = init_srcu_struct(set->srcu); 4527 if (ret) 4528 goto out_free_srcu; 4529 } 4530 4531 ret = -ENOMEM; 4532 set->tags = kcalloc_node(set->nr_hw_queues, 4533 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4534 set->numa_node); 4535 if (!set->tags) 4536 goto out_cleanup_srcu; 4537 4538 for (i = 0; i < set->nr_maps; i++) { 4539 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4540 sizeof(set->map[i].mq_map[0]), 4541 GFP_KERNEL, set->numa_node); 4542 if (!set->map[i].mq_map) 4543 goto out_free_mq_map; 4544 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4545 } 4546 4547 blk_mq_update_queue_map(set); 4548 4549 ret = blk_mq_alloc_set_map_and_rqs(set); 4550 if (ret) 4551 goto out_free_mq_map; 4552 4553 mutex_init(&set->tag_list_lock); 4554 INIT_LIST_HEAD(&set->tag_list); 4555 4556 return 0; 4557 4558 out_free_mq_map: 4559 for (i = 0; i < set->nr_maps; i++) { 4560 kfree(set->map[i].mq_map); 4561 set->map[i].mq_map = NULL; 4562 } 4563 kfree(set->tags); 4564 set->tags = NULL; 4565 out_cleanup_srcu: 4566 if (set->flags & BLK_MQ_F_BLOCKING) 4567 cleanup_srcu_struct(set->srcu); 4568 out_free_srcu: 4569 if (set->flags & BLK_MQ_F_BLOCKING) 4570 kfree(set->srcu); 4571 return ret; 4572 } 4573 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4574 4575 /* allocate and initialize a tagset for a simple single-queue device */ 4576 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4577 const struct blk_mq_ops *ops, unsigned int queue_depth, 4578 unsigned int set_flags) 4579 { 4580 memset(set, 0, sizeof(*set)); 4581 set->ops = ops; 4582 set->nr_hw_queues = 1; 4583 set->nr_maps = 1; 4584 set->queue_depth = queue_depth; 4585 set->numa_node = NUMA_NO_NODE; 4586 set->flags = set_flags; 4587 return blk_mq_alloc_tag_set(set); 4588 } 4589 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4590 4591 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4592 { 4593 int i, j; 4594 4595 for (i = 0; i < set->nr_hw_queues; i++) 4596 __blk_mq_free_map_and_rqs(set, i); 4597 4598 if (blk_mq_is_shared_tags(set->flags)) { 4599 blk_mq_free_map_and_rqs(set, set->shared_tags, 4600 BLK_MQ_NO_HCTX_IDX); 4601 } 4602 4603 for (j = 0; j < set->nr_maps; j++) { 4604 kfree(set->map[j].mq_map); 4605 set->map[j].mq_map = NULL; 4606 } 4607 4608 kfree(set->tags); 4609 set->tags = NULL; 4610 if (set->flags & BLK_MQ_F_BLOCKING) { 4611 cleanup_srcu_struct(set->srcu); 4612 kfree(set->srcu); 4613 } 4614 } 4615 EXPORT_SYMBOL(blk_mq_free_tag_set); 4616 4617 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4618 { 4619 struct blk_mq_tag_set *set = q->tag_set; 4620 struct blk_mq_hw_ctx *hctx; 4621 int ret; 4622 unsigned long i; 4623 4624 if (!set) 4625 return -EINVAL; 4626 4627 if (q->nr_requests == nr) 4628 return 0; 4629 4630 blk_mq_freeze_queue(q); 4631 blk_mq_quiesce_queue(q); 4632 4633 ret = 0; 4634 queue_for_each_hw_ctx(q, hctx, i) { 4635 if (!hctx->tags) 4636 continue; 4637 /* 4638 * If we're using an MQ scheduler, just update the scheduler 4639 * queue depth. This is similar to what the old code would do. 4640 */ 4641 if (hctx->sched_tags) { 4642 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4643 nr, true); 4644 } else { 4645 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4646 false); 4647 } 4648 if (ret) 4649 break; 4650 if (q->elevator && q->elevator->type->ops.depth_updated) 4651 q->elevator->type->ops.depth_updated(hctx); 4652 } 4653 if (!ret) { 4654 q->nr_requests = nr; 4655 if (blk_mq_is_shared_tags(set->flags)) { 4656 if (q->elevator) 4657 blk_mq_tag_update_sched_shared_tags(q); 4658 else 4659 blk_mq_tag_resize_shared_tags(set, nr); 4660 } 4661 } 4662 4663 blk_mq_unquiesce_queue(q); 4664 blk_mq_unfreeze_queue(q); 4665 4666 return ret; 4667 } 4668 4669 /* 4670 * request_queue and elevator_type pair. 4671 * It is just used by __blk_mq_update_nr_hw_queues to cache 4672 * the elevator_type associated with a request_queue. 4673 */ 4674 struct blk_mq_qe_pair { 4675 struct list_head node; 4676 struct request_queue *q; 4677 struct elevator_type *type; 4678 }; 4679 4680 /* 4681 * Cache the elevator_type in qe pair list and switch the 4682 * io scheduler to 'none' 4683 */ 4684 static bool blk_mq_elv_switch_none(struct list_head *head, 4685 struct request_queue *q) 4686 { 4687 struct blk_mq_qe_pair *qe; 4688 4689 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4690 if (!qe) 4691 return false; 4692 4693 /* q->elevator needs protection from ->sysfs_lock */ 4694 mutex_lock(&q->sysfs_lock); 4695 4696 /* the check has to be done with holding sysfs_lock */ 4697 if (!q->elevator) { 4698 kfree(qe); 4699 goto unlock; 4700 } 4701 4702 INIT_LIST_HEAD(&qe->node); 4703 qe->q = q; 4704 qe->type = q->elevator->type; 4705 /* keep a reference to the elevator module as we'll switch back */ 4706 __elevator_get(qe->type); 4707 list_add(&qe->node, head); 4708 elevator_disable(q); 4709 unlock: 4710 mutex_unlock(&q->sysfs_lock); 4711 4712 return true; 4713 } 4714 4715 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4716 struct request_queue *q) 4717 { 4718 struct blk_mq_qe_pair *qe; 4719 4720 list_for_each_entry(qe, head, node) 4721 if (qe->q == q) 4722 return qe; 4723 4724 return NULL; 4725 } 4726 4727 static void blk_mq_elv_switch_back(struct list_head *head, 4728 struct request_queue *q) 4729 { 4730 struct blk_mq_qe_pair *qe; 4731 struct elevator_type *t; 4732 4733 qe = blk_lookup_qe_pair(head, q); 4734 if (!qe) 4735 return; 4736 t = qe->type; 4737 list_del(&qe->node); 4738 kfree(qe); 4739 4740 mutex_lock(&q->sysfs_lock); 4741 elevator_switch(q, t); 4742 /* drop the reference acquired in blk_mq_elv_switch_none */ 4743 elevator_put(t); 4744 mutex_unlock(&q->sysfs_lock); 4745 } 4746 4747 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4748 int nr_hw_queues) 4749 { 4750 struct request_queue *q; 4751 LIST_HEAD(head); 4752 int prev_nr_hw_queues = set->nr_hw_queues; 4753 int i; 4754 4755 lockdep_assert_held(&set->tag_list_lock); 4756 4757 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4758 nr_hw_queues = nr_cpu_ids; 4759 if (nr_hw_queues < 1) 4760 return; 4761 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4762 return; 4763 4764 list_for_each_entry(q, &set->tag_list, tag_set_list) 4765 blk_mq_freeze_queue(q); 4766 /* 4767 * Switch IO scheduler to 'none', cleaning up the data associated 4768 * with the previous scheduler. We will switch back once we are done 4769 * updating the new sw to hw queue mappings. 4770 */ 4771 list_for_each_entry(q, &set->tag_list, tag_set_list) 4772 if (!blk_mq_elv_switch_none(&head, q)) 4773 goto switch_back; 4774 4775 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4776 blk_mq_debugfs_unregister_hctxs(q); 4777 blk_mq_sysfs_unregister_hctxs(q); 4778 } 4779 4780 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4781 goto reregister; 4782 4783 fallback: 4784 blk_mq_update_queue_map(set); 4785 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4786 blk_mq_realloc_hw_ctxs(set, q); 4787 blk_mq_update_poll_flag(q); 4788 if (q->nr_hw_queues != set->nr_hw_queues) { 4789 int i = prev_nr_hw_queues; 4790 4791 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4792 nr_hw_queues, prev_nr_hw_queues); 4793 for (; i < set->nr_hw_queues; i++) 4794 __blk_mq_free_map_and_rqs(set, i); 4795 4796 set->nr_hw_queues = prev_nr_hw_queues; 4797 goto fallback; 4798 } 4799 blk_mq_map_swqueue(q); 4800 } 4801 4802 reregister: 4803 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4804 blk_mq_sysfs_register_hctxs(q); 4805 blk_mq_debugfs_register_hctxs(q); 4806 } 4807 4808 switch_back: 4809 list_for_each_entry(q, &set->tag_list, tag_set_list) 4810 blk_mq_elv_switch_back(&head, q); 4811 4812 list_for_each_entry(q, &set->tag_list, tag_set_list) 4813 blk_mq_unfreeze_queue(q); 4814 4815 /* Free the excess tags when nr_hw_queues shrink. */ 4816 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4817 __blk_mq_free_map_and_rqs(set, i); 4818 } 4819 4820 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4821 { 4822 mutex_lock(&set->tag_list_lock); 4823 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4824 mutex_unlock(&set->tag_list_lock); 4825 } 4826 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4827 4828 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4829 struct io_comp_batch *iob, unsigned int flags) 4830 { 4831 long state = get_current_state(); 4832 int ret; 4833 4834 do { 4835 ret = q->mq_ops->poll(hctx, iob); 4836 if (ret > 0) { 4837 __set_current_state(TASK_RUNNING); 4838 return ret; 4839 } 4840 4841 if (signal_pending_state(state, current)) 4842 __set_current_state(TASK_RUNNING); 4843 if (task_is_running(current)) 4844 return 1; 4845 4846 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4847 break; 4848 cpu_relax(); 4849 } while (!need_resched()); 4850 4851 __set_current_state(TASK_RUNNING); 4852 return 0; 4853 } 4854 4855 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4856 struct io_comp_batch *iob, unsigned int flags) 4857 { 4858 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4859 4860 return blk_hctx_poll(q, hctx, iob, flags); 4861 } 4862 4863 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4864 unsigned int poll_flags) 4865 { 4866 struct request_queue *q = rq->q; 4867 int ret; 4868 4869 if (!blk_rq_is_poll(rq)) 4870 return 0; 4871 if (!percpu_ref_tryget(&q->q_usage_counter)) 4872 return 0; 4873 4874 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4875 blk_queue_exit(q); 4876 4877 return ret; 4878 } 4879 EXPORT_SYMBOL_GPL(blk_rq_poll); 4880 4881 unsigned int blk_mq_rq_cpu(struct request *rq) 4882 { 4883 return rq->mq_ctx->cpu; 4884 } 4885 EXPORT_SYMBOL(blk_mq_rq_cpu); 4886 4887 void blk_mq_cancel_work_sync(struct request_queue *q) 4888 { 4889 struct blk_mq_hw_ctx *hctx; 4890 unsigned long i; 4891 4892 cancel_delayed_work_sync(&q->requeue_work); 4893 4894 queue_for_each_hw_ctx(q, hctx, i) 4895 cancel_delayed_work_sync(&hctx->run_work); 4896 } 4897 4898 static int __init blk_mq_init(void) 4899 { 4900 int i; 4901 4902 for_each_possible_cpu(i) 4903 init_llist_head(&per_cpu(blk_cpu_done, i)); 4904 for_each_possible_cpu(i) 4905 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4906 __blk_mq_complete_request_remote, NULL); 4907 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4908 4909 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4910 "block/softirq:dead", NULL, 4911 blk_softirq_cpu_dead); 4912 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4913 blk_mq_hctx_notify_dead); 4914 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4915 blk_mq_hctx_notify_online, 4916 blk_mq_hctx_notify_offline); 4917 return 0; 4918 } 4919 subsys_initcall(blk_mq_init); 4920