xref: /openbmc/linux/block/blk-mq.c (revision c10d12e3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 #define BLK_QC_T_SHIFT		16
69 #define BLK_QC_T_INTERNAL	(1U << 31)
70 
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 		blk_qc_t qc)
73 {
74 	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75 }
76 
77 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78 		blk_qc_t qc)
79 {
80 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81 
82 	if (qc & BLK_QC_T_INTERNAL)
83 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84 	return blk_mq_tag_to_rq(hctx->tags, tag);
85 }
86 
87 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88 {
89 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90 		(rq->tag != -1 ?
91 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92 }
93 
94 /*
95  * Check if any of the ctx, dispatch list or elevator
96  * have pending work in this hardware queue.
97  */
98 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99 {
100 	return !list_empty_careful(&hctx->dispatch) ||
101 		sbitmap_any_bit_set(&hctx->ctx_map) ||
102 			blk_mq_sched_has_work(hctx);
103 }
104 
105 /*
106  * Mark this ctx as having pending work in this hardware queue
107  */
108 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109 				     struct blk_mq_ctx *ctx)
110 {
111 	const int bit = ctx->index_hw[hctx->type];
112 
113 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114 		sbitmap_set_bit(&hctx->ctx_map, bit);
115 }
116 
117 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118 				      struct blk_mq_ctx *ctx)
119 {
120 	const int bit = ctx->index_hw[hctx->type];
121 
122 	sbitmap_clear_bit(&hctx->ctx_map, bit);
123 }
124 
125 struct mq_inflight {
126 	struct block_device *part;
127 	unsigned int inflight[2];
128 };
129 
130 static bool blk_mq_check_inflight(struct request *rq, void *priv,
131 				  bool reserved)
132 {
133 	struct mq_inflight *mi = priv;
134 
135 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
136 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137 		mi->inflight[rq_data_dir(rq)]++;
138 
139 	return true;
140 }
141 
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143 		struct block_device *part)
144 {
145 	struct mq_inflight mi = { .part = part };
146 
147 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148 
149 	return mi.inflight[0] + mi.inflight[1];
150 }
151 
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153 		unsigned int inflight[2])
154 {
155 	struct mq_inflight mi = { .part = part };
156 
157 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158 	inflight[0] = mi.inflight[0];
159 	inflight[1] = mi.inflight[1];
160 }
161 
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164 	mutex_lock(&q->mq_freeze_lock);
165 	if (++q->mq_freeze_depth == 1) {
166 		percpu_ref_kill(&q->q_usage_counter);
167 		mutex_unlock(&q->mq_freeze_lock);
168 		if (queue_is_mq(q))
169 			blk_mq_run_hw_queues(q, false);
170 	} else {
171 		mutex_unlock(&q->mq_freeze_lock);
172 	}
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175 
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181 
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183 				     unsigned long timeout)
184 {
185 	return wait_event_timeout(q->mq_freeze_wq,
186 					percpu_ref_is_zero(&q->q_usage_counter),
187 					timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190 
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197 	/*
198 	 * In the !blk_mq case we are only calling this to kill the
199 	 * q_usage_counter, otherwise this increases the freeze depth
200 	 * and waits for it to return to zero.  For this reason there is
201 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202 	 * exported to drivers as the only user for unfreeze is blk_mq.
203 	 */
204 	blk_freeze_queue_start(q);
205 	blk_mq_freeze_queue_wait(q);
206 }
207 
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210 	/*
211 	 * ...just an alias to keep freeze and unfreeze actions balanced
212 	 * in the blk_mq_* namespace
213 	 */
214 	blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217 
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 	mutex_lock(&q->mq_freeze_lock);
221 	if (force_atomic)
222 		q->q_usage_counter.data->force_atomic = true;
223 	q->mq_freeze_depth--;
224 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
225 	if (!q->mq_freeze_depth) {
226 		percpu_ref_resurrect(&q->q_usage_counter);
227 		wake_up_all(&q->mq_freeze_wq);
228 	}
229 	mutex_unlock(&q->mq_freeze_lock);
230 }
231 
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234 	__blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237 
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244 	unsigned long flags;
245 
246 	spin_lock_irqsave(&q->queue_lock, flags);
247 	if (!q->quiesce_depth++)
248 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249 	spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252 
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262 	if (blk_queue_has_srcu(q))
263 		synchronize_srcu(q->srcu);
264 	else
265 		synchronize_rcu();
266 }
267 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
268 
269 /**
270  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
271  * @q: request queue.
272  *
273  * Note: this function does not prevent that the struct request end_io()
274  * callback function is invoked. Once this function is returned, we make
275  * sure no dispatch can happen until the queue is unquiesced via
276  * blk_mq_unquiesce_queue().
277  */
278 void blk_mq_quiesce_queue(struct request_queue *q)
279 {
280 	blk_mq_quiesce_queue_nowait(q);
281 	blk_mq_wait_quiesce_done(q);
282 }
283 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
284 
285 /*
286  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
287  * @q: request queue.
288  *
289  * This function recovers queue into the state before quiescing
290  * which is done by blk_mq_quiesce_queue.
291  */
292 void blk_mq_unquiesce_queue(struct request_queue *q)
293 {
294 	unsigned long flags;
295 	bool run_queue = false;
296 
297 	spin_lock_irqsave(&q->queue_lock, flags);
298 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
299 		;
300 	} else if (!--q->quiesce_depth) {
301 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
302 		run_queue = true;
303 	}
304 	spin_unlock_irqrestore(&q->queue_lock, flags);
305 
306 	/* dispatch requests which are inserted during quiescing */
307 	if (run_queue)
308 		blk_mq_run_hw_queues(q, true);
309 }
310 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
311 
312 void blk_mq_wake_waiters(struct request_queue *q)
313 {
314 	struct blk_mq_hw_ctx *hctx;
315 	unsigned int i;
316 
317 	queue_for_each_hw_ctx(q, hctx, i)
318 		if (blk_mq_hw_queue_mapped(hctx))
319 			blk_mq_tag_wakeup_all(hctx->tags, true);
320 }
321 
322 void blk_rq_init(struct request_queue *q, struct request *rq)
323 {
324 	memset(rq, 0, sizeof(*rq));
325 
326 	INIT_LIST_HEAD(&rq->queuelist);
327 	rq->q = q;
328 	rq->__sector = (sector_t) -1;
329 	INIT_HLIST_NODE(&rq->hash);
330 	RB_CLEAR_NODE(&rq->rb_node);
331 	rq->tag = BLK_MQ_NO_TAG;
332 	rq->internal_tag = BLK_MQ_NO_TAG;
333 	rq->start_time_ns = ktime_get_ns();
334 	rq->part = NULL;
335 	blk_crypto_rq_set_defaults(rq);
336 }
337 EXPORT_SYMBOL(blk_rq_init);
338 
339 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
340 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
341 {
342 	struct blk_mq_ctx *ctx = data->ctx;
343 	struct blk_mq_hw_ctx *hctx = data->hctx;
344 	struct request_queue *q = data->q;
345 	struct request *rq = tags->static_rqs[tag];
346 
347 	rq->q = q;
348 	rq->mq_ctx = ctx;
349 	rq->mq_hctx = hctx;
350 	rq->cmd_flags = data->cmd_flags;
351 
352 	if (data->flags & BLK_MQ_REQ_PM)
353 		data->rq_flags |= RQF_PM;
354 	if (blk_queue_io_stat(q))
355 		data->rq_flags |= RQF_IO_STAT;
356 	rq->rq_flags = data->rq_flags;
357 
358 	if (!(data->rq_flags & RQF_ELV)) {
359 		rq->tag = tag;
360 		rq->internal_tag = BLK_MQ_NO_TAG;
361 	} else {
362 		rq->tag = BLK_MQ_NO_TAG;
363 		rq->internal_tag = tag;
364 	}
365 	rq->timeout = 0;
366 
367 	if (blk_mq_need_time_stamp(rq))
368 		rq->start_time_ns = ktime_get_ns();
369 	else
370 		rq->start_time_ns = 0;
371 	rq->part = NULL;
372 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
373 	rq->alloc_time_ns = alloc_time_ns;
374 #endif
375 	rq->io_start_time_ns = 0;
376 	rq->stats_sectors = 0;
377 	rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379 	rq->nr_integrity_segments = 0;
380 #endif
381 	rq->end_io = NULL;
382 	rq->end_io_data = NULL;
383 
384 	blk_crypto_rq_set_defaults(rq);
385 	INIT_LIST_HEAD(&rq->queuelist);
386 	/* tag was already set */
387 	WRITE_ONCE(rq->deadline, 0);
388 	req_ref_set(rq, 1);
389 
390 	if (rq->rq_flags & RQF_ELV) {
391 		struct elevator_queue *e = data->q->elevator;
392 
393 		INIT_HLIST_NODE(&rq->hash);
394 		RB_CLEAR_NODE(&rq->rb_node);
395 
396 		if (!op_is_flush(data->cmd_flags) &&
397 		    e->type->ops.prepare_request) {
398 			e->type->ops.prepare_request(rq);
399 			rq->rq_flags |= RQF_ELVPRIV;
400 		}
401 	}
402 
403 	return rq;
404 }
405 
406 static inline struct request *
407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
408 		u64 alloc_time_ns)
409 {
410 	unsigned int tag, tag_offset;
411 	struct blk_mq_tags *tags;
412 	struct request *rq;
413 	unsigned long tag_mask;
414 	int i, nr = 0;
415 
416 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
417 	if (unlikely(!tag_mask))
418 		return NULL;
419 
420 	tags = blk_mq_tags_from_data(data);
421 	for (i = 0; tag_mask; i++) {
422 		if (!(tag_mask & (1UL << i)))
423 			continue;
424 		tag = tag_offset + i;
425 		prefetch(tags->static_rqs[tag]);
426 		tag_mask &= ~(1UL << i);
427 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
428 		rq_list_add(data->cached_rq, rq);
429 		nr++;
430 	}
431 	/* caller already holds a reference, add for remainder */
432 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433 	data->nr_tags -= nr;
434 
435 	return rq_list_pop(data->cached_rq);
436 }
437 
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440 	struct request_queue *q = data->q;
441 	u64 alloc_time_ns = 0;
442 	struct request *rq;
443 	unsigned int tag;
444 
445 	/* alloc_time includes depth and tag waits */
446 	if (blk_queue_rq_alloc_time(q))
447 		alloc_time_ns = ktime_get_ns();
448 
449 	if (data->cmd_flags & REQ_NOWAIT)
450 		data->flags |= BLK_MQ_REQ_NOWAIT;
451 
452 	if (q->elevator) {
453 		struct elevator_queue *e = q->elevator;
454 
455 		data->rq_flags |= RQF_ELV;
456 
457 		/*
458 		 * Flush/passthrough requests are special and go directly to the
459 		 * dispatch list. Don't include reserved tags in the
460 		 * limiting, as it isn't useful.
461 		 */
462 		if (!op_is_flush(data->cmd_flags) &&
463 		    !blk_op_is_passthrough(data->cmd_flags) &&
464 		    e->type->ops.limit_depth &&
465 		    !(data->flags & BLK_MQ_REQ_RESERVED))
466 			e->type->ops.limit_depth(data->cmd_flags, data);
467 	}
468 
469 retry:
470 	data->ctx = blk_mq_get_ctx(q);
471 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
472 	if (!(data->rq_flags & RQF_ELV))
473 		blk_mq_tag_busy(data->hctx);
474 
475 	/*
476 	 * Try batched alloc if we want more than 1 tag.
477 	 */
478 	if (data->nr_tags > 1) {
479 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
480 		if (rq)
481 			return rq;
482 		data->nr_tags = 1;
483 	}
484 
485 	/*
486 	 * Waiting allocations only fail because of an inactive hctx.  In that
487 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
488 	 * should have migrated us to an online CPU by now.
489 	 */
490 	tag = blk_mq_get_tag(data);
491 	if (tag == BLK_MQ_NO_TAG) {
492 		if (data->flags & BLK_MQ_REQ_NOWAIT)
493 			return NULL;
494 		/*
495 		 * Give up the CPU and sleep for a random short time to
496 		 * ensure that thread using a realtime scheduling class
497 		 * are migrated off the CPU, and thus off the hctx that
498 		 * is going away.
499 		 */
500 		msleep(3);
501 		goto retry;
502 	}
503 
504 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
505 					alloc_time_ns);
506 }
507 
508 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
509 		blk_mq_req_flags_t flags)
510 {
511 	struct blk_mq_alloc_data data = {
512 		.q		= q,
513 		.flags		= flags,
514 		.cmd_flags	= op,
515 		.nr_tags	= 1,
516 	};
517 	struct request *rq;
518 	int ret;
519 
520 	ret = blk_queue_enter(q, flags);
521 	if (ret)
522 		return ERR_PTR(ret);
523 
524 	rq = __blk_mq_alloc_requests(&data);
525 	if (!rq)
526 		goto out_queue_exit;
527 	rq->__data_len = 0;
528 	rq->__sector = (sector_t) -1;
529 	rq->bio = rq->biotail = NULL;
530 	return rq;
531 out_queue_exit:
532 	blk_queue_exit(q);
533 	return ERR_PTR(-EWOULDBLOCK);
534 }
535 EXPORT_SYMBOL(blk_mq_alloc_request);
536 
537 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
538 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
539 {
540 	struct blk_mq_alloc_data data = {
541 		.q		= q,
542 		.flags		= flags,
543 		.cmd_flags	= op,
544 		.nr_tags	= 1,
545 	};
546 	u64 alloc_time_ns = 0;
547 	unsigned int cpu;
548 	unsigned int tag;
549 	int ret;
550 
551 	/* alloc_time includes depth and tag waits */
552 	if (blk_queue_rq_alloc_time(q))
553 		alloc_time_ns = ktime_get_ns();
554 
555 	/*
556 	 * If the tag allocator sleeps we could get an allocation for a
557 	 * different hardware context.  No need to complicate the low level
558 	 * allocator for this for the rare use case of a command tied to
559 	 * a specific queue.
560 	 */
561 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
562 		return ERR_PTR(-EINVAL);
563 
564 	if (hctx_idx >= q->nr_hw_queues)
565 		return ERR_PTR(-EIO);
566 
567 	ret = blk_queue_enter(q, flags);
568 	if (ret)
569 		return ERR_PTR(ret);
570 
571 	/*
572 	 * Check if the hardware context is actually mapped to anything.
573 	 * If not tell the caller that it should skip this queue.
574 	 */
575 	ret = -EXDEV;
576 	data.hctx = q->queue_hw_ctx[hctx_idx];
577 	if (!blk_mq_hw_queue_mapped(data.hctx))
578 		goto out_queue_exit;
579 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
580 	data.ctx = __blk_mq_get_ctx(q, cpu);
581 
582 	if (!q->elevator)
583 		blk_mq_tag_busy(data.hctx);
584 	else
585 		data.rq_flags |= RQF_ELV;
586 
587 	ret = -EWOULDBLOCK;
588 	tag = blk_mq_get_tag(&data);
589 	if (tag == BLK_MQ_NO_TAG)
590 		goto out_queue_exit;
591 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
592 					alloc_time_ns);
593 
594 out_queue_exit:
595 	blk_queue_exit(q);
596 	return ERR_PTR(ret);
597 }
598 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
599 
600 static void __blk_mq_free_request(struct request *rq)
601 {
602 	struct request_queue *q = rq->q;
603 	struct blk_mq_ctx *ctx = rq->mq_ctx;
604 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
605 	const int sched_tag = rq->internal_tag;
606 
607 	blk_crypto_free_request(rq);
608 	blk_pm_mark_last_busy(rq);
609 	rq->mq_hctx = NULL;
610 	if (rq->tag != BLK_MQ_NO_TAG)
611 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
612 	if (sched_tag != BLK_MQ_NO_TAG)
613 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
614 	blk_mq_sched_restart(hctx);
615 	blk_queue_exit(q);
616 }
617 
618 void blk_mq_free_request(struct request *rq)
619 {
620 	struct request_queue *q = rq->q;
621 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
622 
623 	if ((rq->rq_flags & RQF_ELVPRIV) &&
624 	    q->elevator->type->ops.finish_request)
625 		q->elevator->type->ops.finish_request(rq);
626 
627 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
628 		__blk_mq_dec_active_requests(hctx);
629 
630 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
631 		laptop_io_completion(q->disk->bdi);
632 
633 	rq_qos_done(q, rq);
634 
635 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
636 	if (req_ref_put_and_test(rq))
637 		__blk_mq_free_request(rq);
638 }
639 EXPORT_SYMBOL_GPL(blk_mq_free_request);
640 
641 void blk_mq_free_plug_rqs(struct blk_plug *plug)
642 {
643 	struct request *rq;
644 
645 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
646 		blk_mq_free_request(rq);
647 }
648 
649 void blk_dump_rq_flags(struct request *rq, char *msg)
650 {
651 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
652 		rq->q->disk ? rq->q->disk->disk_name : "?",
653 		(unsigned long long) rq->cmd_flags);
654 
655 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
656 	       (unsigned long long)blk_rq_pos(rq),
657 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
658 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
659 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
660 }
661 EXPORT_SYMBOL(blk_dump_rq_flags);
662 
663 static void req_bio_endio(struct request *rq, struct bio *bio,
664 			  unsigned int nbytes, blk_status_t error)
665 {
666 	if (unlikely(error)) {
667 		bio->bi_status = error;
668 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
669 		/*
670 		 * Partial zone append completions cannot be supported as the
671 		 * BIO fragments may end up not being written sequentially.
672 		 */
673 		if (bio->bi_iter.bi_size != nbytes)
674 			bio->bi_status = BLK_STS_IOERR;
675 		else
676 			bio->bi_iter.bi_sector = rq->__sector;
677 	}
678 
679 	bio_advance(bio, nbytes);
680 
681 	if (unlikely(rq->rq_flags & RQF_QUIET))
682 		bio_set_flag(bio, BIO_QUIET);
683 	/* don't actually finish bio if it's part of flush sequence */
684 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
685 		bio_endio(bio);
686 }
687 
688 static void blk_account_io_completion(struct request *req, unsigned int bytes)
689 {
690 	if (req->part && blk_do_io_stat(req)) {
691 		const int sgrp = op_stat_group(req_op(req));
692 
693 		part_stat_lock();
694 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
695 		part_stat_unlock();
696 	}
697 }
698 
699 static void blk_print_req_error(struct request *req, blk_status_t status)
700 {
701 	printk_ratelimited(KERN_ERR
702 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
703 		"phys_seg %u prio class %u\n",
704 		blk_status_to_str(status),
705 		req->q->disk ? req->q->disk->disk_name : "?",
706 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
707 		req->cmd_flags & ~REQ_OP_MASK,
708 		req->nr_phys_segments,
709 		IOPRIO_PRIO_CLASS(req->ioprio));
710 }
711 
712 /*
713  * Fully end IO on a request. Does not support partial completions, or
714  * errors.
715  */
716 static void blk_complete_request(struct request *req)
717 {
718 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
719 	int total_bytes = blk_rq_bytes(req);
720 	struct bio *bio = req->bio;
721 
722 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
723 
724 	if (!bio)
725 		return;
726 
727 #ifdef CONFIG_BLK_DEV_INTEGRITY
728 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
729 		req->q->integrity.profile->complete_fn(req, total_bytes);
730 #endif
731 
732 	blk_account_io_completion(req, total_bytes);
733 
734 	do {
735 		struct bio *next = bio->bi_next;
736 
737 		/* Completion has already been traced */
738 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
739 
740 		if (req_op(req) == REQ_OP_ZONE_APPEND)
741 			bio->bi_iter.bi_sector = req->__sector;
742 
743 		if (!is_flush)
744 			bio_endio(bio);
745 		bio = next;
746 	} while (bio);
747 
748 	/*
749 	 * Reset counters so that the request stacking driver
750 	 * can find how many bytes remain in the request
751 	 * later.
752 	 */
753 	req->bio = NULL;
754 	req->__data_len = 0;
755 }
756 
757 /**
758  * blk_update_request - Complete multiple bytes without completing the request
759  * @req:      the request being processed
760  * @error:    block status code
761  * @nr_bytes: number of bytes to complete for @req
762  *
763  * Description:
764  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
765  *     the request structure even if @req doesn't have leftover.
766  *     If @req has leftover, sets it up for the next range of segments.
767  *
768  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
769  *     %false return from this function.
770  *
771  * Note:
772  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
773  *      except in the consistency check at the end of this function.
774  *
775  * Return:
776  *     %false - this request doesn't have any more data
777  *     %true  - this request has more data
778  **/
779 bool blk_update_request(struct request *req, blk_status_t error,
780 		unsigned int nr_bytes)
781 {
782 	int total_bytes;
783 
784 	trace_block_rq_complete(req, error, nr_bytes);
785 
786 	if (!req->bio)
787 		return false;
788 
789 #ifdef CONFIG_BLK_DEV_INTEGRITY
790 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
791 	    error == BLK_STS_OK)
792 		req->q->integrity.profile->complete_fn(req, nr_bytes);
793 #endif
794 
795 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
796 		     !(req->rq_flags & RQF_QUIET)))
797 		blk_print_req_error(req, error);
798 
799 	blk_account_io_completion(req, nr_bytes);
800 
801 	total_bytes = 0;
802 	while (req->bio) {
803 		struct bio *bio = req->bio;
804 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
805 
806 		if (bio_bytes == bio->bi_iter.bi_size)
807 			req->bio = bio->bi_next;
808 
809 		/* Completion has already been traced */
810 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
811 		req_bio_endio(req, bio, bio_bytes, error);
812 
813 		total_bytes += bio_bytes;
814 		nr_bytes -= bio_bytes;
815 
816 		if (!nr_bytes)
817 			break;
818 	}
819 
820 	/*
821 	 * completely done
822 	 */
823 	if (!req->bio) {
824 		/*
825 		 * Reset counters so that the request stacking driver
826 		 * can find how many bytes remain in the request
827 		 * later.
828 		 */
829 		req->__data_len = 0;
830 		return false;
831 	}
832 
833 	req->__data_len -= total_bytes;
834 
835 	/* update sector only for requests with clear definition of sector */
836 	if (!blk_rq_is_passthrough(req))
837 		req->__sector += total_bytes >> 9;
838 
839 	/* mixed attributes always follow the first bio */
840 	if (req->rq_flags & RQF_MIXED_MERGE) {
841 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
842 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
843 	}
844 
845 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
846 		/*
847 		 * If total number of sectors is less than the first segment
848 		 * size, something has gone terribly wrong.
849 		 */
850 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
851 			blk_dump_rq_flags(req, "request botched");
852 			req->__data_len = blk_rq_cur_bytes(req);
853 		}
854 
855 		/* recalculate the number of segments */
856 		req->nr_phys_segments = blk_recalc_rq_segments(req);
857 	}
858 
859 	return true;
860 }
861 EXPORT_SYMBOL_GPL(blk_update_request);
862 
863 static void __blk_account_io_done(struct request *req, u64 now)
864 {
865 	const int sgrp = op_stat_group(req_op(req));
866 
867 	part_stat_lock();
868 	update_io_ticks(req->part, jiffies, true);
869 	part_stat_inc(req->part, ios[sgrp]);
870 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
871 	part_stat_unlock();
872 }
873 
874 static inline void blk_account_io_done(struct request *req, u64 now)
875 {
876 	/*
877 	 * Account IO completion.  flush_rq isn't accounted as a
878 	 * normal IO on queueing nor completion.  Accounting the
879 	 * containing request is enough.
880 	 */
881 	if (blk_do_io_stat(req) && req->part &&
882 	    !(req->rq_flags & RQF_FLUSH_SEQ))
883 		__blk_account_io_done(req, now);
884 }
885 
886 static void __blk_account_io_start(struct request *rq)
887 {
888 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
889 	if (rq->bio && rq->bio->bi_bdev)
890 		rq->part = rq->bio->bi_bdev;
891 	else if (rq->q->disk)
892 		rq->part = rq->q->disk->part0;
893 
894 	part_stat_lock();
895 	update_io_ticks(rq->part, jiffies, false);
896 	part_stat_unlock();
897 }
898 
899 static inline void blk_account_io_start(struct request *req)
900 {
901 	if (blk_do_io_stat(req))
902 		__blk_account_io_start(req);
903 }
904 
905 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
906 {
907 	if (rq->rq_flags & RQF_STATS) {
908 		blk_mq_poll_stats_start(rq->q);
909 		blk_stat_add(rq, now);
910 	}
911 
912 	blk_mq_sched_completed_request(rq, now);
913 	blk_account_io_done(rq, now);
914 }
915 
916 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
917 {
918 	if (blk_mq_need_time_stamp(rq))
919 		__blk_mq_end_request_acct(rq, ktime_get_ns());
920 
921 	if (rq->end_io) {
922 		rq_qos_done(rq->q, rq);
923 		rq->end_io(rq, error);
924 	} else {
925 		blk_mq_free_request(rq);
926 	}
927 }
928 EXPORT_SYMBOL(__blk_mq_end_request);
929 
930 void blk_mq_end_request(struct request *rq, blk_status_t error)
931 {
932 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
933 		BUG();
934 	__blk_mq_end_request(rq, error);
935 }
936 EXPORT_SYMBOL(blk_mq_end_request);
937 
938 #define TAG_COMP_BATCH		32
939 
940 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
941 					  int *tag_array, int nr_tags)
942 {
943 	struct request_queue *q = hctx->queue;
944 
945 	/*
946 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
947 	 * update hctx->nr_active in batch
948 	 */
949 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
950 		__blk_mq_sub_active_requests(hctx, nr_tags);
951 
952 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
953 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
954 }
955 
956 void blk_mq_end_request_batch(struct io_comp_batch *iob)
957 {
958 	int tags[TAG_COMP_BATCH], nr_tags = 0;
959 	struct blk_mq_hw_ctx *cur_hctx = NULL;
960 	struct request *rq;
961 	u64 now = 0;
962 
963 	if (iob->need_ts)
964 		now = ktime_get_ns();
965 
966 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
967 		prefetch(rq->bio);
968 		prefetch(rq->rq_next);
969 
970 		blk_complete_request(rq);
971 		if (iob->need_ts)
972 			__blk_mq_end_request_acct(rq, now);
973 
974 		rq_qos_done(rq->q, rq);
975 
976 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
977 		if (!req_ref_put_and_test(rq))
978 			continue;
979 
980 		blk_crypto_free_request(rq);
981 		blk_pm_mark_last_busy(rq);
982 
983 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
984 			if (cur_hctx)
985 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
986 			nr_tags = 0;
987 			cur_hctx = rq->mq_hctx;
988 		}
989 		tags[nr_tags++] = rq->tag;
990 	}
991 
992 	if (nr_tags)
993 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
994 }
995 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
996 
997 static void blk_complete_reqs(struct llist_head *list)
998 {
999 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1000 	struct request *rq, *next;
1001 
1002 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1003 		rq->q->mq_ops->complete(rq);
1004 }
1005 
1006 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1007 {
1008 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1009 }
1010 
1011 static int blk_softirq_cpu_dead(unsigned int cpu)
1012 {
1013 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1014 	return 0;
1015 }
1016 
1017 static void __blk_mq_complete_request_remote(void *data)
1018 {
1019 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1020 }
1021 
1022 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1023 {
1024 	int cpu = raw_smp_processor_id();
1025 
1026 	if (!IS_ENABLED(CONFIG_SMP) ||
1027 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1028 		return false;
1029 	/*
1030 	 * With force threaded interrupts enabled, raising softirq from an SMP
1031 	 * function call will always result in waking the ksoftirqd thread.
1032 	 * This is probably worse than completing the request on a different
1033 	 * cache domain.
1034 	 */
1035 	if (force_irqthreads())
1036 		return false;
1037 
1038 	/* same CPU or cache domain?  Complete locally */
1039 	if (cpu == rq->mq_ctx->cpu ||
1040 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1041 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1042 		return false;
1043 
1044 	/* don't try to IPI to an offline CPU */
1045 	return cpu_online(rq->mq_ctx->cpu);
1046 }
1047 
1048 static void blk_mq_complete_send_ipi(struct request *rq)
1049 {
1050 	struct llist_head *list;
1051 	unsigned int cpu;
1052 
1053 	cpu = rq->mq_ctx->cpu;
1054 	list = &per_cpu(blk_cpu_done, cpu);
1055 	if (llist_add(&rq->ipi_list, list)) {
1056 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1057 		smp_call_function_single_async(cpu, &rq->csd);
1058 	}
1059 }
1060 
1061 static void blk_mq_raise_softirq(struct request *rq)
1062 {
1063 	struct llist_head *list;
1064 
1065 	preempt_disable();
1066 	list = this_cpu_ptr(&blk_cpu_done);
1067 	if (llist_add(&rq->ipi_list, list))
1068 		raise_softirq(BLOCK_SOFTIRQ);
1069 	preempt_enable();
1070 }
1071 
1072 bool blk_mq_complete_request_remote(struct request *rq)
1073 {
1074 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1075 
1076 	/*
1077 	 * For a polled request, always complete locallly, it's pointless
1078 	 * to redirect the completion.
1079 	 */
1080 	if (rq->cmd_flags & REQ_POLLED)
1081 		return false;
1082 
1083 	if (blk_mq_complete_need_ipi(rq)) {
1084 		blk_mq_complete_send_ipi(rq);
1085 		return true;
1086 	}
1087 
1088 	if (rq->q->nr_hw_queues == 1) {
1089 		blk_mq_raise_softirq(rq);
1090 		return true;
1091 	}
1092 	return false;
1093 }
1094 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1095 
1096 /**
1097  * blk_mq_complete_request - end I/O on a request
1098  * @rq:		the request being processed
1099  *
1100  * Description:
1101  *	Complete a request by scheduling the ->complete_rq operation.
1102  **/
1103 void blk_mq_complete_request(struct request *rq)
1104 {
1105 	if (!blk_mq_complete_request_remote(rq))
1106 		rq->q->mq_ops->complete(rq);
1107 }
1108 EXPORT_SYMBOL(blk_mq_complete_request);
1109 
1110 /**
1111  * blk_mq_start_request - Start processing a request
1112  * @rq: Pointer to request to be started
1113  *
1114  * Function used by device drivers to notify the block layer that a request
1115  * is going to be processed now, so blk layer can do proper initializations
1116  * such as starting the timeout timer.
1117  */
1118 void blk_mq_start_request(struct request *rq)
1119 {
1120 	struct request_queue *q = rq->q;
1121 
1122 	trace_block_rq_issue(rq);
1123 
1124 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1125 		u64 start_time;
1126 #ifdef CONFIG_BLK_CGROUP
1127 		if (rq->bio)
1128 			start_time = bio_issue_time(&rq->bio->bi_issue);
1129 		else
1130 #endif
1131 			start_time = ktime_get_ns();
1132 		rq->io_start_time_ns = start_time;
1133 		rq->stats_sectors = blk_rq_sectors(rq);
1134 		rq->rq_flags |= RQF_STATS;
1135 		rq_qos_issue(q, rq);
1136 	}
1137 
1138 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1139 
1140 	blk_add_timer(rq);
1141 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1142 
1143 #ifdef CONFIG_BLK_DEV_INTEGRITY
1144 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1145 		q->integrity.profile->prepare_fn(rq);
1146 #endif
1147 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1148 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1149 }
1150 EXPORT_SYMBOL(blk_mq_start_request);
1151 
1152 /**
1153  * blk_end_sync_rq - executes a completion event on a request
1154  * @rq: request to complete
1155  * @error: end I/O status of the request
1156  */
1157 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1158 {
1159 	struct completion *waiting = rq->end_io_data;
1160 
1161 	rq->end_io_data = (void *)(uintptr_t)error;
1162 
1163 	/*
1164 	 * complete last, if this is a stack request the process (and thus
1165 	 * the rq pointer) could be invalid right after this complete()
1166 	 */
1167 	complete(waiting);
1168 }
1169 
1170 /**
1171  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1172  * @rq:		request to insert
1173  * @at_head:    insert request at head or tail of queue
1174  * @done:	I/O completion handler
1175  *
1176  * Description:
1177  *    Insert a fully prepared request at the back of the I/O scheduler queue
1178  *    for execution.  Don't wait for completion.
1179  *
1180  * Note:
1181  *    This function will invoke @done directly if the queue is dead.
1182  */
1183 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1184 {
1185 	WARN_ON(irqs_disabled());
1186 	WARN_ON(!blk_rq_is_passthrough(rq));
1187 
1188 	rq->end_io = done;
1189 
1190 	blk_account_io_start(rq);
1191 
1192 	/*
1193 	 * don't check dying flag for MQ because the request won't
1194 	 * be reused after dying flag is set
1195 	 */
1196 	blk_mq_sched_insert_request(rq, at_head, true, false);
1197 }
1198 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1199 
1200 static bool blk_rq_is_poll(struct request *rq)
1201 {
1202 	if (!rq->mq_hctx)
1203 		return false;
1204 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1205 		return false;
1206 	if (WARN_ON_ONCE(!rq->bio))
1207 		return false;
1208 	return true;
1209 }
1210 
1211 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1212 {
1213 	do {
1214 		bio_poll(rq->bio, NULL, 0);
1215 		cond_resched();
1216 	} while (!completion_done(wait));
1217 }
1218 
1219 /**
1220  * blk_execute_rq - insert a request into queue for execution
1221  * @rq:		request to insert
1222  * @at_head:    insert request at head or tail of queue
1223  *
1224  * Description:
1225  *    Insert a fully prepared request at the back of the I/O scheduler queue
1226  *    for execution and wait for completion.
1227  * Return: The blk_status_t result provided to blk_mq_end_request().
1228  */
1229 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1230 {
1231 	DECLARE_COMPLETION_ONSTACK(wait);
1232 	unsigned long hang_check;
1233 
1234 	rq->end_io_data = &wait;
1235 	blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1236 
1237 	/* Prevent hang_check timer from firing at us during very long I/O */
1238 	hang_check = sysctl_hung_task_timeout_secs;
1239 
1240 	if (blk_rq_is_poll(rq))
1241 		blk_rq_poll_completion(rq, &wait);
1242 	else if (hang_check)
1243 		while (!wait_for_completion_io_timeout(&wait,
1244 				hang_check * (HZ/2)))
1245 			;
1246 	else
1247 		wait_for_completion_io(&wait);
1248 
1249 	return (blk_status_t)(uintptr_t)rq->end_io_data;
1250 }
1251 EXPORT_SYMBOL(blk_execute_rq);
1252 
1253 static void __blk_mq_requeue_request(struct request *rq)
1254 {
1255 	struct request_queue *q = rq->q;
1256 
1257 	blk_mq_put_driver_tag(rq);
1258 
1259 	trace_block_rq_requeue(rq);
1260 	rq_qos_requeue(q, rq);
1261 
1262 	if (blk_mq_request_started(rq)) {
1263 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1264 		rq->rq_flags &= ~RQF_TIMED_OUT;
1265 	}
1266 }
1267 
1268 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1269 {
1270 	__blk_mq_requeue_request(rq);
1271 
1272 	/* this request will be re-inserted to io scheduler queue */
1273 	blk_mq_sched_requeue_request(rq);
1274 
1275 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1276 }
1277 EXPORT_SYMBOL(blk_mq_requeue_request);
1278 
1279 static void blk_mq_requeue_work(struct work_struct *work)
1280 {
1281 	struct request_queue *q =
1282 		container_of(work, struct request_queue, requeue_work.work);
1283 	LIST_HEAD(rq_list);
1284 	struct request *rq, *next;
1285 
1286 	spin_lock_irq(&q->requeue_lock);
1287 	list_splice_init(&q->requeue_list, &rq_list);
1288 	spin_unlock_irq(&q->requeue_lock);
1289 
1290 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1291 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1292 			continue;
1293 
1294 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1295 		list_del_init(&rq->queuelist);
1296 		/*
1297 		 * If RQF_DONTPREP, rq has contained some driver specific
1298 		 * data, so insert it to hctx dispatch list to avoid any
1299 		 * merge.
1300 		 */
1301 		if (rq->rq_flags & RQF_DONTPREP)
1302 			blk_mq_request_bypass_insert(rq, false, false);
1303 		else
1304 			blk_mq_sched_insert_request(rq, true, false, false);
1305 	}
1306 
1307 	while (!list_empty(&rq_list)) {
1308 		rq = list_entry(rq_list.next, struct request, queuelist);
1309 		list_del_init(&rq->queuelist);
1310 		blk_mq_sched_insert_request(rq, false, false, false);
1311 	}
1312 
1313 	blk_mq_run_hw_queues(q, false);
1314 }
1315 
1316 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1317 				bool kick_requeue_list)
1318 {
1319 	struct request_queue *q = rq->q;
1320 	unsigned long flags;
1321 
1322 	/*
1323 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1324 	 * request head insertion from the workqueue.
1325 	 */
1326 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1327 
1328 	spin_lock_irqsave(&q->requeue_lock, flags);
1329 	if (at_head) {
1330 		rq->rq_flags |= RQF_SOFTBARRIER;
1331 		list_add(&rq->queuelist, &q->requeue_list);
1332 	} else {
1333 		list_add_tail(&rq->queuelist, &q->requeue_list);
1334 	}
1335 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1336 
1337 	if (kick_requeue_list)
1338 		blk_mq_kick_requeue_list(q);
1339 }
1340 
1341 void blk_mq_kick_requeue_list(struct request_queue *q)
1342 {
1343 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1344 }
1345 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1346 
1347 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1348 				    unsigned long msecs)
1349 {
1350 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1351 				    msecs_to_jiffies(msecs));
1352 }
1353 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1354 
1355 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1356 			       bool reserved)
1357 {
1358 	/*
1359 	 * If we find a request that isn't idle we know the queue is busy
1360 	 * as it's checked in the iter.
1361 	 * Return false to stop the iteration.
1362 	 */
1363 	if (blk_mq_request_started(rq)) {
1364 		bool *busy = priv;
1365 
1366 		*busy = true;
1367 		return false;
1368 	}
1369 
1370 	return true;
1371 }
1372 
1373 bool blk_mq_queue_inflight(struct request_queue *q)
1374 {
1375 	bool busy = false;
1376 
1377 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1378 	return busy;
1379 }
1380 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1381 
1382 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1383 {
1384 	req->rq_flags |= RQF_TIMED_OUT;
1385 	if (req->q->mq_ops->timeout) {
1386 		enum blk_eh_timer_return ret;
1387 
1388 		ret = req->q->mq_ops->timeout(req, reserved);
1389 		if (ret == BLK_EH_DONE)
1390 			return;
1391 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1392 	}
1393 
1394 	blk_add_timer(req);
1395 }
1396 
1397 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1398 {
1399 	unsigned long deadline;
1400 
1401 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1402 		return false;
1403 	if (rq->rq_flags & RQF_TIMED_OUT)
1404 		return false;
1405 
1406 	deadline = READ_ONCE(rq->deadline);
1407 	if (time_after_eq(jiffies, deadline))
1408 		return true;
1409 
1410 	if (*next == 0)
1411 		*next = deadline;
1412 	else if (time_after(*next, deadline))
1413 		*next = deadline;
1414 	return false;
1415 }
1416 
1417 void blk_mq_put_rq_ref(struct request *rq)
1418 {
1419 	if (is_flush_rq(rq))
1420 		rq->end_io(rq, 0);
1421 	else if (req_ref_put_and_test(rq))
1422 		__blk_mq_free_request(rq);
1423 }
1424 
1425 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1426 {
1427 	unsigned long *next = priv;
1428 
1429 	/*
1430 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1431 	 * be reallocated underneath the timeout handler's processing, then
1432 	 * the expire check is reliable. If the request is not expired, then
1433 	 * it was completed and reallocated as a new request after returning
1434 	 * from blk_mq_check_expired().
1435 	 */
1436 	if (blk_mq_req_expired(rq, next))
1437 		blk_mq_rq_timed_out(rq, reserved);
1438 	return true;
1439 }
1440 
1441 static void blk_mq_timeout_work(struct work_struct *work)
1442 {
1443 	struct request_queue *q =
1444 		container_of(work, struct request_queue, timeout_work);
1445 	unsigned long next = 0;
1446 	struct blk_mq_hw_ctx *hctx;
1447 	int i;
1448 
1449 	/* A deadlock might occur if a request is stuck requiring a
1450 	 * timeout at the same time a queue freeze is waiting
1451 	 * completion, since the timeout code would not be able to
1452 	 * acquire the queue reference here.
1453 	 *
1454 	 * That's why we don't use blk_queue_enter here; instead, we use
1455 	 * percpu_ref_tryget directly, because we need to be able to
1456 	 * obtain a reference even in the short window between the queue
1457 	 * starting to freeze, by dropping the first reference in
1458 	 * blk_freeze_queue_start, and the moment the last request is
1459 	 * consumed, marked by the instant q_usage_counter reaches
1460 	 * zero.
1461 	 */
1462 	if (!percpu_ref_tryget(&q->q_usage_counter))
1463 		return;
1464 
1465 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1466 
1467 	if (next != 0) {
1468 		mod_timer(&q->timeout, next);
1469 	} else {
1470 		/*
1471 		 * Request timeouts are handled as a forward rolling timer. If
1472 		 * we end up here it means that no requests are pending and
1473 		 * also that no request has been pending for a while. Mark
1474 		 * each hctx as idle.
1475 		 */
1476 		queue_for_each_hw_ctx(q, hctx, i) {
1477 			/* the hctx may be unmapped, so check it here */
1478 			if (blk_mq_hw_queue_mapped(hctx))
1479 				blk_mq_tag_idle(hctx);
1480 		}
1481 	}
1482 	blk_queue_exit(q);
1483 }
1484 
1485 struct flush_busy_ctx_data {
1486 	struct blk_mq_hw_ctx *hctx;
1487 	struct list_head *list;
1488 };
1489 
1490 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1491 {
1492 	struct flush_busy_ctx_data *flush_data = data;
1493 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1494 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1495 	enum hctx_type type = hctx->type;
1496 
1497 	spin_lock(&ctx->lock);
1498 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1499 	sbitmap_clear_bit(sb, bitnr);
1500 	spin_unlock(&ctx->lock);
1501 	return true;
1502 }
1503 
1504 /*
1505  * Process software queues that have been marked busy, splicing them
1506  * to the for-dispatch
1507  */
1508 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1509 {
1510 	struct flush_busy_ctx_data data = {
1511 		.hctx = hctx,
1512 		.list = list,
1513 	};
1514 
1515 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1516 }
1517 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1518 
1519 struct dispatch_rq_data {
1520 	struct blk_mq_hw_ctx *hctx;
1521 	struct request *rq;
1522 };
1523 
1524 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1525 		void *data)
1526 {
1527 	struct dispatch_rq_data *dispatch_data = data;
1528 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1529 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1530 	enum hctx_type type = hctx->type;
1531 
1532 	spin_lock(&ctx->lock);
1533 	if (!list_empty(&ctx->rq_lists[type])) {
1534 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1535 		list_del_init(&dispatch_data->rq->queuelist);
1536 		if (list_empty(&ctx->rq_lists[type]))
1537 			sbitmap_clear_bit(sb, bitnr);
1538 	}
1539 	spin_unlock(&ctx->lock);
1540 
1541 	return !dispatch_data->rq;
1542 }
1543 
1544 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1545 					struct blk_mq_ctx *start)
1546 {
1547 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1548 	struct dispatch_rq_data data = {
1549 		.hctx = hctx,
1550 		.rq   = NULL,
1551 	};
1552 
1553 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1554 			       dispatch_rq_from_ctx, &data);
1555 
1556 	return data.rq;
1557 }
1558 
1559 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1560 {
1561 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1562 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1563 	int tag;
1564 
1565 	blk_mq_tag_busy(rq->mq_hctx);
1566 
1567 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1568 		bt = &rq->mq_hctx->tags->breserved_tags;
1569 		tag_offset = 0;
1570 	} else {
1571 		if (!hctx_may_queue(rq->mq_hctx, bt))
1572 			return false;
1573 	}
1574 
1575 	tag = __sbitmap_queue_get(bt);
1576 	if (tag == BLK_MQ_NO_TAG)
1577 		return false;
1578 
1579 	rq->tag = tag + tag_offset;
1580 	return true;
1581 }
1582 
1583 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1584 {
1585 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1586 		return false;
1587 
1588 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1589 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1590 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1591 		__blk_mq_inc_active_requests(hctx);
1592 	}
1593 	hctx->tags->rqs[rq->tag] = rq;
1594 	return true;
1595 }
1596 
1597 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1598 				int flags, void *key)
1599 {
1600 	struct blk_mq_hw_ctx *hctx;
1601 
1602 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1603 
1604 	spin_lock(&hctx->dispatch_wait_lock);
1605 	if (!list_empty(&wait->entry)) {
1606 		struct sbitmap_queue *sbq;
1607 
1608 		list_del_init(&wait->entry);
1609 		sbq = &hctx->tags->bitmap_tags;
1610 		atomic_dec(&sbq->ws_active);
1611 	}
1612 	spin_unlock(&hctx->dispatch_wait_lock);
1613 
1614 	blk_mq_run_hw_queue(hctx, true);
1615 	return 1;
1616 }
1617 
1618 /*
1619  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1620  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1621  * restart. For both cases, take care to check the condition again after
1622  * marking us as waiting.
1623  */
1624 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1625 				 struct request *rq)
1626 {
1627 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1628 	struct wait_queue_head *wq;
1629 	wait_queue_entry_t *wait;
1630 	bool ret;
1631 
1632 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1633 		blk_mq_sched_mark_restart_hctx(hctx);
1634 
1635 		/*
1636 		 * It's possible that a tag was freed in the window between the
1637 		 * allocation failure and adding the hardware queue to the wait
1638 		 * queue.
1639 		 *
1640 		 * Don't clear RESTART here, someone else could have set it.
1641 		 * At most this will cost an extra queue run.
1642 		 */
1643 		return blk_mq_get_driver_tag(rq);
1644 	}
1645 
1646 	wait = &hctx->dispatch_wait;
1647 	if (!list_empty_careful(&wait->entry))
1648 		return false;
1649 
1650 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1651 
1652 	spin_lock_irq(&wq->lock);
1653 	spin_lock(&hctx->dispatch_wait_lock);
1654 	if (!list_empty(&wait->entry)) {
1655 		spin_unlock(&hctx->dispatch_wait_lock);
1656 		spin_unlock_irq(&wq->lock);
1657 		return false;
1658 	}
1659 
1660 	atomic_inc(&sbq->ws_active);
1661 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1662 	__add_wait_queue(wq, wait);
1663 
1664 	/*
1665 	 * It's possible that a tag was freed in the window between the
1666 	 * allocation failure and adding the hardware queue to the wait
1667 	 * queue.
1668 	 */
1669 	ret = blk_mq_get_driver_tag(rq);
1670 	if (!ret) {
1671 		spin_unlock(&hctx->dispatch_wait_lock);
1672 		spin_unlock_irq(&wq->lock);
1673 		return false;
1674 	}
1675 
1676 	/*
1677 	 * We got a tag, remove ourselves from the wait queue to ensure
1678 	 * someone else gets the wakeup.
1679 	 */
1680 	list_del_init(&wait->entry);
1681 	atomic_dec(&sbq->ws_active);
1682 	spin_unlock(&hctx->dispatch_wait_lock);
1683 	spin_unlock_irq(&wq->lock);
1684 
1685 	return true;
1686 }
1687 
1688 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1689 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1690 /*
1691  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1692  * - EWMA is one simple way to compute running average value
1693  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1694  * - take 4 as factor for avoiding to get too small(0) result, and this
1695  *   factor doesn't matter because EWMA decreases exponentially
1696  */
1697 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1698 {
1699 	unsigned int ewma;
1700 
1701 	ewma = hctx->dispatch_busy;
1702 
1703 	if (!ewma && !busy)
1704 		return;
1705 
1706 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1707 	if (busy)
1708 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1709 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1710 
1711 	hctx->dispatch_busy = ewma;
1712 }
1713 
1714 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1715 
1716 static void blk_mq_handle_dev_resource(struct request *rq,
1717 				       struct list_head *list)
1718 {
1719 	struct request *next =
1720 		list_first_entry_or_null(list, struct request, queuelist);
1721 
1722 	/*
1723 	 * If an I/O scheduler has been configured and we got a driver tag for
1724 	 * the next request already, free it.
1725 	 */
1726 	if (next)
1727 		blk_mq_put_driver_tag(next);
1728 
1729 	list_add(&rq->queuelist, list);
1730 	__blk_mq_requeue_request(rq);
1731 }
1732 
1733 static void blk_mq_handle_zone_resource(struct request *rq,
1734 					struct list_head *zone_list)
1735 {
1736 	/*
1737 	 * If we end up here it is because we cannot dispatch a request to a
1738 	 * specific zone due to LLD level zone-write locking or other zone
1739 	 * related resource not being available. In this case, set the request
1740 	 * aside in zone_list for retrying it later.
1741 	 */
1742 	list_add(&rq->queuelist, zone_list);
1743 	__blk_mq_requeue_request(rq);
1744 }
1745 
1746 enum prep_dispatch {
1747 	PREP_DISPATCH_OK,
1748 	PREP_DISPATCH_NO_TAG,
1749 	PREP_DISPATCH_NO_BUDGET,
1750 };
1751 
1752 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1753 						  bool need_budget)
1754 {
1755 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1756 	int budget_token = -1;
1757 
1758 	if (need_budget) {
1759 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1760 		if (budget_token < 0) {
1761 			blk_mq_put_driver_tag(rq);
1762 			return PREP_DISPATCH_NO_BUDGET;
1763 		}
1764 		blk_mq_set_rq_budget_token(rq, budget_token);
1765 	}
1766 
1767 	if (!blk_mq_get_driver_tag(rq)) {
1768 		/*
1769 		 * The initial allocation attempt failed, so we need to
1770 		 * rerun the hardware queue when a tag is freed. The
1771 		 * waitqueue takes care of that. If the queue is run
1772 		 * before we add this entry back on the dispatch list,
1773 		 * we'll re-run it below.
1774 		 */
1775 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1776 			/*
1777 			 * All budgets not got from this function will be put
1778 			 * together during handling partial dispatch
1779 			 */
1780 			if (need_budget)
1781 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1782 			return PREP_DISPATCH_NO_TAG;
1783 		}
1784 	}
1785 
1786 	return PREP_DISPATCH_OK;
1787 }
1788 
1789 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1790 static void blk_mq_release_budgets(struct request_queue *q,
1791 		struct list_head *list)
1792 {
1793 	struct request *rq;
1794 
1795 	list_for_each_entry(rq, list, queuelist) {
1796 		int budget_token = blk_mq_get_rq_budget_token(rq);
1797 
1798 		if (budget_token >= 0)
1799 			blk_mq_put_dispatch_budget(q, budget_token);
1800 	}
1801 }
1802 
1803 /*
1804  * Returns true if we did some work AND can potentially do more.
1805  */
1806 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1807 			     unsigned int nr_budgets)
1808 {
1809 	enum prep_dispatch prep;
1810 	struct request_queue *q = hctx->queue;
1811 	struct request *rq, *nxt;
1812 	int errors, queued;
1813 	blk_status_t ret = BLK_STS_OK;
1814 	LIST_HEAD(zone_list);
1815 	bool needs_resource = false;
1816 
1817 	if (list_empty(list))
1818 		return false;
1819 
1820 	/*
1821 	 * Now process all the entries, sending them to the driver.
1822 	 */
1823 	errors = queued = 0;
1824 	do {
1825 		struct blk_mq_queue_data bd;
1826 
1827 		rq = list_first_entry(list, struct request, queuelist);
1828 
1829 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1830 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1831 		if (prep != PREP_DISPATCH_OK)
1832 			break;
1833 
1834 		list_del_init(&rq->queuelist);
1835 
1836 		bd.rq = rq;
1837 
1838 		/*
1839 		 * Flag last if we have no more requests, or if we have more
1840 		 * but can't assign a driver tag to it.
1841 		 */
1842 		if (list_empty(list))
1843 			bd.last = true;
1844 		else {
1845 			nxt = list_first_entry(list, struct request, queuelist);
1846 			bd.last = !blk_mq_get_driver_tag(nxt);
1847 		}
1848 
1849 		/*
1850 		 * once the request is queued to lld, no need to cover the
1851 		 * budget any more
1852 		 */
1853 		if (nr_budgets)
1854 			nr_budgets--;
1855 		ret = q->mq_ops->queue_rq(hctx, &bd);
1856 		switch (ret) {
1857 		case BLK_STS_OK:
1858 			queued++;
1859 			break;
1860 		case BLK_STS_RESOURCE:
1861 			needs_resource = true;
1862 			fallthrough;
1863 		case BLK_STS_DEV_RESOURCE:
1864 			blk_mq_handle_dev_resource(rq, list);
1865 			goto out;
1866 		case BLK_STS_ZONE_RESOURCE:
1867 			/*
1868 			 * Move the request to zone_list and keep going through
1869 			 * the dispatch list to find more requests the drive can
1870 			 * accept.
1871 			 */
1872 			blk_mq_handle_zone_resource(rq, &zone_list);
1873 			needs_resource = true;
1874 			break;
1875 		default:
1876 			errors++;
1877 			blk_mq_end_request(rq, ret);
1878 		}
1879 	} while (!list_empty(list));
1880 out:
1881 	if (!list_empty(&zone_list))
1882 		list_splice_tail_init(&zone_list, list);
1883 
1884 	/* If we didn't flush the entire list, we could have told the driver
1885 	 * there was more coming, but that turned out to be a lie.
1886 	 */
1887 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1888 		q->mq_ops->commit_rqs(hctx);
1889 	/*
1890 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1891 	 * that is where we will continue on next queue run.
1892 	 */
1893 	if (!list_empty(list)) {
1894 		bool needs_restart;
1895 		/* For non-shared tags, the RESTART check will suffice */
1896 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1897 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1898 
1899 		if (nr_budgets)
1900 			blk_mq_release_budgets(q, list);
1901 
1902 		spin_lock(&hctx->lock);
1903 		list_splice_tail_init(list, &hctx->dispatch);
1904 		spin_unlock(&hctx->lock);
1905 
1906 		/*
1907 		 * Order adding requests to hctx->dispatch and checking
1908 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1909 		 * in blk_mq_sched_restart(). Avoid restart code path to
1910 		 * miss the new added requests to hctx->dispatch, meantime
1911 		 * SCHED_RESTART is observed here.
1912 		 */
1913 		smp_mb();
1914 
1915 		/*
1916 		 * If SCHED_RESTART was set by the caller of this function and
1917 		 * it is no longer set that means that it was cleared by another
1918 		 * thread and hence that a queue rerun is needed.
1919 		 *
1920 		 * If 'no_tag' is set, that means that we failed getting
1921 		 * a driver tag with an I/O scheduler attached. If our dispatch
1922 		 * waitqueue is no longer active, ensure that we run the queue
1923 		 * AFTER adding our entries back to the list.
1924 		 *
1925 		 * If no I/O scheduler has been configured it is possible that
1926 		 * the hardware queue got stopped and restarted before requests
1927 		 * were pushed back onto the dispatch list. Rerun the queue to
1928 		 * avoid starvation. Notes:
1929 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1930 		 *   been stopped before rerunning a queue.
1931 		 * - Some but not all block drivers stop a queue before
1932 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1933 		 *   and dm-rq.
1934 		 *
1935 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1936 		 * bit is set, run queue after a delay to avoid IO stalls
1937 		 * that could otherwise occur if the queue is idle.  We'll do
1938 		 * similar if we couldn't get budget or couldn't lock a zone
1939 		 * and SCHED_RESTART is set.
1940 		 */
1941 		needs_restart = blk_mq_sched_needs_restart(hctx);
1942 		if (prep == PREP_DISPATCH_NO_BUDGET)
1943 			needs_resource = true;
1944 		if (!needs_restart ||
1945 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1946 			blk_mq_run_hw_queue(hctx, true);
1947 		else if (needs_restart && needs_resource)
1948 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1949 
1950 		blk_mq_update_dispatch_busy(hctx, true);
1951 		return false;
1952 	} else
1953 		blk_mq_update_dispatch_busy(hctx, false);
1954 
1955 	return (queued + errors) != 0;
1956 }
1957 
1958 /**
1959  * __blk_mq_run_hw_queue - Run a hardware queue.
1960  * @hctx: Pointer to the hardware queue to run.
1961  *
1962  * Send pending requests to the hardware.
1963  */
1964 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1965 {
1966 	/*
1967 	 * We can't run the queue inline with ints disabled. Ensure that
1968 	 * we catch bad users of this early.
1969 	 */
1970 	WARN_ON_ONCE(in_interrupt());
1971 
1972 	blk_mq_run_dispatch_ops(hctx->queue,
1973 			blk_mq_sched_dispatch_requests(hctx));
1974 }
1975 
1976 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1977 {
1978 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1979 
1980 	if (cpu >= nr_cpu_ids)
1981 		cpu = cpumask_first(hctx->cpumask);
1982 	return cpu;
1983 }
1984 
1985 /*
1986  * It'd be great if the workqueue API had a way to pass
1987  * in a mask and had some smarts for more clever placement.
1988  * For now we just round-robin here, switching for every
1989  * BLK_MQ_CPU_WORK_BATCH queued items.
1990  */
1991 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1992 {
1993 	bool tried = false;
1994 	int next_cpu = hctx->next_cpu;
1995 
1996 	if (hctx->queue->nr_hw_queues == 1)
1997 		return WORK_CPU_UNBOUND;
1998 
1999 	if (--hctx->next_cpu_batch <= 0) {
2000 select_cpu:
2001 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2002 				cpu_online_mask);
2003 		if (next_cpu >= nr_cpu_ids)
2004 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2005 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2006 	}
2007 
2008 	/*
2009 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2010 	 * and it should only happen in the path of handling CPU DEAD.
2011 	 */
2012 	if (!cpu_online(next_cpu)) {
2013 		if (!tried) {
2014 			tried = true;
2015 			goto select_cpu;
2016 		}
2017 
2018 		/*
2019 		 * Make sure to re-select CPU next time once after CPUs
2020 		 * in hctx->cpumask become online again.
2021 		 */
2022 		hctx->next_cpu = next_cpu;
2023 		hctx->next_cpu_batch = 1;
2024 		return WORK_CPU_UNBOUND;
2025 	}
2026 
2027 	hctx->next_cpu = next_cpu;
2028 	return next_cpu;
2029 }
2030 
2031 /**
2032  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2033  * @hctx: Pointer to the hardware queue to run.
2034  * @async: If we want to run the queue asynchronously.
2035  * @msecs: Milliseconds of delay to wait before running the queue.
2036  *
2037  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2038  * with a delay of @msecs.
2039  */
2040 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2041 					unsigned long msecs)
2042 {
2043 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2044 		return;
2045 
2046 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2047 		int cpu = get_cpu();
2048 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2049 			__blk_mq_run_hw_queue(hctx);
2050 			put_cpu();
2051 			return;
2052 		}
2053 
2054 		put_cpu();
2055 	}
2056 
2057 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2058 				    msecs_to_jiffies(msecs));
2059 }
2060 
2061 /**
2062  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2063  * @hctx: Pointer to the hardware queue to run.
2064  * @msecs: Milliseconds of delay to wait before running the queue.
2065  *
2066  * Run a hardware queue asynchronously with a delay of @msecs.
2067  */
2068 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2069 {
2070 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2071 }
2072 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2073 
2074 /**
2075  * blk_mq_run_hw_queue - Start to run a hardware queue.
2076  * @hctx: Pointer to the hardware queue to run.
2077  * @async: If we want to run the queue asynchronously.
2078  *
2079  * Check if the request queue is not in a quiesced state and if there are
2080  * pending requests to be sent. If this is true, run the queue to send requests
2081  * to hardware.
2082  */
2083 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2084 {
2085 	bool need_run;
2086 
2087 	/*
2088 	 * When queue is quiesced, we may be switching io scheduler, or
2089 	 * updating nr_hw_queues, or other things, and we can't run queue
2090 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2091 	 *
2092 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2093 	 * quiesced.
2094 	 */
2095 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2096 		need_run = !blk_queue_quiesced(hctx->queue) &&
2097 		blk_mq_hctx_has_pending(hctx));
2098 
2099 	if (need_run)
2100 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2101 }
2102 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2103 
2104 /*
2105  * Is the request queue handled by an IO scheduler that does not respect
2106  * hardware queues when dispatching?
2107  */
2108 static bool blk_mq_has_sqsched(struct request_queue *q)
2109 {
2110 	struct elevator_queue *e = q->elevator;
2111 
2112 	if (e && e->type->ops.dispatch_request &&
2113 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2114 		return true;
2115 	return false;
2116 }
2117 
2118 /*
2119  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2120  * scheduler.
2121  */
2122 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2123 {
2124 	struct blk_mq_hw_ctx *hctx;
2125 
2126 	/*
2127 	 * If the IO scheduler does not respect hardware queues when
2128 	 * dispatching, we just don't bother with multiple HW queues and
2129 	 * dispatch from hctx for the current CPU since running multiple queues
2130 	 * just causes lock contention inside the scheduler and pointless cache
2131 	 * bouncing.
2132 	 */
2133 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2134 				     raw_smp_processor_id());
2135 	if (!blk_mq_hctx_stopped(hctx))
2136 		return hctx;
2137 	return NULL;
2138 }
2139 
2140 /**
2141  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2142  * @q: Pointer to the request queue to run.
2143  * @async: If we want to run the queue asynchronously.
2144  */
2145 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2146 {
2147 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2148 	int i;
2149 
2150 	sq_hctx = NULL;
2151 	if (blk_mq_has_sqsched(q))
2152 		sq_hctx = blk_mq_get_sq_hctx(q);
2153 	queue_for_each_hw_ctx(q, hctx, i) {
2154 		if (blk_mq_hctx_stopped(hctx))
2155 			continue;
2156 		/*
2157 		 * Dispatch from this hctx either if there's no hctx preferred
2158 		 * by IO scheduler or if it has requests that bypass the
2159 		 * scheduler.
2160 		 */
2161 		if (!sq_hctx || sq_hctx == hctx ||
2162 		    !list_empty_careful(&hctx->dispatch))
2163 			blk_mq_run_hw_queue(hctx, async);
2164 	}
2165 }
2166 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2167 
2168 /**
2169  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2170  * @q: Pointer to the request queue to run.
2171  * @msecs: Milliseconds of delay to wait before running the queues.
2172  */
2173 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2174 {
2175 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2176 	int i;
2177 
2178 	sq_hctx = NULL;
2179 	if (blk_mq_has_sqsched(q))
2180 		sq_hctx = blk_mq_get_sq_hctx(q);
2181 	queue_for_each_hw_ctx(q, hctx, i) {
2182 		if (blk_mq_hctx_stopped(hctx))
2183 			continue;
2184 		/*
2185 		 * Dispatch from this hctx either if there's no hctx preferred
2186 		 * by IO scheduler or if it has requests that bypass the
2187 		 * scheduler.
2188 		 */
2189 		if (!sq_hctx || sq_hctx == hctx ||
2190 		    !list_empty_careful(&hctx->dispatch))
2191 			blk_mq_delay_run_hw_queue(hctx, msecs);
2192 	}
2193 }
2194 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2195 
2196 /**
2197  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2198  * @q: request queue.
2199  *
2200  * The caller is responsible for serializing this function against
2201  * blk_mq_{start,stop}_hw_queue().
2202  */
2203 bool blk_mq_queue_stopped(struct request_queue *q)
2204 {
2205 	struct blk_mq_hw_ctx *hctx;
2206 	int i;
2207 
2208 	queue_for_each_hw_ctx(q, hctx, i)
2209 		if (blk_mq_hctx_stopped(hctx))
2210 			return true;
2211 
2212 	return false;
2213 }
2214 EXPORT_SYMBOL(blk_mq_queue_stopped);
2215 
2216 /*
2217  * This function is often used for pausing .queue_rq() by driver when
2218  * there isn't enough resource or some conditions aren't satisfied, and
2219  * BLK_STS_RESOURCE is usually returned.
2220  *
2221  * We do not guarantee that dispatch can be drained or blocked
2222  * after blk_mq_stop_hw_queue() returns. Please use
2223  * blk_mq_quiesce_queue() for that requirement.
2224  */
2225 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2226 {
2227 	cancel_delayed_work(&hctx->run_work);
2228 
2229 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2230 }
2231 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2232 
2233 /*
2234  * This function is often used for pausing .queue_rq() by driver when
2235  * there isn't enough resource or some conditions aren't satisfied, and
2236  * BLK_STS_RESOURCE is usually returned.
2237  *
2238  * We do not guarantee that dispatch can be drained or blocked
2239  * after blk_mq_stop_hw_queues() returns. Please use
2240  * blk_mq_quiesce_queue() for that requirement.
2241  */
2242 void blk_mq_stop_hw_queues(struct request_queue *q)
2243 {
2244 	struct blk_mq_hw_ctx *hctx;
2245 	int i;
2246 
2247 	queue_for_each_hw_ctx(q, hctx, i)
2248 		blk_mq_stop_hw_queue(hctx);
2249 }
2250 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2251 
2252 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2253 {
2254 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2255 
2256 	blk_mq_run_hw_queue(hctx, false);
2257 }
2258 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2259 
2260 void blk_mq_start_hw_queues(struct request_queue *q)
2261 {
2262 	struct blk_mq_hw_ctx *hctx;
2263 	int i;
2264 
2265 	queue_for_each_hw_ctx(q, hctx, i)
2266 		blk_mq_start_hw_queue(hctx);
2267 }
2268 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2269 
2270 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2271 {
2272 	if (!blk_mq_hctx_stopped(hctx))
2273 		return;
2274 
2275 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2276 	blk_mq_run_hw_queue(hctx, async);
2277 }
2278 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2279 
2280 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2281 {
2282 	struct blk_mq_hw_ctx *hctx;
2283 	int i;
2284 
2285 	queue_for_each_hw_ctx(q, hctx, i)
2286 		blk_mq_start_stopped_hw_queue(hctx, async);
2287 }
2288 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2289 
2290 static void blk_mq_run_work_fn(struct work_struct *work)
2291 {
2292 	struct blk_mq_hw_ctx *hctx;
2293 
2294 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2295 
2296 	/*
2297 	 * If we are stopped, don't run the queue.
2298 	 */
2299 	if (blk_mq_hctx_stopped(hctx))
2300 		return;
2301 
2302 	__blk_mq_run_hw_queue(hctx);
2303 }
2304 
2305 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2306 					    struct request *rq,
2307 					    bool at_head)
2308 {
2309 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2310 	enum hctx_type type = hctx->type;
2311 
2312 	lockdep_assert_held(&ctx->lock);
2313 
2314 	trace_block_rq_insert(rq);
2315 
2316 	if (at_head)
2317 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2318 	else
2319 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2320 }
2321 
2322 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2323 			     bool at_head)
2324 {
2325 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2326 
2327 	lockdep_assert_held(&ctx->lock);
2328 
2329 	__blk_mq_insert_req_list(hctx, rq, at_head);
2330 	blk_mq_hctx_mark_pending(hctx, ctx);
2331 }
2332 
2333 /**
2334  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2335  * @rq: Pointer to request to be inserted.
2336  * @at_head: true if the request should be inserted at the head of the list.
2337  * @run_queue: If we should run the hardware queue after inserting the request.
2338  *
2339  * Should only be used carefully, when the caller knows we want to
2340  * bypass a potential IO scheduler on the target device.
2341  */
2342 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2343 				  bool run_queue)
2344 {
2345 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2346 
2347 	spin_lock(&hctx->lock);
2348 	if (at_head)
2349 		list_add(&rq->queuelist, &hctx->dispatch);
2350 	else
2351 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2352 	spin_unlock(&hctx->lock);
2353 
2354 	if (run_queue)
2355 		blk_mq_run_hw_queue(hctx, false);
2356 }
2357 
2358 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2359 			    struct list_head *list)
2360 
2361 {
2362 	struct request *rq;
2363 	enum hctx_type type = hctx->type;
2364 
2365 	/*
2366 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2367 	 * offline now
2368 	 */
2369 	list_for_each_entry(rq, list, queuelist) {
2370 		BUG_ON(rq->mq_ctx != ctx);
2371 		trace_block_rq_insert(rq);
2372 	}
2373 
2374 	spin_lock(&ctx->lock);
2375 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2376 	blk_mq_hctx_mark_pending(hctx, ctx);
2377 	spin_unlock(&ctx->lock);
2378 }
2379 
2380 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2381 			      bool from_schedule)
2382 {
2383 	if (hctx->queue->mq_ops->commit_rqs) {
2384 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2385 		hctx->queue->mq_ops->commit_rqs(hctx);
2386 	}
2387 	*queued = 0;
2388 }
2389 
2390 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2391 		unsigned int nr_segs)
2392 {
2393 	int err;
2394 
2395 	if (bio->bi_opf & REQ_RAHEAD)
2396 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2397 
2398 	rq->__sector = bio->bi_iter.bi_sector;
2399 	rq->write_hint = bio->bi_write_hint;
2400 	blk_rq_bio_prep(rq, bio, nr_segs);
2401 
2402 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2403 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2404 	WARN_ON_ONCE(err);
2405 
2406 	blk_account_io_start(rq);
2407 }
2408 
2409 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2410 					    struct request *rq, bool last)
2411 {
2412 	struct request_queue *q = rq->q;
2413 	struct blk_mq_queue_data bd = {
2414 		.rq = rq,
2415 		.last = last,
2416 	};
2417 	blk_status_t ret;
2418 
2419 	/*
2420 	 * For OK queue, we are done. For error, caller may kill it.
2421 	 * Any other error (busy), just add it to our list as we
2422 	 * previously would have done.
2423 	 */
2424 	ret = q->mq_ops->queue_rq(hctx, &bd);
2425 	switch (ret) {
2426 	case BLK_STS_OK:
2427 		blk_mq_update_dispatch_busy(hctx, false);
2428 		break;
2429 	case BLK_STS_RESOURCE:
2430 	case BLK_STS_DEV_RESOURCE:
2431 		blk_mq_update_dispatch_busy(hctx, true);
2432 		__blk_mq_requeue_request(rq);
2433 		break;
2434 	default:
2435 		blk_mq_update_dispatch_busy(hctx, false);
2436 		break;
2437 	}
2438 
2439 	return ret;
2440 }
2441 
2442 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2443 						struct request *rq,
2444 						bool bypass_insert, bool last)
2445 {
2446 	struct request_queue *q = rq->q;
2447 	bool run_queue = true;
2448 	int budget_token;
2449 
2450 	/*
2451 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2452 	 *
2453 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2454 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2455 	 * and avoid driver to try to dispatch again.
2456 	 */
2457 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2458 		run_queue = false;
2459 		bypass_insert = false;
2460 		goto insert;
2461 	}
2462 
2463 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2464 		goto insert;
2465 
2466 	budget_token = blk_mq_get_dispatch_budget(q);
2467 	if (budget_token < 0)
2468 		goto insert;
2469 
2470 	blk_mq_set_rq_budget_token(rq, budget_token);
2471 
2472 	if (!blk_mq_get_driver_tag(rq)) {
2473 		blk_mq_put_dispatch_budget(q, budget_token);
2474 		goto insert;
2475 	}
2476 
2477 	return __blk_mq_issue_directly(hctx, rq, last);
2478 insert:
2479 	if (bypass_insert)
2480 		return BLK_STS_RESOURCE;
2481 
2482 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2483 
2484 	return BLK_STS_OK;
2485 }
2486 
2487 /**
2488  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2489  * @hctx: Pointer of the associated hardware queue.
2490  * @rq: Pointer to request to be sent.
2491  *
2492  * If the device has enough resources to accept a new request now, send the
2493  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2494  * we can try send it another time in the future. Requests inserted at this
2495  * queue have higher priority.
2496  */
2497 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2498 		struct request *rq)
2499 {
2500 	blk_status_t ret =
2501 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2502 
2503 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2504 		blk_mq_request_bypass_insert(rq, false, true);
2505 	else if (ret != BLK_STS_OK)
2506 		blk_mq_end_request(rq, ret);
2507 }
2508 
2509 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2510 {
2511 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2512 }
2513 
2514 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2515 {
2516 	struct blk_mq_hw_ctx *hctx = NULL;
2517 	struct request *rq;
2518 	int queued = 0;
2519 	int errors = 0;
2520 
2521 	while ((rq = rq_list_pop(&plug->mq_list))) {
2522 		bool last = rq_list_empty(plug->mq_list);
2523 		blk_status_t ret;
2524 
2525 		if (hctx != rq->mq_hctx) {
2526 			if (hctx)
2527 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2528 			hctx = rq->mq_hctx;
2529 		}
2530 
2531 		ret = blk_mq_request_issue_directly(rq, last);
2532 		switch (ret) {
2533 		case BLK_STS_OK:
2534 			queued++;
2535 			break;
2536 		case BLK_STS_RESOURCE:
2537 		case BLK_STS_DEV_RESOURCE:
2538 			blk_mq_request_bypass_insert(rq, false, last);
2539 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2540 			return;
2541 		default:
2542 			blk_mq_end_request(rq, ret);
2543 			errors++;
2544 			break;
2545 		}
2546 	}
2547 
2548 	/*
2549 	 * If we didn't flush the entire list, we could have told the driver
2550 	 * there was more coming, but that turned out to be a lie.
2551 	 */
2552 	if (errors)
2553 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2554 }
2555 
2556 static void __blk_mq_flush_plug_list(struct request_queue *q,
2557 				     struct blk_plug *plug)
2558 {
2559 	if (blk_queue_quiesced(q))
2560 		return;
2561 	q->mq_ops->queue_rqs(&plug->mq_list);
2562 }
2563 
2564 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2565 {
2566 	struct blk_mq_hw_ctx *this_hctx;
2567 	struct blk_mq_ctx *this_ctx;
2568 	struct request *rq;
2569 	unsigned int depth;
2570 	LIST_HEAD(list);
2571 
2572 	if (rq_list_empty(plug->mq_list))
2573 		return;
2574 	plug->rq_count = 0;
2575 
2576 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2577 		struct request_queue *q;
2578 
2579 		rq = rq_list_peek(&plug->mq_list);
2580 		q = rq->q;
2581 
2582 		/*
2583 		 * Peek first request and see if we have a ->queue_rqs() hook.
2584 		 * If we do, we can dispatch the whole plug list in one go. We
2585 		 * already know at this point that all requests belong to the
2586 		 * same queue, caller must ensure that's the case.
2587 		 *
2588 		 * Since we pass off the full list to the driver at this point,
2589 		 * we do not increment the active request count for the queue.
2590 		 * Bypass shared tags for now because of that.
2591 		 */
2592 		if (q->mq_ops->queue_rqs &&
2593 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2594 			blk_mq_run_dispatch_ops(q,
2595 				__blk_mq_flush_plug_list(q, plug));
2596 			if (rq_list_empty(plug->mq_list))
2597 				return;
2598 		}
2599 
2600 		blk_mq_run_dispatch_ops(q,
2601 				blk_mq_plug_issue_direct(plug, false));
2602 		if (rq_list_empty(plug->mq_list))
2603 			return;
2604 	}
2605 
2606 	this_hctx = NULL;
2607 	this_ctx = NULL;
2608 	depth = 0;
2609 	do {
2610 		rq = rq_list_pop(&plug->mq_list);
2611 
2612 		if (!this_hctx) {
2613 			this_hctx = rq->mq_hctx;
2614 			this_ctx = rq->mq_ctx;
2615 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2616 			trace_block_unplug(this_hctx->queue, depth,
2617 						!from_schedule);
2618 			blk_mq_sched_insert_requests(this_hctx, this_ctx,
2619 						&list, from_schedule);
2620 			depth = 0;
2621 			this_hctx = rq->mq_hctx;
2622 			this_ctx = rq->mq_ctx;
2623 
2624 		}
2625 
2626 		list_add(&rq->queuelist, &list);
2627 		depth++;
2628 	} while (!rq_list_empty(plug->mq_list));
2629 
2630 	if (!list_empty(&list)) {
2631 		trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2632 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2633 						from_schedule);
2634 	}
2635 }
2636 
2637 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2638 		struct list_head *list)
2639 {
2640 	int queued = 0;
2641 	int errors = 0;
2642 
2643 	while (!list_empty(list)) {
2644 		blk_status_t ret;
2645 		struct request *rq = list_first_entry(list, struct request,
2646 				queuelist);
2647 
2648 		list_del_init(&rq->queuelist);
2649 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2650 		if (ret != BLK_STS_OK) {
2651 			if (ret == BLK_STS_RESOURCE ||
2652 					ret == BLK_STS_DEV_RESOURCE) {
2653 				blk_mq_request_bypass_insert(rq, false,
2654 							list_empty(list));
2655 				break;
2656 			}
2657 			blk_mq_end_request(rq, ret);
2658 			errors++;
2659 		} else
2660 			queued++;
2661 	}
2662 
2663 	/*
2664 	 * If we didn't flush the entire list, we could have told
2665 	 * the driver there was more coming, but that turned out to
2666 	 * be a lie.
2667 	 */
2668 	if ((!list_empty(list) || errors) &&
2669 	     hctx->queue->mq_ops->commit_rqs && queued)
2670 		hctx->queue->mq_ops->commit_rqs(hctx);
2671 }
2672 
2673 /*
2674  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2675  * queues. This is important for md arrays to benefit from merging
2676  * requests.
2677  */
2678 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2679 {
2680 	if (plug->multiple_queues)
2681 		return BLK_MAX_REQUEST_COUNT * 2;
2682 	return BLK_MAX_REQUEST_COUNT;
2683 }
2684 
2685 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2686 {
2687 	struct request *last = rq_list_peek(&plug->mq_list);
2688 
2689 	if (!plug->rq_count) {
2690 		trace_block_plug(rq->q);
2691 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2692 		   (!blk_queue_nomerges(rq->q) &&
2693 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2694 		blk_mq_flush_plug_list(plug, false);
2695 		trace_block_plug(rq->q);
2696 	}
2697 
2698 	if (!plug->multiple_queues && last && last->q != rq->q)
2699 		plug->multiple_queues = true;
2700 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2701 		plug->has_elevator = true;
2702 	rq->rq_next = NULL;
2703 	rq_list_add(&plug->mq_list, rq);
2704 	plug->rq_count++;
2705 }
2706 
2707 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2708 				     struct bio *bio, unsigned int nr_segs)
2709 {
2710 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2711 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2712 			return true;
2713 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2714 			return true;
2715 	}
2716 	return false;
2717 }
2718 
2719 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2720 					       struct blk_plug *plug,
2721 					       struct bio *bio,
2722 					       unsigned int nsegs)
2723 {
2724 	struct blk_mq_alloc_data data = {
2725 		.q		= q,
2726 		.nr_tags	= 1,
2727 		.cmd_flags	= bio->bi_opf,
2728 	};
2729 	struct request *rq;
2730 
2731 	if (unlikely(bio_queue_enter(bio)))
2732 		return NULL;
2733 
2734 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2735 		goto queue_exit;
2736 
2737 	rq_qos_throttle(q, bio);
2738 
2739 	if (plug) {
2740 		data.nr_tags = plug->nr_ios;
2741 		plug->nr_ios = 1;
2742 		data.cached_rq = &plug->cached_rq;
2743 	}
2744 
2745 	rq = __blk_mq_alloc_requests(&data);
2746 	if (rq)
2747 		return rq;
2748 	rq_qos_cleanup(q, bio);
2749 	if (bio->bi_opf & REQ_NOWAIT)
2750 		bio_wouldblock_error(bio);
2751 queue_exit:
2752 	blk_queue_exit(q);
2753 	return NULL;
2754 }
2755 
2756 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2757 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2758 {
2759 	struct request *rq;
2760 
2761 	if (!plug)
2762 		return NULL;
2763 	rq = rq_list_peek(&plug->cached_rq);
2764 	if (!rq || rq->q != q)
2765 		return NULL;
2766 
2767 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2768 		*bio = NULL;
2769 		return NULL;
2770 	}
2771 
2772 	rq_qos_throttle(q, *bio);
2773 
2774 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2775 		return NULL;
2776 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2777 		return NULL;
2778 
2779 	rq->cmd_flags = (*bio)->bi_opf;
2780 	plug->cached_rq = rq_list_next(rq);
2781 	INIT_LIST_HEAD(&rq->queuelist);
2782 	return rq;
2783 }
2784 
2785 /**
2786  * blk_mq_submit_bio - Create and send a request to block device.
2787  * @bio: Bio pointer.
2788  *
2789  * Builds up a request structure from @q and @bio and send to the device. The
2790  * request may not be queued directly to hardware if:
2791  * * This request can be merged with another one
2792  * * We want to place request at plug queue for possible future merging
2793  * * There is an IO scheduler active at this queue
2794  *
2795  * It will not queue the request if there is an error with the bio, or at the
2796  * request creation.
2797  */
2798 void blk_mq_submit_bio(struct bio *bio)
2799 {
2800 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2801 	struct blk_plug *plug = blk_mq_plug(q, bio);
2802 	const int is_sync = op_is_sync(bio->bi_opf);
2803 	struct request *rq;
2804 	unsigned int nr_segs = 1;
2805 	blk_status_t ret;
2806 
2807 	if (unlikely(!blk_crypto_bio_prep(&bio)))
2808 		return;
2809 
2810 	blk_queue_bounce(q, &bio);
2811 	if (blk_may_split(q, bio))
2812 		__blk_queue_split(q, &bio, &nr_segs);
2813 
2814 	if (!bio_integrity_prep(bio))
2815 		return;
2816 
2817 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2818 	if (!rq) {
2819 		if (!bio)
2820 			return;
2821 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2822 		if (unlikely(!rq))
2823 			return;
2824 	}
2825 
2826 	trace_block_getrq(bio);
2827 
2828 	rq_qos_track(q, rq, bio);
2829 
2830 	blk_mq_bio_to_request(rq, bio, nr_segs);
2831 
2832 	ret = blk_crypto_init_request(rq);
2833 	if (ret != BLK_STS_OK) {
2834 		bio->bi_status = ret;
2835 		bio_endio(bio);
2836 		blk_mq_free_request(rq);
2837 		return;
2838 	}
2839 
2840 	if (op_is_flush(bio->bi_opf)) {
2841 		blk_insert_flush(rq);
2842 		return;
2843 	}
2844 
2845 	if (plug)
2846 		blk_add_rq_to_plug(plug, rq);
2847 	else if ((rq->rq_flags & RQF_ELV) ||
2848 		 (rq->mq_hctx->dispatch_busy &&
2849 		  (q->nr_hw_queues == 1 || !is_sync)))
2850 		blk_mq_sched_insert_request(rq, false, true, true);
2851 	else
2852 		blk_mq_run_dispatch_ops(rq->q,
2853 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2854 }
2855 
2856 /**
2857  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2858  *                              for the new queue limits
2859  * @q:  the queue
2860  * @rq: the request being checked
2861  *
2862  * Description:
2863  *    @rq may have been made based on weaker limitations of upper-level queues
2864  *    in request stacking drivers, and it may violate the limitation of @q.
2865  *    Since the block layer and the underlying device driver trust @rq
2866  *    after it is inserted to @q, it should be checked against @q before
2867  *    the insertion using this generic function.
2868  *
2869  *    Request stacking drivers like request-based dm may change the queue
2870  *    limits when retrying requests on other queues. Those requests need
2871  *    to be checked against the new queue limits again during dispatch.
2872  */
2873 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
2874 				      struct request *rq)
2875 {
2876 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2877 
2878 	if (blk_rq_sectors(rq) > max_sectors) {
2879 		/*
2880 		 * SCSI device does not have a good way to return if
2881 		 * Write Same/Zero is actually supported. If a device rejects
2882 		 * a non-read/write command (discard, write same,etc.) the
2883 		 * low-level device driver will set the relevant queue limit to
2884 		 * 0 to prevent blk-lib from issuing more of the offending
2885 		 * operations. Commands queued prior to the queue limit being
2886 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2887 		 * errors being propagated to upper layers.
2888 		 */
2889 		if (max_sectors == 0)
2890 			return BLK_STS_NOTSUPP;
2891 
2892 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2893 			__func__, blk_rq_sectors(rq), max_sectors);
2894 		return BLK_STS_IOERR;
2895 	}
2896 
2897 	/*
2898 	 * The queue settings related to segment counting may differ from the
2899 	 * original queue.
2900 	 */
2901 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2902 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2903 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2904 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2905 		return BLK_STS_IOERR;
2906 	}
2907 
2908 	return BLK_STS_OK;
2909 }
2910 
2911 /**
2912  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2913  * @q:  the queue to submit the request
2914  * @rq: the request being queued
2915  */
2916 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2917 {
2918 	blk_status_t ret;
2919 
2920 	ret = blk_cloned_rq_check_limits(q, rq);
2921 	if (ret != BLK_STS_OK)
2922 		return ret;
2923 
2924 	if (rq->q->disk &&
2925 	    should_fail_request(rq->q->disk->part0, blk_rq_bytes(rq)))
2926 		return BLK_STS_IOERR;
2927 
2928 	if (blk_crypto_insert_cloned_request(rq))
2929 		return BLK_STS_IOERR;
2930 
2931 	blk_account_io_start(rq);
2932 
2933 	/*
2934 	 * Since we have a scheduler attached on the top device,
2935 	 * bypass a potential scheduler on the bottom device for
2936 	 * insert.
2937 	 */
2938 	blk_mq_run_dispatch_ops(rq->q,
2939 			ret = blk_mq_request_issue_directly(rq, true));
2940 	if (ret)
2941 		blk_account_io_done(rq, ktime_get_ns());
2942 	return ret;
2943 }
2944 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2945 
2946 /**
2947  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2948  * @rq: the clone request to be cleaned up
2949  *
2950  * Description:
2951  *     Free all bios in @rq for a cloned request.
2952  */
2953 void blk_rq_unprep_clone(struct request *rq)
2954 {
2955 	struct bio *bio;
2956 
2957 	while ((bio = rq->bio) != NULL) {
2958 		rq->bio = bio->bi_next;
2959 
2960 		bio_put(bio);
2961 	}
2962 }
2963 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2964 
2965 /**
2966  * blk_rq_prep_clone - Helper function to setup clone request
2967  * @rq: the request to be setup
2968  * @rq_src: original request to be cloned
2969  * @bs: bio_set that bios for clone are allocated from
2970  * @gfp_mask: memory allocation mask for bio
2971  * @bio_ctr: setup function to be called for each clone bio.
2972  *           Returns %0 for success, non %0 for failure.
2973  * @data: private data to be passed to @bio_ctr
2974  *
2975  * Description:
2976  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2977  *     Also, pages which the original bios are pointing to are not copied
2978  *     and the cloned bios just point same pages.
2979  *     So cloned bios must be completed before original bios, which means
2980  *     the caller must complete @rq before @rq_src.
2981  */
2982 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2983 		      struct bio_set *bs, gfp_t gfp_mask,
2984 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2985 		      void *data)
2986 {
2987 	struct bio *bio, *bio_src;
2988 
2989 	if (!bs)
2990 		bs = &fs_bio_set;
2991 
2992 	__rq_for_each_bio(bio_src, rq_src) {
2993 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
2994 		if (!bio)
2995 			goto free_and_out;
2996 		bio->bi_bdev = rq->q->disk->part0;
2997 
2998 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2999 			goto free_and_out;
3000 
3001 		if (rq->bio) {
3002 			rq->biotail->bi_next = bio;
3003 			rq->biotail = bio;
3004 		} else {
3005 			rq->bio = rq->biotail = bio;
3006 		}
3007 		bio = NULL;
3008 	}
3009 
3010 	/* Copy attributes of the original request to the clone request. */
3011 	rq->__sector = blk_rq_pos(rq_src);
3012 	rq->__data_len = blk_rq_bytes(rq_src);
3013 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3014 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3015 		rq->special_vec = rq_src->special_vec;
3016 	}
3017 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3018 	rq->ioprio = rq_src->ioprio;
3019 
3020 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3021 		goto free_and_out;
3022 
3023 	return 0;
3024 
3025 free_and_out:
3026 	if (bio)
3027 		bio_put(bio);
3028 	blk_rq_unprep_clone(rq);
3029 
3030 	return -ENOMEM;
3031 }
3032 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3033 
3034 /*
3035  * Steal bios from a request and add them to a bio list.
3036  * The request must not have been partially completed before.
3037  */
3038 void blk_steal_bios(struct bio_list *list, struct request *rq)
3039 {
3040 	if (rq->bio) {
3041 		if (list->tail)
3042 			list->tail->bi_next = rq->bio;
3043 		else
3044 			list->head = rq->bio;
3045 		list->tail = rq->biotail;
3046 
3047 		rq->bio = NULL;
3048 		rq->biotail = NULL;
3049 	}
3050 
3051 	rq->__data_len = 0;
3052 }
3053 EXPORT_SYMBOL_GPL(blk_steal_bios);
3054 
3055 static size_t order_to_size(unsigned int order)
3056 {
3057 	return (size_t)PAGE_SIZE << order;
3058 }
3059 
3060 /* called before freeing request pool in @tags */
3061 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3062 				    struct blk_mq_tags *tags)
3063 {
3064 	struct page *page;
3065 	unsigned long flags;
3066 
3067 	/* There is no need to clear a driver tags own mapping */
3068 	if (drv_tags == tags)
3069 		return;
3070 
3071 	list_for_each_entry(page, &tags->page_list, lru) {
3072 		unsigned long start = (unsigned long)page_address(page);
3073 		unsigned long end = start + order_to_size(page->private);
3074 		int i;
3075 
3076 		for (i = 0; i < drv_tags->nr_tags; i++) {
3077 			struct request *rq = drv_tags->rqs[i];
3078 			unsigned long rq_addr = (unsigned long)rq;
3079 
3080 			if (rq_addr >= start && rq_addr < end) {
3081 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3082 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3083 			}
3084 		}
3085 	}
3086 
3087 	/*
3088 	 * Wait until all pending iteration is done.
3089 	 *
3090 	 * Request reference is cleared and it is guaranteed to be observed
3091 	 * after the ->lock is released.
3092 	 */
3093 	spin_lock_irqsave(&drv_tags->lock, flags);
3094 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3095 }
3096 
3097 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3098 		     unsigned int hctx_idx)
3099 {
3100 	struct blk_mq_tags *drv_tags;
3101 	struct page *page;
3102 
3103 	if (blk_mq_is_shared_tags(set->flags))
3104 		drv_tags = set->shared_tags;
3105 	else
3106 		drv_tags = set->tags[hctx_idx];
3107 
3108 	if (tags->static_rqs && set->ops->exit_request) {
3109 		int i;
3110 
3111 		for (i = 0; i < tags->nr_tags; i++) {
3112 			struct request *rq = tags->static_rqs[i];
3113 
3114 			if (!rq)
3115 				continue;
3116 			set->ops->exit_request(set, rq, hctx_idx);
3117 			tags->static_rqs[i] = NULL;
3118 		}
3119 	}
3120 
3121 	blk_mq_clear_rq_mapping(drv_tags, tags);
3122 
3123 	while (!list_empty(&tags->page_list)) {
3124 		page = list_first_entry(&tags->page_list, struct page, lru);
3125 		list_del_init(&page->lru);
3126 		/*
3127 		 * Remove kmemleak object previously allocated in
3128 		 * blk_mq_alloc_rqs().
3129 		 */
3130 		kmemleak_free(page_address(page));
3131 		__free_pages(page, page->private);
3132 	}
3133 }
3134 
3135 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3136 {
3137 	kfree(tags->rqs);
3138 	tags->rqs = NULL;
3139 	kfree(tags->static_rqs);
3140 	tags->static_rqs = NULL;
3141 
3142 	blk_mq_free_tags(tags);
3143 }
3144 
3145 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3146 					       unsigned int hctx_idx,
3147 					       unsigned int nr_tags,
3148 					       unsigned int reserved_tags)
3149 {
3150 	struct blk_mq_tags *tags;
3151 	int node;
3152 
3153 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3154 	if (node == NUMA_NO_NODE)
3155 		node = set->numa_node;
3156 
3157 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3158 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3159 	if (!tags)
3160 		return NULL;
3161 
3162 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3163 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3164 				 node);
3165 	if (!tags->rqs) {
3166 		blk_mq_free_tags(tags);
3167 		return NULL;
3168 	}
3169 
3170 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3171 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3172 					node);
3173 	if (!tags->static_rqs) {
3174 		kfree(tags->rqs);
3175 		blk_mq_free_tags(tags);
3176 		return NULL;
3177 	}
3178 
3179 	return tags;
3180 }
3181 
3182 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3183 			       unsigned int hctx_idx, int node)
3184 {
3185 	int ret;
3186 
3187 	if (set->ops->init_request) {
3188 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3189 		if (ret)
3190 			return ret;
3191 	}
3192 
3193 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3194 	return 0;
3195 }
3196 
3197 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3198 			    struct blk_mq_tags *tags,
3199 			    unsigned int hctx_idx, unsigned int depth)
3200 {
3201 	unsigned int i, j, entries_per_page, max_order = 4;
3202 	size_t rq_size, left;
3203 	int node;
3204 
3205 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3206 	if (node == NUMA_NO_NODE)
3207 		node = set->numa_node;
3208 
3209 	INIT_LIST_HEAD(&tags->page_list);
3210 
3211 	/*
3212 	 * rq_size is the size of the request plus driver payload, rounded
3213 	 * to the cacheline size
3214 	 */
3215 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3216 				cache_line_size());
3217 	left = rq_size * depth;
3218 
3219 	for (i = 0; i < depth; ) {
3220 		int this_order = max_order;
3221 		struct page *page;
3222 		int to_do;
3223 		void *p;
3224 
3225 		while (this_order && left < order_to_size(this_order - 1))
3226 			this_order--;
3227 
3228 		do {
3229 			page = alloc_pages_node(node,
3230 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3231 				this_order);
3232 			if (page)
3233 				break;
3234 			if (!this_order--)
3235 				break;
3236 			if (order_to_size(this_order) < rq_size)
3237 				break;
3238 		} while (1);
3239 
3240 		if (!page)
3241 			goto fail;
3242 
3243 		page->private = this_order;
3244 		list_add_tail(&page->lru, &tags->page_list);
3245 
3246 		p = page_address(page);
3247 		/*
3248 		 * Allow kmemleak to scan these pages as they contain pointers
3249 		 * to additional allocations like via ops->init_request().
3250 		 */
3251 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3252 		entries_per_page = order_to_size(this_order) / rq_size;
3253 		to_do = min(entries_per_page, depth - i);
3254 		left -= to_do * rq_size;
3255 		for (j = 0; j < to_do; j++) {
3256 			struct request *rq = p;
3257 
3258 			tags->static_rqs[i] = rq;
3259 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3260 				tags->static_rqs[i] = NULL;
3261 				goto fail;
3262 			}
3263 
3264 			p += rq_size;
3265 			i++;
3266 		}
3267 	}
3268 	return 0;
3269 
3270 fail:
3271 	blk_mq_free_rqs(set, tags, hctx_idx);
3272 	return -ENOMEM;
3273 }
3274 
3275 struct rq_iter_data {
3276 	struct blk_mq_hw_ctx *hctx;
3277 	bool has_rq;
3278 };
3279 
3280 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3281 {
3282 	struct rq_iter_data *iter_data = data;
3283 
3284 	if (rq->mq_hctx != iter_data->hctx)
3285 		return true;
3286 	iter_data->has_rq = true;
3287 	return false;
3288 }
3289 
3290 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3291 {
3292 	struct blk_mq_tags *tags = hctx->sched_tags ?
3293 			hctx->sched_tags : hctx->tags;
3294 	struct rq_iter_data data = {
3295 		.hctx	= hctx,
3296 	};
3297 
3298 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3299 	return data.has_rq;
3300 }
3301 
3302 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3303 		struct blk_mq_hw_ctx *hctx)
3304 {
3305 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3306 		return false;
3307 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3308 		return false;
3309 	return true;
3310 }
3311 
3312 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3313 {
3314 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3315 			struct blk_mq_hw_ctx, cpuhp_online);
3316 
3317 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3318 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3319 		return 0;
3320 
3321 	/*
3322 	 * Prevent new request from being allocated on the current hctx.
3323 	 *
3324 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3325 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3326 	 * seen once we return from the tag allocator.
3327 	 */
3328 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3329 	smp_mb__after_atomic();
3330 
3331 	/*
3332 	 * Try to grab a reference to the queue and wait for any outstanding
3333 	 * requests.  If we could not grab a reference the queue has been
3334 	 * frozen and there are no requests.
3335 	 */
3336 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3337 		while (blk_mq_hctx_has_requests(hctx))
3338 			msleep(5);
3339 		percpu_ref_put(&hctx->queue->q_usage_counter);
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3346 {
3347 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3348 			struct blk_mq_hw_ctx, cpuhp_online);
3349 
3350 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3351 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3352 	return 0;
3353 }
3354 
3355 /*
3356  * 'cpu' is going away. splice any existing rq_list entries from this
3357  * software queue to the hw queue dispatch list, and ensure that it
3358  * gets run.
3359  */
3360 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3361 {
3362 	struct blk_mq_hw_ctx *hctx;
3363 	struct blk_mq_ctx *ctx;
3364 	LIST_HEAD(tmp);
3365 	enum hctx_type type;
3366 
3367 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3368 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3369 		return 0;
3370 
3371 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3372 	type = hctx->type;
3373 
3374 	spin_lock(&ctx->lock);
3375 	if (!list_empty(&ctx->rq_lists[type])) {
3376 		list_splice_init(&ctx->rq_lists[type], &tmp);
3377 		blk_mq_hctx_clear_pending(hctx, ctx);
3378 	}
3379 	spin_unlock(&ctx->lock);
3380 
3381 	if (list_empty(&tmp))
3382 		return 0;
3383 
3384 	spin_lock(&hctx->lock);
3385 	list_splice_tail_init(&tmp, &hctx->dispatch);
3386 	spin_unlock(&hctx->lock);
3387 
3388 	blk_mq_run_hw_queue(hctx, true);
3389 	return 0;
3390 }
3391 
3392 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3393 {
3394 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3395 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3396 						    &hctx->cpuhp_online);
3397 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3398 					    &hctx->cpuhp_dead);
3399 }
3400 
3401 /*
3402  * Before freeing hw queue, clearing the flush request reference in
3403  * tags->rqs[] for avoiding potential UAF.
3404  */
3405 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3406 		unsigned int queue_depth, struct request *flush_rq)
3407 {
3408 	int i;
3409 	unsigned long flags;
3410 
3411 	/* The hw queue may not be mapped yet */
3412 	if (!tags)
3413 		return;
3414 
3415 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3416 
3417 	for (i = 0; i < queue_depth; i++)
3418 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3419 
3420 	/*
3421 	 * Wait until all pending iteration is done.
3422 	 *
3423 	 * Request reference is cleared and it is guaranteed to be observed
3424 	 * after the ->lock is released.
3425 	 */
3426 	spin_lock_irqsave(&tags->lock, flags);
3427 	spin_unlock_irqrestore(&tags->lock, flags);
3428 }
3429 
3430 /* hctx->ctxs will be freed in queue's release handler */
3431 static void blk_mq_exit_hctx(struct request_queue *q,
3432 		struct blk_mq_tag_set *set,
3433 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3434 {
3435 	struct request *flush_rq = hctx->fq->flush_rq;
3436 
3437 	if (blk_mq_hw_queue_mapped(hctx))
3438 		blk_mq_tag_idle(hctx);
3439 
3440 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3441 			set->queue_depth, flush_rq);
3442 	if (set->ops->exit_request)
3443 		set->ops->exit_request(set, flush_rq, hctx_idx);
3444 
3445 	if (set->ops->exit_hctx)
3446 		set->ops->exit_hctx(hctx, hctx_idx);
3447 
3448 	blk_mq_remove_cpuhp(hctx);
3449 
3450 	spin_lock(&q->unused_hctx_lock);
3451 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3452 	spin_unlock(&q->unused_hctx_lock);
3453 }
3454 
3455 static void blk_mq_exit_hw_queues(struct request_queue *q,
3456 		struct blk_mq_tag_set *set, int nr_queue)
3457 {
3458 	struct blk_mq_hw_ctx *hctx;
3459 	unsigned int i;
3460 
3461 	queue_for_each_hw_ctx(q, hctx, i) {
3462 		if (i == nr_queue)
3463 			break;
3464 		blk_mq_debugfs_unregister_hctx(hctx);
3465 		blk_mq_exit_hctx(q, set, hctx, i);
3466 	}
3467 }
3468 
3469 static int blk_mq_init_hctx(struct request_queue *q,
3470 		struct blk_mq_tag_set *set,
3471 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3472 {
3473 	hctx->queue_num = hctx_idx;
3474 
3475 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3476 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3477 				&hctx->cpuhp_online);
3478 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3479 
3480 	hctx->tags = set->tags[hctx_idx];
3481 
3482 	if (set->ops->init_hctx &&
3483 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3484 		goto unregister_cpu_notifier;
3485 
3486 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3487 				hctx->numa_node))
3488 		goto exit_hctx;
3489 	return 0;
3490 
3491  exit_hctx:
3492 	if (set->ops->exit_hctx)
3493 		set->ops->exit_hctx(hctx, hctx_idx);
3494  unregister_cpu_notifier:
3495 	blk_mq_remove_cpuhp(hctx);
3496 	return -1;
3497 }
3498 
3499 static struct blk_mq_hw_ctx *
3500 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3501 		int node)
3502 {
3503 	struct blk_mq_hw_ctx *hctx;
3504 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3505 
3506 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3507 	if (!hctx)
3508 		goto fail_alloc_hctx;
3509 
3510 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3511 		goto free_hctx;
3512 
3513 	atomic_set(&hctx->nr_active, 0);
3514 	if (node == NUMA_NO_NODE)
3515 		node = set->numa_node;
3516 	hctx->numa_node = node;
3517 
3518 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3519 	spin_lock_init(&hctx->lock);
3520 	INIT_LIST_HEAD(&hctx->dispatch);
3521 	hctx->queue = q;
3522 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3523 
3524 	INIT_LIST_HEAD(&hctx->hctx_list);
3525 
3526 	/*
3527 	 * Allocate space for all possible cpus to avoid allocation at
3528 	 * runtime
3529 	 */
3530 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3531 			gfp, node);
3532 	if (!hctx->ctxs)
3533 		goto free_cpumask;
3534 
3535 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3536 				gfp, node, false, false))
3537 		goto free_ctxs;
3538 	hctx->nr_ctx = 0;
3539 
3540 	spin_lock_init(&hctx->dispatch_wait_lock);
3541 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3542 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3543 
3544 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3545 	if (!hctx->fq)
3546 		goto free_bitmap;
3547 
3548 	blk_mq_hctx_kobj_init(hctx);
3549 
3550 	return hctx;
3551 
3552  free_bitmap:
3553 	sbitmap_free(&hctx->ctx_map);
3554  free_ctxs:
3555 	kfree(hctx->ctxs);
3556  free_cpumask:
3557 	free_cpumask_var(hctx->cpumask);
3558  free_hctx:
3559 	kfree(hctx);
3560  fail_alloc_hctx:
3561 	return NULL;
3562 }
3563 
3564 static void blk_mq_init_cpu_queues(struct request_queue *q,
3565 				   unsigned int nr_hw_queues)
3566 {
3567 	struct blk_mq_tag_set *set = q->tag_set;
3568 	unsigned int i, j;
3569 
3570 	for_each_possible_cpu(i) {
3571 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3572 		struct blk_mq_hw_ctx *hctx;
3573 		int k;
3574 
3575 		__ctx->cpu = i;
3576 		spin_lock_init(&__ctx->lock);
3577 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3578 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3579 
3580 		__ctx->queue = q;
3581 
3582 		/*
3583 		 * Set local node, IFF we have more than one hw queue. If
3584 		 * not, we remain on the home node of the device
3585 		 */
3586 		for (j = 0; j < set->nr_maps; j++) {
3587 			hctx = blk_mq_map_queue_type(q, j, i);
3588 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3589 				hctx->numa_node = cpu_to_node(i);
3590 		}
3591 	}
3592 }
3593 
3594 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3595 					     unsigned int hctx_idx,
3596 					     unsigned int depth)
3597 {
3598 	struct blk_mq_tags *tags;
3599 	int ret;
3600 
3601 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3602 	if (!tags)
3603 		return NULL;
3604 
3605 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3606 	if (ret) {
3607 		blk_mq_free_rq_map(tags);
3608 		return NULL;
3609 	}
3610 
3611 	return tags;
3612 }
3613 
3614 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3615 				       int hctx_idx)
3616 {
3617 	if (blk_mq_is_shared_tags(set->flags)) {
3618 		set->tags[hctx_idx] = set->shared_tags;
3619 
3620 		return true;
3621 	}
3622 
3623 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3624 						       set->queue_depth);
3625 
3626 	return set->tags[hctx_idx];
3627 }
3628 
3629 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3630 			     struct blk_mq_tags *tags,
3631 			     unsigned int hctx_idx)
3632 {
3633 	if (tags) {
3634 		blk_mq_free_rqs(set, tags, hctx_idx);
3635 		blk_mq_free_rq_map(tags);
3636 	}
3637 }
3638 
3639 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3640 				      unsigned int hctx_idx)
3641 {
3642 	if (!blk_mq_is_shared_tags(set->flags))
3643 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3644 
3645 	set->tags[hctx_idx] = NULL;
3646 }
3647 
3648 static void blk_mq_map_swqueue(struct request_queue *q)
3649 {
3650 	unsigned int i, j, hctx_idx;
3651 	struct blk_mq_hw_ctx *hctx;
3652 	struct blk_mq_ctx *ctx;
3653 	struct blk_mq_tag_set *set = q->tag_set;
3654 
3655 	queue_for_each_hw_ctx(q, hctx, i) {
3656 		cpumask_clear(hctx->cpumask);
3657 		hctx->nr_ctx = 0;
3658 		hctx->dispatch_from = NULL;
3659 	}
3660 
3661 	/*
3662 	 * Map software to hardware queues.
3663 	 *
3664 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3665 	 */
3666 	for_each_possible_cpu(i) {
3667 
3668 		ctx = per_cpu_ptr(q->queue_ctx, i);
3669 		for (j = 0; j < set->nr_maps; j++) {
3670 			if (!set->map[j].nr_queues) {
3671 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3672 						HCTX_TYPE_DEFAULT, i);
3673 				continue;
3674 			}
3675 			hctx_idx = set->map[j].mq_map[i];
3676 			/* unmapped hw queue can be remapped after CPU topo changed */
3677 			if (!set->tags[hctx_idx] &&
3678 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3679 				/*
3680 				 * If tags initialization fail for some hctx,
3681 				 * that hctx won't be brought online.  In this
3682 				 * case, remap the current ctx to hctx[0] which
3683 				 * is guaranteed to always have tags allocated
3684 				 */
3685 				set->map[j].mq_map[i] = 0;
3686 			}
3687 
3688 			hctx = blk_mq_map_queue_type(q, j, i);
3689 			ctx->hctxs[j] = hctx;
3690 			/*
3691 			 * If the CPU is already set in the mask, then we've
3692 			 * mapped this one already. This can happen if
3693 			 * devices share queues across queue maps.
3694 			 */
3695 			if (cpumask_test_cpu(i, hctx->cpumask))
3696 				continue;
3697 
3698 			cpumask_set_cpu(i, hctx->cpumask);
3699 			hctx->type = j;
3700 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3701 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3702 
3703 			/*
3704 			 * If the nr_ctx type overflows, we have exceeded the
3705 			 * amount of sw queues we can support.
3706 			 */
3707 			BUG_ON(!hctx->nr_ctx);
3708 		}
3709 
3710 		for (; j < HCTX_MAX_TYPES; j++)
3711 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3712 					HCTX_TYPE_DEFAULT, i);
3713 	}
3714 
3715 	queue_for_each_hw_ctx(q, hctx, i) {
3716 		/*
3717 		 * If no software queues are mapped to this hardware queue,
3718 		 * disable it and free the request entries.
3719 		 */
3720 		if (!hctx->nr_ctx) {
3721 			/* Never unmap queue 0.  We need it as a
3722 			 * fallback in case of a new remap fails
3723 			 * allocation
3724 			 */
3725 			if (i)
3726 				__blk_mq_free_map_and_rqs(set, i);
3727 
3728 			hctx->tags = NULL;
3729 			continue;
3730 		}
3731 
3732 		hctx->tags = set->tags[i];
3733 		WARN_ON(!hctx->tags);
3734 
3735 		/*
3736 		 * Set the map size to the number of mapped software queues.
3737 		 * This is more accurate and more efficient than looping
3738 		 * over all possibly mapped software queues.
3739 		 */
3740 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3741 
3742 		/*
3743 		 * Initialize batch roundrobin counts
3744 		 */
3745 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3746 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3747 	}
3748 }
3749 
3750 /*
3751  * Caller needs to ensure that we're either frozen/quiesced, or that
3752  * the queue isn't live yet.
3753  */
3754 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3755 {
3756 	struct blk_mq_hw_ctx *hctx;
3757 	int i;
3758 
3759 	queue_for_each_hw_ctx(q, hctx, i) {
3760 		if (shared) {
3761 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3762 		} else {
3763 			blk_mq_tag_idle(hctx);
3764 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3765 		}
3766 	}
3767 }
3768 
3769 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3770 					 bool shared)
3771 {
3772 	struct request_queue *q;
3773 
3774 	lockdep_assert_held(&set->tag_list_lock);
3775 
3776 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3777 		blk_mq_freeze_queue(q);
3778 		queue_set_hctx_shared(q, shared);
3779 		blk_mq_unfreeze_queue(q);
3780 	}
3781 }
3782 
3783 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3784 {
3785 	struct blk_mq_tag_set *set = q->tag_set;
3786 
3787 	mutex_lock(&set->tag_list_lock);
3788 	list_del(&q->tag_set_list);
3789 	if (list_is_singular(&set->tag_list)) {
3790 		/* just transitioned to unshared */
3791 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3792 		/* update existing queue */
3793 		blk_mq_update_tag_set_shared(set, false);
3794 	}
3795 	mutex_unlock(&set->tag_list_lock);
3796 	INIT_LIST_HEAD(&q->tag_set_list);
3797 }
3798 
3799 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3800 				     struct request_queue *q)
3801 {
3802 	mutex_lock(&set->tag_list_lock);
3803 
3804 	/*
3805 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3806 	 */
3807 	if (!list_empty(&set->tag_list) &&
3808 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3809 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3810 		/* update existing queue */
3811 		blk_mq_update_tag_set_shared(set, true);
3812 	}
3813 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3814 		queue_set_hctx_shared(q, true);
3815 	list_add_tail(&q->tag_set_list, &set->tag_list);
3816 
3817 	mutex_unlock(&set->tag_list_lock);
3818 }
3819 
3820 /* All allocations will be freed in release handler of q->mq_kobj */
3821 static int blk_mq_alloc_ctxs(struct request_queue *q)
3822 {
3823 	struct blk_mq_ctxs *ctxs;
3824 	int cpu;
3825 
3826 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3827 	if (!ctxs)
3828 		return -ENOMEM;
3829 
3830 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3831 	if (!ctxs->queue_ctx)
3832 		goto fail;
3833 
3834 	for_each_possible_cpu(cpu) {
3835 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3836 		ctx->ctxs = ctxs;
3837 	}
3838 
3839 	q->mq_kobj = &ctxs->kobj;
3840 	q->queue_ctx = ctxs->queue_ctx;
3841 
3842 	return 0;
3843  fail:
3844 	kfree(ctxs);
3845 	return -ENOMEM;
3846 }
3847 
3848 /*
3849  * It is the actual release handler for mq, but we do it from
3850  * request queue's release handler for avoiding use-after-free
3851  * and headache because q->mq_kobj shouldn't have been introduced,
3852  * but we can't group ctx/kctx kobj without it.
3853  */
3854 void blk_mq_release(struct request_queue *q)
3855 {
3856 	struct blk_mq_hw_ctx *hctx, *next;
3857 	int i;
3858 
3859 	queue_for_each_hw_ctx(q, hctx, i)
3860 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3861 
3862 	/* all hctx are in .unused_hctx_list now */
3863 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3864 		list_del_init(&hctx->hctx_list);
3865 		kobject_put(&hctx->kobj);
3866 	}
3867 
3868 	kfree(q->queue_hw_ctx);
3869 
3870 	/*
3871 	 * release .mq_kobj and sw queue's kobject now because
3872 	 * both share lifetime with request queue.
3873 	 */
3874 	blk_mq_sysfs_deinit(q);
3875 }
3876 
3877 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3878 		void *queuedata)
3879 {
3880 	struct request_queue *q;
3881 	int ret;
3882 
3883 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3884 	if (!q)
3885 		return ERR_PTR(-ENOMEM);
3886 	q->queuedata = queuedata;
3887 	ret = blk_mq_init_allocated_queue(set, q);
3888 	if (ret) {
3889 		blk_cleanup_queue(q);
3890 		return ERR_PTR(ret);
3891 	}
3892 	return q;
3893 }
3894 
3895 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3896 {
3897 	return blk_mq_init_queue_data(set, NULL);
3898 }
3899 EXPORT_SYMBOL(blk_mq_init_queue);
3900 
3901 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3902 		struct lock_class_key *lkclass)
3903 {
3904 	struct request_queue *q;
3905 	struct gendisk *disk;
3906 
3907 	q = blk_mq_init_queue_data(set, queuedata);
3908 	if (IS_ERR(q))
3909 		return ERR_CAST(q);
3910 
3911 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3912 	if (!disk) {
3913 		blk_cleanup_queue(q);
3914 		return ERR_PTR(-ENOMEM);
3915 	}
3916 	return disk;
3917 }
3918 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3919 
3920 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3921 		struct blk_mq_tag_set *set, struct request_queue *q,
3922 		int hctx_idx, int node)
3923 {
3924 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3925 
3926 	/* reuse dead hctx first */
3927 	spin_lock(&q->unused_hctx_lock);
3928 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3929 		if (tmp->numa_node == node) {
3930 			hctx = tmp;
3931 			break;
3932 		}
3933 	}
3934 	if (hctx)
3935 		list_del_init(&hctx->hctx_list);
3936 	spin_unlock(&q->unused_hctx_lock);
3937 
3938 	if (!hctx)
3939 		hctx = blk_mq_alloc_hctx(q, set, node);
3940 	if (!hctx)
3941 		goto fail;
3942 
3943 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3944 		goto free_hctx;
3945 
3946 	return hctx;
3947 
3948  free_hctx:
3949 	kobject_put(&hctx->kobj);
3950  fail:
3951 	return NULL;
3952 }
3953 
3954 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3955 						struct request_queue *q)
3956 {
3957 	int i, j, end;
3958 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3959 
3960 	if (q->nr_hw_queues < set->nr_hw_queues) {
3961 		struct blk_mq_hw_ctx **new_hctxs;
3962 
3963 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3964 				       sizeof(*new_hctxs), GFP_KERNEL,
3965 				       set->numa_node);
3966 		if (!new_hctxs)
3967 			return;
3968 		if (hctxs)
3969 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3970 			       sizeof(*hctxs));
3971 		q->queue_hw_ctx = new_hctxs;
3972 		kfree(hctxs);
3973 		hctxs = new_hctxs;
3974 	}
3975 
3976 	/* protect against switching io scheduler  */
3977 	mutex_lock(&q->sysfs_lock);
3978 	for (i = 0; i < set->nr_hw_queues; i++) {
3979 		int node;
3980 		struct blk_mq_hw_ctx *hctx;
3981 
3982 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3983 		/*
3984 		 * If the hw queue has been mapped to another numa node,
3985 		 * we need to realloc the hctx. If allocation fails, fallback
3986 		 * to use the previous one.
3987 		 */
3988 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3989 			continue;
3990 
3991 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3992 		if (hctx) {
3993 			if (hctxs[i])
3994 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3995 			hctxs[i] = hctx;
3996 		} else {
3997 			if (hctxs[i])
3998 				pr_warn("Allocate new hctx on node %d fails,\
3999 						fallback to previous one on node %d\n",
4000 						node, hctxs[i]->numa_node);
4001 			else
4002 				break;
4003 		}
4004 	}
4005 	/*
4006 	 * Increasing nr_hw_queues fails. Free the newly allocated
4007 	 * hctxs and keep the previous q->nr_hw_queues.
4008 	 */
4009 	if (i != set->nr_hw_queues) {
4010 		j = q->nr_hw_queues;
4011 		end = i;
4012 	} else {
4013 		j = i;
4014 		end = q->nr_hw_queues;
4015 		q->nr_hw_queues = set->nr_hw_queues;
4016 	}
4017 
4018 	for (; j < end; j++) {
4019 		struct blk_mq_hw_ctx *hctx = hctxs[j];
4020 
4021 		if (hctx) {
4022 			blk_mq_exit_hctx(q, set, hctx, j);
4023 			hctxs[j] = NULL;
4024 		}
4025 	}
4026 	mutex_unlock(&q->sysfs_lock);
4027 }
4028 
4029 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4030 		struct request_queue *q)
4031 {
4032 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4033 			!!(set->flags & BLK_MQ_F_BLOCKING));
4034 
4035 	/* mark the queue as mq asap */
4036 	q->mq_ops = set->ops;
4037 
4038 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4039 					     blk_mq_poll_stats_bkt,
4040 					     BLK_MQ_POLL_STATS_BKTS, q);
4041 	if (!q->poll_cb)
4042 		goto err_exit;
4043 
4044 	if (blk_mq_alloc_ctxs(q))
4045 		goto err_poll;
4046 
4047 	/* init q->mq_kobj and sw queues' kobjects */
4048 	blk_mq_sysfs_init(q);
4049 
4050 	INIT_LIST_HEAD(&q->unused_hctx_list);
4051 	spin_lock_init(&q->unused_hctx_lock);
4052 
4053 	blk_mq_realloc_hw_ctxs(set, q);
4054 	if (!q->nr_hw_queues)
4055 		goto err_hctxs;
4056 
4057 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4058 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4059 
4060 	q->tag_set = set;
4061 
4062 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4063 	if (set->nr_maps > HCTX_TYPE_POLL &&
4064 	    set->map[HCTX_TYPE_POLL].nr_queues)
4065 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4066 
4067 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4068 	INIT_LIST_HEAD(&q->requeue_list);
4069 	spin_lock_init(&q->requeue_lock);
4070 
4071 	q->nr_requests = set->queue_depth;
4072 
4073 	/*
4074 	 * Default to classic polling
4075 	 */
4076 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4077 
4078 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4079 	blk_mq_add_queue_tag_set(set, q);
4080 	blk_mq_map_swqueue(q);
4081 	return 0;
4082 
4083 err_hctxs:
4084 	kfree(q->queue_hw_ctx);
4085 	q->nr_hw_queues = 0;
4086 	blk_mq_sysfs_deinit(q);
4087 err_poll:
4088 	blk_stat_free_callback(q->poll_cb);
4089 	q->poll_cb = NULL;
4090 err_exit:
4091 	q->mq_ops = NULL;
4092 	return -ENOMEM;
4093 }
4094 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4095 
4096 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4097 void blk_mq_exit_queue(struct request_queue *q)
4098 {
4099 	struct blk_mq_tag_set *set = q->tag_set;
4100 
4101 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4102 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4103 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4104 	blk_mq_del_queue_tag_set(q);
4105 }
4106 
4107 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4108 {
4109 	int i;
4110 
4111 	if (blk_mq_is_shared_tags(set->flags)) {
4112 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4113 						BLK_MQ_NO_HCTX_IDX,
4114 						set->queue_depth);
4115 		if (!set->shared_tags)
4116 			return -ENOMEM;
4117 	}
4118 
4119 	for (i = 0; i < set->nr_hw_queues; i++) {
4120 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4121 			goto out_unwind;
4122 		cond_resched();
4123 	}
4124 
4125 	return 0;
4126 
4127 out_unwind:
4128 	while (--i >= 0)
4129 		__blk_mq_free_map_and_rqs(set, i);
4130 
4131 	if (blk_mq_is_shared_tags(set->flags)) {
4132 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4133 					BLK_MQ_NO_HCTX_IDX);
4134 	}
4135 
4136 	return -ENOMEM;
4137 }
4138 
4139 /*
4140  * Allocate the request maps associated with this tag_set. Note that this
4141  * may reduce the depth asked for, if memory is tight. set->queue_depth
4142  * will be updated to reflect the allocated depth.
4143  */
4144 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4145 {
4146 	unsigned int depth;
4147 	int err;
4148 
4149 	depth = set->queue_depth;
4150 	do {
4151 		err = __blk_mq_alloc_rq_maps(set);
4152 		if (!err)
4153 			break;
4154 
4155 		set->queue_depth >>= 1;
4156 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4157 			err = -ENOMEM;
4158 			break;
4159 		}
4160 	} while (set->queue_depth);
4161 
4162 	if (!set->queue_depth || err) {
4163 		pr_err("blk-mq: failed to allocate request map\n");
4164 		return -ENOMEM;
4165 	}
4166 
4167 	if (depth != set->queue_depth)
4168 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4169 						depth, set->queue_depth);
4170 
4171 	return 0;
4172 }
4173 
4174 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4175 {
4176 	/*
4177 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4178 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4179 	 * number of hardware queues.
4180 	 */
4181 	if (set->nr_maps == 1)
4182 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4183 
4184 	if (set->ops->map_queues && !is_kdump_kernel()) {
4185 		int i;
4186 
4187 		/*
4188 		 * transport .map_queues is usually done in the following
4189 		 * way:
4190 		 *
4191 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4192 		 * 	mask = get_cpu_mask(queue)
4193 		 * 	for_each_cpu(cpu, mask)
4194 		 * 		set->map[x].mq_map[cpu] = queue;
4195 		 * }
4196 		 *
4197 		 * When we need to remap, the table has to be cleared for
4198 		 * killing stale mapping since one CPU may not be mapped
4199 		 * to any hw queue.
4200 		 */
4201 		for (i = 0; i < set->nr_maps; i++)
4202 			blk_mq_clear_mq_map(&set->map[i]);
4203 
4204 		return set->ops->map_queues(set);
4205 	} else {
4206 		BUG_ON(set->nr_maps > 1);
4207 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4208 	}
4209 }
4210 
4211 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4212 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4213 {
4214 	struct blk_mq_tags **new_tags;
4215 
4216 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4217 		return 0;
4218 
4219 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4220 				GFP_KERNEL, set->numa_node);
4221 	if (!new_tags)
4222 		return -ENOMEM;
4223 
4224 	if (set->tags)
4225 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4226 		       sizeof(*set->tags));
4227 	kfree(set->tags);
4228 	set->tags = new_tags;
4229 	set->nr_hw_queues = new_nr_hw_queues;
4230 
4231 	return 0;
4232 }
4233 
4234 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4235 				int new_nr_hw_queues)
4236 {
4237 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4238 }
4239 
4240 /*
4241  * Alloc a tag set to be associated with one or more request queues.
4242  * May fail with EINVAL for various error conditions. May adjust the
4243  * requested depth down, if it's too large. In that case, the set
4244  * value will be stored in set->queue_depth.
4245  */
4246 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4247 {
4248 	int i, ret;
4249 
4250 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4251 
4252 	if (!set->nr_hw_queues)
4253 		return -EINVAL;
4254 	if (!set->queue_depth)
4255 		return -EINVAL;
4256 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4257 		return -EINVAL;
4258 
4259 	if (!set->ops->queue_rq)
4260 		return -EINVAL;
4261 
4262 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4263 		return -EINVAL;
4264 
4265 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4266 		pr_info("blk-mq: reduced tag depth to %u\n",
4267 			BLK_MQ_MAX_DEPTH);
4268 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4269 	}
4270 
4271 	if (!set->nr_maps)
4272 		set->nr_maps = 1;
4273 	else if (set->nr_maps > HCTX_MAX_TYPES)
4274 		return -EINVAL;
4275 
4276 	/*
4277 	 * If a crashdump is active, then we are potentially in a very
4278 	 * memory constrained environment. Limit us to 1 queue and
4279 	 * 64 tags to prevent using too much memory.
4280 	 */
4281 	if (is_kdump_kernel()) {
4282 		set->nr_hw_queues = 1;
4283 		set->nr_maps = 1;
4284 		set->queue_depth = min(64U, set->queue_depth);
4285 	}
4286 	/*
4287 	 * There is no use for more h/w queues than cpus if we just have
4288 	 * a single map
4289 	 */
4290 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4291 		set->nr_hw_queues = nr_cpu_ids;
4292 
4293 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4294 		return -ENOMEM;
4295 
4296 	ret = -ENOMEM;
4297 	for (i = 0; i < set->nr_maps; i++) {
4298 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4299 						  sizeof(set->map[i].mq_map[0]),
4300 						  GFP_KERNEL, set->numa_node);
4301 		if (!set->map[i].mq_map)
4302 			goto out_free_mq_map;
4303 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4304 	}
4305 
4306 	ret = blk_mq_update_queue_map(set);
4307 	if (ret)
4308 		goto out_free_mq_map;
4309 
4310 	ret = blk_mq_alloc_set_map_and_rqs(set);
4311 	if (ret)
4312 		goto out_free_mq_map;
4313 
4314 	mutex_init(&set->tag_list_lock);
4315 	INIT_LIST_HEAD(&set->tag_list);
4316 
4317 	return 0;
4318 
4319 out_free_mq_map:
4320 	for (i = 0; i < set->nr_maps; i++) {
4321 		kfree(set->map[i].mq_map);
4322 		set->map[i].mq_map = NULL;
4323 	}
4324 	kfree(set->tags);
4325 	set->tags = NULL;
4326 	return ret;
4327 }
4328 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4329 
4330 /* allocate and initialize a tagset for a simple single-queue device */
4331 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4332 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4333 		unsigned int set_flags)
4334 {
4335 	memset(set, 0, sizeof(*set));
4336 	set->ops = ops;
4337 	set->nr_hw_queues = 1;
4338 	set->nr_maps = 1;
4339 	set->queue_depth = queue_depth;
4340 	set->numa_node = NUMA_NO_NODE;
4341 	set->flags = set_flags;
4342 	return blk_mq_alloc_tag_set(set);
4343 }
4344 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4345 
4346 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4347 {
4348 	int i, j;
4349 
4350 	for (i = 0; i < set->nr_hw_queues; i++)
4351 		__blk_mq_free_map_and_rqs(set, i);
4352 
4353 	if (blk_mq_is_shared_tags(set->flags)) {
4354 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4355 					BLK_MQ_NO_HCTX_IDX);
4356 	}
4357 
4358 	for (j = 0; j < set->nr_maps; j++) {
4359 		kfree(set->map[j].mq_map);
4360 		set->map[j].mq_map = NULL;
4361 	}
4362 
4363 	kfree(set->tags);
4364 	set->tags = NULL;
4365 }
4366 EXPORT_SYMBOL(blk_mq_free_tag_set);
4367 
4368 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4369 {
4370 	struct blk_mq_tag_set *set = q->tag_set;
4371 	struct blk_mq_hw_ctx *hctx;
4372 	int i, ret;
4373 
4374 	if (!set)
4375 		return -EINVAL;
4376 
4377 	if (q->nr_requests == nr)
4378 		return 0;
4379 
4380 	blk_mq_freeze_queue(q);
4381 	blk_mq_quiesce_queue(q);
4382 
4383 	ret = 0;
4384 	queue_for_each_hw_ctx(q, hctx, i) {
4385 		if (!hctx->tags)
4386 			continue;
4387 		/*
4388 		 * If we're using an MQ scheduler, just update the scheduler
4389 		 * queue depth. This is similar to what the old code would do.
4390 		 */
4391 		if (hctx->sched_tags) {
4392 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4393 						      nr, true);
4394 		} else {
4395 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4396 						      false);
4397 		}
4398 		if (ret)
4399 			break;
4400 		if (q->elevator && q->elevator->type->ops.depth_updated)
4401 			q->elevator->type->ops.depth_updated(hctx);
4402 	}
4403 	if (!ret) {
4404 		q->nr_requests = nr;
4405 		if (blk_mq_is_shared_tags(set->flags)) {
4406 			if (q->elevator)
4407 				blk_mq_tag_update_sched_shared_tags(q);
4408 			else
4409 				blk_mq_tag_resize_shared_tags(set, nr);
4410 		}
4411 	}
4412 
4413 	blk_mq_unquiesce_queue(q);
4414 	blk_mq_unfreeze_queue(q);
4415 
4416 	return ret;
4417 }
4418 
4419 /*
4420  * request_queue and elevator_type pair.
4421  * It is just used by __blk_mq_update_nr_hw_queues to cache
4422  * the elevator_type associated with a request_queue.
4423  */
4424 struct blk_mq_qe_pair {
4425 	struct list_head node;
4426 	struct request_queue *q;
4427 	struct elevator_type *type;
4428 };
4429 
4430 /*
4431  * Cache the elevator_type in qe pair list and switch the
4432  * io scheduler to 'none'
4433  */
4434 static bool blk_mq_elv_switch_none(struct list_head *head,
4435 		struct request_queue *q)
4436 {
4437 	struct blk_mq_qe_pair *qe;
4438 
4439 	if (!q->elevator)
4440 		return true;
4441 
4442 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4443 	if (!qe)
4444 		return false;
4445 
4446 	INIT_LIST_HEAD(&qe->node);
4447 	qe->q = q;
4448 	qe->type = q->elevator->type;
4449 	list_add(&qe->node, head);
4450 
4451 	mutex_lock(&q->sysfs_lock);
4452 	/*
4453 	 * After elevator_switch_mq, the previous elevator_queue will be
4454 	 * released by elevator_release. The reference of the io scheduler
4455 	 * module get by elevator_get will also be put. So we need to get
4456 	 * a reference of the io scheduler module here to prevent it to be
4457 	 * removed.
4458 	 */
4459 	__module_get(qe->type->elevator_owner);
4460 	elevator_switch_mq(q, NULL);
4461 	mutex_unlock(&q->sysfs_lock);
4462 
4463 	return true;
4464 }
4465 
4466 static void blk_mq_elv_switch_back(struct list_head *head,
4467 		struct request_queue *q)
4468 {
4469 	struct blk_mq_qe_pair *qe;
4470 	struct elevator_type *t = NULL;
4471 
4472 	list_for_each_entry(qe, head, node)
4473 		if (qe->q == q) {
4474 			t = qe->type;
4475 			break;
4476 		}
4477 
4478 	if (!t)
4479 		return;
4480 
4481 	list_del(&qe->node);
4482 	kfree(qe);
4483 
4484 	mutex_lock(&q->sysfs_lock);
4485 	elevator_switch_mq(q, t);
4486 	mutex_unlock(&q->sysfs_lock);
4487 }
4488 
4489 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4490 							int nr_hw_queues)
4491 {
4492 	struct request_queue *q;
4493 	LIST_HEAD(head);
4494 	int prev_nr_hw_queues;
4495 
4496 	lockdep_assert_held(&set->tag_list_lock);
4497 
4498 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4499 		nr_hw_queues = nr_cpu_ids;
4500 	if (nr_hw_queues < 1)
4501 		return;
4502 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4503 		return;
4504 
4505 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4506 		blk_mq_freeze_queue(q);
4507 	/*
4508 	 * Switch IO scheduler to 'none', cleaning up the data associated
4509 	 * with the previous scheduler. We will switch back once we are done
4510 	 * updating the new sw to hw queue mappings.
4511 	 */
4512 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4513 		if (!blk_mq_elv_switch_none(&head, q))
4514 			goto switch_back;
4515 
4516 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4517 		blk_mq_debugfs_unregister_hctxs(q);
4518 		blk_mq_sysfs_unregister(q);
4519 	}
4520 
4521 	prev_nr_hw_queues = set->nr_hw_queues;
4522 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4523 	    0)
4524 		goto reregister;
4525 
4526 	set->nr_hw_queues = nr_hw_queues;
4527 fallback:
4528 	blk_mq_update_queue_map(set);
4529 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4530 		blk_mq_realloc_hw_ctxs(set, q);
4531 		if (q->nr_hw_queues != set->nr_hw_queues) {
4532 			int i = prev_nr_hw_queues;
4533 
4534 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4535 					nr_hw_queues, prev_nr_hw_queues);
4536 			for (; i < set->nr_hw_queues; i++)
4537 				__blk_mq_free_map_and_rqs(set, i);
4538 
4539 			set->nr_hw_queues = prev_nr_hw_queues;
4540 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4541 			goto fallback;
4542 		}
4543 		blk_mq_map_swqueue(q);
4544 	}
4545 
4546 reregister:
4547 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4548 		blk_mq_sysfs_register(q);
4549 		blk_mq_debugfs_register_hctxs(q);
4550 	}
4551 
4552 switch_back:
4553 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4554 		blk_mq_elv_switch_back(&head, q);
4555 
4556 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4557 		blk_mq_unfreeze_queue(q);
4558 }
4559 
4560 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4561 {
4562 	mutex_lock(&set->tag_list_lock);
4563 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4564 	mutex_unlock(&set->tag_list_lock);
4565 }
4566 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4567 
4568 /* Enable polling stats and return whether they were already enabled. */
4569 static bool blk_poll_stats_enable(struct request_queue *q)
4570 {
4571 	if (q->poll_stat)
4572 		return true;
4573 
4574 	return blk_stats_alloc_enable(q);
4575 }
4576 
4577 static void blk_mq_poll_stats_start(struct request_queue *q)
4578 {
4579 	/*
4580 	 * We don't arm the callback if polling stats are not enabled or the
4581 	 * callback is already active.
4582 	 */
4583 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4584 		return;
4585 
4586 	blk_stat_activate_msecs(q->poll_cb, 100);
4587 }
4588 
4589 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4590 {
4591 	struct request_queue *q = cb->data;
4592 	int bucket;
4593 
4594 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4595 		if (cb->stat[bucket].nr_samples)
4596 			q->poll_stat[bucket] = cb->stat[bucket];
4597 	}
4598 }
4599 
4600 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4601 				       struct request *rq)
4602 {
4603 	unsigned long ret = 0;
4604 	int bucket;
4605 
4606 	/*
4607 	 * If stats collection isn't on, don't sleep but turn it on for
4608 	 * future users
4609 	 */
4610 	if (!blk_poll_stats_enable(q))
4611 		return 0;
4612 
4613 	/*
4614 	 * As an optimistic guess, use half of the mean service time
4615 	 * for this type of request. We can (and should) make this smarter.
4616 	 * For instance, if the completion latencies are tight, we can
4617 	 * get closer than just half the mean. This is especially
4618 	 * important on devices where the completion latencies are longer
4619 	 * than ~10 usec. We do use the stats for the relevant IO size
4620 	 * if available which does lead to better estimates.
4621 	 */
4622 	bucket = blk_mq_poll_stats_bkt(rq);
4623 	if (bucket < 0)
4624 		return ret;
4625 
4626 	if (q->poll_stat[bucket].nr_samples)
4627 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4628 
4629 	return ret;
4630 }
4631 
4632 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4633 {
4634 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4635 	struct request *rq = blk_qc_to_rq(hctx, qc);
4636 	struct hrtimer_sleeper hs;
4637 	enum hrtimer_mode mode;
4638 	unsigned int nsecs;
4639 	ktime_t kt;
4640 
4641 	/*
4642 	 * If a request has completed on queue that uses an I/O scheduler, we
4643 	 * won't get back a request from blk_qc_to_rq.
4644 	 */
4645 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4646 		return false;
4647 
4648 	/*
4649 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4650 	 *
4651 	 *  0:	use half of prev avg
4652 	 * >0:	use this specific value
4653 	 */
4654 	if (q->poll_nsec > 0)
4655 		nsecs = q->poll_nsec;
4656 	else
4657 		nsecs = blk_mq_poll_nsecs(q, rq);
4658 
4659 	if (!nsecs)
4660 		return false;
4661 
4662 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4663 
4664 	/*
4665 	 * This will be replaced with the stats tracking code, using
4666 	 * 'avg_completion_time / 2' as the pre-sleep target.
4667 	 */
4668 	kt = nsecs;
4669 
4670 	mode = HRTIMER_MODE_REL;
4671 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4672 	hrtimer_set_expires(&hs.timer, kt);
4673 
4674 	do {
4675 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4676 			break;
4677 		set_current_state(TASK_UNINTERRUPTIBLE);
4678 		hrtimer_sleeper_start_expires(&hs, mode);
4679 		if (hs.task)
4680 			io_schedule();
4681 		hrtimer_cancel(&hs.timer);
4682 		mode = HRTIMER_MODE_ABS;
4683 	} while (hs.task && !signal_pending(current));
4684 
4685 	__set_current_state(TASK_RUNNING);
4686 	destroy_hrtimer_on_stack(&hs.timer);
4687 
4688 	/*
4689 	 * If we sleep, have the caller restart the poll loop to reset the
4690 	 * state.  Like for the other success return cases, the caller is
4691 	 * responsible for checking if the IO completed.  If the IO isn't
4692 	 * complete, we'll get called again and will go straight to the busy
4693 	 * poll loop.
4694 	 */
4695 	return true;
4696 }
4697 
4698 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4699 			       struct io_comp_batch *iob, unsigned int flags)
4700 {
4701 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4702 	long state = get_current_state();
4703 	int ret;
4704 
4705 	do {
4706 		ret = q->mq_ops->poll(hctx, iob);
4707 		if (ret > 0) {
4708 			__set_current_state(TASK_RUNNING);
4709 			return ret;
4710 		}
4711 
4712 		if (signal_pending_state(state, current))
4713 			__set_current_state(TASK_RUNNING);
4714 		if (task_is_running(current))
4715 			return 1;
4716 
4717 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4718 			break;
4719 		cpu_relax();
4720 	} while (!need_resched());
4721 
4722 	__set_current_state(TASK_RUNNING);
4723 	return 0;
4724 }
4725 
4726 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4727 		unsigned int flags)
4728 {
4729 	if (!(flags & BLK_POLL_NOSLEEP) &&
4730 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4731 		if (blk_mq_poll_hybrid(q, cookie))
4732 			return 1;
4733 	}
4734 	return blk_mq_poll_classic(q, cookie, iob, flags);
4735 }
4736 
4737 unsigned int blk_mq_rq_cpu(struct request *rq)
4738 {
4739 	return rq->mq_ctx->cpu;
4740 }
4741 EXPORT_SYMBOL(blk_mq_rq_cpu);
4742 
4743 void blk_mq_cancel_work_sync(struct request_queue *q)
4744 {
4745 	if (queue_is_mq(q)) {
4746 		struct blk_mq_hw_ctx *hctx;
4747 		int i;
4748 
4749 		cancel_delayed_work_sync(&q->requeue_work);
4750 
4751 		queue_for_each_hw_ctx(q, hctx, i)
4752 			cancel_delayed_work_sync(&hctx->run_work);
4753 	}
4754 }
4755 
4756 static int __init blk_mq_init(void)
4757 {
4758 	int i;
4759 
4760 	for_each_possible_cpu(i)
4761 		init_llist_head(&per_cpu(blk_cpu_done, i));
4762 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4763 
4764 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4765 				  "block/softirq:dead", NULL,
4766 				  blk_softirq_cpu_dead);
4767 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4768 				blk_mq_hctx_notify_dead);
4769 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4770 				blk_mq_hctx_notify_online,
4771 				blk_mq_hctx_notify_offline);
4772 	return 0;
4773 }
4774 subsys_initcall(blk_mq_init);
4775